[go: up one dir, main page]

WO2018198935A1 - Glass article with low-reflective coating - Google Patents

Glass article with low-reflective coating Download PDF

Info

Publication number
WO2018198935A1
WO2018198935A1 PCT/JP2018/016160 JP2018016160W WO2018198935A1 WO 2018198935 A1 WO2018198935 A1 WO 2018198935A1 JP 2018016160 W JP2018016160 W JP 2018016160W WO 2018198935 A1 WO2018198935 A1 WO 2018198935A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflection coating
low
fine particles
glass article
low reflection
Prior art date
Application number
PCT/JP2018/016160
Other languages
French (fr)
Japanese (ja)
Inventor
武司 籔田
瑞穂 小用
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Priority to JP2019514443A priority Critical patent/JP7153638B2/en
Publication of WO2018198935A1 publication Critical patent/WO2018198935A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase

Definitions

  • the present invention relates to a glass article with a low reflection coating.
  • a low-reflection coating is formed on the surface of a substrate such as glass or ceramic in order to transmit more light or prevent glare due to reflection for the purpose of improving the function of the substrate.
  • Low reflection coating is used for glass for vehicle, show window or glass plate used for photoelectric conversion device.
  • a so-called thin film solar cell which is a kind of photoelectric conversion device, uses a glass plate in which a photoelectric conversion layer and a back surface thin film electrode made of a base film, a transparent conductive film, amorphous silicon, and the like are sequentially stacked, but the low reflection coating is stacked. It is formed on the main surface opposite to the main surface, that is, the main surface on the side where sunlight enters. Thus, in the solar cell in which the low reflection coating is formed on the incident side of sunlight, more sunlight is guided to the photoelectric conversion layer or the solar cell element, and the power generation amount is improved.
  • the most commonly used low-reflection coating is a dielectric film formed by vacuum deposition, sputtering, chemical vapor deposition (CVD), etc., but a fine particle-containing film containing fine particles such as silica fine particles should be used as the low-reflection coating.
  • the fine particle-containing film is formed by applying a coating liquid containing fine particles on a substrate by dipping, flow coating, spraying, or the like.
  • JP-A-2013-537873 Patent Document 1
  • JP-A-4-82145 Patent Document 2
  • International Publication No. 2006/030848 Patent Document 3
  • a porous thin film formed by fixing silica (SiO 2 ) fine particles or magnesium fluoride (MgF 2 ) fine particles with a binder has been proposed.
  • an object of the present invention is to provide a glass article with a low reflection coating provided with a low reflection coating with further improved optical characteristics.
  • the present invention is a glass article with a low reflection coating comprising a glass substrate and a low reflection coating formed on at least a part of the surface of the glass substrate,
  • the low reflection coating is composed of fine particles and a binder,
  • the fine particles include MgF 2 fine particles as a main component,
  • the binder contains an inorganic oxide as a main component,
  • a glass article with a low reflection coating is provided.
  • the present invention it is possible to provide a glass article with a low-reflection coating having further improved optical characteristics as compared with a conventional glass article with a low-reflection coating.
  • the glass article with a low reflection coating includes a glass substrate and a low reflection coating formed on at least a part of the surface of the glass substrate.
  • the low reflection coating consists of fine particles and a binder.
  • the fine particles contain MgF 2 fine particles as a main component.
  • the binder contains an inorganic oxide as a main component.
  • the fine particles in the low reflection coating contain MgF 2 fine particles as a main component as described above.
  • that the fine particles contain MgF 2 fine particles as a main component means that the content of the MgF 2 fine particles in the fine particles is 95% by mass or more.
  • Particulates preferably comprises a MgF 2 particles less than 98 wt%, may be composed of only MgF 2 particles.
  • the fine particles in the low reflection coating may further contain fine particles other than MgF 2 fine particles.
  • the fine particles other than the MgF 2 fine particles are not particularly limited, and various functional fine particles capable of realizing a function to be added to the low reflection coating can be used.
  • TiO 2 fine particles that can impart photocatalytic performance to the low reflection coating can be used.
  • ZnO fine particles that can impart an ultraviolet cut function to the low reflection coating can be used.
  • SnO 2 fine particles that can impart an antistatic function to the low reflection coating can be used.
  • the MgF 2 fine particles preferably have an average particle size of 10 to 30 nm. According to the MgF 2 fine particles having such an average particle diameter, a highly transparent coating can be formed.
  • the “average particle size” of the fine particles means a particle size (D50) corresponding to 50% of volume accumulation in the particle size distribution measured by the laser diffraction particle size distribution measurement method.
  • the binder in the low reflection coating contains an inorganic oxide as a main component.
  • the binder containing an inorganic oxide as a main component means that the content of the inorganic oxide in the binder is 80% by mass or more.
  • the binder preferably contains 90% by mass or more of an inorganic oxide, and may be composed of only an inorganic oxide.
  • the binder may further contain an organic component.
  • the binder may be amorphous or crystalline.
  • the inorganic oxide contained in the binder may be an oxide of at least one metal selected from the group consisting of Si, Al, Zr, Ti, Sn, and Fe.
  • the inorganic oxide may be made of Si oxide, Si oxide and Al oxide, or Al oxide.
  • the binder is made of an oxide of Si, a coating having a low reflectance and a high transmittance can be obtained.
  • the binder is made of an oxide of Al, a coating having a high refractive index but a low reflectance can be obtained.
  • the wear resistance of the coating is improved when the binder is composed of Si oxide and Al oxide.
  • the inorganic oxide contained in the binder is composed of Si oxide and Al oxide, the Si oxide content is converted to SiO 2 , and the Al oxide content is converted to Al 2 O 3 .
  • the mass ratio (SiO 2 : Al 2 O 3 ) between SiO 2 and Al 2 O 3 in the inorganic oxide contained in the binder is preferably 99.5: 0.5 to 97: 3, for example.
  • the mass ratio of fine particles to binder (fine particles: binder) in the low reflection coating can be, for example, 95: 5 to 35:65.
  • the glass substrate for example, a glass plate, a glass substrate with a transparent conductive film, and a glass plate with a Low-E (Low-Emissivity) film are used.
  • a glass plate for example, a glass plate, a glass substrate with a transparent conductive film, and a glass plate with a Low-E (Low-Emissivity) film are used.
  • the example which uses a glass plate as a glass base material is demonstrated.
  • the glass plate is not particularly limited, but in order to smooth the surface of the low reflection coating provided on the main surface, a glass plate having excellent microscopic surface smoothness is preferable.
  • the glass plate may be a float plate glass having a smoothness with an arithmetic average roughness Ra of the main surface of, for example, 1 nm or less, preferably 0.5 nm or less.
  • the arithmetic average roughness Ra in the present specification is a value defined in JIS B0601-1994.
  • the glass plate may be a template glass having macroscopic irregularities of a size that can be confirmed with the naked eye.
  • the macroscopic unevenness means unevenness having an average interval Sm of about millimeter order, which is confirmed when the evaluation length in the roughness curve is set to centimeter order.
  • the average spacing Sm of the irregularities on the surface of the template glass is preferably 0.3 mm or more, more preferably 0.4 mm or more, particularly preferably 0.45 mm or more, 2.5 mm or less, further 2.1 mm or less, particularly 2.0 mm or less. In particular, it is preferably 1.5 mm or less.
  • the average interval Sm means the average value of the intervals of one mountain and valley obtained from the point where the roughness curve intersects the average line.
  • the surface irregularities of the template glass plate preferably have a maximum height Ry of 0.5 ⁇ m to 10 ⁇ m, particularly 1 ⁇ m to 8 ⁇ m, together with the average interval Sm in the above range.
  • the average interval Sm and the maximum height Ry are values specified in JIS (Japanese Industrial Standards) B0601-1994.
  • the arithmetic average roughness Ra can satisfy several nm or less, for example, 1 nm or less. Therefore, even a template glass can be suitably used as a glass substrate of the glass article with a low reflection coating of the present embodiment as a glass plate having excellent microscopic surface smoothness.
  • a glass plate may be the same composition as normal plate glass and building plate glass, it is preferable that a coloring component is not included as much as possible.
  • the content of iron oxide which is a typical coloring component, is preferably 0.06% by mass or less, particularly preferably 0.02% by mass or less in terms of Fe 2 O 3 .
  • the glass plate may be a glass plate in which another coating is applied to the main surface opposite to the main surface on which the low reflection coating is formed.
  • a glass plate with a transparent conductive film is mentioned as a glass plate that can be suitably applied with the low reflection coating of the present embodiment.
  • This glass plate with a transparent conductive film has a transparent conductive film on one main surface of any of the glass plates described above, for example.
  • the transparent conductive film for example, one or more underlayers and a transparent conductive layer containing, for example, fluorine-doped tin oxide as a main component are sequentially laminated on the main surface of a glass plate.
  • the reflectance at the wavelength at which the reflectance is lowest (hereinafter referred to as the minimum reflectance) may be described with respect to the reflectance of the surface on which the low reflection coating is formed. ) Can be 2% or less, preferably 1.8% or less.
  • the glass article with a low reflection coating of the present embodiment has an average reflectance of the surface on which the low reflection coating is formed, with respect to the average reflectance in the wavelength range of 380 to 850 nm of the surface on which the low reflection coating is formed.
  • the difference obtained by subtracting the average reflectance of the surface in the state where the low-reflective coating is formed (hereinafter sometimes referred to as a reflectance reduction effect) from 3% or more, preferably 3.2% or more. It can be.
  • the glass article with a low reflection coating according to the present embodiment can have excellent reflection characteristics as described above.
  • the glass article with a low reflection coating of the present embodiment has an average transmittance of the surface on which the low reflection coating is formed with respect to the average transmittance in the wavelength range of 380 to 850 nm of the surface on which the low reflection coating is formed.
  • the difference obtained by subtracting the average transmittance of the surface in a state where the low-reflective coating is not formed (hereinafter also referred to as transmittance gain) from 2.9% or more, preferably 3.0% or more. can do.
  • the glass article with a low reflection coating of the present embodiment can have such excellent transmission characteristics.
  • the glass article with a low reflection coating of the present embodiment also has excellent wear resistance.
  • the glass article with a low reflection coating according to the present embodiment has a visible light reflectance before the test based on the visible light reflectance after the Taber abrasion test.
  • the difference obtained by subtracting the reflectance can be 3% or less, preferably 2.7% or less. The details of the Taber abrasion test will be described in Examples described later.
  • the glass article with a low reflection coating of the present embodiment can be formed by applying a coating liquid on the surface of a glass substrate such as a glass plate to form a coating film, and drying and curing the coating film.
  • a coating liquid on the surface of a glass substrate such as a glass plate to form a coating film
  • Any known method such as spin coating, roll coating, bar coating, dip coating, spray coating or the like can be used as a method for applying the coating liquid to the surface of the glass substrate.
  • Spray coating is excellent in terms of mass productivity.
  • Roll coating and bar coating are excellent in terms of homogeneity of the appearance of the coating film in addition to mass productivity.
  • the coating liquid contains fine particles contained in the low-reflective coating in the present embodiment and a substance that serves as a supply source of a compound such as an inorganic oxide constituting the binder.
  • a hydrolyzable silicon compound typified by silicon alkoxide can be used as a supply source of the oxide of Si.
  • the silicon alkoxide include tetramethoxysilane, tetraethoxysilane, and tetraisopropoxysilane.
  • These hydrolyzable silicon compounds may be made into binders by hydrolysis and condensation polymerization by a so-called sol-gel method. Hydrolysis of the hydrolyzable silicon compound can be performed as appropriate, and may be performed in a solution in which fine particles are present, or may be performed before mixing with the fine particles.
  • an acid and a base can be used for a hydrolysis catalyst
  • inorganic acids such as an acid, especially hydrochloric acid, nitric acid, a sulfuric acid, and phosphoric acid
  • hydrochloric acid it is more preferable to use hydrochloric acid. This is because the acidic solution is superior to the basic solution in terms of stability.
  • an aluminum halide can be used as a supply source of the Al oxide.
  • a preferred aluminum halide is aluminum chloride.
  • a disubstituted organotin compound such as dibutyltin dilaurate can be used as the Sn oxide supply source.
  • stannic chloride SnCl 4 .5H 2 O
  • SnO 2 can be obtained by dissolving stannic chloride (SnCl 4 .5H 2 O) in pure water and bringing the pH close to neutral with aqueous ammonia.
