WO2018198352A1 - Solid oxide electrochemical cell and production method therefor - Google Patents
Solid oxide electrochemical cell and production method therefor Download PDFInfo
- Publication number
- WO2018198352A1 WO2018198352A1 PCT/JP2017/017041 JP2017017041W WO2018198352A1 WO 2018198352 A1 WO2018198352 A1 WO 2018198352A1 JP 2017017041 W JP2017017041 W JP 2017017041W WO 2018198352 A1 WO2018198352 A1 WO 2018198352A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sheet
- electrochemical cell
- porous member
- solid oxide
- slurry
- Prior art date
Links
- 239000007787 solid Substances 0.000 title claims abstract description 40
- 238000004519 manufacturing process Methods 0.000 title claims description 28
- 239000001301 oxygen Substances 0.000 claims abstract description 65
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 65
- 239000003792 electrolyte Substances 0.000 claims abstract description 44
- -1 oxygen ions Chemical class 0.000 claims abstract description 16
- 239000001257 hydrogen Substances 0.000 claims description 70
- 229910052739 hydrogen Inorganic materials 0.000 claims description 70
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 67
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 50
- 239000002002 slurry Substances 0.000 claims description 38
- 125000006850 spacer group Chemical group 0.000 claims description 24
- 239000000463 material Substances 0.000 claims description 21
- 239000011148 porous material Substances 0.000 claims description 20
- 239000007789 gas Substances 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 238000005245 sintering Methods 0.000 claims description 4
- 239000007769 metal material Substances 0.000 claims description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 2
- 150000002431 hydrogen Chemical class 0.000 claims 1
- 238000010030 laminating Methods 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 description 20
- 230000001629 suppression Effects 0.000 description 18
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 17
- 229910052751 metal Inorganic materials 0.000 description 16
- 239000002184 metal Substances 0.000 description 16
- 239000000919 ceramic Substances 0.000 description 13
- 239000011812 mixed powder Substances 0.000 description 9
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 6
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 6
- 229910000480 nickel oxide Inorganic materials 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 239000000654 additive Substances 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 3
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910017493 Nd 2 O 3 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- BCWOCGQNLLUTOG-UHFFFAOYSA-N acetic acid;1-tridecoxytridecane Chemical compound CC(O)=O.CCCCCCCCCCCCCOCCCCCCCCCCCCC BCWOCGQNLLUTOG-UHFFFAOYSA-N 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910003446 platinum oxide Inorganic materials 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- Embodiments of the present invention relate to a solid oxide electrochemical cell and a method for manufacturing the same.
- Solid oxide electrochemical cells include a solid oxide fuel cell (hereinafter referred to as “SOFC”) that generates electricity continuously by an electrochemical reaction by supplying fuel and oxidant from the outside, and high temperature
- SOFC solid oxide fuel cell
- SOEC solid oxide electrolysis cell
- Such a solid oxide electrochemical cell is composed of a material having a relatively low toughness such as a solid oxide, that is, a ceramic material or a porous material.
- SOEC is generally a hydrogen electrode that electrolyzes water vapor to generate hydrogen and oxygen ions, an electrolyte that conducts oxygen ions without passing gas, and an external passage that converts oxygen ions from the electrolyte into oxygen.
- the hydrogen electrode and the oxygen electrode are composed of porous solid oxides (ceramics) in order to pass water vapor and oxygen, respectively.
- a number of single cells composed of a hydrogen electrode, an electrolyte, and an oxygen electrode are stacked in the thickness direction to form a cell stack.
- a separator is disposed between adjacent single cells in the thickness direction.
- damage such as cracks may occur in a member made of a porous material. It is difficult to detect breakage such as a crack generated in the cell stack. Therefore, there is a demand for a solid oxide electrochemical cell having a structure or material that is unlikely to break even when a relatively large stress is applied to a single cell when a cell stack is formed.
- the problem to be solved by the present invention is to provide a solid oxide electrochemical cell that is not easily damaged even when a relatively large stress is applied to members constituting the single cell.
- a solid oxide electrochemical cell includes an electrolyte capable of conducting oxygen ions, and a porous member laminated on the electrolyte, and an edge of the porous member is the edge.
- the Young's modulus in the thickness direction is lower than that of the central portion on the inside of the plate.
- FIG. 1 is a cross-sectional view of the solid oxide electrochemical cell of this embodiment.
- FIG. 2 is an exploded cross-sectional view of the solid oxide electrochemical cell of this embodiment.
- T the thickness direction of the electrolyte layer of the solid oxide electrochemical cell is indicated by an arrow T.
- the solid oxide electrochemical cell 10 of this embodiment is a so-called solid oxide electrolysis cell (SOEC) that generates hydrogen and oxygen by electrolyzing high-temperature water vapor.
- SOEC solid oxide electrolysis cell
- the single cell 10 has a dense electrolyte 20 that does not allow gas to pass through, and a hydrogen electrode 30 and an oxygen electrode 50 that are porous materials through which gas passes.
- the hydrogen electrode 30 and the oxygen electrode 50 are disposed outside the electrolyte 20 in the thickness direction T, respectively.
- the electrolyte 20 is sandwiched between the hydrogen electrode 30 and the oxygen electrode 50.
- the electrolyte 20 is made of a material that can conduct oxygen ions and does not pass gas.
- the electrolyte has a plate shape extending in a direction perpendicular to the thickness direction T thereof. In the case of SOEC, the electrolyte 20 conducts oxygen ions from the hydrogen electrode 30 to the oxygen electrode 50.
- stabilized zirconia for example, yttria stabilized zirconia (YSZ)
- perovskite oxide for example, perovskite oxide, or ceria (CeO 2 ) based electrolyte solid solution yttria stabilized zirconia (YSZ)
- YSZ yttria stabilized zirconia
- CeO 2 ceria
- Stabilized zirconia is zirconia in which a stabilizer is dissolved in zirconia.
- the stabilizer include Y 2 O 3 , Sc 2 O 3 , Yb 2 O 3 , Gd 2 O 3 , Nd 2 O 3 , CaO, and MgO.
- perovskite oxide examples include LaSrGaMg oxide, LaSrGaMgCo oxide, and LaSrGaMgCoFe oxide.
- ceria-based electrolyte solid solution a solid solution in which Sm 2 O 3 , Gd 2 O 3 , Y 2 O 3 , La 2 O 3 , or the like is dissolved in a material containing CeO 2 can be given.
- the hydrogen electrode 30 is disposed outside the electrolyte 20 in the thickness direction, and is stacked adjacent to the electrolyte 20.
- the hydrogen electrode 30 is made of a porous material that allows gas to pass through open pores. In the case of SOEC, the hydrogen electrode 30 receives supply of water vapor from a water vapor passage and electrolyzes the water vapor to generate hydrogen and oxygen ions.
- the hydrogen electrode 30 includes catalyst particles and oxygen ion conductive oxide particles.
- the catalyst include metals such as nickel, silver, and platinum, and metal oxides such as nickel oxide and cobalt oxide.
- the oxygen ion conductive oxide include ceria-based oxides such as samaria-stabilized ceria (SDC) or gadolinia-stabilized ceria (GDC), or zirconia-based oxides such as yttria-stabilized zirconia (YSZ). Can be mentioned.
- a sintered body of nickel oxide (NiO) and yttria stabilized zirconia (YSZ) is used as a material constituting the hydrogen electrode 30.
- the oxygen electrode 50 is disposed on the opposite side of the hydrogen electrode 30 and the thickness direction T with respect to the electrolyte 20.
- the oxygen electrode 50 is made of a porous material that allows gas to pass through.
- the oxygen electrode 50 releases oxygen ions from the oxygen electrode 24 into the air passage as oxygen.
- Examples of the material constituting the oxygen electrode 50 include lanthanum, strontium, manganese (LaSrMn) -based perovskite oxide (LSM), LaSrCo oxide (LSC), LaSrCoFe oxide (LSCF), LaSrFe oxide (LSF), LaSrMnCo oxide (LSMC), LaSrMnCr oxide (LSMC), LaCoMn oxide (LCM), LaSrCu oxide (LSCu), LaSrFeNi oxide (LSFN), LaNiFe oxide (LNF), LaBaCo oxide (LBC), LaNiCo Oxide (LNC), LaSrAlFe oxide (LSAF), LaSrCoNiCu oxide (LSCNC), LaSrFeNiCu oxide (LSFNC), LaNi oxide (LN), GdSrCo oxide (GSC), GdSrM Oxide (GSM), PrCaMn oxide (PCaM), PrSrMn oxide (PSM), PrBaCo oxide (PBC), S
- the single cell 10 has a reaction suppression layer 40 that suppresses element diffusion and reaction between the oxygen electrode 50 and the electrolyte 20 during sintering (when the single cell 10 is manufactured).
- the reaction suppression layer 40 is made of a dense material that does not allow gas to pass through, and can conduct oxygen ions. That is, the single cell 10 is laminated in the order of the hydrogen electrode 30, the electrolyte 20, the reaction suppression layer 40, and the oxygen electrode 50.
- the hydrogen electrode 30, the electrolyte 20, the reaction suppression layer 40, and the oxygen electrode 50 are each rectangular (for example, approximately square) when viewed from the thickness direction T.
- the hydrogen electrode 30, the electrolyte 20, and the reaction suppression layer 40 have a substantially rectangular shape, and the oxygen electrode 50 has a smaller rectangle (for example, a substantially square shape) such as the hydrogen electrode 30.
- the single cell 10 of this embodiment is a hydrogen electrode support type in which the hydrogen electrode 30 side is a support.
- the entire hydrogen electrode 30 does not need to function as an original hydrogen electrode.
- the hydrogen electrode 30 may have a two-layer structure of a lower base layer and an upper hydrogen electrode active layer in the figure, and only the hydrogen electrode active layer may have the original function of the hydrogen electrode.
- the constituent materials of the base layer and the hydrogen electrode active layer can be made substantially the same. In this case, there is no substantial difference between the base material layer and the hydrogen electrode active layer, and the entire hydrogen electrode 30 can serve as both the base material layer and the hydrogen electrode active layer.
- the oxygen electrode support type single cell which uses an oxygen electrode side as a support body.
- the electrolyte 20, the reaction suppression layer 40, and the oxygen electrode 50 have a substantially rectangular shape
- the hydrogen electrode 30 has a smaller rectangle (for example, a substantially square shape) such as the oxygen electrode 50.
- the single cell 10 configured as described above is disposed between the two separators 80 and 90.
- a plate-like conductor (hereinafter referred to as a conductor plate) 60 for passing a current through the single cell is sandwiched between the separator 80 and the hydrogen electrode 30.
- a conductor plate 65 is sandwiched between the separator 90 and the oxygen electrode 50.
- a clamping plate 70 is disposed between the separator 80 and the separator 90. In the direction perpendicular to the thickness direction T, the inner edge 72 of the fastening plate 70 is in contact with the edge 44 of the reaction suppression layer 40.
- the clamping plate 70 applies a clamping force (indicated by an arrow F in FIG. 1) to the single cell 10 through the edge portion 44.
- the edge portion 33 particularly has stress caused by the fastening force F. Is working. If the stress is large, damage such as cracks may occur in the porous member of the single cell 10 made of a porous material, for example, the hydrogen electrode 30.
- the hydrogen electrode 30 that is a porous member has a Young's modulus in the thickness direction T at the edge 33 compared to the central portion 31 inside the edge 33. Is configured to be low.
- the Young's modulus of the edge portion 33 can be set to, for example, 130 GPa or less near room temperature.
- the bending strength and compressive strength of the edge portion 33 are greater than those of the central portion 31.
- the bending strength of the edge 33 near room temperature can be 50 MPa or more, and the compressive strength can be 150 MPa or more.
