[go: up one dir, main page]

WO2018221077A1 - Electromagnetic valve, electromagnetic inlet valve mechanism, and high-pressure fuel pump - Google Patents

Electromagnetic valve, electromagnetic inlet valve mechanism, and high-pressure fuel pump Download PDF

Info

Publication number
WO2018221077A1
WO2018221077A1 PCT/JP2018/016525 JP2018016525W WO2018221077A1 WO 2018221077 A1 WO2018221077 A1 WO 2018221077A1 JP 2018016525 W JP2018016525 W JP 2018016525W WO 2018221077 A1 WO2018221077 A1 WO 2018221077A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
valve mechanism
valve body
spring member
stopper
Prior art date
Application number
PCT/JP2018/016525
Other languages
French (fr)
Japanese (ja)
Inventor
斉藤 淳治
悟史 臼井
雅史 根本
壮嗣 秋山
千彰 徳丸
康久 内山
早谷 政彦
小野瀬 亨
亘 枇本
登 住谷
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2019522026A priority Critical patent/JP6840238B2/en
Priority to DE112018002027.4T priority patent/DE112018002027T5/en
Priority to CN201880033420.6A priority patent/CN110651117B/en
Publication of WO2018221077A1 publication Critical patent/WO2018221077A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • F02M59/368Pump inlet valves being closed when actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/04Means for damping vibrations or pressure fluctuations in injection pump inlets or outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/007Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059
    • F02M63/0071Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059 characterised by guiding or centering means in valves including the absence of any guiding means, e.g. "flying arrangements"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/007Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059
    • F02M63/0077Valve seat details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/50Arrangements of springs for valves used in fuel injectors or fuel injection pumps