  • a glass plate with a transparent conductive film is used as a glass substrate of a glass article with a low reflection coating, and the low reflection on the surface of the glass plate on which the transparent conductive film is not provided. A coating was formed.
  • the transparent conductive film on the glass plate was removed by sandblasting, and a black paint was applied to the surface.
  • the reflectance curve was obtained by the same method for the reflectance of the glass plate before the low-reflection coating was formed.
  • the reflectance in the wavelength range of 380 to 850 nm was averaged to obtain the average reflectance before and after the formation of the low-reflection coating.
  • a difference obtained by subtracting the average reflectance after the formation of the low-reflection coating from the average reflectance before the formation of the low-reflection coating was determined to evaluate the effect of reducing the reflectance.
  • the transmittance curve transmission spectrum of the glass substrate (here, a glass plate) before and after the formation of the low reflection coating was measured.
  • the average transmittance was calculated by averaging the transmittance at a wavelength of 380 to 850 nm.
  • the increment of the average transmittance of the glass plate on which the low-reflection coating was formed relative to the average transmittance of the glass plate before the low-reflection coating was formed was defined as a transmittance gain.
  • the low reflection coating was observed with a field emission scanning electron microscope (S-4500, manufactured by Hitachi, Ltd.). Further, from the FE-SEM photograph in the cross section from the upper side of the coating at an angle of 30 °, the average value of the coating thickness at five measurement points was defined as the film thickness of the low reflection coating.
  • Example 1 Preparation of coating solution> Tetraethoxysilane (normal ethyl silicate, manufactured by Tama Chemical Co., Ltd.) 34.7 g, 1-methoxy-2-propanol (solvent) 41.3 g, 1N hydrochloric acid (hydrolysis catalyst) 0.3 g, purified water 23.8 g And a hydrolysis reaction was carried out at 40 ° C. for 8 hours to obtain a hydrolysis liquid A having a solid content concentration of 10% by mass in terms of SiO 2 .
  • Tetraethoxysilane normal ethyl silicate, manufactured by Tama Chemical Co., Ltd.
  • 1-methoxy-2-propanol (solvent) 41.3 g
  • 1N hydrochloric acid (hydrolysis catalyst) 0.3 g
  • a hydrolysis reaction was carried out at 40 ° C. for 8 hours to obtain a hydrolysis liquid A having a solid content concentration of 10% by mass in terms of SiO 2 .
  • Example 1 0.6 g of hydrolyzed liquid A, 7 g of 1-methoxy-2-propanol (solvent), and 2.4 g of MgF 2 fine particle dispersion (manufactured by Stella Chemifa Co., Ltd., average particle size 20 nm, solid content concentration 10% by mass) are mixed with stirring.
  • the coating liquid of Example 1 was obtained.
  • the mass ratio of the solid content between the MgF 2 fine particles and the binder was 80.0: 20.0.
  • Example 1 a low reflection coating was formed on the main surface on one side of a glass plate with a transparent conductive film to obtain a glass article with a low reflection coating.
  • This glass plate is made of Nippon Soda Glass Co., Ltd., having a thickness of 3.2 mm, having a normal soda lime silicate composition, and having a transparent conductive layer including a transparent conductive layer formed on one main surface using an on-line CVD method. It was a glass plate with a transparent conductive film (TCO substrate).
  • This glass plate is cut into 200 ⁇ 300 mm, immersed in an alkaline solution (alkaline cleaning solution LBC-1, manufactured by Reybold Co., Ltd.), cleaned with an ultrasonic cleaner, washed with deionized water, and dried at room temperature. And a glass plate for forming a low reflection coating.
  • alkaline cleaning solution LBC-1 alkaline cleaning solution manufactured by Reybold Co., Ltd.
  • Example 1 the coating liquid of Example 1 was applied to the main surface of the glass plate on the side where the transparent conductive film was not applied by using a spin coating method. Specifically, the glass plate is held horizontally on a spin coater, a coating solution is dropped onto the center of the glass plate, the glass plate is rotated at a rotation speed of 1000 rpm, and the rotation speed is maintained for 10 seconds. The rotation of the glass plate was stopped. Thereby, the coating film for low reflection coating was formed on one main surface of the glass plate.
  • the coating film for low reflection coating was dried and cured with hot air.
  • This hot air drying uses a belt-conveying hot air drying device, the hot air set temperature is set to 300 ° C., the distance between the hot air discharge nozzle and the glass plate is set to 5 mm, and the conveying speed is set to 0.5 m / min. This was performed by reciprocating four times and passing under the nozzle four times.
  • the glass plate on which the coating film for low reflection coating is formed is in contact with hot air for 140 seconds, and the maximum temperature reached on the glass surface on which the coating film for low reflection coating on the glass plate is formed is It was 200 ° C.
  • the glass plate after drying and curing was allowed to cool to room temperature, and a low reflection coating was formed on the glass plate.
  • the resulting low reflection coating thickness was 150 nm.
  • the obtained low reflection coating was held in an electric furnace set at 760 ° C., and the low reflection coating was subjected to heat treatment until the surface of the low reflection coating reached 500 ° C. Then, the glass plate with a low reflection coating was cooled to room temperature.
  • Example 2 ⁇ Preparation of coating solution> The amount of the hydrolyzed liquid A, 1-methoxy-2-propanol (solvent) and MgF 2 fine particle dispersion was changed to 1.2 g of hydrolyzed liquid A, 7 g of 1-methoxy-2-propanol (solvent), MgF 2 fine particle dispersion 1 A coating solution was prepared in the same manner as in Example 1 except that the amount was 0.8 g. In the coating liquid of Example 2, the solid content mass ratio (MgF 2 fine particles: binder) between the MgF 2 fine particles and the binder was 60.0: 40.0.
  • Example 2 a low reflection coating was formed on a glass plate in the same procedure as in Example 1 except that the coating liquid of Example 2 was used. However, unlike Example 1, the heat treatment for the formed low-reflection coating was not performed. The maximum temperature reached on the glass surface on which the coating film for low reflection coating on the glass plate was formed during hot air drying was 200 ° C. The resulting low reflection coating thickness was 165 nm. Moreover, each above-mentioned characteristic was evaluated about the obtained glass article with a low reflection coating. The results are shown in Table 1.
  • Example 3 ⁇ Preparation of coating solution> The amount of hydrolysis liquid A, 1-methoxy-2-propanol (solvent) and MgF 2 fine particle dispersion was 0.75 g of hydrolysis liquid A, 6.93 g of 1-methoxy-2-propanol (solvent), MgF 2 fine particle dispersion. Coating was conducted in the same manner as in Example 1 except that 0.025 g of Al 2 O 3 source (5% by mass aqueous solution of aluminum chloride hexahydrate (manufactured by Sigma-Aldrich), reagent grade) was added. A liquid was prepared. In the coating liquid of Example 3, the solid content mass ratio (MgF 2 fine particles: binder) between the MgF 2 fine particles and the binder was 73.5: 26.5.
  • Example 3 a low reflection coating was formed on a glass plate in the same procedure as in Example 1 except that the coating liquid of Example 3 was used. However, unlike Example 1, the heat treatment for the formed low-reflection coating was not performed. The maximum temperature reached on the glass surface on which the coating film for low reflection coating on the glass plate was formed during hot air drying was 200 ° C. The resulting low reflection coating thickness was 140 nm. About the obtained glass article with a low reflection coating, each above-mentioned characteristic was evaluated. The results are shown in Table 1. Further, FIG. 1 shows the result of observing the cross section of the glass article with a low reflection coating using an FE-SEM.
  • Example 4 Preparation of coating solution> The amount of hydrolysis liquid A, 1-methoxy-2-propanol (solvent) and MgF 2 fine particle dispersion was 0.90 g of hydrolysis liquid A, 6.96 g of 1-methoxy-2-propanol (solvent), MgF 2 fine particle dispersion. Coating was carried out in the same manner as in Example 1 except that 0.04 g of Al 2 O 3 source (aluminum chloride hexahydrate (Sigma Aldrich, reagent grade) 5 mass% aqueous solution) was added. A liquid was prepared. In the coating liquid of Example 4, the solid content mass ratio (MgF 2 fine particles: binder) between the MgF 2 fine particles and the binder was 69.3: 30.7.
  • Al 2 O 3 source aluminum chloride hexahydrate (Sigma Aldrich, reagent grade) 5 mass% aqueous solution
  • Example 4 a low reflection coating was formed on a glass plate in the same procedure as in Example 1 except that the coating liquid of Example 4 was used. However, unlike Example 1, the heat treatment for the formed low-reflection coating was not performed. The maximum temperature reached on the glass surface on which the coating film for low reflection coating on the glass plate was formed during hot air drying was 200 ° C. The resulting low reflection coating thickness was 150 nm. About the obtained glass article with a low reflection coating, each above-mentioned characteristic was evaluated. The results are shown in Table 1.
  • Example 5 ⁇ Preparation of coating solution> Aluminum chloride hexahydrate (manufactured by Sigma-Aldrich, reagent grade) 23.7 g, ethanol (solvent) 57.2 g, and purified water 19.1 g were mixed with stirring, followed by hydrolysis at 40 ° C. for 8 hours. A hydrolyzate B having a solid content concentration of 5% by mass in terms of 2 O 3 was obtained.
  • Example 1 except that hydrolyzate B was used in place of hydrolyzate A to obtain 1.05 g of hydrolyzate B, 7 g of 1-methoxy-2-propanol (solvent), and 1.9 g of MgF 2 fine particle dispersion.
  • a coating solution was prepared in the same manner as described above.
  • the solid content mass ratio (MgF 2 fine particles: binder) between the MgF 2 fine particles and the binder was 82.5: 17.5.
  • Example 5 a low reflection coating was applied to the glass plate in the same procedure as in Example 1 except that the coating liquid of Example 5 was used. In addition, the heat processing with respect to the formed low reflection coating was also performed similarly to Example 1. The maximum temperature reached on the glass surface on which the coating film for low reflection coating on the glass plate was formed during hot air drying was 200 ° C. The resulting low reflection coating thickness was 160 nm. About the obtained glass article with a low reflection coating, each above-mentioned characteristic was evaluated. The results are shown in Table 1.
  • Example 6 Preparation of coating solution> A coating solution was prepared in the same manner as in Example 1 except that the hydrolysis solution B prepared in Example 5 was used instead of the hydrolysis solution A. In the coating liquid of Example 6, the solid mass ratio (MgF 2 fine particles: binder) between the MgF 2 fine particles and the binder was 90.0: 10.0.
  • Example 6 a low reflection coating was applied to the glass plate in the same procedure as in Example 1 except that the coating liquid of Example 6 was used. In addition, the heat processing with respect to the formed low reflection coating was also performed similarly to Example 1. The maximum temperature reached on the glass surface on which the coating film for low reflection coating on the glass plate was formed during hot air drying was 200 ° C. The resulting low reflection coating thickness was 150 nm. About the obtained glass article with a low reflection coating, each above-mentioned characteristic was evaluated. The results are shown in Table 1.
  • Example 7 ⁇ Preparation of coating solution> The amount of hydrolyzed liquid A, 1-methoxy-2-propanol (solvent) and MgF 2 fine particle dispersion was 0.60 g of hydrolyzed liquid A, 7.37 g of 1-methoxy-2-propanol (solvent), MgF 2 fine particle dispersed Except that 0.2 g of TiO 2 fine particle dispersion (“STS-01”, manufactured by Ishihara Sangyo Co., Ltd., average particle size 10-30 nm, anatase type, X-ray particle size 7 nm) was added. Prepared a coating solution in the same manner as in Example 1.
  • STS-01 TiO 2 fine particle dispersion
  • the solid content mass ratio of the fine particles (total of MgF 2 fine particles and TiO 2 fine particles) to the binder (MgF 2 fine particles + TiO 2 fine particles: binder) was 79.2: 20.8. It was.
  • Example 7 a low reflection coating was applied to the glass plate in the same procedure as in Example 1 except that the coating liquid of Example 7 was used. In addition, the heat processing with respect to the formed low reflection coating was also performed similarly to Example 1. The maximum temperature reached on the glass surface on which the coating film for low reflection coating on the glass plate was formed during hot air drying was 200 ° C. The resulting low reflection coating thickness was 170 nm. About the obtained glass article with a low reflection coating, each above-mentioned characteristic was evaluated. The results are shown in Table 1.
  • the glass articles with low reflection coating of Examples 1 to 7 have a minimum reflectance as low as 2% or less, a difference in reflectance before and after formation of the low reflection coating (reflectance reduction effect) as high as 3% or more, and a transmittance gain. was as high as 2.9% or more and had excellent optical characteristics. Further, in the glass articles with low reflection coating of Examples 1 to 7, the decrease in visible light reflectance after the abrasion test was suppressed to 3% or less, and sufficient abrasion resistance was provided. Further, the glass article with a low reflection coating of Example 7 in which the low reflection coating contains TiO 2 fine particles had a contact angle of 5 degrees or less after UV irradiation, and a photocatalytic effect was also confirmed.
  • a glass article with a low reflection coating having excellent optical properties can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Laminated Bodies (AREA)

Abstract

This glass article with low-reflective coating comprises: a glass substrate; and a low-reflective coating formed on at least a portion of the surface of the glass substrate. The low-reflective coating comprises fine particles and a binder. The fine particles contain MgF2 fine particles as a main component. The binder contains an inorganic oxide as a main component.