- it is preferable that the variation in Young's modulus near the room temperature at the edge 33 is small, for example, 10 GPa or less.
- the boundary between the central portion 31 and the edge portion 33 of the hydrogen electrode 30 coincides with the outer periphery of the oxygen electrode 50.
- the outer periphery of the central portion 31 and the oxygen electrode 50 may not coincide.
- the outer periphery of the central part 31 may surround the outer periphery of the oxygen electrode (larger than the outer periphery of the oxygen electrode).
- the outer periphery of the central portion 31 may be surrounded by the outer periphery of the oxygen electrode (smaller than the outer periphery of the oxygen electrode). In short, it is only necessary that the central portion 31 and the oxygen electrode 50 are arranged in correspondence.
- the boundary between the central portion 31 and the edge portion 33 of the hydrogen electrode 30 is preferably located on the outer peripheral side from the equidistant point (1/2 point) between the center and the outer periphery of the hydrogen electrode 30, and moreover, one half. It is preferable that the point is closer to the center than the equidistant point (three quarters) on the outer periphery.
- the edge 33 is distorted according to the stress, and the stress acting on the edge 33. To ease. As a result, even if a relatively large stress is applied to the edge 33, the hydrogen electrode 33, which is a porous member, is less likely to be damaged, such as a crack.
- the Young's modulus of the central portion 31 and the edge portion 33 may be different only in the base material layer. This is because, in general, the base material layer is thicker than the hydrogen electrode active layer, and therefore when the stress is applied, the base material layer is more easily broken.
- the Young's modulus of the edge portion 33 and the central portion 31 can be made different by making the porosity (ratio occupied by open pores per unit volume) different.
- the edge 33 of the hydrogen electrode 30 is configured to have a higher porosity than the center 31.
- the porosity of the edge portion 33 and the central portion 31 is 33% or more, 75% or less, 25% or more, and 65% or less (more preferably 60% or more, 72% or less, 50% or more, 60% or less), respectively. (However, the porosity of the edge portion 33 is higher than that of the central portion 31).
- the porosity of the edge portion 33 and the central portion 31 the function as the hydrogen electrode 30 can be secured in the central portion 31 while lowering the Young's modulus of the edge portion 33.
- the porosity of the edge portion 33 is set to 30 to 50%, but the Young's modulus can be further reduced (strength improvement) by making the porosity higher than this range.
- the metal content of the central portion 31 and the edge portion 33 may be made different.
- the Young's modulus of the edge portion 33 can be made lower than that of the central portion 31.
- metal is not added to the central portion 31 but metal is added to the edge portion 33.
- the Young's modulus of the edge portion 33 is lowered according to the amount of the metal material added.
- a metal which is not easily oxidized such as Pt (platinum), Au (gold), Ag (silver) can be used.
- the amount of metal added to the edge portion 33 is preferably 1% or more and 15% or less (more preferably 2% or more and 10% or less).
- the addition amount is expressed by ceramic weight%.
- the additive amount (ceramic weight%) of the additive (for example, metal) that does not vaporize in the subsequent firing becomes substantially constant before and after firing.
- the porosity of the edge portion 33 and the central portion 31 is 30% or more, 70% or less, and 25% or more, respectively.
- 60% or less and the addition amount of metal is 3% or more and 8% or less (more preferably, the porosity is 55% or more, 65% or less and 50% or more and 60% or less, and the addition amount of metal is 4% or more and 6% or less) (however, the porosity of the edge portion 33 is larger than that of the central portion 31).
- the edge of the oxygen electrode (support layer) may be configured such that the Young's modulus in the thickness direction T is lower than the central part inside the edge.
- FIG. 3 is a flowchart for explaining the manufacturing process until the sintered body of the porous member is obtained from the mixed powder in the manufacturing method of the solid oxide electrochemical cell of the present embodiment.
- FIG. 4 is a diagram showing an arrangement relationship between the first stacked body and the second stacked body that form the porous member of the solid oxide electrochemical cell of the present embodiment.
- the unfired porous member is, for example, the hydrogen electrode 30 (base material layer).
- the hydrogen electrode 30 includes an edge portion 33 and a central portion 31 having different Young's moduli.
- the edge portion 33 has a higher porosity, which is a ratio occupied by open pores per unit volume, compared to the central portion 31.
- a mixed powder to be a base material layer (hydrogen electrode 30) including the edge portion 33 and the central portion 31 is created.
- NiO (nickel oxide) powder and YSZ (yttria stabilized zirconia) powder are mixed using methyl ethyl ketone, which is an organic solvent.
- methyl ethyl ketone which is an organic solvent.
- NiO is 40 g
- YSZ is 60 g
- methyl ethyl ketone is 100 g.
- a slurry to which spacers (for example, resin particles) capable of forming open pores of the central portion 31 are added at a predetermined ratio is prepared. create.
- the slurry is a mixture of NiO-YSZ mixed powder dispersed in a liquid.
- the NiO—YSZ mixed powder prepared in step S01 is charged into a liquid, and the mixed powder is dispersed in the liquid to prepare a slurry.
- 1% of tridecyl ether acetic acid (formal name: sodium polyoxyethylene tridecyl ether acetate) was added to the slurry as a dispersion (dispersing agent) for dispersing the mixed powder.
- the addition amount 1% is expressed by the ratio (ceramic weight%) of the weight W of the additive (here, the dispersant) to the weight W0 of the ceramic component (here, NiO—YSZ mixed powder). Is done. Moreover, PVB (polyvinyl butyral) was added as a binder. The amount of the binder (PVB) added is 4% (ceramic weight%).
- first ratio a slurry (hereinafter referred to as a first slurry) in which spacers were added at a first ratio (5%) was created.
- the spacer is removed in a later step (sintering step) to create a void in the sintered body. Specifically, the spacer communicates with the outer surface of the sintered body, so-called open pore (open pore). ).
- step S12 an unfired body of porous material (hereinafter referred to as a first sheet) in which the first slurry is formed into a sheet shape is created.
- the first slurry (spacer addition amount 5%) prepared in step S10 is passed through a slit having a gap width of 500 ⁇ m to form a sheet and dried.
- a doctor blade method may be used.
- the first sheet has a thickness of 150 ⁇ m.
- the first sheet is formed into a square shape having a side of 130 mm (see FIG. 4).
- step S14 as shown with the broken line in FIG. 4, the unbaking body (henceforth a 1st laminated body) 31B which laminates
- a plurality of first sheets having the same shape and the same dimensions described above are stacked to create a first stacked body 31B having a predetermined thickness.
- step S20 the spacer capable of forming the open pores of the edge portion 33 has a higher ratio than the above-described first ratio (5%) (
- a slurry hereinafter simply referred to as “second slurry” that is added simply by “second ratio”
- the same spacer as the first slurry is used as the spacer added to the second slurry.
- the added amount of the spacer is 20% (ceramic weight%). That is, in the step S20, a second slurry was prepared in which spacers were added at the second ratio (20%).
- step S22 an unfired body (hereinafter referred to as a second sheet) of a porous material in which the second slurry is formed into a sheet shape is created.
- the second slurry (spacer addition amount 20%) created in step S20 is passed through the slits described above to form a sheet and dried.
- the second sheet is formed in the same square shape as the first sheet, but the length of one side thereof is larger than that of the first sheet and is 150 mm. The thickness of the second sheet is the same as that of the first sheet.
- step S24 a plurality of second sheets are laminated to form an unfired body (hereinafter referred to as a second laminated body) 33B that forms the edge 33 of the porous member.
- a second laminated body 33B that forms the edge 33 of the porous member.
- a plurality of second sheets having the same shape and the same dimensions as described above are stacked to create a second stacked body 33B having substantially the same thickness as the first stacked body 31B.
- a through hole having a size and shape corresponding to the first stacked body 31B is formed in the second stacked body 33B.
- a square through hole 35 having a side of 130 mm corresponding to the first stack 31B is formed in the center of the second stacked body 33B having a side of 130 mm. To do.
- the through hole 35 may be slightly larger than the dimension of the first stacked body 31B.
- step S30 the 1st laminated body 31B is arrange
- step S26 the first stacked body 31B having a shape corresponding to the through hole 35 is inserted into the through hole 35 formed in the center of the second stacked body 33B. That is, the first stacked body 31B is fitted inside the second stacked body 33B on the same plane.
- the first laminate 31B and the second laminate 33B are integrated by thermocompression bonding at a predetermined temperature (for example, 60 ° C.) and a predetermined pressure (10 MPa).
- a predetermined temperature for example, 60 ° C.
- a predetermined pressure 10 MPa
- the unfired porous member is an unfired body of a hydrogen electrode that forms a solid oxide electrochemical cell. Therefore, on the porous member (hydrogen electrode 30), the layer of the electrolyte 20, the electrolyte, and the reaction suppression layer are laminated in the thickness direction and calcined.
- a slurry for producing the electrolyte 20 is prepared.
- an electrolyte slurry is prepared using YSZ (yttria stabilized zirconia) powder.
- the electrolyte layer is a dense layer that does not pass gas. For this reason, it is not necessary to add a spacer as described above to the slurry for electrolyte.
- the reaction suppression layer 40 uses a powder of ceria (hereinafter referred to as GDC) doped with Gd 2 O 3 to have a composition of (Gd 2 O 3 ) 0.1 (CeO 2 ) 0.9. Create a slurry for the layer. Similar to the electrolyte 20 layer, the reaction suppression layer 40 is a dense layer that does not allow gas to pass through, and the addition of a spacer is not necessary.
- GDC powder of ceria
- the screen of the slurry for electrolyte is screen-printed on the surface of the above-mentioned unfired porous member to form an unfired electrolyte layer. Further, a slurry for reaction suppression layer is screen-printed on the surface of the electrolyte layer to form an unfired reaction suppression layer.
- the electrolyte layer and the reaction suppression layer have a square shape with a side of 150 mm, as in the porous member described above. In this way, an unfired molded body is produced in which the porous member (hydrogen electrode), the electrolyte, and the reaction suppression layer are laminated in this order.
- the unfired molded body is degreased by heating in the atmosphere at a temperature of 600 ° C. for 2 hours.
- the degreased molded body is further heated (calcined) at a temperature of 1500 ° C. for 2 hours to obtain a fired body in which the hydrogen electrode 30, the electrolyte 20, and the reaction suppression layer 40 are laminated in this order.
- an oxygen electrode 50 is further formed on the surface of the reaction suppression layer 40 in the obtained fired body.
- a slurry for producing the oxygen electrode 50 is prepared. Specifically, a slurry for an oxygen electrode is prepared using LSCF (LaSrCoFe oxide) powder. Since the oxygen electrode 50 is a porous member through which gas passes, a spacer for forming open pores is added to the slurry. A slurry for the oxygen electrode is screen-printed on the surface of the reaction suppressing layer 40 in the fired body to form an unfired oxygen electrode layer. By heating this at a temperature of 1000 ° C.
- a sintered body of the solid oxide electrochemical cell 10 in which the hydrogen electrode 30, the electrolyte 20, the reaction suppression layer 40, and the oxygen electrode 50 are laminated in this order is obtained.
- the first laminated body 31B and the second laminated body 33B shown in FIG. 4 are completely bonded together to form a porous member sintered body (step S40).
- the oxygen electrode 50 (slurry for the oxygen electrode) is printed and fired so as to form a square shape with a side of 100 mm. That is, the oxygen electrode 50 is disposed in the region of the central part 31 of the hydrogen electrode 30 (the area is smaller than that of the central part 31).
- the edge portion 33 has a higher porosity, which is the ratio of open pores per unit volume, than the central portion 31.
- the edge portion 33 having a high porosity has a lower Young's modulus E in the thickness direction T than the center portion 31.
- the porosity is 40%.
- Young's modulus is 110 GPa.
- the porosity is 50%.
