WO2018194042A1 - Vane pump - Google Patents
Vane pump Download PDFInfo
- Publication number
- WO2018194042A1 WO2018194042A1 PCT/JP2018/015787 JP2018015787W WO2018194042A1 WO 2018194042 A1 WO2018194042 A1 WO 2018194042A1 JP 2018015787 W JP2018015787 W JP 2018015787W WO 2018194042 A1 WO2018194042 A1 WO 2018194042A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- back pressure
- groove
- side plate
- vane
- pressure groove
- Prior art date
Links
- 238000013459 approach Methods 0.000 claims description 4
- 230000000149 penetrating effect Effects 0.000 claims description 2
- 238000011056 performance test Methods 0.000 description 22
- 238000012360 testing method Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C15/00—Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C15/00—Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
- F04C15/06—Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2/00—Rotary-piston machines or pumps
- F04C2/30—Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F04C2/34—Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
- F04C2/344—Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
Definitions
- the present invention relates to a balanced vane pump that performs clutch control of an automatic transmission mounted on an automobile or an industrial vehicle by controlling oil inflow and outflow.
- the vane positioned above the rotating shaft (rotor) when the engine is stopped is accommodated in the vane groove on the outer periphery of the rotor by its own weight.
- the vane positioned below the rotor protrudes downward from the vane groove and is in contact with the cam ring on the outer periphery of the vane. For this reason, when the rotor starts rotating (when the vane pump starts), the vane is accommodated in the vane groove again as the rotor rotates, and then the vane once stored in the vane groove is fixed until the vane jumps out of the rotor again. It takes time. As a result, since the vane does not act as a pump (no pressure is generated) until it jumps out of the rotor, the start of the vane pump is delayed.
- the viscosity of the oil is relatively low, so that the vane is relatively easy to jump out of the rotor even if the rotor starts rotating.
- the viscosity of the oil increases and the viscosity resistance between the vane and the oil also increases. As a result, the vane jumps out of the rotor, which is slower than in a warm atmosphere. It takes time to generate pressure.
- Patent Document 1 a plurality of back pressure grooves are provided on the end surface of the side plate constituting the vane pump, and the plurality of back pressure grooves are connected to each other by a communication groove, so that the pump falls into the vane groove of the rotor when the pump is started. It is disclosed that the startability of the pump can be improved by allowing the vane that has come out to jump out quickly.
- an object of the present invention is to provide a vane pump that discharges two types of high-pressure and low-pressure oil with only one vane pump, and quickly starts the vane pump.
- the present invention includes at least a pump body having an oil suction port, a cam ring accommodated in a recess of the pump body, and a plurality of vanes on the outer peripheral surface accommodated in the cam ring.
- a rotor having grooves formed radially, a plurality of vanes fitted in the plurality of vane grooves, a first side plate disposed on one end face side of the cam ring and on the oil discharge port side, and the cam ring
- a vane pump comprising: a second side plate disposed on the oil suction port side on the other end surface side; and a pump cover having two oil discharge ports and covering an opening portion of a recess of the pump body.
- a pair of independent back pressure grooves are formed on the rotor side of the first and second side plates.
- the plurality of vanes are attached so as to be able to go in and out toward the cam ring while being fitted in the vane grooves.
- the back pressure groove connects the first back pressure groove, the second back pressure groove whose groove length is shorter than the first back pressure groove, the first back pressure groove and the second back pressure groove,
- the third back pressure groove has a narrower width than the first back pressure groove and the second back pressure groove.
- the second back pressure groove of the first side plate is provided with a hole penetrating from the rotor side of the first side plate to the opposite (reverse) side of the rotor.
- the 2nd back pressure groove of the 1st side plate can also be constituted so that it may connect with the high pressure room formed from the crevice provided in the pump cover and the 1st side plate via this hole. Further, the depth of the first back pressure groove may be increased as it approaches the third back pressure groove.
- the vane pump of the present invention two types of high-pressure and low-pressure oil can be discharged alone without the need for a separate hydraulic device such as a distribution valve.
- a separate hydraulic device such as a distribution valve.
- the vane pump can be started quickly even in an extremely low temperature ( ⁇ 30 ° C. or lower) atmosphere where the viscosity of the oil is the lowest.
- FIG. 2 is a cross-sectional view of the vane pump 1 in FIG. 1 taken along line XX.
- FIG. 2 is a cross-sectional view of the vane pump 1 in FIG. 1 taken along line YY. It is a top view by the side of the rotor 4 of the 1st side plate 7 shown in FIG. It is a top view by the side of the non-rotor 4 of the 1st side plate 7 shown in FIG. It is an enlarged view of the back pressure groove 70 of the 1st side plate 7 shown in FIG. It is a top view by the side of the rotor 4 of the 2nd side plate 8 shown in FIG. FIG.
- FIG. 4 is a plan view of the second side plate 8 shown in FIG. 1 on the side opposite to the rotor 4.
- FIG. 8 is an enlarged view of a back pressure groove 80 of the second side plate 8 shown in FIG. 7.
- It is a schematic diagram which shows the whole structure of the performance test apparatus 200 used in the Example. It is a graph which shows the result of the performance test using this invention goods in the Example. It is a graph which shows the result of the performance test using the conventional product in the Example.
- FIG. 1 is a cross-sectional view of a vane pump 1 as an example of an embodiment of the present invention
- FIG. 2 is a cross-sectional view of the vane pump 1 in FIG. 1 taken along line XX
- FIG. 3 is a cross-sectional view of the vane pump 1 in FIG. Respectively.
- the vane pump 1 is roughly composed of a pump body 2 and a pump cover 10. Oil is drawn into the vane pump 1 from one suction port 30 provided in the pump body 2, and the oil inside the vane pump 1 is discharged (discharged) from the two discharge ports 40 and 41 provided in the pump cover 10. . As shown in FIG. 1, the vane pump 1 is attached with a shaft 9 that penetrates through a central hole of the rotor 4 and a hole provided in the center of the pump cover 10.
- the ring-shaped cam ring 3 and the rotor 4 are nested in the cam ring 3 inside the pump body 2.
- a plurality of vane grooves 5, 5 are provided radially on the outer peripheral surface of the rotor 4, and the plurality of vanes 6, 6 are fitted in the respective vane grooves 5, 5 so that they can enter and exit in the radial direction of the rotor 4. It is.
- each vane 6 rotates and moves along the inside of the cam ring 3 while entering and exiting the cam ring.
- the substantially side-shaped 1st side plate 7 and the 2nd side plate 8 are arrange
- the first side plate 7 is disposed on one end face side of the cam ring 3 and the rotor 4 and at a position near the discharge ports 40 and 41, and on the other end face side of the cam ring 3 and the rotor 4.
- the second side plates 8 are arranged at positions close to the suction port 30.
- the space defined by the recesses 100 and 101 of the pump cover 10 and the first side plate 7 is a space called high pressure chambers 60 and 61 as shown in FIG. Oil that has flowed into the vane pump 1 from the suction port 30 is sent in the direction of the discharge ports 40 and 41 while being pressurized in the high-pressure chambers 60 and 61.
- FIG. 4 is a plan view seen from the rotor 4 side of the first side plate 7 shown in FIG. 1
- FIG. 5 is a plan view seen from the side opposite to the rotor 4 (pump cover 10 side) of the first side plate 7 shown in FIG. Indicates.
- a pair of back pressure grooves 70 and 71 are formed on the end surface of the first side plate 7 disposed on the rotor 4 side so as to face each other around a central hole through which the shaft 9 passes as shown in FIG. It is provided in an arc shape.
- Each of the back pressure grooves 70 and 71 is broadly formed by first back pressure grooves 70A and 71A, second back pressure grooves 70B and 71B, and third back pressure grooves 70C and 71C.
- An enlarged view of the back pressure groove 70 provided on the end face of the first side plate 7 is shown in FIG.
- the groove length la of the first back pressure groove 70A is the longest among the first to third back pressure grooves 70A to 70C provided in the first side plate 7 as shown in FIG. Further, the groove depth (the distance from the surface of the first side plate 7 to the groove bottom) of the first back pressure groove 70A gradually increases as it approaches the third back pressure groove 70C.
- the second back pressure groove 70 ⁇ / b> B is a back pressure groove connected to the first back pressure groove 70 ⁇ / b> A via a third back pressure groove 70 ⁇ / b> C described later. Further, the groove length lb of the second back pressure groove 70B is shorter than the groove length la of the first back pressure groove 70A as shown in FIG. Furthermore, the second back pressure groove 70 ⁇ / b> B is provided with holes 50 that connect both surfaces (the rotor 4 side and the pump cover 10 side) of the first side plate 7.
- the third back pressure groove 70C is a back pressure groove that connects the first back pressure groove 70A and the second back pressure groove 70B described above.
- the groove length lc of the third back pressure groove 70C is the shortest among the first to third back pressure grooves 70A to 70C.
- the groove width of the third back pressure groove 70C is the narrowest among the first to third back pressure grooves 70A to 70C.
- the third back pressure groove 70C is for narrowing the flow of oil when it moves from the first back pressure groove 70A to the second back pressure groove 70B.
- the groove width of the third back pressure groove 70C is made narrower than others. Therefore, other means may be used once the flow rate can be reduced.
- the groove lengths la to lc of the first to third back pressure grooves 70A to 70C are equal to the virtual center O1 of the first side plate 7 and both end portions of the back pressure grooves 70A to 70C as shown in FIG. It is assumed that the length of the arc formed by connecting (arc length).
- the above description relates to the configuration of the back pressure groove 70.
- the arrangement of the first back pressure groove 71A, the second back pressure groove 71B, and the third back pressure groove 71C that form the other back pressure groove 71 is described. The same applies to the relationship and groove length.
- the first discharge port 76 and the second discharge port 77 described above are formed on the end surface of the first side plate 7 disposed on the pump cover 10 side. That is, the 1st discharge port 76 and the 2nd discharge port 77 are the 1st side in the form which penetrates both surfaces (the rotor 4 side and the pump cover 10 side) of the 1st side plate 7 similarly to the above-mentioned hole parts 50 and 51. It is provided on the plate 7.
- FIG. 7 is a plan view seen from the rotor 4 side of the second side plate 8 shown in FIG. 1
- FIG. 8 is a plan view seen from the side opposite to the rotor 4 (the suction port 30 side) of the second side plate 8 shown in FIG. Respectively.
- FIGS. 7 and 8 a first suction port 82 and a second suction port 83 that send oil in the direction of the rotor 4 after oil is sucked into the vane pump 1 through the suction port 30 shown in FIG. 1 are shown in FIGS. 7 and 8.
- the second side plate 8 is provided.
- a first storage groove 86 and a second storage groove 87 for storing a certain amount of oil inside the vane pump 1 are formed on the end face of the second side plate 8 disposed on the rotor 4 side, as shown in FIG.
- a pair of back pressure grooves 80 and 81 are formed on the end surface of the second side plate 8 disposed on the rotor 4 side so as to face each other around the central hole through which the shaft 9 passes as shown in FIG. It is provided in an arc shape.
- Each back pressure groove 80, 81 is formed of a first back pressure groove 80A, 81A, a second back pressure groove 80B, 81B, and a third back pressure groove 80C, 81C.
- An enlarged view of the back pressure groove 80 of the second side plate 8 shown in FIG. 7 is shown in FIG.
- the groove length fa of the first back pressure groove 80A is the longest among the first to third back pressure grooves 80A to 80C provided in the second side plate 8 as shown in FIG. Further, the groove depth (the distance from the surface of the second side plate 8 to the groove bottom) of the first back pressure groove 80A gradually increases as it approaches the third back pressure groove 80C.
- the second back pressure groove 80B is a back pressure groove connected to the first back pressure groove 80A via a third back pressure groove 80C described later as shown in FIGS. Further, the groove length fb of the second back pressure groove 80B is shorter than the groove length fa of the first back pressure groove 80A.
- the third back pressure groove 80C is a back pressure groove that connects the first back pressure groove 80A and the second back pressure groove 80B described above as shown in FIGS.
