[go: up one dir, main page]

WO2018210999A1 - Procédé de préparation d'un gel aqueux d'acide hyaluronique - Google Patents

Procédé de préparation d'un gel aqueux d'acide hyaluronique Download PDF

Info

Publication number
WO2018210999A1
WO2018210999A1 PCT/EP2018/062871 EP2018062871W WO2018210999A1 WO 2018210999 A1 WO2018210999 A1 WO 2018210999A1 EP 2018062871 W EP2018062871 W EP 2018062871W WO 2018210999 A1 WO2018210999 A1 WO 2018210999A1
Authority
WO
WIPO (PCT)
Prior art keywords
hyaluronic acid
aqueous gel
gel
crosslinking
aqueous
Prior art date
Application number
PCT/EP2018/062871
Other languages
English (en)
Inventor
Frédéric BERTAINA
Alexandre GUERRY
Caroline Ceccaldi
Original Assignee
Bioxis Pharmaceuticals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bioxis Pharmaceuticals filed Critical Bioxis Pharmaceuticals
Priority to CN201880031113.4A priority Critical patent/CN110621294A/zh
Priority to BR112019024106-0A priority patent/BR112019024106A2/pt
Priority to CA3060431A priority patent/CA3060431A1/fr
Priority to EP18724248.2A priority patent/EP3624764A1/fr
Priority to US16/609,283 priority patent/US20200060959A1/en
Priority to KR1020197033720A priority patent/KR20200008560A/ko
Publication of WO2018210999A1 publication Critical patent/WO2018210999A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/735Mucopolysaccharides, e.g. hyaluronic acid; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/042Gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/08Anti-ageing preparations
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0072Hyaluronic acid, i.e. HA or hyaluronan; Derivatives thereof, e.g. crosslinked hyaluronic acid (hylan) or hyaluronates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/80Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
    • A61K2800/805Corresponding aspects not provided for by any of codes A61K2800/81 - A61K2800/95
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/80Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
    • A61K2800/91Injection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/06Flowable or injectable implant compositions