- the second ratio is 15%, the porosity is 35% and the Young's modulus is 119 GPa.
- the second ratio is 5%, the porosity is 30% and the Young's modulus is 145 GPa. In this way, the Young's modulus of the edge 33 can be controlled by adjusting the amount of spacer added, that is, the porosity.
- the edge 33 of the porous member has a lower Young's modulus in the thickness direction T than that of the central portion 31 by increasing the amount of spacer added compared to the central portion 31.
- the method of reducing the Young's modulus as compared with the central portion 31 is not limited to this.
- step S20 10% by weight of acrylic resin particles as a spacer is added to the second slurry as ceramic weight%, and Ag (silver) not included in the first slurry (step S10) is added to the ceramic. It is also preferable to add 5% by weight.
- the porosity was 33%
- the Young's modulus was 120 GPa
- substantially the same Young's modulus as when the porosity was 35% Young's modulus was 119 GPa
- the porous member that has different Young's modulus and porosity at the edge and the center is the hydrogen electrode 30, but the porous member according to the present invention is not limited to this. It is not something.
- the present invention can be applied to any porous member that forms part of a solid oxide electrochemical cell such as an oxygen electrode.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
This solid oxide electrochemical cell (10) has: electrolytes (20) capable of conducting oxygen ions; and a porous member (30) that is laminated on said electrolytes (20). An edge part (33) of the porous member (30) has a lower Young's modulus in the thickness direction than the central part (31) thereof that is situated on the inner side of the edge parts (33).
Description
本発明の実施形態は、固体酸化物電気化学セル及びその製造方法に関する。
Embodiments of the present invention relate to a solid oxide electrochemical cell and a method for manufacturing the same.
固体酸化物電気化学セルには、外部から燃料及び酸化剤の供給を受けて電気化学反応により連続的に発電する固体酸化物燃料電池(solid oxide fuel cell:以下「SOFC」と記す)や、高温の水蒸気を電気分解することにより水素と酸素を生成する固体酸化物電解セル(solid oxide electrolysis cell:以下「SOEC」と記す)がある。当該SOECを用いて水素を製造する方法として、高温の水蒸気を電気分解することにより水素と酸素を生成する方法、いわゆる「高温水蒸気電気分解法」がある。
Solid oxide electrochemical cells include a solid oxide fuel cell (hereinafter referred to as “SOFC”) that generates electricity continuously by an electrochemical reaction by supplying fuel and oxidant from the outside, and high temperature There is a solid oxide electrolysis cell (hereinafter referred to as “SOEC”) that generates hydrogen and oxygen by electrolyzing the water vapor. As a method for producing hydrogen using the SOEC, there is a method of producing hydrogen and oxygen by electrolyzing high-temperature steam, so-called “high-temperature steam electrolysis method”.
このような固体酸化物電気化学セルは、固体酸化物すなわちセラミックス材料や、多孔質材料等の比較的靱性が低い材料で構成されている。例えば、SOECは、一般的に、水蒸気を電気分解して水素と酸素イオンを生成する水素極と、ガスを通すことなく酸素イオンを伝導する電解質と、電解質からの酸素イオンを酸素にして外部通路に流出させる酸素極とを有する。特に、水素極及び酸素極は、それぞれ水蒸気及び酸素を内部に通すために、多孔質の固体酸化物(セラミックス)で構成されている。
Such a solid oxide electrochemical cell is composed of a material having a relatively low toughness such as a solid oxide, that is, a ceramic material or a porous material. For example, SOEC is generally a hydrogen electrode that electrolyzes water vapor to generate hydrogen and oxygen ions, an electrolyte that conducts oxygen ions without passing gas, and an external passage that converts oxygen ions from the electrolyte into oxygen. And an oxygen electrode that flows out into In particular, the hydrogen electrode and the oxygen electrode are composed of porous solid oxides (ceramics) in order to pass water vapor and oxygen, respectively.
固体酸化物電気化学セルにおいて、水素極、電解質、酸素極からなる単セルは、その厚さ方向に多数積層されてセルスタックを形成する。当該厚さ方向において隣り合う単セルの間には、セパレータが配置される。このようなセルスタックは、複数の単セル及びセパレータをアッセンブルする際に、多孔質材料で構成された部材にクラック等の破損が生じることがある。セルスタック内に生じたクラック等の破損を検知することは、困難である。よって、固体酸化物電気化学セルには、セルスタックを形成する際に、単セルに比較的大きな応力が作用しても、破損が生じにくい構造や材料が要望されている。
In a solid oxide electrochemical cell, a number of single cells composed of a hydrogen electrode, an electrolyte, and an oxygen electrode are stacked in the thickness direction to form a cell stack. A separator is disposed between adjacent single cells in the thickness direction. In such a cell stack, when a plurality of single cells and separators are assembled, damage such as cracks may occur in a member made of a porous material. It is difficult to detect breakage such as a crack generated in the cell stack. Therefore, there is a demand for a solid oxide electrochemical cell having a structure or material that is unlikely to break even when a relatively large stress is applied to a single cell when a cell stack is formed.
本発明が解決しようとする課題は、単セルを構成する部材に比較的大きな応力が作用しても、破損が生じにくい固体酸化物電気化学セルを提供することである。
The problem to be solved by the present invention is to provide a solid oxide electrochemical cell that is not easily damaged even when a relatively large stress is applied to members constituting the single cell.
本発明の実施形態の固体酸化物電気化学セルは、酸素イオンを伝導可能な電解質と、当該電解質に積層された多孔質部材と、を備え、前記多孔質部材のうち縁部は、当該縁部の内側にある中央部に比べて、前記厚さ方向のヤング率が低い。
A solid oxide electrochemical cell according to an embodiment of the present invention includes an electrolyte capable of conducting oxygen ions, and a porous member laminated on the electrolyte, and an edge of the porous member is the edge. The Young's modulus in the thickness direction is lower than that of the central portion on the inside of the plate.
以下に、本発明の実施形態について図面を参照して説明する。なお、以下に説明する実施形態により、本発明が限定されるものではなく、その要旨を逸脱しない範囲において種々の変更が可能である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments described below, and various modifications can be made without departing from the scope of the invention.
〔固体酸化物電気化学セルの構成例〕
まず、本実施形態の固体酸化物電気化学セルの概略構成について図1及び図2を用いて説明する。図1は、本実施形態の固体酸化物電気化学セルの断面図である。図2は、本実施形態の固体酸化物電気化学セルを分解した断面図である。なお、各図において固体酸化物電気化学セルの電解質の層の厚さ方向を矢印Tで示す。 [Configuration example of solid oxide electrochemical cell]
First, a schematic configuration of the solid oxide electrochemical cell of the present embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a cross-sectional view of the solid oxide electrochemical cell of this embodiment. FIG. 2 is an exploded cross-sectional view of the solid oxide electrochemical cell of this embodiment. In each figure, the thickness direction of the electrolyte layer of the solid oxide electrochemical cell is indicated by an arrow T.
まず、本実施形態の固体酸化物電気化学セルの概略構成について図1及び図2を用いて説明する。図1は、本実施形態の固体酸化物電気化学セルの断面図である。図2は、本実施形態の固体酸化物電気化学セルを分解した断面図である。なお、各図において固体酸化物電気化学セルの電解質の層の厚さ方向を矢印Tで示す。 [Configuration example of solid oxide electrochemical cell]
First, a schematic configuration of the solid oxide electrochemical cell of the present embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a cross-sectional view of the solid oxide electrochemical cell of this embodiment. FIG. 2 is an exploded cross-sectional view of the solid oxide electrochemical cell of this embodiment. In each figure, the thickness direction of the electrolyte layer of the solid oxide electrochemical cell is indicated by an arrow T.
図1及び図2に示すように、本実施形態の固体酸化物電気化学セル10は、高温の水蒸気を電気分解することにより水素と酸素を生成する、いわゆる固体酸化物電解セル(SOEC)であり、以下の説明において、単セル10と記す。単セル10は、ガスを通さない緻密な電解質20と、ガスを通す多孔質材料である水素極30及び酸素極50とを有している。水素極30及び酸素極50は、それぞれ電解質20の厚さ方向Tの外側に配置されている。電解質20は、水素極30と酸素極50との間に挟まれている。
As shown in FIGS. 1 and 2, the solid oxide electrochemical cell 10 of this embodiment is a so-called solid oxide electrolysis cell (SOEC) that generates hydrogen and oxygen by electrolyzing high-temperature water vapor. In the following description, it will be referred to as a single cell 10. The single cell 10 has a dense electrolyte 20 that does not allow gas to pass through, and a hydrogen electrode 30 and an oxygen electrode 50 that are porous materials through which gas passes. The hydrogen electrode 30 and the oxygen electrode 50 are disposed outside the electrolyte 20 in the thickness direction T, respectively. The electrolyte 20 is sandwiched between the hydrogen electrode 30 and the oxygen electrode 50.
電解質20は、酸素イオンを伝導可能であり且つガスを通さない材料で構成されている。電解質は、その厚さ方向Tに垂直な方向に広がる板状をなしている。電解質20は、SOECの場合、水素極30からの酸素イオンを酸素極50に伝導する。
The electrolyte 20 is made of a material that can conduct oxygen ions and does not pass gas. The electrolyte has a plate shape extending in a direction perpendicular to the thickness direction T thereof. In the case of SOEC, the electrolyte 20 conducts oxygen ions from the hydrogen electrode 30 to the oxygen electrode 50.
電解質20を構成する材料には、例えば、安定化ジルコニア(一例として、イットリア安定化ジルコニア(YSZ))、ペロブスカイト型酸化物、またはセリア(CeO2)系電解質固溶体イットリア安定化ジルコニア(YSZ)が用いられる。
安定化ジルコニアとは、安定化剤をジルコニア中に固溶させたジルコニアである。安定化剤としては、例えば、Y2O3、Sc2O3、Yb2O3、Gd2O3、Nd2O3、CaO、MgOが挙げられる。また、ペロブスカイト型酸化物としては、例えば、LaSrGaMg酸化物、LaSrGaMgCo酸化物、およびLaSrGaMgCoFe酸化物が挙げられる。また、セリア系電解質固溶体としては、CeO2を含む材料に、Sm2O3、Gd2O3、Y2O3、またはLa2O3などを固溶させた固溶体が挙げられる。 As a material constituting theelectrolyte 20, for example, stabilized zirconia (for example, yttria stabilized zirconia (YSZ)), perovskite oxide, or ceria (CeO 2 ) based electrolyte solid solution yttria stabilized zirconia (YSZ) is used. It is done.
Stabilized zirconia is zirconia in which a stabilizer is dissolved in zirconia. Examples of the stabilizer include Y 2 O 3 , Sc 2 O 3 , Yb 2 O 3 , Gd 2 O 3 , Nd 2 O 3 , CaO, and MgO. Examples of the perovskite oxide include LaSrGaMg oxide, LaSrGaMgCo oxide, and LaSrGaMgCoFe oxide. As the ceria-based electrolyte solid solution, a solid solution in which Sm 2 O 3 , Gd 2 O 3 , Y 2 O 3 , La 2 O 3 , or the like is dissolved in a material containing CeO 2 can be given.