Description

低反射コーティング付きガラス物品Glass article with low reflection coating
 本発明は、低反射コーティング付きガラス物品に関する。 The present invention relates to a glass article with a low reflection coating.
 ガラス、セラミックなどの基材の表面には、その基材の用途における機能改善を目的として、光をより多く透過させるため、又は反射による眩惑を防止するために、低反射コーティングが形成される。 A low-reflection coating is formed on the surface of a substrate such as glass or ceramic in order to transmit more light or prevent glare due to reflection for the purpose of improving the function of the substrate.
 低反射コーティングは、車両用ガラス、ショーウィンドウ又は光電変換装置に用いるガラス板などに利用される。光電変換装置の一種であるいわゆる薄膜型太陽電池では、下地膜、透明導電膜、アモルファスシリコンなどからなる光電変換層及び裏面薄膜電極を順次積層したガラス板を用いるが、低反射コーティングはこれら積層した主表面とは対向する主表面、つまり太陽光が入射する側の主表面に形成される。このように太陽光の入射側に低反射コーティングが形成された太陽電池では、より多くの太陽光が光電変換層又は太陽電池素子に導かれ、その発電量が向上することになる。 低 Low reflection coating is used for glass for vehicle, show window or glass plate used for photoelectric conversion device. A so-called thin film solar cell, which is a kind of photoelectric conversion device, uses a glass plate in which a photoelectric conversion layer and a back surface thin film electrode made of a base film, a transparent conductive film, amorphous silicon, and the like are sequentially stacked, but the low reflection coating is stacked. It is formed on the main surface opposite to the main surface, that is, the main surface on the side where sunlight enters. Thus, in the solar cell in which the low reflection coating is formed on the incident side of sunlight, more sunlight is guided to the photoelectric conversion layer or the solar cell element, and the power generation amount is improved.
 最もよく用いられる低反射コーティングは、真空蒸着法、スパッタリング法、化学蒸着法(CVD法)などによる誘電体膜であるが、シリカ微粒子などの微粒子を含む微粒子含有膜が低反射コーティングとして用いられることもある。微粒子含有膜は、微粒子を含むコーティング液を、ディッピング法、フローコート法、スプレー法などによって基材上に塗布することにより成膜される。 The most commonly used low-reflection coating is a dielectric film formed by vacuum deposition, sputtering, chemical vapor deposition (CVD), etc., but a fine particle-containing film containing fine particles such as silica fine particles should be used as the low-reflection coating. There is also. The fine particle-containing film is formed by applying a coating liquid containing fine particles on a substrate by dipping, flow coating, spraying, or the like.
 例えば特表2013-537873号公報(特許文献1)、特開平4-82145号公報(特許文献2)及び国際公開第2006/030848号(特許文献3)には、ガラス板などの基材の表面に形成される低反射コーティングとして、シリカ(SiO2)微粒子やフッ化マグネシウム(MgF2)微粒子がバインダで固定されることによって形成されている多孔質薄膜が提案されている。 For example, JP-A-2013-537873 (Patent Document 1), JP-A-4-82145 (Patent Document 2) and International Publication No. 2006/030848 (Patent Document 3) describe the surface of a substrate such as a glass plate. As a low-reflective coating, a porous thin film formed by fixing silica (SiO 2 ) fine particles or magnesium fluoride (MgF 2 ) fine particles with a binder has been proposed.
特表2013-537873号公報JP 2013-537873 A 特開平4-82145号公報JP-A-4-82145 国際公開第2006/030848号International Publication No. 2006/030848
 従来の低反射コーティングについて、光学特性の向上、特に反射率の低減及び透過率の増大という点において、さらなる改善が求められていた。 For the conventional low-reflection coating, further improvement has been demanded in terms of improving optical characteristics, particularly in terms of reducing reflectance and increasing transmittance.
 本発明は、かかる事情に鑑み、光学特性がさらに向上した低反射コーティングを備えた低反射コーティング付きガラス物品を提供することを目的とする。 In view of such circumstances, an object of the present invention is to provide a glass article with a low reflection coating provided with a low reflection coating with further improved optical characteristics.
 本発明は、ガラス基材と、前記ガラス基材の表面の少なくとも一部に形成されている低反射コーティングとを含む低反射コーティング付きガラス物品であって、
 前記低反射コーティングは、微粒子とバインダとからなり、
 前記微粒子は、主成分としてMgF2微粒子を含み、
 前記バインダは、主成分として無機酸化物を含む、
低反射コーティング付きガラス物品を提供する。
The present invention is a glass article with a low reflection coating comprising a glass substrate and a low reflection coating formed on at least a part of the surface of the glass substrate,
The low reflection coating is composed of fine particles and a binder,
The fine particles include MgF 2 fine particles as a main component,
The binder contains an inorganic oxide as a main component,
A glass article with a low reflection coating is provided.
 本発明によれば、従来の低反射コーティング付きガラス物品と比較して光学特性がさらに向上した低反射コーティング付きガラス物品を提供できる。 According to the present invention, it is possible to provide a glass article with a low-reflection coating having further improved optical characteristics as compared with a conventional glass article with a low-reflection coating.
実施例3で得た低反射コーティング付きガラス物品を電界放射型走査型電子顕微鏡(FE-SEM)で観察した結果を示す図である。It is a figure which shows the result of having observed the glass article with a low reflection coating obtained in Example 3 with the field emission scanning electron microscope (FE-SEM).
 本発明の低反射コーティング付きガラス物品の一実施形態について説明する。 An embodiment of a glass article with a low reflection coating according to the present invention will be described.
 本実施形態の低反射コーティング付きガラス物品は、ガラス基材と、そのガラス基材の表面の少なくとも一部に形成されている低反射コーティングとを含んでいる。低反射コーティングは、微粒子とバインダとからなる。微粒子は、主成分としてMgF2微粒子を含んでいる。バインダは、主成分として無機酸化物を含んでいる。以下に、本実施形態の低反射コーティング付きガラス物品について、より詳しく説明する。 The glass article with a low reflection coating according to the present embodiment includes a glass substrate and a low reflection coating formed on at least a part of the surface of the glass substrate. The low reflection coating consists of fine particles and a binder. The fine particles contain MgF 2 fine particles as a main component. The binder contains an inorganic oxide as a main component. Below, the glass article with a low reflection coating of this embodiment is demonstrated in detail.
 まず、低反射コーティングについて説明する。 First, the low reflection coating will be described.
 低反射コーティングにおける微粒子は、上述のとおり、主成分としてMgF2微粒子を含んでいる。ここで、微粒子が主成分としてMgF2微粒子を含むとは、微粒子におけるMgF2微粒子の含有率が95質量%以上であることをいう。微粒子は、MgF2微粒子を98質量%以上含むことが好ましく、MgF2微粒子のみから構成されていてもよい。 The fine particles in the low reflection coating contain MgF 2 fine particles as a main component as described above. Here, that the fine particles contain MgF 2 fine particles as a main component means that the content of the MgF 2 fine particles in the fine particles is 95% by mass or more. Particulates preferably comprises a MgF 2 particles less than 98 wt%, may be composed of only MgF 2 particles.
 低反射コーティングにおける微粒子は、MgF2微粒子以外の微粒子をさらに含んでいてもよい。MgF2微粒子以外の微粒子は、特には限定されず、低反射コーティングに追加したい機能を実現できる種々の機能性微粒子を用いることができる。例えば、光触媒性能を備えた低反射コーティングを実現する場合は、低反射コーティングに光触媒性能を付与し得るTiO2微粒子などを用いることができる。紫外線カット機能を備えた低反射コーティングを実現する場合は、低反射コーティングに紫外線カット機能を付与し得るZnO微粒子などを用いることができる。帯電防止機能を備えた低反射コーティングを実現する場合は、低反射コーティングに帯電防止機能を付与し得るSnO2微粒子などを用いることができる。 The fine particles in the low reflection coating may further contain fine particles other than MgF 2 fine particles. The fine particles other than the MgF 2 fine particles are not particularly limited, and various functional fine particles capable of realizing a function to be added to the low reflection coating can be used. For example, when realizing a low reflection coating having photocatalytic performance, TiO 2 fine particles that can impart photocatalytic performance to the low reflection coating can be used. In the case of realizing a low reflection coating having an ultraviolet cut function, ZnO fine particles that can impart an ultraviolet cut function to the low reflection coating can be used. When realizing a low reflection coating having an antistatic function, SnO 2 fine particles that can impart an antistatic function to the low reflection coating can be used.
 MgF2微粒子は、平均粒径が10~30nmであることが好ましい。このような平均粒径を有するMgF2微粒子によれば、透明性の高いコーティングを形成することが可能となる。ここで、微粒子の「平均粒径」とは、レーザー回折式粒度分布測定法により測定した粒度分布において、体積累積が50%に相当する粒径(D50)を意味する。 The MgF 2 fine particles preferably have an average particle size of 10 to 30 nm. According to the MgF 2 fine particles having such an average particle diameter, a highly transparent coating can be formed. Here, the “average particle size” of the fine particles means a particle size (D50) corresponding to 50% of volume accumulation in the particle size distribution measured by the laser diffraction particle size distribution measurement method.
 低反射コーティングにおけるバインダは、上述のとおり、主成分として無機酸化物を含む。ここで、バインダが主成分として無機酸化物を含むとは、バインダにおける無機酸化物の含有率が80質量%以上であることをいう。バインダは、無機酸化物を90質量%以上含むことが好ましく、無機酸化物のみから構成されていてもよい。バインダは、有機成分をさらに含んでいてもよい。バインダは、非晶質であってもよいし、結晶質であってもよい。 As described above, the binder in the low reflection coating contains an inorganic oxide as a main component. Here, the binder containing an inorganic oxide as a main component means that the content of the inorganic oxide in the binder is 80% by mass or more. The binder preferably contains 90% by mass or more of an inorganic oxide, and may be composed of only an inorganic oxide. The binder may further contain an organic component. The binder may be amorphous or crystalline.
 バインダに含まれる無機酸化物は、Si、Al、Zr、Ti、Sn及びFeからなる群から選ばれる少なくともいずれか1種の金属の酸化物であってよい。例えば、無機酸化物がSiの酸化物からなっていてもよいし、Siの酸化物とAlの酸化物とからなっていてもよいし、Alの酸化物からなっていてもよい。バインダがSiの酸化物からなることにより、低反射率及び高透過率のコーティングが得られる。バインダがAlの酸化物からなることにより、高屈折率バインダであるが低反射率のコーティングが得られる。バインダがSiの酸化物とAlの酸化物とからなることにより、コーティングの耐摩耗性が向上する。 The inorganic oxide contained in the binder may be an oxide of at least one metal selected from the group consisting of Si, Al, Zr, Ti, Sn, and Fe. For example, the inorganic oxide may be made of Si oxide, Si oxide and Al oxide, or Al oxide. When the binder is made of an oxide of Si, a coating having a low reflectance and a high transmittance can be obtained. When the binder is made of an oxide of Al, a coating having a high refractive index but a low reflectance can be obtained. The wear resistance of the coating is improved when the binder is composed of Si oxide and Al oxide.
 バインダに含まれる無機酸化物がSiの酸化物とAlの酸化物とからなり、Siの酸化物の含有量をSiO2に換算し、かつAl酸化物の含有量をAl23に換算した場合、バインダに含まれる無機酸化物におけるSiO2とAl23との質量比(SiO2:Al23)は、例えば99.5:0.5~97:3であることが好ましい。SiO2とAl23との質量比をこのような範囲とすることにより、透過率を向上させることができる。 The inorganic oxide contained in the binder is composed of Si oxide and Al oxide, the Si oxide content is converted to SiO 2 , and the Al oxide content is converted to Al 2 O 3 . In this case, the mass ratio (SiO 2 : Al 2 O 3 ) between SiO 2 and Al 2 O 3 in the inorganic oxide contained in the binder is preferably 99.5: 0.5 to 97: 3, for example. By setting the mass ratio of SiO 2 and Al 2 O 3 in such a range, the transmittance can be improved.
 低反射コーティングにおける微粒子とバインダとの質量比(微粒子:バインダ)は、例えば95:5~35:65とできる。微粒子とバインダとの質量比をこのような範囲内とすることにより、高透過率を維持しつつ、実用に耐えうる耐久性を有するコーティングが得られる。 The mass ratio of fine particles to binder (fine particles: binder) in the low reflection coating can be, for example, 95: 5 to 35:65. By setting the mass ratio of the fine particles to the binder within such a range, a coating having durability that can withstand practical use can be obtained while maintaining high transmittance.
 次に、本実施形態の低反射コーティング付きガラス物品に用いられるガラス基材について説明する。 Next, the glass substrate used for the glass article with a low reflection coating according to this embodiment will be described.
 ガラス基材としては、例えば、ガラス板、透明導電膜付きガラス基板及びLow-E(Low Emissivity)膜付きガラス板が用いられる。ここでは、ガラス基材としてガラス板を用いる例について説明する。 As the glass substrate, for example, a glass plate, a glass substrate with a transparent conductive film, and a glass plate with a Low-E (Low-Emissivity) film are used. Here, the example which uses a glass plate as a glass base material is demonstrated.
 ガラス板は、特に限定されないが、その主表面上に設けられる低反射コーティングの表面を平滑にするためには、微視的な表面の平滑性が優れているものが好ましい。たとえば、ガラス板は、その主表面の算術平均粗さRaがたとえば1nm以下、好ましくは0.5nm以下の平滑性を有するフロート板ガラスであってもよい。ここで、本明細書における算術平均粗さRaは、JIS B0601-1994に規定された値である。 The glass plate is not particularly limited, but in order to smooth the surface of the low reflection coating provided on the main surface, a glass plate having excellent microscopic surface smoothness is preferable. For example, the glass plate may be a float plate glass having a smoothness with an arithmetic average roughness Ra of the main surface of, for example, 1 nm or less, preferably 0.5 nm or less. Here, the arithmetic average roughness Ra in the present specification is a value defined in JIS B0601-1994.