- the groove length fc of the third back pressure groove 80C is the shortest among the first to third back pressure grooves 80A to 80C.
- the groove width of the third back pressure groove 80C is the narrowest among the first to third back pressure grooves 80A to 80C.
- the groove lengths fa to fc of the first to third back pressure grooves 80A to 80C are the virtual center O2 of the second side plate 8 and both ends of the back pressure grooves 80A to 80C as shown in FIG. It is assumed that the length of the arc formed by connecting (arc length).
- the above description relates to the configuration of the back pressure groove 80, but the arrangement relationship of the first back pressure groove 81A, the second back pressure groove 81B, and the third back pressure groove 81C that form the other back pressure groove 81. The same applies to the groove length and the like.
- action of the vane pump of this invention is demonstrated using drawing.
- the vane pump 1 of the present invention when the shaft 9 shown in FIGS. 2 and 3 rotates, the rotor 4 rotates, and the plurality of vanes 6 and 6 rotate while moving in and out along the vane grooves 5 and 5, respectively. Then, the oil is sucked from the suction port 30 and discharged from the discharge ports 40 and 41.
- the oil sucked into the vane pump 1 from the suction port 30 passes through the first and second suction ports 72 and 73 of the first side plate 7 and the first and second suction ports 82 and 83 of the second side plate 8. Then, it enters the periphery of the rotor 4 and the vane 6.
- the vane 6 acts in the direction in which the vane 6 is accommodated in the vane groove 5 of the rotor 4 along the shape of the inner peripheral surface of the cam ring 3.
- oil existing around the rotor 4 also enters the vane groove 5 of the rotor 4.
- the oil that has entered the vane groove 5 is concentrated in the back pressure grooves of the two side plates (first side plate 7 and second side plate 8) disposed on both sides of the rotor 4.
- the oil concentrated in the back pressure groove 70 of the first side plate 7 first concentrates in the first back pressure groove 70A.
- the oil in the first back pressure groove 70 ⁇ / b> A is accommodated in the vane groove 5 of the rotor 4 because the plurality of vanes 6 and 6 are accommodated in the rotor 4.
- the pressure moves toward the second back pressure groove 70B.
- the oil in the first back pressure groove 70A passes through the third back pressure groove 70C having the narrowest groove width before moving to the second back pressure groove 70B. Therefore, the movement of the oil concentrated in the first back pressure groove 70A is once narrowed by the third back pressure groove 70C before moving in the direction of the second back pressure groove 70B. As a result, most of the oil concentrated in the first back pressure groove 70A moves in the direction of the vane groove 5 of the rotor 4, and only the remaining oil that has not moved to the vane groove 5 becomes the third back pressure groove 70C. Is moved to the second back pressure groove 70B.
- the oil in the other first back pressure groove 71A also moves in the same manner toward the vane groove 5 and the second back pressure groove 71B. The same applies to the movement of the oil concentrated in the back pressure grooves 80 and 81 of the second side plate 8.
- the vane can be easily ejected from the vane groove by the structure of the back pressure groove provided on the side plate constituting the vane pump of the present invention. As a result, it is possible to quickly generate hydraulic pressure when the vane pump is started.
- the vane pump of the present invention has the back pressure grooves provided in the two side plates separately and independently as shown in FIGS.
- the second back pressure grooves 70B and 71B of the first side plate 7 installed on the two discharge ports 40 and 41 are provided from the rotor 4 side to the counter rotor 4 side (pump cover 10 side) as described above.
- Connecting holes 50 and 51 are provided, respectively.
- These holes 50 and 51 are connected to high-pressure chambers 60 and 61 formed between the first side plate 7 and the pump cover 10, and these high-pressure chambers 60 and 61 each have two discharge ports. 40, 41. That is, the oil in the second back pressure grooves 70B and 71B of the first side plate 7 is discharged from the two discharge ports 40 and 41 through the respective hole portions 50 and 51 and the high pressure chambers 60 and 61.
- the back pressure grooves provided in the side plate are formed as a pair of independent ones, and the oil passages from the back pressure grooves to the discharge ports are also provided separately. Thereby, two types of high pressure and low pressure oil can be supplied by one unit.
- FIG. 10 shows the overall configuration of the performance test apparatus 200 used in this performance test.
- the product of the present invention used in this performance test was a vane pump having the configuration shown in FIGS.
- the conventional product does not have the third back pressure grooves 70C, 71C, 80C, 81C of the first side plate 7 shown in FIG. 4 and the second side plate 8 shown in FIG.
- the (first and second) side plates having the form of back pressure grooves in which 70A, 71A, 80A, 81A and second back pressure grooves 70B, 71B, 80B, 81B are integrated were used.
- Other components are the same as those of the present invention.
- the performance test apparatus 200 includes a motor 220, a pressure valve 240, and the like in addition to the vane pump 201, and these equipments are connected to each other via oil passages 261 to 264.
- a motor 220 As the shaft of the motor 220 rotates, the oil in the oil pan 210 is sucked into the vane pump 201 through the oil passage 261.
- the rotation speed of the shaft of the motor 220 can be measured by a tachometer 230 installed on the shaft.
- the oil sucked into the vane pump 201 is discharged from the discharge ports 40 and 41 shown in FIG. 2 and sent to the pressure valve 240 through the oil passages 262 and 263.
- the oil pressure (hydraulic pressure) of the performance test apparatus 200 is adjusted according to the degree of opening and closing of the pressure valve 240.
- the oil coming out of the pressure valve 240 is finally returned to the oil pan 210 through the oil passage 264.
- the complete set of equipment such as the vane pump 201, the motor 220, and the pressure valve 240 is housed in a temperature-controlled room 270 as shown in FIG. 10, and the test atmosphere (test temperature) can be freely adjusted. Yes.
- the performance test apparatus 200 includes a power supply for the motor 220 (not shown), electrical wiring for controlling the tachometer 230 and the pressure converter 250, various measurements for measuring the rotation speed of the motor 220 and the oil pressures of the oil passages 261 to 264. Equipment etc. are also provided.
- the oil is supplied to the vane pump 201 by rotating the motor 220 with the temperature in the temperature-controlled room 270 of the performance test apparatus 200 shown in FIG.
- the pressure (discharge pressure) of oil from the vane pump 201 is set to 1.8 MPa by the pressure valve 240.
- the motor 220 is stopped and the supply of oil to the vane pump 201 is stopped. Thereafter, the temperature in the temperature-controlled room 270 is changed to ⁇ 30 ° C., and a set of equipment such as the vane pump 201 is held in that state for 8 hours.
- the motor 220 is started at a rotation speed of 200 rpm and held for 1.5 seconds. Thereafter, the rotation speed of the motor 220 is changed from 200 rpm to 1800 rpm.
- the change in the pressure (discharge pressure) of the oil discharged from the vane pump 201 in about 12 seconds after the motor 220 is started at 200 rpm is measured over time using the pressure converter 250 and a measuring device (not shown). It was measured.
- FIG. 11 shows the result (graph) of the performance test using the product of the present invention
- FIG. 12 shows the result (graph) of the performance test using the conventional product.
- the horizontal axis represents the elapsed time (unit: second) since the rotation speed of the motor 220 was started at 200 rpm in both FIG. 11 and FIG. 12, and the right vertical axis is shown in FIG.
- the rotation speed (unit: rpm) of the motor 220 measured by the tachometer 230, and the left vertical axis respectively represent the pressure (unit: MPa) of oil discharged from the vane pump 201 measured by the pressure converter 250 shown in FIG. ing.
- the horizontal axis in both drawings represents the time when the motor starts to start (0 seconds).
- the vane pump of the present invention the oil is instantaneously discharged to the outside of the vane pump after receiving the supply of the oil via the suction port, that is, the vane pump may be instantaneously started as the number of rotations of the motor increases. confirmed.
- the vane pump according to the present invention can control a plurality of discharge pressures and has excellent startability, it can be used for a vane pump for various purposes.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Rotary Pumps (AREA)
- Details And Applications Of Rotary Liquid Pumps (AREA)
Abstract
Provided is a vane pump capable of ejecting two types of pressure oil of high pressure and low pressure and performing a quick start. The vane pump is provided with: a pump body (2) including a suction inlet (30); a cam ring (3); a rotor (4); a plurality of vanes (6); a first side plate (7) disposed on an oil ejection side which is on one end surface side of the cam ring (3); a second side plate (8) disposed on an oil suction side which is on an another end surface side of the cam ring (3); and a pump cover (10) which includes oil ejection openings (40, 41) at two locations and which is joined to the pump body (2). A pair of back pressure grooves (70, 71, 80, 81) are formed on the rotor (4) side of the first and second side plates (7, 8). The back pressure groove (70) is provided with a first back pressure groove (70A), a second back pressure groove (70B) having a shorter groove length, and a third back pressure groove (70C) connecting the two back pressure grooves (70A, 70B) and having the smallest groove width.
Description
本発明は、油の流出入を制御することで自動車や産業用車輌に搭載されているオートマチックトランスミッションのクラッチ制御等を行う平衡形ベーンポンプに関する。
The present invention relates to a balanced vane pump that performs clutch control of an automatic transmission mounted on an automobile or an industrial vehicle by controlling oil inflow and outflow.
従来、自動車のオートマチックトランスミッションに使用されるベーンポンプにおいて、エンジンの停止時に回転軸(ロータ)よりも上方に位置するベーンはその自重によりロータ外周のベーン溝に収容される。
Conventionally, in a vane pump used for an automatic transmission of an automobile, the vane positioned above the rotating shaft (rotor) when the engine is stopped is accommodated in the vane groove on the outer periphery of the rotor by its own weight.
また、ロータよりも下方に位置するベーンはベーン溝から下方に飛び出しており、ベーンの外周にあるカムリングに接触している。
そのため、ロータが回転を開始すると(ベーンポンプが始動すると)、ロータの回転に伴ってベーンはベーン溝内に再度収容された後、ベーン溝に一旦収まったベーンが再度ロータから飛び出すまでには一定の時間を要する。
その結果、ベーンがロータよりも外周に飛び出すまでポンプとして作用をしない(圧力が発生しない)ので、ベーンポンプの始動に遅れが生じる。 Further, the vane positioned below the rotor protrudes downward from the vane groove and is in contact with the cam ring on the outer periphery of the vane.
For this reason, when the rotor starts rotating (when the vane pump starts), the vane is accommodated in the vane groove again as the rotor rotates, and then the vane once stored in the vane groove is fixed until the vane jumps out of the rotor again. It takes time.
As a result, since the vane does not act as a pump (no pressure is generated) until it jumps out of the rotor, the start of the vane pump is delayed.
そのため、ロータが回転を開始すると(ベーンポンプが始動すると)、ロータの回転に伴ってベーンはベーン溝内に再度収容された後、ベーン溝に一旦収まったベーンが再度ロータから飛び出すまでには一定の時間を要する。
その結果、ベーンがロータよりも外周に飛び出すまでポンプとして作用をしない(圧力が発生しない)ので、ベーンポンプの始動に遅れが生じる。 Further, the vane positioned below the rotor protrudes downward from the vane groove and is in contact with the cam ring on the outer periphery of the vane.
For this reason, when the rotor starts rotating (when the vane pump starts), the vane is accommodated in the vane groove again as the rotor rotates, and then the vane once stored in the vane groove is fixed until the vane jumps out of the rotor again. It takes time.
As a result, since the vane does not act as a pump (no pressure is generated) until it jumps out of the rotor, the start of the vane pump is delayed.
さらに、雰囲気温度が相対的に暖かい場合には、油の粘度も比較的に低いので、ロータが回転を始めてもベーンは比較的にロータから飛び出しやすい。
ところが、冬季などの低温雰囲気になると、油の粘度が高くなり、ベーンと油との粘性抵抗も大きくなるので、結果としてロータからのベーンの飛び出しが遅くなり、暖かい雰囲気の場合に比べて所望の圧力が発生するまでに時間を要する。 Furthermore, when the ambient temperature is relatively warm, the viscosity of the oil is relatively low, so that the vane is relatively easy to jump out of the rotor even if the rotor starts rotating.