安定化ジルコニアとは、安定化剤をジルコニア中に固溶させたジルコニアである。安定化剤としては、例えば、Y2O3、Sc2O3、Yb2O3、Gd2O3、Nd2O3、CaO、MgOが挙げられる。また、ペロブスカイト型酸化物としては、例えば、LaSrGaMg酸化物、LaSrGaMgCo酸化物、およびLaSrGaMgCoFe酸化物が挙げられる。また、セリア系電解質固溶体としては、CeO2を含む材料に、Sm2O3、Gd2O3、Y2O3、またはLa2O3などを固溶させた固溶体が挙げられる。 As a material constituting the
Stabilized zirconia is zirconia in which a stabilizer is dissolved in zirconia. Examples of the stabilizer include Y 2 O 3 , Sc 2 O 3 , Yb 2 O 3 , Gd 2 O 3 , Nd 2 O 3 , CaO, and MgO. Examples of the perovskite oxide include LaSrGaMg oxide, LaSrGaMgCo oxide, and LaSrGaMgCoFe oxide. As the ceria-based electrolyte solid solution, a solid solution in which Sm 2 O 3 , Gd 2 O 3 , Y 2 O 3 , La 2 O 3 , or the like is dissolved in a material containing CeO 2 can be given.
水素極30は、電解質20の厚さ方向の外側に配置されており、当該電解質20に隣接して積層されている。水素極30は、開放気孔(open pore)にガスを通す多孔質材料で構成されている。水素極30は、SOECの場合、水蒸気通路から水蒸気の供給を受けて、当該水蒸気を電気分解して水素と酸素イオンを生じさせる。
The hydrogen electrode 30 is disposed outside the electrolyte 20 in the thickness direction, and is stacked adjacent to the electrolyte 20. The hydrogen electrode 30 is made of a porous material that allows gas to pass through open pores. In the case of SOEC, the hydrogen electrode 30 receives supply of water vapor from a water vapor passage and electrolyzes the water vapor to generate hydrogen and oxygen ions.
水素極30は、触媒の粒子および酸素イオン伝導性の酸化物の粒子を含む。触媒には、例えば、ニッケル、銀、または白金などの金属や、酸化ニッケル、または酸化コバルトなどの金属酸化物が挙げられる。酸素イオン伝導性の酸化物には、例えば、サマリア安定化セリア(SDC)、またはガドリニア安定化セリア(GDC)などのセリア系酸化物、またはイットリア安定化ジルコニア(YSZ)などのジルコニア系酸化物が挙げられる。
一例として、水素極30を構成する材料に、酸化ニッケル(NiO)とイットリア安定化ジルコニア(YSZ)の焼結体が用いられる。 Thehydrogen electrode 30 includes catalyst particles and oxygen ion conductive oxide particles. Examples of the catalyst include metals such as nickel, silver, and platinum, and metal oxides such as nickel oxide and cobalt oxide. Examples of the oxygen ion conductive oxide include ceria-based oxides such as samaria-stabilized ceria (SDC) or gadolinia-stabilized ceria (GDC), or zirconia-based oxides such as yttria-stabilized zirconia (YSZ). Can be mentioned.
As an example, a sintered body of nickel oxide (NiO) and yttria stabilized zirconia (YSZ) is used as a material constituting thehydrogen electrode 30.
一例として、水素極30を構成する材料に、酸化ニッケル(NiO)とイットリア安定化ジルコニア(YSZ)の焼結体が用いられる。 The
As an example, a sintered body of nickel oxide (NiO) and yttria stabilized zirconia (YSZ) is used as a material constituting the
酸素極50は、電解質20に対して水素極30と厚さ方向Tの反対側に配置されている。酸素極50は、ガスを通す多孔質材料で構成されている。酸素極50は、酸素極24からの酸素イオンを酸素にして空気通路に放出する。
The oxygen electrode 50 is disposed on the opposite side of the hydrogen electrode 30 and the thickness direction T with respect to the electrolyte 20. The oxygen electrode 50 is made of a porous material that allows gas to pass through. The oxygen electrode 50 releases oxygen ions from the oxygen electrode 24 into the air passage as oxygen.
酸素極50を構成する材料には、例えば、ランタン・ストロンチウム・マンガン(LaSrMn)系ペロブスカイト型酸化物(LSM)、LaSrCo酸化物(LSC)、LaSrCoFe酸化物(LSCF)、LaSrFe酸化物(LSF)、LaSrMnCo酸化物(LSMC)、LaSrMnCr酸化物(LSMC)、LaCoMn酸化物(LCM)、LaSrCu酸化物(LSCu)、LaSrFeNi酸化物(LSFN)、LaNiFe酸化物(LNF)、LaBaCo酸化物(LBC)、LaNiCo酸化物(LNC)、LaSrAlFe酸化物(LSAF)、LaSrCoNiCu酸化物(LSCNC)、LaSrFeNiCu酸化物(LSFNC)、LaNi酸化物(LN)、GdSrCo酸化物(GSC)、GdSrMn酸化物(GSM)、PrCaMn酸化物(PCaM)、PrSrMn酸化物(PSM)、PrBaCo酸化物(PBC)、SmSrCo酸化物(SSC)、NdSmCo酸化物(NSC)、BiSrCaCu酸化物(BSCC)、BaLaFeCo酸化物(BLFC)、BaSrFeCo酸化物(BSFC)、YSrFeCo酸化物(YLFC)、YCuCoFe酸化物(YCCF)、またはYBaCu酸化物(YBC)が挙げられる。
Examples of the material constituting the oxygen electrode 50 include lanthanum, strontium, manganese (LaSrMn) -based perovskite oxide (LSM), LaSrCo oxide (LSC), LaSrCoFe oxide (LSCF), LaSrFe oxide (LSF), LaSrMnCo oxide (LSMC), LaSrMnCr oxide (LSMC), LaCoMn oxide (LCM), LaSrCu oxide (LSCu), LaSrFeNi oxide (LSFN), LaNiFe oxide (LNF), LaBaCo oxide (LBC), LaNiCo Oxide (LNC), LaSrAlFe oxide (LSAF), LaSrCoNiCu oxide (LSCNC), LaSrFeNiCu oxide (LSFNC), LaNi oxide (LN), GdSrCo oxide (GSC), GdSrM Oxide (GSM), PrCaMn oxide (PCaM), PrSrMn oxide (PSM), PrBaCo oxide (PBC), SmSrCo oxide (SSC), NdSmCo oxide (NSC), BiSrCaCu oxide (BSCC), BaLaFeCo oxidation (BLFC), BaSrFeCo oxide (BSFC), YSrFeCo oxide (YLFC), YCuCoFe oxide (YCCF), or YBaCu oxide (YBC).
単セル10は、焼結時(単セル10の製作時)における酸素極50と電解質20との間における元素の拡散と反応を抑制する反応抑制層40を有している。反応抑制層40は、ガスを通さない緻密な材料で構成されており、且つ酸素イオンを伝導可能なものである。すなわち、単セル10は、水素極30、電解質20、反応抑制層40、酸素極50の順に積層される。
The single cell 10 has a reaction suppression layer 40 that suppresses element diffusion and reaction between the oxygen electrode 50 and the electrolyte 20 during sintering (when the single cell 10 is manufactured). The reaction suppression layer 40 is made of a dense material that does not allow gas to pass through, and can conduct oxygen ions. That is, the single cell 10 is laminated in the order of the hydrogen electrode 30, the electrolyte 20, the reaction suppression layer 40, and the oxygen electrode 50.
本実施形態において、水素極30、電解質20、反応抑制層40及び酸素極50は、厚さ方向Tから見て、それぞれ矩形(例えば、略正方形)をなしている。水素極30、電解質20及び反応抑制層40は、略同一形状の矩形をなしており、酸素極50は、水素極30などより小さい矩形(例えば、略正方形)をなしている。
In this embodiment, the hydrogen electrode 30, the electrolyte 20, the reaction suppression layer 40, and the oxygen electrode 50 are each rectangular (for example, approximately square) when viewed from the thickness direction T. The hydrogen electrode 30, the electrolyte 20, and the reaction suppression layer 40 have a substantially rectangular shape, and the oxygen electrode 50 has a smaller rectangle (for example, a substantially square shape) such as the hydrogen electrode 30.
すなわち、本実施形態の単セル10は、水素極30側を支持体とする水素極支持型である。この場合、水素極30の全体が本来の水素極として機能する必要はない。水素極30を図で下側の基材層と上側の水素極活性層の2層構造とし、水素極活性層のみに水素極本来の機能を持たせることも可能である。但し、基材層と水素極活性層の構成材料を事実上同一とすることができる。この場合、基材層と水素極活性層には実質的な差異がなく、水素極30全体が、基材層と水素極活性層の双方の役割を果たすことができる。
That is, the single cell 10 of this embodiment is a hydrogen electrode support type in which the hydrogen electrode 30 side is a support. In this case, the entire hydrogen electrode 30 does not need to function as an original hydrogen electrode. The hydrogen electrode 30 may have a two-layer structure of a lower base layer and an upper hydrogen electrode active layer in the figure, and only the hydrogen electrode active layer may have the original function of the hydrogen electrode. However, the constituent materials of the base layer and the hydrogen electrode active layer can be made substantially the same. In this case, there is no substantial difference between the base material layer and the hydrogen electrode active layer, and the entire hydrogen electrode 30 can serve as both the base material layer and the hydrogen electrode active layer.
なお、酸素極側を支持体とする酸素極支持型の単セルとすることもできる。この場合、電解質20及び反応抑制層40、酸素極50は、略同一形状の矩形をなしており、水素極30は、酸素極50などより小さい矩形(例えば、略正方形)をなす。
In addition, it can also be set as the oxygen electrode support type single cell which uses an oxygen electrode side as a support body. In this case, the electrolyte 20, the reaction suppression layer 40, and the oxygen electrode 50 have a substantially rectangular shape, and the hydrogen electrode 30 has a smaller rectangle (for example, a substantially square shape) such as the oxygen electrode 50.
このように構成された単セル10は、2つのセパレータ80,90の間に配置されている。厚さ方向Tにおいて、セパレータ80と水素極30との間には、単セルに電流を流すための板状の導体(以下、導体板と記す)60が挟まれている。同様に、セパレータ90と酸素極50との間には、導体板65が挟まれている。
The single cell 10 configured as described above is disposed between the two separators 80 and 90. In the thickness direction T, a plate-like conductor (hereinafter referred to as a conductor plate) 60 for passing a current through the single cell is sandwiched between the separator 80 and the hydrogen electrode 30. Similarly, a conductor plate 65 is sandwiched between the separator 90 and the oxygen electrode 50.
また、セパレータ80とセパレータ90の間には、締付板70が配置されている。厚さ方向Tに垂直な方向において、当該締付板70の内縁部72は、反応抑制層40の縁部44と接している。締付板70は、当該縁部44を介して単セル10に締め付け力(図1に矢印Fで示す)を加えている。外縁部44を含む反応抑制層40とセパレータ80との間には、導体板60、水素極30及び電解質20があり、これら部材のうち縁部33には、特に、締め付け力Fに起因する応力が作用している。当該応力が大きいと単セル10のうち多孔質材料で構成された多孔質部材、例えば、水素極30にクラック等の破損が生じる虞がある。
Further, a clamping plate 70 is disposed between the separator 80 and the separator 90. In the direction perpendicular to the thickness direction T, the inner edge 72 of the fastening plate 70 is in contact with the edge 44 of the reaction suppression layer 40. The clamping plate 70 applies a clamping force (indicated by an arrow F in FIG. 1) to the single cell 10 through the edge portion 44. Between the reaction suppression layer 40 including the outer edge portion 44 and the separator 80, there are the conductor plate 60, the hydrogen electrode 30, and the electrolyte 20, and among these members, the edge portion 33 particularly has stress caused by the fastening force F. Is working. If the stress is large, damage such as cracks may occur in the porous member of the single cell 10 made of a porous material, for example, the hydrogen electrode 30.