 一方で、ガラス板は、その表面に、肉眼で確認できるサイズの巨視的な凹凸を有する型板ガラスであってもよい。なお、ここでいう巨視的な凹凸とは、粗さ曲線における評価長さをセンチメートルオーダーとした際に確認される、平均間隔Smがミリメートルオーダー程度の凹凸のことである。型板ガラスの表面における凹凸の平均間隔Smは、0.3mm以上、さらに0.4mm以上、特に0.45mm以上であることが好ましく、2.5mm以下、さらに2.1mm以下、特に2.0mm以下、とりわけ1.5mm以下であることが好ましい。ここで、平均間隔Smは、粗さ曲線が平均線と交差する点から求めた山谷一周期の間隔の平均値を意味する。さらに、型板ガラス板の表面凹凸は、上記範囲の平均間隔Smとともに、0.5μm~10μm、特に1μm~8μmの最大高さRyを有することが好ましい。ここで、平均間隔Sm及び最大高さRyは、JIS(日本工業規格) B0601-1994に規定された値である。なお、このような型板ガラスであっても、微視的には(例えば原子間力顕微鏡(AFM)観察のような、粗さ曲線における評価長さが数100nmである表面粗さ測定では)、算術平均粗さRaが数nm以下、例えば1nm以下を満たすことが可能である。したがって、型板ガラスであっても、微視的な表面の平滑性に優れるガラス板として、本実施形態の低反射コーティング付きガラス物品のガラス基材として好適に使用できる。 On the other hand, the glass plate may be a template glass having macroscopic irregularities of a size that can be confirmed with the naked eye. Here, the macroscopic unevenness means unevenness having an average interval Sm of about millimeter order, which is confirmed when the evaluation length in the roughness curve is set to centimeter order. The average spacing Sm of the irregularities on the surface of the template glass is preferably 0.3 mm or more, more preferably 0.4 mm or more, particularly preferably 0.45 mm or more, 2.5 mm or less, further 2.1 mm or less, particularly 2.0 mm or less. In particular, it is preferably 1.5 mm or less. Here, the average interval Sm means the average value of the intervals of one mountain and valley obtained from the point where the roughness curve intersects the average line. Further, the surface irregularities of the template glass plate preferably have a maximum height Ry of 0.5 μm to 10 μm, particularly 1 μm to 8 μm, together with the average interval Sm in the above range. Here, the average interval Sm and the maximum height Ry are values specified in JIS (Japanese Industrial Standards) B0601-1994. Even with such a template glass, microscopically (for example, in the surface roughness measurement in which the evaluation length in the roughness curve is several hundreds of nanometers, such as observation with an atomic force microscope (AFM)), The arithmetic average roughness Ra can satisfy several nm or less, for example, 1 nm or less. Therefore, even a template glass can be suitably used as a glass substrate of the glass article with a low reflection coating of the present embodiment as a glass plate having excellent microscopic surface smoothness.
 なお、ガラス板は、通常の型板ガラスや建築用板ガラスと同様の組成であってよいが、着色成分を極力含まないことが好ましい。ガラス板において、代表的な着色成分である酸化鉄の含有率は、Fe23に換算して、0.06質量%以下、特に0.02質量%以下が好適である。 In addition, although a glass plate may be the same composition as normal plate glass and building plate glass, it is preferable that a coloring component is not included as much as possible. In the glass plate, the content of iron oxide, which is a typical coloring component, is preferably 0.06% by mass or less, particularly preferably 0.02% by mass or less in terms of Fe 2 O 3 .
 また、ガラス板は、低反射コーティングが形成される主表面とは反対側の主表面に、別のコーティングが施されているガラス板であってもよい。例えば、本実施形態の低反射コーティングを好適に施すことができるガラス板として、透明導電膜付きガラス板が挙げられる。この透明導電膜付きガラス板は、例えば上述の何れかのガラス板の一方の主表面に透明導電膜を有するものである。透明導電膜は、例えば、ガラス板の主表面に、1層以上の下地層と、例えばフッ素ドープ酸化錫を主成分とする透明導電層とが順に積層されているものである。 Further, the glass plate may be a glass plate in which another coating is applied to the main surface opposite to the main surface on which the low reflection coating is formed. For example, a glass plate with a transparent conductive film is mentioned as a glass plate that can be suitably applied with the low reflection coating of the present embodiment. This glass plate with a transparent conductive film has a transparent conductive film on one main surface of any of the glass plates described above, for example. In the transparent conductive film, for example, one or more underlayers and a transparent conductive layer containing, for example, fluorine-doped tin oxide as a main component are sequentially laminated on the main surface of a glass plate.
 次に、本実施形態の低反射コーティング付きガラス物品の低反射コーティングの反射特性について説明する。 Next, the reflection characteristics of the low-reflection coating of the glass article with the low-reflection coating of this embodiment will be described.
 本実施形態の低反射コーティング付きガラス物品は、低反射コーティングが形成されている面の反射率について、当該反射率が最低となる波長における反射率(以下、最低反射率と記載することがある。)を2%以下、好ましくは1.8%以下とすることができる。 In the glass article with a low reflection coating of the present embodiment, the reflectance at the wavelength at which the reflectance is lowest (hereinafter referred to as the minimum reflectance) may be described with respect to the reflectance of the surface on which the low reflection coating is formed. ) Can be 2% or less, preferably 1.8% or less.
 また、本実施形態の低反射コーティング付きガラス物品は、低反射コーティングが形成されている面の波長域380~850nmにおける平均反射率について、低反射コーティングが形成されていない状態の当該面の平均反射率から、低反射コーティングが形成されている状態の当該面の平均反射率を差し引いた差(以下、反射率低減効果と記載することがある。)を3%以上、好ましくは3.2%以上とすることができる。 In addition, the glass article with a low reflection coating of the present embodiment has an average reflectance of the surface on which the low reflection coating is formed, with respect to the average reflectance in the wavelength range of 380 to 850 nm of the surface on which the low reflection coating is formed. The difference obtained by subtracting the average reflectance of the surface in the state where the low-reflective coating is formed (hereinafter sometimes referred to as a reflectance reduction effect) from 3% or more, preferably 3.2% or more. It can be.
 本実施形態の低反射コーティング付きガラス物品は、以上のような優れた反射特性を有することができる。 The glass article with a low reflection coating according to the present embodiment can have excellent reflection characteristics as described above.
 また、本実施形態の低反射コーティング付きガラス物品は、低反射コーティングが形成されている面の波長域380~850nmにおける平均透過率について、低反射コーティングが形成されている状態の当該面の平均透過率から、低反射コーティングが形成されていない状態の当該面の平均透過率を差し引いた差(以下、透過率ゲインということがある。)を2.9%以上、好ましくは3.0%以上とすることができる。本実施形態の低反射コーティング付きガラス物品は、このような優れた透過特性を有することができる。 In addition, the glass article with a low reflection coating of the present embodiment has an average transmittance of the surface on which the low reflection coating is formed with respect to the average transmittance in the wavelength range of 380 to 850 nm of the surface on which the low reflection coating is formed. The difference obtained by subtracting the average transmittance of the surface in a state where the low-reflective coating is not formed (hereinafter also referred to as transmittance gain) from 2.9% or more, preferably 3.0% or more. can do. The glass article with a low reflection coating of the present embodiment can have such excellent transmission characteristics.
 また、本実施形態の低反射コーティング付きガラス物品は、優れた耐摩耗性も有する。具体的には、本実施形態の低反射コーティング付きガラス物品は、低反射コーティングが形成されている面の可視光反射率について、テーバー摩耗試験後の可視光反射率から、前記試験前の可視光反射率を差し引いた差を3%以下、好ましくは2.7%以下とすることができる。なお、テーバー摩耗試験については、後述の実施例においてその詳細を説明する。 Moreover, the glass article with a low reflection coating of the present embodiment also has excellent wear resistance. Specifically, the glass article with a low reflection coating according to the present embodiment has a visible light reflectance before the test based on the visible light reflectance after the Taber abrasion test. The difference obtained by subtracting the reflectance can be 3% or less, preferably 2.7% or less. The details of the Taber abrasion test will be described in Examples described later.
 本実施形態の低反射コーティング付きガラス物品は、ガラス板などのガラス基材の表面にコーティング液を塗布して塗膜を形成し、その塗膜を乾燥及び硬化させることによって形成できる。コーティング液をガラス基材の表面に塗布する方法には、公知の任意の方法、例えばスピンコーティング、ロールコーティング、バーコーティング、ディップコーティング、スプレーコーティングなど、を用いることができる。スプレーコーティングは量産性の点で優れている。ロールコーティングやバーコーティングは量産性に加えて塗膜外観の均質性の点で優れている。 The glass article with a low reflection coating of the present embodiment can be formed by applying a coating liquid on the surface of a glass substrate such as a glass plate to form a coating film, and drying and curing the coating film. Any known method such as spin coating, roll coating, bar coating, dip coating, spray coating or the like can be used as a method for applying the coating liquid to the surface of the glass substrate. Spray coating is excellent in terms of mass productivity. Roll coating and bar coating are excellent in terms of homogeneity of the appearance of the coating film in addition to mass productivity.
 コーティング液には、本実施形態における低反射コーティングに含まれる微粒子と、バインダを構成する無機酸化物などの化合物の供給源となる物質とが含まれている。 The coating liquid contains fine particles contained in the low-reflective coating in the present embodiment and a substance that serves as a supply source of a compound such as an inorganic oxide constituting the binder.
 例えば、バインダがSiの酸化物を含む場合、Siの酸化物の供給源としては、例えばシリコンアルコキシドに代表される加水分解性シリコン化合物を用いることができる。シリコンアルコキシドとしては、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシランを例示できる。これら加水分解性シリコン化合物は、いわゆるゾルゲル法により加水分解及び縮重合してバインダとすればよい。加水分解性シリコン化合物の加水分解は、適宜実施することができ、微粒子が存在する溶液中で実施されてもよいし、微粒子と混合される前に実施されてもよい。なお、加水分解触媒には酸・塩基いずれを用いることもできるが、酸、特に塩酸、硝酸、硫酸及びリン酸などの無機酸を用いることが好しく、塩酸を用いることがさらに好ましい。塩基性より酸性の方が、コーティング液の安定性に優れるからである。 For example, when the binder contains an oxide of Si, for example, a hydrolyzable silicon compound typified by silicon alkoxide can be used as a supply source of the oxide of Si. Examples of the silicon alkoxide include tetramethoxysilane, tetraethoxysilane, and tetraisopropoxysilane. These hydrolyzable silicon compounds may be made into binders by hydrolysis and condensation polymerization by a so-called sol-gel method. Hydrolysis of the hydrolyzable silicon compound can be performed as appropriate, and may be performed in a solution in which fine particles are present, or may be performed before mixing with the fine particles. In addition, although an acid and a base can be used for a hydrolysis catalyst, it is preferable to use inorganic acids, such as an acid, especially hydrochloric acid, nitric acid, a sulfuric acid, and phosphoric acid, and it is more preferable to use hydrochloric acid. This is because the acidic solution is superior to the basic solution in terms of stability.
 また、例えばバインダがAlの酸化物を含む場合、Alの酸化物の供給源としては、例えばハロゲン化アルミニウムを用いることができる。好ましいハロゲン化アルミニウムは、塩化アルミニウムである。 For example, when the binder includes an oxide of Al, for example, an aluminum halide can be used as a supply source of the Al oxide. A preferred aluminum halide is aluminum chloride.
 また、例えばバインダがSnの酸化物を含む場合、Snの酸化物の供給源としては、例えばジブチルスズジラウレートなどの2置換の有機スズ化合物を用いることができる。また、塩化第二スズ(SnCl4・5H2O)も使用できる。例えば、塩化第二スズ(SnCl4・5H2O)を純水に溶かし、アンモニア水でpHを中性に近づけることで、SnO2が得られる。 For example, when the binder includes Sn oxide, a disubstituted organotin compound such as dibutyltin dilaurate can be used as the Sn oxide supply source. Further, stannic chloride (SnCl 4 .5H 2 O) can also be used. For example, SnO 2 can be obtained by dissolving stannic chloride (SnCl 4 .5H 2 O) in pure water and bringing the pH close to neutral with aqueous ammonia.
 以下、実施例により、本発明をさらに詳細に説明する。まず、各実施例、各比較例において、ガラス基材(ここではガラス板)の表面上に形成した低反射コーティングの各特性の評価方法を説明する。 Hereinafter, the present invention will be described in more detail with reference to examples. First, in each example and each comparative example, an evaluation method for each characteristic of a low reflection coating formed on the surface of a glass substrate (here, a glass plate) will be described.
(反射特性)
 後述のとおり、本実施例及び比較例では、低反射コーティング付きガラス物品のガラス基材として透明導電膜付きガラス板が用いられ、ガラス板の透明導電膜が設けられていない側の面に低反射コーティングが形成された。反射率の測定では、低反射コーティングのみの反射率を測定するために、ガラス板の透明導電膜をサンドブラストにより除去し、その面に黒色塗料を塗布した。
(Reflection characteristics)
As will be described later, in this example and the comparative example, a glass plate with a transparent conductive film is used as a glass substrate of a glass article with a low reflection coating, and the low reflection on the surface of the glass plate on which the transparent conductive film is not provided. A coating was formed. In the measurement of the reflectance, in order to measure the reflectance of only the low-reflection coating, the transparent conductive film on the glass plate was removed by sandblasting, and a black paint was applied to the surface.
 分光光度計(「U-4100」、株式会社日立ハイテクサイエンス製)を用い、積分球の窓に低反射コーティング付きのガラス板を接着して、ガラス板における低反射コーティングが形成された面の反射率曲線(反射スペクトル)を測定した。 Using a spectrophotometer ("U-4100", manufactured by Hitachi High-Tech Science Co., Ltd.), a glass plate with a low-reflection coating is adhered to the window of the integrating sphere, and the reflection of the surface of the glass plate on which the low-reflection coating is formed A rate curve (reflection spectrum) was measured.
 この反射率曲線から最低反射率を求めた。 The minimum reflectance was obtained from this reflectance curve.