Definitions

  • the present invention relates to an electromagnetic valve, an electromagnetic intake valve mechanism, and a high-pressure fuel pump.
  • Patent Document 1 discloses that “a pump housing 1, a plunger 2, and an electromagnetic intake valve 300 are provided.
  • the electromagnetic intake valve 300 includes a valve 301c and a valve seat 302a that opens and closes a fuel passage when the valve 301c is separated. And a valve stopper 313 against which the valve 301c abuts when the valve is opened.
  • the electromagnetic intake valve 300 is attached to the electromagnetic intake valve insertion hole 1k formed in the pump housing 1, and the amount of discharged fuel is controlled by controlling the electromagnetic intake valve 300.
  • the electromagnetic suction valve insertion hole 1k is provided with a bottom 1ka that contacts the valve stopper 313 and a fuel passage hole 1a that passes through the bottom 1ka and communicates with both sides of the bottom 1ka.
  • Patent Document 2 states that “the housing body 11 having the fuel passage 100 that guides fuel to the pressurizing chamber 121, the valve body 30 provided in the fuel passage 100, and the valve seat 34 of the valve body 30 are seated on or separated from the valve seat.
  • a valve member 40 comprising a disc portion 41 to be seated and a hollow cylindrical guide portion 42, a stopper 50 having a cylindrical portion 51, a needle 60 that can contact the valve member 40, and a needle 60 that is connected to the valve member 40.
  • an electromagnetic drive unit 70 that can be attracted in the valve closing direction, and the stopper 50 covers the side wall surface of the pressure chamber 121 of the valve member 40 so as to hide when viewed from the pressure chamber 121 side.
  • the guide portion 42 has, on the inner wall, a cylindrical guide surface 43 that can slide on the outer wall of the cylindrical portion 51 of the stopper 50.
  • the spring 21 has at least a portion of the shaft surface of the guide surface 43 in the axial direction. At least part of the direction It is provided so as to overlap. "To be disclosed (see Abstract).
  • the present invention provides an electromagnetic valve, an electromagnetic intake valve mechanism, or a high-pressure fuel pump that suppresses radial movement of the intake valve and improves flow controllability even when the pressure is increased and the flow rate is increased.
  • the purpose is to do.
  • a valve mechanism includes a spring winding portion and a movable portion, and is fixed by a spring support portion on a side opposite to the winding end portion, and the seat of the spring member.
  • a valve body that is biased by the winding portion side, and a convex portion that is convex toward the spring support portion and that is positioned radially inside the spring member is formed on the valve body, and the spring
  • the tip of the convex portion with respect to at least the first winding radial cross section of the movable portion adjacent to the end turn portion The part is configured to be located on the spring support side.
  • an electromagnetic valve, an electromagnetic intake valve mechanism, or a high-pressure fuel pump that suppresses the radial movement of the intake valve and improves the flow rate controllability even when the pressure is increased and the flow rate is increased. It becomes possible to provide. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
  • FIG. 3 is an overall cross-sectional view showing the high-pressure fuel pump cut in a direction perpendicular to the axial direction of the plunger, and is a cross-sectional view at the fuel inlet shaft center and discharge port shaft center.
  • FIG. 2 is an overall cross-sectional view of the high-pressure fuel pump at an angle different from that of FIG. It is the figure which expanded the longitudinal cross-sectional view of the electromagnetic suction valve mechanism of a high pressure fuel pump. It is a figure showing the whole system composition including a high-pressure fuel pump. It is a figure which expands and demonstrates the intake valve structure of the high pressure fuel pump of the Example of this invention.
  • FIG. 1 It is a figure which expands and demonstrates the suction valve structure of the state in which the valve body (suction valve 30) of the Example of this invention was seated on the valve seat (suction valve seat part 31a). It is a figure which expands and demonstrates the suction valve structure of the state in which the valve body (suction valve 30) of the Example of this invention contacted the stopper 32.
  • FIG. 1 It is a figure which expands and demonstrates the suction valve structure of the state in which the valve body (suction valve 30) of the Example of this invention was seated on the valve seat (suction valve seat part 31a). It is a figure which expands and demonstrates the suction valve structure of the state in which the valve body (suction valve 30) of the Example of this invention contacted the stopper 32.
  • the high-pressure fuel pump of the present embodiment is a high-pressure fuel pump that discharges high-pressure fuel of 20 MPa or more.
  • the same numerals indicate the same parts.
  • Fuel in the fuel tank 20 is pumped up by a feed pump 21 based on a signal from an engine control unit 27 (hereinafter referred to as ECU).
  • ECU engine control unit 27
  • This fuel is pressurized to an appropriate feed pressure and sent to the low pressure fuel inlet 10a of the high pressure fuel pump through the suction pipe 28.
  • the fuel that has passed through the suction joint 51 (see FIG. 2) from the low-pressure fuel suction port 10a passes through the metal damper 9 (pressure pulsation reducing mechanism) and the suction passage 10d, and the suction port 31b of the electromagnetic suction valve mechanism 300 constituting the variable capacity mechanism.
  • the fuel that has flowed into the electromagnetic suction valve mechanism 300 passes through the suction valve 30 and flows into the pressurizing chamber 11.
  • the reciprocating power is applied to the plunger 2 by the cam 93 (see FIG. 1) of the engine (internal combustion engine).
  • the reciprocating motion of the plunger 2 sucks fuel from the suction valve 30 during the downward stroke of the plunger 2 and pressurizes the fuel during the upward stroke.
  • the fuel is pumped to the common rail 23 to which the pressure sensor 26 is attached.
  • the injector 24 injects fuel into the engine based on a signal from the ECU 27.
  • This embodiment is a high pressure fuel pump applied to a so-called direct injection engine system in which an injector 24 directly injects fuel into a cylinder cylinder of an engine.
  • the high-pressure fuel pump discharges the desired fuel flow rate of the supplied fuel in response to a signal from the ECU 27 to the electromagnetic intake valve mechanism 300.
  • FIG. 1 is a longitudinal sectional view of a high-pressure fuel pump
  • FIG. 2 is a horizontal sectional view of the high-pressure fuel pump as viewed from above
  • FIG. 3 is a longitudinal sectional view of the high-pressure fuel pump as seen from a different direction from FIG.
  • FIG. 4 is an enlarged view of the electromagnetic suction valve mechanism 300.
  • the high-pressure fuel pump is attached to the metal damper 9, the pump body 1 (pump main body) in which the damper accommodating portion 1 p for accommodating the metal damper 9 is formed, and the pump body 1.
  • a damper cover 14 that covers 1p and holds the metal damper 9 between the pump body 1 and a holding member 9a that is fixed to the damper cover 14 and holds the metal damper 9 from the opposite side of the damper cover 14. Yes.
  • the holding member 9 a is disposed between the metal damper 9 and the pump body 1, and holds the metal damper 9 from the pump body 1 side.
  • the high-pressure fuel pump is attached to a high-pressure fuel pump mounting portion 90 of the internal combustion engine using a mounting flange 1e (see FIG. 2) provided in the pump body 1, and is fixed with a plurality of bolts.
  • an O-ring 61 is fitted into the pump body 1 for sealing between the high-pressure fuel pump mounting portion 90 and the pump body 1 to prevent the engine oil from leaking to the outside.
  • a cylinder 6 that guides the reciprocating motion of the plunger 2 and forms a pressurizing chamber 11 together with the pump body 1 is attached to the pump body 1.
  • An electromagnetic suction valve mechanism 300 for supplying fuel to the pressurizing chamber 11 and a discharge valve mechanism 8 (see FIG. 2) for discharging fuel from the pressurizing chamber 11 to the discharge passage are provided.
  • the cylinder 6 is press-fitted with the pump body 1 on the outer peripheral side thereof, and further, in the fixing portion 6 a, the body is deformed to the inner peripheral side to press the cylinder 6 upward in the figure.
  • the fuel pressurized in the pressurizing chamber 11 is sealed so as not to leak to the low pressure side.
  • a tappet 92 that converts the rotational movement of a cam 93 (cam mechanism) attached to the camshaft of the internal combustion engine into a vertical movement and transmits it to the plunger 2.
  • the plunger 2 is pressure-bonded to the tappet 92 by the spring 4 through the retainer 15. Thereby, the plunger 2 can be reciprocated up and down with the rotational movement of the cam 93.
  • the plunger seal 13 held at the lower end of the inner periphery of the seal holder 7 is installed in a slidable contact with the outer periphery of the plunger 2 at the lower part of the cylinder 6 in the figure.
  • lubricating oil including engine oil
  • a suction joint 51 is attached to the side surface of the pump body 1 of the high-pressure fuel pump.
  • the suction joint 51 is connected to a low-pressure pipe that supplies fuel from the fuel tank 20 of the vehicle, and the fuel is supplied from here to the inside of the high-pressure fuel pump.
  • the suction filter 52 (see FIG. 3) in the suction joint 51 serves to prevent foreign matters existing between the fuel tank 20 and the low-pressure fuel inlet 10a from being absorbed into the high-pressure fuel pump by the flow of fuel.
  • the fuel that has passed through the low-pressure fuel intake port 10a reaches the intake port 31b of the electromagnetic intake valve mechanism 300 through the metal damper 9 and the intake passage 10d (low-pressure fuel flow path).
  • the electromagnetic suction valve mechanism 300 will be described in detail with reference to FIG. 1, 2, and 4 show the electromagnetic suction / inlet valve mechanism 300, but the structure shown in these drawings shows the case where the present invention is not applied.
  • the coil section includes a first yoke 42, an electromagnetic coil 43, a second yoke 44, a bobbin 45, a terminal 46, and a connector 47.
  • a coil 43 in which a copper wire is wound around the bobbin 45 is disposed so as to be surrounded by the first yoke 42 and the second yoke 44, and is molded and fixed integrally with a connector which is a resin member.
  • the respective ends of the two terminals 46 are respectively connected to both ends of the copper wire of the coil so as to be energized.
  • the terminal 46 is molded integrally with the connector, and the remaining end can be connected to the engine control unit side.
  • the coil portion is fixed by press-fitting the central hole of the first yoke 42 into the outer core 38. At that time, the inner diameter side of the second yoke 44 is in contact with the fixed core 39 or close to a slight clearance.
  • Both the first yoke 42 and the second yoke 44 are made of magnetic stainless steel in order to constitute a magnetic circuit and in consideration of corrosion resistance, and the bobbin 45 and the connector 47 are made of high strength heat resistant resin in consideration of strength characteristics and heat resistance characteristics.
  • the coil 43 is made of copper, and the terminal 46 is made of brass plated with metal.
  • the solenoid mechanism part includes a rod 35 that is a movable part, an anchor part 36, a rod guide 37 that is a fixed part, an outer core 38, a fixed core 39, a rod biasing spring 40, and an anchor part biasing spring 41.
  • the rod 35 and the anchor part 36 which are movable parts are configured as separate members.
  • the rod 35 is slidably held in the axial direction on the inner peripheral side of the rod guide 37, and the inner peripheral side of the anchor portion 36 is slidably held on the outer peripheral side of the rod 35. That is, both the rod 35 and the anchor portion 36 are configured to be slidable in the axial direction as long as they are geometrically restricted.
  • the anchor portion 36 has one or more through holes 36a penetrating in the axial direction of the component in order to move freely and smoothly in the axial direction in the fuel, and eliminates the restriction of movement due to the pressure difference before and after the anchor portion as much as possible. .
  • the rod guide 37 is inserted in the radial direction on the inner peripheral side of the hole into which the suction valve of the pump body 1 is inserted, and is abutted against one end of the suction valve seat in the axial direction and welded to the pump body 1. It is set as the structure arrange
  • the rod guide 37 is also provided with a through hole 37a penetrating in the axial direction in the same manner as the anchor portion 36, and the pressure of the fuel chamber on the anchor portion side controls the movement of the anchor portion so that the anchor portion can move freely and smoothly. It is configured not to interfere.
  • the outer core 38 has a thin cylindrical shape on the side opposite to the part to be welded to the pump body 1 and is fixed by welding in such a manner that a fixed core 39 is inserted on the inner peripheral side thereof.
  • a rod urging spring 40 is arranged on the inner peripheral side of the fixed core 39 with the narrow diameter portion as a guide, the rod 35 comes into contact with the intake valve 30, and the intake valve is pulled away from the intake valve seat portion 31a, that is, the intake valve. Energizing force is applied in the valve opening direction.
  • the suction valve 30 contacts the stopper 32 at the maximum opening.
  • the stopper 32 is formed by stamping a metal plate, and the outer peripheral surface thereof is press-fitted and fixed to the sheet member 31.
  • a part of the outer peripheral surface is a notch, and the notch is configured to always communicate with the recess, and the upstream side of the suction valve communicates with the pressurizing chamber 11.
  • the suction valve seat portion 31a and the suction port 31b are formed by the same seat member 31.
  • the anchor portion biasing spring 41 is disposed so as to apply a biasing force to the anchor portion 36 in the direction of the rod collar portion 35a while inserting one end into a cylindrical central bearing portion 37b provided on the center side of the rod guide 37 and maintaining the same axis. It is said.
  • the movement amount 36e of the anchor portion 36 is set to be larger than the movement amount 30e of the intake valve 30. This is because the intake valve 30 is surely closed.
  • the rod guide 37 is formed of the same member as the sheet member 31 described above.
  • the intake valve portion and the solenoid mechanism portion are configured by organically arranging three springs.
  • the suction valve biasing spring 33 configured as a suction valve portion, the rod biasing spring 40 configured as a solenoid mechanism portion, and the anchor portion biasing spring 41 correspond to this.
  • any spring uses a coil spring, but any spring can be used as long as it can obtain an urging force.
  • the discharge valve mechanism 8 provided at the outlet of the pressurizing chamber 11 has a discharge valve sheet 8a, a discharge valve 8b that contacts and separates from the discharge valve sheet 8a, and a discharge valve 8b toward the discharge valve sheet 8a. And a discharge valve stopper 8d that determines the stroke (movement distance) of the discharge valve 8b.
  • the discharge valve stopper 8d and the pump body 1 are joined by welding at the contact portion 8e to block the fuel and the outside.
  • the discharge valve 8b When there is no fuel differential pressure in the pressurizing chamber 11 and the discharge valve chamber 12a, the discharge valve 8b is pressed against the discharge valve seat 8a by the urging force of the discharge valve spring 8c and is in a closed state. Only when the fuel pressure in the pressurizing chamber 11 becomes higher than the fuel pressure in the discharge valve chamber 12a, the discharge valve 8b opens against the discharge valve spring 8c. The high-pressure fuel in the pressurizing chamber 11 is discharged to the common rail 23 through the discharge valve chamber 12a, the fuel discharge passage 12b, and the fuel discharge port 12.
  • the pressurizing chamber 11 includes a pump body 1 (pump housing), an electromagnetic suction valve mechanism 300, a plunger 2, a cylinder 6, and a discharge valve mechanism 8.
  • the plunger 2 After the plunger 2 completes the suction stroke, the plunger 2 starts to move upward and moves to the compression stroke.
  • the electromagnetic coil 43 remains in a non-energized state and no magnetic biasing force acts.
  • the rod biasing spring 40 is set to have a biasing force necessary and sufficient to keep the suction valve 30 open in a non-energized state.
  • the volume of the pressurizing chamber 11 decreases with the compression movement of the plunger 2. In this state, the fuel once sucked into the pressurizing chamber 11 is again sucked through the opening 30 e of the intake valve 30 in the valve open state. Since the pressure is returned to the passage 10d, the pressure in the pressurizing chamber does not increase. This process is called a return process.
  • the ascending stroke between the lower start point and the upper start point of the plunger 2 is composed of a return stroke and a discharge stroke.
  • the quantity of the high-pressure fuel discharged can be controlled by controlling the energization timing to the electromagnetic coil 43 of the electromagnetic intake valve mechanism 300. If the timing of energizing the electromagnetic coil 43 is advanced, the ratio of the return stroke during the upward stroke is small and the ratio of the discharge stroke is large. That is, the amount of fuel returned to the suction passage 10d is small and the amount of fuel discharged at high pressure is large. On the other hand, if the timing of energization is delayed, the ratio of the return stroke during the upward stroke is large and the ratio of the discharge stroke is small.
  • the energization timing to the electromagnetic coil 43 is controlled by a command from the ECU 27. By controlling the energization timing to the electromagnetic coil 43 as described above, the amount of fuel discharged at high pressure can be controlled to the amount required by the internal combustion engine.
  • a metal damper 9 is installed in the low pressure fuel chamber 10 to reduce the pressure pulsation generated in the high pressure fuel pump from spreading to the suction pipe 28 (fuel pipe).
  • the fuel that has once flowed into the pressurizing chamber 11 is returned to the suction passage 10d through the intake valve 30 (suction valve body) that is opened again for capacity control, the fuel returned to the suction passage 10d is used as a low-pressure fuel. Pressure pulsation is generated in the chamber 10.
  • the metal damper 9 provided in the low-pressure fuel chamber 10 is formed of a metal diaphragm damper in which two corrugated disk-shaped metal plates are bonded together on the outer periphery and an inert gas such as argon is injected therein. The pressure pulsation is absorbed and reduced as the metal damper expands and contracts.
  • the plunger 2 has a large-diameter portion 2a and a small-diameter portion 2b, and the volume of the sub chamber 7a increases and decreases as the plunger 2 reciprocates.
  • the sub chamber 7a communicates with the low pressure fuel chamber 10 by a fuel passage 10e (see FIG. 3). When the plunger 2 descends, fuel flows from the sub chamber 7a to the low pressure fuel chamber 10, and when it rises, fuel flows from the low pressure fuel chamber 10 to the sub chamber 7a.
  • seat by the suction valve 30 will not be produced, but there exists a problem of causing the flow volume fall or the deterioration of flow controllability. Further, when the suction valve 30 is inclined and comes into contact with the suction valve seat portion 31a, the suction valve seat portion 31a is worn, thereby causing a problem that the seat performance is deteriorated.
  • the valve mechanism of the present embodiment includes an end turn part 33a and a movable part 33b, and is fixed by a spring support part 32a opposite to the end turn part 33a, and an end turn part 33a of the spring member 33. And a valve body (suction valve 30) that is urged by the other side. Further, a convex portion 30 b that is convex toward the spring support portion 32 a and is located on the radially inner side of the spring member 33 is formed in the valve body (suction valve 30). As shown in FIG.
  • the movable portion 33b may be referred to as an effective winding portion, and the movable portion 33b is a portion that actually operates as a spring. Since a gap is formed in the movable portion 33b, when a large force is applied in the radial direction of the valve body (suction valve 30), the valve body itself tilts or swings through the gap of the movable portion. Will do. Therefore, in the present embodiment, as described above, the distal end portion 30c of the convex portion 30b is on the side of the spring support portion 32a with respect to the winding cross section on both sides in the radial direction of at least the first winding of the movable portion 33b (effective winding portion). It is comprised so that it may be located in. In FIG.
  • the valve mechanism of this embodiment includes a valve seat (suction valve seat portion 31a) that seals when the valve body (suction valve 30) is seated, and the valve body (suction valve 30).
  • a valve seat suction valve seat portion 31a
  • the convex portion 30b In the state where the seat is seated on the valve seat (suction valve seat portion 31a), in the sectional view cut in the spring member axial direction, the convex portion 30b It is desirable that the tip portion 30c is configured to be located on the spring support portion 32a side.
  • the tip 30c of the convex portion 30b is positioned on the spring support portion 32a side with respect to the winding cross section on both sides in the radial direction of at least the second winding of the movable portion 33b, it is possible to further suppress the rampage in the radial direction. It is.
  • the valve mechanism of the present embodiment includes a stopper 32 that restricts movement of the valve body (suction valve 30) in the direction opposite to the valve seat (suction valve seat portion 31a).
  • the tip 30c of the convex portion 30b is located on the side of the spring support 32a with respect to the half of the total length of the spring member 33. It is desirable to be configured to be located in
  • FIG. 8 is a cross-sectional view showing the convex portion of the stopper 32 that contacts the valve body (suction valve 30), while FIG. 6 shows the convex shape of the stopper 32 that contacts the valve body (suction valve 30). It is the figure cut by the cross section which cannot see a part. Therefore, FIG. 6 and FIG. 8 show the same state.
  • the stopper 32 is preferably configured to have a cylindrical holding portion 32c that holds the spring member 33 radially inward.
  • the stopper 32 is preferably configured to hold the spring member 33 by the inner peripheral surface of the holding portion 32c and to have a fixing portion 32d that fixes the stopper 32 on the radially outer side of the inner peripheral surface.
  • the stopper 32 since the stopper 32 is formed by stamping, it can be configured at a low cost.
  • the convex portion 30b of the valve body (suction valve 30) is formed in a cylindrical shape.
  • the valve body (intake valve 30) is formed of a cylindrical portion 30d having a low height and a cylindrical convex portion 30b having a height higher than that of the cylindrical portion 30d.
  • the electromagnetic suction valve mechanism 300 of this embodiment is configured separately from the valve mechanism and the valve body (suction valve 30) described above, and biases the valve body (suction valve 30) in the valve opening direction.
  • the rod 35 includes an anchor 36 that drives the rod 35 in the valve closing direction, and a coil 43 that generates an electromagnetic attractive force that drives the anchor 36 in the valve closing direction.
  • the high-pressure fuel pump of the present embodiment is configured separately from the valve mechanism described above, independent of the valve body, and a rod 35 that biases the valve body in the valve opening direction, and the rod 35 is closed.
  • the chamber 11 and the plunger 2 that increases and decreases the volume of the pressurizing chamber 11 are provided.
  • this invention is not limited to an above-described Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

Provided are an electromagnetic valve, an electromagnetic inlet valve mechanism, and a high-pressure fuel pump that suppress movement of an inlet valve in the radial direction and improve flow rate controllability even when pressure becomes high or flow rate becomes high. This valve mechanism is provided with: a spring member that includes an end coil section and a movable section and that is secured by a spring support section on the side opposite the end coil section; and a valve body that is biased by the end coil section-side of the spring member. The valve body has formed therein a protrusion section that protrudes toward the spring support section-side and that is located on the radially inner side of the spring member. In a cross-section that passes through the radial center of the spring member and is cut in the spring member axial direction, a tip section of the protrusion section is positioned on the spring support section-side with respect to a coil cross-section on both sides of at least the first turn of the movable section that is adjacent to the end coil section.