そこで、本実施形態の単セル10においては、多孔質部材である水素極30は、その縁部33が、当該縁部33の内側にある中央部31に比べて、厚さ方向Tのヤング率が低くなるよう構成されている。縁部33のヤング率を室温近傍で、例えば、130GPa以下とすることができる。
この結果、縁部33の曲げ強度、圧縮強度が、中央部31に比べて、大きくなる。例えば、室温近傍での縁部33の曲げ強度を50MPa以上、圧縮強度を150MPa以上とすることができる。
ここで、縁部33での室温近傍でのヤング率のばらつきが、小さいこと、例えば、10GPa以下であることが好ましい。 Therefore, in thesingle cell 10 according to the present embodiment, the hydrogen electrode 30 that is a porous member has a Young's modulus in the thickness direction T at the edge 33 compared to the central portion 31 inside the edge 33. Is configured to be low. The Young's modulus of the edge portion 33 can be set to, for example, 130 GPa or less near room temperature.
As a result, the bending strength and compressive strength of theedge portion 33 are greater than those of the central portion 31. For example, the bending strength of the edge 33 near room temperature can be 50 MPa or more, and the compressive strength can be 150 MPa or more.
Here, it is preferable that the variation in Young's modulus near the room temperature at theedge 33 is small, for example, 10 GPa or less.
この結果、縁部33の曲げ強度、圧縮強度が、中央部31に比べて、大きくなる。例えば、室温近傍での縁部33の曲げ強度を50MPa以上、圧縮強度を150MPa以上とすることができる。
ここで、縁部33での室温近傍でのヤング率のばらつきが、小さいこと、例えば、10GPa以下であることが好ましい。 Therefore, in the
As a result, the bending strength and compressive strength of the
Here, it is preferable that the variation in Young's modulus near the room temperature at the
図1では、水素極30の中央部31と縁部33の境界(中央部31の外周)は、酸素極50の外周と一致している。水素極30の中央部31と酸素極50を対応させることで、縁部33のヤング率の低減(強度の向上)と単セル10の性能の確保との両立が容易となる。
In FIG. 1, the boundary between the central portion 31 and the edge portion 33 of the hydrogen electrode 30 (the outer periphery of the central portion 31) coincides with the outer periphery of the oxygen electrode 50. By making the central portion 31 of the hydrogen electrode 30 and the oxygen electrode 50 correspond to each other, it is easy to achieve both reduction of Young's modulus (improvement of strength) of the edge portion 33 and securing of the performance of the single cell 10.
ここで、中央部31と酸素極50の外周が一致しなくてもよい。例えば、中央部31の外周が、酸素極の外周を囲んでもよい(酸素極の外周より大きい)。逆に、中央部31の外周が、酸素極の外周に囲まれてもよい(酸素極の外周より小さい)。要するに、中央部31と酸素極50が対応して配置されていればよい。
また、水素極30の中央部31と縁部33の境界は、水素極30の中心と外周の等距離地点(2分の1地点)より外周側にあることが好ましく、更には2分の1地点と外周の等距離地点(4分の3地点)より中心側にあることが好ましい。 Here, the outer periphery of thecentral portion 31 and the oxygen electrode 50 may not coincide. For example, the outer periphery of the central part 31 may surround the outer periphery of the oxygen electrode (larger than the outer periphery of the oxygen electrode). Conversely, the outer periphery of the central portion 31 may be surrounded by the outer periphery of the oxygen electrode (smaller than the outer periphery of the oxygen electrode). In short, it is only necessary that the central portion 31 and the oxygen electrode 50 are arranged in correspondence.
In addition, the boundary between thecentral portion 31 and the edge portion 33 of the hydrogen electrode 30 is preferably located on the outer peripheral side from the equidistant point (1/2 point) between the center and the outer periphery of the hydrogen electrode 30, and moreover, one half. It is preferable that the point is closer to the center than the equidistant point (three quarters) on the outer periphery.
また、水素極30の中央部31と縁部33の境界は、水素極30の中心と外周の等距離地点(2分の1地点)より外周側にあることが好ましく、更には2分の1地点と外周の等距離地点(4分の3地点)より中心側にあることが好ましい。 Here, the outer periphery of the
In addition, the boundary between the
本実施形態の単セル10によれば、水素極30は、上述した締め付け力Fに起因する応力が作用したときに、その縁部33が応力に応じて歪み、当該縁部33に作用する応力を緩和する。これにより、当該縁部33に比較的大きな応力が作用した場合であっても、多孔質部材である水素極33にクラック等の破損が生じにくくなる。
According to the unit cell 10 of the present embodiment, when the stress due to the fastening force F described above is applied to the hydrogen electrode 30, the edge 33 is distorted according to the stress, and the stress acting on the edge 33. To ease. As a result, even if a relatively large stress is applied to the edge 33, the hydrogen electrode 33, which is a porous member, is less likely to be damaged, such as a crack.
ここで、水素極30が、基材層と水素極活性層の2層構造である場合、基材層のみ中央部31と縁部33のヤング率を異ならせてもよい。一般に、基材層は水素極活性層より厚いため、応力が印加された場合、基材層の方が割れやすいからである。
Here, when the hydrogen electrode 30 has a two-layer structure of a base material layer and a hydrogen electrode active layer, the Young's modulus of the central portion 31 and the edge portion 33 may be different only in the base material layer. This is because, in general, the base material layer is thicker than the hydrogen electrode active layer, and therefore when the stress is applied, the base material layer is more easily broken.
このように、縁部33と中央部31のヤング率を異ならせるのは、気孔率(単位体積あたりに開放気孔が占める比率)を異ならせることで可能となる。具体的には、水素極30の縁部33は、中央部31に比べて、気孔率が高くなるよう構成されている。
Thus, the Young's modulus of the edge portion 33 and the central portion 31 can be made different by making the porosity (ratio occupied by open pores per unit volume) different. Specifically, the edge 33 of the hydrogen electrode 30 is configured to have a higher porosity than the center 31.
このとき、縁部33と中央部31の気孔率はそれぞれ33%以上、75%以下および25%以上、65%以下(より好ましくは60%以上、72%以下および50%以上、60%以下)とするのが好ましい(但し、縁部33の気孔率は中央部31より高い)。縁部33と中央部31の気孔率を適宜に異ならせることで、縁部33のヤング率を下げつつ、中央部31では水素極30としての機能を確保できる。
後述の実施例では、縁部33の気孔率を30~50%としているが、この範囲よりも気孔率をより高くすることで、よりヤング率を低減できる(強度向上)。 At this time, the porosity of theedge portion 33 and the central portion 31 is 33% or more, 75% or less, 25% or more, and 65% or less (more preferably 60% or more, 72% or less, 50% or more, 60% or less), respectively. (However, the porosity of the edge portion 33 is higher than that of the central portion 31). By appropriately varying the porosity of the edge portion 33 and the central portion 31, the function as the hydrogen electrode 30 can be secured in the central portion 31 while lowering the Young's modulus of the edge portion 33.
In the examples described later, the porosity of theedge portion 33 is set to 30 to 50%, but the Young's modulus can be further reduced (strength improvement) by making the porosity higher than this range.
後述の実施例では、縁部33の気孔率を30~50%としているが、この範囲よりも気孔率をより高くすることで、よりヤング率を低減できる(強度向上)。 At this time, the porosity of the
In the examples described later, the porosity of the
中央部31と縁部33で空孔率を異ならせる代わりに、または空孔率を異ならせると共に、中央部31と縁部33の金属含有量を異ならせてもよい。縁部33の金属含有量を中央部31より大きくすることで、縁部33のヤング率を、中央部31に比べて、低くできる。例えば、中央部31に金属を添加せず、縁部33に金属を添加する。金属材料が、水素極30を構成する酸化物の粒子の間に介在することで、金属材料の添加量に応じて、縁部33のヤング率が低くなる。
この金属には、例えば、Pt(プラチナ),Au(金)、Ag(銀)など酸化されにくい金属を用いることができる。 Instead of making the porosity different between thecentral portion 31 and the edge portion 33, or while making the porosity different, the metal content of the central portion 31 and the edge portion 33 may be made different. By making the metal content of the edge portion 33 larger than that of the central portion 31, the Young's modulus of the edge portion 33 can be made lower than that of the central portion 31. For example, metal is not added to the central portion 31 but metal is added to the edge portion 33. By interposing the metal material between the oxide particles constituting the hydrogen electrode 30, the Young's modulus of the edge portion 33 is lowered according to the amount of the metal material added.
As this metal, for example, a metal which is not easily oxidized such as Pt (platinum), Au (gold), Ag (silver) can be used.
この金属には、例えば、Pt(プラチナ),Au(金)、Ag(銀)など酸化されにくい金属を用いることができる。 Instead of making the porosity different between the
As this metal, for example, a metal which is not easily oxidized such as Pt (platinum), Au (gold), Ag (silver) can be used.
中央部31に金属を添加しない場合、縁部33への金属の添加量は、1%以上、15%以下(より好ましくは2%以上、10%以下)とするのが好ましい。中央部31に金属を実質的に添加せず、縁部33に適度の量を添加することで、縁部33のヤング率を下げつつ、中央部31では水素極30としての機能を確保できる。
When no metal is added to the central portion 31, the amount of metal added to the edge portion 33 is preferably 1% or more and 15% or less (more preferably 2% or more and 10% or less). By adding an appropriate amount to the edge 33 without substantially adding metal to the center 31, the function as the hydrogen electrode 30 can be secured at the center 31 while lowering the Young's modulus of the edge 33.
ここで、添加量(例えば、1%)は、水素極30のセラミック成分(触媒および酸化物)の重量W0に対する添加物(ここでは、金属)の重量Wの比率(セラミック重量%=(W/W0)*100)で表される。以下同様に、添加量は、セラミック重量%で表すものとする。
なお、後の焼成で気化しない添加物(例えば、金属)は、焼成の前後で、添加量(セラミック重量%)がほぼ一定となる。 Here, the addition amount (for example, 1%) is the ratio of the weight W of the additive (here, metal) to the weight W0 of the ceramic components (catalyst and oxide) of the hydrogen electrode 30 (ceramic weight% = (W / W0) * 100). Hereinafter, similarly, the addition amount is expressed by ceramic weight%.
In addition, the additive amount (ceramic weight%) of the additive (for example, metal) that does not vaporize in the subsequent firing becomes substantially constant before and after firing.
なお、後の焼成で気化しない添加物(例えば、金属)は、焼成の前後で、添加量(セラミック重量%)がほぼ一定となる。 Here, the addition amount (for example, 1%) is the ratio of the weight W of the additive (here, metal) to the weight W0 of the ceramic components (catalyst and oxide) of the hydrogen electrode 30 (ceramic weight% = (W / W0) * 100). Hereinafter, similarly, the addition amount is expressed by ceramic weight%.
In addition, the additive amount (ceramic weight%) of the additive (for example, metal) that does not vaporize in the subsequent firing becomes substantially constant before and after firing.
中央部31と縁部33で空孔率を異ならせ、かつ縁部33に金属を添加する場合、縁部33と中央部31の気孔率はそれぞれ、30%以上、70%以下および25%以上、60%以下とし、金属の添加量を3%以上、8%以下とする(より好ましくは空孔率を55%以上、65%以下および50%以上、60%以下とし、金属の添加量を4%以上、6%以下とする)とするのが好ましい(但し、縁部33の気孔率は中央部31より大きい)。
When the porosity is different between the central portion 31 and the edge portion 33 and a metal is added to the edge portion 33, the porosity of the edge portion 33 and the central portion 31 is 30% or more, 70% or less, and 25% or more, respectively. 60% or less, and the addition amount of metal is 3% or more and 8% or less (more preferably, the porosity is 55% or more, 65% or less and 50% or more and 60% or less, and the addition amount of metal is 4% or more and 6% or less) (however, the porosity of the edge portion 33 is larger than that of the central portion 31).