However, in a low temperature atmosphere such as in winter, the viscosity of the oil increases and the viscosity resistance between the vane and the oil also increases. As a result, the vane jumps out of the rotor, which is slower than in a warm atmosphere. It takes time to generate pressure.
ところが、冬季などの低温雰囲気になると、油の粘度が高くなり、ベーンと油との粘性抵抗も大きくなるので、結果としてロータからのベーンの飛び出しが遅くなり、暖かい雰囲気の場合に比べて所望の圧力が発生するまでに時間を要する。 Furthermore, when the ambient temperature is relatively warm, the viscosity of the oil is relatively low, so that the vane is relatively easy to jump out of the rotor even if the rotor starts rotating.
However, in a low temperature atmosphere such as in winter, the viscosity of the oil increases and the viscosity resistance between the vane and the oil also increases. As a result, the vane jumps out of the rotor, which is slower than in a warm atmosphere. It takes time to generate pressure.
そこで、特許文献1ではベーンポンプを構成するサイドプレートの端面に複数の背圧溝を設けて、これら複数の背圧溝どうしを連通溝により接続することで、ポンプの始動時にロータのベーン溝に落ち込んでいたベーンが速やかに飛び出すことでポンプの始動性が改善できることが開示されている。
Therefore, in Patent Document 1, a plurality of back pressure grooves are provided on the end surface of the side plate constituting the vane pump, and the plurality of back pressure grooves are connected to each other by a communication groove, so that the pump falls into the vane groove of the rotor when the pump is started. It is disclosed that the startability of the pump can be improved by allowing the vane that has come out to jump out quickly.
特許文献1に開示されているベーンポンプではサイドプレートの端面に設けられた全ての背圧溝が連通溝により接続されているので、内部で複数の吐出ポートが存在してもベーンポンプの吐出口が1箇所のみであれば、最終的にはベーンポンプとしての吐出圧は1水準となる。
In the vane pump disclosed in Patent Document 1, since all the back pressure grooves provided on the end surface of the side plate are connected by communication grooves, even if there are a plurality of discharge ports inside, the discharge port of the vane pump is 1 If it is only a place, the discharge pressure as a vane pump will finally be 1 level.
しかし、ベーンポンプが自動車用トランスミッションに適用される場合、高圧と低圧の2種類(2水準)の圧油が必要となる。
この場合、特許文献1に開示されたベーンポンプでは吐出圧が1水準であるため、油の圧力を高圧および低圧の2水準に分ける分配用バルブ等の別個の機器がさらに必要になる。 However, when the vane pump is applied to an automotive transmission, two types (two levels) of high pressure and low pressure oil are required.
In this case, since the vane pump disclosed inPatent Document 1 has a discharge pressure of one level, a separate device such as a distribution valve that divides the oil pressure into two levels of high pressure and low pressure is further required.
この場合、特許文献1に開示されたベーンポンプでは吐出圧が1水準であるため、油の圧力を高圧および低圧の2水準に分ける分配用バルブ等の別個の機器がさらに必要になる。 However, when the vane pump is applied to an automotive transmission, two types (two levels) of high pressure and low pressure oil are required.
In this case, since the vane pump disclosed in
そこで、本発明においては1台のベーンポンプのみで高圧と低圧の2種類の圧油を吐出し、かつベーンポンプの始動を速やかに行うベーンポンプを提供することを課題とする。
Therefore, an object of the present invention is to provide a vane pump that discharges two types of high-pressure and low-pressure oil with only one vane pump, and quickly starts the vane pump.
前述した課題を解決するために、本発明は、少なくとも、油の吸込口を有するポンプボディと、ポンプボディの凹部に収容されているカムリングと、カムリング内に収容されていて外周面に複数のベーン溝が放射状に形成されているロータと、複数のベーン溝に嵌め込まれている複数のベーンと、カムリングの一端面側であって油の吐出口側に配置されている第1サイドプレートと、カムリングの他端面側であって油の吸込口側に配置されている第2サイドプレートと、2箇所の油の吐出口を有しポンプボディの凹部の開口部分を覆うポンプカバーと、を備えるベーンポンプにおいて、前記第1および第2サイドプレートのロータ側には互いに独立した一対の背圧溝が形成されていることを特徴とする。
ここで、複数のベーンは、それぞれベーン溝に嵌め込まれた状態でカムリング側に向けて、出入り可能に装着されている。 In order to solve the problems described above, the present invention includes at least a pump body having an oil suction port, a cam ring accommodated in a recess of the pump body, and a plurality of vanes on the outer peripheral surface accommodated in the cam ring. A rotor having grooves formed radially, a plurality of vanes fitted in the plurality of vane grooves, a first side plate disposed on one end face side of the cam ring and on the oil discharge port side, and the cam ring In a vane pump comprising: a second side plate disposed on the oil suction port side on the other end surface side; and a pump cover having two oil discharge ports and covering an opening portion of a recess of the pump body. A pair of independent back pressure grooves are formed on the rotor side of the first and second side plates.
Here, the plurality of vanes are attached so as to be able to go in and out toward the cam ring while being fitted in the vane grooves.
ここで、複数のベーンは、それぞれベーン溝に嵌め込まれた状態でカムリング側に向けて、出入り可能に装着されている。 In order to solve the problems described above, the present invention includes at least a pump body having an oil suction port, a cam ring accommodated in a recess of the pump body, and a plurality of vanes on the outer peripheral surface accommodated in the cam ring. A rotor having grooves formed radially, a plurality of vanes fitted in the plurality of vane grooves, a first side plate disposed on one end face side of the cam ring and on the oil discharge port side, and the cam ring In a vane pump comprising: a second side plate disposed on the oil suction port side on the other end surface side; and a pump cover having two oil discharge ports and covering an opening portion of a recess of the pump body. A pair of independent back pressure grooves are formed on the rotor side of the first and second side plates.
Here, the plurality of vanes are attached so as to be able to go in and out toward the cam ring while being fitted in the vane grooves.
そして、その背圧溝は、第1背圧溝と、第1背圧溝よりも溝長さが短い第2背圧溝と、第1背圧溝と第2背圧溝とを連結し、第1背圧溝および第2背圧溝よりも溝幅が狭い第3背圧溝を有する。
And the back pressure groove connects the first back pressure groove, the second back pressure groove whose groove length is shorter than the first back pressure groove, the first back pressure groove and the second back pressure groove, The third back pressure groove has a narrower width than the first back pressure groove and the second back pressure groove.
また、第1サイドプレートの第2背圧溝には第1サイドプレートのロータ側からロータの反対(逆)側へ貫通する孔部を設けている。
第1サイドプレートの第2背圧溝は、この孔部を介してポンプカバーに設けた凹部および第1サイドプレートから形成される高圧室と連結する構成にもできる。
さらに、第1背圧溝の溝深さを第3背圧溝へ近づくにつれて深くしても構わない。 The second back pressure groove of the first side plate is provided with a hole penetrating from the rotor side of the first side plate to the opposite (reverse) side of the rotor.
The 2nd back pressure groove of the 1st side plate can also be constituted so that it may connect with the high pressure room formed from the crevice provided in the pump cover and the 1st side plate via this hole.
Further, the depth of the first back pressure groove may be increased as it approaches the third back pressure groove.
第1サイドプレートの第2背圧溝は、この孔部を介してポンプカバーに設けた凹部および第1サイドプレートから形成される高圧室と連結する構成にもできる。
さらに、第1背圧溝の溝深さを第3背圧溝へ近づくにつれて深くしても構わない。 The second back pressure groove of the first side plate is provided with a hole penetrating from the rotor side of the first side plate to the opposite (reverse) side of the rotor.
The 2nd back pressure groove of the 1st side plate can also be constituted so that it may connect with the high pressure room formed from the crevice provided in the pump cover and the 1st side plate via this hole.
Further, the depth of the first back pressure groove may be increased as it approaches the third back pressure groove.
本発明に係るベーンポンプによれば、分配バルブなどの別個の油圧機器を必要とせずに単体で高圧と低圧の2種類の圧油を吐出することができる。
加えて、油の粘性が最も低下する極低温(-30℃以下)の雰囲気であってもベーンポンプの始動を速やかに行えるという効果を奏する。 According to the vane pump of the present invention, two types of high-pressure and low-pressure oil can be discharged alone without the need for a separate hydraulic device such as a distribution valve.
In addition, there is an effect that the vane pump can be started quickly even in an extremely low temperature (−30 ° C. or lower) atmosphere where the viscosity of the oil is the lowest.
加えて、油の粘性が最も低下する極低温(-30℃以下)の雰囲気であってもベーンポンプの始動を速やかに行えるという効果を奏する。 According to the vane pump of the present invention, two types of high-pressure and low-pressure oil can be discharged alone without the need for a separate hydraulic device such as a distribution valve.
In addition, there is an effect that the vane pump can be started quickly even in an extremely low temperature (−30 ° C. or lower) atmosphere where the viscosity of the oil is the lowest.
1,201 ベーンポンプ
2 ポンプボディ
3 カムリング
4 ロータ
5 ベーン溝
6 ベーン
7 第1サイドプレート
8 第2サイドプレート
9 シャフト
10 ポンプカバー
20 ポンプボディの凹部
30 吸込口
40,41 吐出口
50,51 第1サイドプレートの孔部
60,61 高圧室
70,71 第1サイドプレートの背圧溝
70A,71A 第1サイドプレートの第1背圧溝
70B,71B 第1サイドプレートの第2背圧溝
70C,71C 第1サイドプレートの第3背圧溝
72 第1サイドプレートの第1吸込ポート
73 第1サイドプレートの第2吸込ポート
76 第1サイドプレートの第1吐出ポート
77 第1サイドプレートの第2吐出ポート
80,81 第2サイドプレートの背圧溝
80A,81A 第2サイドプレートの第1背圧溝
80B,81B 第2サイドプレートの第2背圧溝
80C,81C 第2サイドプレートの第3背圧溝
82 第2サイドプレートの第1吸込ポート
83 第2サイドプレートの第2吸込ポート
86 第2サイドプレートの第1貯留溝
87 第2サイドプレートの第2貯留溝
100,101 ポンプカバーの凹部
200 性能試験装置
210 オイルパン
220 モータ
230 回転計
240 圧力バルブ
250 圧力変換機
261~264 油路
270 恒温室
la~lc 第1サイドプレートの第1ないし第3背圧溝の溝長さ
fa~fc 第2サイドプレートの第1ないし第3背圧溝の溝長さ
O1 第1サイドプレートの仮想中心
O2 第2サイドプレートの仮想中心 1,201Vane pump 2 Pump body 3 Cam ring 4 Rotor 5 Vane groove 6 Vane 7 First side plate 8 Second side plate 9 Shaft 10 Pump cover 20 Recess 30 of pump body Suction port 40, 41 Discharge port 50, 51 First side Plate holes 60, 61 High pressure chambers 70, 71 Back pressure grooves 70A, 71A of the first side plate First back pressure grooves 70B, 71B of the first side plate Second back pressure grooves 70C, 71C of the first side plate First side plate third back pressure groove 72 First side plate first suction port 73 First side plate second suction port 76 First side plate first discharge port 77 First side plate second discharge port 80 81th Side plate back pressure grooves 80A, 81A Second side plate first back pressure grooves 80B, 81B Second side plate second back pressure grooves 80C, 81C Second side plate third back pressure grooves 82 Second side plate The first suction port 83 of the second side plate The second suction port 86 of the second side plate The first storage groove 87 of the second side plate The second storage groove 100, 101 of the second side plate The recess 200 of the pump cover Performance test apparatus 210 Oil pan 220 Motor 230 Tachometer 240 Pressure valve 250 Pressure transducers 261 to 264 Oil passage 270 Constant temperature chamber la to lc Groove lengths fa to fc of the first side plate of the first side plate First to third of the second side plate Groove length O1 of the third back pressure groove Virtual center O2 of the first side plate Virtual center of the second side plate
2 ポンプボディ
3 カムリング
4 ロータ
5 ベーン溝
6 ベーン
7 第1サイドプレート
8 第2サイドプレート
9 シャフト
10 ポンプカバー
20 ポンプボディの凹部
30 吸込口
40,41 吐出口
50,51 第1サイドプレートの孔部
60,61 高圧室
70,71 第1サイドプレートの背圧溝
70A,71A 第1サイドプレートの第1背圧溝
70B,71B 第1サイドプレートの第2背圧溝
70C,71C 第1サイドプレートの第3背圧溝
72 第1サイドプレートの第1吸込ポート
73 第1サイドプレートの第2吸込ポート
76 第1サイドプレートの第1吐出ポート
77 第1サイドプレートの第2吐出ポート
80,81 第2サイドプレートの背圧溝
80A,81A 第2サイドプレートの第1背圧溝
80B,81B 第2サイドプレートの第2背圧溝
80C,81C 第2サイドプレートの第3背圧溝
82 第2サイドプレートの第1吸込ポート
83 第2サイドプレートの第2吸込ポート
86 第2サイドプレートの第1貯留溝
87 第2サイドプレートの第2貯留溝
100,101 ポンプカバーの凹部
200 性能試験装置
210 オイルパン
220 モータ
230 回転計
240 圧力バルブ
250 圧力変換機
261~264 油路
270 恒温室
la~lc 第1サイドプレートの第1ないし第3背圧溝の溝長さ
fa~fc 第2サイドプレートの第1ないし第3背圧溝の溝長さ
O1 第1サイドプレートの仮想中心
O2 第2サイドプレートの仮想中心 1,201
本発明の実施形態の一例について図面を用いて説明する。
図1は、本発明の実施形態の一例であるベーンポンプ1の断面図、図2は図1におけるベーンポンプ1のX-X線断面図、図3は図1におけるベーンポンプ1のY-Y線断面図をそれぞれ示す。 An example of an embodiment of the present invention will be described with reference to the drawings.
