[go: up one dir, main page]

WO2018212467A1 - 소수성 테일 도메인이 제거된 먹장어 유래 vlrb 단백질에 칠성장어 유래 vlrb 단백질의 c 말단 서열이 연결된 융합 단백질 및 이의 용도 - Google Patents

소수성 테일 도메인이 제거된 먹장어 유래 vlrb 단백질에 칠성장어 유래 vlrb 단백질의 c 말단 서열이 연결된 융합 단백질 및 이의 용도 Download PDF

Info

Publication number
WO2018212467A1
WO2018212467A1 PCT/KR2018/004464 KR2018004464W WO2018212467A1 WO 2018212467 A1 WO2018212467 A1 WO 2018212467A1 KR 2018004464 W KR2018004464 W KR 2018004464W WO 2018212467 A1 WO2018212467 A1 WO 2018212467A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
vlrb
derived
target antigen
terminal
Prior art date
Application number
PCT/KR2018/004464
Other languages
English (en)
French (fr)
Inventor
정태성
김경동
이정석
김재성
김영림
임세평
Original Assignee
경상대학교산학협력단
주식회사 이뮤셀
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상대학교산학협력단, 주식회사 이뮤셀 filed Critical 경상대학교산학협력단
Publication of WO2018212467A1 publication Critical patent/WO2018212467A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/461Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from fish
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/7051T-cell receptor (TcR)-CD3 complex
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/35Valency
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2318/00Antibody mimetics or scaffolds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • the present invention relates to a fusion protein in which the C-terminal sequence of Chil-grown-derived VLRB protein is linked to a fish-derived VLRB protein from which a hydrophobic tail domain has been removed, and a use thereof.
  • antibodies are known as immunoglobulin (Ig) proteins present in most vertebrates, and the antigen-specific binding ability of antibodies is widely used in the fields of biotechnology and medicine.
  • Ig immunoglobulin
  • antibodies have limitations such as limitation of binding area, limitation of selection of epitopes, complicated production process and the like. As a result, many researchers are working hard to find new antibody candidates.
  • VLR variable lymphocyte receptor
  • VLR-A and VLR-C are known to play the same role as mammalian T-lymphocytes
  • VLR-B plays the same role as B-lymphocyte types secreted from lymphocyte-like cells.
  • VLR protein is formed by the combination of leucine-rich repeat (LRR) modules. The components include amino-terminus (N-terminus), SP (signal peptide), LRRNT (N-terminal capped LRR), and LRRVs (variable LRRs).
  • LRRV module which recognizes the antigen, is known to include one to up to nine. It has been found that the VLR proteins, in which modules are combined by somatic rearrangement, theoretically possess more than about 10 14 variants.
  • VLR protein in blackfish and seven-growth fish Since the identification of a new type of antibody, the VLR protein in blackfish and seven-growth fish, many attempts have been made to replace Ig protein. However, these attempts have been carried out using only the VLR protein of seven growth fish, which is a C-terminal (C-terminus) domain having a very different sequence among the structures of a seven growth fish or an eel-derived VLR protein having a generally similar structure. Because. Unlike the C-terminal portion of the VLR, which is highly hydrophobic by hydrophobic amino acids, the cysteine residues and Glycosylphosphatidylinositol (GPI) cleavage sequences that induce disulfide bonds exist at the C-terminus of the VLR. Due to the above characteristics, VLRs of seven-growth fishes form secreted octahedra or 10-mer VLR complexes.
  • GPI Glycosylphosphatidylinositol
  • the hydrophobic C-terminus is replaced with the C-terminus of the VLRB protein derived from Chilfish, while maintaining the site capable of binding to the antigen in the incubator antibody VLRB protein.
  • Korean Patent Publication No. 2009-0024648 discloses a 'fusion method between LLR family proteins' and Korean Patent Publication No. 2016-0147787 discloses 'humanized variable lymphocyte receptor (VLR) and related compositions and uses'.
  • VLR variable lymphocyte receptor
  • the present invention was derived from the above-described needs, and the present inventors have replaced the C-terminal hydrophobic tail domain with the C-terminus of the C-terminal antibody VLRB protein while maintaining the binding site with the antigen in the mutant fish VLRB protein. Fusion proteins were prepared. As a result of transforming the host cell with a recombinant vector comprising the nucleic acid encoding the fusion protein, it was confirmed that the fusion protein of the present invention was formed in the form of an octet or a dimer in a multimer form in the host cell. The present invention has been completed by confirming that the form of the eel antibody has a significantly higher binding ability to the target antigen as compared to the monomeric (monomer) eel antibody having the same antigen recognition site.
  • the present invention is to encode the C-terminal domain of the seven-growth VLRB protein linked to the 3'-end of the gene encoding a murine tail-derived variable lymphocyte receptor B (VLRB) protein
  • VLRB murine tail-derived variable lymphocyte receptor B
  • the present invention also provides a host cell transformed with the recombinant expression vector.
  • the present invention also provides a fusion protein produced by the host cell in which the hydrophobic tail domain has been removed, and the C-terminal domain of the CLR-derived VLRB protein and the CLS-derived VLRB protein are linked to each other.
  • the present invention provides a multivalent antibody having increased binding ability to a target antigen, characterized in that consisting of a multimer or octahedron multimer by the self-assembly of the fusion protein.
  • the present invention comprises the step of culturing the host cell transformed with the recombinant expression vector to obtain a multimer or octamer multimer of the fusion protein, a method for producing a multivalent antibody having increased binding capacity to the target antigen.
  • the present invention also provides a multivalent antibody having increased binding ability to the target antigen produced by the above method.
  • the present invention also provides a method for detecting a target antigen by treating the multivalent antibody with a target antigen-containing suspect sample.
  • the present invention also provides a composition for detecting a target antigen, containing the polyvalent antibody as an active ingredient.
  • the antibody of the present invention is not a simple fish eel antibody but has 8 or 10 binding sites with the antigen, thereby maximizing antigen-antibody binding ability, and by removing the hydrophobic tail domain, the expression rate is increased in the host cell. Stability also has the advantage of increased. Unlike mouse antibodies, the eel antibody consists of a single peptide, so that its genetic engineering is free and its applicability is infinite. Therefore, the eel antibody derived from the eel of the present invention utilizes high binding ability and specificity for antigens to develop and develop biomarkers. It may be useful.
  • 1 is a vector map of pKINGeo / ccdB and pTEL used for wild type VLRB protein expression or VLRB fusion protein expression.
  • FIG. 2 shows Western blotting results (B) of the cell culture medium and cell lysates of HEK 293-F cells transduced with wild-type eel VLRB protein (A) and randomly selected wild-type eel VLRB protein.
  • FIG. 3 is a schematic diagram for replacing the hydrophobic C-terminus of the blackfish VLRB protein with the C-terminal sequence of the seven-fish VLRB protein.
  • Western blotting results (B) confirmed under reducing conditions.
  • Figure 4 shows the results (A and B) of the pTEL plasmid cloned from the VLR library derived from the musk Eels immunized with VHSV for the preparation of the musk VLRB fusion protein substituted with the C-terminal sequence of the seven-fish VLRB protein Cell culture medium of 293-F cells transfected with clones was confirmed by Western blotting (C).
  • Figure 6 shows the presence of polymer formation of 43LC and 7LC selected as having the VHSV-specific binding capacity of the blackfish VLRB fusion protein clones substituted with the C-terminal sequence of seven growth fish VLRB protein (A), and other than VHSV The result of confirming the binding ability to the antigen of the kind by ELISA (B and C) and Western blotting results (D) using 43LC and 7LC as the primary antigen.
  • FIG. 8 shows the results obtained by electrophoresis of monoclonal (mono 43) expressing only the LR VLRB portions of 43LC and 43LC under reducing and non-reducing conditions.
  • the present invention provides a C-terminal domain of Chil-growth-derived VLRB protein linked to the 3'-terminus of a gene encoding a murine tail-derived variable lymphocyte receptor B (VLRB) protein.
  • VLRB murine tail-derived variable lymphocyte receptor B
  • a recombinant expression vector comprising a polynucleotide encoding.
  • the fish-derived VLRB protein from which the hydrophobic tail domain has been removed is a signal peptide (SP) from the N-terminus to the C-terminus, and LRRNT (N-terminal).
  • SP signal peptide
  • LRRNT N-terminal
  • capped LRR leucine-rich repeat
  • LRRVs variable LRR modules
  • CP connecting peptide
  • LRRRCT C-terminal capped LRR
  • Stalk domains which can be antigen-recognized LRRVs and LRRCT It is a VLRB protein that contains a domain and is capable of binding to a target antigen.
  • the fish-derived VLRB protein from which the hydrophobic tail domain has been removed may be a signal peptide that is a murine immunoglobulin ⁇ chain leader sequence, but is not limited thereto. If the signal peptide or sequence that can further enhance the extracellular secretion capacity of the recombinant protein can be used without limitation in its kind.
  • the murine immunoglobulin ⁇ chain leader sequence may be composed of the nucleotide sequence of SEQ ID NO: 1, but is not limited thereto.
  • the gene encoding the VLRB protein derived from an eel extracted from the hydrophobic tail domain may be a gene encoding a VLRB protein having the highest binding ability to a target antigen.
  • the polynucleotide encoding the C-terminal domain of the seven-fish VLRB protein may comprise a nucleotide sequence represented by the nucleotide sequence of SEQ ID NO: 2.
  • homologues of the above nucleotide sequences are included within the scope of the present invention.
  • the polynucleotide encoding the C-terminal domain of the seven-tailed VLRB protein is 70% or more, more preferably 80% or more, still more preferably 90% or more, and most preferably the nucleotide sequence of SEQ ID NO: 2, respectively.
  • it may include a base sequence having 95% or more sequence homology.
  • the "% sequence homology" for a polynucleotide is identified by comparing two optimally arranged sequences with a comparison region, wherein part of the polynucleotide sequence in the comparison region is the reference sequence (addition or deletion) for the optimal alignment of the two sequences. It may include the addition or deletion (ie, gap) compared to).
  • the C-terminal domain of the seven-tailed VLRB protein has eight cystein (Cystein) residues and a GPI (Glycosylphosphatidylinositol) incision sequence. Due to these characteristics, the seven-growth VLRB protein is formed into a VLRB multimer of about 400 kDa, which is composed of 8-10 monomers, expressed on the cell surface and secreted into the serum.
  • recombinant refers to a cell in which a cell replicates a heterologous nucleic acid, expresses the nucleic acid, or expresses a protein encoded by a peptide, a heterologous peptide, or a heterologous nucleic acid.
  • Recombinant cells can express genes or gene fragments that are not found in their natural form in either the sense or antisense form.
  • Recombinant cells can also express genes found in natural cells, but the genes are modified and reintroduced into cells by artificial means.
  • recombinant expression vector means a bacterial plasmid, phage, yeast plasmid, plant cell virus, mammalian cell virus, or other vector. In principle, any plasmid and vector can be used as long as it can replicate and stabilize in the host.
  • An important feature of the expression vector is that it has an origin of replication, a promoter, a marker gene and a translation control element.
  • Expression vectors comprising genes encoding the fish-derived VLRB protein from which the hydrophobic tail domain of the present invention has been removed, polynucleotides encoding the C-terminal domain of the CLS-derived VLRB protein, and appropriate transcriptional / translational control signals are well known to those skilled in the art. Can be constructed by a method. Such methods include in vitro recombinant DNA techniques, DNA synthesis techniques, in vivo recombinant techniques, and the like. The DNA sequence can be effectively linked to a suitable promoter in the expression vector to drive mRNA synthesis. Expression vectors may also include ribosomal binding sites and transcription terminators as translation initiation sites.
  • the recombinant expression vector may preferably include one or more selectable markers, but is not limited thereto.
  • the marker is typically a nucleic acid sequence having properties that can be selected by chemical methods, and all genes that can distinguish transformed cells from non-transformed cells.
  • the present invention also provides a host cell transformed with the recombinant expression vector.
  • the host cell capable of continuously cloning and expressing the vector of the present invention in a prokaryotic cell can be used by any host cell known in the art, for example, Escherichia coli Rosetta, E. coli JM109, E. coli BL21, E. coli RR1, Escherichia coli LE392, Escherichia coli B, Escherichia coli X 1776, Escherichia coli D ⁇ , Escherichia coli W3110, Bacillus sp. Strains such as Bacillus subtilis , Bacillus thuringiensis , Salmonella typhimurium , Enterobacteria and strains such as Serratia marcescens and various Pseudomonas species.
  • yeast Saccharomyce
  • insect cells human cells and animal cells (e.g., human embryonic kidney (HEK) 293, Chinese hamster ovary (CHO), W138, BHK, COS-7, HepG2, 3T3, RIN and MDCK cell lines) and plant cells This can be used.