上記の説明は、水素極支持型の単セル10を前提とする説明であった。酸素極支持型の単セルの場合、酸素極(支持層)の縁部が、当該縁部の内側にある中央部に比べて、厚さ方向Tのヤング率が低くなるよう構成すればよい。
The above description is based on the assumption that the unit cell 10 is of the hydrogen electrode support type. In the case of an oxygen electrode-supported single cell, the edge of the oxygen electrode (support layer) may be configured such that the Young's modulus in the thickness direction T is lower than the central part inside the edge.
以上に説明した多孔質部材(本実施形態においては、水素極30)を含む単セルの製造方法について、以下に説明する。
A method of manufacturing a single cell including the porous member described above (in this embodiment, the hydrogen electrode 30) will be described below.
〔固体酸化物電気化学セルの製造方法〕
本実施形態の固体酸化物電気化学セルの製造方法の一例について図3及び図4を参照して説明する。図3は、本実施形態の固体酸化物電気化学セルの製造方法のうち混合粉末から多孔質部材の焼結体を得るまで製作工程を説明するフローチャートである。図4は、本実施形態の固体酸化物電気化学セルの多孔質部材を形成する第1積層体と第2積層体との配置関係を示す図である。 [Method for producing solid oxide electrochemical cell]
An example of the manufacturing method of the solid oxide electrochemical cell of this embodiment is demonstrated with reference to FIG.3 and FIG.4. FIG. 3 is a flowchart for explaining the manufacturing process until the sintered body of the porous member is obtained from the mixed powder in the manufacturing method of the solid oxide electrochemical cell of the present embodiment. FIG. 4 is a diagram showing an arrangement relationship between the first stacked body and the second stacked body that form the porous member of the solid oxide electrochemical cell of the present embodiment.
本実施形態の固体酸化物電気化学セルの製造方法の一例について図3及び図4を参照して説明する。図3は、本実施形態の固体酸化物電気化学セルの製造方法のうち混合粉末から多孔質部材の焼結体を得るまで製作工程を説明するフローチャートである。図4は、本実施形態の固体酸化物電気化学セルの多孔質部材を形成する第1積層体と第2積層体との配置関係を示す図である。 [Method for producing solid oxide electrochemical cell]
An example of the manufacturing method of the solid oxide electrochemical cell of this embodiment is demonstrated with reference to FIG.3 and FIG.4. FIG. 3 is a flowchart for explaining the manufacturing process until the sintered body of the porous member is obtained from the mixed powder in the manufacturing method of the solid oxide electrochemical cell of the present embodiment. FIG. 4 is a diagram showing an arrangement relationship between the first stacked body and the second stacked body that form the porous member of the solid oxide electrochemical cell of the present embodiment.
まず、固体酸化物電気化学セルを形成する未焼成の多孔質部材の製作方法について説明する。本製造例において、未焼成の多孔質部材は、一例として水素極30(基材層)である。当該水素極30は、ヤング率の異なる縁部33と中央部31とを含む。当該縁部33は、中央部31に比べて、単位体積あたりに開放気孔が占める比率である気孔率が高い。
First, a method for manufacturing an unfired porous member for forming a solid oxide electrochemical cell will be described. In this production example, the unfired porous member is, for example, the hydrogen electrode 30 (base material layer). The hydrogen electrode 30 includes an edge portion 33 and a central portion 31 having different Young's moduli. The edge portion 33 has a higher porosity, which is a ratio occupied by open pores per unit volume, compared to the central portion 31.
まず、ステップS02において、縁部33及び中央部31を含む基材層(水素極30)となる混合粉末を作成する。具体的には、NiO(酸化ニッケル)の粉末と、YSZ(イットリア安定化ジルコニア)の粉末とを、有機溶媒であるメチルエチルケトンを用いて混合する。本製造例においては、NiOは、40gであり、YSZは、60gであり、メチルエチルケトンは、100gである。これにより、NiO-YSZ混合粉末が作成される。
First, in step S02, a mixed powder to be a base material layer (hydrogen electrode 30) including the edge portion 33 and the central portion 31 is created. Specifically, NiO (nickel oxide) powder and YSZ (yttria stabilized zirconia) powder are mixed using methyl ethyl ketone, which is an organic solvent. In this production example, NiO is 40 g, YSZ is 60 g, and methyl ethyl ketone is 100 g. Thereby, a NiO-YSZ mixed powder is prepared.
そして、多孔質部材のうち中央部31を製作するために、まずステップS10において、当該中央部31の開放気孔を形成可能なスペーサ(例えば、樹脂の粒子)が所定の比率で添加されたスラリーを作成する。当該スラリーは、NiO-YSZ混合粉末が液体中に分散したものである。具体的には、ステップS01において作成されたNiO-YSZ混合粉末を、液体に投入し、当該液体内において混合粉末を分散させて、スラリーを作成する。当該スラリーには、混合粉末を分散させる分散液(分散剤)として、トリデシルエーテル酢酸(正式名:ポリオキシエチレントリデシルエーテル酢酸ナトリウム)を1%添加した。既述のように、この添加量1%は、セラミック成分(ここでは、NiO-YSZ混合粉末)の重量W0に対する添加物(ここでは、分散剤)の重量Wの比率(セラミック重量%)で表される。
また、バインダ(binder)として、PVB(ポリビニルブチラール)を添加した。当該バインダ(PVB)の添加量は、4%(セラミック重量%)である。 In order to manufacture thecentral portion 31 of the porous member, first, in step S10, a slurry to which spacers (for example, resin particles) capable of forming open pores of the central portion 31 are added at a predetermined ratio is prepared. create. The slurry is a mixture of NiO-YSZ mixed powder dispersed in a liquid. Specifically, the NiO—YSZ mixed powder prepared in step S01 is charged into a liquid, and the mixed powder is dispersed in the liquid to prepare a slurry. 1% of tridecyl ether acetic acid (formal name: sodium polyoxyethylene tridecyl ether acetate) was added to the slurry as a dispersion (dispersing agent) for dispersing the mixed powder. As described above, the addition amount 1% is expressed by the ratio (ceramic weight%) of the weight W of the additive (here, the dispersant) to the weight W0 of the ceramic component (here, NiO—YSZ mixed powder). Is done.
Moreover, PVB (polyvinyl butyral) was added as a binder. The amount of the binder (PVB) added is 4% (ceramic weight%).
また、バインダ(binder)として、PVB(ポリビニルブチラール)を添加した。当該バインダ(PVB)の添加量は、4%(セラミック重量%)である。 In order to manufacture the
Moreover, PVB (polyvinyl butyral) was added as a binder. The amount of the binder (PVB) added is 4% (ceramic weight%).
また、上述したスラリーには、気孔(pore)を形成するためのスペーサ(spacer)、いわゆる気孔形成剤として、粒径が約1μmのアクリル樹脂の粒子を添加した。当該スペーサの添加量は、5%(セラミック重量%)である。当該比率を以下に「第1の比率」と記す。つまり当該ステップS10においては、スペーサが第1の比率(5%)で添加されたスラリー(以下、第1スラリーと記す)を作成した。
In addition, acrylic resin particles having a particle diameter of about 1 μm were added to the above-mentioned slurry as spacers for forming pores, so-called pore forming agents. The added amount of the spacer is 5% (ceramic weight%). This ratio is referred to as “first ratio” below. That is, in the step S10, a slurry (hereinafter referred to as a first slurry) in which spacers were added at a first ratio (5%) was created.
なお、当該スペーサは、後の工程(焼結工程)において除去されて焼結体内に空隙を生じさせ、具体的には、焼結体の外表面に通じている気孔、いわゆる開放気孔(open pore)を生じさせる。
The spacer is removed in a later step (sintering step) to create a void in the sintered body. Specifically, the spacer communicates with the outer surface of the sintered body, so-called open pore (open pore). ).
そして、ステップS12において、当該第1スラリーがシート状に成形された多孔質材料の未焼成体(以下、第1シートと記す)を作成する。具体的には、ステップS10において作成された第1スラリー(スペーサ添加量5%)を、空隙の幅が500μmのスリットに通すことにより、シート状にして、乾燥させる。なお、ドクターブレード法を用いるものとしても良い。本製造例において、第1シートは、その厚さが150μmである。当該第1シートは、一辺が130mmの正方形状に成形される(図4参照)。
Then, in step S12, an unfired body of porous material (hereinafter referred to as a first sheet) in which the first slurry is formed into a sheet shape is created. Specifically, the first slurry (spacer addition amount 5%) prepared in step S10 is passed through a slit having a gap width of 500 μm to form a sheet and dried. A doctor blade method may be used. In this production example, the first sheet has a thickness of 150 μm. The first sheet is formed into a square shape having a side of 130 mm (see FIG. 4).
そして、ステップS14において、図4に破線で示すように、複数の第1シートを積層して、多孔質部材の中央部31を形成する未焼成体(以下、第1積層体と記す)31Bを作成する。本製造例においては、上述した同一形状及び同一寸法の複数の第1シートを積層して、所定の厚さの第1積層体31Bを作成する。
And in step S14, as shown with the broken line in FIG. 4, the unbaking body (henceforth a 1st laminated body) 31B which laminates | stacks a some 1st sheet | seat and forms the center part 31 of a porous member. create. In this production example, a plurality of first sheets having the same shape and the same dimensions described above are stacked to create a first stacked body 31B having a predetermined thickness.
一方、多孔質部材のうち縁部33を製作するために、まずステップS20において、縁部33の開放気孔を形成可能なスペーサが、上述した第1の比率(5%)に比べて高い比率(以下、単に「第2の比率」と記す)で添加されたスラリー(以下、第2スラリーと記す)を作成する。本製造例において、第2スラリーに添加されるスペーサは、第1スラリーと同じものが用いられる。当該スペーサの添加量は、20%(セラミック重量%)である。つまり、当該ステップS20においては、スペーサが第2の比率(20%)で添加された第2スラリーを作成した。
On the other hand, in order to manufacture the edge portion 33 of the porous member, first, in step S20, the spacer capable of forming the open pores of the edge portion 33 has a higher ratio than the above-described first ratio (5%) ( Hereinafter, a slurry (hereinafter simply referred to as “second slurry”) that is added simply by “second ratio”) is prepared. In this production example, the same spacer as the first slurry is used as the spacer added to the second slurry. The added amount of the spacer is 20% (ceramic weight%). That is, in the step S20, a second slurry was prepared in which spacers were added at the second ratio (20%).
そして、ステップS22において、当該第2スラリーがシート状に成形された多孔質材料の未焼成体(以下、第2シートと記す)を作成する。具体的には、ステップS20において作成された第2スラリー(スペーサ添加量20%)を、上述したスリットに通すことによりシート状にして、乾燥させる。本製造例において、第2シートは、第1シート同じ正方形状に成形されるが、その一辺の長さは、第1シートより大きく、150mmである。なお、第2シートの厚さは、第1シートと同じである。
Then, in step S22, an unfired body (hereinafter referred to as a second sheet) of a porous material in which the second slurry is formed into a sheet shape is created. Specifically, the second slurry (spacer addition amount 20%) created in step S20 is passed through the slits described above to form a sheet and dried. In this production example, the second sheet is formed in the same square shape as the first sheet, but the length of one side thereof is larger than that of the first sheet and is 150 mm. The thickness of the second sheet is the same as that of the first sheet.
そして、ステップS24において、複数の第2シートを積層して、多孔質部材の縁部33を形成する未焼成体(以下、第2積層体と記す)33Bを作成する。本製造例においては、上述した同一形状及び同一寸法の複数の第2シートを積層して、第1積層体31Bと略同一の厚さの第2積層体33Bを作成する。
In step S24, a plurality of second sheets are laminated to form an unfired body (hereinafter referred to as a second laminated body) 33B that forms the edge 33 of the porous member. In the present manufacturing example, a plurality of second sheets having the same shape and the same dimensions as described above are stacked to create a second stacked body 33B having substantially the same thickness as the first stacked body 31B.