Definitions

  • the subject of the present invention is a process for preparing an aqueous gel of homogeneous hyaluronic acid, the aqueous gel thus obtained and its uses, in particular for filling wrinkles and fine lines.
  • Collagen has long been the filling product of choice for the face, especially for filling wrinkles and fine lines or for re-lipging.
  • hyaluronic acids since the placing on the market of hyaluronic acids, they are increasingly used.
  • the injection of hyaluronic acid has two advantages: an immediate mechanical filling effect and the absence of inflammatory phenomena, because of its biocompatibility.
  • hyaluronic acid When administered in a linear (non-crosslinked) form, hyaluronic acid has excellent biocompatibility but is rapidly degraded by the body (in about a week).
  • the life of injected products based on hyaluronic acid could be significantly prolonged until approximately 12 months by the use of cross-linked hyaluronic acid.
  • the crosslinked hyaluronic acid is in the form of a cohesive gel having viscoelastic properties of particular interest for wrinkle filler products.
  • the crosslinked hyaluronic acid gels are homogenized by sieving or by extrusion. These methods only allow a partial elimination of hard zones.
  • the shear stress exerted on the gels causes an alteration of its structure and its viscoelastic properties. The gel subjected to sieving, filtration or extrusion is therefore not perfectly homogeneous and its viscosity is reduced. Once injected it may migrate into tissue and degrade more rapidly. Its filling properties are degraded.
  • the present invention therefore proposes a process for preparing a homogeneous gel of cross-linked hyaluronic acid, in which the homogenization of the gel is obtained by rolling.
  • the subject of the present invention is, according to a first aspect, a process for preparing an aqueous gel of hyaluronic acid comprising the following steps:
  • step (a) homogenizing the aqueous gel formed in step (a) by rolling
  • step (b) the neutralization of the aqueous gel homogenized in step (b).
  • the subject of the invention is also, according to a second aspect, an aqueous gel of hyaluronic acid that can be obtained by such a method.
  • the invention further relates, in a third aspect, to the cosmetic use of such an aqueous gel in the repair or reconstruction of tissues, in particular for filling wrinkles and fine lines, or said aqueous gel for its medical use. for repair or reconstruction of tissue.
  • Figure 1 illustrates a rolling of the gel made between two cylinders rotating at the same tangential speed.
  • Figure 2 illustrates a rolling of the gel made between three cylinders whose tangential speed increases to allow the entrainment of the gel on the surface of the adjacent cylinder.
  • Figures 3, 4 and 5 illustrate the ejection forces of compositions 3, 4 and 5 of aqueous gels prepared in the exemplary embodiments.
  • the present invention provides a novel process for preparing aqueous gels of hyaluronic acid.
  • gel means a cohesive composition which does not flow under its own weight and which has viscoelastic properties giving it a certain deformability. The gel, if sheared, does not reform, unlike viscous fluids.
  • the hyaluronic acid gels are thus distinguished from hyaluronic acid solutions.
  • the distinction gel / solution can be observed by a rheological study in deformation and constant frequency at 25 ° C. in order to determine the viscous modulus G "and the elastic modulus G 'in the zone of linear viscoelasticity.
  • the present invention is characterized in particular by the fact that its elastic modulus G 'is greater than the viscous modulus G "according to the definition of Winter and Chambon (1986). In the case of a viscous solution on the contrary, the viscous modulus G '' is greater than its elastic modulus G '.
  • the measurements are carried out on a Discovery HR1 rheometer (TA industries) and a 40 mm plan / plane geometry in a continuous mode (strain stress 10%, frequency 1 Hz, at 25 ° C, for 120s). Samples consisting of about 1.2 ml are deposited in a gap of ⁇ .
  • the hyaluronic acid gels according to the invention are preferably homogeneous.
  • the term "homogeneous gel of hyaluronic acid” is intended to mean that the crosslinked hyaluronic acid is dispersed uniformly within the gel.
  • the homogeneity of the hyaluronic acid gel can in particular be characterized by measuring the variation of the force of ejection of the gel through a syringe whose needle has an internal diameter of 300 ⁇ (27G TSK UTW). The measurement of the ejection force (or extrusion force) is carried out using an EZ-Test SX shimadzu force bench equipped with a 50N cell.
  • the extrusion is carried out at 10 mm.min -1 and the sampling is set at 100 points "1 .
  • the tests are made with long needles BD LML equipped with TSK needle 27G 1/2 ".
  • the acquisition is treated between the 20th and the 140th second extrusion to ignore the constraints of contacting
  • the homogeneous hyaluronic acid gel does not exhibit a variation of the extrusion force of more than ⁇ 10% with respect to the linearized extrusion force.
  • the aqueous gels according to the invention comprise at least one hyaluronic acid.
  • Hyaluronic acid is a linear glycosaminoglycan (GAG) composed of repeating units of D-glucuronic acid and N-acetyl-D-glucosamine linked together by alternating beta-1,4 and beta-1,3 glycosidic linkages. .
  • GAG linear glycosaminoglycan
  • Hyaluronic acid has the following structure:
  • the hyaluronic acid used in the preparation of the aqueous gel according to the invention has a molar mass of between 1,000,000 Da and 5,000,000 Da, preferably between 1,500,000 Da and 3,500,000 Da.
  • the molecular weight can in particular be determined by Waters GPCV Alliance 2000 steric exclusion chromatography, eluent NaN0 3 0.1M in water coupled in line with three Wyatt detectors: a refractometer, a viscometer and a measurement of the light diffusion.
  • the hyaluronic acid is present in the aqueous hyaluronic acid gel obtained in step a) in a content of between 1 mg / ml and 300 mg / ml, preferably between 75 and 200 mg / ml, more preferably between 100 and 100 mg / ml. and 175 mg / mL.
  • the aqueous gels according to the invention also comprise an aqueous phase.
  • the gel may comprise water in a content ranging from 60% to 99% by weight, relative to the total weight of the composition, preferably ranging from 70% to 99% by weight, and preferably ranging from 80% to 99% by weight. % in weight.
  • the gel may also comprise a water-miscible polyol at ambient temperature (25 ° C.), chosen in particular from polyols having in particular from 2 to 20 carbon atoms, preferably having from 2 to 10 carbon atoms, and preferentially having from 2 to 6 carbon atoms, such as glycerine, propylene glycol, butylene glycol, pentylene glycol, hexylene glycol, dipropylene glycol, diethylene glycol; glycol ethers (having in particular from 3 to 16 carbon atoms), such as the mono-, di- or tripropylene glycol (C1-C4) alkyl ethers, the mono, di or triethylene glycol (C1-C4) alkyl ethers; ; and their mixtures.
  • a water-miscible polyol at ambient temperature (25 ° C.) chosen in particular from polyols having in particular from 2 to 20 carbon atoms, preferably having from 2 to 10 carbon atoms, and preferentially
  • the water-miscible polyol may be present in the gel according to the invention in a content ranging from 0.1% to 20% by weight, relative to the total weight of the composition, and preferably ranging from 3% to 15% by weight. weight.
  • the method according to the invention implements a first step a) of preparing an aqueous gel of cross-linked hyaluronic acid.
  • This step a) comprises, preferably at least the crosslinking in acidic or basic medium of said hyaluronic acid in the presence of at least one crosslinking agent.
  • the crosslinking is carried out in a basic medium and comprises at least the following stages:
  • crosslinking in basic solution of said hyaluronic acid in the presence of at least one crosslinking agent.
  • Crosslinking in a basic medium promotes the formation of ether bonds between the hyaluronic acid and the crosslinking agent, which are slowly degraded.
  • the crosslinking is carried out in an acid medium and comprises at least the following stages:
  • the crosslinking in an acidic medium favors the formation of ester bonds between the hyaluronic acid and the crosslinking agent, which degrade more rapidly than the ether bonds.
  • the step of crosslinking hyaluronic acid comprises at least a crosslinking in basic medium of hyaluronic acid and an acid crosslinking of hyaluronic acid, so as to control the ether and ester formed, and thus the rate of degradation of the crosslinked hyaluronic acid gel thus formed.
  • the crosslinking step of hyaluronic acid comprises a first crosslinking in basic medium of hyaluronic acid followed by crosslinking in acidic medium of hyaluronic acid.
  • the hyaluronic acid used in the process according to the invention is typically in dry form, preferably in the form of powder or flakes.
  • the hyaluronic acid may preferably be a sodium salt, a calcium salt, a zinc salt or a potassium salt of hyaluronic acid, and preferably a salt sodium.
  • the content of linear hyaluronic acid dissolved in the aqueous solution (corresponding to the content of hyaluronic acid in step a)) is between 50 mg / ml and 300 mg / ml, preferably between 100 and 200 mg / ml. .
  • the crosslinking of the linear hyaluronic acid dissolved in the aqueous solution is carried out in the presence of at least one crosslinking agent.
  • the crosslinking agent is preferably chosen from di-functional epoxides, multifunctional epoxides, bi or polyfunctional esters, divinylsulfones, carbodiimides, formaldehyde, dialdehydes and mixtures thereof, and preferably the crosslinking agent is 1,4-butanediol diglycidyl ether (BDDE, also known under the name 1,4-Diglycidyloxybutane, Tetramethylene Glycol Diglycidyl Ether and under the name IUPAC 2- [4- (oxiran-2-ylmethoxy) butoxymethyl] oxirane.
  • BDDE 1,4-butanediol diglycidyl ether
  • the crosslinking agent is in particular introduced in an amount of between 10 mg and 250 mg per gram of linear hyaluronic acid introduced at the crosslinking step.
  • the crosslinking step is preferably carried out at a temperature of between 30 and 70 ° C, preferably between 45 and 55 ° C, which makes it possible to catalyze the crosslinking of hyaluronic acid. Homogenization by rolling
  • the aqueous gel of crosslinked hyaluronic acid prepared in step a) is then homogenized by rolling to eliminate the hard zones (aggregates formed during the crosslinking) without altering the mechanical and visco properties.
  • the rolling consists of a continuous compression between at least two counter-rotating rolls, preferably three counter-rotating rolls.
  • the inlet cylinder may for example rotate at a tangential speed between 0.1 ms "1 and 5 ms" 1, preferably between 0.5ms and 3m.s _1 _1.
  • the rolling When the rolling is carried out between two rolls, they preferably rotate at the same tangential speed, and the gel is introduced between the two rolls, as illustrated in FIG.
  • the tangential speed of the various rolls should increase to allow the entrainment of the gel on the surface of the second roll to conduct a second rolling between the 2 nd and the 3 rd roll.
  • the first cylinder rotates at a tangential speed x 1
  • the second could rotate at this tangential speed x 2
  • the third at this tangential speed x 3 to allow double rolling of the gel.
  • the spacing between the counter-rotating cylinders is between 20 ⁇ and 1 mm, preferably between 20 ⁇ and 100 ⁇ .
  • the rolls may preferably be made of stainless steel, so that they can be easily cleaned, and optionally provided with a microporous or ceramic coating, capable of promoting adhesion of the gel to the surface of the rolls.
  • the rolling homogenization step b) is carried out for 1 minute to 2 hours, preferably between 15 minutes and 45 minutes.
  • step b) of homogenizing the aqueous gel is carried out before the step c) of neutralization, which leads to a swelling of said aqueous gel.