1 is a cross-sectional view of avane pump 1 as an example of an embodiment of the present invention, FIG. 2 is a cross-sectional view of the vane pump 1 in FIG. 1 taken along line XX, and FIG. 3 is a cross-sectional view of the vane pump 1 in FIG. Respectively.
図1は、本発明の実施形態の一例であるベーンポンプ1の断面図、図2は図1におけるベーンポンプ1のX-X線断面図、図3は図1におけるベーンポンプ1のY-Y線断面図をそれぞれ示す。 An example of an embodiment of the present invention will be described with reference to the drawings.
1 is a cross-sectional view of a
図1ないし図3に示すようにベーンポンプ1は、大きく分けてポンプボディ2とポンプカバー10から構成されている。
ポンプボディ2に設けられた1箇所の吸込口30より油をベーンポンプ1内部に吸入し、ポンプカバー10に設けられた2箇所の吐出口40,41からベーンポンプ1内部の油を排出(吐出)する。
また、ベーンポンプ1には図1に示すようにロータ4の中央の穴部とポンプカバー10の中央に設けられた穴部とを貫通する形態でシャフト9が取り付けられている。 As shown in FIGS. 1 to 3, thevane pump 1 is roughly composed of a pump body 2 and a pump cover 10.
Oil is drawn into thevane pump 1 from one suction port 30 provided in the pump body 2, and the oil inside the vane pump 1 is discharged (discharged) from the two discharge ports 40 and 41 provided in the pump cover 10. .
As shown in FIG. 1, thevane pump 1 is attached with a shaft 9 that penetrates through a central hole of the rotor 4 and a hole provided in the center of the pump cover 10.
ポンプボディ2に設けられた1箇所の吸込口30より油をベーンポンプ1内部に吸入し、ポンプカバー10に設けられた2箇所の吐出口40,41からベーンポンプ1内部の油を排出(吐出)する。
また、ベーンポンプ1には図1に示すようにロータ4の中央の穴部とポンプカバー10の中央に設けられた穴部とを貫通する形態でシャフト9が取り付けられている。 As shown in FIGS. 1 to 3, the
Oil is drawn into the
As shown in FIG. 1, the
ポンプボディ2の内部(凹部20)には、図2および図3に示すようにリング形状のカムリング3とそのカムリング3の内部にロータ4が共に入れ子状に収容されている。
ロータ4の外周面には複数のベーン溝5,5が放射状に設けられていて、各ベーン溝5,5には複数のベーン6,6がそれぞれロータ4の径方向に出入り可能な状態ではめ込まれている。
それぞれのベーン6は、ロータ4の回転に伴い、カムリング3の内側に沿って、このカムリングに向けて出入りしながら回転移動する。 As shown in FIGS. 2 and 3, the ring-shaped cam ring 3 and the rotor 4 are nested in the cam ring 3 inside the pump body 2.
A plurality of vane grooves 5, 5 are provided radially on the outer peripheral surface of the rotor 4, and the plurality of vanes 6, 6 are fitted in the respective vane grooves 5, 5 so that they can enter and exit in the radial direction of the rotor 4. It is.
As therotor 4 rotates, each vane 6 rotates and moves along the inside of the cam ring 3 while entering and exiting the cam ring.
ロータ4の外周面には複数のベーン溝5,5が放射状に設けられていて、各ベーン溝5,5には複数のベーン6,6がそれぞれロータ4の径方向に出入り可能な状態ではめ込まれている。
それぞれのベーン6は、ロータ4の回転に伴い、カムリング3の内側に沿って、このカムリングに向けて出入りしながら回転移動する。 As shown in FIGS. 2 and 3, the ring-
A plurality of
As the
また、図1に示すようにカムリング3の両端面には略円盤形状の第1サイドプレート7および第2サイドプレート8が、ロータ4を両側から挟み込む形態で配置されている。
図1ないし図3に示すように、カムリング3およびロータ4の一端面側であって吐出口40,41から近い位置に第1サイドプレート7を配置し、カムリング3およびロータ4の他端面側であって吸込口30から近い位置に第2サイドプレート8をそれぞれ配置する。 Moreover, as shown in FIG. 1, the substantially side-shaped1st side plate 7 and the 2nd side plate 8 are arrange | positioned at the both end surfaces of the cam ring 3 in the form which pinches | interposes the rotor 4 from both sides.
As shown in FIGS. 1 to 3, thefirst side plate 7 is disposed on one end face side of the cam ring 3 and the rotor 4 and at a position near the discharge ports 40 and 41, and on the other end face side of the cam ring 3 and the rotor 4. The second side plates 8 are arranged at positions close to the suction port 30.
図1ないし図3に示すように、カムリング3およびロータ4の一端面側であって吐出口40,41から近い位置に第1サイドプレート7を配置し、カムリング3およびロータ4の他端面側であって吸込口30から近い位置に第2サイドプレート8をそれぞれ配置する。 Moreover, as shown in FIG. 1, the substantially side-shaped
As shown in FIGS. 1 to 3, the
さらに、ポンプカバー10の凹部100,101と第1サイドプレート7により区画された空間は、図1に示すように高圧室60,61と呼ばれる空間である。
吸込口30からベーンポンプ1内部へ流入した油が高圧室60,61にて加圧された状態で吐出口40,41の方向へ送られる。 Further, the space defined by the recesses 100 and 101 of the pump cover 10 and the first side plate 7 is a space called high pressure chambers 60 and 61 as shown in FIG.
Oil that has flowed into thevane pump 1 from the suction port 30 is sent in the direction of the discharge ports 40 and 41 while being pressurized in the high- pressure chambers 60 and 61.
吸込口30からベーンポンプ1内部へ流入した油が高圧室60,61にて加圧された状態で吐出口40,41の方向へ送られる。 Further, the space defined by the
Oil that has flowed into the
次に、第1サイドプレート7の形態について図面を用いて説明する。
図4は図1に示す第1サイドプレート7のロータ4側から見た平面図、図5は図1に示す第1サイドプレート7の反ロータ4側(ポンプカバー10側)から見た平面図を示す。 Next, the form of the1st side plate 7 is demonstrated using drawing.
4 is a plan view seen from therotor 4 side of the first side plate 7 shown in FIG. 1, and FIG. 5 is a plan view seen from the side opposite to the rotor 4 (pump cover 10 side) of the first side plate 7 shown in FIG. Indicates.
図4は図1に示す第1サイドプレート7のロータ4側から見た平面図、図5は図1に示す第1サイドプレート7の反ロータ4側(ポンプカバー10側)から見た平面図を示す。 Next, the form of the
4 is a plan view seen from the
図4に示すようにロータ4側に配置される第1サイドプレート7の端面には、図1に示す吸込口30を介してベーンポンプ1内部に油が吸い込まれた後、ロータ4の方向に油を送る第1吸込ポート72および第2吸込ポート73が形成されている。
そして、ロータ4から出た油を2箇所の吐出口40,41の方向へ送る第1吐出ポート76および第2吐出ポート77もロータ4側に配置される第1サイドプレート7の端面に形成されている。 As shown in FIG. 4, oil is sucked into thevane pump 1 into the end surface of the first side plate 7 disposed on the rotor 4 side through the suction port 30 shown in FIG. A first suction port 72 and a second suction port 73 are formed.
And the1st discharge port 76 and the 2nd discharge port 77 which send the oil which came out of the rotor 4 to the direction of the two discharge ports 40 and 41 are also formed in the end surface of the 1st side plate 7 arrange | positioned at the rotor 4 side. ing.
そして、ロータ4から出た油を2箇所の吐出口40,41の方向へ送る第1吐出ポート76および第2吐出ポート77もロータ4側に配置される第1サイドプレート7の端面に形成されている。 As shown in FIG. 4, oil is sucked into the
And the
また、ロータ4側に配置される第1サイドプレート7の端面には、図4に示すようにシャフト9を通す中央の穴部の周囲に互いに対向するように一対の背圧溝70,71が円弧状に設けられている。
各背圧溝70,71は、大きく分けて第1背圧溝70A,71A、第2背圧溝70B,71Bおよび第3背圧溝70C,71Cから形成されている。
第1サイドプレート7の端面に設けられた背圧溝70の拡大図を図6に示す。 A pair of back pressure grooves 70 and 71 are formed on the end surface of the first side plate 7 disposed on the rotor 4 side so as to face each other around a central hole through which the shaft 9 passes as shown in FIG. It is provided in an arc shape.
Each of the back pressure grooves 70 and 71 is broadly formed by first back pressure grooves 70A and 71A, second back pressure grooves 70B and 71B, and third back pressure grooves 70C and 71C.
An enlarged view of theback pressure groove 70 provided on the end face of the first side plate 7 is shown in FIG.
各背圧溝70,71は、大きく分けて第1背圧溝70A,71A、第2背圧溝70B,71Bおよび第3背圧溝70C,71Cから形成されている。
第1サイドプレート7の端面に設けられた背圧溝70の拡大図を図6に示す。 A pair of
Each of the
An enlarged view of the
第1背圧溝70Aの溝長さlaは、図6に示すように第1サイドプレート7に設けられた第1ないし第3背圧溝70A~70Cの中で最も長い。
また、第1背圧溝70Aの溝深さ(第1サイドプレート7の表面から溝底までの距離)は、第3背圧溝70Cへ近づくにつれて徐々に深くなっている。 The groove length la of the firstback pressure groove 70A is the longest among the first to third back pressure grooves 70A to 70C provided in the first side plate 7 as shown in FIG.
Further, the groove depth (the distance from the surface of thefirst side plate 7 to the groove bottom) of the first back pressure groove 70A gradually increases as it approaches the third back pressure groove 70C.
また、第1背圧溝70Aの溝深さ(第1サイドプレート7の表面から溝底までの距離)は、第3背圧溝70Cへ近づくにつれて徐々に深くなっている。 The groove length la of the first
Further, the groove depth (the distance from the surface of the
第2背圧溝70Bは、図4および図6に示すように後述の第3背圧溝70Cを介して第1背圧溝70Aと連結している背圧溝である。
また、第2背圧溝70Bの溝長さlbは、図6に示すように第1背圧溝70Aの溝長さlaよりも短い。
さらに、第2背圧溝70Bには第1サイドプレート7の両面(ロータ4側とポンプカバー10側)をつなぐ孔部50を備えている。 As shown in FIGS. 4 and 6, the secondback pressure groove 70 </ b> B is a back pressure groove connected to the first back pressure groove 70 </ b> A via a third back pressure groove 70 </ b> C described later.