  • human embryonic kidney (HEK) 293, Chinese hamster ovary (CHO), W138, BHK, COS-7, HepG2, 3T3, RIN and MDCK cell lines e.g., HEK, human embryonic kidney (HEK) 293, Chinese hamster ovary (CHO), W138, BHK, COS-7, HepG2, 3T3, RIN and MDCK cell lines
  • the present invention also provides a fusion protein produced by the host cell in which a hydrophobic tail domain-removed mudfish-derived variable lymphocyte receptor B (VLRB) protein and a C-terminal domain of seven growth fish-derived VLRB proteins are linked.
  • VLRB hydrophobic tail domain-removed mudfish-derived variable lymphocyte receptor B
  • the fusion protein according to the present invention is a fusion protein in which the C-terminal domain of the seven-growth VLRB protein is linked to the C-terminus of the stalk domain of the eel-derived VLRB protein.
  • the present invention also provides a multivalent antibody having increased binding ability to a target antigen, characterized in that the fusion protein is composed of a multimer or an octahedron multimer by self-assembly.
  • the multivalent antibody of the present invention is composed of a multimeric form of an octopus VLRB fusion protein in which a C-terminal hydrophobic tail domain is substituted with a C-terminal sequence of seven growth fish while maintaining the binding ability to a target antigen.
  • it is characterized by having a multimer form such as an octahedron or a dimer by the seven-growth C-terminal domain rich in cystein residues.
  • multimer, composite or polymer may be used interchangeably.
  • the polyvalent antibody of the present invention is a multivalent antibody containing 8 or 10 VLRB proteins, which are blackfish antibodies, and the antigen binding ability is significantly increased.
  • the present invention also provides
  • step (b) culturing the transformed host cell of step (a);
  • step (c) obtaining a multimer or an oligomeric multimer of the fusion protein from the cultured host cell of step (b) or a culture thereof, wherein the multivalent antibody having increased binding capacity to the target antigen is obtained. It provides a manufacturing method.
  • the method for preparing the multivalent antibody of the present invention immunization by injecting an immunogen or antigen into the eel, to extract the blood from the immunized eel and to separate the lymphocytes, extract the total RNA of the lymphocytes based on the mature VLRBs After securing the mRNA, a polymerase chain reaction was carried out using the template to prepare a cDNA pool of VLRBs except for the hydrophobic region at the carboxy terminus. Each clone of the cDNA prepared as described above was cloned into a pTEL vector (FIG.
  • the immunogen or antigen is not limited thereto, and may be a virus, a microorganism, or the like.
  • the present invention also provides a multivalent antibody having increased binding ability to a target antigen produced by the above method.
  • the multivalent antibody of the present invention is composed of a multimeric form of an octamer or a dimer of a fusion protein in which a hydrophobic tail domain is substituted with the C-terminal sequence of a VLRB protein while maintaining the binding ability to a target antigen in a blackfish VLRB protein. It is a multivalent antibody which contains 8 or 10 blackfish VLRB proteins which can bind with a target antigen, and the antigen binding ability is markedly increased compared with a single body.
  • the present invention also provides a method for detecting a target antigen by treating the multivalent antibody with a target antigen-containing suspect sample.
  • the antigen is not limited thereto, but may be a virus or a microorganism.
  • the sample may be food, water, a solution containing a specific or unspecific microorganism, tissue, cells, blood, serum, plasma, saliva and the like, but is not limited thereto.
  • the target antigen detection method of the present invention can be carried out in an antigen-antibody reaction mode. In this case, it can be carried out using the multivalent antibody of the present invention that specifically binds to the target antigen to be detected.
  • the present invention can be used to detect the presence of a target antigen by carrying out according to conventional immunoassay methods. This immunoassay can be carried out according to various quantitative or qualitative immunoassay methods developed in the past.
  • Detection of the conjugate between the multivalent antibody and the target antigen of the present invention may be performed through an indirect direct enzyme linked immunosorbent assay (ELISA) or sandwich ELISA method, but is not limited thereto. Measurement of the final enzyme activity or signal in the indirect ELISA method and sandwich-ELISA method can be carried out according to various methods known in the art. Detection of such signals allows for qualitative or quantitative analysis of the multivalent antibodies of the invention.
  • ELISA indirect direct enzyme linked immunosorbent assay
  • the present invention also provides a composition for detecting a target antigen containing the multivalent antibody as an active ingredient, and a kit for detecting a target antigen comprising the composition as an active ingredient.
  • the composition for detecting a target antigen of the present invention comprises a multivalent antibody consisting of multimers in the form of a multimer in the form of a mutton fish VLRB fusion protein substituted with a hydrophobic tail domain derived from seven growth fish while maintaining the binding ability to the target antigen.
  • the kit of the present invention comprising a composition for the present invention is not limited thereto, but is preferably an immunoassay kit, and the immunoassay kit is direct-ELISA, indirect-ELISA, sandwich-ELISA, protein microarray, radioimmunoassay. (RIA: Radioimmunoassay) and the like.
  • VLRB protein is composed of amino acids having high hydrophobicity (FIG. 2A).
  • Intact forms of VLRB genes from cDNA synthesized from the eel blood mRNA were amplified by PCR and cloned into pKINGeo / ccdB vector. Randomly selected plasmids were transfected into 293-F cell lines to express VLRB proteins. Two days after the transduction, the cell culture medium (supernatant) and cells (pellets) were separated and recovered separately. Cell culture medium was filtered with a 0.45 ⁇ m membrane filter to remove debris and concentrated 10 times with lyophilizer.
  • the recovered cells were treated with a cell lysate (Promega, USA) containing a protease inhibitor cocktail to induce intracellular proteins to elute.
  • Cell culture solution and cell samples prepared as described above were electrophoresed by mixing in a loading buffer containing 1% ⁇ -mercaptoethanol (hereinafter, 2-ME).
  • 2-ME 1% ⁇ -mercaptoethanol
  • the VLRB protein was identified using a mouse anti-VLRB antibody 11G5 capable of detecting VLRB protein after transfer to a PVDF membrane.
  • all of the eight clones selected were found to be recombinant VLRB protein in the cell pellet, but in the cell culture, only some clones showed VLRB protein (FIG. 2B). The results indicated that the efficiency of wild type musk VLRB protein secretion outside the cell is low.
  • the C-terminal sequence of the eel VLRB is replaced with the C-terminal sequence of the larvae VLRB to overcome the low secretion efficiency of the eel VLRB protein to the outside of the cell and induce complex formation, thereby improving the binding ability of the VLRB antibody to the antigen.
  • pSecTag2A (# V900-20, Invitrogen) murine (murine) Ig ⁇ chain leader sequence for the polymerase chain reaction from the vector (polymerase chain reaction, PCR) to amplify and, VLRB Sfi I restriction to facilitate gene transfer the enzyme seat is connected to pull air to remove the Cm / ccdB gene, located at both ends from the vector pEF-DEST gateway (# 12285-011, Invitrogen) and cloned between the pTracer-EF / V5-His vector of the Kpn I and Not I pKINGeo / ccdB vector was constructed (FIG. 1A).
  • the LC sequence is then fused after the stalk portion of the randomly selected mutant VLRB gene by PCR technique to replace the C-terminal sequence of the mutant VLRB with the C-terminal sequence (lamprey C-term, hereinafter LC) of the chinchillary VLRB. (FIG. 3A).
  • Primer Set for C-terminal Fusion of Seven Growth Fish VLRB Primer Name Sequence (5 ' ⁇ 3') SEQ ID NO: Primer SP CAGGTACCATGGAGACAGACACACTCCTG 3 Primer 1 TTGTGCAGGCGGGCTTTCCGCAGTCGCCACCGTCCGCGCACGCGTTCATGACACG 4 Primer 2 CGGAAAGCCCGCCTGCACAACTCTCCTGAACTGCGCGAATTTCCTCAGCTGCCT 5 Primer 3 TCAACGTTTCCTGCAGAGGGCGCAGGTCGAGCAGAGGCAGCTGAGGAAATTCGC 6
  • the PCR product was cloned into pKINGeo / ccdB vector and transduced with 293-F cell line to confirm expression patterns.
  • the LC fusion musk VLRB recombinant protein was detected in both the cell culture medium and the cell lysate (FIG. 3B).
  • the amount of VLRB protein secreted out of the cell was higher than that of the wild-type musk VLRB.
  • the results of electrophoresis under non-reducing conditions confirmed the VLRB of various types of complexes (dimer, tetramer, octet and depolymer) including monomer size.
  • a pTEL vector containing the LC sequence was constructed to produce a library of blackfish VLRB proteins.
  • the pTEL vector was constructed so that the cloned library-type VLRB genes could be expressed like the LC sequence by introducing an LC sequence instead of the existing V5 and 6 x His tag sequences using the pKINGeo / ccdB vector as a skeleton (FIG. 1B). ).
  • the obtained VLRB gene was cloned into the pTEL vector, and then transformed into E. coli DH5 ⁇ competent cells.
  • the library was validated by identifying VLRB insertion genes of various sizes from randomly selected colonies (FIG. 4B). Randomly selected VLRB plasmids were each transduced with 293-F cell lines to confirm expression patterns by western blotting. Three days after the transduction, the cell cultures were collected and subjected to electrophoresis under non-reducing conditions without adding 2-ME.
  • VLRB protein in 11 clones except 3 clones (3LC, 6LC, 14LC) was confirmed (FIG. 4C).
  • double clones or more complexes were observed in all clones in which the LC fusion VLRB protein was expressed.
  • the present inventors confirmed that the LC-fused VLRB proteins produced in the pTEL vector secrete VLRB protein in cell culture at a high rate (78.6%) and most of them form a complex form.
  • VHSV Viral Hemorrhagic Septicemia virus
  • VHS viral hemorrhagic sepsis
  • the inventors of the present invention obtained a VLRB library from a mush that immunized VHSV to make a mush VLRB antibody against VHSV and cloned it into a pTEL vector.
  • Recombinant plasmids were transformed with E. coli DH5 ⁇ competent cells and then amplified and transduced with 293-F cell lines, respectively.
  • ELISA was performed using cell culture solution 3 days after transduction to find VLRB antibodies specific for VHSV.
  • the experiment blocked multiwell plates coated with VHSV (200 ng) or HEL (20 ng) antigen with 3% skim milk solution and treated the transduced 293-F cell culture supernatant.
  • VHSV 200 ng
  • HEL 20 ng
  • antigen 3% skim milk solution
  • 7LC 7LC
  • High-purity DNA was extracted with DNA prep kits after two streaking procedures for further experiments with 7LC clones with non-specific binding capacity to both VHSV and HEL and 43LC with specific reactivity with VHSV.
  • the two clones showed a significant difference in the LRRv module, which plays an important role in antigen recognition, and it was confirmed that 7LC had two LRRv modules compared to 43LC which included a total of four LRRv modules (Table 2). In addition, it was confirmed by Western blot that the molecular weight of the recombinant 43LC is greater than 7LC by the difference in the number of modules (Fig. 6A).
  • ELISA was performed after treating 5% skim milk solution in a ratio of 1: 1 in 43LC and 7LC.
  • the nonspecific binding of the 43LC clone having specific binding ability with VHSV was confirmed to be lower, and the 7LC clone was found to have little reactivity with all antigens (FIG. 6C).
  • the binding ability of 43LC to VHSV antigen and VHSV surface glycoprotein (G protein) was confirmed by Western blotting to determine the site of VHSV antigen recognized by 43LC.
  • each antigen was transferred to a PVDF membrane and treated with 43LC and 7LC clones as primary antibodies, respectively, and with anti-mouse antibody (11G) capable of recognizing the stalk site of VLRB.
  • anti-mouse antibody 11G
  • FIG. 6D shows that the 43LC clone specifically binds to the G protein, which is the outer membrane protein of the VHS virus.
  • HINAE Hirame natural embryo cell
  • Target Antigen Specific Binding capacity have Fusion protein unit And antigen binding capacity of polymers
  • the polymer was formed by the presence or absence of the LC site that induces the polymer formation of the 43LC clone.
  • the 43LC including the LC site and the mono 43 protein genetically deleted from the LC site were identified as complex and mono form, respectively, under non-reducing conditions without 2-ME treatment. It was confirmed that the results were all separated in a monolithic form under reducing conditions.
  • VLRB antibody in which the hydrophobic tail domain of the present invention is substituted with the C-terminal sequence of the seven-tailed fish VLRB, was formed in complex form upon expression in transduced cells, and has the same extracellular secretion ability as compared to wild-type VLRB and the same antigen recognition. It has been shown that there is a markedly increased target antigen binding capacity compared to a monolith with sequence.
  • VLRB antibodies selected through the method of the present invention may be used in various antibody-related experiments later, such as mouse antibodies.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Zoology (AREA)
  • Urology & Nephrology (AREA)
  • Toxicology (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 소수성 테일 도메인이 제거된 먹장어(hagfish) 유래 VLRB(variable lymphocyte receptor B) 단백질과 칠성장어(lamprey) 유래 VLRB 단백질의 C-말단이 연결된 융합 단백질이 자가조립에 의해 다량체로 이루어진 것을 특징으로 하는, 표적 항원에 대한 결합력이 증가된 다가(multivalent) 항체에 관한 것이다.