  • step c) of neutralization the volume of aqueous gel to be homogenized by rolling is significantly less important than after swelling.
  • the aqueous gel of crosslinked hyaluronic acid can be purified before or after step c) of neutralizing the aqueous gel in order to remove traces of residual crosslinking agent.
  • the purification is preferably carried out by dialysis under the conditions described above.
  • the dialysis purification makes it possible, in addition to removing the residual crosslinking agent, to further refine the pH obtained after neutralization and to control the osmolarity of the gel.
  • the content of crosslinked hyaluronic acid present in the gel after purification is between 1 mg / ml and 60 mg / ml, preferably between 5 and 50 mg / ml.
  • the aqueous gel of hyaluronic acid is neutralized in a step c).
  • This neutralization is carried out by adjusting the pH to a pH between 6.5 and 7.5.
  • the neutralization can be carried out by adding an acid or a base depending on whether the crosslinking has been carried out in a basic or acidic medium.
  • Neutralization causes the dilution of hyaluronic acid.
  • the content of crosslinked hyaluronic acid present in the gel after neutralization is between 10 mg / ml and 100 mg / ml, preferably between 20 and 80 mg / ml.
  • the pH adjustment can be carried out by adding a compound such as ammonia, sodium hydroxide, sodium hydrogencarbonate, sodium bicarbonate, sodium carbonate or their derivatives or a solution of phosphate buffer (PBS "Phosphate Buffer Saline” - phosphate buffer saline solution).
  • a compound such as ammonia, sodium hydroxide, sodium hydrogencarbonate, sodium bicarbonate, sodium carbonate or their derivatives or a solution of phosphate buffer (PBS "Phosphate Buffer Saline” - phosphate buffer saline solution).
  • the adjustment of the pH for the neutralization can be carried out by adding a compound such as hydrochloric acid, acetic acid, phosphoric acid and sodium dihydrogenphosphate or their derivatives.
  • the neutralization can be performed by dialysis. Neutralization by dialysis makes it possible to adjust the pH in a very gradual manner, which makes it possible to best preserve the mechanical and viscoelastic properties of the hyaluronic acid gel formed.
  • Dialysis is a process of membrane separation of molecules or ions in solution.
  • the hyaluronic acid gel according to the invention can be dialyzed against a buffer solution having a pH equal to or close to the desired final pH for the hyaluronic acid gel (target pH), c. is between 6.5 and 7.5, preferably between 6.75 and 7.2.
  • the buffer solution may, for example, be a saline solution of phosphate buffer (PBS, PBS-lactic acid), tris (hydroxymethyl) methylamine (TRIS), TRIS saline solution (TBS), 4-2- hydroxyethyl-1-piperazineethanesulfonic acid (HEPES), 2- ⁇ [tris (hydroxymethyl) methyl] amino ⁇ ethanesulfonic acid (TES), 3- (N-morpholino) propanesulfonic acid (MOPS), piperazine-N acid , N'-bis (2-ethanesulfonic acid), MES (2- (N-morpholino) ethanesulfonic acid (PIPES), and sodium chloride (NaCl).
  • PBS phosphate buffer
  • TRIS TRIS saline solution
  • HPES 4-2- hydroxyethyl-1-piperazineethanesulfonic acid
  • TES 2- ⁇ [tris (hydroxymethyl) methyl] amino ⁇ ethanesul
  • the buffer solution is a solution of phosphate buffer PBS ("Phosphate Buffer Saline” - salt solution of phosphate buffer) composed of an "acid” salt NaH 2 PO 4, a “basic” salt Na 2 HPO 4 and NaCl.
  • PBS Phosphate Buffer Saline
  • the buffer is physiologically acceptable, that is to say that it presents no risk of intolerance or toxicity during the injection of the hyaluronic acid gel according to the invention or of its contact with the tissues.
  • the dialysis can be carried out in one or more baths against a buffer solution as described above.
  • the dialysis can be carried out in several successive baths against buffer solutions having different pHs closer and closer to the desired final pH for the hyaluronic acid solution (target pH). It is thus possible to increase the pH more gradually according to the number of buffer baths implemented.
  • the buffer used for the dialysis can be associated with a so-called neutral salt, that is to say that does not interact with the buffer, in particular one of sodium salt (NaCl) or potassium salt (KC1) in a salt concentration to reach the osmolarity of the tissues between 280 mOsmol.L ⁇ 1 and 380 mOsmol.L 1 .
  • a neutral salt that is to say that does not interact with the buffer, in particular one of sodium salt (NaCl) or potassium salt (KC1) in a salt concentration to reach the osmolarity of the tissues between 280 mOsmol.L ⁇ 1 and 380 mOsmol.L 1 .
  • the buffer solution may have an osmolarity of between 250 and 350 mOsm / L, preferably between 280 and 330 mOsm / L.
  • step c) of neutralization causes swelling of the crosslinked hyaluronic acid gel.
  • the swelling in fact leads to an increase in the volume of hyaluronic acid gel between 2 and 4 times relative to the volume of the aqueous gel of crosslinked hyaluronic acid obtained in step a).
  • this swelling (and therefore the neutralization) is not or very little initiated before the rolling step b) in order to allow the use of a sufficiently narrow air gap (between 20 and 20 ⁇ m). and 1 mm) so as to effectively remove the hard areas (aggregates formed during the crosslinking) without altering the mechanical and viscoelastic properties of the gel.
  • the spacing between the rollers of the rolling mill must be significantly increased to allow the passage inflated gel, occupying a larger volume.
  • Such spacing greater than 1 mm between the rollers no longer makes it possible to effectively eliminate the hard zones present in the gel to guarantee its excellent homogeneity and injectability.
  • the document US2013 / 0217872 in this case does not describe injectable hyaluronic acid gels, and does not seek, by rolling, to eliminate the hard zones present in the gel.
  • rolling allows the neutralized gel to be mixed for a very long period of 18 to 24 hours to reach a swelling equilibrium.
  • a linear hyaluronic acid can be added after the step (a) for preparing the aqueous gel of cross-linked hyaluronic acid so as to reduce the viscosity of the gel and thus to adjust its mechanical properties, in particular to reduce the force of ejection of the gel and to facilitate the filling of the syringes.
  • the introduction of linear hyaluronic acid can be carried out before or after step b) of homogenization by rolling, the step c) of neutralization (dilution) or the purification step previously described. According to a preferred embodiment, the introduction of linear hyaluronic acid can be carried out before or after the previously described purification step.
  • the amount of linear hyaluronic acid introduced into the crosslinked hyaluronic acid gel is preferably less than or equal to the amount of crosslinked hyaluronic acid present in the gel after neutralization and optionally purification, so as not to further dilute the acid. hyaluronic.
  • the content of crosslinked hyaluronic acid present in the gel after purification is between 0.1 mg / ml and 100 mg / ml, preferably between 1 and 50 mg / ml.
  • the aqueous gel of hyaluronic acid also comprises at least one additional polymer other than hyaluronic acid, such as chondroitin, cellulose, alginate, polycaprolactone, polylactic acid, polyglycolic acid, collagen, silk, PTFE and their derivatives.
  • additional polymer other than hyaluronic acid such as chondroitin, cellulose, alginate, polycaprolactone, polylactic acid, polyglycolic acid, collagen, silk, PTFE and their derivatives.
  • the additional polymer may be introduced during step a), before the crosslinking of the hyaluronic acid to lead to a co-crosslinking of the hyaluronic acid with the additional polymer, or after the step a) of preparing the aqueous gel crosslinked hyaluronic acid, and in particular before step b) homogenization by rolling.
  • the additional polymer may for example be introduced in a content ranging from 0.1% to 5%, preferably from 0.5% to 4%.
  • the aqueous gel prepared according to the process of the invention is injectable.
  • injectable gel in the sense of the present invention a composition in the form of gel having injectability properties (or syringuability, that is to say ease of injection due to a more or less satisfactory flow through a needle in a syringe) satisfactory, and in particular capable of being injected by means of a syringe having a needle of internal diameter approximately equal to 300 ⁇ .
  • gels preferably having a viscosity of less than or equal to 10,000 Pa.s and a loss factor (Tan6) of between 0.01 and 5 are considered to be rheologically injectable.
  • the rheological measurements are carried out on a Discovery HR-1 rheometer (TA industries) and a 40 mm plan / plane geometry in a continuous mode (strain stress 10%, frequency 1 Hz, at 25 ° C). ° C, for 120s)
  • the samples consist of about 1.2 ml are deposited in a gap of ⁇ .
  • the maximum viscosity measurements are carried out in dynamic mode (angular frequency from 0.1 to 100 rad.s -1 )
  • the samples consisting of about 1.2 ml are deposited in a gap of ⁇ .
  • aqueous gel prepared according to the process of the invention can therefore be packaged in syringes in order to be injected into the tissues.
  • the invention thus provides, in another aspect, a syringe containing the gel prepared according to the method of the invention, as described above.
  • a syringe is particularly intended for filling wrinkles or fine lines.
  • degassing can be performed before filling the syringes to remove any air bubbles.
  • the aqueous gel obtained according to the present invention is intended for use in the repair or reconstruction of tissues.
  • the aqueous gel according to the present invention can be used for the constitution or the substitution of biological tissues, for example as an implant, or the filling of biological tissues, for example the injection into the bone cartilages or in the joints or for the filling of the cavities of the body or face, such as wrinkles or fine lines, for the creation or increase of volumes of the face or the human body, or for the healing of the skin.
  • the aqueous gel according to the present invention can be used:
  • the aqueous gel according to the present invention can also be used in rheumatology.
  • the aqueous gel according to the present invention can also be used as a vector of active principle, especially a therapeutic substance, such as cells, a vaccine or an insulin or estrogen-type hormone, and more generally for all the principles. assets whose controlled and / or prolonged release or release has an advantage.
  • the present invention also relates to the cosmetic use of an aqueous gel according to the invention for treating or combating aging of the skin.
  • composition 1 An aqueous gel of hyaluronic acid according to the invention (Composition 1) was prepared according to the following method:
  • the resulting gel is then rolled using an EXAKT 50i G line tricylindrical rolling mill (Exakt, Germany).
  • composition 2 An aqueous gel of comparative hyaluronic acid (Composition 2) was also prepared according to the same process, except for the rolling step which was not performed.
  • the effect of rolling on the homogeneity of the gel was demonstrated by measuring the ejection force. The more the ejection force is stable during the expulsion of the product through the syringe and the needle, the more the gel is homogeneous.
  • the ejection force of a Teosyal Ultradeep crosslinked hyaluronic acid aqueous gel composition was also measured, the production method of which involves a sieving / milling step as described in US patent application 2013/0237615. The result of this measurement is shown in FIG. 5. A wide variation in the ejection force during ejection is observed which demonstrates a heterogeneity of the gel.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Birds (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Gerontology & Geriatric Medicine (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Cosmetics (AREA)
  • Medicinal Preparation (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

La présente invention a pour objet, selon un premier aspect, un procédé de préparation d'un gel aqueux d'acide hyaluronique comprenant les étapes suivantes: a) la préparation d'un gel aqueux d'acide hyaluronique réticulé, b) l'homogénéisation du gel aqueux formé à l'étape (a) par laminage, c) la neutralisation du gel aqueux homogénéisé à l'étape (b). L'invention a également pour objet, selon un second aspect, un gel aqueux d'acide hyaluronique susceptible d'être obtenu par un tel procédé. L'invention a encore pour objet, selon un troisième aspect, l'utilisation cosmétique d'un tel gel aqueux dans la réparation ou la reconstruction des tissus, en particulier pour le comblement des rides et ridules, ou ledit gel aqueux pour son utilisation médicale pour la réparation ou la reconstruction des tissus.

Description

Procédé de préparation d'un gel aqueux d'acide hyaluronique
La présente invention a pour objet un procédé de préparation d'un gel aqueux d'acide hyaluronique homogène, le gel aqueux ainsi obtenu et ses utilisations, notamment pour le comblement des rides et ridules.
Le collagène a longtemps été le produit de comblement de choix pour le visage, en particulier pour le comblement des rides et des ridules ou encore pour réourler les lèvres. Cependant, depuis la mise sur le marché des acides hyaluroniques, ces derniers sont de plus en plus utilisés. En effet, à la biodégradabilité du collagène jugée trop rapide, s'ajoutent les problèmes de sécurité liés à l'origine animale (bovine ou porcine) de celui-ci. L'injection d'acide hyaluronique présente deux avantages : un effet de comblement mécanique immédiat et l'absence de phénomènes inflammatoires, du fait de sa biocompatibilité. Lorsqu'il est administré sous une forme linéaire (non réticulée), l'acide hyaluronique présente une excellente biocompatibilité mais est rapidement dégradé par l'organisme (en environ une semaine). La durée de vie des produits injectés à base d'acide hyaluronique a pu être significativement prolongée jusqu'à environ 12 mois par l'utilisation d'acide hyaluronique réticulé. En effet, l'acide hyaluronique réticulé se présente sous la forme d'un gel cohésif présentant des propriétés visco-élastiques particulièrement intéressantes pour les produits de comblement des rides.
Toutefois, lors de la réticulation, des particules de « zones dures » se forment au sein du gel d'acide hyaluronique, le rendant inhomogène. Ces zones dures affectent l'injectabilité du produit et sont susceptibles de poser des problèmes de tolérance pour le patient. Il est donc essentiel d'éliminer ces zones dures des gels d'acides hyaluroniques réticulés afin de disposer d'un produit parfaitement homogène pour son administration. Classiquement, les gels d'acide hyaluronique réticulés sont homogénéisés par tamisage ou par extrusion. Ces méthodes ne permettent qu'une élimination partielle des zones dures. De plus, la contrainte de cisaillement exercée sur les gels entraine une altération de sa structure et de ses propriétés visco-élastiques. Le gel soumis à un tamisage, une filtration ou une extrusion n'est donc pas parfaitement homogène et voit sa viscosité diminuée. Une fois injecté il risque de migrer dans les tissus et de se dégrader plus rapidement. Ses propriétés de comblement sont de fait altérées.
II est donc souhaitable de disposer d'un procédé permettant d'éliminer efficacement les zones dures présentes dans des gels d'acide hyaluronique réticulé, de manière à obtenir un gel homogène, sans altérer ses propriétés visco-élastiques.
La présente invention propose donc un procédé de préparation d'un gel homogène d'acide hyaluronique réticulé, dans lequel l'homogénéisation du gel est obtenue par laminage.
En particulier, la présente invention a pour objet, selon un premier aspect, un procédé de préparation d'un gel aqueux d'acide hyaluronique comprenant les étapes suivantes:
a) la préparation d'un gel aqueux d'acide hyaluronique réticulé,
b) l'homogénéisation du gel aqueux formé à l'étape (a) par laminage,
c) la neutralisation du gel aqueux homogénéisé à l'étape (b).
FEU I LLE DE REM PLACEM ENT (RÈG LE 26) L'invention a également pour objet, selon un second aspect, un gel aqueux d'acide hyaluronique susceptible d'être obtenu par un tel procédé.
L'invention a encore pour objet, selon un troisième aspect, l'utilisation cosmétique d'un tel gel aqueux dans la réparation ou la reconstruction des tissus, en particulier pour le comblement des rides et ridules, ou ledit gel aqueux pour son utilisation médicale pour la réparation ou la reconstruction des tissus.
Figures
La Figure 1 illustre un laminage du gel réalisé entre deux cylindres tournant à une même vitesse tangentielle.
La Figure 2 illustre un laminage du gel réalisé entre trois cylindres dont la vitesse tangentielle augmente pour permettre l'entraînement du gel à la surface du cylindre adjacent.
Les Figures 3, 4 et 5 illustrent les forces d'éjection des compositions 3, 4 et 5 de gels aqueux préparés dans les exemples de réalisation.
Gel aqueux
La présente invention propose un nouveau procédé de préparation de gels aqueux d'acide hyaluronique.
On entend par « gel », au sens de la présente demande, une composition cohésive, qui ne s'écoule pas sous son propre poids, et présentant des propriétés visco-élastiques lui conférant une certaine déformabilité. Le gel, s'il est cisaillé, ne se reforme pas, contrairement aux fluides visqueux.
Les gels d'acide hyaluronique, selon l'invention, se distinguent donc de solutions d'acide hyaluronique. La distinction gel/solution peut être observée par une étude rhéologique en déformation et fréquence constante à 25°C afin de déterminer le modules visqueux G" et le module élastique G' dans la zone de viscoélasticité linéaire. En effet, un gel au sens de la présente invention se caractérise notamment par le fait que son module élastique G' est supérieur au module visqueux G" selon la définition de Winter et Chambon (1986). Dans le cas d'une solution visqueuse au contraire, le module visqueux G' ' est supérieur à son module élastique G' .
Les mesures sont effectuées sur un rhéomètre Discovery HR1 (TA industries) et une géométrie plan/plan 40 mm selon un mode continu (contrainte de déformation 10%, fréquence de 1Hz, à 25°C, pendant 120s). Les échantillons constitués d'environ 1.2 ml sont déposés dans un entrefer de ΙΟΟΟμιη.
Les gels d'acide hyaluronique selon l'invention sont de préférence homogènes. Par « gel homogène d'acide hyaluronique », on entend au sens de la présente invention que l'acide hyaluronique réticulé est dispersé de manière uniforme au sein du gel. L'homogénéité du gel d'acide hyaluronique peut notamment être caractérisée par mesure de la variation de la force d'éjection du gel au travers d'une seringue dont l'aiguille présente un diamètre interne de 300μιη (27G TSK UTW). La mesure de la force d'éjection (ou force d' extrusion) est réalisée grâce à un banc de force EZ-Test SX shimadzu équipé d'une cellule de 50N. L'extrusion est réalisée à lOmm.min"1 et l'échantillonnage est réglé à 100 points"1. Les essais sont réalisés avec des seringues BD lmL longue équipées d'aiguille TSK 27G 1/2". L'acquisition est traitée entre la 20e et la 140e seconde d' extrusion pour ne pas tenir compte des contraintes de mise en contact de début et fin d'extrusion. A la fin de l'acquisition, la suite de point N=f(t) (force d'extrusion en fonction du temps) est linéarisée. Une marge de ±10% à la linéarité est matérialisée. Chaque intersection de la courbe N=f(t) avec les droites N=f(t) linéarisées N+io%=f(t) et N-io%=f(t) correspond à l'extrusion d'une partie hétérogène.
Ainsi, selon un mode préféré de réalisation, le gel d'acide hyaluronique homogène ne présente pas de variation de la force d'extrusion de plus de ±10% par rapport à la force d'extrusion linéarisée. Acide Hyaluronique
Les gels aqueux selon l'invention comprennent au moins un acide hyaluronique.
L'acide hyaluronique est un glycosaminoglycane (GAG) linéaire composé d'unités répétitives de acide-D-glucuronique et de N-acetyl-D-glucosamine liés entre eux par des liaisons glycosidiques alternées beta-1,4 et beta-1,3.
L'acide hyaluronique présente la structure suivante :
Figure imgf000004_0001
De préférence, l'acide hyaluronique mis en œuvre dans la préparation du gel aqueux selon l'invention présente une masse molaire comprise entre 1 000 000 Da et 5 000 000 Da, de préférence entre 1 500 000 Da et 3 500 000 Da. Le poids moléculaire peut être notamment déterminé par chromatographie d'exclusion stérique Waters GPCV Alliance 2000, éluant NaN03 0.1M dans l'eau couplée en ligne avec trois détecteurs Wyatt : un refractomètre, un viscosimètre et une mesure de la diffusion de lumière.
L'acide hyaluronique est présent dans le gel aqueux d'acide hyaluronique obtenu à l'étape a) en une teneur comprise entre 1 mg/mL et 300 mg/mL, de préférence entre 75 et 200 mg/mL, plus préférentiellement entre 100 et 175 mg/mL. Phase aqueuse
Outre l'acide hyaluronique, les gels aqueux selon l'invention comprennent également une phase aqueuse.
Le gel peut comprendre de l'eau en une teneur allant de 60% à 99 % en poids, par rapport au poids total de la composition, de préférence allant de 70 % à 99 % en poids, et préférentiellement allant de 80 % à 99 % en poids.
Le gel peut comprendre en outre un polyol miscible à l'eau à la température ambiante (25 °C) notamment choisi parmi les polyols ayant notamment de 2 à 20 atomes de carbones, de préférence ayant de 2 à 10 atomes de carbone, et préférentiellement ayant de 2 à 6 atomes de carbones, tels que la glycérine, le propylène glycol, le butylène glycol, le pentylène glycol, l'hexylène glycol, le dipropylène glycol, le diéthylène glycol ; les éthers de glycol (ayant notamment de 3 à 16 atomes de carbone) tels que les alkyl(Cl-C4)éther de mono, di- ou tripropylène glycol, les alkyl(Cl-C4)éthers de mono, di-ou triéthylène glycol ; et leurs mélanges.
Le polyol miscible à l'eau peut être présent dans le gel selon l'invention en une teneur allant de 0.1 % à 20 % en poids, par rapport au poids total de la composition, et de préférence allant de 3 % à 15 % en poids.
Préparation d'un gel aqueux d'acide hyaluronique réticulé
Le procédé selon l'invention met en œuvre une première étape a) de préparation d'un gel aqueux d'acide hyaluronique réticulé.
Cette étape a) comprend, de préférence au moins la réticulation en milieu acide ou basique dudit acide hyaluronique en présence d'au moins un agent de réticulation.
Selon un mode particulier de réalisation, la réticulation est effectuée en milieu basique et comprend au moins les étapes suivantes :
- la dissolution d'au moins un acide hyaluronique et/ou l'un de ses sels, dans une solution basique présentant un pH supérieur à 7,5, de préférence supérieur ou égal à 10, plus préférentiellement compris entre 10 et 14,
- la réticulation en solution basique dudit acide hyaluronique en présence d'au moins un agent de réticulation.
La réticulation en milieu basique favorise la formation de liaisons éther entre l'acide hyaluronique et l'agent de réticulation, qui se dégradent lentement.
Selon un autre mode particulier de réalisation, la réticulation est effectuée en milieu acide et comprend au moins les étapes suivantes :
- la dissolution d'au moins un acide hyaluronique et/ou l'un de ses sels, dans une solution acide présentant un pH inférieur à 6,5, de préférence inférieur ou égal à 5, plus préférentiellement compris entre 4.5 et 2. - la réticulation en solution acide dudit acide hyaluronique en présence d'au moins un agent de réticulation.
La réticulation en milieu acide favorise quant à elle la formation de liaisons ester entre l'acide hyaluronique et l'agent de réticulation, qui se dégradent plus rapidement que les liaisons éther.
Selon un mode préféré de réalisation, l'étape de réticulation de l'acide hyaluronique comprend au moins une réticulation en milieu basique de l'acide hyaluronique et une réticulation en milieu acide de l'acide hyaluronique, de manière à contrôler les liaisons éther et ester formées, et ainsi la vitesse de dégradation du gel d'acide hyaluronique réticulé ainsi formé.
Plus préférentiellement, l'étape de réticulation de l'acide hyaluronique comprend une première réticulation en milieu basique de l'acide hyaluronique suivie d'une réticulation en milieu acide de l'acide hyaluronique.
Avant dissolution, l'acide hyaluronique mis en œuvre dans le procédé selon l'invention se présente typiquement sous forme sèche, de préférence sous forme de poudre ou de paillettes.
Lorsqu'il est mis en œuvre sous forme de sel, l'acide hyaluronique peut de préférence être un sel de sodium, un sel de calcium, un sel de zinc ou un sel de potassium de l'acide hyaluronique, et de préférence un sel de sodium.
La teneur en acide hyaluronique linéaire dissous dans la solution aqueuse (correspondant à la teneur en acide hyaluronique au cours de l'étape a)) est comprise entre 50 mg/mL et 300 mg/mL, de préférence entre 100 et 200 mg/mL.
La réticulation de l'acide hyaluronique linéaire dissous dans la solution aqueuse est réalisée en présence d'au moins un agent de réticulation.
L'agent de réticulation est de préférence choisi parmi les époxydes di-fonctionnels, les époxydes multifonctionnels, esters bi ou poly fonctionnels, les divinylsulfones, les carbodiimides, le formaldéhyde, les dialdéhydes et leurs mélanges, et de préférence l'agent de réticulation est le 1,4-butanediol diglycidyl ether (BDDE, aussi connu sous la dénomination 1,4-Diglycidyloxybutane, Tetramethylene Glycol Diglycidyl Ether et sous la nom IUPAC 2- [4-(oxiran-2-ylmethoxy)butoxymethyl]oxirane.
L'agent de réticulation est notamment introduit en une quantité comprise entre 10 mg et 250 mg par gramme d'acide hyaluronique linéaire introduit à l'étape de réticulation.
L'étape de réticulation est de préférence conduite à une température comprise entre 30 et 70°C, de préférence entre 45 et 55°C, ce qui permet de catalyser la réticulation de l'acide hyaluronique. Homogénéisation par laminage
Dans le cadre du procédé de l'invention, le gel aqueux d'acide hyaluronique réticulé préparé à l'étape a) est ensuite homogénéisé par laminage pour éliminer les zones dures (agrégats formés lors de la réticulation) sans altérer les propriétés mécaniques et visco-élastiques du gel. En particulier, le laminage consiste en une compression continue entre au moins deux cylindres contrarotatifs, de préférence trois cylindres contrarotatifs.
Le cylindre d'entrée peut par exemple tourner à une vitesse tangentielle comprise entre 0.1 m.s"1 et 5 m.s"1, de préférence entre 0.5m.s_1 et 3m.s_1.
Lorsque le laminage est réalisé entre deux cylindres, ceux-ci tournent de préférence à une même vitesse tangentielle, et le gel est introduit entre les deux cylindres, comme illustré à la figure 1.
Lorsque le laminage est réalisé entre trois cylindres, la vitesse tangentielle des différents cylindres devrait augmenter pour permettre l'entraînement du gel à la surface du second cylindre pour conduire un second laminage entre le 2e et le 3e cylindre. A titre d'exemple, tel qu'illustré à la Figure 2, si le premier cylindre tourne à une vitesse tangentielle xl, le second pourrait tourner à cette vitesse tangentielle x2, et le troisième à cette vitesse tangentielle x3 pour permettre un double laminage du gel.
Selon un mode préféré de réalisation, l'espacement entre les cylindres contrarotatifs (aussi appelé entrefer) est compris entre 20 μιη et 1 mm, de préférence entre 20 μιη et 100 μιη. Les cylindres peuvent de préférence être en acier inoxydable, pour pouvoir être facilement nettoyé, et éventuellement pourvus d'un revêtement microporeux ou céramique, susceptible de favoriser l'adhérence du gel à la surface des cylindres.
Selon un mode de réalisation préféré, l'étape b) d'homogénéisation par laminage est réalisée pendant 1 minute à 2 heures, de préférence entre 15 minutes et 45 minutes. Ces temps de laminage assez courts peuvent être mis en œuvre dans la mesure où, dans le cadre de la présente invention, l'étape b) d'homogénéisation du gel aqueux est réalisée avant l'étape c) de neutralisation, laquelle conduit à un gonflement dudit gel aqueux. En effet, avant gonflement, le volume de gel aqueux à homogénéiser par laminage est significativement moins important qu'après gonflement.
Purification
Selon un mode particulier de réalisation, et en particulier dans le cas où la neutralisation n'est pas réalisée par dialyse, le gel aqueux d'acide hyaluronique réticulé peut être purifié avant ou après l'étape c) de neutralisation du gel aqueux afin d'éliminer les traces d'agent de réticulation résiduel.
Selon un mode préféré de réalisation, la purification est de préférence réalisée par dialyse dans les conditions précédemment décrites. La purification par dialyse permet, outre l'élimination de l'agent de réticulation résiduel, d'affiner encore le pH obtenu après neutralisation et de contrôler l'osmolarité du gel.
La purification peut entraîner une nouvelle dilution de l'acide hyaluronique. La teneur en acide hyaluronique réticulé présent dans le gel après purification est comprise entre 1 mg/mL et 60 mg/mL, de préférence entre 5 et 50 mg/mL.
Neutralisation
Après homogénéisation par laminage, le gel aqueux d'acide hyaluronique est neutralisé au cours d'une étape c).
Cette neutralisation est effectuée par ajustement du pH jusqu'à un pH compris entre 6,5 et 7,5. La neutralisation peut être réalisée par ajout d'un acide ou d'une base selon que la réticulation a été réalisée en milieu basique ou acide.
La neutralisation entraine la dilution de l'acide hyaluronique. La teneur en acide hyaluronique réticulé présent dans le gel après neutralisation est comprise entre 10 mg/mL et 100 mg/mL, de préférence entre 20 et 80 mg/mL.
Par exemple, lorsque la réticulation a été réalisée en milieu acide, l'ajustement du pH peut être opéré par ajout d'un composé tel que l'ammoniaque, la soude, hydrogénocarbonate de sodium, le bicarbonate de sodium, le carbonate de sodium ou leurs dérivés ou d'une solution de tampon phosphate (PBS « Phosphate Buffer Saline » - solution saline de tampon phosphate).
Lorsque la réticulation a été réalisée en milieu basique, l'ajustement du pH pour la neutralisation peut être opéré par ajout d'un composé tel que l'acide chlorhydrique, l'acide acétique, l'acide phosphorique et le dihydrogénophosphate de sodium ou leurs dérivés.
Alternativement, la neutralisation peut être réalisée par dialyse. La neutralisation par dialyse permet l'ajustement du pH se fait de manière très progressive ce qui permet de préserver au mieux les propriétés mécaniques et visco-élastiques du gel d'acide hyaluronique formé.
La dialyse est un procédé de séparation par membrane des molécules ou des ions en solution. Ainsi, dans le cadre de la présente demande, le gel d'acide hyaluronique selon l'invention peut être dialysé contre une solution tampon présentant un pH égal ou proche du pH final souhaité pour le gel d'acide hyaluronique (pH cible), c'est à-dire compris entre 6,5 et 7,5, de préférence entre 6,75 et 7,2.
La solution tampon peut, par exemple, être une solution saline de tampon phosphate (PBS, PBS-acide lactique), de tris(hydroxymethyl)methylamine (TRIS), de solution saline de TRIS (TBS), d'acide 4-2-hydroxyethyl-l-piperazineethanesulfonique (HEPES), d'acide 2- { [tris(hydroxymethyl)methyl]amino}ethanesulfonique(TES), d'acide 3-(N- morpholino)propanesulfonique (MOPS), d'acide piperazine-N,N'-bis(2-ethanesulfonique), MES d'acide (2-(N-morpholino)ethanesulfonique (PIPES), et de chlorure de sodium (NaCl). Selon un mode préféré de réalisation, la solution tampon est une solution de tampon phosphate PBS (« Phosphate Buffer Saline » - solution saline de tampon phosphate) composée d'un sel « acide » NaH2P04, d'un sel «basique » le Na2HP04 et de NaCl.
Selon un mode particulier de réalisation, le tampon est physiologiquement acceptable, c'est-à- dire qu'il ne présente aucun risque d'intolérance ou de toxicité lors de l'injection du gel d'acide hyaluronique selon l'invention ou de sa mise en contact avec les tissus.
Selon un mode de réalisation particulier de l'invention, la dialyse peut être réalisée dans un seul ou plusieurs bains contre une solution tampon telle que décrite précédemment.
Selon un mode plus préféré de réalisation, la dialyse peut être réalisée dans plusieurs bains successifs contre des solutions tampon présentant des pH différents de plus en plus proches du pH final souhaité pour la solution d'acide hyaluronique (pH cible). Il est ainsi possible de rehausser le pH de manière plus progressive en fonction du nombre de bains tampons mis en œuvre.
Selon un mode préféré de réalisation, pour contrôler simultanément l'osmolarité du gel d'acide hyaluronique, le tampon mis en œuvre pour la dialyse peut être associé à un sel dit neutre, c'est-à-dire n'interagissant pas avec le tampon, notamment un de sel de sodium (NaCl) ou de potassium (KC1) en une concentration en sel pour atteindre l'osmolarité des tissus compris entre 280mOsmol.L~1 et 380 mOsmol.L 1.
En particulier, la solution tampon peut présenter une osmolarité comprise entre 250 et 350 mOsm/L, de préférence entre 280 et 330 mOsm/L.