そして、ステップS26において、第2積層体33Bに第1積層体31Bに相当する寸法及び形状の貫通穴を形成する。図4に示すように、本製造例においては、一辺が130mmの正方形状をなす第2積層体33Bの中央に、第1積層体31Bに相当する一辺が130mmの正方形状の貫通穴35を形成する。なお、当該貫通穴35は、第1積層体31Bに寸法に比べて僅かに大きいものとしても良い。
Then, in step S26, a through hole having a size and shape corresponding to the first stacked body 31B is formed in the second stacked body 33B. As shown in FIG. 4, in the present manufacturing example, a square through hole 35 having a side of 130 mm corresponding to the first stack 31B is formed in the center of the second stacked body 33B having a side of 130 mm. To do. The through hole 35 may be slightly larger than the dimension of the first stacked body 31B.
そして、ステップS30において、第2積層体33Bの内側に第1積層体31Bを配置して、未焼成の多孔質部材を作成する。具体的には、ステップS26において第2積層体33Bの中央に形成された貫通穴35に、当該貫通穴35に相当する形状の第1積層体31Bを挿入する。すなわち、同一平面上において第2積層体33Bの内側に第1積層体31Bを嵌め合わせる。
And in step S30, the 1st laminated body 31B is arrange | positioned inside the 2nd laminated body 33B, and an unbaking porous member is created. Specifically, in step S26, the first stacked body 31B having a shape corresponding to the through hole 35 is inserted into the through hole 35 formed in the center of the second stacked body 33B. That is, the first stacked body 31B is fitted inside the second stacked body 33B on the same plane.
本製造例においては、所定の温度(例えば、60℃)及び所定の圧力(10MPa)で第1積層体31Bと第2積層体33Bとを熱圧着により一体化する。これにより、スペーサの添加量が5%である中央部31と、当該中央部31を囲い且つスペーサの添加量が20%である縁部33を有する未焼成の多孔質部材が作成される。
In this production example, the first laminate 31B and the second laminate 33B are integrated by thermocompression bonding at a predetermined temperature (for example, 60 ° C.) and a predetermined pressure (10 MPa). Thus, an unfired porous member having a central portion 31 in which the added amount of spacer is 5% and an edge portion 33 surrounding the central portion 31 and having an added amount of spacer of 20% is created.
本製造例において、未焼成の多孔質部材は、固体酸化物電気化学セルを形成する水素極の未焼成体である。よって、当該多孔質部材(水素極30)上には、電解質20の層と、当該電解質と反応抑制層とを厚さ方向に積層して仮焼する。
In this production example, the unfired porous member is an unfired body of a hydrogen electrode that forms a solid oxide electrochemical cell. Therefore, on the porous member (hydrogen electrode 30), the layer of the electrolyte 20, the electrolyte, and the reaction suppression layer are laminated in the thickness direction and calcined.
まず、電解質20を製作するためのスラリーを作成する。具体的には、YSZ(イットリア安定化ジルコニア)の粉末を用いて電解質用のスラリーを作成する。電解質の層は、上述した多孔質部材と異なり、ガスを通さない緻密なものである。このため、電解質用のスラリーには、上述したようなスペーサを添加する必要はない。
First, a slurry for producing the electrolyte 20 is prepared. Specifically, an electrolyte slurry is prepared using YSZ (yttria stabilized zirconia) powder. Unlike the porous member described above, the electrolyte layer is a dense layer that does not pass gas. For this reason, it is not necessary to add a spacer as described above to the slurry for electrolyte.
反応抑制層40は、(Gd2O3)0.1(CeO2)0.9の組成になるようにGd2O3をドープしたセリア(以下、GDCと記す)の粉末を用いて反応抑制層用のスラリーを作成する。反応抑制層40は、電解質20の層と同様に、ガスを通さない緻密なものであり、スペーサの添加は、必要ない。
The reaction suppression layer 40 uses a powder of ceria (hereinafter referred to as GDC) doped with Gd 2 O 3 to have a composition of (Gd 2 O 3 ) 0.1 (CeO 2 ) 0.9. Create a slurry for the layer. Similar to the electrolyte 20 layer, the reaction suppression layer 40 is a dense layer that does not allow gas to pass through, and the addition of a spacer is not necessary.
上述した未焼成の多孔質部材の表面上に、電解質用のスラリーをスクリーン印刷して未焼成の電解質の層を形成する。さらに、当該電解質の層の表面上に、反応抑制層用のスラリーをスクリーン印刷して未焼成の反応抑制層を形成する。なお、本製造例において、電解質の層及び反応抑制層は、上述した多孔質部材と同様に、一辺が150mmの正方形状をなしている。このようにして、多孔質部材(水素極)、電解質及び反応抑制層の順に積層された未焼成の成形体を作成する。
The screen of the slurry for electrolyte is screen-printed on the surface of the above-mentioned unfired porous member to form an unfired electrolyte layer. Further, a slurry for reaction suppression layer is screen-printed on the surface of the electrolyte layer to form an unfired reaction suppression layer. In the present production example, the electrolyte layer and the reaction suppression layer have a square shape with a side of 150 mm, as in the porous member described above. In this way, an unfired molded body is produced in which the porous member (hydrogen electrode), the electrolyte, and the reaction suppression layer are laminated in this order.
この未焼成の成形体を、大気中において600℃の温度で2時間加熱することにより、脱脂処理を施す。脱脂された成形体を、さらに1500℃の温度で2時間加熱(仮焼)することにより、水素極30、電解質20、反応抑制層40の順に積層された焼成体が得られる。
The unfired molded body is degreased by heating in the atmosphere at a temperature of 600 ° C. for 2 hours. The degreased molded body is further heated (calcined) at a temperature of 1500 ° C. for 2 hours to obtain a fired body in which the hydrogen electrode 30, the electrolyte 20, and the reaction suppression layer 40 are laminated in this order.
そして、得られた焼成体のうち反応抑制層40の表面上に、さらに酸素極50を形成する。まず、酸素極50を製作するためのスラリーを作成する。具体的には、LSCF(LaSrCoFe酸化物)の粉末を用いて酸素極用のスラリーを作成する。酸素極50は、ガスを通す多孔質部材であるため、当該スラリーには、開放気孔を形成するためのスペーサが添加される。焼成体のうち反応抑制層40の表面上に酸素極用のスラリーをスクリーン印刷して未焼成の酸素極の層を形成する。これを大気中において1000℃の温度が加熱することより、水素極30、電解質20、反応抑制層40、酸素極50の順に積層された固体酸化物電気化学セル10の焼結体が得られる。この焼結により水素極30においては、図4に示す第1積層体31Bと第2積層体33Bが互いに完全に結合されて多孔質部材の焼結体となる(ステップS40)。
Then, an oxygen electrode 50 is further formed on the surface of the reaction suppression layer 40 in the obtained fired body. First, a slurry for producing the oxygen electrode 50 is prepared. Specifically, a slurry for an oxygen electrode is prepared using LSCF (LaSrCoFe oxide) powder. Since the oxygen electrode 50 is a porous member through which gas passes, a spacer for forming open pores is added to the slurry. A slurry for the oxygen electrode is screen-printed on the surface of the reaction suppressing layer 40 in the fired body to form an unfired oxygen electrode layer. By heating this at a temperature of 1000 ° C. in the atmosphere, a sintered body of the solid oxide electrochemical cell 10 in which the hydrogen electrode 30, the electrolyte 20, the reaction suppression layer 40, and the oxygen electrode 50 are laminated in this order is obtained. As a result of this sintering, in the hydrogen electrode 30, the first laminated body 31B and the second laminated body 33B shown in FIG. 4 are completely bonded together to form a porous member sintered body (step S40).
このとき、酸素極50(酸素極用のスラリー)は一辺が100mmの正方形状をなすように、印刷、焼成される。すなわち、酸素極50は、水素極30の中央部31の領域内に配置される(中央部31より面積が小さい)。
At this time, the oxygen electrode 50 (slurry for the oxygen electrode) is printed and fired so as to form a square shape with a side of 100 mm. That is, the oxygen electrode 50 is disposed in the region of the central part 31 of the hydrogen electrode 30 (the area is smaller than that of the central part 31).
以上のようにして製作された多孔質部材30(焼結体)のうち縁部33は、中央部31に比べて、単位体積あたりに開放気孔が占める比率である気孔率が高いものとなる。気孔率が高い縁部33は、中央部31に比べて厚さ方向Tのヤング率Eが低いものとなる。
In the porous member 30 (sintered body) manufactured as described above, the edge portion 33 has a higher porosity, which is the ratio of open pores per unit volume, than the central portion 31. The edge portion 33 having a high porosity has a lower Young's modulus E in the thickness direction T than the center portion 31.
例えば、多孔質部材の縁部33を形成するための第2スラリー(ステップS20参照)におけるスペーサの添加量(セラミック重量%)すなわち第2の比率が20%である場合、気孔率は40%であり、ヤング率は110GPaである。また、第2の比率が25%である場合、気孔率は50%である。また、第2の比率が15%である場合、気孔率は35%であり、ヤング率は119GPaである。第2の比率が5%である場合、気孔率は30%であり、ヤング率は145GPaである。このように、スペーサの添加量、すなわち気孔率を調整することにより、縁部33のヤング率を制御することができる。
For example, when the added amount of the spacer (ceramic weight%) in the second slurry (see Step S20) for forming the edge 33 of the porous member, that is, the second ratio is 20%, the porosity is 40%. Yes, Young's modulus is 110 GPa. Further, when the second ratio is 25%, the porosity is 50%. When the second ratio is 15%, the porosity is 35% and the Young's modulus is 119 GPa. When the second ratio is 5%, the porosity is 30% and the Young's modulus is 145 GPa. In this way, the Young's modulus of the edge 33 can be controlled by adjusting the amount of spacer added, that is, the porosity.
なお、上述した実施形態において、多孔質部材の縁部33は、中央部31に比べてスペーサの添加量を大きくすることにより、厚さ方向Tのヤング率を中央部31に比べて低いものにしたが、当該ヤング率を、中央部31に比べて低下させる手法は、これに限定されるものではない。
In the above-described embodiment, the edge 33 of the porous member has a lower Young's modulus in the thickness direction T than that of the central portion 31 by increasing the amount of spacer added compared to the central portion 31. However, the method of reducing the Young's modulus as compared with the central portion 31 is not limited to this.
例えば、縁部33を構成する材料すなわち第2スラリーには、中央部31を構成する材料すなわち第1スラリーには添加されない金属を添加する(添加量を多くする)ことも好適である。
For example, it is also preferable to add a metal that is not added to the material constituting the central portion 31, that is, the first slurry, to the material constituting the edge portion 33, that is, the second slurry (increase the addition amount).
例えば、ステップS20において、第2スラリーには、スペーサとしてのアクリル樹脂の粒子をセラミック重量%で10%添加し、さらに、第1スラリー(ステップS10)には、含まれないAg(銀)をセラミック重量%で5%添加することも好適である。この場合、気孔率は33%となるものの、ヤング率は、120GPaとなり、気孔率が35%(ヤング率が119GPa)の場合と略同一のヤング率を実現することができた。
For example, in step S20, 10% by weight of acrylic resin particles as a spacer is added to the second slurry as ceramic weight%, and Ag (silver) not included in the first slurry (step S10) is added to the ceramic. It is also preferable to add 5% by weight. In this case, although the porosity was 33%, the Young's modulus was 120 GPa, and substantially the same Young's modulus as when the porosity was 35% (Young's modulus was 119 GPa) could be realized.
