WO2018190016A1 - Laminated secondary battery - Google Patents
Laminated secondary battery Download PDFInfo
- Publication number
- WO2018190016A1 WO2018190016A1 PCT/JP2018/007519 JP2018007519W WO2018190016A1 WO 2018190016 A1 WO2018190016 A1 WO 2018190016A1 JP 2018007519 W JP2018007519 W JP 2018007519W WO 2018190016 A1 WO2018190016 A1 WO 2018190016A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- secondary battery
- terminal
- electrode terminal
- tab
- Prior art date
Links
- 238000005452 bending Methods 0.000 claims description 17
- 238000010030 laminating Methods 0.000 abstract description 3
- 238000003475 lamination Methods 0.000 abstract description 3
- 239000000203 mixture Substances 0.000 description 34
- 239000000565 sealant Substances 0.000 description 16
- 238000004519 manufacturing process Methods 0.000 description 12
- 239000000463 material Substances 0.000 description 10
- -1 aluminum ion Chemical class 0.000 description 9
- 239000007784 solid electrolyte Substances 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 7
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 229910001416 lithium ion Inorganic materials 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000008151 electrolyte solution Substances 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 229910003002 lithium salt Inorganic materials 0.000 description 3
- 159000000002 lithium salts Chemical class 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 239000007774 positive electrode material Substances 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 238000007606 doctor blade method Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- VDVLPSWVDYJFRW-UHFFFAOYSA-N lithium;bis(fluorosulfonyl)azanide Chemical compound [Li+].FS(=O)(=O)[N-]S(F)(=O)=O VDVLPSWVDYJFRW-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- PYOKUURKVVELLB-UHFFFAOYSA-N trimethyl orthoformate Chemical compound COC(OC)OC PYOKUURKVVELLB-UHFFFAOYSA-N 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- 229910020680 Co—Ni—Mn Inorganic materials 0.000 description 1
- 229910018130 Li 2 S-P 2 S 5 Inorganic materials 0.000 description 1
- 229910008035 Li-La-Zr-O Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910013733 LiCo Inorganic materials 0.000 description 1
- 229910010941 LiFSI Inorganic materials 0.000 description 1
- 229910010701 LiFeP Inorganic materials 0.000 description 1
- 229910015645 LiMn Inorganic materials 0.000 description 1
- 229910013716 LiNi Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910006268 Li—La—Zr—O Inorganic materials 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000011245 gel electrolyte Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- DEUISMFZZMAAOJ-UHFFFAOYSA-N lithium dihydrogen borate oxalic acid Chemical compound B([O-])(O)O.C(C(=O)O)(=O)O.C(C(=O)O)(=O)O.[Li+] DEUISMFZZMAAOJ-UHFFFAOYSA-N 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 229910021384 soft carbon Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/572—Means for preventing undesired use or discharge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/531—Electrode connections inside a battery casing
- H01M50/534—Electrode connections inside a battery casing characterised by the material of the leads or tabs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/531—Electrode connections inside a battery casing
- H01M50/536—Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a stacked secondary battery.
- Patent Document 1 discloses that the current collecting terminal 15 includes a first piece 151 substantially parallel to the positive and negative plates in the stacked electrode body 10, and the positive and negative plates in the stacked electrode body 10. It is bent so as to have a second piece 152 that is substantially parallel to the stacking direction, and is formed into a side view shape (L shape) to form a penetrating portion 15P that extends from the first piece 151 to the second piece 152.
- the current collecting lead 11 is joined to the second piece 152 of the current collecting terminal 15 at the second welding point D12, and the current collecting lead 11 stacked at the first welding point D11 in the region where the through portion 15P is formed. The effect of joining together is disclosed.
- the distance X1 of the positive electrode current collector 16 with respect to the virtual reference line F1 passing through the center of the electrode assembly 5 and the negative electrode current collector 20 The distance Y1 is varied.
- the distance X1 is a distance between the first virtual center line F2 passing through the center of the positive electrode current collector 16 in the width direction W2 and the virtual reference line F1.
- the distance Y1 is a distance between the second virtual center line F3 passing through the center of the negative electrode current collector 20 in the width direction W3 and the virtual reference line F1.
- the positive electrode current collector 16 is arranged closer to the virtual reference line F1 than the negative electrode current collector 20 by making the distance X1 shorter than the distance Y1.
- Patent Document 1 since the joint surface between the current collecting terminal 15 and the exterior body extends in a direction perpendicular to the stacking direction of the stacked electrode body 10, space is wasted in the secondary battery. Moreover, in patent document 2, since the external terminal 7, the external terminal 8, and the battery case 3 are sealed by the surfaces perpendicular to the stacking direction of the electrodes by the insulating ring 9a, the space in the secondary battery is reduced. Waste is occurring. An object of this invention is to reduce the waste of the space in a secondary battery.
- An electrode body configured by laminating electrodes, an electrode tab electrically connected to the electrode body, an electrode terminal electrically connected to the electrode tab, an exterior body that houses the electrode body and the electrode terminal, The electrode tab and the electrode terminal are bent, the electrode tab and the electrode terminal are connected with each other extending in the laminating direction, and the electrode terminal and the exterior body are the electrode tab and the connection surface of the electrode terminal in the electrode terminal.
- a stacked secondary battery that is sealed on the opposite surface with the surfaces extending in the stacking direction.
- 1 is a stacked secondary battery according to an embodiment of the present invention. It is a manufacturing process of the laminated type secondary battery which concerns on one Embodiment of this invention. It is a manufacturing process of the laminated type secondary battery which concerns on one Embodiment of this invention. It is a manufacturing process of the laminated type secondary battery which concerns on one Embodiment of this invention. It is a manufacturing process of the laminated type secondary battery which concerns on one Embodiment of this invention. It is a manufacturing process of the laminated type secondary battery which concerns on one Embodiment of this invention. 1 is a stacked secondary battery according to an embodiment of the present invention.
- a lithium ion secondary battery will be described as an example of a stacked secondary battery.
- the technical idea of the present invention is not only a lithium ion secondary battery but also a sodium ion secondary battery, a magnesium ion secondary battery.
- the present invention can also be applied to batteries, aluminum ion secondary batteries, and the like.
- FIG. 1 is a schematic view of a stacked secondary battery according to an embodiment of the present invention.
- the stacked secondary battery 1000 includes a positive electrode 100, a negative electrode 200, a positive electrode tab 130, a negative electrode tab 230, a positive electrode terminal 150, a negative electrode terminal 250, a separator 300, a sealant 500, a bending insulating member 600, and an exterior body 700.
- a direction in which the positive electrode 100, the negative electrode 200, and the separator 300 are stacked is a stacking direction
- a vertical direction in the stacking direction is an in-plane direction.
- the positive electrode 100 or the negative electrode 200 is an electrode
- the positive electrode mixture layer 110 or the negative electrode mixture layer 210 is an electrode mixture layer
- the positive electrode current collector 120 or the negative electrode current collector 220 is an electrode current collector
- the tab 230 may be referred to as an electrode tab
- the positive electrode terminal 150 or the negative electrode terminal 250 may be referred to as an electrode terminal.
- the positive electrode 100, the separator 300, and the negative electrode 200 are laminated
- the stacked secondary battery 1000 is configured by stacking a plurality of electrode bodies 400. By connecting the positive electrode tabs 130 to each other and the negative electrode tab 230, an electrical parallel connection is configured in the stacked secondary battery 1000.
- An electrical series connection may be configured in the stacked secondary battery 1000. In that case, an electrical series connection is configured in the plurality of electrode bodies 400, and one positive electrode tab 130 and one negative electrode tab 230 extend from the in-plane direction from the uppermost and lowermost stages of the electrode body 400, respectively.
- the positive electrode 100 includes a positive electrode mixture layer 110 and a positive electrode current collector 120.
- a positive electrode mixture layer 110 is formed on both surfaces of the positive electrode current collector 120.
- the positive electrode mixture layer 110 contains at least a positive electrode active material capable of inserting and extracting Li.
- the positive electrode active material include LiCo-based oxides, LiNi-based composite oxides, LiMn-based composite oxides, Li-Co-Ni-Mn composite oxides, LiFeP-based oxides, and the like.
- a conductive material responsible for electronic conductivity in the positive electrode mixture layer 110, a binder that ensures adhesion between the materials in the positive electrode mixture layer 110, and further in the positive electrode mixture layer 110 A solid electrolyte for ensuring ionic conductivity may be included.
- a material contained in the positive electrode mixture layer 110 is dissolved in a solvent to form a slurry, which is applied onto the positive electrode current collector 120.
- the coating method is not particularly limited, and for example, a conventional method such as a doctor blade method, a dipping method, or a spray method can be used. Thereafter, the positive electrode mixture layer 110 is formed through a drying process for removing the solvent and a pressing process for ensuring the electron conductivity and ion conductivity in the positive electrode mixture layer 110.
- the positive electrode current collector 120 is electrically connected to the positive electrode tab 130.
- the positive electrode tab 130 is led out of the electrode body 400.
- the positive electrode mixture layer 110 is not formed on the positive electrode tab 130.
- the positive electrode mixture layer 110 may be formed on the positive electrode tab 130 as long as the battery performance is not adversely affected.
- the positive electrode tab 130 is bent by the bending insulating member 600, and the bent positive electrode tab 130 extends in the stacking direction. The folded portion of the bent positive electrode tab 130 is in contact with the exterior body 700. Thereby, the size of the stacked secondary battery 1000 can be made compact.
- an aluminum foil, an aluminum perforated foil having a hole diameter of 0.1 to 10 mm, an expanded metal, an aluminum foam plate, or the like is used.