Description

電磁弁、電磁吸入弁機構、及び高圧燃料ポンプElectromagnetic valve, electromagnetic intake valve mechanism, and high-pressure fuel pump
 本発明は、電磁弁、電磁吸入弁機構、及び高圧燃料ポンプに関する。 The present invention relates to an electromagnetic valve, an electromagnetic intake valve mechanism, and a high-pressure fuel pump.
 本発明の高圧燃料ポンプの背景技術として、特許文献1、2に記載のものがある。特許文献1には「ポンプハウジング1と、プランジャ2と、電磁吸入弁300とを備え、電磁吸入弁300は、バルブ301cと、バルブ301cが離接することにより燃料通路が開閉されるバルブシート302aと、開弁時にバルブ301cが当接するバルブストッパ313とを有し、ポンプハウジング1に形成した電磁吸入弁挿入孔1kに電磁吸入弁300を取り付け、電磁吸入弁300を制御して吐出燃料の量を制御する高圧燃料ポンプにおいて、電磁吸入弁挿入孔1kに、バルブストッパ313に当接する底部1kaと、底部1kaを貫通し底部1kaの両側を連通する燃料通路孔1aとを設ける。」と開示されている(要約参照)。 The background art of the high-pressure fuel pump of the present invention includes those described in Patent Documents 1 and 2. Patent Document 1 discloses that “a pump housing 1, a plunger 2, and an electromagnetic intake valve 300 are provided. The electromagnetic intake valve 300 includes a valve 301c and a valve seat 302a that opens and closes a fuel passage when the valve 301c is separated. And a valve stopper 313 against which the valve 301c abuts when the valve is opened. The electromagnetic intake valve 300 is attached to the electromagnetic intake valve insertion hole 1k formed in the pump housing 1, and the amount of discharged fuel is controlled by controlling the electromagnetic intake valve 300. In the high-pressure fuel pump to be controlled, the electromagnetic suction valve insertion hole 1k is provided with a bottom 1ka that contacts the valve stopper 313 and a fuel passage hole 1a that passes through the bottom 1ka and communicates with both sides of the bottom 1ka. (See summary).
 また特許文献2には「加圧室121に燃料を導く燃料通路100を有するハウジング本体11と、燃料通路100に設けられる弁ボディ30と、弁ボディ30の弁座34に着座または弁座から離座する円板部41と中空筒状のガイド部42とからなる弁部材40と、筒部51を有するストッパ50と、弁部材40に当接可能なニードル60と、ニードル60を弁部材40の閉弁方向に吸引可能な電磁駆動部70と、を備えている。ストッパ50は、加圧室121側から見たとき、弁部材40の加圧室121側壁面を隠すようにして覆っている。ガイド部42は、内壁に、ストッパ50の筒部51の外壁と摺動可能な筒形状のガイド面43を有している。スプリング21は、軸方向の少なくとも一部がガイド面43の軸方向の少なくとも一部と重なるようにして設けられている。」と開示されている(要約参照)。 Further, Patent Document 2 states that “the housing body 11 having the fuel passage 100 that guides fuel to the pressurizing chamber 121, the valve body 30 provided in the fuel passage 100, and the valve seat 34 of the valve body 30 are seated on or separated from the valve seat. A valve member 40 comprising a disc portion 41 to be seated and a hollow cylindrical guide portion 42, a stopper 50 having a cylindrical portion 51, a needle 60 that can contact the valve member 40, and a needle 60 that is connected to the valve member 40. And an electromagnetic drive unit 70 that can be attracted in the valve closing direction, and the stopper 50 covers the side wall surface of the pressure chamber 121 of the valve member 40 so as to hide when viewed from the pressure chamber 121 side. The guide portion 42 has, on the inner wall, a cylindrical guide surface 43 that can slide on the outer wall of the cylindrical portion 51 of the stopper 50. The spring 21 has at least a portion of the shaft surface of the guide surface 43 in the axial direction. At least part of the direction It is provided so as to overlap. "To be disclosed (see Abstract).
特開2016-191367号公報Japanese Unexamined Patent Publication No. 2016-191367 特開2010-156264号公報JP 2010-156264 A
 しかしながら、特許文献1に記載の吸入弁構造の場合、吸入弁が径方向に力がかかって傾斜する、あるいは径方向において振れた場合にこの動きを規制することができない。そうすると、吸入弁によるシートがされず、流量低下を招く、あるいは流量制御性の悪化を招くという問題がある。また、吸入弁が傾斜して吸入弁シート部に接触することにより、吸入弁シート部が摩耗することで、シート性能が悪化するという問題があった。 However, in the case of the intake valve structure described in Patent Document 1, this movement cannot be restricted when the intake valve is tilted by a force in the radial direction or is shaken in the radial direction. If it does so, the sheet | seat by an intake valve will not be produced, but there exists a problem of causing the flow volume fall or the deterioration of flow controllability. Further, when the intake valve is inclined and comes into contact with the intake valve seat portion, the intake valve seat portion is worn, thereby causing a problem that the seat performance is deteriorated.
 一方で特許文献2に記載の吸入弁の場合、吸入弁の凸部が弁ホルダの内径円筒で摺動ガイドされる構造になっている。しかし、この構造の場合、吸入弁の凸部にばねを保持するための凹み部を加工する必要があり、高精度の加工精度が要求されるうえに、ばねを保持するための部位(凹み部)を加工することによりコストが増大してしまうという問題があった。 On the other hand, in the case of the suction valve described in Patent Document 2, the convex portion of the suction valve is slidably guided by the inner diameter cylinder of the valve holder. However, in this structure, it is necessary to process a recess for holding the spring on the convex portion of the intake valve, and a high processing accuracy is required, and a part for holding the spring (the recess) ) Would increase the cost.
 そこで本発明では、高圧化、また大流量化が進んだ場合においても、吸入弁の径方向の動きを抑制し、流量制御性を向上させる電磁弁、電磁吸入弁機構、又は高圧燃料ポンプを提供することを目的とする。 Therefore, the present invention provides an electromagnetic valve, an electromagnetic intake valve mechanism, or a high-pressure fuel pump that suppresses radial movement of the intake valve and improves flow controllability even when the pressure is increased and the flow rate is increased. The purpose is to do.
 上記課題を解決するために本発明の弁機構は、座巻部と可動部とを有し、前記座巻部と反対側のばね支持部により固定されるばね部材と、前記ばね部材の前記座巻部の側により付勢される弁体と、を備え、前記ばね支持部の側に凸となるとともに、前記ばね部材の径方向内側に位置する凸部が前記弁体に形成され、前記ばね部材の径方向中心を通り、ばね部材軸方向に切った断面図において、前記座巻部に隣接する前記可動部の少なくとも一巻き目の径方向両側の巻線断面に対し、前記凸部の先端部が前記ばね支持部の側に位置するように構成された。 In order to solve the above problems, a valve mechanism according to the present invention includes a spring winding portion and a movable portion, and is fixed by a spring support portion on a side opposite to the winding end portion, and the seat of the spring member. A valve body that is biased by the winding portion side, and a convex portion that is convex toward the spring support portion and that is positioned radially inside the spring member is formed on the valve body, and the spring In a cross-sectional view passing through the radial center of the member and cut in the axial direction of the spring member, the tip of the convex portion with respect to at least the first winding radial cross section of the movable portion adjacent to the end turn portion The part is configured to be located on the spring support side.
 本発明によれば、高圧化、また大流量化が進んだ場合においても、吸入弁の径方向の動きを抑制し、流量制御性を向上させる電磁弁、電磁吸入弁機構、又は高圧燃料ポンプを提供することが可能となる。 
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, an electromagnetic valve, an electromagnetic intake valve mechanism, or a high-pressure fuel pump that suppresses the radial movement of the intake valve and improves the flow rate controllability even when the pressure is increased and the flow rate is increased. It becomes possible to provide.
Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
高圧燃料ポンプについて、プランジャの軸方向に切断して示す全体断面図である。It is whole sectional drawing cut | disconnected and shown to the axial direction of a plunger about a high pressure fuel pump. 高圧燃料ポンプについて、プランジャの軸方向に垂直な方向に切断して示す全体断面図であり、燃料の吸入口軸中心及び吐出口軸中心における断面図である。FIG. 3 is an overall cross-sectional view showing the high-pressure fuel pump cut in a direction perpendicular to the axial direction of the plunger, and is a cross-sectional view at the fuel inlet shaft center and discharge port shaft center. 高圧燃料ポンプの図1とは別の角度の全体断面図であり、吸入ジョイント軸中心における断面図である。FIG. 2 is an overall cross-sectional view of the high-pressure fuel pump at an angle different from that of FIG. 高圧燃料ポンプの電磁吸入弁機構の縦断面図を拡大した図である。It is the figure which expanded the longitudinal cross-sectional view of the electromagnetic suction valve mechanism of a high pressure fuel pump. 高圧燃料ポンプを含む、システムの全体構成を示す図である。It is a figure showing the whole system composition including a high-pressure fuel pump. 本発明の実施例の高圧燃料ポンプの吸入弁構造を拡大して説明する図である。It is a figure which expands and demonstrates the intake valve structure of the high pressure fuel pump of the Example of this invention. 本発明の実施例の弁体(吸入弁30)が弁座(吸入弁シート部31a)に着座した状態の吸入弁構造を拡大して説明する図である。It is a figure which expands and demonstrates the suction valve structure of the state in which the valve body (suction valve 30) of the Example of this invention was seated on the valve seat (suction valve seat part 31a). 本発明の実施例の弁体(吸入弁30)がストッパ32と接触した状態の吸入弁構造を拡大して説明する図である。It is a figure which expands and demonstrates the suction valve structure of the state in which the valve body (suction valve 30) of the Example of this invention contacted the stopper 32. FIG.
 以下、図面を用いて、本発明の実施例による高圧燃料ポンプの構成及び作用効果について説明する。本実施例の高圧燃料ポンプは20MPa以上の高圧燃料を吐出する高圧燃料ポンプである。なお、各図において、同一符号は同一部分を示す。 Hereinafter, the configuration and operational effects of the high-pressure fuel pump according to the embodiment of the present invention will be described with reference to the drawings. The high-pressure fuel pump of the present embodiment is a high-pressure fuel pump that discharges high-pressure fuel of 20 MPa or more. In each figure, the same numerals indicate the same parts.
 (全体構成)
 最初に、図5に示すエンジンシステムの全体構成図を用いてシステムの構成と動作を説明する。破線で囲まれた部分が高圧燃料ポンプの本体を示し、この破線の中に示されている機構・部品はポンプボディ1に一体に組み込まれていることを示す。
(overall structure)
First, the configuration and operation of the system will be described using the overall configuration diagram of the engine system shown in FIG. A portion surrounded by a broken line indicates a main body of the high-pressure fuel pump, and a mechanism / part shown in the broken line is integrated in the pump body 1.
 燃料タンク20の燃料は、エンジンコントロールユニット27(以下ECUと称す)からの信号に基づきフィードポンプ21によって汲み上げられる。この燃料は適切なフィード圧力に加圧されて吸入配管28を通して高圧燃料ポンプの低圧燃料吸入口10aに送られる。低圧燃料吸入口10aから吸入ジョイント51(図2参照)を通過した燃料は金属ダンパ9(圧力脈動低減機構)、吸入通路10dを介して容量可変機構を構成する電磁吸入弁機構300の吸入ポート31bに至る。 Fuel in the fuel tank 20 is pumped up by a feed pump 21 based on a signal from an engine control unit 27 (hereinafter referred to as ECU). This fuel is pressurized to an appropriate feed pressure and sent to the low pressure fuel inlet 10a of the high pressure fuel pump through the suction pipe 28. The fuel that has passed through the suction joint 51 (see FIG. 2) from the low-pressure fuel suction port 10a passes through the metal damper 9 (pressure pulsation reducing mechanism) and the suction passage 10d, and the suction port 31b of the electromagnetic suction valve mechanism 300 constituting the variable capacity mechanism. To.
 電磁吸入弁機構300に流入した燃料は、吸入弁30を通過し加圧室11に流入する。
エンジン(内燃機関)のカム93(図1参照)によりプランジャ2に往復運動する動力が与えられる。プランジャ2の往復運動により、プランジャ2の下降行程には吸入弁30から燃料を吸入し、上昇行程には、燃料が加圧される。吐出弁機構8を介し、圧力センサ26が装着されているコモンレール23へ燃料が圧送される。そしてECU27からの信号に基づきインジェクタ24がエンジンへ燃料を噴射する。本実施例はインジェクタ24がエンジンのシリンダ筒内に直接、燃料を噴射する、いわゆる直噴エンジンシステムに適用される高圧燃料ポンプである。高圧燃料ポンプは、ECU27から電磁吸入弁機構300への信号により、所望の供給燃料の燃料流量を吐出する。
The fuel that has flowed into the electromagnetic suction valve mechanism 300 passes through the suction valve 30 and flows into the pressurizing chamber 11.
The reciprocating power is applied to the plunger 2 by the cam 93 (see FIG. 1) of the engine (internal combustion engine). The reciprocating motion of the plunger 2 sucks fuel from the suction valve 30 during the downward stroke of the plunger 2 and pressurizes the fuel during the upward stroke. Through the discharge valve mechanism 8, the fuel is pumped to the common rail 23 to which the pressure sensor 26 is attached. The injector 24 injects fuel into the engine based on a signal from the ECU 27. This embodiment is a high pressure fuel pump applied to a so-called direct injection engine system in which an injector 24 directly injects fuel into a cylinder cylinder of an engine. The high-pressure fuel pump discharges the desired fuel flow rate of the supplied fuel in response to a signal from the ECU 27 to the electromagnetic intake valve mechanism 300.
 (高圧燃料ポンプの構成) 