Dans le cadre de l'invention, l'étape c) de neutralisation entraine un gonflement du gel d'acide hyaluronique réticulé. En général, le gonflement conduit en effet à une augmentation du volume de gel d'acide hyaluronique entre 2 et 4 fois par rapport au volume du gel aqueux d'acide hyaluronique réticulé obtenu à l'étape a).
Dans le cadre de la présente invention, il est important que ce gonflement (et donc la neutralisation) ne soit pas ou très peu initié avant l'étape b) de laminage afin de permettre l'utilisation d'un entrefer suffisamment étroit (ente 20μιη et 1 mm) de manière à éliminer efficacement les zones dures (agrégats formés lors de la réticulation) sans altérer les propriétés mécaniques et visco-élastiques du gel.
En effet, si le laminage est opéré simultanément (comme par exemple décrit dans le document US2013/0217872) ou après la neutralisation et donc le gonflement du gel, l'espacement entre les rouleaux du laminoir doit être augmenté de manière significative pour permettre le passage du gel gonflé, occupant un volume plus important. Un tel espacement supérieur à 1mm entre les rouleaux ne permet plus d'éliminer efficacement les zones dures présentes dans le gel pour garantir son excellente homogénéité et son injectabilité. Le document US2013/0217872 en l'espèce, ne décrit pas des gels d'acide hyaluronique injectables, et ne cherche pas, par le laminage, à éliminer les zones dures présentes dans le gel. Dans ce document, le laminage permet un mélange du gel neutralisé pendant une durée très longue de 18 à 24h pour atteindre un équilibre de gonflement. Pour permettre une bonne injectabilité des gels obtenus au moyen du procédé selon l'invention, il est préférable que le gel soit exempt de de zones dures présentant un diamètre supérieur à 1mm, de préférence supérieur à 20 μιη.
Acide hyaluronique linéaire
Selon un mode particulier de réalisation, on peut ajouter un acide hyaluronique linéaire après l'étape (a) de préparation du gel aqueux d'acide hyaluronique réticulé de manière à diminuer la viscosité du gel et ainsi, ajuster ses propriétés mécaniques, en particulier, afin de diminuer la force d'éjection du gel et de faciliter le remplissage des seringues.
L'introduction d'acide hyaluronique linéraire peut être effectuée avant ou après l'étape b) d'homogénéisation par laminage, l'étape c) de neutralisation (dilution) ou l'étape de purification précédemment décrite. Selon un mode préféré de réalisation, L'introduction d'acide hyaluronique linéraire peut être effectuée avant ou après l'étape de purification précédemment décrite.
La quantité d'acide hyaluronique linéraire introduite dans le gel d'acide hyaluronique réticulé est de préférence inférieure ou égale à la quantité d'acide hyaluronique réticulé présent dans le gel après neutralisation et éventuellement purification, de manière à ne pas diluer davantage l'acide hyaluronique.
En particulier, la teneur en acide hyaluronique réticulé présent dans le gel après purification est comprise entre 0,1 mg/mL et 100 mg/mL, de préférence entre 1 et 50 mg/mL.
Polymère additionnel
Selon un mode particulier de réalisation, le gel aqueux d'acide hyaluronique comprend également au moins un polymère additionnel autre que l'acide hyaluronique, tel que la chondroïtine, la cellulose, l'alginate, le polycaprolactone, l'acide polylactique, l'acide polyglycolique, le collagène, la soie, le PTFE et leurs dérivés.
Le polymère additionnel peut être introduit au cours de l'étape a), avant la réticulation de l'acide hyaluronique pour conduire à une co-réticulation de l'acide hyaluronique avec le polymère additionnel, ou après l'étape a) de préparation du gel aqueux d'acide hyaluronique réticulé, et en particulier avant l'étape b) d'homogénéisation par laminage.
Le polymère additionnel peut par exemple être introduit en une teneur allant de 0,1% à 5%, de préférence de 0,5% à 4%.
Compositions injectables
Selon un mode préféré de réalisation, le gel aqueux préparé selon le procédé de l'invention est injectable.
Par gel injectable, on entend au sens de la présente invention une composition se présentant sous forme de gel présentant des propriétés d' injectabilité (ou seringuabilité, c'est-à-dire facilité d'injection du fait d'un écoulement plus ou moins satisfaisant à travers une aiguille dans une seringue) satisfaisantes, et en particulier capables d'être injectées au moyen d'une seringue présentant une aiguille de diamètre interne environ égal à 300 μιη. Au sens de la présente demande, sont considérés comme injectables d'un point de vue rhéologique, les gels ayant de préférence une viscosité inférieure ou égale à 10000 Pa.s et un facteur de perte (Tanô) compris entre 0,01 et 5.
Les mesures rhéologiques (G', G" et Tanô) sont effectuées sur un rhéomètre Discovery HR-1 (TA industries) et une géométrie plan/plan 40 mm selon un mode continu (contrainte de déformation 10%, fréquence de 1Hz, à 25°C, pendant 120s). Les échantillons constitués d'environ 1.2 ml sont déposés dans un entrefer de ΙΟΟΟμιη.
Les mesures de viscosité maximum sont réalisées en mode dynamique (fréquence angulaire de 0,1 à 100 rad.s"1). Les échantillons constitués d'environ 1.2 ml sont déposés dans un entrefer de ΙΟΟΟμιη.
Le gel aqueux préparé selon le procédé de l'invention peut donc être conditionné dans des seringues pour pouvoir être injecté dans les tissus.
L'invention a ainsi pour objet, selon un autre aspect, une seringue contenant le gel préparé selon le procédé de l'invention, tel que décrit précédemment. Une telle seringue est en particulier destinée au comblement des rides ou des ridules.
Selon ce mode de réalisation, un dégazage peut être effectué avant le remplissage des seringues pour supprimer toute bulle d'air éventuelle.
Utilisations
Dans un mode de réalisation particulier, le gel aqueux obtenu selon la présente invention est destiné à être utilisé dans la réparation ou la reconstruction des tissus.
En particulier, le gel aqueux selon la présente invention peut être utilisé pour la constitution ou la substitution de tissus biologiques, par exemple comme implant, ou le comblement des tissus biologiques, par exemple l'injection dans les cartilages osseux ou dans les articulations ou pour le comblement des cavités du corps ou du visage, telles que les rides ou les ridules, pour la création ou l'augmentation de volumes du visage ou du corps humain, ou encore pour la cicatrisation de la peau.
Selon d'autres modes de réalisation particuliers, le gel aqueux selon la présente invention peut être utilisé :
- en chirurgie, notamment dans la réparation d'organes, ou en médecine ou chirurgie esthétique,
- en urologie, notamment pour le traitement de l'incontinence urinaire,
- en infectiologie, notamment comme fluide vecteur pour les vaccins, - en ophtalmologie, notamment pour la cicatrisation cornéenne,
- en odontologie, notamment pour la pose d'un implant dentaire ou pour la réparation osseuse,
- en orthopédie, notamment dans le périoste pour la création de volume,
- pour la thérapie cellulaire ou l'ingénierie tissulaire, dans le cadre de la vectorisation de cellules thérapeutiques ou de facteurs biactifs, ou encore en angiologie.
Le gel aqueux selon la présente invention peut également être utilisé en rhumatologie.
Avantageusement, le gel aqueux selon la présente invention peut également être utilisé en tant que vecteur de principe actif notamment thérapeutique, tel que des cellules, un vaccin ou une hormone du type insuline ou œstrogène, et d'une manière plus générale pour tous les principes actifs dont la délivrance ou libération contrôlée et/ou prolongée présente un avantage.
La présente invention concerne également l'utilisation cosmétique d'un gel aqueux selon l'invention pour traiter ou lutter contre le vieillissement de la peau.
L'exemple suivant est destiné à illustrer l'invention sans aucunement en limiter la portée.
Exemple :
Un gel aqueux d'acide hyaluronique conforme à l'invention (Composition 1) a été préparé selon le procédé suivant :
De l'acide hyaluronique (HTL, France) a été complètement solubilisé dans une solution alcaline de tampon phosphate (SOOmOsmol 1, pH=12.9, Merck, France) pour obtenir une concentration finale en acide hyaluronique de 150mg.mL-1.
Une solution de BDDE à 20% en masse (SA, France) est ajoutée lentement. Le mélange est ensuite chauffé à 50°C jusqu'à ce que la texture n'évolue plus et que le mélange se teinte en jaune.
Le gel obtenu est ensuite laminé à l'aide d'un laminoir tricylindrique EXAKT 50i G line (Exakt, Allemagne).
Lorsque le laminage est terminé, une solution acide de tampon phosphate (472mOsmol.L"1, pH=1.59) est ajoutée pour neutraliser le mélange réactionnel et pour diluer le gel à une concentration de 32.5mg.mL"1 en acide hyaluronique.
Le gel est ensuite dialysé contre un tampon phosphate (300mOsmol.L_1, pH 7.4, Merck, France). La dialyse est stoppée lorsque la neutralité est atteinte. Pour finir, 4% (w/w) d'une solution d'acide hyaluronique à 25mg.mL_1 (HTL, France) sont ensuite ajoutés. Le gel d'acide est ensuite placé dans des seringues de lmL (BD, lmL longue) puis stérilisée par autoclavage (121°C pendant 15 min). Un gel aqueux d'acide hyaluronique comparatif (Composition 2) a également été préparé selon le même procédé, en dehors de l'étape de laminage qui n'a pas été réalisée.
L'effet du laminage sur l'homogénéité du gel a été mis en évidence par mesure de la force d'éjection. Plus la force d'éjection est stable lors de l'expulsion du produit à travers la seringue et l'aiguille, plus le gel est homogène.
On a mesuré les forces d'éjection des compositions 1 et 2 de gels aqueux précédemment préparés. Les résultats de ces mesures sont présentés en Figures 3 et 4.
On observe une excellente stabilité de la force d'éjection pour la Composition 1 selon l'invention (Figure 3). Au contraire, pour la Composition 2 (comparative), non laminée, non tamisée et non broyée, on observe de fortes variations de la force d'éjection dépassant plusieurs fois la marge de ±10% par rapport à la force d'extrusion N=F(t) linéarisée (Figure 4).
On a également mesuré la force d'éjection d'une composition commerciale de gel aqueux d'acide hyaluronique réticulé Teosyal Ultradeep (Composition 3) dont le procédé de fabrication met en œuvre une étape de tamisage/broyage comme décrit dans la demande de brevet US 2013/0237615. Le résultat de cette mesure est présenté à la figure 5. On observe de large variation dans la force d'éjection durant l'éjection ce qui démontre une hétérogénéité du gel.