- the material stainless steel, titanium, or the like can be applied in addition to aluminum.
- the thicknesses of the positive electrode current collector 120 and the positive electrode tab 130 are preferably 10 nm to 1 mm. From the viewpoint of achieving both the energy density of the stacked secondary battery 1000 and the mechanical strength of the electrode, about 1 to 100 ⁇ m is desirable.
- Negative electrode 200 It has a negative electrode 200, a negative electrode mixture layer 210, and a negative electrode current collector 220. Negative electrode mixture layers 210 are formed on both surfaces of the negative electrode current collector 220.
- the negative electrode mixture layer 210 contains at least a positive electrode active material capable of inserting and extracting Li.
- the negative electrode active material include carbon-based materials such as natural graphite, soft carbon, and amorphous carbon, Si metal, Si alloy, lithium titanate, and lithium metal.
- a conductive material responsible for electronic conductivity in the negative electrode mixture layer 210, a binder that ensures adhesion between the materials in the negative electrode mixture layer 210, and further in the negative electrode mixture layer 210 A solid electrolyte for ensuring ionic conductivity may be included.
- the material contained in the negative electrode mixture layer 210 is dissolved in a solvent to form a slurry, which is applied onto the negative electrode current collector 220.
- the coating method is not particularly limited, and for example, a conventional method such as a doctor blade method, a dipping method, or a spray method can be used. Thereafter, the negative electrode mixture layer 210 is formed through a drying process for removing the solvent and a pressing process for ensuring the electron conductivity and ion conductivity in the negative electrode mixture layer 210.
- the configurations of the negative electrode current collector 220 and the negative electrode tab 230 are substantially the same as the configurations of the positive electrode current collector 120 and the positive electrode tab 130.
- the negative electrode tab 230 is also led out of the electrode body 400, but the directions led out in the in-plane directions of the positive electrode tab 130 and the negative electrode tab 230 are opposite.
- the negative electrode current collector 220 and the negative electrode tab 230 copper foil, copper perforated foil having a hole diameter of 0.1 to 10 mm, expanded metal, foamed copper plate, etc. are used. Is also applicable.
- the thickness of the negative electrode current collector 220 and the negative electrode tab 230 is preferably 10 nm to 1 mm. From the viewpoint of achieving both the energy density of the stacked secondary battery 1000 and the mechanical strength of the electrode, about 1 to 100 ⁇ m is desirable.
- the separator 300 is formed between the positive electrode 100 and the negative electrode 200, and allows lithium ions to pass therethrough when the stacked secondary battery 1000 is a lithium ion secondary battery, thereby preventing a short circuit between the positive electrode 100 and the negative electrode 200.
- a material constituting the separator 300 a microporous film, a solid electrolyte, or the like can be used.
- the microporous film polyolefin such as polyethylene or polypropylene, glass fiber, or the like can be used.
- the electrolyte solution is injected into the multilayer secondary battery 1000 by injecting the electrolyte solution into the multilayer secondary battery 1000 from a vacant side of the outer package 700 or a liquid injection hole. Is filled.
- the electrolytic solution includes, for example, a solvent and a lithium salt, and serves as a medium for transmitting lithium ions between the positive electrode 100 and the negative electrode 200.
- ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), propylene carbonate, butylene carbonate, ⁇ -butyrolactone, phosphate triester, trimethoxymethane, dioxolane, diethyl ether, sulfolane, etc. as the solvent. Can do. These materials may be used alone or in combination.
- lithium salt LiPF 6, LiBF 4, LiClO 4, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, lithium bis oxalate borate (LiBOB), lithium imide salt (e.g., lithium bis (Fluorosulfonyl) imide, LiFSI) and the like can be preferably used. These lithium salts may be used alone or in combination.
- the solid electrolyte Li 10 Ge 2 PS 12, Li 2 S-P 2 S 5 sulfide such as oxide-based, such as Li-La-Zr-O, the organic polymer Ya an ion liquid or ambient temperature molten salt
- a semi-solid electrolyte supported on inorganic particles or the like, a gel electrolyte using a polymer gel as an electrolyte, or the like can be used.
- the solid electrolyte serves as a medium for transmitting lithium ions between the positive electrode 100 and the negative electrode 200, and thus the above-described electrolytic solution is basically unnecessary. Can be configured in series. However, as long as an electrical short circuit in the multilayer secondary battery 1000 can be prevented, an electrolyte may be added to the multilayer secondary battery 1000 even when a solid electrolyte is used as the separator 300.
- the separator 300 may be formed as a sheet between the positive electrode 100 and the negative electrode 200, or may be formed by coating on the electrode mixture layer. In FIG. 1, the separator 300 is formed on both surfaces of the electrode mixture layer. However, if the separator 300 is formed between the positive electrode 100 and the negative electrode 200, the separator 300 is formed on one surface of the electrode mixture layer. Also good.
- the thickness of the separator 300 is several nanometers to several millimeters from the viewpoint of ensuring the energy density of the stacked secondary battery 1000, ensuring electronic insulation, and the like.
- the electrode terminals include electrode terminal intermediate recesses (positive terminal intermediate recess 151, negative terminal intermediate recess 251), electrode terminal end recesses (positive terminal end recess 152, negative terminal end recess 252), electrode terminal protrusions (positive terminal). And a negative electrode terminal protrusion 253).
- the electrode terminal is fixed to the exterior body 700 through the sealant 500 and is electrically connected to the electrode tab.
- the electrode terminal is formed with an electrode terminal protrusion that protrudes from the exterior body 700 in the in-plane direction.
- the protruding portion of the electrode terminal is connected to a bus bar (not shown), and the bus bar electrically connects a plurality of stacked secondary batteries 1000.
- An electrode terminal intermediate recess is provided at an intermediate portion of the electrode terminals in the stacking direction, and the electrode terminal intermediate recess serves as a junction between the electrode terminal and the electrode tab. At the junction point, the electrode tab and the electrode terminal are connected by surfaces extending in the stacking direction.
- the electrode terminal intermediate recess is formed above the sealant 500 in the stacking direction so that the electrode tab and the electrode terminal can be joined.
- the electrode terminal intermediate recess in the intermediate part of the electrode terminal, the electrode terminal and the electrode tab can be easily joined.
- a convex portion is formed on the side of the electrode terminal intermediate concave portion where the electrode body 400 is formed.
- the electrode terminal and the electrode tab are partially joined.
- the electrode terminal end recess is provided at the end of the electrode terminal in the stacking direction, and the sealant 500 is formed in the electrode terminal end recess.
- the electrode terminal end concave portion By providing the electrode terminal end concave portion, the electrode terminal protruding portion can be exposed from the exterior body 700, and by simply contacting each electrode terminal protruding portion of the plurality of stacked secondary batteries 1000 in the in-plane direction, A plurality of stacked secondary batteries 1000 can be electrically connected.
- the metal of the electrode terminal can be a metal such as aluminum, copper, nickel or stainless steel.
- the sealant 500 is disposed between the electrode terminal end recess and the bent portion of the exterior body 700 to insulate the electrode terminal and the exterior body 700.
- the sealant agent 500 seals and seals the interface between the surface of the electrode terminal opposite to the connection surface between the electrode terminal and the electrode tab and the inner surface of the outer periphery of the bent portion 700.
- the length of the sealant 500 in the stacking direction is formed larger than the bent portion of the exterior body 700.
- the sealant 500 is formed in a ring shape so as to surround the electrode terminal.
- Sealant agent 500 is formed of an insulating material such as resin.
- ⁇ Bending insulation member 600> In the in-plane direction, the bending insulating members 600 disposed on both sides of the electrode body 400 are integrally formed. The bending insulating member 600 is formed to bend the electrode tabs in the stacking direction, and is formed between the electrode tabs bent in the in-plane direction.
- the lower end of the folding insulating member 600 in the stacking direction is in contact with the folded portion of the folded positive electrode tab 130.
- the upper end portion of the bending insulating member 600 in the stacking direction is in contact with the exterior body 700.
- the bending insulating member 600 is made of an insulating resin material such as polypropylene (PP) or polybutylene terephthalate (PBT).
- PP polypropylene
- PBT polybutylene terephthalate
- the exterior body 700 houses the electrode, the separator 300, the electrode tab, the electrode terminal, the sealant 500, and the insulating member 600 for bending.
- an opening is formed in the exterior body 700 so that the electrode terminals are exposed on the surface of the exterior body 700 where the electrode terminals are formed.
- a folding part is provided at an end in the stacking direction of the exterior body 700, and the folding part is formed so as to be in contact with the sealant agent 500.
- the electrode terminal and the exterior body 700 are sealed with surfaces extending in the stacking direction on the surface of the electrode terminal opposite to the electrode tab and the connection surface of the electrode terminal.
- the exterior body 700 is formed in a tube shape, and it is desirable that the exterior body 700 has corrosion resistance to an electrolyte such as aluminum, SUS, or nickel-plated steel whose surface is insulated.
- the exterior body 700 is preferably made of a material having excellent processability such as bending and drawing.
- the exterior body 700 may be a heat-shrinkable tube made of an annular resin material, and may be contracted in a state where a member housed in the exterior body 700 such as the electrode body 400 is covered.
- FIG. 2 shows a manufacturing process of the laminated secondary battery according to the embodiment of the present invention.
- negative electrodes 200 on which separators 300 are formed and positive electrodes 100 on which separators 300 are formed are alternately stacked on a substrate 2000.
- the electrode tab extends in the in-plane direction.
- FIG. 3 shows a manufacturing process of the laminated secondary battery according to the embodiment of the present invention.
- the electrode tabs are bundled by pushing the insulating member 600 for bending into the electrode tabs in the stacking direction.
- the electrode tab has a portion bundled in the stacking direction on the side where the electrode body 400 of the bending insulating member 600 is formed and a portion bundled in the in-plane direction below the bending insulating member 600.
- FIG. 4 shows a manufacturing process of the laminated secondary battery according to the embodiment of the present invention.
- an electrode tab and an electrode terminal are joined, for example by ultrasonic welding.
- Any part of the electrode tab extending in the in-plane direction may be a junction point between the electrode tab and the electrode terminal, but the portion where all the electrode tabs in the laminated secondary battery 1000 are bundled in the in-plane direction is It is desirable to be a junction point between the electrode tab and the electrode terminal.
- a sealant 500 for sealing the electrode body 400 is formed on the electrode terminal at the lower part in the stacking direction.
- FIG. 5 shows a manufacturing process of the laminated secondary battery according to the embodiment of the present invention.
- the electrode tab to which the electrode terminals are joined is bent in the stacking direction. Thereby, an electrode tab and an electrode terminal will be electrically connected by the surfaces extended
- the bent electrode tab may be brought into contact with the bending insulating member 600, or a space may be provided within a range that does not impair the performance of the stacked secondary battery 1000.
- FIG. 6 shows a manufacturing process of the laminated secondary battery according to the embodiment of the present invention.
- the electrode body 400 is sealed by the exterior body 700 and the electrode terminal by bending the end portion of the exterior body 700 and bonding the bent portion of the exterior body 700 and the sealant 500.
- the sealant 500 ensures the insulation between the exterior body 700 and the electrode terminals.
- the exterior body 700 and the electrode terminal are sealed with the surfaces extending in the stacking direction on the surface of the electrode terminal opposite to the junction point between the electrode terminal and the electrode tab.
- FIG. 7 is a schematic view of a stacked secondary battery according to an embodiment of the present invention.
- the multilayer secondary battery 1000 of FIG. 7 has a configuration without the folding insulating member 600 compared to the multilayer secondary battery 1000 of FIG. 1, in other words, a space is provided in the in-plane direction of the folded electrode tab. ing.
- the configuration without the folding insulating member 600 is achieved by removing the folding insulating member 600 in the stacking direction after the step of FIG. With such a configuration, the stacked secondary battery 1000 can be reduced in weight.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Secondary Cells (AREA)
- Connection Of Batteries Or Terminals (AREA)
Abstract
A laminated secondary battery (1000) has an electrode body (400) formed by laminating electrodes (100, 200), electrode tabs (130, 230) electrically connected to the electrode body, electrode terminals (150, 250) electrically connected to the electrode tabs, and an exterior body (700) for housing the electrode body and the electrode terminals, wherein: the electrode tabs are bent; the electrode tabs and the electrode terminals are connected to each other through the surfaces thereof extending in the lamination direction; and the electrode terminals and the exterior body are sealed to each other through the surfaces thereof extending in the lamination direction on the surface of the electrode terminals opposite to the connection surfaces of the electrode tabs and the electrode terminals.
Description
本発明は、積層型二次電池に関する。
The present invention relates to a stacked secondary battery.
積層型二次電池に関する技術として、特許文献1には、集電端子15を、積層電極体10における正負極板と実質的に平行な第1片151と、積層電極体10における正負極板の積層方向と実質的に平行な第2片152とを有するように折り曲げて側面視鉤形状(L形状)に成形し、第1片151から第2片152にかけて拡がる貫通部15Pを形成する。集電リード11を、集電端子15の第2片152に第2溶接点D12で接合するとともに、貫通部15Pが形成された領域内の第1溶接点D11で、積層された集電リード11同士を接合する、旨が開示されている。また、特許文献2には、電極組立体5を層方向から正面視した場合に、電極組立体5の中央を通る仮想基準線F1に対する正極集電部16の距離X1と負極集電部20の距離Y1を異ならせる。距離X1は、正極集電部16の幅方向W2の中央を通る第1仮想中央線F2と仮想基準線F1の距離である。距離Y1は、負極集電部20の幅方向W3の中央を通る第2仮想中央線F3と仮想基準線F1の距離である。そして、距離X1を、距離Y1に比して短くすることにより、正極集電部16は、負極集電部20よりも仮想基準線F1寄りに配置される、旨が開示されている。
As a technique related to the stacked secondary battery, Patent Document 1 discloses that the current collecting terminal 15 includes a first piece 151 substantially parallel to the positive and negative plates in the stacked electrode body 10, and the positive and negative plates in the stacked electrode body 10. It is bent so as to have a second piece 152 that is substantially parallel to the stacking direction, and is formed into a side view shape (L shape) to form a penetrating portion 15P that extends from the first piece 151 to the second piece 152. The current collecting lead 11 is joined to the second piece 152 of the current collecting terminal 15 at the second welding point D12, and the current collecting lead 11 stacked at the first welding point D11 in the region where the through portion 15P is formed. The effect of joining together is disclosed. Further, in Patent Document 2, when the electrode assembly 5 is viewed from the front in the layer direction, the distance X1 of the positive electrode current collector 16 with respect to the virtual reference line F1 passing through the center of the electrode assembly 5 and the negative electrode current collector 20 The distance Y1 is varied. The distance X1 is a distance between the first virtual center line F2 passing through the center of the positive electrode current collector 16 in the width direction W2 and the virtual reference line F1. The distance Y1 is a distance between the second virtual center line F3 passing through the center of the negative electrode current collector 20 in the width direction W3 and the virtual reference line F1. And it is disclosed that the positive electrode current collector 16 is arranged closer to the virtual reference line F1 than the negative electrode current collector 20 by making the distance X1 shorter than the distance Y1.
特許文献1では、集電端子15と外装体との接合面が積層電極体10の積層方向に対する垂直方向に延伸しているので、二次電池内でのスペースの無駄が発生している。また、特許文献2では、絶縁リング9aにより外部端子7および外部端子8と電槽缶3とが電極の積層方向に対する垂直方向の面同士でシールされているため、二次電池内でのスペースの無駄が発生している。本発明は、二次電池内でのスペースの無駄を低減することを目的とする。
In Patent Document 1, since the joint surface between the current collecting terminal 15 and the exterior body extends in a direction perpendicular to the stacking direction of the stacked electrode body 10, space is wasted in the secondary battery. Moreover, in patent document 2, since the external terminal 7, the external terminal 8, and the battery case 3 are sealed by the surfaces perpendicular to the stacking direction of the electrodes by the insulating ring 9a, the space in the secondary battery is reduced. Waste is occurring. An object of this invention is to reduce the waste of the space in a secondary battery.
上記課題を解決するための本発明の特徴は、例えば以下の通りである。
The features of the present invention for solving the above problems are as follows, for example.
電極が積層されて構成された電極体と、電極体に電気的に接続された電極タブと、電極タブに電気的に接続された電極端子と、電極体および電極端子を収納する外装体と、を有し、電極タブは折り曲げられており、電極タブおよび電極端子は、積層方向に延伸する面同士で接続され、電極端子および外装体は、電極端子における電極タブおよび電極端子の接続面とは反対側の面で、積層方向に延伸する面同士でシールされる積層型二次電池。
An electrode body configured by laminating electrodes, an electrode tab electrically connected to the electrode body, an electrode terminal electrically connected to the electrode tab, an exterior body that houses the electrode body and the electrode terminal, The electrode tab and the electrode terminal are bent, the electrode tab and the electrode terminal are connected with each other extending in the laminating direction, and the electrode terminal and the exterior body are the electrode tab and the connection surface of the electrode terminal in the electrode terminal. A stacked secondary battery that is sealed on the opposite surface with the surfaces extending in the stacking direction.
本発明により、二次電池内でのスペースの無駄を低減できる。上記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。
According to the present invention, the waste of space in the secondary battery can be reduced. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description shows specific examples of the contents of the present invention, and the present invention is not limited to these descriptions. Various modifications by those skilled in the art are within the scope of the technical idea disclosed in this specification. Changes and modifications are possible. In all the drawings for explaining the present invention, components having the same function are denoted by the same reference numerals, and repeated description thereof may be omitted.
本明細書では、積層型二次電池としてリチウムイオン二次電池を例にして説明するが、本発明の技術的思想は、リチウムイオン二次電池の他、ナトリウムイオン二次電池、マグネシウムイオン二次電池、アルミニウムイオン二次電池などに対しても適用することができる。
In this specification, a lithium ion secondary battery will be described as an example of a stacked secondary battery. However, the technical idea of the present invention is not only a lithium ion secondary battery but also a sodium ion secondary battery, a magnesium ion secondary battery. The present invention can also be applied to batteries, aluminum ion secondary batteries, and the like.
図1は、本発明の一実施形態に係る積層型二次電池の模式図である。積層型二次電池1000は、正極100、負極200、正極タブ130、負極タブ230、正極端子150、負極端子250、セパレータ300、シーラント剤500、折り曲げ用絶縁部材600、外装体700を有する。図1のように、正極100、負極200、セパレータ300が積層されている方向を積層方向、積層方向の垂面方向を面内方向、とする。
FIG. 1 is a schematic view of a stacked secondary battery according to an embodiment of the present invention. The stacked secondary battery 1000 includes a positive electrode 100, a negative electrode 200, a positive electrode tab 130, a negative electrode tab 230, a positive electrode terminal 150, a negative electrode terminal 250, a separator 300, a sealant 500, a bending insulating member 600, and an exterior body 700. As shown in FIG. 1, a direction in which the positive electrode 100, the negative electrode 200, and the separator 300 are stacked is a stacking direction, and a vertical direction in the stacking direction is an in-plane direction.
以下では、正極100または負極200を電極、正極合剤層110または負極合剤層210を電極合剤層、正極集電体120または負極集電体220を電極集電体、正極タブ130または負極タブ230を電極タブ、正極端子150または負極端子250を電極端子、と称する場合がある。
Hereinafter, the positive electrode 100 or the negative electrode 200 is an electrode, the positive electrode mixture layer 110 or the negative electrode mixture layer 210 is an electrode mixture layer, the positive electrode current collector 120 or the negative electrode current collector 220 is an electrode current collector, the positive electrode tab 130 or the negative electrode The tab 230 may be referred to as an electrode tab, and the positive electrode terminal 150 or the negative electrode terminal 250 may be referred to as an electrode terminal.
正極100、セパレータ300、負極200が積層されて電極体400が構成される。積層型二次電池1000は、複数の電極体400が積層されて構成される。正極タブ130同士および負極タブ230が接続されることで、積層型二次電池1000中で電気的な並列接続が構成される。積層型二次電池1000中で電気的な直列接続を構成させてもよい。その場合、複数の電極体400内で電気的な直列接続が構成され、電極体400の最上段および最下段からそれぞれ一つの正極タブ130および負極タブ230が面内方向から延伸することになる。
The positive electrode 100, the separator 300, and the negative electrode 200 are laminated | stacked and the electrode body 400 is comprised. The stacked secondary battery 1000 is configured by stacking a plurality of electrode bodies 400. By connecting the positive electrode tabs 130 to each other and the negative electrode tab 230, an electrical parallel connection is configured in the stacked secondary battery 1000. An electrical series connection may be configured in the stacked secondary battery 1000. In that case, an electrical series connection is configured in the plurality of electrode bodies 400, and one positive electrode tab 130 and one negative electrode tab 230 extend from the in-plane direction from the uppermost and lowermost stages of the electrode body 400, respectively.
<正極100>
正極100は、正極合剤層110および正極集電体120を有する。正極集電体120の両面に正極合剤層110が形成されている。 <Positive electrode 100>
Thepositive electrode 100 includes a positive electrode mixture layer 110 and a positive electrode current collector 120. A positive electrode mixture layer 110 is formed on both surfaces of the positive electrode current collector 120.
正極100は、正極合剤層110および正極集電体120を有する。正極集電体120の両面に正極合剤層110が形成されている。 <
The
<正極合剤層110>
正極合剤層110には、少なくともLiの吸蔵・放出が可能な正極活物質が含まれている。正極活物質としては、LiCo系酸化物、LiNi系複合酸化物、LiMn系複合酸化物、Li-Co-Ni-Mn複合酸化物、LiFeP系酸化物などが上げられる。正極合剤層110中に、正極合剤層110内の電子伝導性を担う導電材や、正極合剤層110内の材料間の密着性を確保するバインダ、さらには正極合剤層110内のイオン伝導性を確保するための固体電解質を含めてもよい。 <Positiveelectrode mixture layer 110>
The positiveelectrode mixture layer 110 contains at least a positive electrode active material capable of inserting and extracting Li. Examples of the positive electrode active material include LiCo-based oxides, LiNi-based composite oxides, LiMn-based composite oxides, Li-Co-Ni-Mn composite oxides, LiFeP-based oxides, and the like. In the positive electrode mixture layer 110, a conductive material responsible for electronic conductivity in the positive electrode mixture layer 110, a binder that ensures adhesion between the materials in the positive electrode mixture layer 110, and further in the positive electrode mixture layer 110 A solid electrolyte for ensuring ionic conductivity may be included.
正極合剤層110には、少なくともLiの吸蔵・放出が可能な正極活物質が含まれている。正極活物質としては、LiCo系酸化物、LiNi系複合酸化物、LiMn系複合酸化物、Li-Co-Ni-Mn複合酸化物、LiFeP系酸化物などが上げられる。正極合剤層110中に、正極合剤層110内の電子伝導性を担う導電材や、正極合剤層110内の材料間の密着性を確保するバインダ、さらには正極合剤層110内のイオン伝導性を確保するための固体電解質を含めてもよい。 <Positive
The positive
正極合剤層110を作製する方法として、正極合剤層110に含まれる材料を溶媒に溶かしてスラリー化し、それを正極集電体120上に塗工する。塗工方法に特段の限定はなく、例えば、ドクターブレード法、ディッピング法、スプレー法などの従前の方法を利用できる。その後、溶媒を除去するための乾燥、正極合剤層110内の電子伝導性、イオン伝導性を確保するためのプレス工程を経て、正極合剤層110が形成される。
As a method for producing the positive electrode mixture layer 110, a material contained in the positive electrode mixture layer 110 is dissolved in a solvent to form a slurry, which is applied onto the positive electrode current collector 120. The coating method is not particularly limited, and for example, a conventional method such as a doctor blade method, a dipping method, or a spray method can be used. Thereafter, the positive electrode mixture layer 110 is formed through a drying process for removing the solvent and a pressing process for ensuring the electron conductivity and ion conductivity in the positive electrode mixture layer 110.
<正極集電体120、正極タブ130>
正極集電体120は正極タブ130と電気的に接続されている。正極タブ130は電極体400の外部に導出されている。図1において、正極タブ130には正極合剤層110が形成されていない。ただし、電池性能に悪影響を与えない範囲で正極タブ130に正極合剤層110を形成してもよい。正極タブ130は折り曲げ用絶縁部材600によって折り曲げられており、折り曲げられた正極タブ130は積層方向に延伸している。折り曲げられた正極タブ130の折り返し部は外装体700に接している。これにより、積層型二次電池1000の大きさをコンパクトにできる。 <Positive electrodecurrent collector 120, positive electrode tab 130>
The positive electrodecurrent collector 120 is electrically connected to the positive electrode tab 130. The positive electrode tab 130 is led out of the electrode body 400. In FIG. 1, the positive electrode mixture layer 110 is not formed on the positive electrode tab 130. However, the positive electrode mixture layer 110 may be formed on the positive electrode tab 130 as long as the battery performance is not adversely affected. The positive electrode tab 130 is bent by the bending insulating member 600, and the bent positive electrode tab 130 extends in the stacking direction. The folded portion of the bent positive electrode tab 130 is in contact with the exterior body 700. Thereby, the size of the stacked secondary battery 1000 can be made compact.
正極集電体120は正極タブ130と電気的に接続されている。正極タブ130は電極体400の外部に導出されている。図1において、正極タブ130には正極合剤層110が形成されていない。ただし、電池性能に悪影響を与えない範囲で正極タブ130に正極合剤層110を形成してもよい。正極タブ130は折り曲げ用絶縁部材600によって折り曲げられており、折り曲げられた正極タブ130は積層方向に延伸している。折り曲げられた正極タブ130の折り返し部は外装体700に接している。これにより、積層型二次電池1000の大きさをコンパクトにできる。 <Positive electrode
The positive electrode
正極集電体120および正極タブ130には、アルミニウム箔や孔径0.1~10mmのアルミニウム製穿孔箔、エキスパンドメタル、発泡アルミニウム板などが用いられる。材質は、アルミニウムの他に、ステンレス、チタンなども適用できる。正極集電体120および正極タブ130の厚さは、好ましくは10nm~1mmである。積層型二次電池1000のエネルギー密度と電極の機械強度両立の観点から1~100μm程度が望ましい。
For the positive electrode current collector 120 and the positive electrode tab 130, an aluminum foil, an aluminum perforated foil having a hole diameter of 0.1 to 10 mm, an expanded metal, an aluminum foam plate, or the like is used. As the material, stainless steel, titanium, or the like can be applied in addition to aluminum. The thicknesses of the positive electrode current collector 120 and the positive electrode tab 130 are preferably 10 nm to 1 mm. From the viewpoint of achieving both the energy density of the stacked secondary battery 1000 and the mechanical strength of the electrode, about 1 to 100 μm is desirable.
<負極200>
負極200、負極合剤層210および負極集電体220を有する。負極集電体220の両面に負極合剤層210が形成されている。 <Negative electrode 200>
It has anegative electrode 200, a negative electrode mixture layer 210, and a negative electrode current collector 220. Negative electrode mixture layers 210 are formed on both surfaces of the negative electrode current collector 220.
負極200、負極合剤層210および負極集電体220を有する。負極集電体220の両面に負極合剤層210が形成されている。 <
It has a
<負極合剤層210>
負極合剤層210には、少なくともLiの吸蔵・放出が可能な正極活物質が含まれている。負極活物質としては、天然黒鉛、ソフトカーボン、非晶質炭素などの炭素系材料、Si金属やSi合金、チタン酸リチウム、リチウム金属などが上げられる。負極合剤層210中に、負極合剤層210内の電子伝導性を担う導電材や、負極合剤層210内の材料間の密着性を確保するバインダ、さらには負極合剤層210内のイオン伝導性を確保するための固体電解質を含めてもよい。 <Negativeelectrode mixture layer 210>
The negativeelectrode mixture layer 210 contains at least a positive electrode active material capable of inserting and extracting Li. Examples of the negative electrode active material include carbon-based materials such as natural graphite, soft carbon, and amorphous carbon, Si metal, Si alloy, lithium titanate, and lithium metal. In the negative electrode mixture layer 210, a conductive material responsible for electronic conductivity in the negative electrode mixture layer 210, a binder that ensures adhesion between the materials in the negative electrode mixture layer 210, and further in the negative electrode mixture layer 210 A solid electrolyte for ensuring ionic conductivity may be included.
負極合剤層210には、少なくともLiの吸蔵・放出が可能な正極活物質が含まれている。負極活物質としては、天然黒鉛、ソフトカーボン、非晶質炭素などの炭素系材料、Si金属やSi合金、チタン酸リチウム、リチウム金属などが上げられる。負極合剤層210中に、負極合剤層210内の電子伝導性を担う導電材や、負極合剤層210内の材料間の密着性を確保するバインダ、さらには負極合剤層210内のイオン伝導性を確保するための固体電解質を含めてもよい。 <Negative
The negative
負極合剤層210を作製する方法として、負極合剤層210に含まれる材料を溶媒に溶かしてスラリー化し、それを負極集電体220上に塗工する。塗工方法に特段の限定はなく、例えば、ドクターブレード法、ディッピング法、スプレー法などの従前の方法を利用できる。その後、溶媒を除去するための乾燥、負極合剤層210内の電子伝導性、イオン伝導性を確保するためのプレス工程を経て、負極合剤層210が形成する。
As a method for producing the negative electrode mixture layer 210, the material contained in the negative electrode mixture layer 210 is dissolved in a solvent to form a slurry, which is applied onto the negative electrode current collector 220. The coating method is not particularly limited, and for example, a conventional method such as a doctor blade method, a dipping method, or a spray method can be used. Thereafter, the negative electrode mixture layer 210 is formed through a drying process for removing the solvent and a pressing process for ensuring the electron conductivity and ion conductivity in the negative electrode mixture layer 210.
<負極集電体220、負極タブ230>
負極集電体220および負極タブ230の構成は、概ね正極集電体120および正極タブ130の構成と同様である。正極タブ130と同様に負極タブ230も電極体400の外部に導出されているが、正極タブ130および負極タブ230の面内方向において導出されている方向は、反対になっている。 <Negative electrodecurrent collector 220, negative electrode tab 230>
The configurations of the negative electrodecurrent collector 220 and the negative electrode tab 230 are substantially the same as the configurations of the positive electrode current collector 120 and the positive electrode tab 130. Similarly to the positive electrode tab 130, the negative electrode tab 230 is also led out of the electrode body 400, but the directions led out in the in-plane directions of the positive electrode tab 130 and the negative electrode tab 230 are opposite.
負極集電体220および負極タブ230の構成は、概ね正極集電体120および正極タブ130の構成と同様である。正極タブ130と同様に負極タブ230も電極体400の外部に導出されているが、正極タブ130および負極タブ230の面内方向において導出されている方向は、反対になっている。 <Negative electrode
The configurations of the negative electrode
負極集電体220および負極タブ230には、銅箔や孔径0.1~10mmの銅製穿孔箔、エキスパンドメタル、発泡銅板などが用いられ、材質は、銅の他に、ステンレス、チタン、ニッケルなども適用できる。負極集電体220および負極タブ230の厚さは、好ましくは10nm~1mmである。積層型二次電池1000のエネルギー密度と電極の機械強度両立の観点から1~100μm程度が望ましい。
For the negative electrode current collector 220 and the negative electrode tab 230, copper foil, copper perforated foil having a hole diameter of 0.1 to 10 mm, expanded metal, foamed copper plate, etc. are used. Is also applicable. The thickness of the negative electrode current collector 220 and the negative electrode tab 230 is preferably 10 nm to 1 mm. From the viewpoint of achieving both the energy density of the stacked secondary battery 1000 and the mechanical strength of the electrode, about 1 to 100 μm is desirable.
<セパレータ300>
セパレータ300は、正極100と負極200との間に形成され、積層型二次電池1000がリチウムイオン二次電池の場合リチウムイオンを透過させ、正極100と負極200の短絡を防止する。セパレータ300を構成する材料として、微多孔膜や固体電解質等を利用できる。 <Separator 300>
Theseparator 300 is formed between the positive electrode 100 and the negative electrode 200, and allows lithium ions to pass therethrough when the stacked secondary battery 1000 is a lithium ion secondary battery, thereby preventing a short circuit between the positive electrode 100 and the negative electrode 200. As a material constituting the separator 300, a microporous film, a solid electrolyte, or the like can be used.
セパレータ300は、正極100と負極200との間に形成され、積層型二次電池1000がリチウムイオン二次電池の場合リチウムイオンを透過させ、正極100と負極200の短絡を防止する。セパレータ300を構成する材料として、微多孔膜や固体電解質等を利用できる。 <
The
微多孔膜として、ポリエチレンやポリプロピレンといったポリオレフィンやガラス繊維などを利用できる。セパレータ300に微多孔膜が用いられる場合、外装体700の空いている1辺や注液孔から積層型二次電池1000に電解液を注入することで、積層型二次電池1000中に電解液が充填される。
As the microporous film, polyolefin such as polyethylene or polypropylene, glass fiber, or the like can be used. When a microporous film is used for the separator 300, the electrolyte solution is injected into the multilayer secondary battery 1000 by injecting the electrolyte solution into the multilayer secondary battery 1000 from a vacant side of the outer package 700 or a liquid injection hole. Is filled.
電解液は、例えば溶媒及びリチウム塩を有し、正極100と負極200の間でリチウムイオンの伝達させる媒体となる。溶媒として、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、プロピレンカーボネート、ブチレンカーボネート、γ-ブチロラクトン、リン酸トリエステル、トリメトキシメタン、ジオキソラン、ジエチルエーテル、スルホラン等を用いることができる。こられの材料を単独または複数組み合わせて使用してもよい。リチウム塩としては、例えば、LiPF6、LiBF4、LiClO4、LiCF3SO3、LiCF3CO2、LiAsF6、LiSbF6、リチウムビスオキサレートボラート(LiBOB)、リチウムイミド塩(例えば、リチウムビス(フルオロスルホニル)イミド、LiFSI)等を好ましく用いることができる。これらのリチウム塩を単独または複数組み合わせて使用してもよい。
The electrolytic solution includes, for example, a solvent and a lithium salt, and serves as a medium for transmitting lithium ions between the positive electrode 100 and the negative electrode 200. Use ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), propylene carbonate, butylene carbonate, γ-butyrolactone, phosphate triester, trimethoxymethane, dioxolane, diethyl ether, sulfolane, etc. as the solvent. Can do. These materials may be used alone or in combination. Examples of the lithium salt, LiPF 6, LiBF 4, LiClO 4, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, lithium bis oxalate borate (LiBOB), lithium imide salt (e.g., lithium bis (Fluorosulfonyl) imide, LiFSI) and the like can be preferably used. These lithium salts may be used alone or in combination.
固体電解質として、Li10Ge2PS12、Li2S-P2S5などの硫化物系、Li-La-Zr-Oなどの酸化物系、イオン液体や常温溶融塩などを有機高分子や無機粒子などに担持させた半固体電解質、高分子ゲルを電解質としたゲル電解質等を利用できる。セパレータ300として固体電解質を用いた場合、固体電解質が正極100と負極200の間にリチウムイオンの伝達させる媒体となるため上記の電解液は基本不要となるため、積層型二次電池1000中で電気的な直列接続を構成できる。ただし、積層型二次電池1000中での電気的な短絡を防止できるのであれば、セパレータ300として固体電解質を用いた場合でも積層型二次電池1000中に電解液を添加してもよい。
As the solid electrolyte, Li 10 Ge 2 PS 12, Li 2 S-P 2 S 5 sulfide such as oxide-based, such as Li-La-Zr-O, the organic polymer Ya an ion liquid or ambient temperature molten salt A semi-solid electrolyte supported on inorganic particles or the like, a gel electrolyte using a polymer gel as an electrolyte, or the like can be used. When a solid electrolyte is used as the separator 300, the solid electrolyte serves as a medium for transmitting lithium ions between the positive electrode 100 and the negative electrode 200, and thus the above-described electrolytic solution is basically unnecessary. Can be configured in series. However, as long as an electrical short circuit in the multilayer secondary battery 1000 can be prevented, an electrolyte may be added to the multilayer secondary battery 1000 even when a solid electrolyte is used as the separator 300.
セパレータ300は、シートとして正極100と負極200との間に形成してもよいし、電極合剤層の上に塗布により形成してもよい。図1では、電極合剤層の両面にセパレータ300が形成されているが、正極100と負極200との間にセパレータ300が形成されば、電極合剤層の片面にセパレータ300が形成されていてもよい。セパレータ300の厚さは積層型二次電池1000のエネルギー密度、電子絶縁性の確保等の観点から数nm~数mmのサイズとなる。
The separator 300 may be formed as a sheet between the positive electrode 100 and the negative electrode 200, or may be formed by coating on the electrode mixture layer. In FIG. 1, the separator 300 is formed on both surfaces of the electrode mixture layer. However, if the separator 300 is formed between the positive electrode 100 and the negative electrode 200, the separator 300 is formed on one surface of the electrode mixture layer. Also good. The thickness of the separator 300 is several nanometers to several millimeters from the viewpoint of ensuring the energy density of the stacked secondary battery 1000, ensuring electronic insulation, and the like.
<電極端子>
電極端子は、電極端子中間凹部(正極端子中間凹部151、負極端子中間凹部251)、電極端子端部凹部(正極端子端部凹部152、負極端子端部凹部252)、電極端子突出部(正極端子突出部153、負極端子突出部253)を有する。 <Electrode terminal>
The electrode terminals include electrode terminal intermediate recesses (positive terminalintermediate recess 151, negative terminal intermediate recess 251), electrode terminal end recesses (positive terminal end recess 152, negative terminal end recess 252), electrode terminal protrusions (positive terminal). And a negative electrode terminal protrusion 253).
電極端子は、電極端子中間凹部(正極端子中間凹部151、負極端子中間凹部251)、電極端子端部凹部(正極端子端部凹部152、負極端子端部凹部252)、電極端子突出部(正極端子突出部153、負極端子突出部253)を有する。 <Electrode terminal>
The electrode terminals include electrode terminal intermediate recesses (positive terminal
電極端子は、外装体700にシーラント剤500を介して固定され、電極タブと電気的に接続されている。電極端子は面内方向において外装体700より突出する電極端子突出部が形成されている。電極端子の突出部は図示省略するバスバーに接続され、バスバーは複数の積層型二次電池1000を電気的に接続する。
積層方向における電極端子の中間部には電極端子中間凹部が設けられており、電極端子中間凹部が電極端子および電極タブの接合点になっている。接合点において、電極タブおよび電極端子は、積層方向に延伸する面同士で接続されている。電極端子中間凹部は、電極タブおよび電極端子が接合できるように、積層方向においてシーラント剤500より上部に形成されている。電極端子の中間部に電極端子中間凹部を設けることにより、電極端子および電極タブの接合を容易にしている。面内方向において、電極端子中間凹部の電極体400が形成されている側には凸部が形成されている。換言すれば、積層方向において、電極端子および電極タブで接していない箇所があり、電極端子および電極タブは部分的に接合されている。これにより、積層方向において電極端子および電極タブが全面で接している場合に比べて、電極端子および電極タブの接合で発生した熱が電極端子全体に分散されるのを抑制している。 The electrode terminal is fixed to theexterior body 700 through the sealant 500 and is electrically connected to the electrode tab. The electrode terminal is formed with an electrode terminal protrusion that protrudes from the exterior body 700 in the in-plane direction. The protruding portion of the electrode terminal is connected to a bus bar (not shown), and the bus bar electrically connects a plurality of stacked secondary batteries 1000.
An electrode terminal intermediate recess is provided at an intermediate portion of the electrode terminals in the stacking direction, and the electrode terminal intermediate recess serves as a junction between the electrode terminal and the electrode tab. At the junction point, the electrode tab and the electrode terminal are connected by surfaces extending in the stacking direction. The electrode terminal intermediate recess is formed above thesealant 500 in the stacking direction so that the electrode tab and the electrode terminal can be joined. By providing the electrode terminal intermediate recess in the intermediate part of the electrode terminal, the electrode terminal and the electrode tab can be easily joined. In the in-plane direction, a convex portion is formed on the side of the electrode terminal intermediate concave portion where the electrode body 400 is formed. In other words, in the stacking direction, there is a portion that is not in contact with the electrode terminal and the electrode tab, and the electrode terminal and the electrode tab are partially joined. Thereby, compared with the case where the electrode terminal and the electrode tab are in contact with the entire surface in the stacking direction, the heat generated by joining the electrode terminal and the electrode tab is suppressed from being dispersed throughout the electrode terminal.
積層方向における電極端子の中間部には電極端子中間凹部が設けられており、電極端子中間凹部が電極端子および電極タブの接合点になっている。接合点において、電極タブおよび電極端子は、積層方向に延伸する面同士で接続されている。電極端子中間凹部は、電極タブおよび電極端子が接合できるように、積層方向においてシーラント剤500より上部に形成されている。電極端子の中間部に電極端子中間凹部を設けることにより、電極端子および電極タブの接合を容易にしている。面内方向において、電極端子中間凹部の電極体400が形成されている側には凸部が形成されている。換言すれば、積層方向において、電極端子および電極タブで接していない箇所があり、電極端子および電極タブは部分的に接合されている。これにより、積層方向において電極端子および電極タブが全面で接している場合に比べて、電極端子および電極タブの接合で発生した熱が電極端子全体に分散されるのを抑制している。 The electrode terminal is fixed to the
An electrode terminal intermediate recess is provided at an intermediate portion of the electrode terminals in the stacking direction, and the electrode terminal intermediate recess serves as a junction between the electrode terminal and the electrode tab. At the junction point, the electrode tab and the electrode terminal are connected by surfaces extending in the stacking direction. The electrode terminal intermediate recess is formed above the
積層方向における電極端子の端部には電極端子端部凹部が設けられており、電極端子端部凹部にシーラント剤500が形成されている。電極端子端部凹部を設けることにより、電極端子突出部を外装体700より露出させることができ、面内方向で複数の積層型二次電池1000のそれぞれの電極端子突出部を接触させるだけで、複数の積層型二次電池1000を電気的に接続できる。 電極端子の材質として、アルミニウム、銅、ニッケル、ステンレスなどの金属を用いることができる。
The electrode terminal end recess is provided at the end of the electrode terminal in the stacking direction, and the sealant 500 is formed in the electrode terminal end recess. By providing the electrode terminal end concave portion, the electrode terminal protruding portion can be exposed from the exterior body 700, and by simply contacting each electrode terminal protruding portion of the plurality of stacked secondary batteries 1000 in the in-plane direction, A plurality of stacked secondary batteries 1000 can be electrically connected. The metal of the electrode terminal can be a metal such as aluminum, copper, nickel or stainless steel.
<シーラント剤500>
シーラント剤500は、電極端子端部凹部と外装体700の折り曲げ部との間に配置されており、電極端子および外装体700を絶縁する。シーラント剤500によって、電極端子における電極端子と電極タブとの接続面の反対面と外装体700の折り曲げ部全周内面との界面がシールされ、封止されている。 <Sealant 500>
Thesealant 500 is disposed between the electrode terminal end recess and the bent portion of the exterior body 700 to insulate the electrode terminal and the exterior body 700. The sealant agent 500 seals and seals the interface between the surface of the electrode terminal opposite to the connection surface between the electrode terminal and the electrode tab and the inner surface of the outer periphery of the bent portion 700.
シーラント剤500は、電極端子端部凹部と外装体700の折り曲げ部との間に配置されており、電極端子および外装体700を絶縁する。シーラント剤500によって、電極端子における電極端子と電極タブとの接続面の反対面と外装体700の折り曲げ部全周内面との界面がシールされ、封止されている。 <
The
電極端子および外装体700の絶縁性を確保するために、シーラント剤500の積層方向における長さは外装体700の折り曲げ部より大きく形成されている。シーラント剤500は、電極端子を囲むようにリング状に形成されている。シーラント剤500は樹脂などの絶縁材料で形成されている。
In order to ensure the insulation between the electrode terminals and the exterior body 700, the length of the sealant 500 in the stacking direction is formed larger than the bent portion of the exterior body 700. The sealant 500 is formed in a ring shape so as to surround the electrode terminal. Sealant agent 500 is formed of an insulating material such as resin.
<折り曲げ用絶縁部材600>
面内方向において、電極体400の両側に配置されている折り曲げ用絶縁部材600は一体で形成されている。折り曲げ用絶縁部材600は電極タブを積層方向に折り曲げるために形成されており、面内方向において折り曲られた電極タブの間に形成されている。 <Bending insulation member 600>
In the in-plane direction, the bending insulatingmembers 600 disposed on both sides of the electrode body 400 are integrally formed. The bending insulating member 600 is formed to bend the electrode tabs in the stacking direction, and is formed between the electrode tabs bent in the in-plane direction.
面内方向において、電極体400の両側に配置されている折り曲げ用絶縁部材600は一体で形成されている。折り曲げ用絶縁部材600は電極タブを積層方向に折り曲げるために形成されており、面内方向において折り曲られた電極タブの間に形成されている。 <
In the in-plane direction, the bending insulating
積層方向における折り曲げ用絶縁部材600の下端部は折り曲げられた正極タブ130の折り返し部に接している。また、積層方向における折り曲げ用絶縁部材600の上端部は外装体700に接している。これにより、積層型二次電池1000の大きさをコンパクトにできる。また、振動などにより電極端子が電極体400に接触した場合の電極体400の損傷を抑制できる。さらに、振動などによる電極端子の積層方向の動きを抑制している。
The lower end of the folding insulating member 600 in the stacking direction is in contact with the folded portion of the folded positive electrode tab 130. The upper end portion of the bending insulating member 600 in the stacking direction is in contact with the exterior body 700. Thereby, the size of the stacked secondary battery 1000 can be made compact. Further, damage to the electrode body 400 when the electrode terminal contacts the electrode body 400 due to vibration or the like can be suppressed. Furthermore, the movement of the electrode terminals in the stacking direction due to vibration or the like is suppressed.
折り曲げ用絶縁部材600は、ポリプロピレン(PP)、ポリブチレンテレフタレート(PBT)などの絶縁性樹脂材料で構成されている。
The bending insulating member 600 is made of an insulating resin material such as polypropylene (PP) or polybutylene terephthalate (PBT).
<外装体700>
外装体700は、電極、セパレータ300、電極タブ、電極端子、シーラント剤500、折り曲げ用絶縁部材600を収納する。電極端子をバスバーに電気的に接続させるために、外装体700の電極端子が形成されている面では、電極端子を露出させるように外装体700には開口部が形成されている。 <Exterior body 700>
Theexterior body 700 houses the electrode, the separator 300, the electrode tab, the electrode terminal, the sealant 500, and the insulating member 600 for bending. In order to electrically connect the electrode terminals to the bus bar, an opening is formed in the exterior body 700 so that the electrode terminals are exposed on the surface of the exterior body 700 where the electrode terminals are formed.
外装体700は、電極、セパレータ300、電極タブ、電極端子、シーラント剤500、折り曲げ用絶縁部材600を収納する。電極端子をバスバーに電気的に接続させるために、外装体700の電極端子が形成されている面では、電極端子を露出させるように外装体700には開口部が形成されている。 <
The
外装体700の積層方向端部には折り曲げ部が設けられており、折り曲げ部はシーラント剤500に接するように形成されている。電極端子および外装体700は、電極端子における電極タブおよび電極端子の接続面とは反対側の面で、積層方向に延伸する面同士でシールされている。
A folding part is provided at an end in the stacking direction of the exterior body 700, and the folding part is formed so as to be in contact with the sealant agent 500. The electrode terminal and the exterior body 700 are sealed with surfaces extending in the stacking direction on the surface of the electrode terminal opposite to the electrode tab and the connection surface of the electrode terminal.
外装体700はチューブ(筒)状に形成されており、外装体700は、少なくとも表面が絶縁処理されたアルミニウム、SUS、ニッケルめっき鋼など、電解質に対する耐食性を備えていることが望ましい。外装体700は、曲げ、絞り等加工性に優れる材料であることが望ましい。外装体700は、環状の樹脂材質からなる熱収縮チューブとし、電極体400等の外装体700に収納される部材を覆った状態で収縮させてもよい。
The exterior body 700 is formed in a tube shape, and it is desirable that the exterior body 700 has corrosion resistance to an electrolyte such as aluminum, SUS, or nickel-plated steel whose surface is insulated. The exterior body 700 is preferably made of a material having excellent processability such as bending and drawing. The exterior body 700 may be a heat-shrinkable tube made of an annular resin material, and may be contracted in a state where a member housed in the exterior body 700 such as the electrode body 400 is covered.
図2は、本発明の一実施形態に係る積層型二次電池の製造工程である。図2において、基板2000上にセパレータ300が形成された負極200、セパレータ300が形成された正極100を交互に積層させる。電極タブは面内方向へ延伸している。
FIG. 2 shows a manufacturing process of the laminated secondary battery according to the embodiment of the present invention. In FIG. 2, negative electrodes 200 on which separators 300 are formed and positive electrodes 100 on which separators 300 are formed are alternately stacked on a substrate 2000. The electrode tab extends in the in-plane direction.
図3は、本発明の一実施形態に係る積層型二次電池の製造工程である。図3において、電極タブに折り曲げ用絶縁部材600を積層方向に押し込むことで、電極タブを束ねる。電極タブは、折り曲げ用絶縁部材600の電極体400が形成された側に積層方向で束ねられた部分と、折り曲げ用絶縁部材600の下部に面内方向で束ねられた部分が存在している。
FIG. 3 shows a manufacturing process of the laminated secondary battery according to the embodiment of the present invention. In FIG. 3, the electrode tabs are bundled by pushing the insulating member 600 for bending into the electrode tabs in the stacking direction. The electrode tab has a portion bundled in the stacking direction on the side where the electrode body 400 of the bending insulating member 600 is formed and a portion bundled in the in-plane direction below the bending insulating member 600.
図4は、本発明の一実施形態に係る積層型二次電池の製造工程である。図4において、例えば超音波溶接により電極タブと電極端子(電極端子中間凹部)とを接合させる。面内方向に延伸する電極タブのいずれの箇所でも電極タブと電極端子との接合点としてもよいが、積層型二次電池1000中の全ての電極タブが面内方向で束ねられている部分が、電極タブと電極端子との接合点になることが望ましい。電極端子には電極体400を封止するためのシーラント剤500が、積層方向下部に形成されている。
FIG. 4 shows a manufacturing process of the laminated secondary battery according to the embodiment of the present invention. In FIG. 4, an electrode tab and an electrode terminal (electrode terminal intermediate | middle recessed part) are joined, for example by ultrasonic welding. Any part of the electrode tab extending in the in-plane direction may be a junction point between the electrode tab and the electrode terminal, but the portion where all the electrode tabs in the laminated secondary battery 1000 are bundled in the in-plane direction is It is desirable to be a junction point between the electrode tab and the electrode terminal. A sealant 500 for sealing the electrode body 400 is formed on the electrode terminal at the lower part in the stacking direction.
図5は、本発明の一実施形態に係る積層型二次電池の製造工程である。図5において、電極端子が接合された電極タブを積層方向に折り曲げる。これにより、電極タブと電極端子とが積層方向に延伸する面同士で電気的に接続されることになる。折り曲げられた電極タブは、折り曲げ用絶縁部材600に接触させてもよいし、積層型二次電池1000の性能を損なわない範囲で空間を設けてもよい。
FIG. 5 shows a manufacturing process of the laminated secondary battery according to the embodiment of the present invention. In FIG. 5, the electrode tab to which the electrode terminals are joined is bent in the stacking direction. Thereby, an electrode tab and an electrode terminal will be electrically connected by the surfaces extended | stretched in a lamination direction. The bent electrode tab may be brought into contact with the bending insulating member 600, or a space may be provided within a range that does not impair the performance of the stacked secondary battery 1000.
図6は、本発明の一実施形態に係る積層型二次電池の製造工程である。図6において、外装体700の端部を折り曲げて、外装体700の折り曲げ部とシーラント剤500を接着させることにより、外装体700と電極端子とで電極体400を封止させる。シーラント剤500により外装体700と電極端子との絶縁性が確保されている。これにより、電極端子における電極端子と電極タブとの接合点とは反対側の面で、外装体700と電極端子とは積層方向に延伸する面同士でシールされる。
FIG. 6 shows a manufacturing process of the laminated secondary battery according to the embodiment of the present invention. In FIG. 6, the electrode body 400 is sealed by the exterior body 700 and the electrode terminal by bending the end portion of the exterior body 700 and bonding the bent portion of the exterior body 700 and the sealant 500. The sealant 500 ensures the insulation between the exterior body 700 and the electrode terminals. Thereby, the exterior body 700 and the electrode terminal are sealed with the surfaces extending in the stacking direction on the surface of the electrode terminal opposite to the junction point between the electrode terminal and the electrode tab.
図7は、本発明の一実施形態に係る積層型二次電池の模式図である。図7の積層型二次電池1000は、図1の積層型二次電池1000に比べて折り曲げ用絶縁部材600がない構成、換言すれば、折り曲げられた電極タブの面内方向において空間が設けられている
。折り曲げ用絶縁部材600がない構成は、図5の工程の後、折り曲げ用絶縁部材600を積層方向へ取り除くことにより達成される。このような構成により、積層型二次電池1000を軽量にできる。 FIG. 7 is a schematic view of a stacked secondary battery according to an embodiment of the present invention. The multilayersecondary battery 1000 of FIG. 7 has a configuration without the folding insulating member 600 compared to the multilayer secondary battery 1000 of FIG. 1, in other words, a space is provided in the in-plane direction of the folded electrode tab. ing. The configuration without the folding insulating member 600 is achieved by removing the folding insulating member 600 in the stacking direction after the step of FIG. With such a configuration, the stacked secondary battery 1000 can be reduced in weight.
。折り曲げ用絶縁部材600がない構成は、図5の工程の後、折り曲げ用絶縁部材600を積層方向へ取り除くことにより達成される。このような構成により、積層型二次電池1000を軽量にできる。 FIG. 7 is a schematic view of a stacked secondary battery according to an embodiment of the present invention. The multilayer
100 正極
110 正極合剤層
120 正極集電体
130 正極タブ
150 正極端子
151 正極端子中間凹部
152 正極端子端部凹部
153 正極端子突出部
200 負極
210 負極合剤層
220 負極集電体
230 負極タブ
250 負極端子
251 負極端子中間凹部
252 負極端子端部凹部
253 負極端子突出部
300 セパレータ
400 電極体
500 シーラント剤
600 折り曲げ用絶縁部材
700 外装体
1000 積層型二次電池
2000 基板 100Positive electrode 110 Positive electrode mixture layer 120 Positive electrode current collector 130 Positive electrode tab 150 Positive electrode terminal 151 Positive electrode terminal intermediate recess 152 Positive electrode terminal end recess 153 Positive electrode terminal protrusion 200 Negative electrode 210 Negative electrode mixture layer 220 Negative electrode current collector 230 Negative electrode tab 250 Negative terminal 251 Negative terminal intermediate recess 252 Negative terminal end recess 253 Negative terminal protrusion 300 Separator 400 Electrode body 500 Sealant agent 600 Bending insulating member 700 Exterior body 1000 Multilayer secondary battery 2000 Substrate
110 正極合剤層
120 正極集電体
130 正極タブ
150 正極端子
151 正極端子中間凹部
152 正極端子端部凹部
153 正極端子突出部
200 負極
210 負極合剤層
220 負極集電体
230 負極タブ
250 負極端子
251 負極端子中間凹部
252 負極端子端部凹部
253 負極端子突出部
300 セパレータ
400 電極体
500 シーラント剤
600 折り曲げ用絶縁部材
700 外装体
1000 積層型二次電池
2000 基板 100
Claims (6)
- 電極が積層されて構成された電極体と、
前記電極体に電気的に接続された電極タブと、
前記電極タブに電気的に接続された電極端子と、
前記電極体および前記電極端子を収納する外装体と、を有し、
前記電極タブは折り曲げられており、
前記電極タブおよび前記電極端子は、積層方向に延伸する面同士で接続され、
前記電極端子および前記外装体は、前記電極端子における前記電極タブおよび前記電極端子の接続面とは反対側の面で、積層方向に延伸する面同士でシールされる積層型二次電池。 An electrode body formed by stacking electrodes;
An electrode tab electrically connected to the electrode body;
An electrode terminal electrically connected to the electrode tab;
An exterior body that houses the electrode body and the electrode terminal,
The electrode tab is bent;
The electrode tab and the electrode terminal are connected by surfaces extending in the stacking direction,
The electrode terminal and the exterior body are stacked secondary batteries that are sealed at surfaces extending in the stacking direction on the surface of the electrode terminal opposite to the connection surface of the electrode tab and the electrode terminal. - 請求項1の積層型二次電池において、
面内方向における折り曲げられた前記電極タブの間に折り曲げ用絶縁部材が形成されている積層型二次電池。 The stacked secondary battery according to claim 1,
A laminated secondary battery in which a bending insulating member is formed between the electrode tabs bent in an in-plane direction. - 請求項2の積層型二次電池において、
前記折り曲げ用絶縁部材は前記外装体に接している積層型二次電池。 The stacked secondary battery according to claim 2,
The laminated type secondary battery, wherein the bending insulating member is in contact with the exterior body. - 請求項2の積層型二次電池において、
前記折り曲げ用絶縁部材は折り曲げられた前記電極タブの折り返し部に接している積層型二次電池。 The stacked secondary battery according to claim 2,
The laminated secondary battery, wherein the folding insulating member is in contact with a folded portion of the folded electrode tab. - 請求項2の積層型二次電池において、
面内方向において、前記電極タブおよび前記電極端子の間に空間が形成され、
前記電極タブおよび前記電極端子は、積層方向に延伸する面の一部同士で接続される積層型二次電池。 The stacked secondary battery according to claim 2,
In the in-plane direction, a space is formed between the electrode tab and the electrode terminal,
The electrode tab and the electrode terminal are stacked secondary batteries connected by a part of surfaces extending in the stacking direction. - 請求項1の積層型二次電池において、
面内方向における折り曲げられた前記電極タブの間に空間が形成されている積層型二次電池。 The stacked secondary battery according to claim 1,
A stacked secondary battery in which a space is formed between the electrode tabs bent in an in-plane direction.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-080211 | 2017-04-14 | ||
JP2017080211A JP2018181622A (en) | 2017-04-14 | 2017-04-14 | Stacked secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018190016A1 true WO2018190016A1 (en) | 2018-10-18 |
Family
ID=63792909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/007519 WO2018190016A1 (en) | 2017-04-14 | 2018-02-28 | Laminated secondary battery |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2018181622A (en) |
WO (1) | WO2018190016A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111276641A (en) * | 2018-12-05 | 2020-06-12 | 丰田自动车株式会社 | All-solid-state battery and method of making the same |
CN113904037A (en) * | 2021-10-27 | 2022-01-07 | 厦门海辰新能源科技有限公司 | Battery cell and battery pack |
CN114243121A (en) * | 2022-02-23 | 2022-03-25 | 深圳市格林晟科技有限公司 | Battery cell, manufacturing method thereof and battery using battery cell |
US20220376367A1 (en) * | 2019-09-26 | 2022-11-24 | Sanyo Electric Co., Ltd. | Secondary battery and method of manufacturing same |
US20230039913A1 (en) * | 2021-08-05 | 2023-02-09 | Prime Planet Energy & Solutions, Inc. | Battery and electrode body holder |
CN115714243A (en) * | 2022-10-28 | 2023-02-24 | 烯晶碳能电子科技无锡有限公司 | Double leading-out terminal energy sheet and energy sheet module |
EP4235943A1 (en) * | 2022-02-23 | 2023-08-30 | Shenzhen Greensun Technology Co., Ltd. | Method and device for welding and converging battery cell tabs |
EP4044354A4 (en) * | 2019-10-10 | 2024-02-28 | Murata Manufacturing Co., Ltd. | Secondary battery |
EP4280293A3 (en) * | 2021-10-14 | 2024-06-12 | ATS Corporation | Automated battery assembly systems and related methods, including method of securing contact tabs |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113471637B (en) * | 2021-06-30 | 2024-01-09 | 东莞新能安科技有限公司 | Battery, battery module and electronic device |
JP7632402B2 (en) * | 2022-06-27 | 2025-02-19 | トヨタ自動車株式会社 | battery |
JP7528989B2 (en) * | 2022-06-27 | 2024-08-06 | トヨタ自動車株式会社 | Batteries and Battery Modules |
JP2024017755A (en) * | 2022-07-28 | 2024-02-08 | トヨタ自動車株式会社 | battery |
JP2025005497A (en) * | 2023-06-28 | 2025-01-17 | トヨタ自動車株式会社 | Secondary battery |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57174860A (en) * | 1981-04-20 | 1982-10-27 | Matsushita Electric Ind Co Ltd | Manufacture of flat battery |
JP2003272576A (en) * | 2002-03-14 | 2003-09-26 | Shibaura Mechatronics Corp | Method of manufacturing secondary battery and secondary battery manufactured by the method |
JP2014102875A (en) * | 2011-02-28 | 2014-06-05 | Sanyo Electric Co Ltd | Laminated battery |
-
2017
- 2017-04-14 JP JP2017080211A patent/JP2018181622A/en active Pending
-
2018
- 2018-02-28 WO PCT/JP2018/007519 patent/WO2018190016A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57174860A (en) * | 1981-04-20 | 1982-10-27 | Matsushita Electric Ind Co Ltd | Manufacture of flat battery |
JP2003272576A (en) * | 2002-03-14 | 2003-09-26 | Shibaura Mechatronics Corp | Method of manufacturing secondary battery and secondary battery manufactured by the method |
JP2014102875A (en) * | 2011-02-28 | 2014-06-05 | Sanyo Electric Co Ltd | Laminated battery |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111276641A (en) * | 2018-12-05 | 2020-06-12 | 丰田自动车株式会社 | All-solid-state battery and method of making the same |
US12341222B2 (en) * | 2019-09-26 | 2025-06-24 | Sanyo Electric Co., Ltd. | Secondary battery and method of manufacturing same |
US20220376367A1 (en) * | 2019-09-26 | 2022-11-24 | Sanyo Electric Co., Ltd. | Secondary battery and method of manufacturing same |
EP4044354A4 (en) * | 2019-10-10 | 2024-02-28 | Murata Manufacturing Co., Ltd. | Secondary battery |
US12191529B2 (en) | 2019-10-10 | 2025-01-07 | Murata Manufacturing Co., Ltd. | Secondary battery |
US12218381B2 (en) * | 2021-08-05 | 2025-02-04 | Prime Planet Energy & Solutions, Inc. | Battery and electrode body holder |
US20230039913A1 (en) * | 2021-08-05 | 2023-02-09 | Prime Planet Energy & Solutions, Inc. | Battery and electrode body holder |
CN115706295A (en) * | 2021-08-05 | 2023-02-17 | 泰星能源解决方案有限公司 | Battery and electrode body holder |
EP4280293A3 (en) * | 2021-10-14 | 2024-06-12 | ATS Corporation | Automated battery assembly systems and related methods, including method of securing contact tabs |
CN113904037A (en) * | 2021-10-27 | 2022-01-07 | 厦门海辰新能源科技有限公司 | Battery cell and battery pack |
EP4235943A1 (en) * | 2022-02-23 | 2023-08-30 | Shenzhen Greensun Technology Co., Ltd. | Method and device for welding and converging battery cell tabs |
EP4235895A1 (en) * | 2022-02-23 | 2023-08-30 | Shenzhen Greensun Technology Co., Ltd. | Lithium battery and manufacturing method thereof |
US11682813B1 (en) | 2022-02-23 | 2023-06-20 | Shenzhen Greensun Technology Co., Ltd. | Lithium battery and manufacturing method thereof |
CN114243121B (en) * | 2022-02-23 | 2022-05-31 | 深圳市格林晟科技有限公司 | Lithium battery and manufacturing method thereof |
CN114243121A (en) * | 2022-02-23 | 2022-03-25 | 深圳市格林晟科技有限公司 | Battery cell, manufacturing method thereof and battery using battery cell |
CN115714243A (en) * | 2022-10-28 | 2023-02-24 | 烯晶碳能电子科技无锡有限公司 | Double leading-out terminal energy sheet and energy sheet module |
Also Published As
Publication number | Publication date |
---|---|
JP2018181622A (en) | 2018-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018190016A1 (en) | Laminated secondary battery | |
JP5505218B2 (en) | Sealed storage battery | |
WO2018180828A1 (en) | Cylindrical battery | |
US10910673B2 (en) | Rectangular secondary battery and method of manufacturing the same | |
US9406921B2 (en) | Prismatic secondary battery | |
JP2011181485A (en) | Square battery, method of manufacturing the sane, and battery pack using the same | |
JP2008016368A (en) | Film armored battery and battery pack | |
JP2002298825A (en) | Method for producing electrochemical device and electrochemical device | |
JP2016219124A (en) | Rectangular secondary battery, assembled battery using the same, and manufacturing method thereof | |
JP2017084695A (en) | Method for manufacturing prismatic secondary battery | |
JP2016189246A (en) | Square secondary battery | |
WO2018003843A1 (en) | Secondary battery and method for manufacturing same | |
WO2018220924A1 (en) | Secondary cell module | |
WO2018163636A1 (en) | Lithium ion battery | |
JP2018147574A (en) | Square Lithium Ion Secondary Battery | |
JP2021018919A (en) | Secondary battery and manufacturing method thereof | |
JP2014007064A (en) | Collector for battery and lithium-ion battery | |
CN115004441A (en) | An electrochemical device and an electronic device comprising the electrochemical device | |
JP3869668B2 (en) | Electrochemical device and manufacturing method thereof | |
JP2016103412A (en) | Square secondary battery | |
WO2019150714A1 (en) | Layered cell | |
JP7043754B2 (en) | Lead member and power storage device | |
WO2019077922A1 (en) | Secondary battery module | |
JP6045835B2 (en) | battery | |
WO2019111691A1 (en) | Secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18783823 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18783823 Country of ref document: EP Kind code of ref document: A1 |