 また、低反射コーティングが形成される前のガラス板の反射率についても、同様の方法で反射率曲線を求めた。低反射コーティング形成前後のガラス板の反射率について、波長域380~850nmにおける反射率を平均化し、低反射コーティング形成前後の平均反射率を求めた。低反射コーティング形成前の前記平均反射率から、低反射コーティング形成後の平均反射率を差し引いた差を求めて、反射率低減効果の評価を行った。 Also, the reflectance curve was obtained by the same method for the reflectance of the glass plate before the low-reflection coating was formed. With respect to the reflectance of the glass plate before and after the formation of the low-reflection coating, the reflectance in the wavelength range of 380 to 850 nm was averaged to obtain the average reflectance before and after the formation of the low-reflection coating. A difference obtained by subtracting the average reflectance after the formation of the low-reflection coating from the average reflectance before the formation of the low-reflection coating was determined to evaluate the effect of reducing the reflectance.
(透過特性)
 分光光度計(UV-3100PC、株式会社島津製作所製)を用い、低反射コーティングの形成前後におけるガラス基材(ここではガラス板)の透過率曲線(透過スペクトル)をそれぞれ測定した。平均透過率は、波長380~850nmにおける透過率を平均化して算出した。低反射コーティングが形成されたガラス板の平均透過率の、該低反射コーティングが形成される前のガラス板の平均透過率に対する増分を透過率ゲインとした。
(Transmission characteristics)
Using a spectrophotometer (UV-3100PC, manufactured by Shimadzu Corporation), the transmittance curve (transmission spectrum) of the glass substrate (here, a glass plate) before and after the formation of the low reflection coating was measured. The average transmittance was calculated by averaging the transmittance at a wavelength of 380 to 850 nm. The increment of the average transmittance of the glass plate on which the low-reflection coating was formed relative to the average transmittance of the glass plate before the low-reflection coating was formed was defined as a transmittance gain.
(SEM観察)
 低反射コーティングを電界放射型走査型電子顕微鏡(S-4500、株式会社日立製作所製)によって観察した。また、コーティングの30°斜め上方からの断面におけるFE-SEM写真から、測定点5点でのコーティングの厚みの平均値を、低反射コーティングの膜厚とした。
(SEM observation)
The low reflection coating was observed with a field emission scanning electron microscope (S-4500, manufactured by Hitachi, Ltd.). Further, from the FE-SEM photograph in the cross section from the upper side of the coating at an angle of 30 °, the average value of the coating thickness at five measurement points was defined as the film thickness of the low reflection coating.
(耐摩耗性)
 テーバー摩耗試験として、テーバー往復摩耗試験機(Taber社製)を用い、ガラス板の低反射コーティングが形成されている面を摩耗子CS-10Fにて250回摩耗した。このテーバー摩耗試験後に、摩耗部の可視光反射率の変化を色差計(「CM2600d」、コニカミノルタ株式会社製)にて計測した。
(Abrasion resistance)
As a Taber abrasion test, a Taber reciprocating abrasion tester (manufactured by Taber) was used, and the surface of the glass plate on which the low-reflection coating was formed was worn 250 times with a wearer CS-10F. After this Taber abrasion test, the change in visible light reflectance of the worn part was measured with a color difference meter (“CM2600d”, manufactured by Konica Minolta, Inc.).
(光触媒効果)
 低反射コーティングが形成されたガラス板を、紫外線ランプ照射下(1mW/m2)で48時間放置した。その後に、水滴の表面接触角を計測して光触媒効果を評価した。
(Photocatalytic effect)
The glass plate on which the low-reflection coating was formed was left for 48 hours under ultraviolet lamp irradiation (1 mW / m 2 ). Thereafter, the surface contact angle of the water droplet was measured to evaluate the photocatalytic effect.
(実施例1)
<コーティング液の調製>
 テトラエトキシシランン(正珪酸エチル、多摩化学工業株式会社製)34.7g、1-メトキシ-2-プロパノール(溶媒)41.3g、1N塩酸(加水分解触媒)0.3g、精製水23.8gを攪拌混合し、40℃にて8時間加水分解反応を行い、SiO2換算での固形分濃度が10質量%の加水分解液Aを得た。
Example 1
<Preparation of coating solution>
Tetraethoxysilane (normal ethyl silicate, manufactured by Tama Chemical Co., Ltd.) 34.7 g, 1-methoxy-2-propanol (solvent) 41.3 g, 1N hydrochloric acid (hydrolysis catalyst) 0.3 g, purified water 23.8 g And a hydrolysis reaction was carried out at 40 ° C. for 8 hours to obtain a hydrolysis liquid A having a solid content concentration of 10% by mass in terms of SiO 2 .
 加水分解液A0.6g、1-メトキシ-2-プロパノール(溶媒)7g、MgF2微粒子分散液(ステラケミファ株式会社製、平均粒径20nm、固形分濃度10質量%)2.4gを攪拌混合し、実施例1のコーティング液を得た。実施例1のコーティング液において、MgF2微粒子とバインダとの固形分質量比(MgF2微粒子:バインダ)は、80.0:20.0であった。 0.6 g of hydrolyzed liquid A, 7 g of 1-methoxy-2-propanol (solvent), and 2.4 g of MgF 2 fine particle dispersion (manufactured by Stella Chemifa Co., Ltd., average particle size 20 nm, solid content concentration 10% by mass) are mixed with stirring. The coating liquid of Example 1 was obtained. In the coating liquid of Example 1, the mass ratio of the solid content between the MgF 2 fine particles and the binder (MgF 2 fine particles: binder) was 80.0: 20.0.
<低反射コーティングの形成>
 実施例1では、透明導電膜付きガラス板の片側の主表面に低反射コーティングを形成して、低反射コーティング付きガラス物品を得た。このガラス板は、通常のソーダライムシリケート組成からなり、オンラインCVD法を用いて片方の主表面に透明導電層を含む透明導電膜が形成された、厚さ3.2mmの日本板硝子株式会社製の透明導電膜付きガラス板(TCO基板)であった。このガラス板を200×300mmに切断し、アルカリ溶液(アルカリ性洗浄液 LBC-1、レイボルド株式会社製)に浸漬して超音波洗浄機を用いて洗浄し、脱イオン水で水洗したのち常温で乾燥させて低反射コーティングを形成するためのガラス板とした。低反射コーティングを施す前のこのガラス板の透過特性を前述のとおり評価したところ、平均透過率80.0%であった。
<Formation of low-reflection coating>
In Example 1, a low reflection coating was formed on the main surface on one side of a glass plate with a transparent conductive film to obtain a glass article with a low reflection coating. This glass plate is made of Nippon Soda Glass Co., Ltd., having a thickness of 3.2 mm, having a normal soda lime silicate composition, and having a transparent conductive layer including a transparent conductive layer formed on one main surface using an on-line CVD method. It was a glass plate with a transparent conductive film (TCO substrate). This glass plate is cut into 200 × 300 mm, immersed in an alkaline solution (alkaline cleaning solution LBC-1, manufactured by Reybold Co., Ltd.), cleaned with an ultrasonic cleaner, washed with deionized water, and dried at room temperature. And a glass plate for forming a low reflection coating. When the transmission characteristics of this glass plate before applying the low reflection coating were evaluated as described above, the average transmittance was 80.0%.
 実施例1においては、スピンコート法を用い、前述のガラス板の透明導電膜が施されていない側の主表面に実施例1のコーティング液を塗布した。具体的には、ガラス板をスピンコート装置上で水平に保持し、ガラス板の中央部にコーティング液を滴下し、ガラス板を回転数1000rpmで回転させ、10秒間その回転数を保持した後、ガラス板の回転を停止させた。これにより、ガラス板の一方の主表面上に低反射コーティング用塗膜が形成された。 In Example 1, the coating liquid of Example 1 was applied to the main surface of the glass plate on the side where the transparent conductive film was not applied by using a spin coating method. Specifically, the glass plate is held horizontally on a spin coater, a coating solution is dropped onto the center of the glass plate, the glass plate is rotated at a rotation speed of 1000 rpm, and the rotation speed is maintained for 10 seconds. The rotation of the glass plate was stopped. Thereby, the coating film for low reflection coating was formed on one main surface of the glass plate.
 次いで、この低反射コーティング用塗膜を、熱風で乾燥・硬化させた。この熱風乾燥は、ベルト搬送式の熱風乾燥装置を用い、熱風の設定温度を300℃、熱風吐出ノズルとガラス板との間の距離を5mm、搬送速度を0.5m/分に設定し、2回往復してノズルの下を4回通過させることで行なった。このとき、低反射コーティング用塗膜が形成されているガラス板が熱風に触れている時間は140秒であり、ガラス板の低反射コーティング用塗膜が形成されているガラス面における最高到達温度は200℃だった。乾燥・硬化後のガラス板は室温まで放冷し、ガラス板に低反射コーティングが形成された。得られた低反射コーティングの厚さは150nmであった。得られた低反射コーティングを760℃に設定された電気炉内に保持し、低反射コーティングの表面が500℃に達するまで、低反射コーティングに対し加熱処理を行った。その後、低反射コーティング付きガラス板を室温まで冷却した。 Next, the coating film for low reflection coating was dried and cured with hot air. This hot air drying uses a belt-conveying hot air drying device, the hot air set temperature is set to 300 ° C., the distance between the hot air discharge nozzle and the glass plate is set to 5 mm, and the conveying speed is set to 0.5 m / min. This was performed by reciprocating four times and passing under the nozzle four times. At this time, the glass plate on which the coating film for low reflection coating is formed is in contact with hot air for 140 seconds, and the maximum temperature reached on the glass surface on which the coating film for low reflection coating on the glass plate is formed is It was 200 ° C. The glass plate after drying and curing was allowed to cool to room temperature, and a low reflection coating was formed on the glass plate. The resulting low reflection coating thickness was 150 nm. The obtained low reflection coating was held in an electric furnace set at 760 ° C., and the low reflection coating was subjected to heat treatment until the surface of the low reflection coating reached 500 ° C. Then, the glass plate with a low reflection coating was cooled to room temperature.
 こうして得た低反射コーティング付きガラス物品について、前述の各特性を評価した。その結果を表1に示す。 The above-mentioned characteristics of the glass article with a low reflection coating thus obtained were evaluated. The results are shown in Table 1.
(実施例2)
<コーティング液の調製>
 加水分解液A、1-メトキシ-2-プロパノール(溶媒)及びMgF2微粒子分散液の量を、加水分解液A1.2g、1-メトキシ-2-プロパノール(溶媒)7g、MgF2微粒子分散液1.8gとした以外は、実施例1と同様にコーティング液を調製した。実施例2のコーティング液において、MgF2微粒子とバインダとの固形分質量比(MgF2微粒子:バインダ)は、60.0:40.0であった。
(Example 2)
<Preparation of coating solution>
The amount of the hydrolyzed liquid A, 1-methoxy-2-propanol (solvent) and MgF 2 fine particle dispersion was changed to 1.2 g of hydrolyzed liquid A, 7 g of 1-methoxy-2-propanol (solvent), MgF 2 fine particle dispersion 1 A coating solution was prepared in the same manner as in Example 1 except that the amount was 0.8 g. In the coating liquid of Example 2, the solid content mass ratio (MgF 2 fine particles: binder) between the MgF 2 fine particles and the binder was 60.0: 40.0.
<低反射コーティングの形成>
 実施例2では、前述の実施例2のコーティング液を用いた以外は、実施例1と同じ手順でガラス板に低反射コーティングを形成した。ただし、実施例1とは異なり、形成された低反射コーティングに対する加熱処理は行われなかった。熱風乾燥時の、ガラス板の低反射コーティング用塗膜が形成されているガラス面における最高到達温度は200℃だった。得られた低反射コーティングの厚さは165nmであった。また、得られた低反射コーティング付きガラス物品について、前述の各特性を評価した。その結果を表1に示す。
<Formation of low-reflection coating>
In Example 2, a low reflection coating was formed on a glass plate in the same procedure as in Example 1 except that the coating liquid of Example 2 was used. However, unlike Example 1, the heat treatment for the formed low-reflection coating was not performed. The maximum temperature reached on the glass surface on which the coating film for low reflection coating on the glass plate was formed during hot air drying was 200 ° C. The resulting low reflection coating thickness was 165 nm. Moreover, each above-mentioned characteristic was evaluated about the obtained glass article with a low reflection coating. The results are shown in Table 1.
(実施例3)
<コーティング液の調製>
 加水分解液A、1-メトキシ-2-プロパノール(溶媒)及びMgF2微粒子分散液の量を、加水分解液A0.75g、1-メトキシ-2-プロパノール(溶媒)6.93g、MgF2微粒子分散液2.25gとし、さらにAl23源(塩化アルミニウム6水和物(シグマアルドリッチ社製、試薬グレード)の5質量%水溶液)を0.07g添加した以外は、実施例1と同様にコーティング液を調製した。実施例3のコーティング液において、MgF2微粒子とバインダとの固形分質量比(MgF2微粒子:バインダ)は、73.5:26.5であった。
(Example 3)
<Preparation of coating solution>
The amount of hydrolysis liquid A, 1-methoxy-2-propanol (solvent) and MgF 2 fine particle dispersion was 0.75 g of hydrolysis liquid A, 6.93 g of 1-methoxy-2-propanol (solvent), MgF 2 fine particle dispersion. Coating was conducted in the same manner as in Example 1 except that 0.025 g of Al 2 O 3 source (5% by mass aqueous solution of aluminum chloride hexahydrate (manufactured by Sigma-Aldrich), reagent grade) was added. A liquid was prepared. In the coating liquid of Example 3, the solid content mass ratio (MgF 2 fine particles: binder) between the MgF 2 fine particles and the binder was 73.5: 26.5.
<低反射コーティングの形成>
 実施例3では、前述の実施例3のコーティング液を用いた以外は、実施例1と同じ手順でガラス板に低反射コーティングを形成した。ただし、実施例1とは異なり、形成された低反射コーティングに対する加熱処理は行われなかった。熱風乾燥時の、ガラス板の低反射コーティング用塗膜が形成されているガラス面における最高到達温度は200℃だった。得られた低反射コーティングの厚さは140nmであった。得られた低反射コーティング付きガラス物品について、前述の各特性を評価した。その結果を表1に示す。また、低反射コーティング付きガラス物品の断面をFE-SEMを用いて観察した結果を図1に示す。
<Formation of low-reflection coating>
In Example 3, a low reflection coating was formed on a glass plate in the same procedure as in Example 1 except that the coating liquid of Example 3 was used. However, unlike Example 1, the heat treatment for the formed low-reflection coating was not performed. The maximum temperature reached on the glass surface on which the coating film for low reflection coating on the glass plate was formed during hot air drying was 200 ° C. The resulting low reflection coating thickness was 140 nm. About the obtained glass article with a low reflection coating, each above-mentioned characteristic was evaluated. The results are shown in Table 1. Further, FIG. 1 shows the result of observing the cross section of the glass article with a low reflection coating using an FE-SEM.
(実施例4)
<コーティング液の調製>
 加水分解液A、1-メトキシ-2-プロパノール(溶媒)及びMgF2微粒子分散液の量を、加水分解液A0.90g、1-メトキシ-2-プロパノール(溶媒)6.96g、MgF2微粒子分散液2.10gとし、さらにAl23源(塩化アルミニウム6水和物(シグマアルドリッチ社製、試薬グレード)の5質量%水溶液)を0.04g添加した以外は、実施例1と同様にコーティング液を調製した。実施例4のコーティング液において、MgF2微粒子とバインダとの固形分質量比(MgF2微粒子:バインダ)は、69.3:30.7であった。
Example 4
<Preparation of coating solution>