Description

소수성 테일 도메인이 제거된 먹장어 유래 VLRB 단백질에 칠성장어 유래 VLRB 단백질의 C 말단 서열이 연결된 융합 단백질 및 이의 용도
본 발명은 소수성 테일 도메인이 제거된 먹장어 유래 VLRB 단백질에 칠성장어 유래 VLRB 단백질의 C 말단 서열이 연결된 융합 단백질 및 이의 용도에 관한 것이다.
일반적으로 항체는 대부분의 척추동물에 존재하는 면역글로불린(immunoglobulin, Ig) 형태의 단백질로 알려져 있으며, 항체의 항원 특이적 결합능은 생명공학 및 의약 분야에 다양하게 활용되고 있다. 하지만, 항체는 결합 면적의 한계, 결합부위(epitope) 선택의 제한성, 복잡한 생산 공정 등과 같은 한계점들이 존재한다. 이로 인해 현재 많은 연구자들이 새로운 항체후보를 발굴하기 위한 노력을 아끼지 않고 있다.
최근 가장 오래된 척추동물이자 무악동물인 먹장어(hagfish)와 칠성장어(lamprey)에서 유악류의 후천면역을 담당하는 면역글로불린과 유사한 역할을 하는 VLR(variable lymphocyte receptor) 단백질의 존재가 밝혀졌다. VLR-A 및 VLR-C는 포유동물의 T-림프구와 같은 역할을, VLR-B는 림프구-유사 세포로부터 분비되는 B-림프구 타입과 같은 역할을 하는 것으로 알려졌다. VLR 단백질은 LRR(leucine-rich repeat) 모듈들의 조합으로 형성이 되며, 구성요소로는 아미노 말단(N-말단)부터 SP(signal peptide), LRRNT(N-terminal capped LRR), LRRVs(variable LRRs), CP(connecting peptide), LRRCT(C-terminal capped LRR), Stalk 그리고 HP(hydrophobic tail) 도메인이 있다. 이 중 항원을 인지하는 부분인 LRRV 모듈은 1개에서부터 최대 9개까지 포함되는 것으로 알려져있다. 체세포 재구성(somatic rearrangement)에 의해 모듈이 조합되는 VLR 단백질은 이론적으로 약 1014개 이상의 다양성을 보유한다고 밝혀졌다.
먹장어와 칠성장어에서 새로운 형태의 항체인 VLR 단백질이 동정된 이후 Ig 단백질을 대체할 많은 시도들이 진행되어 왔다. 하지만, 이러한 시도들은 오직 칠성장어의 VLR 단백질만을 이용하여 진행되어 왔는데, 이는 전반적으로 유사한 구조를 가진 칠성장어 또는 먹장어 유래 VLR 단백질의 구조 중, 매우 상이한 서열을 가진 C-말단(C-terminus) 도메인 때문이다. 소수성 아미노산들에 의해 높은 소수성을 띄는 먹장어 VLR의 C-말단 부위와는 다르게 칠성장어 VLR의 C-말단에는 이황화결합을 유도하는 시스테인 잔기들과 GPI(Glycosylphosphatidylinositol) 절개 서열이 존재한다. 상기와 같은 특성으로 인해 칠성장어의 VLR은 분비형의 8 합체 혹은 10 합체의 VLR 복합체들이 형성된다.
이에, 본 발명에서는 먹장어 항체 VLRB 단백질에서 항원과 결합할 수 있는 부위는 그대로 유지하면서 소수성의 C-말단 부위를 칠성장어 유래 VLRB 단백질의 C-말단으로 치환하여, 보다 높은 분비능과 보다 높은 항원 결합력을 부여하고자 하였다.
한편, 한국공개특허 제2009-0024648호에는 'LRR 패밀리 단백질간의 융합방법'이 개시되어 있고, 한국공개특허 제2016-0147787호에는 '인간화 가변 림프구 수용체(VLR) 및 이와 관련된 조성물 및 용도'가 개시되어 있으나, 본 발명의 소수성 테일 도메인이 제거된 먹장어 유래 VLRB 단백질에 칠성장어 유래 VLRB 단백질의 C 말단 서열이 연결된 융합 단백질 및 이의 용도에 대해서는 기재된 바가 없다.
본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명자들은 먹장어 항체 VLRB 단백질 중 항원과의 결합 부위는 유지하면서, C-말단의 소수성 테일 도메인을 칠성장어 항체 VLRB 단백질의 C-말단으로 치환한 융합 단백질을 제조하였다. 상기 융합 단백질을 코딩하는 핵산을 포함하는 재조합 벡터로 숙주 세포를 형질전환시킨 결과, 본 발명의 융합 단백질이 숙주 세포 내에서 8합체 또는 10합체의 다량체 형태로 형성되는 것을 확인하였고, 상기 다량체 형태의 먹장어 항체가 동일한 항원 인식 부위를 가진 단일체(모노머) 먹장어 항체에 비해 표적 항원에 대한 결합능이 현저히 높음을 확인함으로써, 본 발명을 완성하였다.
상기 과제를 해결하기 위해, 본 발명은 소수성 테일 도메인이 제거된 먹장어 유래 VLRB(variable lymphocyte receptor B) 단백질을 코딩하는 유전자의 3'-말단에 연결된 칠성장어 유래 VLRB 단백질의 C-말단 도메인을 코딩하는 폴리뉴클레오티드를 포함하는 재조합 발현 벡터를 제공한다.
또한, 본 발명은 상기 재조합 발현 벡터로 형질전환된 숙주 세포를 제공한다.
또한, 본 발명은 상기 숙주 세포에 의해 생산된, 소수성 테일 도메인이 제거된 먹장어 유래 VLRB 단백질과 칠성장어 유래 VLRB 단백질의 C-말단 도메인이 연결된 융합 단백질을 제공한다.
또한, 본 발명은 상기 융합 단백질의 자가조립에 의해 8합체 또는 10합체의 다량체로 이루어진 것을 특징으로 하는, 표적 항원에 대한 결합력이 증가된 다가(multivalent) 항체를 제공한다.
또한, 본 발명은 상기 재조합 발현 벡터로 형질전환된 숙주 세포를 배양하여 융합 단백질의 8합체 또는 10합체의 다량체를 수득하는 단계를 포함하는, 표적 항원데 대한 결합력이 증가된 다가 항체의 제조방법을 제공한다.
또한, 본 발명은 상기 방법에 의해 제조된 표적 항원에 대한 결합력이 증가된 다가 항체를 제공한다.
또한, 본 발명은 상기 다가 항체를 표적 항원 함유 의심 시료에 처리하여 표적 항원을 검출하는 방법을 제공한다.
또한, 본 발명은 상기 다가 항체를 유효성분으로 함유하는 표적 항원 검출용 조성물을 제공한다.
본 발명의 항체는 단순한 먹장어 항체가 아니라 항원과의 결합부위를 8개 혹은 10개를 가짐으로써 항원-항체 결합력이 극대화되고, 소수성 테일 도메인이 제거됨으로써 숙주 세포 내에서 발현율이 증가되었으며, 항체 자체의 안정성 또한 증가되는 장점이 있다. 마우스 항체와는 달리 먹장어 항체는 단일 펩타이드로 이루어져 있어 유전자 조작이 자유로워 그 응용가능성이 무궁무진하므로, 본 발명의 먹장어 유래 융합항체는 항원에 대한 높은 결합력과 특이성을 이용하여 바이오마커 개발 및 진단 분야에 유용하게 활용될 수 있을 것이다.
도 1은 야생형 VLRB 단백질 발현 또는 VLRB 융합 단백질 발현에 이용된 pKINGeo/ccdB 및 pTEL의 벡터맵이다.
도 2는 야생형 먹장어 VLRB 단백질의 구조(A) 및 무작위로 선별된 야생형 먹장어 VLRB 단백질이 형질도입된 HEK 293-F 세포의 세포배양액과 세포 용해물의 웨스턴 블롯팅 결과(B)이다.
도 3은 먹장어 VLRB 단백질의 소수성 C-말단을 칠성장어 VLRB 단백질의 C-말단 서열로 치환하기 위한 실험 모식도(A)와 칠성장어 C-말단이 융합된 먹장어 VLRB 융합 단백질의 발현 패턴을 환원 및 비환원 조건에서 확인한 웨스턴 블롯팅 결과(B)이다.
도 4는 칠성장어 VLRB 단백질의 C-말단 서열로 치환된 먹장어 VLRB 융합 단백질 제조를 위해 VHSV로 면역화한 먹장어로부터 유래한 VLR 라이브러리를 클로닝한 pTEL 플라스미드의 확인 결과(A 및 B)와, 선별된 각 클론들을 형질도입한 293-F 세포의 세포배양액을 웨스턴 블롯팅으로 확인한 결과(C)이다.
도 5는 칠성장어 VLRB 단백질의 C-말단 서열로 치환된 먹장어 VLRB 융합 단백질 각 클론들의 VHSV 특이적 결합능을 ELISA로 확인한 결과이다.
도 6은 칠성장어 VLRB 단백질의 C-말단 서열로 치환된 먹장어 VLRB 융합 단백질 클론들 중, VHSV 특이적 결합능을 가진 것으로 선별된 43LC와 7LC의 중합체 형성 유무를 확인한 결과(A)와, VHSV 외 다른 종류의 항원에 대한 결합능을 ELISA로 확인한 결과(B 및 C) 및 43LC와 7LC를 1차 항원으로 사용한 웨스턴 블롯팅 결과(D)이다. 43LC 또는 7LC; 칠성장어 VLRB 단백질의 C-말단 서열로 치환된 먹장어 VLRB 융합 단백질 43 클론 또는 7 클론 유전자를 포함하는 재조합 벡터로 형질도입된 293-F 세포의 세포배양액, AIV; 조류인플루엔자 바이러스, HA; 헤마글루티닌, AgX; 항원 무처리, VNNV; 바이러스성 신경 괴사증 바이러스, G protein; VHSV의 표면 당단백질.
도 7은 VHS 바이러스를 감염시킨 HINAE 세포에 43LC와 7LC를 처리하고, 반응 정도를 면역세포화학분석을 통해 확인한 결과이다.