Further, the groove length lb of the secondback pressure groove 70B is shorter than the groove length la of the first back pressure groove 70A as shown in FIG.
Furthermore, the secondback pressure groove 70 </ b> B is provided with holes 50 that connect both surfaces (the rotor 4 side and the pump cover 10 side) of the first side plate 7.
また、第2背圧溝70Bの溝長さlbは、図6に示すように第1背圧溝70Aの溝長さlaよりも短い。
さらに、第2背圧溝70Bには第1サイドプレート7の両面(ロータ4側とポンプカバー10側)をつなぐ孔部50を備えている。 As shown in FIGS. 4 and 6, the second
Further, the groove length lb of the second
Furthermore, the second
第3背圧溝70Cは、図4および図6に示すように上述の第1背圧溝70Aと第2背圧溝70Bとをつなぐ背圧溝である。
第3背圧溝70Cの溝長さlcは第1ないし第3背圧溝70A~70Cの中で最も短い。
また、第3背圧溝70Cの溝幅は、第1ないし第3背圧溝70A~70Cの中で最も狭い。
ここで、第3背圧溝70Cは、油が第1背圧溝70Aから第2背圧溝70Bに移動する際に、その流れを絞り込むためのものである。
その1つの手段として、第3背圧溝70Cの溝幅を他より狭くしたものである。
よって、一旦流量を絞り込むことができれば、他の手段でもよい。 As shown in FIGS. 4 and 6, the thirdback pressure groove 70C is a back pressure groove that connects the first back pressure groove 70A and the second back pressure groove 70B described above.
The groove length lc of the thirdback pressure groove 70C is the shortest among the first to third back pressure grooves 70A to 70C.
The groove width of the thirdback pressure groove 70C is the narrowest among the first to third back pressure grooves 70A to 70C.
Here, the thirdback pressure groove 70C is for narrowing the flow of oil when it moves from the first back pressure groove 70A to the second back pressure groove 70B.
As one of the means, the groove width of the thirdback pressure groove 70C is made narrower than others.
Therefore, other means may be used once the flow rate can be reduced.
第3背圧溝70Cの溝長さlcは第1ないし第3背圧溝70A~70Cの中で最も短い。
また、第3背圧溝70Cの溝幅は、第1ないし第3背圧溝70A~70Cの中で最も狭い。
ここで、第3背圧溝70Cは、油が第1背圧溝70Aから第2背圧溝70Bに移動する際に、その流れを絞り込むためのものである。
その1つの手段として、第3背圧溝70Cの溝幅を他より狭くしたものである。
よって、一旦流量を絞り込むことができれば、他の手段でもよい。 As shown in FIGS. 4 and 6, the third
The groove length lc of the third
The groove width of the third
Here, the third
As one of the means, the groove width of the third
Therefore, other means may be used once the flow rate can be reduced.
なお、本願では第1ないし第3背圧溝70A~70Cの溝長さla~lcは、図6に示すように第1サイドプレート7の仮想中心O1と各背圧溝70A~70Cの両端部を結んで形成される円弧の長さ(円弧長)とする。
In the present application, the groove lengths la to lc of the first to third back pressure grooves 70A to 70C are equal to the virtual center O1 of the first side plate 7 and both end portions of the back pressure grooves 70A to 70C as shown in FIG. It is assumed that the length of the arc formed by connecting (arc length).
また、以上の説明は、背圧溝70の構成に関するものであるが、他方の背圧溝71を形成する第1背圧溝71A,第2背圧溝71B,第3背圧溝71Cの配置関係や溝長さ等についても同様である。
The above description relates to the configuration of the back pressure groove 70. However, the arrangement of the first back pressure groove 71A, the second back pressure groove 71B, and the third back pressure groove 71C that form the other back pressure groove 71 is described. The same applies to the relationship and groove length.
ポンプカバー10側に配置される第1サイドプレート7の端面には図5に示すように、前述した第1吐出ポート76および第2吐出ポート77が形成されている。
つまり、第1吐出ポート76および第2吐出ポート77は、前述の孔部50,51と同様に第1サイドプレート7の両面(ロータ4側とポンプカバー10側)を貫通する形態で第1サイドプレート7に設けられている。 As shown in FIG. 5, thefirst discharge port 76 and the second discharge port 77 described above are formed on the end surface of the first side plate 7 disposed on the pump cover 10 side.
That is, the1st discharge port 76 and the 2nd discharge port 77 are the 1st side in the form which penetrates both surfaces (the rotor 4 side and the pump cover 10 side) of the 1st side plate 7 similarly to the above-mentioned hole parts 50 and 51. It is provided on the plate 7.
つまり、第1吐出ポート76および第2吐出ポート77は、前述の孔部50,51と同様に第1サイドプレート7の両面(ロータ4側とポンプカバー10側)を貫通する形態で第1サイドプレート7に設けられている。 As shown in FIG. 5, the
That is, the
次に、第2サイドプレート8の形態について図面を用いて説明する。
図7は図1に示す第2サイドプレート8のロータ4側から見た平面図、図8は図1に示す第2サイドプレート8の反ロータ4側(吸込口30側)から見た平面図をそれぞれ示す。 Next, the form of thesecond side plate 8 will be described with reference to the drawings.
7 is a plan view seen from therotor 4 side of the second side plate 8 shown in FIG. 1, and FIG. 8 is a plan view seen from the side opposite to the rotor 4 (the suction port 30 side) of the second side plate 8 shown in FIG. Respectively.
図7は図1に示す第2サイドプレート8のロータ4側から見た平面図、図8は図1に示す第2サイドプレート8の反ロータ4側(吸込口30側)から見た平面図をそれぞれ示す。 Next, the form of the
7 is a plan view seen from the
まず、図1に示す吸込口30を介してベーンポンプ1内部に油が吸い込まれた後、ロータ4の方向に油を送る第1吸込ポート82および第2吸込ポート83が図7および図8に示すように第2サイドプレート8に設けられている。
ロータ4側に配置される第2サイドプレート8の端面には、図7に示すようにベーンポンプ1内部の油を一定量貯留する第1貯留溝86および第2貯留溝87が形成されている。 First, afirst suction port 82 and a second suction port 83 that send oil in the direction of the rotor 4 after oil is sucked into the vane pump 1 through the suction port 30 shown in FIG. 1 are shown in FIGS. 7 and 8. In this way, the second side plate 8 is provided.
Afirst storage groove 86 and a second storage groove 87 for storing a certain amount of oil inside the vane pump 1 are formed on the end face of the second side plate 8 disposed on the rotor 4 side, as shown in FIG.
ロータ4側に配置される第2サイドプレート8の端面には、図7に示すようにベーンポンプ1内部の油を一定量貯留する第1貯留溝86および第2貯留溝87が形成されている。 First, a
A
また、ロータ4側に配置される第2サイドプレート8の端面には、図7に示すようにシャフト9を通す中央の穴部の周囲に互いに対向するように一対の背圧溝80,81が円弧状に設けられている。
各背圧溝80,81は第1背圧溝80A,81A、第2背圧溝80B,81Bおよび第3背圧溝80C,81Cから形成されている。図7に示す第2サイドプレート8の背圧溝80の拡大図を図9に示す。 In addition, a pair of back pressure grooves 80 and 81 are formed on the end surface of the second side plate 8 disposed on the rotor 4 side so as to face each other around the central hole through which the shaft 9 passes as shown in FIG. It is provided in an arc shape.
Each back pressure groove 80, 81 is formed of a first back pressure groove 80A, 81A, a second back pressure groove 80B, 81B, and a third back pressure groove 80C, 81C. An enlarged view of the back pressure groove 80 of the second side plate 8 shown in FIG. 7 is shown in FIG.
各背圧溝80,81は第1背圧溝80A,81A、第2背圧溝80B,81Bおよび第3背圧溝80C,81Cから形成されている。図7に示す第2サイドプレート8の背圧溝80の拡大図を図9に示す。 In addition, a pair of
Each
第1背圧溝80Aの溝長さfaは、図9に示すように第2サイドプレート8に設けられた第1ないし第3背圧溝80A~80Cの中で最も長い。
また、第1背圧溝80Aの溝深さ(第2サイドプレート8の表面から溝底までの距離)は、第3背圧溝80Cへ近づくにつれて徐々に深くなっている。 The groove length fa of the firstback pressure groove 80A is the longest among the first to third back pressure grooves 80A to 80C provided in the second side plate 8 as shown in FIG.
Further, the groove depth (the distance from the surface of thesecond side plate 8 to the groove bottom) of the first back pressure groove 80A gradually increases as it approaches the third back pressure groove 80C.
また、第1背圧溝80Aの溝深さ(第2サイドプレート8の表面から溝底までの距離)は、第3背圧溝80Cへ近づくにつれて徐々に深くなっている。 The groove length fa of the first
Further, the groove depth (the distance from the surface of the
第2背圧溝80Bは、図7および図9に示すように後述の第3背圧溝80Cを介して第1背圧溝80Aと連結している背圧溝である。
また、第2背圧溝80Bの溝長さfbは、第1背圧溝80Aの溝長さfaよりも短い。 The secondback pressure groove 80B is a back pressure groove connected to the first back pressure groove 80A via a third back pressure groove 80C described later as shown in FIGS.
Further, the groove length fb of the secondback pressure groove 80B is shorter than the groove length fa of the first back pressure groove 80A.
また、第2背圧溝80Bの溝長さfbは、第1背圧溝80Aの溝長さfaよりも短い。 The second
Further, the groove length fb of the second
第3背圧溝80Cは、図7および図9に示すように上述した第1背圧溝80Aと第2背圧溝80Bをつなぐ背圧溝である。
第3背圧溝80Cの溝長さfcは、第1ないし第3背圧溝80A~80Cの中で最も短い。
また、第3背圧溝80Cの溝幅は、第1ないし第3背圧溝80A~80Cの中で最も狭い。 The thirdback pressure groove 80C is a back pressure groove that connects the first back pressure groove 80A and the second back pressure groove 80B described above as shown in FIGS.
The groove length fc of the thirdback pressure groove 80C is the shortest among the first to third back pressure grooves 80A to 80C.
The groove width of the thirdback pressure groove 80C is the narrowest among the first to third back pressure grooves 80A to 80C.
第3背圧溝80Cの溝長さfcは、第1ないし第3背圧溝80A~80Cの中で最も短い。
また、第3背圧溝80Cの溝幅は、第1ないし第3背圧溝80A~80Cの中で最も狭い。 The third
The groove length fc of the third
The groove width of the third
なお、ここでは第1ないし第3背圧溝80A~80Cの溝長さfa~fcは、図9に示すように第2サイドプレート8の仮想中心O2と各背圧溝80A~80Cの両端部を結んで形成される円弧の長さ(円弧長)とする。
Here, the groove lengths fa to fc of the first to third back pressure grooves 80A to 80C are the virtual center O2 of the second side plate 8 and both ends of the back pressure grooves 80A to 80C as shown in FIG. It is assumed that the length of the arc formed by connecting (arc length).
また、以上の説明は背圧溝80の構成に関するものであるが、他方の背圧溝81を形成する第1背圧溝81A,第2背圧溝81B,第3背圧溝81Cの配置関係や溝長さ等についても同様である。
Further, the above description relates to the configuration of the back pressure groove 80, but the arrangement relationship of the first back pressure groove 81A, the second back pressure groove 81B, and the third back pressure groove 81C that form the other back pressure groove 81. The same applies to the groove length and the like.
以上の実施形態にもとづいて、本発明のベーンポンプの作用を図面を用いて説明する。
本発明のベーンポンプ1は、図2および図3に示すシャフト9が回転することでロータ4が回転し、複数のベーン6,6がそれぞれベーン溝5,5に沿って出入りしながら回転移動することで、吸込口30から油を吸入して吐出口40,41から油を排出する。 Based on the above embodiment, the effect | action of the vane pump of this invention is demonstrated using drawing.