The amount of hydrolysis liquid A, 1-methoxy-2-propanol (solvent) and MgF 2 fine particle dispersion was 0.90 g of hydrolysis liquid A, 6.96 g of 1-methoxy-2-propanol (solvent), MgF 2 fine particle dispersion. Coating was carried out in the same manner as in Example 1 except that 0.04 g of Al 2 O 3 source (aluminum chloride hexahydrate (Sigma Aldrich, reagent grade) 5 mass% aqueous solution) was added. A liquid was prepared. In the coating liquid of Example 4, the solid content mass ratio (MgF 2 fine particles: binder) between the MgF 2 fine particles and the binder was 69.3: 30.7.
<低反射コーティングの形成>
 実施例4では、前述の実施例4のコーティング液を用いた以外は、実施例1と同じ手順でガラス板に低反射コーティングを形成した。ただし、実施例1とは異なり、形成された低反射コーティングに対する加熱処理は行われなかった。熱風乾燥時の、ガラス板の低反射コーティング用塗膜が形成されているガラス面における最高到達温度は200℃だった。得られた低反射コーティングの厚さは150nmであった。得られた低反射コーティング付きガラス物品について、前述の各特性を評価した。その結果を表1に示す。
<Formation of low-reflection coating>
In Example 4, a low reflection coating was formed on a glass plate in the same procedure as in Example 1 except that the coating liquid of Example 4 was used. However, unlike Example 1, the heat treatment for the formed low-reflection coating was not performed. The maximum temperature reached on the glass surface on which the coating film for low reflection coating on the glass plate was formed during hot air drying was 200 ° C. The resulting low reflection coating thickness was 150 nm. About the obtained glass article with a low reflection coating, each above-mentioned characteristic was evaluated. The results are shown in Table 1.
(実施例5)
<コーティング液の調製>
 塩化アルミニウム6水和物(シグマアルドリッチ社製、試薬グレード)23.7g、エタノール(溶媒)57.2g、精製水19.1gを攪拌混合し、40℃にて8時間加水分解反応を行い、Al23換算での固形分濃度5質量%の加水分解液Bを得た。
(Example 5)
<Preparation of coating solution>
Aluminum chloride hexahydrate (manufactured by Sigma-Aldrich, reagent grade) 23.7 g, ethanol (solvent) 57.2 g, and purified water 19.1 g were mixed with stirring, followed by hydrolysis at 40 ° C. for 8 hours. A hydrolyzate B having a solid content concentration of 5% by mass in terms of 2 O 3 was obtained.
 加水分解液Aの代わりに加水分解液Bを用いて、加水分解液B1.05g、1-メトキシ-2-プロパノール(溶媒)7g、MgF2微粒子分散液1.9gとした以外は、実施例1と同様にコーティング液を調製した。実施例5のコーティング液において、MgF2微粒子とバインダとの固形分質量比(MgF2微粒子:バインダ)は、82.5:17.5であった。 Example 1 except that hydrolyzate B was used in place of hydrolyzate A to obtain 1.05 g of hydrolyzate B, 7 g of 1-methoxy-2-propanol (solvent), and 1.9 g of MgF 2 fine particle dispersion. A coating solution was prepared in the same manner as described above. In the coating liquid of Example 5, the solid content mass ratio (MgF 2 fine particles: binder) between the MgF 2 fine particles and the binder was 82.5: 17.5.
<低反射コーティングの形成>
 実施例5では、前述の実施例5のコーティング液を用いた以外は、実施例1と同じ手順でガラス板に低反射コーティングを施した。なお、形成された低反射コーティングに対する加熱処理も、実施例1と同様に行われた。熱風乾燥時の、ガラス板の低反射コーティング用塗膜が形成されているガラス面における最高到達温度は200℃だった。得られた低反射コーティングの厚さは160nmであった。得られた低反射コーティング付きガラス物品について、前述の各特性を評価した。その結果を表1に示す。
<Formation of low-reflection coating>
In Example 5, a low reflection coating was applied to the glass plate in the same procedure as in Example 1 except that the coating liquid of Example 5 was used. In addition, the heat processing with respect to the formed low reflection coating was also performed similarly to Example 1. The maximum temperature reached on the glass surface on which the coating film for low reflection coating on the glass plate was formed during hot air drying was 200 ° C. The resulting low reflection coating thickness was 160 nm. About the obtained glass article with a low reflection coating, each above-mentioned characteristic was evaluated. The results are shown in Table 1.
(実施例6)
<コーティング液の調製>
 加水分解液Aの代わりに実施例5で準備した加水分解液Bを用いた以外は、実施例1と同様にコーティング液を調製した。実施例6のコーティング液において、MgF2微粒子とバインダとの固形分質量比(MgF2微粒子:バインダ)は、90.0:10.0であった。
(Example 6)
<Preparation of coating solution>
A coating solution was prepared in the same manner as in Example 1 except that the hydrolysis solution B prepared in Example 5 was used instead of the hydrolysis solution A. In the coating liquid of Example 6, the solid mass ratio (MgF 2 fine particles: binder) between the MgF 2 fine particles and the binder was 90.0: 10.0.
<低反射コーティングの形成>
 実施例6では、前述の実施例6のコーティング液を用いた以外は、実施例1と同じ手順でガラス板に低反射コーティングを施した。なお、形成された低反射コーティングに対する加熱処理も、実施例1と同様に行われた。熱風乾燥時の、ガラス板の低反射コーティング用塗膜が形成されているガラス面における最高到達温度は200℃だった。得られた低反射コーティングの厚さは150nmであった。得られた低反射コーティング付きガラス物品について、前述の各特性を評価した。その結果を表1に示す。
<Formation of low-reflection coating>
In Example 6, a low reflection coating was applied to the glass plate in the same procedure as in Example 1 except that the coating liquid of Example 6 was used. In addition, the heat processing with respect to the formed low reflection coating was also performed similarly to Example 1. The maximum temperature reached on the glass surface on which the coating film for low reflection coating on the glass plate was formed during hot air drying was 200 ° C. The resulting low reflection coating thickness was 150 nm. About the obtained glass article with a low reflection coating, each above-mentioned characteristic was evaluated. The results are shown in Table 1.
(実施例7)
<コーティング液の調製>
 加水分解液A、1-メトキシ-2-プロパノール(溶媒)及びMgF2微粒子分散液の量を、加水分解液A0.60g、1-メトキシ-2-プロパノール(溶媒)7.37g、MgF2微粒子分散液1.8gに変更し、さらにTiO2微粒子分散液(「STS-01」、石原産業株式会社製、平均粒子径10~30nm、アナターゼ型、X線粒子径7nm)0.2gを添加した以外は、実施例1と同様にコーティング液を調製した。実施例7のコーティング液において、微粒子(MgF2微粒子及びTiO2微粒子との合計)とバインダとの固形分質量比(MgF2微粒子+TiO2微粒子:バインダ)は、79.2:20.8であった。
(Example 7)
<Preparation of coating solution>
The amount of hydrolyzed liquid A, 1-methoxy-2-propanol (solvent) and MgF 2 fine particle dispersion was 0.60 g of hydrolyzed liquid A, 7.37 g of 1-methoxy-2-propanol (solvent), MgF 2 fine particle dispersed Except that 0.2 g of TiO 2 fine particle dispersion (“STS-01”, manufactured by Ishihara Sangyo Co., Ltd., average particle size 10-30 nm, anatase type, X-ray particle size 7 nm) was added. Prepared a coating solution in the same manner as in Example 1. In the coating liquid of Example 7, the solid content mass ratio of the fine particles (total of MgF 2 fine particles and TiO 2 fine particles) to the binder (MgF 2 fine particles + TiO 2 fine particles: binder) was 79.2: 20.8. It was.
<低反射コーティングの形成>
 実施例7では、前述の実施例7のコーティング液を用いた以外は、実施例1と同じ手順でガラス板に低反射コーティングを施した。なお、形成された低反射コーティングに対する加熱処理も、実施例1と同様に行われた。熱風乾燥時の、ガラス板の低反射コーティング用塗膜が形成されているガラス面における最高到達温度は200℃だった。得られた低反射コーティングの厚さは170nmであった。得られた低反射コーティング付きガラス物品について、前述の各特性を評価した。その結果を表1に示す。
<Formation of low-reflection coating>
In Example 7, a low reflection coating was applied to the glass plate in the same procedure as in Example 1 except that the coating liquid of Example 7 was used. In addition, the heat processing with respect to the formed low reflection coating was also performed similarly to Example 1. The maximum temperature reached on the glass surface on which the coating film for low reflection coating on the glass plate was formed during hot air drying was 200 ° C. The resulting low reflection coating thickness was 170 nm. About the obtained glass article with a low reflection coating, each above-mentioned characteristic was evaluated. The results are shown in Table 1.
(比較例1)
<コーティング液の調製>
 実施例1で準備した加水分解液A1.05g、1-メトキシ-2-プロパノール(溶媒)7.85g、SiO2微粒子分散液(「クォートロン PL-7」、扶桑化学工業株式会社製、平均粒径125nm、固形分濃度23質量%)0.85g、Al23源(塩化アルミニウム6水和物(シグマアルドリッチ社製、試薬グレード)の5質量%水溶液)0.25gを攪拌混合し、比較例1のコーティング液を得た。比較例1のコーティング液において、SiO2微粒子とバインダとの固形分質量比(SiO2微粒子:バインダ)は、61.9:38.1であった。
(Comparative Example 1)
<Preparation of coating solution>
Hydrolyzate A 1.05 g prepared in Example 1, 7.85 g of 1-methoxy-2-propanol (solvent), SiO 2 fine particle dispersion (“Quatron PL-7”, manufactured by Fuso Chemical Industry Co., Ltd., average particle diameter 125 nm, solid content concentration 23 mass%) 0.85 g, Al 2 O 3 source (5 mass% aqueous solution of aluminum chloride hexahydrate (manufactured by Sigma-Aldrich, reagent grade)) 0.25 g was stirred and mixed, and Comparative Example 1 coating liquid was obtained. In the coating liquid of Comparative Example 1, the solid content mass ratio between the SiO 2 fine particles and the binder (SiO 2 fine particles: binder) was 61.9: 38.1.
<低反射コーティングの形成>
 比較例1では、前述の比較例1のコーティング液を用いた以外は、実施例1と同じ手順でガラス板に低反射コーティングを施した。ただし、実施例1とは異なり、形成された低反射コーティングに対する加熱処理は行われなかった。熱風乾燥時の、ガラス板の低反射コーティング用塗膜が形成されているガラス面における最高到達温度は200℃だった。得られた低反射コーティングの厚さは150nmであった。得られた低反射コーティング付きガラス物品について、前述の各特性を評価した。その結果を表1に示す。
<Formation of low-reflection coating>
In Comparative Example 1, a low reflection coating was applied to the glass plate in the same procedure as in Example 1 except that the coating liquid of Comparative Example 1 was used. However, unlike Example 1, the heat treatment for the formed low-reflection coating was not performed. The maximum temperature reached on the glass surface on which the coating film for low reflection coating on the glass plate was formed during hot air drying was 200 ° C. The resulting low reflection coating thickness was 150 nm. About the obtained glass article with a low reflection coating, each above-mentioned characteristic was evaluated. The results are shown in Table 1.
(比較例2)
<コーティング液の調製>
 加水分解液A、1-メトキシ-2-プロパノール(溶媒)及びMgF2微粒子分散液の量を、加水分解液A1.40g、1-メトキシ-2-プロパノール(溶媒)7.20g、MgF2微粒子分散液1.40gに変更した以外は、実施例1と同様にコーティング液を調製した。比較例1のコーティング液において、MgF2微粒子とバインダとの固形分質量比(MgF2微粒子:バインダ)は、50.0:50.0であった。
(Comparative Example 2)
<Preparation of coating solution>
The amount of hydrolyzed liquid A, 1-methoxy-2-propanol (solvent) and MgF 2 fine particle dispersion was 1.40 g of hydrolyzed liquid A, 7.20 g of 1-methoxy-2-propanol (solvent), MgF 2 fine particle dispersed. A coating solution was prepared in the same manner as in Example 1 except that the solution was changed to 1.40 g. In the coating liquid of Comparative Example 1, the solid content mass ratio (MgF 2 fine particles: binder) between the MgF 2 fine particles and the binder was 50.0: 50.0.
<低反射コーティングの形成>
 比較例2では、前述の比較例2のコーティング液を用いた以外は、実施例1と同じ手順でガラス板に低反射コーティングを施した。ただし、実施例1とは異なり、形成された低反射コーティングに対する加熱処理は行われなかった。熱風乾燥時の、ガラス板の低反射コーティング用塗膜が形成されているガラス面における最高到達温度は200℃だった。得られた低反射コーティングの厚さは150nmであった。得られた低反射コーティング付きガラス物品について、前述の各特性を評価した。その結果を表1に示す。
<Formation of low-reflection coating>
In Comparative Example 2, a low reflection coating was applied to the glass plate in the same procedure as in Example 1 except that the coating liquid of Comparative Example 2 was used. However, unlike Example 1, the heat treatment for the formed low-reflection coating was not performed. The maximum temperature reached on the glass surface on which the coating film for low reflection coating on the glass plate was formed during hot air drying was 200 ° C. The resulting low reflection coating thickness was 150 nm. About the obtained glass article with a low reflection coating, each above-mentioned characteristic was evaluated. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~7の低反射コーティング付きガラス物品は、最低反射率が2%以下と低く、低反射コーティング形成前後の反射率差(反射率低減効果)が3%以上と高く、かつ透過率ゲインが2.9%以上と高く、非常に優れた光学特性を有していた。さらに、実施例1~7の低反射コーティング付きガラス物品では、摩耗試験後の可視光反射率の低下が3%以下に抑えられており、十分な耐摩耗性も備えていた。また、低反射コーティングがTiO2微粒子を含んでいる実施例7の低反射コーティング付きガラス物品は、UV照射後の接触角が5度以下であり、光触媒効果も確認された。 The glass articles with low reflection coating of Examples 1 to 7 have a minimum reflectance as low as 2% or less, a difference in reflectance before and after formation of the low reflection coating (reflectance reduction effect) as high as 3% or more, and a transmittance gain. Was as high as 2.9% or more and had excellent optical characteristics. Further, in the glass articles with low reflection coating of Examples 1 to 7, the decrease in visible light reflectance after the abrasion test was suppressed to 3% or less, and sufficient abrasion resistance was provided. Further, the glass article with a low reflection coating of Example 7 in which the low reflection coating contains TiO 2 fine particles had a contact angle of 5 degrees or less after UV irradiation, and a photocatalytic effect was also confirmed.
 一方、比較例1及び2の低反射コーティング付きガラス物品は、透過率ゲインが低く、光学特性と耐久性とのバランスが良くなかった。 On the other hand, the glass articles with low reflection coating of Comparative Examples 1 and 2 had low transmittance gain, and the balance between optical properties and durability was not good.
 本発明によれば、光学特性に優れた低反射コーティング付きガラス物品を提供できる。 According to the present invention, a glass article with a low reflection coating having excellent optical properties can be provided.