Claims

REVENDICATIONS
1. Procédé de préparation d'un gel aqueux d'acide hyaluronique comprenant les étapes suivantes:
a) la préparation d'un gel aqueux d'acide hyaluronique réticulé,
b) l'homogénéisation du gel aqueux formé à l'étape (a) par laminage,
c) la neutralisation du gel aqueux homogénéisé à l'étape (b).
2. Procédé selon la revendication 1, caractérisé en ce que le laminage consiste en une compression continue entre au moins deux cylindres contrarotatifs, de préférence trois cylindres contrarotatifs.
3. Procédé selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que l'espacement entre les cylindres contrarotatifs est compris entre 20 μιη et 1 mm, de préférence entre 20 μιη et 100 μιη.
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que l'étape a) de préparation d'un gel aqueux d'acide hyaluronique réticulé comprend au moins la réticulation en milieu acide ou basique dudit acide hyaluronique en présence d'au moins un agent de réticulation.
5. Procédé selon la revendication 4, caractérisé en ce que la réticulation en milieu basique de l'acide hyaluronique comprend au moins les étapes suivantes :
- la dissolution d'au moins un acide hyaluronique et/ou l'un de ses sels, dans une solution basique présentant un pH supérieur à 7,5, de préférence supérieur ou égal à
10, plus préférentiellement compris entre 10 et 14,
- la réticulation en solution basique dudit acide hyaluronique en présence d'au moins un agent de réticulation.
6. Procédé selon la revendication 4, caractérisé en ce que la réticulation en milieu acide de l'acide hyaluronique comprend au moins les étapes suivantes :
- la dissolution d'au moins un acide hyaluronique et/ou l'un de ses sels, dans une solution acide présentant un pH inférieur à 6,5, de préférence inférieur ou égal à 5, plus préférentiellement compris entre 4,5 et 2.
- la réticulation en solution acide dudit acide hyaluronique en présence d'au moins un agent de réticulation.
7. Procédé selon l'une quelconque des revendications 4 à 6, caractérisé en ce que l'étape de réticulation de l'acide hyaluronique comprend au moins une réticulation en milieu basique de l'acide hyaluronique et une réticulation en milieu acide de l'acide hyaluronique, et de préférence une réticulation en milieu basique de l'acide hyaluronique suivie d'une réticulation en milieu acide de l'acide hyaluronique
8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que l'étape c) de neutralisation de la solution d'acide hyaluronique est effectuée par ajustement du pH jusqu'à un pH compris entre 6,5 et 7,5.
9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que l'acide hyaluronique mis en œuvre dans la préparation du gel aqueux à l'étape a) présente une masse molaire comprise entre 1 000 000 Da et 5 000 000 Da, de préférence entre 1 500 000 Da et 3 500 000 Da.
10. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce que la teneur en acide hyaluronique dans le gel aqueux d'acide hyaluronique obtenu à l'étape a) est comprise entre 1 mg/mL et 300 mg/mL, de préférence entre 75 et 200 mg/mL, plus préférentiellement entre 100 et 175 mg/mL.
11. Procédé selon l'une quelconque des revendications 4 à 10, caractérisé en ce que l'agent de réticulation est choisi parmi les époxydes di-fonctionnels, les époxydes multifonctionnels, esters bi ou poly fonctionnels, les divinylsulfones, les carbodiimides, le formaldéhyde, les dialdéhydes et leurs mélanges, et de préférence l'agent de réticulation est le 1,4-butanediol diglycidyl ether (BDDE).
12. Procédé selon l'une quelconque des revendications 4 à 11, caractérisé en ce que l'agent de réticulation est introduit en une quantité comprise entre 10 mg et 250 mg par gramme d'acide hyaluronique linéaire introduit à l'étape i.
13. Procédé selon l'une quelconque des revendications 5 à 12, caractérisé en ce que le sel d'acide hyaluronique est choisi parmi un sel de sodium, un sel de calcium, un sel de zinc et un sel de potassium, de préférence un sel de sodium.
14. Procédé selon l'une quelconque des revendications 1 à 13, caractérisé en ce que le gel aqueux est purifié avant ou après l'étape b) d'homogénéisation par laminage, ladite purification étant de préférence réalisée par dialyse.
15. Procédé selon l'une quelconque des revendications 1 à 14, caractérisé en ce qu'on ajoute un acide hyaluronique linéaire avant ou après l'étape b) d'homogénéisation par laminage, l'étape c) de neutralisation (dilution) ou l'étape de purification précédemment décrite .
16. Procédé selon l'une quelconque des revendications 1 à 15, caractérisé en ce que le gel aqueux préparé est injectable.
17. Gel aqueux d'acide hyaluronique susceptible d'être obtenu par le procédé selon l'une quelconque des revendications 1 à 16.
18. Gel aqueux selon la revendication 15 pour son utilisation médicale pour la réparation ou la reconstruction des tissus.
19. Utilisation cosmétique d'un gel aqueux selon la revendication 17 dans la réparation ou la reconstruction des tissus, en particulier pour le comblement des rides et ridules.
PCT/EP2018/062871 2017-05-18 2018-05-17 Procédé de préparation d'un gel aqueux d'acide hyaluronique WO2018210999A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201880031113.4A CN110621294A (zh) 2017-05-18 2018-05-17 制备水性透明质酸凝胶的方法
BR112019024106-0A BR112019024106A2 (pt) 2017-05-18 2018-05-17 Método de preparar um gel de ácido hialurônico aquoso
CA3060431A CA3060431A1 (fr) 2017-05-18 2018-05-17 Procede de preparation d'un gel aqueux d'acide hyaluronique
EP18724248.2A EP3624764A1 (fr) 2017-05-18 2018-05-17 Procédé de préparation d'un gel aqueux d'acide hyaluronique
US16/609,283 US20200060959A1 (en) 2017-05-18 2018-05-17 Method for preparing an aqueous hyaluronic acid gel
KR1020197033720A KR20200008560A (ko) 2017-05-18 2018-05-17 수성 히알루론산 겔의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1754397 2017-05-18
FR1754397A FR3066386B1 (fr) 2017-05-18 2017-05-18 Procede de preparation d'un gel aqueux d'acide hyaluronique