In thevane pump 1 of the present invention, when the shaft 9 shown in FIGS. 2 and 3 rotates, the rotor 4 rotates, and the plurality of vanes 6 and 6 rotate while moving in and out along the vane grooves 5 and 5, respectively. Then, the oil is sucked from the suction port 30 and discharged from the discharge ports 40 and 41.
本発明のベーンポンプ1は、図2および図3に示すシャフト9が回転することでロータ4が回転し、複数のベーン6,6がそれぞれベーン溝5,5に沿って出入りしながら回転移動することで、吸込口30から油を吸入して吐出口40,41から油を排出する。 Based on the above embodiment, the effect | action of the vane pump of this invention is demonstrated using drawing.
In the
吸込口30からベーンポンプ1内に吸入された油は、第1サイドプレート7の第1および第2吸込ポート72,73および第2サイドプレート8の第1および第2吸込ポート82,83などを経由して、ロータ4およびベーン6の周辺に入り込む。
The oil sucked into the vane pump 1 from the suction port 30 passes through the first and second suction ports 72 and 73 of the first side plate 7 and the first and second suction ports 82 and 83 of the second side plate 8. Then, it enters the periphery of the rotor 4 and the vane 6.
ロータ4の外周に設けられた複数のベーン溝5,5に入り込んだ油は、第2サイドプレート8側から第1サイドプレート7側へ移動すると、同時にロータ4側にも入り込む。
すなわち、ベーン溝5からロータ4側への油の移動がベーン6をロータ4の外側へ飛び出す方向の作用として働く。 When the oil that has entered the plurality of vane grooves 5 and 5 provided on the outer periphery of the rotor 4 moves from the second side plate 8 side to the first side plate 7 side, it also enters the rotor 4 side at the same time.
That is, the movement of the oil from thevane groove 5 to the rotor 4 side acts as an action in a direction in which the vane 6 jumps out of the rotor 4.
すなわち、ベーン溝5からロータ4側への油の移動がベーン6をロータ4の外側へ飛び出す方向の作用として働く。 When the oil that has entered the plurality of
That is, the movement of the oil from the
これに対して、シャフト9の回転がさらに進むとカムリング3の内周面の形状に沿ってベーン6がロータ4のベーン溝5内に収容される方向に作用する。
このとき、ロータ4の周囲に存在する油もロータ4のベーン溝5内に入り込む。
ベーン溝5内に入り込んだ油は、ロータ4の両側に配置されている2枚のサイドプレート(第1サイドプレート7、第2サイドプレート8)の背圧溝に集約される。 In contrast, when the rotation of theshaft 9 further proceeds, the vane 6 acts in the direction in which the vane 6 is accommodated in the vane groove 5 of the rotor 4 along the shape of the inner peripheral surface of the cam ring 3.
At this time, oil existing around therotor 4 also enters the vane groove 5 of the rotor 4.
The oil that has entered thevane groove 5 is concentrated in the back pressure grooves of the two side plates (first side plate 7 and second side plate 8) disposed on both sides of the rotor 4.
このとき、ロータ4の周囲に存在する油もロータ4のベーン溝5内に入り込む。
ベーン溝5内に入り込んだ油は、ロータ4の両側に配置されている2枚のサイドプレート(第1サイドプレート7、第2サイドプレート8)の背圧溝に集約される。 In contrast, when the rotation of the
At this time, oil existing around the
The oil that has entered the
例えば、第1サイドプレート7の背圧溝70に集約された油は、まず第1背圧溝70Aに集中する。
ここでシャフト9の回転が図2の紙面上で反時計周りの場合、第1背圧溝70Aにある油は、複数のベーン6,6がロータ4のベーン溝5内に収容されるため、その圧力によって第2背圧溝70Bの方向へ移動する。 For example, the oil concentrated in theback pressure groove 70 of the first side plate 7 first concentrates in the first back pressure groove 70A.
Here, when the rotation of theshaft 9 is counterclockwise on the paper surface of FIG. 2, the oil in the first back pressure groove 70 </ b> A is accommodated in the vane groove 5 of the rotor 4 because the plurality of vanes 6 and 6 are accommodated in the rotor 4. The pressure moves toward the second back pressure groove 70B.
ここでシャフト9の回転が図2の紙面上で反時計周りの場合、第1背圧溝70Aにある油は、複数のベーン6,6がロータ4のベーン溝5内に収容されるため、その圧力によって第2背圧溝70Bの方向へ移動する。 For example, the oil concentrated in the
Here, when the rotation of the
第1背圧溝70A内の油は、第2背圧溝70Bへ移動するまでに溝幅が最も狭い第3背圧溝70Cを通過することになる。
そのため、第1背圧溝70A内に集約された油の移動は、第2背圧溝70Bの方向へ移動するまでに第3背圧溝70Cによって一旦絞り込まれる。
その結果、第1背圧溝70A内に集約された油の大部分はロータ4のベーン溝5の方向へ移動し、ベーン溝5へ移動しなかった残りの油のみが第3背圧溝70Cを通過して第2背圧溝70Bへ移動する。 The oil in the firstback pressure groove 70A passes through the third back pressure groove 70C having the narrowest groove width before moving to the second back pressure groove 70B.
Therefore, the movement of the oil concentrated in the firstback pressure groove 70A is once narrowed by the third back pressure groove 70C before moving in the direction of the second back pressure groove 70B.
As a result, most of the oil concentrated in the first back pressure groove 70A moves in the direction of thevane groove 5 of the rotor 4, and only the remaining oil that has not moved to the vane groove 5 becomes the third back pressure groove 70C. Is moved to the second back pressure groove 70B.
そのため、第1背圧溝70A内に集約された油の移動は、第2背圧溝70Bの方向へ移動するまでに第3背圧溝70Cによって一旦絞り込まれる。
その結果、第1背圧溝70A内に集約された油の大部分はロータ4のベーン溝5の方向へ移動し、ベーン溝5へ移動しなかった残りの油のみが第3背圧溝70Cを通過して第2背圧溝70Bへ移動する。 The oil in the first
Therefore, the movement of the oil concentrated in the first
As a result, most of the oil concentrated in the first back pressure groove 70A moves in the direction of the
他方の第1背圧溝71A内の油についても同様な要領でベーン溝5の方向および第2背圧溝71Bの方向へ移動する。
また、第2サイドプレート8の背圧溝80,81に集約された油の移動についても同様である。 The oil in the other firstback pressure groove 71A also moves in the same manner toward the vane groove 5 and the second back pressure groove 71B.
The same applies to the movement of the oil concentrated in the back pressure grooves 80 and 81 of the second side plate 8.
また、第2サイドプレート8の背圧溝80,81に集約された油の移動についても同様である。 The oil in the other first
The same applies to the movement of the oil concentrated in the
以上より、第1サイドプレート7の第1背圧溝70A,71A内および第2サイドプレート8の第1背圧溝80A,81A内に集約された油の大部分がロータ4のベーン溝5へ移動するので、第1背圧溝70A,71A,80A,81Aからベーン溝5へ移動した油の圧力は、ロータ4の周囲からベーン溝5内の方向へ入り込む油の圧力と比べると高圧となり、ベーン溝5から外径方向に向けてベーン6の飛び出しを容易に行える。
From the above, most of the oil concentrated in the first back pressure grooves 70A, 71A of the first side plate 7 and the first back pressure grooves 80A, 81A of the second side plate 8 is transferred to the vane grooves 5 of the rotor 4. Since it moves, the pressure of the oil moved from the first back pressure grooves 70A, 71A, 80A, 81A to the vane groove 5 becomes higher than the pressure of the oil entering from the periphery of the rotor 4 into the vane groove 5, The vane 6 can be easily ejected from the vane groove 5 in the outer diameter direction.
したがって、本発明のベーンポンプを構成するサイドプレートに設けた背圧溝の上記構造によりベーン溝からベーンの飛び出しを容易に行える。
結果として、ベーンポンプの始動時における油圧の発生を速やかに行うことができる。 Therefore, the vane can be easily ejected from the vane groove by the structure of the back pressure groove provided on the side plate constituting the vane pump of the present invention.
As a result, it is possible to quickly generate hydraulic pressure when the vane pump is started.
結果として、ベーンポンプの始動時における油圧の発生を速やかに行うことができる。 Therefore, the vane can be easily ejected from the vane groove by the structure of the back pressure groove provided on the side plate constituting the vane pump of the present invention.
As a result, it is possible to quickly generate hydraulic pressure when the vane pump is started.
また、本発明のベーンポンプは、図4ないし図9に示すように2枚のサイドプレートに設けた背圧溝が別個に独立して設けられている。
特に、2箇所の吐出口40,41側に設置された第1サイドプレート7の第2背圧溝70B,71Bには上述したようにロータ4側から反ロータ4側(ポンプカバー10側)につながる孔部50,51がそれぞれ設けられている。 In addition, the vane pump of the present invention has the back pressure grooves provided in the two side plates separately and independently as shown in FIGS.
In particular, the second back pressure grooves 70B and 71B of the first side plate 7 installed on the two discharge ports 40 and 41 are provided from the rotor 4 side to the counter rotor 4 side (pump cover 10 side) as described above. Connecting holes 50 and 51 are provided, respectively.
特に、2箇所の吐出口40,41側に設置された第1サイドプレート7の第2背圧溝70B,71Bには上述したようにロータ4側から反ロータ4側(ポンプカバー10側)につながる孔部50,51がそれぞれ設けられている。 In addition, the vane pump of the present invention has the back pressure grooves provided in the two side plates separately and independently as shown in FIGS.
In particular, the second
そして、これらの孔部50,51は第1サイドプレート7とポンプカバー10の間に形成された高圧室60,61とつながっており、さらにこれらの高圧室60,61はそれぞれ2箇所の吐出口40,41につながっている。
つまり、第1サイドプレート7の第2背圧溝70B,71B内の油は、それぞれの孔部50,51および高圧室60,61を経由して、2箇所の吐出口40,41から排出される。 These holes 50 and 51 are connected to high- pressure chambers 60 and 61 formed between the first side plate 7 and the pump cover 10, and these high- pressure chambers 60 and 61 each have two discharge ports. 40, 41.
That is, the oil in the second back pressure grooves 70B and 71B of the first side plate 7 is discharged from the two discharge ports 40 and 41 through the respective hole portions 50 and 51 and the high pressure chambers 60 and 61. The
つまり、第1サイドプレート7の第2背圧溝70B,71B内の油は、それぞれの孔部50,51および高圧室60,61を経由して、2箇所の吐出口40,41から排出される。 These
That is, the oil in the second
以上より、本発明のベーンポンプは、サイドプレートに設けた背圧溝を1対の独立したものとして形成し、各背圧溝から各吐出口までの油の通路も別個に設けた。
それにより1台で高圧および低圧の2種類の圧油を供給することができる。 As described above, in the vane pump of the present invention, the back pressure grooves provided in the side plate are formed as a pair of independent ones, and the oil passages from the back pressure grooves to the discharge ports are also provided separately.
Thereby, two types of high pressure and low pressure oil can be supplied by one unit.
それにより1台で高圧および低圧の2種類の圧油を供給することができる。 As described above, in the vane pump of the present invention, the back pressure grooves provided in the side plate are formed as a pair of independent ones, and the oil passages from the back pressure grooves to the discharge ports are also provided separately.
Thereby, two types of high pressure and low pressure oil can be supplied by one unit.
本実施例におけるベーンポンプの性能試験について図面を用いて説明する。
本性能試験は、本発明に係るベーンポンプ(以下、「本発明品」という)および従来のベーンポンプ(以下、「従来品」という)を用いて極低温(-30℃)の雰囲気におけるベーンポンプの始動性能を確認する目的で行った。
本性能試験に用いた性能試験装置200の全体構成を図10に示す。 The performance test of the vane pump in the present embodiment will be described with reference to the drawings.
This performance test was performed using a vane pump according to the present invention (hereinafter referred to as “the product of the present invention”) and a conventional vane pump (hereinafter referred to as a “conventional product”) in a very low temperature (−30 ° C.) atmosphere. The purpose was to confirm.