Claims (14)

  1.  ガラス基材と、前記ガラス基材の表面の少なくとも一部に形成されている低反射コーティングとを含む低反射コーティング付きガラス物品であって、
     前記低反射コーティングは、微粒子とバインダとからなり、
     前記微粒子は、主成分としてMgF2微粒子を含み、
     前記バインダは、主成分として無機酸化物を含む、
    低反射コーティング付きガラス物品。
    A glass article with a low reflection coating comprising a glass substrate and a low reflection coating formed on at least a portion of the surface of the glass substrate,
    The low reflection coating is composed of fine particles and a binder,
    The fine particles include MgF 2 fine particles as a main component,
    The binder contains an inorganic oxide as a main component,
    Glass article with low reflection coating.
  2.  前記バインダに含まれる前記無機酸化物は、Si、Al、Zr、Ti、Sn及びFeからなる群から選ばれる少なくともいずれか1種の金属の酸化物である、
    請求項1に記載の低反射コーティング付きガラス物品。
    The inorganic oxide contained in the binder is an oxide of at least one metal selected from the group consisting of Si, Al, Zr, Ti, Sn, and Fe.
    The glass article with a low reflection coating according to claim 1.
  3.  前記バインダに含まれる前記無機酸化物は、Siの酸化物とAlの酸化物とからなる、
    請求項2に記載の低反射コーティング付きガラス物品。
    The inorganic oxide contained in the binder consists of an oxide of Si and an oxide of Al.
    The glass article with a low reflection coating according to claim 2.
  4.  前記バインダに含まれる前記無機酸化物は、Alの酸化物からなる、
    請求項2に記載の低反射コーティング付きガラス物品。
    The inorganic oxide contained in the binder is made of an oxide of Al.
    The glass article with a low reflection coating according to claim 2.
  5.  前記バインダは、有機成分をさらに含む、
    請求項1~4のいずれか1項に記載の低反射コーティング付きガラス物品。
    The binder further includes an organic component.
    The glass article with a low reflection coating according to any one of claims 1 to 4.
  6.  前記MgF2微粒子の平均粒径が、10~30nmである、
    請求項1~5のいずれか1項に記載の低反射コーティング付きガラス物品。
    The average particle diameter of the MgF 2 fine particles is 10 to 30 nm.
    The glass article with a low reflection coating according to any one of claims 1 to 5.
  7.  前記低反射コーティングにおける前記微粒子と前記バインダとの質量比(微粒子:バインダ)が、95:5~35:65である、
    請求項1~6のいずれか1項に記載の低反射コーティング付きガラス物品。
    The mass ratio of the fine particles to the binder (fine particles: binder) in the low reflection coating is 95: 5 to 35:65.
    The glass article with a low-reflection coating according to any one of claims 1 to 6.
  8.  前記バインダに含まれる前記無機酸化物において、Siの酸化物の含有量をSiO2に換算し、かつAl酸化物の含有量をAl23に換算した場合、SiO2とAl23との質量比(SiO2:Al23)が、99.5:0.5~97:3である、
    請求項3に記載の低反射コーティング付きガラス物品。
    In the inorganic oxide contained in the binder, when the content of Si oxide is converted to SiO 2 and the content of Al oxide is converted to Al 2 O 3 , SiO 2 and Al 2 O 3 The mass ratio (SiO 2 : Al 2 O 3 ) is 99.5: 0.5 to 97: 3,
    The glass article with a low reflection coating according to claim 3.
  9.  前記低反射コーティングが形成されている面の反射率について、当該反射率が最低となる波長における反射率が2%以下である、
    請求項1~8のいずれか1項に記載の低反射コーティング付きガラス物品。
    Regarding the reflectance of the surface on which the low-reflection coating is formed, the reflectance at a wavelength at which the reflectance is lowest is 2% or less.
    The glass article with a low reflection coating according to any one of claims 1 to 8.
  10.  前記低反射コーティングが形成されている面の波長域380~850nmにおける平均反射率について、前記低反射コーティングが形成されていない状態の前記面の前記平均反射率から、前記低反射コーティングが形成されている状態の前記面の前記平均反射率を差し引いた差が、3%以上である、
    請求項1~9のいずれか1項に記載の低反射コーティング付きガラス物品。
    Regarding the average reflectance in the wavelength range 380 to 850 nm of the surface on which the low-reflection coating is formed, the low-reflection coating is formed from the average reflectance of the surface in the state where the low-reflection coating is not formed. The difference obtained by subtracting the average reflectance of the surface in a state of being 3% or more,
    The glass article with a low reflection coating according to any one of claims 1 to 9.
  11.  前記低反射コーティングが形成されている面の波長域380~850nmにおける平均透過率について、前記低反射コーティングが形成されている状態の前記面の前記平均透過率から、前記低反射コーティングが形成されていない状態の前記面の前記平均透過率を差し引いた差が、2.9%以上である、
    請求項1~10のいずれか1項に記載の低反射コーティング付きガラス物品。
    Regarding the average transmittance in the wavelength range of 380 to 850 nm of the surface on which the low-reflection coating is formed, the low-reflection coating is formed from the average transmittance on the surface in the state where the low-reflection coating is formed. The difference obtained by subtracting the average transmittance of the surface in the absence state is 2.9% or more.
    The glass article with a low reflection coating according to any one of claims 1 to 10.
  12.  前記低反射コーティングが形成されている面の可視光反射率について、テーバー摩耗試験後の可視光反射率から、前記試験前の可視光反射率を差し引いた差が3%以下である、
    請求項1~11のいずれか1項に記載の低反射コーティング付きガラス物品。
    For the visible light reflectance of the surface on which the low-reflection coating is formed, the difference obtained by subtracting the visible light reflectance before the test from the visible light reflectance after the Taber abrasion test is 3% or less.
    The glass article with a low-reflection coating according to any one of claims 1 to 11.
  13.  前記微粒子は、前記MgF2微粒子以外の微粒子をさらに含む、
    請求項1~12のいずれか1項に記載の低反射コーティング付きガラス物品。
    The fine particles further include fine particles other than the MgF 2 fine particles.
    The glass article with a low-reflection coating according to any one of claims 1 to 12.
  14.  前記MgF2微粒子以外の前記微粒子は、TiO2微粒子である、
    請求項13に記載の低反射コーティング付きガラス物品。
    The fine particles other than the MgF 2 fine particles are TiO 2 fine particles,
    The glass article with a low-reflection coating according to claim 13.
PCT/JP2018/016160 2017-04-27 2018-04-19 Glass article with low-reflective coating WO2018198935A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019514443A JP7153638B2 (en) 2017-04-27 2018-04-19 Glass articles with low reflection coating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-088252 2017-04-27
JP2017088252 2017-04-27