 次に、図1~図4を用いて、高圧燃料ポンプの構成を説明する。図1は高圧燃料ポンプの縦断面図を示し、図2は高圧燃料ポンプを上方から見た水平方向断面図である。また図3は高圧燃料ポンプを図1と別方向から見た縦断面図である。図4は電磁吸入弁機構300の拡大図である。
(Configuration of high-pressure fuel pump)
Next, the configuration of the high-pressure fuel pump will be described with reference to FIGS. FIG. 1 is a longitudinal sectional view of a high-pressure fuel pump, and FIG. 2 is a horizontal sectional view of the high-pressure fuel pump as viewed from above. FIG. 3 is a longitudinal sectional view of the high-pressure fuel pump as seen from a different direction from FIG. FIG. 4 is an enlarged view of the electromagnetic suction valve mechanism 300.
 図1に示すように、高圧燃料ポンプは、金属ダンパ9と、金属ダンパ9を収容するダンパ収容部1pが形成されるポンプボディ1(ポンプ本体)と、ポンプボディ1に取付けられ、ダンパ収容部1pを覆うと共に金属ダンパ9をポンプボディ1との間に保持するダンパカバー14と、ダンパカバー14に固定され、ダンパカバー14と反対側から金属ダンパ9を保持する保持部材9aと、を備えている。保持部材9aは金属ダンパ9とポンプボディ1との間に配置され、ポンプボディ1の側から金属ダンパ9を保持する。高圧燃料ポンプはポンプボディ1に設けられた取付けフランジ1e(図2参照)を用い内燃機関の高圧燃料ポンプ取付け部90に密着し、複数のボルトで固定される。 As shown in FIG. 1, the high-pressure fuel pump is attached to the metal damper 9, the pump body 1 (pump main body) in which the damper accommodating portion 1 p for accommodating the metal damper 9 is formed, and the pump body 1. A damper cover 14 that covers 1p and holds the metal damper 9 between the pump body 1 and a holding member 9a that is fixed to the damper cover 14 and holds the metal damper 9 from the opposite side of the damper cover 14. Yes. The holding member 9 a is disposed between the metal damper 9 and the pump body 1, and holds the metal damper 9 from the pump body 1 side. The high-pressure fuel pump is attached to a high-pressure fuel pump mounting portion 90 of the internal combustion engine using a mounting flange 1e (see FIG. 2) provided in the pump body 1, and is fixed with a plurality of bolts.
 図1に示すように、高圧燃料ポンプ取付け部90とポンプボディ1との間のシールのためにOリング61がポンプボディ1に嵌め込まれ、エンジンオイルが外部に漏れるのを防止する。ポンプボディ1にはプランジャ2の往復運動をガイドし、ポンプボディ1と共に加圧室11を形成するシリンダ6が取り付けられている。また燃料を加圧室11に供給するための電磁吸入弁機構300と加圧室11から吐出通路に燃料を吐出するための吐出弁機構8(図2参照)が設けられている。 As shown in FIG. 1, an O-ring 61 is fitted into the pump body 1 for sealing between the high-pressure fuel pump mounting portion 90 and the pump body 1 to prevent the engine oil from leaking to the outside. A cylinder 6 that guides the reciprocating motion of the plunger 2 and forms a pressurizing chamber 11 together with the pump body 1 is attached to the pump body 1. An electromagnetic suction valve mechanism 300 for supplying fuel to the pressurizing chamber 11 and a discharge valve mechanism 8 (see FIG. 2) for discharging fuel from the pressurizing chamber 11 to the discharge passage are provided.
 シリンダ6は、図1に示すように、その外周側においてポンプボディ1と圧入され、さらに固定部6aにおいて、ボディを内周側へ変形させてシリンダ6を図中上方向へ押圧し、シリンダ6の上端面で加圧室11にて加圧された燃料が低圧側に漏れないようシールしている。プランジャ2の下端には、内燃機関のカムシャフトに取り付けられたカム93(カム機構)の回転運動を上下運動に変換し、プランジャ2に伝達するタペット92が設けられている。プランジャ2はリテーナ15を介してばね4にてタペット92に圧着されている。これによりカム93の回転運動に伴い、プランジャ2を上下に往復運動させることができる。 As shown in FIG. 1, the cylinder 6 is press-fitted with the pump body 1 on the outer peripheral side thereof, and further, in the fixing portion 6 a, the body is deformed to the inner peripheral side to press the cylinder 6 upward in the figure. The fuel pressurized in the pressurizing chamber 11 is sealed so as not to leak to the low pressure side. At the lower end of the plunger 2 is provided a tappet 92 that converts the rotational movement of a cam 93 (cam mechanism) attached to the camshaft of the internal combustion engine into a vertical movement and transmits it to the plunger 2. The plunger 2 is pressure-bonded to the tappet 92 by the spring 4 through the retainer 15. Thereby, the plunger 2 can be reciprocated up and down with the rotational movement of the cam 93.
 また、シールホルダ7の内周下端部に保持されたプランジャシール13がシリンダ6の図中下方部においてプランジャ2の外周に摺動可能に接触する状態で設置されている。これにより、プランジャ2が摺動したとき、副室7aの燃料をシールし内燃機関内部へ流入するのを防ぐ。同時に内燃機関内の摺動部を潤滑する潤滑油(エンジンオイルも含む)がポンプボディ1の内部に流入するのを防止する。 Also, the plunger seal 13 held at the lower end of the inner periphery of the seal holder 7 is installed in a slidable contact with the outer periphery of the plunger 2 at the lower part of the cylinder 6 in the figure. Thereby, when the plunger 2 slides, the fuel in the sub chamber 7a is sealed and prevented from flowing into the internal combustion engine. At the same time, lubricating oil (including engine oil) for lubricating the sliding portion in the internal combustion engine is prevented from flowing into the pump body 1.
 高圧燃料ポンプのポンプボディ1の側面部には吸入ジョイント51が取り付けられている。吸入ジョイント51は、車両の燃料タンク20からの燃料を供給する低圧配管に接続されており、燃料はここから高圧燃料ポンプ内部に供給される。吸入ジョイント51内の吸入フィルタ52(図3参照)は、燃料タンク20から低圧燃料吸入口10aまでの間に存在する異物を燃料の流れによって高圧燃料ポンプ内に吸収することを防ぐ役目がある。
 低圧燃料吸入口10aを通過した燃料は、図1に示すように、金属ダンパ9、吸入通路10d(低圧燃料流路)を介して電磁吸入弁機構300の吸入ポート31bに至る。
A suction joint 51 is attached to the side surface of the pump body 1 of the high-pressure fuel pump. The suction joint 51 is connected to a low-pressure pipe that supplies fuel from the fuel tank 20 of the vehicle, and the fuel is supplied from here to the inside of the high-pressure fuel pump. The suction filter 52 (see FIG. 3) in the suction joint 51 serves to prevent foreign matters existing between the fuel tank 20 and the low-pressure fuel inlet 10a from being absorbed into the high-pressure fuel pump by the flow of fuel.
As shown in FIG. 1, the fuel that has passed through the low-pressure fuel intake port 10a reaches the intake port 31b of the electromagnetic intake valve mechanism 300 through the metal damper 9 and the intake passage 10d (low-pressure fuel flow path).
 図4に基づいて電磁吸入弁機構300について詳細に説明する。なお、図1、2、4に電磁吸入入弁機構300が示されているが、これらの図に示す構造は本発明を適用しない場合について示すものである。 The electromagnetic suction valve mechanism 300 will be described in detail with reference to FIG. 1, 2, and 4 show the electromagnetic suction / inlet valve mechanism 300, but the structure shown in these drawings shows the case where the present invention is not applied.
 コイル部は、第1ヨーク42、電磁コイル43、第2ヨーク44、ボビン45、端子46、コネクタ47から成る。ボビン45に銅線が複数回巻かれたコイル43が、第1ヨーク42と第2ヨーク44により取り囲まれる形で配置され、樹脂部材であるコネクタと一体にモールドされ固定される。二つの端子46のそれぞれの方端はコイルの銅線の両端にそれぞれ通電可能に接続される。端子46も同様にコネクタと一体にモールドされ残りの方端がエンジン制御ユニット側と接続可能な構成としている。 The coil section includes a first yoke 42, an electromagnetic coil 43, a second yoke 44, a bobbin 45, a terminal 46, and a connector 47. A coil 43 in which a copper wire is wound around the bobbin 45 is disposed so as to be surrounded by the first yoke 42 and the second yoke 44, and is molded and fixed integrally with a connector which is a resin member. The respective ends of the two terminals 46 are respectively connected to both ends of the copper wire of the coil so as to be energized. Similarly, the terminal 46 is molded integrally with the connector, and the remaining end can be connected to the engine control unit side.
 コイル部は第1ヨーク42の中心部の穴部が、アウターコア38に圧入され固定される。その時、第2ヨーク44の内径側は、固定コア39と接触もしくは僅かなクリアランス近接する構成となる。 The coil portion is fixed by press-fitting the central hole of the first yoke 42 into the outer core 38. At that time, the inner diameter side of the second yoke 44 is in contact with the fixed core 39 or close to a slight clearance.
 第1ヨーク42、第2ヨーク44共に、磁気回路を構成するために、また耐食性を考慮し磁性ステンレス材料とし、ボビン45、コネクタ47は強度特性、耐熱特性を考慮し、高強度耐熱樹脂を用いる。コイルに43は銅、端子46には真鍮に金属めっきを施した物を使用する。 Both the first yoke 42 and the second yoke 44 are made of magnetic stainless steel in order to constitute a magnetic circuit and in consideration of corrosion resistance, and the bobbin 45 and the connector 47 are made of high strength heat resistant resin in consideration of strength characteristics and heat resistance characteristics. . The coil 43 is made of copper, and the terminal 46 is made of brass plated with metal.
 このように、アウターコア38、第1ヨーク42、第2ヨーク44、固定コア39、アンカー部36で磁気回路を形成し、コイルに電流を与えると、固定コア39、アンカー部36間に磁気吸引力が発生し、互いに引き寄せられる力が発生する。アウターコア38において、固定コア39とアンカー部36とがお互い磁気吸引力を発生させる軸方向部位を極力薄肉にすることで、磁束のほぼ全てが固定コア39とアンカー部36の間を通過するため、効率良く磁気吸引力を得ることができる。 Thus, when a magnetic circuit is formed by the outer core 38, the first yoke 42, the second yoke 44, the fixed core 39, and the anchor portion 36, and a current is applied to the coil, magnetic attraction is performed between the fixed core 39 and the anchor portion 36. A force is generated, and a force that is attracted to each other is generated. In the outer core 38, the axial portion where the fixed core 39 and the anchor portion 36 generate the magnetic attractive force is made as thin as possible, so that almost all of the magnetic flux passes between the fixed core 39 and the anchor portion 36. The magnetic attractive force can be obtained efficiently.
 ソレノイド機構部は、可動部であるロッド35、アンカー部36、固定部であるロッドガイド37、アウターコア38、固定コア39、そして、ロッド付勢ばね40、アンカー部付勢ばね41からなる。 The solenoid mechanism part includes a rod 35 that is a movable part, an anchor part 36, a rod guide 37 that is a fixed part, an outer core 38, a fixed core 39, a rod biasing spring 40, and an anchor part biasing spring 41.
 可動部であるロッド35とアンカー部36は、別部材に構成している。ロッド35はロッドガイド37の内周側で軸方向に摺動自在に保持され、アンカー部36の内周側は、ロッド35の外周側で摺動自在に保持される。すなわち、ロッド35及びアンカー部36共に幾何学的に規制される範囲で軸方向に摺動可能に構成されている。 The rod 35 and the anchor part 36 which are movable parts are configured as separate members. The rod 35 is slidably held in the axial direction on the inner peripheral side of the rod guide 37, and the inner peripheral side of the anchor portion 36 is slidably held on the outer peripheral side of the rod 35. That is, both the rod 35 and the anchor portion 36 are configured to be slidable in the axial direction as long as they are geometrically restricted.
 アンカー部36は燃料中で軸方向に自在に滑らかに動くために、部品軸方向に貫通する貫通穴36aを1つ以上有し、アンカー部前後の圧力差による動きの制限を極力排除している。 The anchor portion 36 has one or more through holes 36a penetrating in the axial direction of the component in order to move freely and smoothly in the axial direction in the fuel, and eliminates the restriction of movement due to the pressure difference before and after the anchor portion as much as possible. .
 ロッドガイド37は、径方向には、ポンプ本体1の吸入弁が挿入される穴の内周側に挿入され、軸方向には、吸入弁シートの一端部に突き当てられ、ポンプ本体1に溶接固定されるアウターコア38とポンプ本体1との間に挟み込まれる形で配置される構成としている。ロッドガイド37にもアンカー部36と同様に軸方向に貫通する貫通穴37aが設けられ、アンカー部が自在に滑らかに動くことができる様、アンカー部側の燃料室の圧力がアンカー部の動きを妨げない様に構成している。 The rod guide 37 is inserted in the radial direction on the inner peripheral side of the hole into which the suction valve of the pump body 1 is inserted, and is abutted against one end of the suction valve seat in the axial direction and welded to the pump body 1. It is set as the structure arrange | positioned in the form inserted | pinched between the outer core 38 and the pump main body 1 to be fixed. The rod guide 37 is also provided with a through hole 37a penetrating in the axial direction in the same manner as the anchor portion 36, and the pressure of the fuel chamber on the anchor portion side controls the movement of the anchor portion so that the anchor portion can move freely and smoothly. It is configured not to interfere.
 アウターコア38は、ポンプ本体1と溶接される部位との反対側の形状を薄肉円筒形状としており、その内周側に固定コア39が挿入される形で溶接固定される。固定コア39の内周側にはロッド付勢ばね40が、細径部をガイドに配置され、ロッド35が吸入弁30と接触し、吸入弁が吸入弁シート部31aから引き離す方向、すなわち吸入弁の開弁方向に付勢力を与える。吸入弁30は最大開度にてストッパ32に接触する。ストッパ32は金属板がスタンピング加工により形成され、シート部材31にその外周面が圧入されて固定される。外周面の一部が切欠きとなっており、この切欠きが凹み部と常に連通するように構成され、吸入弁の上流側と加圧室11とを連通する。なお、本実施例において吸入弁シート部31aと、吸入ポート31bとは同一のシート部材31にて形成される。 The outer core 38 has a thin cylindrical shape on the side opposite to the part to be welded to the pump body 1 and is fixed by welding in such a manner that a fixed core 39 is inserted on the inner peripheral side thereof. A rod urging spring 40 is arranged on the inner peripheral side of the fixed core 39 with the narrow diameter portion as a guide, the rod 35 comes into contact with the intake valve 30, and the intake valve is pulled away from the intake valve seat portion 31a, that is, the intake valve. Energizing force is applied in the valve opening direction. The suction valve 30 contacts the stopper 32 at the maximum opening. The stopper 32 is formed by stamping a metal plate, and the outer peripheral surface thereof is press-fitted and fixed to the sheet member 31. A part of the outer peripheral surface is a notch, and the notch is configured to always communicate with the recess, and the upstream side of the suction valve communicates with the pressurizing chamber 11. In the present embodiment, the suction valve seat portion 31a and the suction port 31b are formed by the same seat member 31.