도 8은 43LC와 43LC의 먹장어 VLRB 부분만을 발현하는 단일체(mono 43)를 환원 및 비환원 조건에서 전기영동하여 확인한 결과이다.
도 9는 43LC와 43LC의 먹장어 VLRB 부분만을 발현하는 단일체(mono 43)의 항원 특이적 결합능을 ELISA를 통해 확인한 결과이다.
본 발명의 목적을 달성하기 위하여, 본 발명은 소수성 테일 도메인이 제거된 먹장어 유래 VLRB(variable lymphocyte receptor B) 단백질을 코딩하는 유전자의 3'-말단에 연결된 칠성장어 유래 VLRB 단백질의 C-말단 도메인을 코딩하는 폴리뉴클레오티드를 포함하는 재조합 발현 벡터를 제공한다.
본 발명의 재조합 발현 벡터에 있어서, 상기 소수성 테일 도메인이 제거된 먹장어 유래 VLRB 단백질은 N-말단(N-terminus)에서 C-말단(C-terminus)으로 신호 펩타이드(SP), LRRNT(N-terminal capped LRR), LRR(leucine-rich repeat), LRRVs(variable LRR modules), CP(connecting peptide), LRRCT(C-terminal capped LRR) 및 Stalk 도메인으로 이루어진 단백질일 수 있으며, 항원 인식 부위인 LRRVs와 LRRCT 도메인을 포함하고 있어 표적 항원에 대한 결합능이 있는 VLRB 단백질이다.
본 발명의 일 구현 예에 따른 재조합 발현 벡터에 있어서, 상기 소수성 테일 도메인이 제거된 먹장어 유래 VLRB 단백질은 신호 펩타이드가 뮤린(murine) 면역글로불린 κ 사슬 리더 서열(leader sequence)인 것일 수 있으나, 이에 제한되지 않으며, 재조합 단백질의 세포 외 분비능을 보다 향상시킬 수 있는 시그널 펩타이드 또는 서열이면 그 종류에 제한없이 사용가능하다.
본 발명의 일 구현 예에 따른 재조합 발현 벡터에 있어서, 상기 뮤린 면역글로불린 κ 사슬 리더 서열은 서열번호 1의 염기서열로 이루어진 것일 수 있으나, 이에 제한되지 않는다.
본 발명의 일 구현 예에 따른 재조합 발현 벡터에 있어서, 상기 상기 소수성 테일 도메인이 제거된 먹장어 유래 VLRB 단백질을 코딩하는 유전자는, 표적하는 항원에 대해 결합력이 가장 우수한 VLRB 단백질을 코딩하는 유전자일 수 있으며, 표적 항원으로 면역화된 먹장어의 VLRB cDNA 라이브러리로부터 유래할 수 있다.
본 발명의 재조합 발현 벡터에 있어서, 상기 칠성장어 유래 VLRB 단백질의 C-말단 도메인을 코딩하는 폴리뉴클레오티드는 서열번호 2의 염기서열로 표시되는 염기서열을 포함할 수 있다. 또한, 상기 염기서열의 상동체가 본 발명의 범위 내에 포함된다. 구체적으로, 상기 칠성장어 VLRB 단백질의 C-말단 도메인을 코딩하는 폴리뉴클레오티드는 서열번호 2의 염기서열과 각각 70% 이상, 더욱 바람직하게는 80% 이상, 더 더욱 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상의 서열 상동성을 가지는 염기서열을 포함할 수 있다. 폴리뉴클레오티드에 대한 "서열 상동성의 %"는 두 개의 최적으로 배열된 서열과 비교 영역을 비교함으로써 확인되며, 비교 영역에서의 폴리뉴클레오티드 서열의 일부는 두 서열의 최적 배열에 대한 참고 서열(추가 또는 삭제를 포함하지 않음)에 비해 추가 또는 삭제(즉, 갭)를 포함할 수 있다.
칠성장어 VLRB 단백질의 C-말단 도메인은 시스테인(cystein, Cys) 잔기가 8개 존재하며, GPI(Glycosylphosphatidylinositol) 절개서열이 존재한다. 이와 같은 특성으로 인해 칠성장어 VLRB 단백질은 8~10개의 단일체(monomer)가 합쳐진 400 kDa 정도의 VLRB 다량체로 형성되어져 세포 표면에 발현되고, 또한 혈청 속으로 분비되게 된다.
용어 "재조합"은 세포가 이종의 핵산을 복제하거나, 상기 핵산을 발현하거나 또는 펩티드, 이종의 펩티드 또는 이종의 핵산에 의해 암호된 단백질을 발현하는 세포를 지칭하는 것이다. 재조합 세포는 상기 세포의 천연 형태에서는 발견되지 않는 유전자 또는 유전자 절편을, 센스 또는 안티센스 형태 중 하나로 발현할 수 있다. 또한 재조합 세포는 천연 상태의 세포에서 발견되는 유전자를 발현할 수 있으며, 그러나 상기 유전자는 변형된 것으로서 인위적인 수단에 의해 세포 내 재도입된 것이다.
용어 "재조합 발현 벡터"는 세균 플라스미드, 파아지, 효모 플라스미드, 식물 세포 바이러스, 포유동물 세포 바이러스, 또는 다른 벡터를 의미한다. 대체로, 임의의 플라스미드 및 벡터는 숙주 내에서 복제 및 안정화할 수 있다면 사용될 수 있다. 상기 발현 벡터의 중요한 특성은 복제 원점, 프로모터, 마커 유전자 및 번역 조절 요소(translation control element)를 가지는 것이다.
본 발명의 소수성 테일 도메인이 제거된 먹장어 유래 VLRB 단백질을 코딩하는 유전자와 칠성장어 유래 VLRB 단백질의 C-말단 도메인을 코딩하는 폴리뉴클레오티드 및 적당한 전사/번역 조절 신호를 포함하는 발현 벡터는 당업자에 주지된 방법에 의해 구축될 수 있다. 상기 방법은 시험관 내 재조합 DNA 기술, DNA 합성 기술 및 생체 내 재조합 기술 등을 포함한다. 상기 DNA 서열은 mRNA 합성을 이끌기 위해 발현 벡터 내의 적당한 프로모터에 효과적으로 연결될 수 있다. 또한 발현 벡터는 번역 개시 부위로서 리보좀 결합 부위 및 전사 터미네이터를 포함할 수 있다.
상기 재조합 발현 벡터는 바람직하게는 하나 이상의 선택성 마커를 포함할 수 있으나, 이에 제한되지 않는다. 상기 마커는 통상적으로 화학적인 방법으로 선택될 수 있는 특성을 갖는 핵산 서열로, 형질전환된 세포를 비형질전환 세포로부터 구별할 수 있는 모든 유전자가 이에 해당된다.
본 발명은 또한, 상기 재조합 발현 벡터로 형질전환된 숙주 세포를 제공한다.
본 발명의 벡터를 원핵세포에 안정되면서 연속적으로 클로닝 및 발현시킬 수 있는 숙주 세포는 당업계에 공지된 어떠한 숙주 세포도 이용할 수 있으며, 예컨대, 대장균(Escherichia coli) Rosetta, 대장균 JM109, 대장균 BL21, 대장균 RR1, 대장균 LE392, 대장균 B, 대장균 X 1776, 대장균 Dα, 대장균 W3110, 바실러스 서브틸리스(Bacillus subtilis), 바실러스 츄린겐시스(Bacillus thuringiensis)와 같은 바실러스 속 균주, 살모넬라 티피무리움(Salmonella typhimurium), 세라티아 마르세슨스(Serratia marcescens) 및 다양한 슈도모나스 종과 같은 장내균과 균주 등이 있다.
또한, 본 발명의 벡터를 진핵 세포에 형질전환시키는 경우에는 숙주 세포로서, 효모(Saccharomyce cerevisiae), 곤충세포, 사람세포 및 동물세포(예컨대, HEK(Human embryonic kidney) 293, CHO(Chinese hamster ovary), W138, BHK, COS-7, HepG2, 3T3, RIN 및 MDCK 세포주) 및 식물세포 등이 이용될 수 있다.
본 발명은 또한, 상기 숙주 세포에 의해 생산된, 소수성 테일 도메인이 제거된 먹장어 유래 VLRB(variable lymphocyte receptor B) 단백질과 칠성장어 유래 VLRB 단백질의 C-말단 도메인이 연결된 융합 단백질을 제공한다.
본 발명에 따른 융합 단백질은 먹장어 유래 VLRB 단백질의 stalk 도메인의 C-말단에 칠성장어 유래 VLRB 단백질의 C-말단 도메인이 연결된 융합 단백질이다.
본 발명은 또한, 상기 융합 단백질이 자가조립에 의해 8합체 또는 10합체의 다량체로 이루어진 것을 특징으로 하는, 표적 항원에 대한 결합력이 증가된 다가(multivalent) 항체를 제공한다. 본 발명의 다가 항체는, 표적 항원에 대한 결합능은 유지하면서 C-말단의 소수성 테일 도메인이 칠성장어의 C-말단 서열로 치환된 먹장어 VLRB 융합 단백질이 8합체 또는 10합체의 다량체 형태로 이루어진 것으로, 시스테인(cystein) 잔기가 풍부한 칠성장어 C-말단 도메인에 의해 8합체 또는 10합체 등의 다량체 형태를 갖는 것을 특징으로 한다.
본 명세서에서 사용된 용어 다량체, 복합체 또는 중합체는 서로 혼용되어 사용될 수 있다.
본 발명의 다가 항체는 먹장어 항체인 VLRB 단백질을 8개 혹은 10개 포함하고 있어, 항원 결합능이 현저히 증가된 다가 항체이다.
본 발명은 또한,
(a) 본 발명의 상기 재조합 발현 벡터로 숙주 세포를 형질전환시키는 단계;
(b) 상기 (a) 단계의 형질전환된 숙주 세포를 배양하는 단계; 및
(c) 상기 (b) 단계의 배양한 숙주 세포 또는 이의 배양액으로부터 융합 단백질의 8합체 또는 10합체의 다량체를 수득하는 단계를 포함하는, 표적 항원에 대한 결합력이 증가된 다가(multivalent) 항체의 제조방법을 제공한다.
본 발명의 상기 다가 항체의 제조방법은 구체적으로, 면역원 또는 항원을 먹장어에 주사하여 면역화시키고, 면역화된 먹장어의 혈액을 채취하여 림프구를 분리하고, 림프구의 총 RNA를 추출하여 이를 기반으로 성숙한 VLRBs의 mRNA를 확보한 후, 이를 주형으로 중합효소연쇄반응을 수행하여 카복시 말단의 소수성 부위를 제외한 VLRBs의 cDNA 풀(pool)을 준비하였다. 상기와 같이 준비된 cDNA의 각 클론들을 칠성장어 VLRB의 C-말단 염기서열을 포함하고 있는 pTEL 벡터(도 1B)로 클로닝하여 각기 다른 항원 인식 서열을 가진 먹장어 VLRBs와 칠성장어 VLRB의 C-말단이 연결된 융합 단백질을 발현할 수 있는 재조합 발현 벡터를 제작하였다. 그 후, 각 재조합 발현 벡터로 293-F 세포를 형질도입(transfection)시키고, 형질도입된 293-F 세포를 배양한 후, 배양액을 수득하여 면역원 또는 항원과의 반응성을 ELISA 실험을 통해 확인하였다. 최종적으로 면역원 또는 항원과의 결합력이 우수한 클론들을 선별하고, 선별된 클론들의 배양액을 비환원 및 환원 조건에서 웨스턴 블롯팅하여 융합단백질이 다량체로 형성된 것을 확인하였다. 상기 면역원 또는 항원은 이에 한정하지 않으나, 바이러스, 미생물 등일 수 있다.
본 발명은 또한, 상기 방법에 의해 제조된 표적 항원에 대한 결합력이 증가된 다가 항체를 제공한다.
본 발명의 상기 다가 항체는 먹장어 VLRB 단백질에서 표적 항원에 대한 결합능은 유지하면서 소수성 테일 도메인이 칠성장어 VLRB 단백질의 C-말단 서열로 치환된 융합 단백질이 8합체 또는 10합체의 다량체 형태로 이루어진 것으로, 표적 항원과 결합할 수 있는 먹장어 VLRB 단백질을 8개 또는 10개 포함하고 있어, 단일체에 비해 항원 결합능이 현저히 증가된 다가 항체이다.
본 발명은 또한, 상기 다가 항체를 표적 항원 함유 의심 시료에 처리하여 표적 항원을 검출하는 방법을 제공한다.
본 발명의 표적 항원 검출 방법에서, 상기 항원은 이에 한정되지 않으나, 바이러스 또는 미생물일 수 있다.
본 발명의 표적 항원 검출 방법에서, 상기 시료는 음식물, 물, 특정 또는 불특정 미생물을 포함하는 용액, 조직, 세포, 혈액, 혈청, 혈장, 타액 등일 수 있으나, 이에 제한되지 않는다.
본 발명의 표적 항원 검출 방법은 항원-항체 반응 방식으로 실시될 수 있다. 이 경우, 검출하고자 하는 표적 항원에 특이적으로 결합하는 본 발명의 다가 항체를 이용하여 실시될 수 있다. 본 발명은 통상적인 면역분석 방법에 따라 실시하여 표적 항원 존재 여부를 검출하는데 이용될 수 있다. 이러한 면역분석은 종래에 개발된 다양한 정량적 또는 정성적 면역분석 방법에 따라 실시할 수 있다.
본 발명의 다가 항체와 표적 항원과의 결합체 검출은 간접(indirect) ELISA(direct enzyme linked immunosorbent assay) 또는 샌드위치(sandwich) ELISA 방법을 통해 수행할 수 있으나, 이에 제한되지 않는다. 간접 ELISA 방법 및 샌드위치-ELISA 방법에서 최종적인 효소의 활성 측정 또는 시그널의 측정은 당업계에 공지된 다양한 방법에 따라 실시될 수 있다. 이러한 시그널의 검출은 본 발명의 다가 항체의 정성적 또는 정량적 분석을 가능하게 한다.
또한, 본 발명은 상기 다가 항체를 유효성분으로 함유하는 표적 항원 검출용 조성물 및 상기 조성물을 유효성분으로 포함하는 표적 항원 검출용 키트를 제공한다.
본 발명의 표적 항원 검출용 조성물은 표적 항원에 대한 결합능은 유지하면서 소수성 테일 도메인이 칠성장어 유래의 것으로 치환된 먹장어 VLRB 융합 단백질이 다량체 형태로 이루어진 다가 항체를 유효성분으로 포함하고 있으며, 상기 검출용 조성물을 포함하는 본 발명의 키트는 이에 한정되지는 않으나, 바람직하게는 면역분석용 키트이며, 상기 면역분석용 키트는 직접-ELISA, 간접-ELISA, 샌드위치-ELISA, 단백질 마이크로어레이, 방사선면역분석(RIA: Radioimmunoassay) 등일 수 있다.
이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
실시예 1. 야생형 먹장어 VLRB 단백질의 세포 외부로의 분비 효율 분석
먹장어(hagfish) VLRB 단백질의 C-말단(C-terminus)은 소수성(hydrophobicity)이 높은 아미노산들로 구성되어져 있음을 확인하였다(도 2A). 먹장어 혈액의 mRNA로부터 합성된 cDNA로부터 온전한 형태의 VLRB 유전자들을 PCR로 증폭한 뒤 pKINGeo/ccdB 벡터에 클로닝하였다. 이 중 무작위로 선별된 플라스미드를 293-F 세포주에 형질도입(transfection)하여 VLRB 단백질들을 발현시켰다. 형질도입 2일 후, 세포배양액(supernatant)과 세포(pellet)들을 각각 따로 분리하여 회수하였다. 세포배양액은 0.45 ㎛ 멤브레인 필터로 여과하여 찌꺼기들을 제거한 뒤 동결건조기로 10배 농축하였다. 회수된 세포는 프로테아제 저해제 칵테일(protease inhibitor cocktail)이 함유된 세포 용해액(Promega, 미국)을 처리하여 세포내 단백질들이 용출되도록 유도하였다. 상기와 같이 준비된 세포배양액과 세포 시료를 1% β-mercaptoethanol(이하, 2-ME)이 포함된 로딩버퍼에 섞어 전기영동 하였다. 전기영동 후 PVDF 멤브레인으로 트랜스퍼한 다음, 먹장어 VLRB 단백질을 검출할 수 있는 마우스 항-VLRB 항체 11G5를 이용하여 VLRB 단백질을 확인하였다. 그 결과, 선별된 8개의 클론들 모두 세포 펠렛에서 재조합된 VLRB 단백질이 관찰되었지만, 세포배양액에서는 일부 클론에서만 VLRB 단백질이 확인되었다(도 2B). 상기의 결과는 야생형 먹장어 VLRB 단백질이 세포 외부로 분비되는 효율이 낮음을 의미하였다.
실시예 2. 먹장어 VLRB의 C-말단 서열 치환
본 발명에서는 먹장어 VLRB의 C-말단 서열을 칠성장어 VLRB의 C-말단 서열로 치환하여 먹장어 VLRB 단백질의 세포 외부로의 낮은 분비 효율을 극복하는 동시에 복합체 형성을 유도하여 항원에 대한 VLRB 항체의 결합능 향상을 도모하였다.
먼저, 인체 세포주를 통한 재조합 단백질 발현 시스템을 확립하기 위해 외래 유전자 발현율이 가장 높다고 알려진 인간 배아 신장 세포주(HEK, Human embryonic kidney)에서 유래된 세포주 중, 부유 형태(suspension)로도 생장이 가능하며 외래 단백질의 발현양이 높은 293-F 세포주를 선택하여 사용하였다. 인체 세포주에서 발현 가능한 벡터 시스템 개발을 위해 본 발명자들은 pTracer-EF/V5-His(# V887-20, Invitrogen, 미국) 벡터를 기본 골격으로 하여 재조합 발현 벡터를 제작하였다. 먼저, 외래 단백질의 세포 외부로의 분리를 위해, 분비신호 펩타이드를 도입하였다. 이를 위해, pSecTag2A(# V900-20, Invitrogen) 벡터로부터 뮤린(murine) Ig κ 사슬 리더 서열을 중합효소연쇄반응(polymerase chain reaction, PCR)으로 증폭시키고, VLRB 유전자 도입을 용이하게 하기 위한 Sfi I 제한효소 자리가 양 말단에 위치한 Cm/ccdB 유전자를 pEF-DEST 게이트웨이 벡터(#12285-011, Invitrogen)로부터 분리해내어 연결시키고, pTracer-EF/V5-His 벡터의 Kpn I과 Not I 사이에 클로닝하여 pKINGeo/ccdB 벡터를 제작하였다(도 1A).
그 후, 먹장어 VLRB의 C-말단 서열을 칠성장어 VLRB의 C-말단 서열(lamprey C-term, 이하 LC)로 치환하기 위해 PCR 기법을 통해 임의로 선정된 먹장어 VLRB 유전자의 stalk 부분 뒤에 LC 서열을 융합하였다(도 3A).
칠성장어 VLRB의 C-말단 융합을 위한 프라이머 세트
프라이머명 염기서열(5'→3') 서열번호
Primer SP CAGGTACCATGGAGACAGACACACTCCTG 3
Primer 1 TTGTGCAGGCGGGCTTTCCGCAGTCGCCACCGTCCGCGCACGCGTTCATGACACG 4
Primer 2 CGGAAAGCCCGCCTGCACAACTCTCCTGAACTGCGCGAATTTCCTCAGCTGCCT 5
Primer 3 TCAACGTTTCCTGCAGAGGGCGCAGGTCGAGCAGAGGCAGCTGAGGAAATTCGC 6
상기 PCR 산물을 pKINGeo/ccdB 벡터로 클로닝한 뒤 293-F 세포주로 형질도입하여 발현 패턴을 확인하였다. 그 결과, LC 융합 먹장어 VLRB 재조합 단백질은 세포배양액과 세포용해물 모두에서 검출되었으며(도 3B), 특히, 야생형 먹장어 VLRB의 경우와 비교하여 세포 외부로 분비되는 VLRB 단백질의 양이 많은 것으로 확인되었다. 또한, 비환원 조건에서 전기영동된 결과에서는 단량체 크기를 비롯하여 여러 종류의 복합체 형태(2합체, 4합체, 8합체 및 10합체)의 VLRB가 확인되었다.
실시예 3. 칠성장어 C-말단 서열로 치환된 먹장어 VLRB 융합 단백질의 발현 경향 분석
LC 서열을 이용하여 라이브러리 형태의 먹장어 VLRB 단백질들을 생산하기 위해 LC 서열을 포함하는 pTEL 벡터를 제작하였다. pTEL 벡터는 pKINGeo/ccdB 벡터를 뼈대로 하여 기존의 V5 및 6 x His 태그 서열을 대신해 LC 서열을 도입함으로써, 클로닝되는 라이브리러 형태의 VLRB 유전자들이 LC 서열과 같이 발현될 수 있도록 제작하였다(도 1B).
먹장어 혈액 내의 림프구로부터 총 RNA를 추출하고, 이를 주형으로 라이브러리 형태의 VLRBs cDNA를 확보하였다. 확보된 VLRB 유전자를 pTEL 벡터에 클로닝한 후, E. coli DH5α 컴피턴트 세포로 형질주입(transformation)하였다. 무작위로 선택된 콜로니들로부터 다양한 크기의 VLRB 삽입 유전자들을 확인함으로써 라이브러리를 검증하였다(도 4B). 무작위로 선택된 VLRB 플라스미드들을 293-F 세포주로 각각 형질도입하여 발현 패턴을 웨스턴 블롯팅으로 확인하였다. 형질도입 3일 후 세포배양액들을 모아 2-ME를 첨가하지 않은 비환원 조건으로 전기영동을 실시하였다. 그 결과, 3개의 클론(3LC, 6LC, 14LC)을 제외한 나머지 11개의 클론에서 VLRB 단백질의 발현을 확인할 수 있었다(도 4C). 특히, LC 융합 VLRB 단백질이 발현된 모든 클론에서 2배체 이상의 복합체들이 관찰되었으며, 발현 정도의 차이는 있지만 모두 8배체 또는 10배체의 복합체를 포함하고 있는 것으로 확인되었다. 이상의 결과로부터 본 발명자들은 pTEL 벡터에서 생산된 LC 융합 VLRB 단백질들은 높은 비율로(78.6%) 세포배양액으로 VLRB 단백질을 분비하며 이들 대부분이 복합체 형태를 이룬다는 것을 확인하였다.
실시예 4. 표적 항원 특이적 결합능을 가진 융합 단백질 스크리닝
바이러스성 출혈성 패혈증(VHS)의 원인체인 VHSV(Viral Hemorrhagic Septicemia virus)는 국내에서 겨울과 봄의 저수온기에 양식 넙치에 주로 감염되어 피해를 일으킨다고 알려져 있으며 그 사례가 점점 증가하고 있는 추세이다. 본 발명자들은 VHSV에 대한 먹장어 VLRB 항체를 제작하기 위해 VHSV를 면역화한 먹장어로부터 VLRB 라이브러리를 얻어 pTEL 벡터로 클로닝하였다. 재조합 플라스미드는 E.coli DH5α 컴피턴트 세포로 형질전환시킨 후 증폭시켜, 293-F 세포주로 각각 형질도입하였다. VHSV에 특이적인 VLRB 항체를 찾기 위해 형질도입 3일 후의 세포배양액을 이용하여 ELISA를 실시하였다.
실험은 VHSV(200 ng) 또는 HEL(20 ng) 항원이 코팅된 멀티 웰 플레이트를 3% 탈지유 용액으로 블록킹한 뒤 형질도입된 293-F 세포 배양 상층액을 처리하였다. 총 96개의 클론들 중 VHSV에 대해 가장 높은 반응성을 보인 두 개의 클론, 43LC와 7LC를 선별하였다. VHSV와 HEL에 모두에서 비특이적 결합능을 가지는 7LC 클론과 VHSV에서 특이적 반응성을 보이는 43LC의 추가 실험을 위해 2번의 스트리킹 과정을 거친 후 DNA prep 키트로 높은 순도의 DNA를 추출하였다. 본 발명자들은 이 두가지 클론들의 아미노산 서열을 분석하였고, 웨스턴 블롯팅을 통해 293-F 세포주로부터의 발현 패턴을 분석하였다.
융합 단백질 43LC 및 7LC의 서열 분석 결과
43LC 7LC
LRR1 VLWLGGNKIPSLPHGVFD (서열번호 7) VLQLQGNKLQSLPSGVFD (서열번호 14)
LRRv KLTSLTLLSLHTNQLQSLPDGVFD (서열번호 8) KLTQLTYLSLSTNQLQSLPNGVFD (서열번호 15)
LRRv KLTSLTLLSLHTNQLQSLPSGVFD (서열번호 9) KLTQLTVLGLQTNQLKSVPDGVFD (서열번호 16)
LRRv KLTELKELRLYENKLQSLPHGVFD (서열번호 10) -
LRRv KLTQQLKDLRLHQNQLKSVPDGVFD (서열번호 11) -
CP RLTSLQTIYLYSNP (서열번호 12) RLTSLQKIYLYSNP (서열번호 17)
LRRCT WDCTCPGVDYLSRWLHTNSKKETSDSAKCSGSGFPVRSIICP (서열번호 13) WDCTCPGIRYFSEWINKHSGVVRDSSNNVNPDSAKCSGSGKPVRSIICP (서열번호 18)
이 두 클론은 항원을 인식하는데 중요한 역할을 하는 LRRv 모듈에서 큰 차이를 보였으며, 총 4개의 LRRv 모듈을 포함하는 43LC에 비해 7LC는 2개의 LRRv 모듈을 가지는 것으로 확인되었다(표 2). 또한, 이러한 모듈 갯수의 차이에 의해 재조합 된 43LC의 분자량이 7LC 보다 큰 것으로 웨스턴 블롯을 통해 확인되었다(도 6A).
선별된 두 개의 클론들이 ELISA에서 비특이적 결합능을 보였기에 다양한 항원을 이용해서 이들의 항원 특이성을 살펴보았다. VHSV, AIV(조류인플루엔자 바이러스), HA(헤마글루티닌) 및 HEL 항원으로 코팅한 웰 그리고 항원을 코팅하지 않은 웰(AgX)에 대해 43LC 및 7LC 클론들의 반응성을 검사해본 결과, 7LC는 항원의 종류에 상관없이 높은 OD값을 보여 비특이적인 결합능을 가진 클론으로 확인된 반면, 43LC는 약간의 OD값을 보였지만 VHSV에 가장 높은 결합능을 보이며 항원 특이적 반응성이 있음을 확인하였다(도 6B). 상기에서 관찰된 비특이적 반응성을 제거하기위해 43LC 및 7LC에 5% 탈지유 용액을 1:1의 비율로 처리한 뒤 ELISA를 실시하였다. 그 결과 VHSV와 특이적 결합능을 가지는 43LC 클론의 비특이적 결합성이 더 낮게 확인되었으며 7LC 클론은 모든 항원과의 반응성이 거의 없는 것으로 나타났다(도 6C). 43LC가 인지하는 VHSV 항원의 부위를 알아보기 위해 VHSV 항원 및 VHSV 표면 당단백질(G 단백질)에 대한 43LC의 결합능을 웨스턴 블롯팅으로 확인하였다. 간단하게, PVDF 멤브레인에 각 항원들을 전이시킨 뒤 43LC와 7LC 클론들을 각각 1차 항체로 처리하고, 먹장어 VLRB의 stalk 부위를 인식할 수 있는 항-마우스 항체(11G)를 2차 항체로 처리하였다. 그 결과, 7LC를 1차 항체로 처리한 멤브레인에서는 아무 반응이 확인되지 않은 반면, 43LC를 1차 항체로 처리한 멤브레인에서는 VHSV와 재조합 G 단백질이 확인되었다(도 6D). 상기의 결과로부터, 43LC 클론은 VHS 바이러스의 외막 단백질인 G 단백질에 특이적으로 결합하는 것을 알 수 있었다.
또한, 넙치 유래의 HINAE(Hirame natural embryo cell) 세포주에 1X105 TCID50/ml 농도의 VHSV를 감염시키고 증폭된 VHS 바이러스에 대한 43LC 클론의 결합능을 면역세포화학분석을 통해 확인하였다. 그 결과, 도 7에서 보이는 바와 같이 43LC가 VHS 바이러스에 특이적으로 결합되어 녹색의 형광이 확인되었다. 그리고 앞선 결과와 일치하게 7LC를 처리한 세포에서는 아무런 형광이 관찰되지 않았다.
실시예 5. 표적 항원 특이적 결합능을 가진 융합단백질의 단일체 및 중합체의 항원 결합능 비교
43LC 클론의 중합체 형성을 유도하는 LC 부위의 존재 유무에 따른 중합체 형성 여부를 조사하였다. 도 8에서 보이는 바와 같이 LC 부위가 포함된 43LC와 유전적으로 LC 부위를 결실시킨 mono 43 단백질은 2-ME를 처리하지 않는 비환원 조건에서 각각 복합체 및 단일체 형태로 확인되었으며, 2-ME를 처리한 환원 조건에서는 모두 단일체 형태로 분리된다는 결과를 확인하였다.
이 두가지 항체, 즉 단일체 형태인 mono 43과 중합체 형태의 43LC의 VHSV-특이적 결합능을 ELISA로 조사해 본 결과, 중합체인 43LC에서만 VHSV에 대해 특이적으로 높은 결합능이 관찰되었다(도 9).
본 발명의 소수성 테일 도메인이 칠성장어 VLRB의 C-말단 서열로 치환된 먹장어 유래 VLRB 항체는, 형질도입된 세포에서 발현 시 복합체 형태로 형성되었으며, 야생형 VLRB 대비 증가된 세포 외 분비능과, 동일한 항원 인식 서열을 가진 단일체 대비 현저히 증가된 표적 항원 결합능이 있음을 보여주었다. 본 발명의 방법을 통해 선별된 VLRB 항체들은 추후 마우스 항체와 같이 다양한 항체 관련 실험에 활용될 수 있을 것이다.

Claims (10)

  1. 소수성 테일 도메인이 제거된 먹장어 유래 VLRB(variable lymphocyte receptor B) 단백질을 코딩하는 유전자의 3'-말단에 연결된 칠성장어 유래 VLRB 단백질의 C-말단 도메인을 코딩하는 폴리뉴클레오티드를 포함하는 재조합 발현 벡터.
  2. 제1항에 있어서, 상기 소수성 테일 도메인이 제거된 먹장어 유래 VLRB 단백질은 N-말단에서 C-말단으로 신호 펩타이드(SP), LRRNT(N-terminal capped LRR), LRR(leucine-rich repeat), LRRVs(variable LRR modules), CP(connecting peptide), LRRCT(C-terminal capped LRR) 및 Stalk 도메인으로 이루어진 것을 특징으로 하는 재조합 발현 벡터.
  3. 제2항에 있어서, 상기 소수성 테일 도메인이 제거된 먹장어 유래 VLRB 단백질은 신호 펩타이드(SP)가 뮤린(murine) 면역글로불린 κ 사슬 리더 서열인 것을 특징으로 하는 재조합 발현 벡터.
  4. 제1항의 재조합 발현 벡터로 형질전환된 숙주 세포.
  5. 제4항의 숙주 세포에 의해 생산된, 소수성 테일 도메인이 제거된 먹장어 유래 VLRB(variable lymphocyte receptor B) 단백질과 칠성장어 유래 VLRB 단백질의 C-말단 도메인이 연결된 융합 단백질.
  6. 제5항의 융합 단백질이 자가조립에 의해 8합체 또는 10합체의 다량체로 이루어진 것을 특징으로 하는, 표적 항원에 대한 결합력이 증가된 다가(multivalent) 항체.
  7. (a) 제1항의 재조합 발현 벡터로 숙주 세포를 형질전환시키는 단계;
    (b) 상기 (a) 단계의 형질전환된 숙주 세포를 배양하는 단계; 및
    (c) 상기 (b) 단계의 배양한 숙주 세포 또는 이의 배양액으로부터 융합단백질의 8합체 또는 10합체의 다량체를 수득하는 단계를 포함하는, 표적 항원에 대한 결합력이 증가된 다가(multivalent) 항체의 제조방법.
  8. 제7항의 방법에 의해 제조된 표적 항원에 대한 결합력이 증가된 다가 항체.
  9. 제6항 또는 제8항의 다가 항체를 표적 항원 함유 의심 시료에 처리하여 표적 항원을 검출하는 방법.
  10. 제6항 또는 제8항의 다가 항체를 유효성분으로 함유하는 표적 항원 검출용 조성물.
PCT/KR2018/004464 2017-05-18 2018-04-18 소수성 테일 도메인이 제거된 먹장어 유래 vlrb 단백질에 칠성장어 유래 vlrb 단백질의 c 말단 서열이 연결된 융합 단백질 및 이의 용도 WO2018212467A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170061576A KR101972894B1 (ko) 2017-05-18 2017-05-18 소수성 테일 도메인이 제거된 먹장어 유래 vlrb 단백질에 칠성장어 유래 vlrb 단백질의 c 말단 서열이 연결된 융합 단백질 및 이의 용도
KR10-2017-0061576 2017-05-18