FIG. 10 shows the overall configuration of theperformance test apparatus 200 used in this performance test.
本性能試験は、本発明に係るベーンポンプ(以下、「本発明品」という)および従来のベーンポンプ(以下、「従来品」という)を用いて極低温(-30℃)の雰囲気におけるベーンポンプの始動性能を確認する目的で行った。
本性能試験に用いた性能試験装置200の全体構成を図10に示す。 The performance test of the vane pump in the present embodiment will be described with reference to the drawings.
This performance test was performed using a vane pump according to the present invention (hereinafter referred to as “the product of the present invention”) and a conventional vane pump (hereinafter referred to as a “conventional product”) in a very low temperature (−30 ° C.) atmosphere. The purpose was to confirm.
FIG. 10 shows the overall configuration of the
まず、本性能試験に用いた本発明品は図1ないし図9に示す形態のベーンポンプとした。
これに対して、従来品は図4に示す第1サイドプレート7および図7に示す第2サイドプレート8の第3背圧溝70C,71C,80C,81Cを設けずに、第1背圧溝70A,71A,80A,81Aおよび第2背圧溝70B,71B,80B,81Bが一体となった背圧溝の形態を有する(第1および第2)サイドプレートを用いた。
他の構成部品については、本発明品と同じものとした。 First, the product of the present invention used in this performance test was a vane pump having the configuration shown in FIGS.
In contrast, the conventional product does not have the third back pressure grooves 70C, 71C, 80C, 81C of the first side plate 7 shown in FIG. 4 and the second side plate 8 shown in FIG. The (first and second) side plates having the form of back pressure grooves in which 70A, 71A, 80A, 81A and second back pressure grooves 70B, 71B, 80B, 81B are integrated were used.
Other components are the same as those of the present invention.
これに対して、従来品は図4に示す第1サイドプレート7および図7に示す第2サイドプレート8の第3背圧溝70C,71C,80C,81Cを設けずに、第1背圧溝70A,71A,80A,81Aおよび第2背圧溝70B,71B,80B,81Bが一体となった背圧溝の形態を有する(第1および第2)サイドプレートを用いた。
他の構成部品については、本発明品と同じものとした。 First, the product of the present invention used in this performance test was a vane pump having the configuration shown in FIGS.
In contrast, the conventional product does not have the third
Other components are the same as those of the present invention.
次に、性能試験装置200は、ベーンポンプ201の他にモータ220や圧力バルブ240等から構成されており、これらの機材は互いに油路261~264を介して連結している。
モータ220のシャフトが回転することでオイルパン210の油が油路261を介してベーンポンプ201に吸い込まれる。
モータ220のシャフトの回転数は、シャフトに設置されている回転計230によって計測することができる。 Next, theperformance test apparatus 200 includes a motor 220, a pressure valve 240, and the like in addition to the vane pump 201, and these equipments are connected to each other via oil passages 261 to 264.
As the shaft of themotor 220 rotates, the oil in the oil pan 210 is sucked into the vane pump 201 through the oil passage 261.
The rotation speed of the shaft of themotor 220 can be measured by a tachometer 230 installed on the shaft.
モータ220のシャフトが回転することでオイルパン210の油が油路261を介してベーンポンプ201に吸い込まれる。
モータ220のシャフトの回転数は、シャフトに設置されている回転計230によって計測することができる。 Next, the
As the shaft of the
The rotation speed of the shaft of the
ベーンポンプ201に吸い込まれた油は、図2に示す吐出口40,41から吐出されて油路262,263を介して圧力バルブ240に送られる。
この圧力バルブ240の開閉度によって性能試験装置200の油の圧力(油圧)が調整される。
圧力バルブ240から出た油は、油路264を介して最終的にオイルパン210へ戻される。 The oil sucked into thevane pump 201 is discharged from the discharge ports 40 and 41 shown in FIG. 2 and sent to the pressure valve 240 through the oil passages 262 and 263.
The oil pressure (hydraulic pressure) of theperformance test apparatus 200 is adjusted according to the degree of opening and closing of the pressure valve 240.
The oil coming out of thepressure valve 240 is finally returned to the oil pan 210 through the oil passage 264.
この圧力バルブ240の開閉度によって性能試験装置200の油の圧力(油圧)が調整される。
圧力バルブ240から出た油は、油路264を介して最終的にオイルパン210へ戻される。 The oil sucked into the
The oil pressure (hydraulic pressure) of the
The oil coming out of the
また、これらのベーンポンプ201,モータ220,圧力バルブ240等の機材一式は図10に示すように恒温室270内にすべて収容されており、試験雰囲気(試験温度)を自在に調整できる構成となっている。
Further, the complete set of equipment such as the vane pump 201, the motor 220, and the pressure valve 240 is housed in a temperature-controlled room 270 as shown in FIG. 10, and the test atmosphere (test temperature) can be freely adjusted. Yes.
なお、性能試験装置200には、図示しないモータ220の供給電源,回転計230や圧力変換機250を制御する電気配線,モータ220の回転数や油路261~264の油圧を測定する種々の計測機器等も設けられている。
The performance test apparatus 200 includes a power supply for the motor 220 (not shown), electrical wiring for controlling the tachometer 230 and the pressure converter 250, various measurements for measuring the rotation speed of the motor 220 and the oil pressures of the oil passages 261 to 264. Equipment etc. are also provided.
次に、本性能試験の試験方法について説明する。
図10に示す性能試験装置200の恒温室270内の温度を25℃に設定した状態でモータ220を回転させて、ベーンポンプ201へ油を供給する。
同時に圧力バルブ240によりベーンポンプ201からの油の圧力(吐出圧)を1.8MPaに設定する。 Next, a test method for this performance test will be described.
The oil is supplied to thevane pump 201 by rotating the motor 220 with the temperature in the temperature-controlled room 270 of the performance test apparatus 200 shown in FIG.
At the same time, the pressure (discharge pressure) of oil from thevane pump 201 is set to 1.8 MPa by the pressure valve 240.
図10に示す性能試験装置200の恒温室270内の温度を25℃に設定した状態でモータ220を回転させて、ベーンポンプ201へ油を供給する。
同時に圧力バルブ240によりベーンポンプ201からの油の圧力(吐出圧)を1.8MPaに設定する。 Next, a test method for this performance test will be described.
The oil is supplied to the
At the same time, the pressure (discharge pressure) of oil from the
その状態で一定時間が経過した後、モータ220を停止して、ベーンポンプ201への油の供給を停止する。
その後、恒温室270内の温度を-30℃に変更して、ベーンポンプ201等の機材一式をその状態で8時間保持する。 After a certain time has passed in this state, themotor 220 is stopped and the supply of oil to the vane pump 201 is stopped.
Thereafter, the temperature in the temperature-controlledroom 270 is changed to −30 ° C., and a set of equipment such as the vane pump 201 is held in that state for 8 hours.
その後、恒温室270内の温度を-30℃に変更して、ベーンポンプ201等の機材一式をその状態で8時間保持する。 After a certain time has passed in this state, the
Thereafter, the temperature in the temperature-controlled
恒温室270内の温度が-30℃に達してから8時間が経過した後、モータ220を回転数200rpmで起動させて1.5秒間保持する。
その後、モータ220の回転数を200rpmから1800rpmへ変更する。
本性能試験では、モータ220を200rpmにて起動させてから約12秒間におけるベーンポンプ201から吐出される油の圧力(吐出圧)の変化を圧力変換機250および図示しない計測機器を用いて経時的に測定した。 After 8 hours have passed since the temperature in the temperature-controlledroom 270 reached −30 ° C., the motor 220 is started at a rotation speed of 200 rpm and held for 1.5 seconds.
Thereafter, the rotation speed of themotor 220 is changed from 200 rpm to 1800 rpm.
In this performance test, the change in the pressure (discharge pressure) of the oil discharged from thevane pump 201 in about 12 seconds after the motor 220 is started at 200 rpm is measured over time using the pressure converter 250 and a measuring device (not shown). It was measured.
その後、モータ220の回転数を200rpmから1800rpmへ変更する。
本性能試験では、モータ220を200rpmにて起動させてから約12秒間におけるベーンポンプ201から吐出される油の圧力(吐出圧)の変化を圧力変換機250および図示しない計測機器を用いて経時的に測定した。 After 8 hours have passed since the temperature in the temperature-controlled
Thereafter, the rotation speed of the
In this performance test, the change in the pressure (discharge pressure) of the oil discharged from the
本発明品および従来品の各ベーンポンプを用いた性能試験結果について、図面を用いて以下に説明する。
本発明品を用いた性能試験の結果(グラフ)を図11、従来品を用いた性能試験の結果(グラフ)を図12にそれぞれ示す。 The performance test results using the vane pumps of the present invention and the conventional product will be described below with reference to the drawings.
FIG. 11 shows the result (graph) of the performance test using the product of the present invention, and FIG. 12 shows the result (graph) of the performance test using the conventional product.
本発明品を用いた性能試験の結果(グラフ)を図11、従来品を用いた性能試験の結果(グラフ)を図12にそれぞれ示す。 The performance test results using the vane pumps of the present invention and the conventional product will be described below with reference to the drawings.
FIG. 11 shows the result (graph) of the performance test using the product of the present invention, and FIG. 12 shows the result (graph) of the performance test using the conventional product.
試験結果を示すグラフは、図11および図12ともに横軸はモータ220の回転数を200rpmで起動してからの経過時間(単位:秒)を表しており、右側の縦軸は図10に示す回転計230で計測したモータ220の回転数(単位:rpm)、左側の縦軸は図10に示す圧力変換機250で計測したベーンポンプ201から吐出される油の圧力(単位:MPa)をそれぞれ表している。
なお、両図面の横軸はモータが起動を開始する時間を起点として(0秒として)表している。 In the graphs showing the test results, the horizontal axis represents the elapsed time (unit: second) since the rotation speed of themotor 220 was started at 200 rpm in both FIG. 11 and FIG. 12, and the right vertical axis is shown in FIG. The rotation speed (unit: rpm) of the motor 220 measured by the tachometer 230, and the left vertical axis respectively represent the pressure (unit: MPa) of oil discharged from the vane pump 201 measured by the pressure converter 250 shown in FIG. ing.
The horizontal axis in both drawings represents the time when the motor starts to start (0 seconds).
なお、両図面の横軸はモータが起動を開始する時間を起点として(0秒として)表している。 In the graphs showing the test results, the horizontal axis represents the elapsed time (unit: second) since the rotation speed of the
The horizontal axis in both drawings represents the time when the motor starts to start (0 seconds).
また、図11および図12のグラフにおいて、モータが起動して回転数が200rpmに達してから1.5秒間経過するまでの時間帯をA1,B1、その後にベーンポンプから油の吐出が確認されるまでの時間をA2,B2、その後に油の圧力が最高値(最大圧)に達するまでの時間をA3,B3として区分した。
Further, in the graphs of FIG. 11 and FIG. 12, the time zone from when the motor starts up until the rotation speed reaches 200 rpm until 1.5 seconds elapses is confirmed as A1, B1, and then the oil discharge from the vane pump is confirmed. The time until the oil pressure reached the maximum value (maximum pressure) was classified as A3 and B3.
本発明品を用いた性能試験では、まず準備運転として図11に示すようにモータを起動して約0.5秒後に回転数が200rpmに達し、その状態で1.5秒間保持した(図11に示すA1区間)。
その後、モータの回転数を200rpmから1800rpmに変更した。 In the performance test using the product of the present invention, first, as shown in FIG. 11, as a preparatory operation, the motor was started and about 0.5 seconds later, the rotation speed reached 200 rpm, and the state was maintained for 1.5 seconds (FIG. 11). A1 section shown in FIG.
Thereafter, the rotation speed of the motor was changed from 200 rpm to 1800 rpm.
その後、モータの回転数を200rpmから1800rpmに変更した。 In the performance test using the product of the present invention, first, as shown in FIG. 11, as a preparatory operation, the motor was started and about 0.5 seconds later, the rotation speed reached 200 rpm, and the state was maintained for 1.5 seconds (FIG. 11). A1 section shown in FIG.