 アンカー部付勢ばね41は、ロッドガイド37の中心側に設けた円筒径の中央軸受部37bに方端を挿入し同軸を保ちながら、アンカー部36にロッドつば部35a方向に付勢力を与える配置としている。アンカー部36の移動量36eは吸入弁30の移動量30eよりも大きく設定される。確実に吸入弁30が閉弁するためである。なお、本実施例において、ロッドガイド37は上記したシート部材31と同一の部材にて形成される。 The anchor portion biasing spring 41 is disposed so as to apply a biasing force to the anchor portion 36 in the direction of the rod collar portion 35a while inserting one end into a cylindrical central bearing portion 37b provided on the center side of the rod guide 37 and maintaining the same axis. It is said. The movement amount 36e of the anchor portion 36 is set to be larger than the movement amount 30e of the intake valve 30. This is because the intake valve 30 is surely closed. In this embodiment, the rod guide 37 is formed of the same member as the sheet member 31 described above.
 ロッド35とロッドガイド37にはお互い摺動するため、またロッド35は吸入弁30と衝突を繰返すため、硬度と耐食性を考慮しマルテンサイト系ステンレスに熱処理を施したものを使用する。アンカー部36と固定コア39は磁気回路を形成するため磁性ステンレスを用い、ロッド付勢ばね40、アンカー部付勢ばね41には耐食性を考慮しオーステナイト系ステンレスを用いる。 Since the rod 35 and the rod guide 37 slide with each other and the rod 35 repeatedly collides with the intake valve 30, a heat-treated martensitic stainless steel is used in consideration of hardness and corrosion resistance. The anchor portion 36 and the fixed core 39 use magnetic stainless steel to form a magnetic circuit, and the rod urging spring 40 and the anchor portion urging spring 41 use austenitic stainless steel in consideration of corrosion resistance.
 上記構成によれば、吸入弁部とソレノイド機構部には、3つのばねが有機的に配置されて構成されている。吸入弁部に構成される吸入弁付勢ばね33と、ソレノイド機構部に構成されるロッド付勢ばね40、アンカー部付勢ばね41がこれに相当する。本実施例ではいずれのばねもコイルばねを使用しているが付勢力を得られる形態であればいかなるものでも構成可能である。 According to the above configuration, the intake valve portion and the solenoid mechanism portion are configured by organically arranging three springs. The suction valve biasing spring 33 configured as a suction valve portion, the rod biasing spring 40 configured as a solenoid mechanism portion, and the anchor portion biasing spring 41 correspond to this. In this embodiment, any spring uses a coil spring, but any spring can be used as long as it can obtain an urging force.
 加圧室11の出口に設けられた吐出弁機構8は、図2に示すように、吐出弁シート8a、吐出弁シート8aと接離する吐出弁8b、吐出弁8bを吐出弁シート8aに向かって付勢する吐出弁ばね8c、吐出弁8bのストローク(移動距離)を決める吐出弁ストッパ8dから構成される。吐出弁ストッパ8dとポンプボディ1は当接部8eで溶接により接合され燃料と外部を遮断している。 As shown in FIG. 2, the discharge valve mechanism 8 provided at the outlet of the pressurizing chamber 11 has a discharge valve sheet 8a, a discharge valve 8b that contacts and separates from the discharge valve sheet 8a, and a discharge valve 8b toward the discharge valve sheet 8a. And a discharge valve stopper 8d that determines the stroke (movement distance) of the discharge valve 8b. The discharge valve stopper 8d and the pump body 1 are joined by welding at the contact portion 8e to block the fuel and the outside.
 加圧室11と吐出弁室12aに燃料差圧が無い状態では、吐出弁8bは吐出弁ばね8cによる付勢力で吐出弁シート8aに圧着され閉弁状態となっている。加圧室11の燃料圧力が、吐出弁室12aの燃料圧力よりも大きくなった時に初めて、吐出弁8bは吐出弁ばね8cに逆らって開弁する。そして、加圧室11内の高圧の燃料は吐出弁室12a、燃料吐出通路12b、燃料吐出口12を経てコモンレール23へと吐出される。 When there is no fuel differential pressure in the pressurizing chamber 11 and the discharge valve chamber 12a, the discharge valve 8b is pressed against the discharge valve seat 8a by the urging force of the discharge valve spring 8c and is in a closed state. Only when the fuel pressure in the pressurizing chamber 11 becomes higher than the fuel pressure in the discharge valve chamber 12a, the discharge valve 8b opens against the discharge valve spring 8c. The high-pressure fuel in the pressurizing chamber 11 is discharged to the common rail 23 through the discharge valve chamber 12a, the fuel discharge passage 12b, and the fuel discharge port 12.
 吐出弁8bは開弁した際、吐出弁ストッパ8dと接触し、ストロークが制限される。したがって、吐出弁8bのストロークは吐出弁ストッパ8dによって適切に決定される。これによりストロークが大きすぎて、吐出弁8bの閉じ遅れにより、吐出弁室12aへ高圧吐出された燃料が、再び加圧室11内に逆流してしまうことを防止でき、高圧燃料ポンプの効率低下が抑制できる。また、吐出弁8bが開弁および閉弁運動を繰り返す時に、吐出弁8bがストローク方向にのみ運動するように、吐出弁ストッパ8dの外周面にてガイドしている。以上のようにすることで、吐出弁機構8は燃料の流通方向を制限する逆止弁となる。なお、加圧室11は、ポンプボディ1(ポンプハウジング)、電磁吸入弁機構300、プランジャ2、シリンダ6、吐出弁機構8にて構成される。 When the discharge valve 8b is opened, it comes into contact with the discharge valve stopper 8d, and the stroke is limited. Accordingly, the stroke of the discharge valve 8b is appropriately determined by the discharge valve stopper 8d. As a result, the stroke is too large, and it is possible to prevent the fuel discharged at high pressure into the discharge valve chamber 12a from flowing back into the pressurization chamber 11 again due to the delay in closing the discharge valve 8b. Can be suppressed. Further, when the discharge valve 8b repeats opening and closing movements, the discharge valve 8b is guided by the outer peripheral surface of the discharge valve stopper 8d so that the discharge valve 8b moves only in the stroke direction. By doing so, the discharge valve mechanism 8 becomes a check valve that restricts the flow direction of fuel. The pressurizing chamber 11 includes a pump body 1 (pump housing), an electromagnetic suction valve mechanism 300, a plunger 2, a cylinder 6, and a discharge valve mechanism 8.
 (高圧燃料ポンプの動作)
 カム93の回転により、プランジャ2がカム93の方向に移動して吸入行程状態にある時は、加圧室11の容積は増加し加圧室11内の燃料圧力が低下する。この行程で加圧室11内の燃料圧力が吸入ポート31bの圧力よりも低くなると、吸入弁30は開口状態になる。図4に示すように、燃料は吸入弁30の開口部30eを通り、加圧室11に流入する。
(High pressure fuel pump operation)
When the plunger 2 moves in the direction of the cam 93 due to the rotation of the cam 93 and is in the suction stroke state, the volume of the pressurizing chamber 11 increases and the fuel pressure in the pressurizing chamber 11 decreases. In this process, when the fuel pressure in the pressurizing chamber 11 becomes lower than the pressure in the suction port 31b, the suction valve 30 is opened. As shown in FIG. 4, the fuel flows through the opening 30 e of the intake valve 30 and flows into the pressurizing chamber 11.
 プランジャ2が吸入行程を終了した後、プランジャ2が上昇運動に転じ圧縮行程に移る。ここで電磁コイル43は無通電状態を維持したままであり磁気付勢力は作用しない。ロッド付勢ばね40は、無通電状態において吸入弁30を開弁維持するのに必要十分な付勢力を有するよう設定されている。加圧室11の容積は、プランジャ2の圧縮運動に伴い減少するが、この状態では、一度、加圧室11に吸入された燃料が、再び開弁状態の吸入弁30の開口部30eを通して吸入通路10dへと戻されるので、加圧室の圧力が上昇することは無い。この行程を戻し行程と称する。 After the plunger 2 completes the suction stroke, the plunger 2 starts to move upward and moves to the compression stroke. Here, the electromagnetic coil 43 remains in a non-energized state and no magnetic biasing force acts. The rod biasing spring 40 is set to have a biasing force necessary and sufficient to keep the suction valve 30 open in a non-energized state. The volume of the pressurizing chamber 11 decreases with the compression movement of the plunger 2. In this state, the fuel once sucked into the pressurizing chamber 11 is again sucked through the opening 30 e of the intake valve 30 in the valve open state. Since the pressure is returned to the passage 10d, the pressure in the pressurizing chamber does not increase. This process is called a return process.
 この状態で、ECU27からの制御信号が電磁吸入弁機構300に印加されると、電磁コイル43には端子46を介して電流が流れる。すると、磁気コア39とアンカーとの間に磁気吸引力が作用し、これにより磁気付勢力がロッド付勢ばね40の付勢力に打ち勝ってロッド35が吸入弁30から離れる方向に移動する。よって、吸入弁付勢ばね33による付勢力と燃料が吸入通路10dに流れ込むことによる流体力により吸入弁30が閉弁する。閉弁後、加圧室11の燃料圧力はプランジャ2の上昇運動と共に上昇し、燃料吐出口12の圧力以上になると、吐出弁機構8を介して高圧燃料の吐出が行われ、コモンレール23へと供給される。この行程を吐出行程と称する。 In this state, when a control signal from the ECU 27 is applied to the electromagnetic intake valve mechanism 300, a current flows through the electromagnetic coil 43 via the terminal 46. Then, a magnetic attractive force acts between the magnetic core 39 and the anchor, whereby the magnetic urging force overcomes the urging force of the rod urging spring 40 and the rod 35 moves away from the intake valve 30. Therefore, the suction valve 30 is closed by the biasing force by the suction valve biasing spring 33 and the fluid force caused by the fuel flowing into the suction passage 10d. After the valve is closed, the fuel pressure in the pressurizing chamber 11 rises with the upward movement of the plunger 2, and when the pressure exceeds the pressure at the fuel discharge port 12, high-pressure fuel is discharged via the discharge valve mechanism 8 to the common rail 23. Supplied. This stroke is called a discharge stroke.
 すなわち、プランジャ2の下始点から上始点までの間の上昇行程は、戻し行程と吐出行程からなる。そして、電磁吸入弁機構300の電磁コイル43への通電タイミングを制御することで、吐出される高圧燃料の量を制御することができる。電磁コイル43へ通電するタイミングを早くすれば、上昇行程中の、戻し行程の割合が小さく、吐出行程の割合が大きい。すなわち、吸入通路10dに戻される燃料が少なく、高圧吐出される燃料は多くなる。一方、通電するタイミングを遅くすれば上昇行程中の、戻し行程の割合が大きく吐出行程の割合が小さい。すなわち、吸入通路10dに戻される燃料が多く、高圧吐出される燃料は少なくなる。電磁コイル43への通電タイミングは、ECU27からの指令によって制御される。 以上のように電磁コイル43への通電タイミングを制御することで、高圧吐出される燃料の量を内燃機関が必要とする量に制御することが出来る。 That is, the ascending stroke between the lower start point and the upper start point of the plunger 2 is composed of a return stroke and a discharge stroke. And the quantity of the high-pressure fuel discharged can be controlled by controlling the energization timing to the electromagnetic coil 43 of the electromagnetic intake valve mechanism 300. If the timing of energizing the electromagnetic coil 43 is advanced, the ratio of the return stroke during the upward stroke is small and the ratio of the discharge stroke is large. That is, the amount of fuel returned to the suction passage 10d is small and the amount of fuel discharged at high pressure is large. On the other hand, if the timing of energization is delayed, the ratio of the return stroke during the upward stroke is large and the ratio of the discharge stroke is small. That is, the amount of fuel returned to the suction passage 10d is large, and the amount of fuel discharged at high pressure is small. The energization timing to the electromagnetic coil 43 is controlled by a command from the ECU 27. By controlling the energization timing to the electromagnetic coil 43 as described above, the amount of fuel discharged at high pressure can be controlled to the amount required by the internal combustion engine.
 (金属ダンパの構成) 
 図1に示すように、低圧燃料室10には高圧燃料ポンプ内で発生した圧力脈動が吸入配管28(燃料配管)へ波及するのを低減させる金属ダンパ9が設置されている。一度、加圧室11に流入した燃料が、容量制御のため再び開弁状態の吸入弁30(吸入弁体)を通して吸入通路10dへと戻される場合、吸入通路10dへ戻された燃料により低圧燃料室10には圧力脈動が発生する。しかし、低圧燃料室10に設けた金属ダンパ9は、波板状の2枚の円盤型金属板をその外周で張り合わせ、内部にアルゴンのような不活性ガスを注入した金属ダイアフラムダンパで形成されており、圧力脈動はこの金属ダンパが膨張・収縮することで吸収低減される。
(Composition of metal damper)
As shown in FIG. 1, a metal damper 9 is installed in the low pressure fuel chamber 10 to reduce the pressure pulsation generated in the high pressure fuel pump from spreading to the suction pipe 28 (fuel pipe). When the fuel that has once flowed into the pressurizing chamber 11 is returned to the suction passage 10d through the intake valve 30 (suction valve body) that is opened again for capacity control, the fuel returned to the suction passage 10d is used as a low-pressure fuel. Pressure pulsation is generated in the chamber 10. However, the metal damper 9 provided in the low-pressure fuel chamber 10 is formed of a metal diaphragm damper in which two corrugated disk-shaped metal plates are bonded together on the outer periphery and an inert gas such as argon is injected therein. The pressure pulsation is absorbed and reduced as the metal damper expands and contracts.