Publications (1)

Publication Number Publication Date
WO2018212467A1 true WO2018212467A1 (ko) 2018-11-22

Family

ID=64274126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004464 WO2018212467A1 (ko) 2017-05-18 2018-04-18 소수성 테일 도메인이 제거된 먹장어 유래 vlrb 단백질에 칠성장어 유래 vlrb 단백질의 c 말단 서열이 연결된 융합 단백질 및 이의 용도

Country Status (2)

Country Link
KR (1) KR101972894B1 (ko)
WO (1) WO2018212467A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102171950B1 (ko) * 2019-09-25 2020-10-30 경상대학교산학협력단 먹장어 유래 vlrb 검출용 단클론항체 및 이의 용도

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008016854A2 (en) * 2006-08-02 2008-02-07 The Uab Research Foundation Methods and compositions related to soluble monoclonal variable lymphocyte receptors of defined antigen specificity
WO2013078425A1 (en) * 2011-11-22 2013-05-30 University Of Maryland, Baltimore Lambodies with high affinity and selectivity for glycans and uses therefor
KR20160015891A (ko) * 2014-08-01 2016-02-15 한국과학기술원 보체 단백질 C5a와 결합할 수 있는 신규한 폴리펩타이드 및 그 용도
WO2016097369A1 (en) * 2014-12-19 2016-06-23 Sanofi Pasteur Multimerization of recombinant protein by fusion to a sequence from lamprey
KR20160147787A (ko) * 2014-05-02 2016-12-23 에모리 유니버시티 인간화 가변 림프구 수용체(vlr) 및 이와 관련된 조성물 및 용도

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010065407A2 (en) 2008-12-01 2010-06-10 University Of Maryland Biotechnology Institute High affinity recombinant sea lamprey antibodies selected by a yeast surface display platform
SE1500434A1 (en) 2015-10-29 2017-04-30 Theravac Pharmaceuticals Ab A novel fusion partner for highly efficient and safe vaccines

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008016854A2 (en) * 2006-08-02 2008-02-07 The Uab Research Foundation Methods and compositions related to soluble monoclonal variable lymphocyte receptors of defined antigen specificity
WO2013078425A1 (en) * 2011-11-22 2013-05-30 University Of Maryland, Baltimore Lambodies with high affinity and selectivity for glycans and uses therefor
KR20160147787A (ko) * 2014-05-02 2016-12-23 에모리 유니버시티 인간화 가변 림프구 수용체(vlr) 및 이와 관련된 조성물 및 용도
KR20160015891A (ko) * 2014-08-01 2016-02-15 한국과학기술원 보체 단백질 C5a와 결합할 수 있는 신규한 폴리펩타이드 및 그 용도
WO2016097369A1 (en) * 2014-12-19 2016-06-23 Sanofi Pasteur Multimerization of recombinant protein by fusion to a sequence from lamprey

Also Published As

Publication number Publication date
KR20180126770A (ko) 2018-11-28
KR101972894B1 (ko) 2019-04-29

Similar Documents

Publication Publication Date Title
KR102019008B1 (ko) 메르스 코로나바이러스 뉴클레오캡시드 융합 단백질을 이용한 메르스 코로나바이러스 검출 방법
WO2006084466A2 (en) Surface-located streptococcus pneumoniae polypeptides
CN109678958B (zh) 一种人NT-proBNP特异性重组羊单克隆抗体及其制备方法和应用
CN102517302A (zh) 一种重组表达水痘-带状疱疹病毒截短型糖蛋白e的方法及其应用
WO2018212468A1 (ko) 소수성 테일 도메인이 제거된 먹장어 유래 VLRB 단백질에 마우스 항체 유래 Fc 도메인이 연결된 융합 단백질 및 이의 용도
CN110845582A (zh) 一种猫细小病毒重组蛋白及其单克隆抗体的制备
WO2008119358A2 (en) Surface-located streptococcus pneumoniae polypeptides for use in vaccine compositions
JPH06502069A (ja) ワクシニアベクター,ワクシニア遺伝子及びその発現生成物
WO2018199538A1 (ko) 소수성 테일 도메인이 제거된 먹장어 유래 VLRB 단백질과 C4bp 올리고머화 도메인이 연결된 융합 단백질 및 이의 용도
KR101347288B1 (ko) 융합 폴리펩타이드 hpv 항원을 이용한 hpv 항체 스크리닝 키트
CN104845981B (zh) 田鼠巴贝虫Bm1524抗原及其应用
WO2018212467A1 (ko) 소수성 테일 도메인이 제거된 먹장어 유래 vlrb 단백질에 칠성장어 유래 vlrb 단백질의 c 말단 서열이 연결된 융합 단백질 및 이의 용도
KR101340649B1 (ko) 융합 폴리펩타이드 hpv 항원을 이용한 hpv 항체 스크리닝 방법
CN113527475A (zh) 一种分泌鸭新型呼肠孤病毒σC蛋白单抗的杂交瘤细胞、单抗及应用
CN109400684B (zh) 一种pedv s-rbd线性b细胞表位及两株特异性识别单克隆抗体和应用
CN117304314B (zh) Aqp4抗体及其应用
KR101920961B1 (ko) 다중 진단 키트
WO1989005855A1 (en) Human cytomegalovirus protein
KR102167727B1 (ko) 드로소필라 멜라노개스터 s2를 이용한 메르스 항원 단백질 생산방법
CN111440238A (zh) 抗人转化生长因子β1的纳米抗体及其制备方法和应用
CN116903709A (zh) 一种非洲猪瘟病毒pK205R蛋白抗原表位肽及其单克隆抗体与应用
CN113341160B (zh) 一种检测犬、羊等家畜细粒棘球绦虫感染的elisa试剂盒
JP2009108013A (ja) Gタンパク質共役受容体に対する機能抗体およびその応用
KR20230095307A (ko) 신규한 다중 재조합 브루셀라 캐니스 면역원성 단백질 및 이의 용도
KR101287602B1 (ko) 신장형 및 호흡기형 감염성 기관지염 바이러스를 인식하는 항체 및 그의 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18802177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18802177

Country of ref document: EP

Kind code of ref document: A1