Thereafter, the rotation speed of the motor was changed from 200 rpm to 1800 rpm.
モータの回転数が1800rpmに変更されると、本発明のベーンポンプからは瞬間的(0.046秒後:図11に示すA2区間)に油の昇圧(油による圧力の上昇)が確認された。
ベーンポンプによる油の昇圧が確認されてから約0.6秒後に油の圧力は最高値(約4.2MPa)に達して(図11に示すA3区間)、その後に油の圧力は約1.7MPaまで下がり、その圧力を維持したことが確認された。 When the rotation speed of the motor was changed to 1800 rpm, the pressure increase of the oil (pressure increase due to oil) was confirmed instantaneously (after 0.046 seconds: section A2 shown in FIG. 11) from the vane pump of the present invention.
About 0.6 seconds after the pressure increase of the oil by the vane pump is confirmed, the oil pressure reaches the maximum value (about 4.2 MPa) (A3 section shown in FIG. 11), and then the oil pressure is about 1.7 MPa. It was confirmed that the pressure was maintained.
ベーンポンプによる油の昇圧が確認されてから約0.6秒後に油の圧力は最高値(約4.2MPa)に達して(図11に示すA3区間)、その後に油の圧力は約1.7MPaまで下がり、その圧力を維持したことが確認された。 When the rotation speed of the motor was changed to 1800 rpm, the pressure increase of the oil (pressure increase due to oil) was confirmed instantaneously (after 0.046 seconds: section A2 shown in FIG. 11) from the vane pump of the present invention.
About 0.6 seconds after the pressure increase of the oil by the vane pump is confirmed, the oil pressure reaches the maximum value (about 4.2 MPa) (A3 section shown in FIG. 11), and then the oil pressure is about 1.7 MPa. It was confirmed that the pressure was maintained.
これに対して、従来品を用いた性能試験では、本発明品を用いた性能試験の場合と同様に図12に示すようにモータの回転数が200rpmに達してから1.5秒間保持した後(図12に示すB1区間)、モータの回転数を200rpmから1800rpmに変更した。
On the other hand, in the performance test using the conventional product, as shown in FIG. 12, as in the case of the performance test using the product of the present invention, after the motor rotation speed reaches 200 rpm, it is held for 1.5 seconds. (B1 section shown in FIG. 12), the rotation speed of the motor was changed from 200 rpm to 1800 rpm.
モータの回転数が1800rpmに変更されると、従来品からはモータの回転数が変更してから約4.6秒後(図12に示すB2区間)に油の昇圧が確認された。
ベーンポンプによる油の昇圧が確認されてから約0.2秒後(図12に示すB3区間)に油の圧力は最高値(約5MPa)に達して、その後は本発明品の性能試験結果と同様に油の圧力は約1.7MPaまで下がり、その圧力を維持した。 When the motor rotation speed was changed to 1800 rpm, pressure increase of the oil was confirmed about 4.6 seconds after the motor rotation speed change from the conventional product (B2 section shown in FIG. 12).
About 0.2 seconds after the pressure increase of the oil by the vane pump is confirmed (B3 section shown in FIG. 12), the oil pressure reaches the maximum value (about 5 MPa), and thereafter the performance test result of the product of the present invention is the same. The oil pressure dropped to about 1.7 MPa, and the pressure was maintained.
ベーンポンプによる油の昇圧が確認されてから約0.2秒後(図12に示すB3区間)に油の圧力は最高値(約5MPa)に達して、その後は本発明品の性能試験結果と同様に油の圧力は約1.7MPaまで下がり、その圧力を維持した。 When the motor rotation speed was changed to 1800 rpm, pressure increase of the oil was confirmed about 4.6 seconds after the motor rotation speed change from the conventional product (B2 section shown in FIG. 12).
About 0.2 seconds after the pressure increase of the oil by the vane pump is confirmed (B3 section shown in FIG. 12), the oil pressure reaches the maximum value (about 5 MPa), and thereafter the performance test result of the product of the present invention is the same. The oil pressure dropped to about 1.7 MPa, and the pressure was maintained.
以上の試験結果から、極低温(-30℃)の使用環境下におけるベーンポンプの始動性能を比較すると、従来のベーンポンプ(従来品)ではモータの回転に伴って油の供給を受けてから油の吐出が開始されるまで(ベーンポンプが始動するまで)の時間が約4.6秒を要した。
Based on the above test results, comparing the starting performance of the vane pump in an extremely low temperature (-30 ° C) usage environment, the conventional vane pump (conventional product) receives oil as the motor rotates and then discharges the oil. It took about 4.6 seconds until the operation started (until the vane pump started).
一方、本発明のベーンポンプでは吸込口を経由した油の供給を受けてから瞬間的にその油をベーンポンプ外へ吐出する、すなわちモータの回転数の上昇に伴って瞬間的にベーンポンプが始動することが確認された。
On the other hand, in the vane pump of the present invention, the oil is instantaneously discharged to the outside of the vane pump after receiving the supply of the oil via the suction port, that is, the vane pump may be instantaneously started as the number of rotations of the motor increases. confirmed.
本発明に係るベーンポンプは、複数の吐出圧の制御が可能であり、始動性に優れているので、各種用途のベーンポンプに利用できる。
Since the vane pump according to the present invention can control a plurality of discharge pressures and has excellent startability, it can be used for a vane pump for various purposes.
Claims (3)
- 少なくとも、吸込口を有するポンプボディと、前記ポンプボディの凹部に収容されているカムリングと、前記カムリング内に収容されていて外周面に複数のベーン溝が放射状に形成されているロータと、前記複数のベーン溝に嵌め込まれている複数のベーンと、前記カムリングの一端面側であって吐出口側に配置されている第1サイドプレートと、前記カムリングの他端面側であって前記吸込口側に配置されている第2サイドプレートと、2箇所の前記吐出口を有し前記ポンプボディの凹部の開口部分を覆うポンプカバーと、を備えるベーンポンプであって、
前記第1および第2サイドプレートの前記ロータ側には互いに独立した一対の背圧溝が形成されており、
前記背圧溝は、第1背圧溝と、
前記第1背圧溝よりも溝長さが短い第2背圧溝と、
前記第1背圧溝と前記第2背圧溝とを連結し、前記第1背圧溝および前記第2背圧溝よりも溝幅が狭い第3背圧溝と、を有している
ことを特徴とするベーンポンプ。 At least a pump body having a suction port, a cam ring housed in a recess of the pump body, a rotor housed in the cam ring and having a plurality of vane grooves formed radially on the outer circumferential surface, and the plurality A plurality of vanes fitted in the vane grooves, a first side plate disposed on one end surface side of the cam ring and on the discharge port side, and on the other end surface side of the cam ring on the suction port side. A vane pump comprising: a second side plate that is arranged; and a pump cover that has two discharge ports and covers an opening portion of the recess of the pump body,
A pair of independent back pressure grooves are formed on the rotor side of the first and second side plates,
The back pressure groove includes a first back pressure groove,
A second back pressure groove having a groove length shorter than the first back pressure groove;
The first back pressure groove and the second back pressure groove are connected, and the first back pressure groove and the third back pressure groove are narrower than the second back pressure groove. Vane pump characterized by - 前記第1サイドプレートの第2背圧溝は、前記第1サイドプレートの前記ロータ側から前記ロータの反対側へ貫通する孔部を有しており、
前記孔部を介して前記ポンプカバーに設けられた凹部と前記第1サイドプレートから形成される高圧室につながっていることを特徴とする請求項1に記載のベーンポンプ。 The second back pressure groove of the first side plate has a hole penetrating from the rotor side of the first side plate to the opposite side of the rotor,
2. The vane pump according to claim 1, wherein the vane pump is connected to a high-pressure chamber formed by a recess provided in the pump cover and the first side plate through the hole. - 前記第1背圧溝の溝深さは、前記第3背圧溝へ近づくにつれて深くなっていることを特徴とする請求項1または2に記載のベーンポンプ。 The vane pump according to claim 1 or 2, wherein a groove depth of the first back pressure groove becomes deeper as it approaches the third back pressure groove.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880026175.6A CN110537021B (en) | 2017-04-22 | 2018-04-17 | Vane pump |
JP2019513640A JP6773991B2 (en) | 2017-04-22 | 2018-04-17 | Vane pump |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-084906 | 2017-04-22 | ||
JP2017084906 | 2017-04-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018194042A1 true WO2018194042A1 (en) | 2018-10-25 |
Family
ID=63856144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/015787 WO2018194042A1 (en) | 2017-04-22 | 2018-04-17 | Vane pump |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6773991B2 (en) |
CN (1) | CN110537021B (en) |
WO (1) | WO2018194042A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07317676A (en) * | 1994-05-22 | 1995-12-05 | Toyota Autom Loom Works Ltd | Movable vane compressor |
JP2001027186A (en) * | 1999-07-15 | 2001-01-30 | Toyoda Mach Works Ltd | Vane pump |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5022139B2 (en) * | 2007-08-17 | 2012-09-12 | 日立オートモティブシステムズ株式会社 | Variable displacement vane pump |
JP5828863B2 (en) * | 2012-08-22 | 2015-12-09 | カルソニックカンセイ株式会社 | Gas compressor |
JP6122659B2 (en) * | 2013-02-26 | 2017-04-26 | Kyb株式会社 | Vane pump |
JP6111093B2 (en) * | 2013-03-06 | 2017-04-05 | Kyb株式会社 | Vane pump |
JP5879010B2 (en) * | 2014-01-09 | 2016-03-08 | カルソニックカンセイ株式会社 | Gas compressor |
US10087933B2 (en) * | 2015-02-24 | 2018-10-02 | Yamada Manufacturing Co., Ltd. | Vane pump |
-
2018
- 2018-04-17 JP JP2019513640A patent/JP6773991B2/en active Active
- 2018-04-17 WO PCT/JP2018/015787 patent/WO2018194042A1/en active Application Filing
- 2018-04-17 CN CN201880026175.6A patent/CN110537021B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07317676A (en) * | 1994-05-22 | 1995-12-05 | Toyota Autom Loom Works Ltd | Movable vane compressor |
JP2001027186A (en) * | 1999-07-15 | 2001-01-30 | Toyoda Mach Works Ltd | Vane pump |
Also Published As
Publication number | Publication date |
---|---|
CN110537021A (en) | 2019-12-03 |
JPWO2018194042A1 (en) | 2020-02-20 |
JP6773991B2 (en) | 2020-10-21 |
CN110537021B (en) | 2021-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103097732B (en) | Vane pump | |
WO2013051448A1 (en) | Vane pump | |
CN107237748B (en) | Vane pump | |
EP3027908B1 (en) | Variable lubricant vane pump | |
US9752573B2 (en) | Pendulum slide pump with at least one communication channel | |
KR20140033307A (en) | Dual discharge pump | |
WO2018194042A1 (en) | Vane pump | |
US20140178239A1 (en) | Vane pump | |
KR20180121476A (en) | Vane pump with vane receiving less than one constraint | |
US20130034460A1 (en) | Variable Displacement Vane Pump | |
KR20160011581A (en) | Variable capacity hydraulic device | |
CN107002942B (en) | Variable displacement oil pump | |
JP5933305B2 (en) | Vane pump | |
JP6307619B2 (en) | Vane pump | |
JP5540925B2 (en) | Vane pump | |
EP2935891B1 (en) | Lubricant vane pump | |
JP6031311B2 (en) | Variable displacement vane pump | |
JP5783826B2 (en) | Vane pump | |
WO2019155758A1 (en) | Pump device | |
JP2017020562A (en) | Relief valve | |
JP2009264160A (en) | Vane rotary type compressor | |
WO2017164167A1 (en) | Vane compressor | |
JP6066943B2 (en) | Electric oil pump | |
JP6332803B2 (en) | Variable displacement vane pump | |
JP2013194698A (en) | Vane pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18787580 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019513640 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18787580 Country of ref document: EP Kind code of ref document: A1 |