 プランジャ2は、大径部2aと小径部2bを有し、プランジャ2の往復運動によって副室7aの体積は増減する。副室7aは燃料通路10e(図3参照)により低圧燃料室10と連通している。プランジャ2の下降時は、副室7aから低圧燃料室10へ、上昇時は、低圧燃料室10から副室7aへと燃料の流れが発生する。 The plunger 2 has a large-diameter portion 2a and a small-diameter portion 2b, and the volume of the sub chamber 7a increases and decreases as the plunger 2 reciprocates. The sub chamber 7a communicates with the low pressure fuel chamber 10 by a fuel passage 10e (see FIG. 3). When the plunger 2 descends, fuel flows from the sub chamber 7a to the low pressure fuel chamber 10, and when it rises, fuel flows from the low pressure fuel chamber 10 to the sub chamber 7a.
 このことにより、ポンプの吸入行程もしくは、戻し行程におけるポンプ内外への燃料流量を低減することができ、高圧燃料ポンプ内部で発生する圧力脈動を低減する機能を有している。 This makes it possible to reduce the fuel flow rate into and out of the pump during the pump intake stroke or return stroke, and to reduce the pressure pulsation generated inside the high-pressure fuel pump.
 ここで、高圧燃料ポンプにおいては近年、吐出燃料の高圧化(20MPa以上)、また大流量化が進んでいる。この場合、図1、2、4に示した吸入弁30に対して、吸入弁軸方向(図1、2、4の左右方向)以外においても大きな力がかかることが本発明者らの鋭意検討により、判明した。しかしながら、図1、2、4に記載の吸入弁構造の場合、吸入弁30が径方向に力がかかって傾斜する、あるいは径方向において振れた場合にこの動きを規制することができない。そうすると、吸入弁30によるシートがされず、流量低下を招く、あるいは流量制御性の悪化を招くという問題がある。また、吸入弁30が傾斜して吸入弁シート部31aに接触することにより、吸入弁シート部31aが摩耗することで、シート性能が悪化するという問題があった。 Here, in high-pressure fuel pumps, in recent years, the pressure of discharged fuel has increased (20 MPa or more) and the flow rate has increased. In this case, the inventors have intensively studied that a large force is applied to the suction valve 30 shown in FIGS. 1, 2, and 4 in directions other than the suction valve axial direction (the left-right direction in FIGS. 1, 2, and 4). It became clear. However, in the case of the intake valve structure shown in FIGS. 1, 2, and 4, this movement cannot be restricted when the intake valve 30 is tilted by a force in the radial direction or is shaken in the radial direction. If it does so, the sheet | seat by the suction valve 30 will not be produced, but there exists a problem of causing the flow volume fall or the deterioration of flow controllability. Further, when the suction valve 30 is inclined and comes into contact with the suction valve seat portion 31a, the suction valve seat portion 31a is worn, thereby causing a problem that the seat performance is deteriorated.
 そこで本発明の実施例について図6を用いて説明する。本実施例の弁機構は、座巻部33aと可動部33bとを有し、座巻部33aと反対側のばね支持部32aにより固定されるばね部材33と、ばね部材33の座巻部33aの側により付勢される弁体(吸入弁30)と、を備えている。また、ばね支持部32aの側に凸となるとともに、ばね部材33の径方向内側に位置する凸部30bが弁体(吸入弁30)に形成される。そして、図6に示すようにばね部材30の径方向中心を通り、ばね部材軸方向に切った断面図において、座巻部33aに隣接する可動部33bの少なくとも一巻き目の径方向両側の巻線断面に対し、凸部30bの先端部30cがばね支持部32aの側に位置するように構成される。 Therefore, an embodiment of the present invention will be described with reference to FIG. The valve mechanism of the present embodiment includes an end turn part 33a and a movable part 33b, and is fixed by a spring support part 32a opposite to the end turn part 33a, and an end turn part 33a of the spring member 33. And a valve body (suction valve 30) that is urged by the other side. Further, a convex portion 30 b that is convex toward the spring support portion 32 a and is located on the radially inner side of the spring member 33 is formed in the valve body (suction valve 30). As shown in FIG. 6, in the cross-sectional view passing through the radial center of the spring member 30 and cut in the axial direction of the spring member, the windings on both sides in the radial direction of at least the first turn of the movable portion 33 b adjacent to the end winding portion 33 a. It is comprised so that the front-end | tip part 30c of the convex part 30b may be located in the spring support part 32a side with respect to a line cross section.
 可動部33bのことを有効巻部と呼んでも良く、この可動部33bが実際にばねとして動作する部分になる。可動部33bには隙間が形成されるので、弁体(吸入弁30)の径方向に大きな力がかかった場合、この可動部の隙間を介して、弁体自身も傾斜する、あるいは振れる動きをすることになる。そこで、本実施例においては、上記したように可動部33b(有効巻部)の少なくとも一巻き目の径方向両側の巻線断面に対し、凸部30bの先端部30cがばね支持部32aの側に位置するように構成される。なお、図6にこの一巻き目の径方向両側の巻線断面の終端を点線で示す。これにより、逆に弁体(吸入弁30)の径方向に大きな力がかかったとしても、弁体自身が傾斜する、あるいは振れる動きを抑制することが可能となる。したがって、上記したような流量低下、あるいは流量制御性の悪化を招くという問題を解決することが可能である。また、弁体(吸入弁30)が傾斜して吸入弁シート部31aに接触することを抑制できるので、上記したシート性能が悪化するという問題を解決することができる。 The movable portion 33b may be referred to as an effective winding portion, and the movable portion 33b is a portion that actually operates as a spring. Since a gap is formed in the movable portion 33b, when a large force is applied in the radial direction of the valve body (suction valve 30), the valve body itself tilts or swings through the gap of the movable portion. Will do. Therefore, in the present embodiment, as described above, the distal end portion 30c of the convex portion 30b is on the side of the spring support portion 32a with respect to the winding cross section on both sides in the radial direction of at least the first winding of the movable portion 33b (effective winding portion). It is comprised so that it may be located in. In FIG. 6, the end of the winding cross section on both sides in the radial direction of the first winding is indicated by a dotted line. Accordingly, even when a large force is applied in the radial direction of the valve body (suction valve 30), the valve body itself can be prevented from tilting or swinging. Therefore, it is possible to solve the problem that the flow rate is decreased or the flow rate controllability is deteriorated as described above. Moreover, since it can suppress that a valve body (suction valve 30) inclines and contacts the suction valve seat part 31a, the problem that the above-mentioned seat performance deteriorates can be solved.
 また図7に示すように、本実施例の弁機構は、弁体(吸入弁30)が着座することでシールを行う弁座(吸入弁シート部31a)を備え、弁体(吸入弁30)が弁座(吸入弁シート部31a)に着座した状態において、ばね部材軸方向に切った断面図において、可動部33bの少なくとも一巻き目の径方向両側の巻線断面に対し、凸部30bの先端部30cがばね支持部32aの側に位置するように構成されることが望ましい。なお、可動部33bの少なくとも二巻き目の径方向両側の巻線断面に対し、凸部30bの先端部30cがばね支持部32aの側に位置するとさらに径方向への暴れを抑制することが可能である。 As shown in FIG. 7, the valve mechanism of this embodiment includes a valve seat (suction valve seat portion 31a) that seals when the valve body (suction valve 30) is seated, and the valve body (suction valve 30). In the state where the seat is seated on the valve seat (suction valve seat portion 31a), in the sectional view cut in the spring member axial direction, the convex portion 30b It is desirable that the tip portion 30c is configured to be located on the spring support portion 32a side. In addition, if the tip 30c of the convex portion 30b is positioned on the spring support portion 32a side with respect to the winding cross section on both sides in the radial direction of at least the second winding of the movable portion 33b, it is possible to further suppress the rampage in the radial direction. It is.
 また図8に示すように、本実施例の弁機構は、弁体(吸入弁30)の弁座(吸入弁シート部31a)と反対方向への移動を規制するストッパ32を備え、弁体(吸入弁30)がストッパ32と接触した状態において、ばね部材軸方向に切った断面図において、ばね部材33の全長の半分の位置に対し、凸部30bの先端部30cがばね支持部32aの側に位置するように構成されることが望ましい。 As shown in FIG. 8, the valve mechanism of the present embodiment includes a stopper 32 that restricts movement of the valve body (suction valve 30) in the direction opposite to the valve seat (suction valve seat portion 31a). In a cross-sectional view cut in the axial direction of the spring member in a state where the suction valve 30) is in contact with the stopper 32, the tip 30c of the convex portion 30b is located on the side of the spring support 32a with respect to the half of the total length of the spring member 33. It is desirable to be configured to be located in
 なお、図8は、弁体(吸入弁30)が接触するストッパ32の凸部が見える断面でカットした図であり、一方で図6は弁体(吸入弁30)が接触するストッパ32の凸部が見えない断面でカットした図である。よって、図6と図8は同じ状態を示している。またストッパ32は径方向内側でばね部材33を保持する円筒形状の保持部32cを有するように構成されたことが望ましい。またストッパ32は、保持部32cの内周面によりばね部材33を保持するとともに、内周面よりも径方向外側においてストッパ32を固定する固定部32dを有するように構成されることが望ましい。そして本実施例においてストッパ32はスタンピング加工により形成されるので、安価に構成することが可能である。 FIG. 8 is a cross-sectional view showing the convex portion of the stopper 32 that contacts the valve body (suction valve 30), while FIG. 6 shows the convex shape of the stopper 32 that contacts the valve body (suction valve 30). It is the figure cut by the cross section which cannot see a part. Therefore, FIG. 6 and FIG. 8 show the same state. The stopper 32 is preferably configured to have a cylindrical holding portion 32c that holds the spring member 33 radially inward. The stopper 32 is preferably configured to hold the spring member 33 by the inner peripheral surface of the holding portion 32c and to have a fixing portion 32d that fixes the stopper 32 on the radially outer side of the inner peripheral surface. In this embodiment, since the stopper 32 is formed by stamping, it can be configured at a low cost.
 また、弁体(吸入弁30)の凸部30bは円筒形状に形成されるのが望ましい。また図6に示すように弁体(吸入弁30)は、高さの低い円筒部30dと、この円筒部30dよりも高さの高い円筒形状の凸部30bとで形成される。そして本実施例の電磁吸入弁機構300は以上に説明した弁機構と弁体(吸入弁30)と独立して別体に構成され、弁体(吸入弁30)を開弁方向に付勢するロッド35と、ロッド35を閉弁方向に駆動するアンカー36と、アンカー36を閉弁方向に駆動する電磁吸引力を生成するコイル43と、を備える。 Further, it is desirable that the convex portion 30b of the valve body (suction valve 30) is formed in a cylindrical shape. As shown in FIG. 6, the valve body (intake valve 30) is formed of a cylindrical portion 30d having a low height and a cylindrical convex portion 30b having a height higher than that of the cylindrical portion 30d. The electromagnetic suction valve mechanism 300 of this embodiment is configured separately from the valve mechanism and the valve body (suction valve 30) described above, and biases the valve body (suction valve 30) in the valve opening direction. The rod 35 includes an anchor 36 that drives the rod 35 in the valve closing direction, and a coil 43 that generates an electromagnetic attractive force that drives the anchor 36 in the valve closing direction.
 そして本実施例の高圧燃料ポンプは、以上に説明した弁機構と、前記弁体と独立して別体に構成され、前記弁体を開弁方向に付勢するロッド35と、ロッド35を閉弁方向に駆動するアンカー36と、アンカー36を閉弁方向に駆動する電磁吸引力を生成するコイル43と、弁体(吸入弁30)の下流側に位置し、燃料を加圧するための加圧室11と、加圧室11の容積を増減させるプランジャ2と、を備える。 The high-pressure fuel pump of the present embodiment is configured separately from the valve mechanism described above, independent of the valve body, and a rod 35 that biases the valve body in the valve opening direction, and the rod 35 is closed. An anchor 36 that drives in the valve direction, a coil 43 that generates an electromagnetic attraction force that drives the anchor 36 in the valve closing direction, and a pressurization for pressurizing the fuel that is located downstream of the valve body (suction valve 30) The chamber 11 and the plunger 2 that increases and decreases the volume of the pressurizing chamber 11 are provided.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。
例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも全ての構成を備えるものに限定されるものではない。また、実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
In addition, this invention is not limited to an above-described Example, Various modifications are included.
For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations. In addition, it is possible to add, delete, and replace other configurations for a part of the configuration of the embodiment.
 1…ポンプボディ、2…プランジャ、11…加圧室、30…吸入弁、30b…凸部、30c…先端部、30d…円筒部、31a…吸入弁シート部、32…ストッパ、32a…ばね支持部、32c…保持部、33…ばね部材、33a…座巻部、33b…可動部、35…ロッド、36…アンカー36、43…コイル DESCRIPTION OF SYMBOLS 1 ... Pump body, 2 ... Plunger, 11 ... Pressurization chamber, 30 ... Suction valve, 30b ... Convex part, 30c ... Tip part, 30d ... Cylindrical part, 31a ... Suction valve seat part, 32 ... Stopper, 32a ... Spring support Part, 32c ... holding part, 33 ... spring member, 33a ... end winding part, 33b ... movable part, 35 ... rod, 36 ... anchor 36, 43 ... coil

Claims (10)

  1.  座巻部と可動部とを有し、前記座巻部と反対側のばね支持部により固定されるばね部材と、前記ばね部材の前記座巻部の側により付勢される弁体と、を備え、前記ばね支持部の側に凸となるとともに、前記ばね部材の径方向内側に位置する凸部が前記弁体に形成され、
     前記ばね部材の径方向中心を通り、ばね部材軸方向に切った断面図において、前記座巻部に隣接する前記可動部の少なくとも一巻き目の径方向両側の巻線断面に対し、前記凸部の先端部が前記ばね支持部の側に位置するように構成された弁機構。
    A spring member having an end winding portion and a movable portion and fixed by a spring support portion on the opposite side of the end winding portion; and a valve body biased by the end portion of the spring member. A convex portion located on the radially inner side of the spring member is formed on the valve body.
    In the cross-sectional view passing through the radial center of the spring member and cut in the axial direction of the spring member, the convex portion with respect to the winding cross section on at least the first turn in the radial direction of the movable portion adjacent to the end winding portion. The valve mechanism comprised so that the front-end | tip part may be located in the said spring support part side.
  2.  請求項1に記載の弁機構において、
     前記弁体が着座することでシールを行う弁座を備え、
     前記弁体が前記弁座に着座した状態において、ばね部材軸方向に切った断面図において、前記可動部の少なくとも一巻き目の径方向両側の巻線断面に対し、前記凸部の先端部が前記ばね支持部の側に位置するように構成された弁機構。
    The valve mechanism according to claim 1, wherein
    A valve seat that seals by seating the valve body;
    In the state where the valve body is seated on the valve seat, in the cross-sectional view cut in the spring member axial direction, the tip of the convex portion is at least the winding cross section on both radial sides of the first turn of the movable portion. A valve mechanism configured to be located on a side of the spring support portion.
  3.  請求項1に記載の弁機構において、
     前記弁体が着座することでシールを行う弁座と、
     前記弁体の前記弁座と反対方向への移動を規制するストッパと、を備え、
     前記弁体が前記ストッパと接触した状態において、ばね部材軸方向に切った断面図において、前記ばね部材の全長の半分の位置に対し、前記凸部の先端部が前記ばね支持部の側に位置するように構成された弁機構。
    The valve mechanism according to claim 1, wherein
    A valve seat that seals when the valve body is seated; and
    A stopper for restricting movement of the valve body in a direction opposite to the valve seat, and
    In a cross-sectional view cut in the spring member axial direction in a state where the valve body is in contact with the stopper, the tip end portion of the convex portion is located on the spring support portion side with respect to a half position of the entire length of the spring member. A valve mechanism configured to:
  4.  請求項1に記載の弁機構において、
     前記弁体が着座することでシールを行う弁座と、
     前記弁体の前記弁座と反対方向への移動を規制するストッパと、を備え、
     前記ストッパは径方向内側で前記ばね部材を保持する円筒形状の保持部を有するように構成された弁機構。
    The valve mechanism according to claim 1, wherein
    A valve seat that seals when the valve body is seated; and
    A stopper for restricting movement of the valve body in a direction opposite to the valve seat, and
    The valve mechanism is configured such that the stopper has a cylindrical holding portion that holds the spring member radially inward.
  5.  請求項4に記載の弁機構において、
     前記ストッパは、前記保持部の内周面により前記ばね部材を保持するとともに、前記内周面よりも径方向外側において前記ストッパを固定する固定部を有するように構成された弁機構。
    The valve mechanism according to claim 4,
    The stopper is a valve mechanism configured to hold the spring member by an inner peripheral surface of the holding portion and to have a fixing portion that fixes the stopper at a radially outer side than the inner peripheral surface.
  6.  請求項4又は5に記載の弁機構において、
     前記ストッパはスタンピング加工により形成された弁機構。
    The valve mechanism according to claim 4 or 5,
    The stopper is a valve mechanism formed by stamping.
  7.  請求項1に記載の弁機構において、
     前記凸部は円筒形状に形成された弁機構。
    The valve mechanism according to claim 1, wherein
    The convex portion is a valve mechanism formed in a cylindrical shape.
  8.  請求項1に記載の弁機構において、
     前記弁体は、高さの低い円筒部と、前記円筒部よりも高さの高い円筒形状の前記凸部とで形成された弁機構。
    The valve mechanism according to claim 1, wherein
    The said valve body is a valve mechanism formed with the cylindrical part with a low height, and the said cylindrical convex part with a height higher than the said cylindrical part.
  9.  請求項1~7の何れかに記載の弁機構と、
     前記弁体と独立して別体に構成され、前記弁体を開弁方向に付勢するロッドと、
     前記ロッドを閉弁方向に駆動するアンカーと、
     前記アンカーを前記閉弁方向に駆動する電磁吸引力を生成するコイルと、を備えた電磁吸入弁機構。
    A valve mechanism according to any one of claims 1 to 7;
    A rod configured separately from the valve body, and biasing the valve body in a valve opening direction;
    An anchor for driving the rod in a valve closing direction;
    An electromagnetic suction valve mechanism comprising: a coil that generates an electromagnetic attractive force that drives the anchor in the valve closing direction.
  10.  請求項1~8の何れかに記載の弁機構と、
     前記弁体と独立して別体に構成され、前記弁体を開弁方向に付勢するロッドと、
     前記ロッドを閉弁方向に駆動するアンカーと、
     前記アンカーを前記閉弁方向に駆動する電磁吸引力を生成するコイルと、
     前記弁体の下流側に位置し、燃料を加圧するための加圧室と、
     前記加圧室の容積を増減させるプランジャと、を備えた高圧燃料ポンプ。
    A valve mechanism according to any one of claims 1 to 8,
    A rod configured separately from the valve body, and biasing the valve body in a valve opening direction;
    An anchor for driving the rod in a valve closing direction;
    A coil for generating an electromagnetic attractive force for driving the anchor in the valve closing direction;
    A pressurizing chamber located downstream of the valve body for pressurizing fuel;
    A high-pressure fuel pump comprising: a plunger for increasing or decreasing the volume of the pressurizing chamber.
PCT/JP2018/016525 2017-05-31 2018-04-24 Electromagnetic valve, electromagnetic inlet valve mechanism, and high-pressure fuel pump WO2018221077A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019522026A JP6840238B2 (en) 2017-05-31 2018-04-24 Valve mechanism, electromagnetic suction valve mechanism, and high-pressure fuel pump
DE112018002027.4T DE112018002027T5 (en) 2017-05-31 2018-04-24 ELECTROMAGNETIC VALVE, ELECTROMAGNETIC INLET VALVE MECHANISM AND HIGH PRESSURE FUEL PUMP
CN201880033420.6A CN110651117B (en) 2017-05-31 2018-04-24 Valve mechanism, solenoid suction valve mechanism, and high-pressure fuel pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017107321 2017-05-31
JP2017-107321 2017-05-31

Publications (1)

Publication Number Publication Date
WO2018221077A1 true WO2018221077A1 (en) 2018-12-06

Family

ID=64454528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016525 WO2018221077A1 (en) 2017-05-31 2018-04-24 Electromagnetic valve, electromagnetic inlet valve mechanism, and high-pressure fuel pump

Country Status (4)

Country Link
JP (1) JP6840238B2 (en)
CN (1) CN110651117B (en)
DE (1) DE112018002027T5 (en)
WO (1) WO2018221077A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022091553A1 (en) * 2020-10-28 2022-05-05 日立Astemo株式会社 Fuel pump
WO2022249550A1 (en) * 2021-05-27 2022-12-01 日立Astemo株式会社 Electromagnetic valve mechanism and fuel pump

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002089410A (en) * 2000-09-14 2002-03-27 Hitachi Ltd High pressure fuel pump
JP2017002759A (en) * 2015-06-08 2017-01-05 日立オートモティブシステムズ株式会社 High-pressure fuel supply pump
JP2017066956A (en) * 2015-09-30 2017-04-06 日立オートモティブシステムズ株式会社 High-pressure fuel supply pump
JP2017072026A (en) * 2015-10-05 2017-04-13 日立オートモティブシステムズ株式会社 High pressure fuel supply pump

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1490516A (en) * 2003-09-08 2004-04-21 梁剑锐 Hydraulic dual-control speed increasing short-time oil blooming system and on-line fuel oil emulsification
JP5126604B2 (en) 2008-12-26 2013-01-23 株式会社デンソー High pressure pump
CN106255823B (en) * 2014-04-25 2020-09-29 日立汽车系统株式会社 Valve train and high pressure fuel pump
WO2016031378A1 (en) * 2014-08-28 2016-03-03 日立オートモティブシステムズ株式会社 High-pressure fuel supply pump
JP6235518B2 (en) 2015-03-31 2017-11-22 日立オートモティブシステムズ株式会社 High pressure fuel supply pump and method of assembling high pressure fuel supply pump

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002089410A (en) * 2000-09-14 2002-03-27 Hitachi Ltd High pressure fuel pump
JP2017002759A (en) * 2015-06-08 2017-01-05 日立オートモティブシステムズ株式会社 High-pressure fuel supply pump
JP2017066956A (en) * 2015-09-30 2017-04-06 日立オートモティブシステムズ株式会社 High-pressure fuel supply pump
JP2017072026A (en) * 2015-10-05 2017-04-13 日立オートモティブシステムズ株式会社 High pressure fuel supply pump

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022091553A1 (en) * 2020-10-28 2022-05-05 日立Astemo株式会社 Fuel pump
WO2022249550A1 (en) * 2021-05-27 2022-12-01 日立Astemo株式会社 Electromagnetic valve mechanism and fuel pump
JP7482327B2 (en) 2021-05-27 2024-05-13 日立Astemo株式会社 Solenoid valve mechanism and fuel pump
US20240159208A1 (en) * 2021-05-27 2024-05-16 Hitachi Astemo, Ltd. Electromagnetic Valve Mechanism and Fuel Pump
US12140113B2 (en) * 2021-05-27 2024-11-12 Hitachi Astemo, Ltd. Electromagnetic valve mechanism and fuel pump

Also Published As

Publication number Publication date
CN110651117B (en) 2021-10-08
JP6840238B2 (en) 2021-03-10
JPWO2018221077A1 (en) 2020-02-27
CN110651117A (en) 2020-01-03
DE112018002027T5 (en) 2020-01-09

Similar Documents

Publication Publication Date Title
JP6869005B2 (en) Fuel supply pump
US11542903B2 (en) High-pressure fuel supply pump provided with electromagnetic intake valve
WO2018186219A1 (en) High-pressure fuel pump
CN111373139B (en) High-pressure fuel pump
JP2018087548A (en) High-pressure fuel supply pump
CN109072843B (en) Control device for high pressure fuel supply pump and high pressure fuel supply pump
WO2018221077A1 (en) Electromagnetic valve, electromagnetic inlet valve mechanism, and high-pressure fuel pump
JP7198363B2 (en) Electromagnetic intake valve and high pressure fuel supply pump
JP7012149B2 (en) Solenoid valves, high pressure pumps and engine systems
JP2017145731A (en) High pressure fuel supply pump
JP2018100651A (en) Valve mechanism and high-pressure fuel supply pump with the same
JP7115328B2 (en) solenoid valve
JP6770193B2 (en) High pressure fuel supply pump
WO2017203812A1 (en) Fuel supply pump
JP2020041478A (en) High pressure fuel supply pump
JP7024071B2 (en) Fuel supply pump
JP7077212B2 (en) High pressure fuel pump
US12140113B2 (en) Electromagnetic valve mechanism and fuel pump
JP6932629B2 (en) High pressure fuel pump
JP7248783B2 (en) Solenoid valve mechanism and high-pressure fuel supply pump provided with the same
WO2020085041A1 (en) Electromagnetic valve mechanism and high-pressure fuel pump
JP2017155592A (en) Control method of high-pressure fuel supply pump, and high-pressure fuel supply pump using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18810493

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019522026

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18810493

Country of ref document: EP

Kind code of ref document: A1