Publications (1)

Publication Number Publication Date
WO2018198935A1 true WO2018198935A1 (en) 2018-11-01

Family

ID=63920454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016160 WO2018198935A1 (en) 2017-04-27 2018-04-19 Glass article with low-reflective coating

Country Status (3)

Country Link
JP (1) JP7153638B2 (en)
AR (1) AR111653A1 (en)
WO (1) WO2018198935A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320387A (en) * 1992-05-18 1993-12-03 Hitachi Ltd Method for forming ultra-fine particle film, transparent plate and image-displaying plate
JP2005001900A (en) * 2003-06-09 2005-01-06 Nippon Sheet Glass Co Ltd Substrate coated with low light reflective coating film, its manufacturing method, and composition for the low light reflective coating film
WO2006030848A1 (en) * 2004-09-16 2006-03-23 Nikon Corporation MgF2 OPTICAL THIN FILM CONTAINING AMORPHOUS SILICON OXIDE BINDER, OPTICAL DEVICE HAVING SAME, AND METHOD FOR PRODUCING SUCH MgF2 OPTICAL THIN FILM
JP2008501557A (en) * 2004-06-08 2008-01-24 ライプニッツ−インスティトゥート フィア ノイエ マテリアーリエン ゲマインニュッツィゲ ゲゼルシャフト ミット ベシュレンクタ ハフトゥンク Abrasion and scratch resistant coating with low refractive index on support
JP2016185886A (en) * 2015-03-27 2016-10-27 日本板硝子株式会社 Glass plate having low reflective coating
JP2018049075A (en) * 2016-09-20 2018-03-29 キヤノンファインテックニスカ株式会社 Optical film, substrate including optical film, and optical device including substrate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1985697A1 (en) 2007-04-27 2008-10-29 AM-Pharma B.V. Modified phosphatases

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320387A (en) * 1992-05-18 1993-12-03 Hitachi Ltd Method for forming ultra-fine particle film, transparent plate and image-displaying plate
JP2005001900A (en) * 2003-06-09 2005-01-06 Nippon Sheet Glass Co Ltd Substrate coated with low light reflective coating film, its manufacturing method, and composition for the low light reflective coating film
JP2008501557A (en) * 2004-06-08 2008-01-24 ライプニッツ−インスティトゥート フィア ノイエ マテリアーリエン ゲマインニュッツィゲ ゲゼルシャフト ミット ベシュレンクタ ハフトゥンク Abrasion and scratch resistant coating with low refractive index on support
WO2006030848A1 (en) * 2004-09-16 2006-03-23 Nikon Corporation MgF2 OPTICAL THIN FILM CONTAINING AMORPHOUS SILICON OXIDE BINDER, OPTICAL DEVICE HAVING SAME, AND METHOD FOR PRODUCING SUCH MgF2 OPTICAL THIN FILM
JP2016185886A (en) * 2015-03-27 2016-10-27 日本板硝子株式会社 Glass plate having low reflective coating
JP2018049075A (en) * 2016-09-20 2018-03-29 キヤノンファインテックニスカ株式会社 Optical film, substrate including optical film, and optical device including substrate

Also Published As

Publication number Publication date
JP7153638B2 (en) 2022-10-14
AR111653A1 (en) 2019-08-07
JPWO2018198935A1 (en) 2020-03-12

Similar Documents

Publication Publication Date Title
JP6989650B2 (en) A glass substrate with a low-reflection coating, a method for manufacturing a glass substrate with a low-reflection coating, and a photoelectric conversion device.
KR101939871B1 (en) Cover glass for photoelectric conversion device
EP3492953B1 (en) Glass plate with low reflection coating, method for producing base with low reflection coating, and coating liquid for forming low reflection coating of base with low reflection coating
JP7242720B2 (en) Glass plate with coating film and method for producing the same
WO2016121404A1 (en) Glass plate provided with low-reflection coating, method for manufacturing substrate provided with low-reflection coating, and coating liquid for forming low-reflection coating for substrate provided with low-reflection coating
JP6560210B2 (en) Low reflection coating, substrate with low reflection coating and photoelectric conversion device
CN107001125A (en) Glass plate with low reflectance coating
JP5989808B2 (en) Manufacturing method of glass plate with low reflection coating and coating liquid used therefor
WO2016002223A1 (en) Glass plate having low-reflection coating
JP6487933B2 (en) Low reflection coating, glass plate with low reflection coating, glass plate with low reflection coating, glass substrate, photoelectric conversion device, and method of manufacturing low reflection coating
WO2018198935A1 (en) Glass article with low-reflective coating
JP7083342B2 (en) A method for manufacturing a transparent substrate with a low-reflection film, a photoelectric conversion device, a coating liquid for forming a low-reflection film of a transparent substrate with a low-reflection film, and a transparent substrate with a low-reflection film.
WO2018198937A1 (en) Coating-film-coated transparent substrate, coating liquid for forming coating film for coating-film-coated transparent substrate, and production method for coating-film-coated transparent substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790507

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019514443

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18790507

Country of ref document: EP

Kind code of ref document: A1