Publications (1)

Publication Number Publication Date
WO2018210999A1 true WO2018210999A1 (fr) 2018-11-22

Family

ID=59297098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/062871 WO2018210999A1 (fr) 2017-05-18 2018-05-17 Procédé de préparation d'un gel aqueux d'acide hyaluronique

Country Status (8)

Country Link
US (1) US20200060959A1 (fr)
EP (1) EP3624764A1 (fr)
KR (1) KR20200008560A (fr)
CN (1) CN110621294A (fr)
BR (1) BR112019024106A2 (fr)
CA (1) CA3060431A1 (fr)
FR (1) FR3066386B1 (fr)
WO (1) WO2018210999A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111617313B (zh) * 2020-04-29 2022-09-06 天津医科大学眼科医院 一种眼用线性凝胶在作为临床孔源性视网膜脱离药物方面中的应用
CN115572396B (zh) * 2022-12-08 2023-03-24 四川兴泰普乐医疗科技有限公司 一种可梯度降解的透明质酸钠凝胶及其制备方法
CN117298355B (zh) * 2023-11-28 2024-03-08 常州百瑞吉生物医药股份有限公司 一种包裹性透明质酸凝胶组合物及其制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69513507T2 (de) * 1994-03-11 2000-07-06 Fidia Advanced Biopolymers S.R.L., Brindisi Hochreactive estern von karboxylgruppen enthaltenden polysachariden und die daraus hergestellte carboxypolysaccharide
WO2005112888A2 (fr) * 2004-05-20 2005-12-01 Mentor Corporation Procede de preparation d'hydrogels polymeres injectables
US20060105022A1 (en) * 2004-11-15 2006-05-18 Shiseido Co., Ltd. Process for preparing crosslinked hyaluronic acid gel
DE102005057593A1 (de) * 2005-07-08 2007-01-11 Schwan-Stabilo Cosmetics Gmbh & Co. Kg Zubereitung, insbesondere kosmetische Zubereitung, sowie ihre Herstellung und Verwendung
FR2968305A1 (fr) * 2010-12-06 2012-06-08 Teoxane Procede de preparation d'un gel reticule
US20130217872A1 (en) 2011-04-26 2013-08-22 Beijing Aimeike Bio-Tech Co., Ltd. Method for producing composite gel by cross-linking hyaluronic acid and hydroxypropyl methylcellulose

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1101405C (zh) * 1997-08-22 2003-02-12 电气化学工业株式会社 透明质酸凝胶的制备方法、用此方法制得的透明质酸及包含这种凝胶的医用材料
JP4460663B2 (ja) * 1999-02-15 2010-05-12 電気化学工業株式会社 ヒアルロン酸ゲルスラリー及びその用途
EP1281722A4 (fr) * 2000-02-03 2005-06-08 Denki Kagaku Kogyo Kk Gel de l'acide hyaluronique, son procede de production et produit medical le contenant
WO2006051950A1 (fr) * 2004-11-15 2006-05-18 Shiseido Co., Ltd. Methode de synthese d'un gel reticule d'acide hyaluronique
CN101244290A (zh) * 2007-11-30 2008-08-20 顾其胜 一种用于组织填充的交联透明质酸微粒凝胶的制备方法
CN103834053B (zh) * 2014-02-28 2016-04-27 陕西佰傲再生医学有限公司 一种可注射的交联透明质酸凝胶及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69513507T2 (de) * 1994-03-11 2000-07-06 Fidia Advanced Biopolymers S.R.L., Brindisi Hochreactive estern von karboxylgruppen enthaltenden polysachariden und die daraus hergestellte carboxypolysaccharide
WO2005112888A2 (fr) * 2004-05-20 2005-12-01 Mentor Corporation Procede de preparation d'hydrogels polymeres injectables
US20060105022A1 (en) * 2004-11-15 2006-05-18 Shiseido Co., Ltd. Process for preparing crosslinked hyaluronic acid gel
DE102005057593A1 (de) * 2005-07-08 2007-01-11 Schwan-Stabilo Cosmetics Gmbh & Co. Kg Zubereitung, insbesondere kosmetische Zubereitung, sowie ihre Herstellung und Verwendung
FR2968305A1 (fr) * 2010-12-06 2012-06-08 Teoxane Procede de preparation d'un gel reticule
US20130237615A1 (en) 2010-12-06 2013-09-12 Teoxane Process of preparing a crosslinked gel
US20130217872A1 (en) 2011-04-26 2013-08-22 Beijing Aimeike Bio-Tech Co., Ltd. Method for producing composite gel by cross-linking hyaluronic acid and hydroxypropyl methylcellulose

Also Published As

Publication number Publication date
FR3066386B1 (fr) 2020-08-28
CA3060431A1 (fr) 2018-11-22
US20200060959A1 (en) 2020-02-27
CN110621294A (zh) 2019-12-27
EP3624764A1 (fr) 2020-03-25
FR3066386A1 (fr) 2018-11-23
KR20200008560A (ko) 2020-01-28
BR112019024106A2 (pt) 2020-06-02

Similar Documents

Publication Publication Date Title
EP2173324B1 (fr) Gel injectable d'acide hyaluronique pour le traitement des degenerescences articulaires
CA2932967C (fr) Compositions d'acide hyaluronique comprenant de la mepivacaine
WO2014199022A1 (fr) Procede de reticulation de l'acide hyaluronique; procede de preparation d'un hydrogel injectable; hydrogel obtenu; utilisation de l'hydrogel obtenu
EP3285781B1 (fr) Solution aqueuse homogene de chitosane injectable presentant un ph proche du ph physiologique
WO2007128923A2 (fr) Procede de preparation d'un gel biocompatible a libération contrôlée d'un ou de plusieurs principes actifs peu solubles dans l'eau, gels ainsi obtenus et leur utilisation
WO2016180904A1 (fr) Compositions comprenant au moins un polyol et au moins un anesthesique
EP3634510A1 (fr) Composition injectable stérile contenant de l'acide hyaluronique réticule et de l'articaine
WO2018210999A1 (fr) Procédé de préparation d'un gel aqueux d'acide hyaluronique
EP3386496B1 (fr) Nouvelle composition injectable; procede de preparation de ladite composition; utilisation de ladite composition
WO2020212615A1 (fr) Procede de reticulation d'un polymere
EP3313452B1 (fr) Procede de preparation d'un hydrogel reticule injectable; hydrogel obtenu; utilisation de l'hydrogel obtenu
HK40019974A (en) Method for preparing an aqueous hyaluronic acid gel
WO2022229787A1 (fr) Produit biocompatible a matrice comprenant un polysaccharide et du chitosane co-reticules
EP4177276A1 (fr) Composition, sous forme de solution aqueuse comprenant au moins un compose macromoleculaire
WO2020157416A1 (fr) Modelage gel chitosane sous-cutane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18724248

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3060431

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20197033720

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019024106

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018724248

Country of ref document: EP

Effective date: 20191218

ENP Entry into the national phase

Ref document number: 112019024106

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191114

WWW Wipo information: withdrawn in national office

Ref document number: 2018724248

Country of ref document: EP