なお、上述した実施形態において、縁部と中央部でヤング率及び気孔率を異ならせる多孔質部材は、水素極30であるものとしたが、本発明に係る多孔質部材は、これに限定されるものではない。本発明は、例えば、酸素極等の固体酸化物電気化学セルの一部分を形成する多孔質部材であれば適用することができる。
In the embodiment described above, the porous member that has different Young's modulus and porosity at the edge and the center is the hydrogen electrode 30, but the porous member according to the present invention is not limited to this. It is not something. The present invention can be applied to any porous member that forms part of a solid oxide electrochemical cell such as an oxygen electrode.
以上説明した少なくともひとつの実施形態によれば、単セルを構成する部材に比較的大きな応力が作用しても、破損を生じにくくすることができる。
According to at least one embodiment described above, even if a relatively large stress acts on the members constituting the single cell, it is possible to make it difficult to cause breakage.
本発明のいくつかの実施形態について説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態はその他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
Claims (8)
- 酸素イオンを伝導可能な電解質と、
当該電解質に積層された多孔質部材と、
を備え、
前記多孔質部材のうち縁部は、当該縁部の内側にある中央部に比べて、前記厚さ方向のヤング率が低い
固体酸化物電気化学セル。 An electrolyte capable of conducting oxygen ions;
A porous member laminated on the electrolyte;
With
The edge part among the said porous member has a lower Young's modulus of the said thickness direction compared with the center part inside the said edge part. Solid oxide electrochemical cell. - 前記縁部は、前記中央部に比べて、気孔率が高い
請求項1に記載の固体酸化物電気化学セル。 The solid oxide electrochemical cell according to claim 1, wherein the edge portion has a higher porosity than the central portion. - 前記縁部を構成する材料は、前記中央部を構成する材料より金属材料の添加量が多い
請求項1又は2に記載の固体酸化物電気化学セル。 The solid oxide electrochemical cell according to claim 1 or 2, wherein the material constituting the edge portion has a larger amount of metal material added than the material constituting the central portion. - 前記多孔質部材は、水蒸気を酸素イオンと水素に電気分解可能な水素極であり、
前記電解質に対して前記水素極と反対側に、前記中央部と対応するように配置され、ガスを通す多孔質材料で構成され、前記電解質からの酸素イオンを酸素にして放出する酸素極をさらに備える
請求項1ないし3のいずれか一項に記載の固体酸化物電気化学セル。 The porous member is a hydrogen electrode capable of electrolyzing water vapor into oxygen ions and hydrogen,
An oxygen electrode that is disposed on the opposite side of the hydrogen electrode with respect to the electrolyte so as to correspond to the central portion, is made of a porous material that allows gas to pass through, and further discharges oxygen ions from the electrolyte as oxygen. A solid oxide electrochemical cell according to any one of claims 1 to 3. - スペーサが、第1の比率で添加された第1スラリーを作成するステップと、
第1スラリーから第1シートを作成するステップと、
スペーサが、第1の比率に比べて高い第2の比率で添加された第2スラリーを作成するステップと、
第2スラリーから第2シートを作成するステップと、
前記第2シートと前記第1シートを組み合わせて、未焼成の多孔質部材を作成するステップと、
前記未焼成の多孔質部材を焼結して、多孔質部材の焼結体を作成するステップと、
を含む固体酸化物電気化学セルの製造方法。 Creating a first slurry with spacers added in a first ratio;
Creating a first sheet from the first slurry;
Creating a second slurry in which spacers are added at a second ratio that is higher than the first ratio;
Creating a second sheet from the second slurry;
Combining the second sheet and the first sheet to create an unfired porous member;
Sintering the green porous member to create a sintered body of the porous member;
A method for producing a solid oxide electrochemical cell comprising: - 前記第2シートを作成するステップが、第1シートに相当する寸法及び形状の貫通穴を第2シートに形成するステップを有し、
前記未焼成の多孔質部材を作成するステップが、当該貫通穴に前記第1シートを挿入するステップを有する、
請求項5に記載の固体酸化物電気化学セルの製造方法。 The step of creating the second sheet has a step of forming a through hole having a size and shape corresponding to the first sheet in the second sheet,
The step of creating the unfired porous member has a step of inserting the first sheet into the through hole.
The manufacturing method of the solid oxide electrochemical cell of Claim 5. - 前記第1シートが、前記第1スラリーから構成される複数のシートを積層した積層体であり、
前記第2シートが、前記第2スラリーから構成される複数のシートを積層した積層体である、
請求項6に記載の固体酸化物電気化学セルの製造方法。 The first sheet is a laminate in which a plurality of sheets composed of the first slurry are laminated,
The second sheet is a laminate obtained by laminating a plurality of sheets composed of the second slurry.
The manufacturing method of the solid oxide electrochemical cell of Claim 6. - 前記未焼成の多孔質部材を作成するステップにおいては、所定の温度及び所定の圧力で第1シートと第2シートとを圧着により一体化する
請求項5ないし7のいずれか1項に記載の固体酸化物電気化学セルの製造方法。 8. The solid according to claim 5, wherein in the step of creating the unfired porous member, the first sheet and the second sheet are integrated by pressure bonding at a predetermined temperature and a predetermined pressure. A method for producing an oxide electrochemical cell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/017041 WO2018198352A1 (en) | 2017-04-28 | 2017-04-28 | Solid oxide electrochemical cell and production method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/017041 WO2018198352A1 (en) | 2017-04-28 | 2017-04-28 | Solid oxide electrochemical cell and production method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018198352A1 true WO2018198352A1 (en) | 2018-11-01 |
Family
ID=63920206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/017041 WO2018198352A1 (en) | 2017-04-28 | 2017-04-28 | Solid oxide electrochemical cell and production method therefor |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018198352A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112868125A (en) * | 2018-12-28 | 2021-05-28 | 松下知识产权经营株式会社 | Battery with a battery cell |
CN112868124A (en) * | 2018-12-28 | 2021-05-28 | 松下知识产权经营株式会社 | Battery with a battery cell |
JPWO2022045141A1 (en) * | 2020-08-24 | 2022-03-03 | ||
JP2023132332A (en) * | 2022-03-10 | 2023-09-22 | 株式会社東芝 | electrochemical cell stack |
JPWO2024176929A1 (en) * | 2023-02-22 | 2024-08-29 | ||
JPWO2024201575A1 (en) * | 2023-03-24 | 2024-10-03 | ||
WO2024201667A1 (en) * | 2023-03-27 | 2024-10-03 | 日本碍子株式会社 | Electrolytic cell |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002175814A (en) * | 2000-12-05 | 2002-06-21 | Ngk Spark Plug Co Ltd | Manufacturing method of fuel electrode for solid electrolyte type fuel cell, the solid electrolyte type fuel cell and its manufacturing method |
JP2007299690A (en) * | 2006-05-02 | 2007-11-15 | Nippon Telegr & Teleph Corp <Ntt> | Solid oxide fuel cell and method for producing the same |
JP2010238432A (en) * | 2009-03-30 | 2010-10-21 | Mitsubishi Materials Corp | Power generation cell of fuel battery |
-
2017
- 2017-04-28 WO PCT/JP2017/017041 patent/WO2018198352A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002175814A (en) * | 2000-12-05 | 2002-06-21 | Ngk Spark Plug Co Ltd | Manufacturing method of fuel electrode for solid electrolyte type fuel cell, the solid electrolyte type fuel cell and its manufacturing method |
JP2007299690A (en) * | 2006-05-02 | 2007-11-15 | Nippon Telegr & Teleph Corp <Ntt> | Solid oxide fuel cell and method for producing the same |
JP2010238432A (en) * | 2009-03-30 | 2010-10-21 | Mitsubishi Materials Corp | Power generation cell of fuel battery |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112868124B (en) * | 2018-12-28 | 2024-04-19 | 松下知识产权经营株式会社 | Battery cell |
CN112868124A (en) * | 2018-12-28 | 2021-05-28 | 松下知识产权经营株式会社 | Battery with a battery cell |
CN112868125A (en) * | 2018-12-28 | 2021-05-28 | 松下知识产权经营株式会社 | Battery with a battery cell |
EP4203114A4 (en) * | 2020-08-24 | 2024-12-25 | Kyocera Corporation | CELL, CELL STACKING DEVICE, MODULE AND MODULE RECEIVING DEVICE |
CN116097480A (en) * | 2020-08-24 | 2023-05-09 | 京瓷株式会社 | Battery cell, battery stack device, module, and module housing device |
JP7433450B2 (en) | 2020-08-24 | 2024-02-19 | 京セラ株式会社 | Cells, cell stack equipment, modules and module housing equipment |
WO2022045141A1 (en) * | 2020-08-24 | 2022-03-03 | 京セラ株式会社 | Cell, cell stack device, module, and module accommodating device |
JPWO2022045141A1 (en) * | 2020-08-24 | 2022-03-03 | ||
JP2023132332A (en) * | 2022-03-10 | 2023-09-22 | 株式会社東芝 | electrochemical cell stack |
JP7702210B2 (en) | 2022-03-10 | 2025-07-03 | 株式会社東芝 | Electrochemical Cell Stack |
JPWO2024176929A1 (en) * | 2023-02-22 | 2024-08-29 | ||
JP7692538B2 (en) | 2023-02-22 | 2025-06-13 | 日本碍子株式会社 | Electrochemical Cell |
JPWO2024201575A1 (en) * | 2023-03-24 | 2024-10-03 | ||
WO2024201575A1 (en) * | 2023-03-24 | 2024-10-03 | 日本碍子株式会社 | Electrochemical cell |
JP7696497B2 (en) | 2023-03-24 | 2025-06-20 | 日本碍子株式会社 | Electrochemical Cell |
WO2024201667A1 (en) * | 2023-03-27 | 2024-10-03 | 日本碍子株式会社 | Electrolytic cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018198352A1 (en) | Solid oxide electrochemical cell and production method therefor | |
TW201900898A (en) | Electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, and manufacturing method of electrochemical element | |
US20080299434A1 (en) | Solid oxide type fuel cell and manufacturing method thereof | |
WO2015115554A1 (en) | Cell, cell stack device, module and module-containing device | |
JP2012134122A (en) | Solid oxide fuel cell | |
KR101154506B1 (en) | Unit cell for solid oxide fuel cell and manufacturing method thereof | |
JP2015088284A (en) | Solid oxide fuel cell | |
JP2014207215A (en) | Solid oxide fuel battery half cell, and solid oxide fuel battery | |
WO2014021446A1 (en) | Fuel cell | |
WO2013115255A1 (en) | Solid oxide fuel battery cell, fuel battery module, and fuel battery device | |
JP2010061829A (en) | Operation method of solid oxide fuel cell | |
JP6047471B2 (en) | Anode for fuel cell and single cell for fuel cell | |
JP6748518B2 (en) | Method for manufacturing electrochemical reaction cell | |
JP4923407B2 (en) | Method for producing solid oxide fuel cell | |
JP2009009738A (en) | Solid electrolyte fuel cell and its manufacturing method | |
JP2009199994A (en) | Solid electrolyte type fuel cell | |
JP2015088471A (en) | Anode for fuel battery and fuel battery single cell | |
JP5502365B2 (en) | Half cell for solid oxide fuel cell, solid oxide fuel cell, and method for producing half cell for solid oxide fuel cell | |
US20230115530A1 (en) | Solid oxide fuel cell, solid oxide fuel cell stack and manufacturing method of solid oxide fuel cell | |
KR102109730B1 (en) | Method for fabricating solid oxide fuel cell | |
WO2015045682A1 (en) | Fuel-cell anode and fuel cell | |
JP5242951B2 (en) | Solid electrolyte fuel cell and manufacturing method thereof | |
JP2012074304A (en) | Power generation cell for solid oxide fuel cell | |
JP6075924B2 (en) | Fuel cell single cell and manufacturing method thereof | |
JP7245210B2 (en) | Electrochemical reaction single cell and electrochemical reaction cell stack |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17907060 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17907060 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |