WO2018182048A1 - 固体高分子形燃料電池の触媒担体用炭素材料及びその製造方法 - Google Patents
固体高分子形燃料電池の触媒担体用炭素材料及びその製造方法 Download PDFInfo
- Publication number
- WO2018182048A1 WO2018182048A1 PCT/JP2018/014175 JP2018014175W WO2018182048A1 WO 2018182048 A1 WO2018182048 A1 WO 2018182048A1 JP 2018014175 W JP2018014175 W JP 2018014175W WO 2018182048 A1 WO2018182048 A1 WO 2018182048A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon material
- catalyst
- fuel cell
- silver
- value
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 153
- 239000003575 carbonaceous material Substances 0.000 title claims abstract description 150
- 239000000446 fuel Substances 0.000 title claims abstract description 42
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 26
- 239000007787 solid Substances 0.000 title claims abstract description 11
- 229920000642 polymer Polymers 0.000 title claims abstract description 6
- 238000000034 method Methods 0.000 title abstract description 19
- 238000005259 measurement Methods 0.000 claims abstract description 49
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 30
- 238000001179 sorption measurement Methods 0.000 claims abstract description 29
- 238000001069 Raman spectroscopy Methods 0.000 claims abstract description 27
- 229910001873 dinitrogen Inorganic materials 0.000 claims abstract description 24
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 47
- 238000010438 heat treatment Methods 0.000 claims description 46
- 229910052799 carbon Inorganic materials 0.000 claims description 45
- 238000000354 decomposition reaction Methods 0.000 claims description 30
- 125000003118 aryl group Chemical group 0.000 claims description 27
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 27
- 239000001301 oxygen Substances 0.000 claims description 27
- 229910052760 oxygen Inorganic materials 0.000 claims description 27
- 239000007789 gas Substances 0.000 claims description 25
- 239000005518 polymer electrolyte Substances 0.000 claims description 25
- 238000007254 oxidation reaction Methods 0.000 claims description 24
- SLERPCVQDVNSAK-UHFFFAOYSA-N silver;ethyne Chemical compound [Ag+].[C-]#C SLERPCVQDVNSAK-UHFFFAOYSA-N 0.000 claims description 24
- 229910052709 silver Inorganic materials 0.000 claims description 22
- 239000004332 silver Substances 0.000 claims description 22
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 21
- 238000006243 chemical reaction Methods 0.000 claims description 21
- 230000003647 oxidation Effects 0.000 claims description 21
- 239000012298 atmosphere Substances 0.000 claims description 18
- 239000002245 particle Substances 0.000 claims description 16
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 claims description 14
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims description 10
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 claims description 10
- 239000011261 inert gas Substances 0.000 claims description 9
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 7
- 238000004140 cleaning Methods 0.000 claims description 7
- 229910001961 silver nitrate Inorganic materials 0.000 claims description 7
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 6
- 238000007664 blowing Methods 0.000 claims description 6
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 5
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 5
- VWWMOACCGFHMEV-UHFFFAOYSA-N dicarbide(2-) Chemical compound [C-]#[C-] VWWMOACCGFHMEV-UHFFFAOYSA-N 0.000 claims description 5
- 230000005284 excitation Effects 0.000 claims description 5
- 238000004458 analytical method Methods 0.000 claims description 4
- 239000002360 explosive Substances 0.000 claims description 3
- 230000002194 synthesizing effect Effects 0.000 claims description 2
- 239000000543 intermediate Substances 0.000 description 33
- 239000000047 product Substances 0.000 description 31
- 239000011148 porous material Substances 0.000 description 27
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 23
- 229910052751 metal Inorganic materials 0.000 description 22
- 239000002184 metal Substances 0.000 description 22
- 239000002717 carbon nanostructure Substances 0.000 description 21
- 239000000463 material Substances 0.000 description 17
- 239000012528 membrane Substances 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 238000009792 diffusion process Methods 0.000 description 11
- 238000010248 power generation Methods 0.000 description 11
- 239000003792 electrolyte Substances 0.000 description 10
- 230000001965 increasing effect Effects 0.000 description 9
- 238000004880 explosion Methods 0.000 description 8
- 239000002923 metal particle Substances 0.000 description 8
- 229910052697 platinum Inorganic materials 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 238000005406 washing Methods 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 150000001247 metal acetylides Chemical class 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 239000012495 reaction gas Substances 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 229920000557 Nafion® Polymers 0.000 description 6
- 238000001237 Raman spectrum Methods 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 5
- 239000004809 Teflon Substances 0.000 description 5
- 229920006362 Teflon® Polymers 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000001976 improved effect Effects 0.000 description 5
- 229910017604 nitric acid Inorganic materials 0.000 description 5
- 230000001590 oxidative effect Effects 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 241000282320 Panthera leo Species 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000003273 ketjen black Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 238000003841 Raman measurement Methods 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000005587 bubbling Effects 0.000 description 2
- 238000010000 carbonizing Methods 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000000593 degrading effect Effects 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000006479 redox reaction Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- 241000872198 Serjania polyphylla Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000002156 adsorbate Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 150000001722 carbon compounds Chemical class 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000002001 electrolyte material Substances 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- -1 graphite compound Chemical class 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000001637 plasma atomic emission spectroscopy Methods 0.000 description 1
- 238000011158 quantitative evaluation Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 150000003378 silver Chemical class 0.000 description 1
- HAAYBYDROVFKPU-UHFFFAOYSA-N silver;azane;nitrate Chemical compound N.N.[Ag+].[O-][N+]([O-])=O HAAYBYDROVFKPU-UHFFFAOYSA-N 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000002411 thermogravimetry Methods 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9075—Catalytic material supported on carriers, e.g. powder carriers
- H01M4/9083—Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/05—Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/925—Metals of platinum group supported on carriers, e.g. powder carriers
- H01M4/926—Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/82—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a carbon material for a catalyst support of a polymer electrolyte fuel cell and a method for producing the same.
- a basic structure (unit cell) of a general polymer electrolyte fuel cell is a membrane electrode joint in which a proton conductive electrolyte membrane is sandwiched and catalyst layers serving as an anode and a cathode are disposed on both outer sides, respectively.
- Structure (MEA: Membrane Electrode Assembly), a gas diffusion layer disposed outside the catalyst layer with the membrane electrode assembly interposed therebetween, and a separator disposed outside the gas diffusion layer. have.
- a polymer electrolyte fuel cell usually has a structure in which a required number of unit cells are stacked in order to achieve a required output.
- oxidizing gas such as oxygen, air, etc. on the cathode side
- Fuel such as hydrogen is supplied to the anode side.
- oxidizing gas and fuel (sometimes referred to as “reactive gas”) are supplied to the catalyst layer through the gas diffusion layer, respectively, and the chemical reaction occurring in the anode catalyst layer and the cathode catalyst are supplied. Work is taken out by utilizing the energy difference (potential difference) between the chemical reaction occurring in the layer.
- a porous carbon material is usually used as a catalyst carrier from the viewpoint of electronic conductivity, chemical stability, and electrochemical stability.
- the catalytic metal Pt or a Pt alloy, which can be used in a strongly acidic environment and exhibits high reaction activity for both oxidation reaction and reduction reaction, is mainly used.
- the catalytic metal generally, the above oxidation reaction and reduction reaction occur on the catalytic metal. Therefore, in order to increase the utilization rate of the catalytic metal, it is necessary to increase the specific surface area per mass. . Therefore, particles having a size of about several nm are usually used as the catalyst metal.
- the porous carbon material in order to increase the carrying capacity as a carrier (that is, to increase the number of sites for adsorbing and carrying a catalyst metal of about several nm as described above)
- the porous carbon material must have a large surface area.
- it is required to be a porous carbon material having a large mesopore volume (volume of mesopores having a pore diameter of 2 to 50 nm) so as to support the above catalyst metal in a highly dispersed state as much as possible. ing.
- the reaction gas supplied into the catalyst layer is diffused without resistance, and the water (product water) generated in the catalyst layer is discharged without delay. It is required to make it. For this reason, in this catalyst layer, it is necessary to form micropores suitable for diffusion of reaction gas and discharge of generated water.
- porous carbon material having a dendritic structure having a relatively large specific surface area and mesopore volume and having three-dimensionally developed branches for example, Vulcan XC-72 manufactured by CABOT, Lion Corporation EC600JD manufactured by Lion and EC300 manufactured by Lion are used. Attempts have also been made to develop a porous carbon material having a more suitable specific surface area and mesopore volume as a catalyst support carbon material and having a more suitable dendritic structure.
- a metal acetylide such as silver acetylide having a three-dimensionally branched three-dimensional dendritic structure is produced as an intermediate, and a dendritic tree that maintains this three-dimensional dendritic structure.
- a dendritic tree that maintains this three-dimensional dendritic structure.
- carbon nanostructures There are carbon nanostructures. Several proposals have been made for dendritic carbon nanostructures that maintain a three-dimensional dendritic structure.
- Patent Document 1 proposes a carbon material for a catalyst carrier that can be prepared as a catalyst for a polymer electrolyte fuel cell that has a low rate of decrease in current amount over a long period of time and is excellent in durability.
- a porous carbon material prepared by a production method comprising the following steps has been proposed. Preparing a solution containing a metal or metal salt; Injecting acetylene gas into the solution to produce a dendritic carbon nanostructure made of metal acetylide; Heating the carbon nanostructure at 60 to 80 ° C.
- the porous carbon material has a pore diameter of 1 to 20 nm and an integrated pore volume of 0.2 to 1.5 cc / g, which are obtained by analyzing the nitrogen adsorption isotherm by the Dollimore-Heal method, and has a BET specific surface area. 200-1300 m 2 / g.
- Patent Document 2 proposes a carrier carbon material that can be prepared as a catalyst for a polymer electrolyte fuel cell that can exhibit high battery performance under high humidification conditions. Specifically, a porous carbon material prepared by a production method comprising the following steps has been proposed. An acetylide generating step of generating metal acetylide by blowing acetylene gas into an aqueous ammonia solution containing a metal or metal salt; A first heat treatment step of heating the metal acetylide at a temperature of 60 to 80 ° C. to produce a metal particle-containing intermediate, A second heat treatment step of heating the metal particle inclusion intermediate at a temperature of 120 to 200 ° C.
- the porous carbon material has a predetermined hydrogen content, a BET specific surface area of 600 to 1500 m 2 / g, and a peak intensity l D in the range of D-band 1200 to 1400 cm ⁇ 1 obtained from a Raman spectrum. And a relative intensity ratio l D / l G 1.0 to 2.0 between the peak intensity l G and the G -band 1500 to 1700 cm ⁇ 1 .
- Patent Document 3 proposes a carbon material for a catalyst carrier that can be prepared as a catalyst for a polymer electrolyte fuel cell that can exhibit excellent durability against potential fluctuations while maintaining high power generation performance.
- a porous carbon material prepared by a production method comprising the following steps has been proposed.
- a first heat treatment step of heating the metal acetylide at a temperature of 40 to 80 ° C. to produce a metal particle-containing intermediate, The metal particle encapsulating intermediate is compacted, and the resulting molded body is heated to 400 ° C.
- a second heat treatment step to obtain a body A cleaning treatment step of cleaning the carbon material intermediate by contacting the carbon material intermediate with hot concentrated nitric acid or hot concentrated sulfuric acid; And a third heat treatment step of obtaining a carrier carbon material by heat-treating the cleaned carbon material intermediate at 1400 to 2100 ° C. in a vacuum or in an inert gas atmosphere.
- this porous carbon material has the following characteristics.
- the specific surface area S A of the mesopores having a pore diameter of 2 to 50 nm obtained by analyzing the nitrogen adsorption isotherm of the adsorption process by the Dollimore-Heal method is 600 to 1600 m 2 / g, / L G 'relative intensity ratio l G of the peak intensity l G ranging between G- band 1550 ⁇ 1650 cm -1' Raman in spectrum G'- band 2650 ⁇ 2700 cm peak intensity in the range of -1 l G 0 .8 to 2.2,
- mesopores having a pore diameter of 2 nm or more and less than 10 nm have a specific pore area S 2-10 of 400 to 1100 m 2 / g and a specific pore volume V 2-10 of 0.4 to 1.6 cc.
- mesopores having a pore diameter of 10 nm to 50 nm have a specific pore area S 10-50 of 20 to 150 m 2 / g and a specific pore volume V 2-10 of 0.4 to 1.6 cc. / g,
- the specific pore area S 2 of pores having a pore diameter of less than 2 nm obtained by analyzing the nitrogen adsorption isotherm in the adsorption process by the Horvath-Kawazoe method is 250 to 550 m 2 / g.
- Patent Document 4 a polymer electrolyte fuel cell catalyst having excellent durability against repeated load fluctuations such as start / stop and excellent power generation performance under low humidification operating conditions is prepared.
- a carbon material for a catalyst support has been proposed as possible. Specifically, a porous carbon material having a dendritic carbon nanostructure prepared through a self-decomposing explosion reaction with metal acetylide as an intermediate [trade name: ESCARBON (registered trademark)-manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.- MCND] is used as a raw material, followed by graphitization treatment, and further, oxidation treatment using hydrogen peroxide, nitric acid, a submerged plasma apparatus, etc. is further proposed.
- ESCARBON registered trademark-manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.- MCND
- Oxygen content O ICP is 0.1 to 3.0% by mass, 0.1 to 1.5% by mass of oxygen remaining amount O 1200 ° C. remaining after heat treatment at 1200 ° C. in an inert gas (or vacuum) atmosphere, BET specific surface area of 300-1500 m 2 / g, G-band half-width ⁇ G detected in the range of 1550 to 1650 cm ⁇ 1 of the Raman spectrum is 30 to 70 cm ⁇ 1 , and The hydrogen remaining amount H 1200 ° C. remaining after heat treatment at 1200 ° C. in an inert gas (or vacuum) atmosphere is 0.005 to 0.080 mass%.
- Patent Document 1 WO 2014/129597 A1
- Patent Document 2 WO 2015/088025 A1
- Patent Document 3 WO 2015/141810 A1
- Patent Document 4 WO 2016/133132 A1
- Each of the carbon materials for a catalyst carrier comprising a dendritic carbon nanostructure having a three-dimensional dendritic structure described in Patent Documents 1 to 4 described above is used for preparing a polymer electrolyte fuel cell catalyst. It exhibits the power generation characteristics.
- the output voltage at the time of a large current especially important for extracting a large output when used as a fuel cell for automobiles
- the catalyst carrier platinum is supported on the catalyst carrier in a sufficiently high dispersion state.
- the pore volume is important.
- the micropores formed in the catalyst layer are in a more appropriate state with respect to the diffusion of the reaction gas and the discharge of the generated water.
- the present inventors firstly improved the large current (heavy load) characteristics while maintaining the above-mentioned durability in the carbon material for a catalyst carrier comprising the above-described three-dimensional dendritic carbon nanostructure.
- the dendritic carbon nanostructure having the three-dimensional dendritic structure has a small but high crystallinity with a relatively large aggregate structure.
- the presence of the graphitized product was confirmed.
- aggregation occurs during the heat treatment during the preparation of the porous carbon material due to the large-sized dendritic structure.
- porous carbon materials composed of dendritic carbon nanostructures with a three-dimensional dendritic structure usually form a catalyst layer compared to porous carbon materials such as ketjen black and acetylene black with increased surface area.
- porous carbon materials such as ketjen black and acetylene black with increased surface area.
- the porous carbon material had little adverse effect on the power generation characteristics based on this aggregation. Therefore, it is surprising that the porous carbon material composed of the dendritic carbon nanostructure having a three-dimensional dendritic structure was not agglomerated at the time of preparation.
- the inventors then 1) quantitatively evaluate the graphitized material present in the porous carbon material, and 2) graphitized material in the porous carbon material when the porous carbon material is formed. Further investigation was conducted to find out the cause of the formation of 3 and to suppress the formation of graphitized material. As a result, the following was found about the quantitative evaluation of the graphitized material existing in the porous carbon material.
- Raman spectroscopic measurement was performed using an apparatus (microscopic laser Raman spectrophotometer) in which a microscope was combined with a laser Raman spectrophotometer.
- the D-band intensity (a peak appearing in the vicinity of 1360 cm ⁇ 1) measured under predetermined conditions by this Raman spectroscopic measurement is defined as a peak appearing in the range of 1310 to 1410 cm ⁇ 1 in this disclosure.
- the description “D-band intensity (near 1360 cm ⁇ 1 ) is synonymous with this definition” and G-band intensity (a peak appearing near 1580 cm ⁇ 1 , and in this disclosure, 1530 to 1630 cm ⁇ 1.
- the decomposition product (carbon material intermediate before washing treatment) formed by the self-decomposition explosion reaction of silver acetylide contains a small amount (up to 10% by mass) in highly aromatic carbon (aromatic carbon). Degree) non-aromatic carbon (non-aromatic carbon) is inevitably mixed.
- the non-aromatic carbon in the carbon material intermediate is carbonized as it is in the heat treatment in the subsequent step of carbonizing the carbon material intermediate that is the decomposition product.
- the porous carbon material obtained by carbonizing aromatic carbon is mixed as a graphitized material.
- the catalyst layer is formed using a porous carbon material having a three-dimensionally branched three-dimensional dendritic structure (specifically, a porous carbon material composed of a three-dimensional dendritic dendritic carbon nanostructure).
- a porous carbon material to be used is measured by Raman spectroscopic measurement under predetermined measurement conditions.
- the standard deviation ⁇ (R) of the R value is obtained by Raman spectroscopic measurement, and the presence of the graphitized material in the porous carbon material is evaluated using the standard deviation ⁇ (R) of the R value.
- the fine pores of the catalyst layer which are oxygen and water vapor diffusion rate-limiting, are optimized without degrading the power generation characteristics and durability other than the large current characteristics required for the catalyst layer, and the oxygen in the catalyst layer and Improves water vapor diffusion. Thereby, the output voltage at the time of a large current can be increased. I found out the above.
- the carbon material for a catalyst support includes the following aspects.
- the decomposition product is heated in an oxygen-containing atmosphere at 80 to 150 ° C.
- a catalyst for a polymer electrolyte fuel cell having a high output voltage at a large current with improved high current (heavy load) characteristics while maintaining durability can be obtained.
- a suitable catalyst carrier can be provided.
- a carbon material for a catalyst support suitable for the above can be produced.
- FIG. 1 is a graph obtained by blotting the R value and ⁇ G value measured at 50 measurement points on the catalyst support carbon material of Experimental Example 5 on a graph of R value ⁇ G value.
- FIG. 2 is a graph obtained by blotting the R value and ⁇ G value measured at 50 measurement points on the catalyst support carbon material of Experimental Example 19 on the graph of R value ⁇ G value.
- FIG. 3 is a graph obtained by blotting the R value and ⁇ G value measured at 50 measured points on the graph of R value ⁇ G value for the carbon material for catalyst support of Experimental Example 22.
- FIG. 4 is a graph obtained by blotting the R value and ⁇ G value measured at 50 measurement points on the graph of R value ⁇ G value for the carbon material for the catalyst support of Experimental Example 8. .
- FIG. 5 is a graph obtained by blotting the R value and ⁇ G value measured at 50 measurement points on the catalyst support carbon material of Experimental Example 13 on the graph of R value ⁇ G value.
- FIG. 6 is a graph showing a Raman spectrum obtained by Raman spectroscopy measurement for the porous carbon material of Experimental Example 5.
- FIG. 7 is a graph showing a Raman spectrum obtained by Raman spectroscopy measurement for the porous carbon material of Experimental Example 29.
- FIG. 8 is a graph showing a Raman spectrum obtained by Raman spectroscopic measurement for the porous carbon material of Experimental Example 33.
- FIG. 9 is a photograph showing a measurement method for measuring the branch diameter when the SEM observation is performed on the carbon material for the catalyst support of the present disclosure.
- FIG. 10 is an explanatory diagram showing a method for measuring the branch diameter of the carbon material for a catalyst carrier of the present disclosure.
- a carbon material for a catalyst support of a polymer electrolyte fuel cell of the present disclosure is a porous carbon having a three-dimensionally branched three-dimensional tree structure that simultaneously satisfies the following (A), (B), and (C): Material.
- the adsorption amount of nitrogen gas V N: 0.4-0.8 is 100 to 300 cc (STP) / g when the relative pressure p / p 0 is 0.4 to 0.8.
- the unit of nitrogen gas adsorption amount is cc (STP) / g
- the unit of BET specific surface area S BET is m 2 / g
- the unit of average value ⁇ G ave of ⁇ G value is cm ⁇ 1 . .
- the carbon material for a catalyst support of the present disclosure may be a porous carbon material having a three-dimensionally branched three-dimensional tree structure.
- the porous carbon material having a three-dimensionally branched three-dimensional dendritic structure is preferably composed of a dendritic carbon nanostructure. Specifically, this dendritic carbon nanostructure is obtained by using silver acetylide having a three-dimensional dendritic structure as an intermediate.
- the carbon material for catalyst support has a BET specific surface area S BET of 400 m 2 / g or more and 1520 m 2 / g or less, preferably 400 m 2 / g or more and 1500 m 2 / g or less, more preferably 500 m 2 / g or more and 1400 m. 2 / g or less. If the BET specific surface area S BET is less than 400 m 2 / g, it may be difficult to carry the catalyst metal fine particles in the pores at a high density. On the other hand, if it exceeds 1520 m 2 / g, there is a risk that durability is likely to be lowered with a substantial decrease in crystallinity.
- the dendritic carbon nanostructure refers to a dendritic carbon structure having a branch diameter of 10 nm or more and several 100 nm or less (for example, 500 nm or less, preferably 200 nm or less).
- the branch diameter SEM images of 5 fields were observed at a magnification of 100,000 times (2.5 ⁇ m ⁇ 2 ⁇ m) with a scanning electron microscope (SEM; SU-9000 manufactured by Hitachi High-Tech) as in Examples described later. Then, 20 branch diameters are measured on the image of each field of view, and the average value of the measured values at a total of 100 places is taken as the branch diameter value.
- the branch diameter to be measured is the diameter of the branch of interest by measuring the thickness of the center part between the two adjacent branch points (the middle part of the branching branch) (see FIG. Refer to 9.
- D indicates a branch diameter per place.
- FIG. 10 shows one branch of interest.
- the branch point BP1 and the branch point BP2 to be branched are specified.
- the branch thickness BP1 and the branch point BP2 are connected, and the thickness (width) of the branch is measured at the position where the perpendicular bisector BC connecting the branch point BP1 and the branch point BP2 is obtained.
- the measured branch thickness is the branch diameter D per location.
- the beam diameter irradiated to the sample is a 1 ⁇ m diameter circle, and an arbitrary 50 measurement is performed on the same sample. Measure for points. Then, the standard deviation of the relative intensity ratio between the obtained D- band intensity (1360 cm -1 vicinity) and G- band intensity (1580 cm -1 vicinity) I D / I G (R value) [delta] (R) is 0. It is 01 or more and 0.07 or less (preferably 0.01 or more and 0.06 or less).
- the lower limit 0.01 of the standard deviation ⁇ (R) of the R value is an inevitable standard deviation due to measurement errors and the like, and is substantially the minimum standard deviation value. In the present disclosure, there is no limit on the lower limit of the standard deviation ⁇ (R) of the R value.
- the standard deviation ⁇ (R) of the R value exceeds 0.07, the mixing ratio of the graphitized material increases. In addition, the particle size of the graphitized product becomes relatively large. As a result, in the catalyst layer using this carbon material as a catalyst carrier, a large number of aggregates exist in the layer, and there is a possibility that a large current characteristic is deteriorated.
- the number of measurement points in the Raman spectroscopic measurement was 50 measurement points, as a result of statistical processing of the above-mentioned “variation of Raman measurement values” in the Raman spectroscopic measurement, it was determined that the number of measurement points was sufficient for the detection of graphitized materials. It depends on what was done.
- the G-band intensity (near 1580 cm ⁇ 1 ) corresponding to the size of the carbon hexagonal network surface is measured in the Raman spectroscopic measurement. It is desirable that the variation in the full width at half maximum ⁇ G [standard deviation ⁇ ( ⁇ G)] is small. That is, when the particles are observed with a size of 1 ⁇ m, it is desirable that the crystallinity of the particles is within a certain range at the size.
- the large standard deviation ⁇ ( ⁇ G) corresponds to the inclusion of 1 ⁇ m-sized graphitized material.
- the standard deviation ⁇ ( ⁇ G) of the full width at half maximum ⁇ G of the G-band intensity (near 1580 cm ⁇ 1 ) is preferably 0.10 or more and 1.30 or less, more preferably 0.10 or more and 1.20 or less. is there.
- the average value R ave of R values is preferably 1.3 or more and 1.85 or less. Preferably, it is 1.3 or more and 1.8 or less.
- the average value .DELTA.G ave of the measured .DELTA.G value is preferably not 45cm -1 or 75 cm -1 or less, more preferably 55cm -1 or 65cm - 1 or less.
- the standard deviation ⁇ ( ⁇ G) has a substantially minimum value of 0.10, and in the present disclosure, there is no limit on the lower limit of the standard deviation ⁇ ( ⁇ G).
- the standard deviation ⁇ ( ⁇ G) of the full width at half maximum ⁇ G exceeds 1.30, the pores in the catalyst layer are crushed for the reasons described above, so that there is a possibility that the large current characteristic is deteriorated.
- the average value Rave is less than 1.3
- the crystallinity becomes too high, the irregularities of the pore walls are reduced, and the adsorptivity of the catalyst metal fine particles to the pore walls may be lowered.
- it exceeds 1.85 the crystallinity is too low and the durability may be lowered.
- .DELTA.G value also is an indicator of the same crystalline and R value, the average value .DELTA.G ave is less than 45cm -1, reduces the unevenness of the pore walls have such a high crystallinity, pore There is a possibility that the adsorptivity of the catalyst metal fine particles to the wall is lowered.
- ⁇ G ave is larger than 75 cm ⁇ 1 , the crystallinity is too low and the durability may be lowered.
- the carbon material for a catalyst support according to the present disclosure has a relative pressure p / p 0 of 0.4 from 0.4 in the nitrogen gas adsorption isotherm from the viewpoint of gas diffusibility inside the micropores formed in the catalyst layer.
- Nitrogen gas adsorption amount V N adsorbed between 0.8 and 0.8 is preferably 100 cc (STP) / g or more and 300 cc (STP) / g or less (more preferably 120 cc (STP) / g or more and 250 cc). (STP) / g or less).
- the nitrogen gas adsorption amount V N: 0.4-0.8 is less than 100 cc (STP) / g
- the pore volume of the mesopore size supporting the catalyst metal fine particles becomes small.
- the gas diffusivity in the micropores formed in the catalyst layer may be lowered, and the reaction resistance may be increased.
- it exceeds 300 cc (STP) / g the carbon wall forming the pores becomes too thin, the mechanical strength of the material is lowered, and there is a risk of material destruction in the electrode manufacturing process.
- non-aromatic carbon in a decomposition product obtained by inducing a self-decomposing explosion reaction in silver acetylide is removed as much as possible. Therefore, in addition to the production methods generally employed so far, before removing silver from the decomposition product, the decomposition product is in an oxygen-containing atmosphere at 80 ° C. to 150 ° C. (preferably 85 ° C. to 145 ° C. And an oxidation treatment step for removing non-aromatic carbon as much as possible from the decomposition product.
- the oxygen content in the oxygen-containing atmosphere is 1% by volume or more and 25% by volume or less (preferably 2%). Volume% or more and 23 volume% or less).
- the treatment time of the oxidation treatment is 10 minutes or more and 100 minutes or less (preferably 10 minutes or more and 90 minutes or less).
- the temperature during this oxidation treatment is less than 80 ° C.
- the non-aromatic carbon may be incompletely oxidized and a graphitized product may be generated.
- the temperature exceeds 150 ° C. the aromatic carbon that should remain may be lost by combustion.
- the non-aromatic carbon may be incompletely oxidized and a graphitized product may be generated.
- the aromatic carbon that should remain may be lost by combustion.
- it is attempted to reduce the processing time to less than 10 minutes it is necessary to expose to such strong oxidizing conditions, and not only non-aromatic carbon but also aromatic carbon may be oxidized and consumed.
- the length is longer than 100 minutes, the productivity is lowered and the production cost may be increased.
- the three-dimensional method of the present disclosure can be performed in the same manner as the conventional method. It is possible to prepare a porous carbon material having a three-dimensional dendritic structure (specifically, a carbon material for a catalyst carrier comprising a dendritic carbon nanostructure having a three-dimensional dendritic structure). That is, the carbon material for a catalyst carrier of the present disclosure can be obtained by a production method having the following steps.
- Silver acetylide is synthesized by blowing acetylene gas into a reaction solution composed of an aqueous ammonia solution of silver nitrate (acetylide production step).
- the obtained silver acetylide is heat-treated at a temperature of 40 to 80 ° C. to produce a silver particle-containing intermediate (first heat treatment step).
- This silver particle-containing intermediate is subjected to a self-decomposing and explosive reaction at a temperature of 120 to 200 ° C. to recover a decomposition product (second heat treatment step).
- the recovered decomposition product is subjected to a heat treatment for 10 minutes to 100 minutes in an oxygen-containing atmosphere at 80 to 150 ° C.
- Heat treatment is performed to remove non-aromatic carbon (oxidation treatment step).
- Silver is removed from the decomposition product after the oxidation treatment to recover the carbon material intermediate (cleaning step).
- the recovered carbon material intermediate is heat-treated at a temperature of 1600 to 2300 ° C. in a vacuum or in an inert gas atmosphere (third heat treatment step).
- the carbon material for the catalyst carrier of the present disclosure is a porous carbon material having a three-dimensionally branched three-dimensional tree structure suitable as a catalyst carrier (specifically, a three-dimensional tree-like structure).
- a porous carbon material comprising a dendritic carbon nanostructure.
- the reaction gas is diffused without resistance in the catalyst layer prepared using the porous carbon material of the present disclosure as a catalyst carrier.
- fine pores suitable for discharging water generated in the catalyst layer (product water) without delay are formed.
- the carbon material for catalyst support of the present disclosure and the manufacturing method thereof will be specifically described.
- the measurement of ave , the standard deviation ⁇ ( ⁇ G) of the ⁇ G value, and the average value ⁇ G ave of the ⁇ G value was performed as follows.
- the difference between the adsorption amount cc (STP) / g when the isotherm p / p 0 of the adsorption is 0.8 and the adsorption amount cc (STP) / g when the adsorption is 0.4 is calculated.
- N The value was 0.4-0.8 .
- the intensity (peak height) and R value (relative intensity ratio I D / I G ) of D -band intensity (near 1360 cm ⁇ 1 ) were determined. Furthermore, it measured about the arbitrary 50 measurement points which changed the irradiation position of the laser with respect to the set same sample. The standard deviation is calculated for the obtained data at 50 measurement points, and the R value. The standard deviation ⁇ (R) and the standard deviation ⁇ ( ⁇ G) of the ⁇ G value were determined, and the average value R ave of the R value and the average value ⁇ G ave of the ⁇ G value were determined.
- the 60 ° C. silver particle inclusion intermediate immediately after vacuum drying obtained in the first heat treatment step is up to 200 ° C. without taking it out of the vacuum heating electric furnace as it is.
- the temperature was raised and heated.
- a self-decomposing explosion reaction of silver acetylide was induced, and a decomposition product composed of a composite of silver and carbon was obtained.
- silver nano-sized particles silver nanoparticles
- a carbon layer with a hexagonal mesh surface is formed so as to surround the silver nanoparticles to form a three-dimensional dendritic structure skeleton, and further, the generated silver nanoparticles pass through the pores of the carbon layer by explosion energy. It is made porous and ejected to the outside to form a silver aggregate (silver particles).
- washing treatment step The decomposition product after the oxidation treatment comprising the composite of silver and carbon obtained in the oxidation treatment step described above was subjected to silver dissolution treatment (washing) with concentrated nitric acid having a concentration of 30% by mass at 60 ° C. Treatment). Then, silver particles and other unstable carbon compounds present on the surface of the carbon material intermediate were removed, and a cleaned carbon material intermediate was obtained.
- the same material obtained in the oxidation treatment process was set to 3 hours, 5 hours, and 10 hours in the washing treatment step, respectively. This is an example in which the heat treatment temperature in the heat treatment step is 2000 ° C.
- the porous carbon material B has a third heat treatment temperature of 1400 ° C. (porous carbon material B-1), 1700 ° C. (porous carbon material B-2), 2000 ° C. (porous carbon material B-3). ) And 4100 ° C. (porous carbon material B-4) were prepared.
- a catalyst for a polymer electrolyte fuel cell carrying a catalyst metal was prepared as follows. Further, a catalyst layer ink liquid was prepared using the obtained catalyst, and then a catalyst layer was formed using this catalyst layer ink liquid. Furthermore, a membrane electrode assembly (MEA: Membrane Electrode Assembly) was produced using the formed catalyst layer, and the produced MEA was incorporated into a fuel cell, and a power generation test was performed using a fuel cell measurement device.
- MEA Membrane Electrode Assembly
- a heat treatment was performed at 200 ° C. for 1 hour in an argon atmosphere containing 5% by volume of hydrogen to produce a platinum catalyst particle-supporting carbon material.
- the platinum loading amount of the platinum-supporting carbon material is adjusted to 40% by mass with respect to the total mass of the carbon material for the catalyst support and the platinum particles, and inductively coupled plasma emission spectroscopy (ICP-AES: Inductively It was confirmed by measurement by Coupled Plasma-Atomic Emission Spectrometry.
- Ethanol was further added to each catalyst layer ink solution having a solid content concentration of 1.0% by mass thus prepared to prepare a catalyst layer ink solution for spray coating having a platinum concentration of 0.5% by mass.
- the spraying conditions were adjusted so that the mass per unit area of the platinum catalyst layer (hereinafter referred to as “platinum weight”) was 0.2 mg / cm 2, and the above catalyst layer ink for spray coating was added to Teflon (registered trademark). ) Sprayed on the sheet. Then, the drying process for 60 minutes was performed at 120 degreeC in argon, and the catalyst layer was produced.
- MEA membrane electrode assembly
- a pair of square carbon paper with a size of 2.5 cm on a side was cut out from carbon paper (35BC manufactured by SGL Carbon Co.).
- the catalyst layer-electrolyte membrane assembly was sandwiched between these carbon papers so that the catalyst layers of the anode and cathode were not aligned and displaced, and the MEA was pressed at 120 ° C. and 50 kg / cm 2 for 10 minutes. Was made.
- the mass of the Teflon (registered trademark) sheet with the catalyst layer before pressing and the Teflon (registered trademark) peeled off after pressing was determined from the difference from the mass of the sheet, and was calculated from the mass ratio of the composition of the catalyst layer.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
金属又は金属塩を含む溶液を準備する工程と、
前記溶液にアセチレンガスを吹き込んで金属アセチリドからなる樹状の炭素ナノ構造体を生成させる工程と、
この炭素ナノ構造体を60~80℃で加熱して前記樹状の炭素ナノ構造体中に金属が内包された金属内包樹状炭素ナノ構造物を作製する工程と、
この金属内包樹状炭素ナノ構造物を160~200℃に加熱して金属を噴出させ、樹状の炭素メソポーラス構造体を作製する工程と、
この炭素メソポーラス構造体を減圧雰囲気下又は不活性ガス雰囲気下で1600~2200℃に加熱する工程と、からなる。そして、この多孔質炭素材料は、窒素吸着等温線をDollimore-Heal法で解析して求められる細孔径1~20nm及び積算細孔容積0.2~1.5cc/gを有すると共に、BET比表面積200~1300m2/gを有する。
金属又は金属塩を含むアンモニア水溶液中にアセチレンガスを吹き込んで金属アセチリドを生成させるアセチリド生成工程と、
前記金属アセチリドを60~80℃の温度で加熱して金属粒子内包中間体を作成する第1の加熱処理工程と、
前記金属粒子内包中間体を120~200℃の温度で加熱してこの金属粒子内包中間体から金属粒子を噴出させ、炭素材料中間体を得る第2の加熱処理工程と、
前記炭素材料中間体を熱濃硫酸と接触させてこの炭素材料中間体を清浄化する洗浄処理工程と、
更に清浄化された炭素材料中間体を1000~2100℃で加熱処理して担体炭素材料を得る第3の加熱処理工程と、からなる。そして、この多孔質炭素材料は、所定の水素含有量を有すると共に、BET比表面積600~1500m2/g、及びラマン分光スペクトルから得られるD-バンド1200~1400cm-1の範囲のピーク強度lDとG-バンド1500~1700cm-1の範囲のピーク強度lGとの相対強度比lD/lG1.0~2.0を有する。
金属又は金属塩を含むアンモニア水溶液中にアセチレンガスを吹き込んで金属アセチリドを生成させるアセチリド生成工程と、
前記金属アセチリドを40~80℃の温度で加熱して金属粒子内包中間体を作成する第1の加熱処理工程と、
前記金属粒子内包中間体を圧密成形し、得られた成形体を毎分100℃以上の昇温速度で400℃以上まで加熱してこの金属粒子内包中間体から金属粒子を噴出させ、炭素材料中間体を得る第2の加熱処理工程と、
前記炭素材料中間体を熱濃硝酸又は熱濃硫酸と接触させてこの炭素材料中間体を清浄化する洗浄処理工程と、
更に清浄化された炭素材料中間体を真空中又は不活性ガス雰囲気中1400~2100℃で加熱処理して担体炭素材料を得る第3の加熱処理工程と、を有する。そして、この多孔質炭素材料は、下記の特性を有する。
吸着過程の窒素吸着等温線をDollimore-Heal法で解析して求められる細孔直径2~50nmのメソ孔の比表面積SAが600~1600m2/gであり、
ラマン分光スペクトルにおけるG’-バンド2650~2700cm-1の範囲のピーク強度lG’とG-バンド1550~1650cm-1の範囲のピーク強度lGとの相対強度比lG’/lGが0.8~2.2であり、
メソ孔の内の細孔直径2nm以上10nm未満のメソ孔の比細孔面積S2-10が400~1100m2/gであって比細孔容積V2-10が0.4~1.6cc/gであり、
メソ孔の内の細孔直径10nm以上50nm以下のメソ孔の比細孔面積S10-50が20~150m2/gであって比細孔容積V2-10が0.4~1.6cc/gであり、
吸着過程の窒素吸着等温線をHorvath-Kawazoe法で解析して求められる細孔直径2nm未満の細孔の比細孔面積S2が250~550m2/gである。
酸素含有量OICPが0.1~3.0質量%、
不活性ガス(又は真空)雰囲気中1200℃の熱処理後に残存する酸素残存量O1200℃が0.1~1.5質量%、
BET比表面積が300~1500m2/g、
ラマン分光スペクトルの1550~1650cm-1の範囲に検出されるG-バンドの半値幅ΔGが30~70cm-1、及び、
不活性ガス(又は真空)雰囲気中1200℃の熱処理後に残存する水素残存量H1200℃が0.005~0.080質量%である。
特許文献2:WO 2015/088025 A1
特許文献3:WO 2015/141810 A1
特許文献4:WO 2016/133132 A1
そして、この大電流時の出力電圧を高めるためには、上述したように、触媒担体に対して、触媒金属の白金を十分にかつ高分散状態で担持させる上で、比較的大きな比表面積及びメソ孔容積が重要である。加えて、触媒層を形成した際に、この触媒層中に形成される微細孔が、反応ガスの拡散及び生成水の排出に対して、より適切な状態になることが重要である。
その結果、多孔質炭素材料内に存在する黒鉛化物の定量的評価については、以下のことを知見した。レーザラマン分光光度計に顕微鏡を組み合せた装置(顕微レーザラマン分光光度計)を用いるラマン分光測定を行った。このラマン分光測定によって、所定の条件で測定されたD-バンド強度(1360cm-1近傍に現れるピークであり、本開示において、1310~1410cm-1の範囲に現れるピークと定義する。本開示において、「D-バンド強度(1360cm-1近傍」との記載は、この定義と同義である。)と、G-バンド強度(1580cm-1近傍に現れるピークであり、本開示において、1530~1630cm-1の範囲に現れるピークと定義する。本開示において、「G-バンド強度(1580cm-1近傍)」との記載は、この定義と同義である。)との相対強度比ID/IG(R値)において、“ラマン測定値のバラツキ”が生じることが判明した。このラマン測定値のバラツキに着目して検討したところ、意外なことには、このR値の標準偏差δ(R)が黒鉛化物の存在と良好な相関関係を有することを突き止めた。それにより、このR値の標準偏差δ(R)を用いることで、多孔質炭素材料内に存在する黒鉛化物を定量的に評価できることを知見した。
また、本開示の他の目的は、このような固体高分子形燃料電池の触媒を製造する上で有用な触媒担体用炭素材料の製造方法を提供することにある。
(1)
3次元的に分岐した3次元樹状構造を有する多孔質炭素材料であって、下記の(A)、(B)、及び(C)を同時に満たす固体高分子形燃料電池の触媒担体用炭素材料。
(A)励起光として波長532nmのレーザー光を用いたラマン分光測定において、試料に照射するビーム径を1μm直径の円形とし、同じ試料に対して任意の50測定点について測定し、得られたD-バンド強度(1360cm-1近傍)とG-バンド強度(1580cm-1近傍)との相対強度比ID/IG(R値)の標準偏差δ(R)が0.01~0.07であること。
(B)窒素ガス吸着等温線のBET解析により求められるBET比表面積SBETが400~1520m2/gであること。
(C)窒素ガス吸着等温線において、相対圧p/p0が0.4から0.8までの間に吸着された窒素ガス吸着量VN:0.4-0.8が100~300cc(STP)/gであること。
(2)
上記(A)のラマン分光測定において、G-バンド(1580cm-1近傍)の半値全幅ΔGの標準偏差δ(ΔG)が0.10~1.30である前記(1)に記載の固体高分子形燃料電池の触媒担体用炭素材料。
(3)
上記(A)のラマン分光測定において、測定されたR値の平均値Raveが1.3~1.85である前記(1)又は(2)に記載の固体高分子形燃料電池の触媒担体用炭素材料。
(4)
前記(A)のラマン分光測定において、測定されたΔG値の平均値ΔGaveが45~75cm-1である(2)に記載の固体高分子形燃料電池の触媒担体用炭素材料。
硝酸銀のアンモニア水溶液からなる反応溶液中にアセチレンガスを吹き込んで銀アセチリドを合成するアセチリド生成工程と、
前記銀アセチリドを40~80℃の温度で加熱処理して銀粒子内包中間体を作成する第1の加熱処理工程と、
前記銀粒子内包中間体を120~200℃の温度で自己分解爆発反応させて分解生成物を得る第2の加熱処理工程と、
前記分解生成物を酸素含有雰囲気中80~150℃及び酸素含有量が1~25体積%の条件で10分~100分の加熱処理をして、酸素を含む気体による燃焼で非芳香族性炭素を除去した酸化処理後の分解生成物を得る酸化処理工程と、
前記酸化処理後の分解生成物から銀を除去して炭素材料中間体を得る洗浄工程と、
前記炭素材料中間体を真空中又は不活性ガス雰囲気中1600~2300℃の温度で加熱処理して触媒担体用炭素材料を得る第3の加熱処理工程と、
を有する固体高分子形燃料電池の触媒担体用炭素材料の製造方法。
また、本開示の製造方法によれば、耐久性を維持しつつ、大電流(重負荷)特性が改善されて、大電流時の出力電圧の高い固体高分子形燃料電池の触媒を製造するのに適した触媒担体用炭素材料を製造することができる。
本開示の固体高分子形燃料電池の触媒担体用炭素材料は、下記の(A)、(B)、及び(C)を同時に満たす3次元的に分岐した3次元樹状構造を有する多孔質炭素材料である。
(A)励起光として波長532nmのレーザー光を用いたラマン分光測定において、試料に照射するビーム径を1μm直径の円形とし、同じ試料に対して任意の50測定点について測定し、得られたD-バンド強度(1360cm-1近傍)とG-バンド強度(1580cm-1近傍)との相対強度比ID/IG(R値)の標準偏差δ(R)が0.01~0.07であること。
(B)窒素ガス吸着等温線のBET解析により求められるBET比表面積SBETが400~1520m2/gであること。
(C)窒素ガス吸着等温線において、相対圧p/p0が0.4から0.8までの間に吸着された窒素ガス吸着量VN:0.4-0.8が100~300cc(STP)/gであること。
ここで、本開示において、窒素ガス吸着量の単位はcc(STP)/g、BET比表面積SBETの単位はm2/g、及びΔG値の平均値ΔGaveの単位はcm-1である。
ここで、前記標準偏差δ(ΔG)については、実質的な最小値が0.10であり、本開示において、この標準偏差δ(ΔG)の下限に制限はない。反対に、この半値全幅ΔGの標準偏差δ(ΔG)が1.30を超えて大きくなると、上述の理由で、触媒層中の細孔が潰れるために、大電流特性が低下する虞が生じる。
また、前記平均値Raveが、1.3未満であると、結晶性が高くなり過ぎて細孔壁の凹凸が減少し、細孔壁への触媒金属微粒子の吸着性が低下する虞が生じる。反対に、1.85を超えて大きくなると、結晶性が低過ぎて耐久性が低下する虞が生じる。更に、ΔG値もR値と同様に結晶性を表す指標であり、この平均値ΔGaveが45cm-1未満であると、結晶性が高くなり過ぎて細孔壁の凹凸が減少し、細孔壁への触媒金属微粒子の吸着性が低下する虞が生じる。反対に、ΔGaveが75cm-1を超えて大きくなると、結晶性が低過ぎて耐久性が低下する虞が生じる。
すなわち、本開示の触媒担体用炭素材料は、下記の工程を有する製造方法により得られる。
硝酸銀のアンモニア水溶液からなる反応溶液中に、アセチレンガスを吹き込んで銀アセチリドを合成する(アセチリド生成工程)。
得られた銀アセチリドを、40~80℃の温度で加熱処理して銀粒子内包中間体を作製する(第1の加熱処理工程)。
この銀粒子内包中間体を、120~200℃の温度で自己分解爆発反応させて分解生成物を回収する(第2の加熱処理工程)。
この回収された分解生成物を、酸素含有雰囲気中80~150℃及び酸素含有量が1~25体積%の条件で、10分~100分の加熱処理をして、酸素を含む気体による燃焼で加熱処理して非芳香族性炭素を除去する(酸化処理工程)。
この酸化処理後の分解生成物から銀を除去して炭素材料中間体を回収する(洗浄工程)。
この回収された炭素材料中間体を真空中又は不活性ガス雰囲気中1600~2300℃の温度で加熱処理する(第3の加熱処理工程)。
なお、以下の実験例において、調製された触媒担体用炭素材料のBET比表面積SBET、窒素ガス吸着量VN:0.4-0.8、R値の標準偏差δ(R)、R値の平均値Rave、ΔG値の標準偏差δ(ΔG)、及びΔG値の平均値ΔGaveについての測定は、それぞれ以下のようにして実施した。
各実験例で調製され、あるいは、準備された触媒担体用炭素材料について、約30mgを測り採り、120℃で2時間真空乾燥する。その後に、自動比表面積測定装置(マイクロトラックベル社製BELSORP MAX)を用い、窒素ガスを吸着質に用いて窒素ガス吸着等温線を測定した。吸着時の等温線のp/p0が0.05~0.15の範囲においてBET解析を実施しBET比表面積を算出した。
また、吸着時の等温線のp/p0が0.8の時の吸着量cc(STP)/gと0.4の時の吸着量cc(STP)/gとの差を算出し、VN:0.4-0.8の値とした。
各実験例で調製され、あるいは、準備された触媒担体用炭素材料について、試料約3mgを測り採った。この試料をレーザラマン分光光度計(日本分光(株)製NRS-3100型)にセットし、励起レーザー:532nm、レーザーパワー:10mW(試料照射パワー:1.1mW)、顕微配置:Backscattering、スリット:100μm×100μm、対物レンズ:×100倍、スポット径:1μm、露光時間:30sec、観測波数:2000~300cm-1、及び、積算回数:6回の測定条件で測定し、得られた6個のスペクトルからG-バンド(1580cm-1近傍)の強度(ピーク高さ)及びピーク半値全幅ΔGを求めた。また、D-バンド強度(1360cm-1近傍)の強度(ピーク高さ)及びR値(相対強度比ID/IG)を求めた。更に、セットした同じ試料に対して、レーザーの照射位置を変えた任意の50測定点について測定した。得られた50測定点のデータに対して標準偏差を計算し、R値。標準偏差δ(R)及びΔG値の標準偏差δ(ΔG)を求めると共に、R値の平均値Rave及びΔG値の平均値ΔGaveを求めた。
(1) 銀アセチリド生成工程
5質量%濃度に調整された硝酸銀水溶液中に、硝酸銀に対してモル比で8倍になるようにアンモニアを混合し、アンモニア性硝酸銀水溶液を調製した。ここに、先ず、窒素ガスを40~60分間吹き込んだ。そして、溶存する酸素を不活性ガスに置換し、この銀アセチリド生成工程で生成した銀アセチリドが分解爆発を起こす危険性を排除した。
次に、このようにして調製されたアンモニア性硝酸銀水溶液中に、アセチレンガスを室温下で10分間程度吹き込んだ。反応溶液中からアセチレンガスが泡として放出され始めた時点で、このアセチレンガスの吹込みを中止した。そして、反応溶液中の硝酸銀とアセチレンとを反応させて銀アセチリドの白い沈殿物を生成させた。
生成した銀アセチリドの沈殿物についてはメンブレンフィルターで濾過して回収し、この回収された沈殿物をメタノールに再分散させ、再び濾過して得られた沈殿物をシャーレに取り出した。
上記の銀アセチリド生成工程で得られた各実験例の銀アセチリドについて、メタノールが含浸された状態のまま約0.5gを直径5cmのステンレス製円筒容器内に装入した。これを真空加熱電気炉に入れ、60℃で、約15~30分間かけて真空乾燥し、各実験例の銀アセチリド由来の銀粒子内包中間体を調製した。
次に、上記第1の加熱処理工程で得られた真空乾燥直後の60℃の銀粒子内包中間体を、そのまま更に真空加熱電気炉から取り出すことなく200℃まで昇温させて加熱した。この過程で、銀アセチリドの自己分解爆発反応を誘発させ、銀と炭素との複合物からなる分解生成物を得た。
この自己分解爆発反応の過程で、銀のナノサイズの粒子(銀ナノ粒子)が生成する。それと同時に、この銀ナノ粒子を取り巻くように六角網面の炭素層が形成されて3次元樹状構造の骨格が構成され、更に、生成した銀ナノ粒子が爆発エネルギーにより炭素層の細孔を介して多孔化し、その外部に噴出して銀の集合体(銀粒子)を形成する。
上記第2の加熱処理工程で得られた銀と炭素との複合物からなる分解生成物を、酸化処理容器中に入れた。そして、表1に示す酸素混合量となるように、窒素ガス中に酸素ガスを混合して得られた酸素混合窒素ガスを、前記酸化処理容器中に流通させた。酸化処理容器中に酸素混合窒素ガスを、流通させながら、表1に示す温度まで10℃/分の昇温速度で昇温した。表1に示す温度で、表1に示す処理時間の間保持して、分解生成物の酸化処理を行った。
上記酸化処理工程で得られた銀と炭素との複合物からなる酸化処理後の分解生成物について、60℃において濃度30質量%の濃硝酸で、銀の溶解処理(洗浄処理)を実施した。そして、炭素材料中間体の表面に存在する銀粒子及びその他の不安定な炭素化合物を除去し、清浄化された炭素材料中間体を得た。
なお、実験例21、22、及び23は、酸化処理工程で得られた同一の材料に対して、洗浄処理工程での洗浄時間をそれぞれ3時間、5時間、及び10時間とし、また、第3の加熱処理工程での熱処理温度を2000℃とした例である。
上記洗浄処理工程で清浄化された炭素材料中間体について、不活性ガス雰囲気中で表1に示す加熱温度条件で2時間の加熱処理を実施し、各実験例の触媒担体用炭素材料を得た。この第3の加熱処理工程での熱処理温度は結晶性の制御のために、これまで一般的に採用されている温度である。そして、この第3の加熱処理時の熱処理温度が、各実験例で得られた酸化処理後の分解生成物由来の多孔質炭素材料における物性及び電池特性に対して、どのような影響を与えるかについて調べた。
結果を表2に示す。
また、実験例5、19及び22、並びに実験例8及び13で得られた各触媒担体用炭素材料について、それぞれ50測定点で測定されたR値とΔG値とのバラツキの関係を、R値をX軸としΔG値をY軸とするR値-ΔG値のグラフ上にブロットして得られた。結果を図1~図5に示す。
また、市販の炭素材料についても実験例27~34として検討した。
多孔質炭素材料としては、樹状構造を持ち細孔も発達し比表面積が大きい多孔質炭素材料A(ライオン社製ケッチェンブラックEC300)(実験例27)及び多孔質炭素材料B(ライオン社製ケッチェンブラックEC600JD)(実験例28~31)と、樹状構造を持たない典型的な多孔質炭素材料として多孔質炭素材料C(東洋炭素社製CNOVEL-MH)(実験例32)と、細孔構造を持たない樹状構造の発達した炭素材料として炭素材料D(デンカ社製アセチレンブラックAB)(実験例33)及び炭素材料E(東海カーボン社製導電グレード#4300)(実験例34)とを使用した。なお、多孔質炭素材料Bは、第3の熱処理温度を、1400℃(多孔質炭素材料B-1)、1700℃(多孔質炭素材料B-2)、2000℃(多孔質炭素材料B-3)、及び2100℃(多孔質炭素材料B-4)とした4種類を準備した。
結果を表2に示す。
また、上記実験例5、実験例29、及び実験例33で得られた多孔質炭素材料についてのラマン分光測定において、得られたラマンスペクトルの一例を各々図6~図8に示す。なお、図6中に、D-バンド、G-バンドのピークの帰属を示した。
次に、以上のようにして調製され、また、準備された触媒担体用炭素材料を用い、以下のようにして触媒金属が担持された固体高分子形燃料電池用触媒を調製した。また、得られた触媒を用いて触媒層インク液を調製し、次いで、この触媒層インク液を用いて触媒層を形成した。更に形成された触媒層を用いて膜電極接合体(MEA: Membrane Electrode Assembly)を作製し、この作製されたMEAを燃料電池セルに組み込み、燃料電池測定装置を用いて発電試験を行った。以下、各部材の調製及び発電試験によるセル評価について詳細に説明する。
上記で作製した触媒担体用炭素材料、或いは、市販の炭素材料を、蒸留水中に分散させた。この分散液にホルムアルデヒドを加え、40℃に設定したウォーターバスにセットし、分散液の温度がバスと同じ40℃になってから、撹拌下に、この分散液中にジニトロジアミンPt錯体硝酸水溶液をゆっくりと注ぎ入れた。その後、約2時間撹拌を続けた後、濾過し、得られた固形物の洗浄を行った。このようにして得られた固形物を90℃で真空乾燥した後、乳鉢で粉砕した。次いで、水素を5体積%含むアルゴン雰囲気中200℃で1時間熱処理をして白金触媒粒子担持炭素材料を作製した。
なお、この白金担持炭素材料の白金担持量については、触媒担体用炭素材料と白金粒子の合計質量に対して40質量%となるように調整し、誘導結合プラズマ発光分光分析(ICP-AES: Inductively Coupled Plasma - Atomic Emission Spectrometry)により測定して確認した。
以上のようにして調製された白金担持炭素材料(Pt触媒)を用いた。また、電解質樹脂としてDupont社製ナフィオン(登録商標:Nafion;パースルホン酸系イオン交換樹脂)を用いた。Ar雰囲気下でこれらPt触媒とナフィオンとを白金触媒粒子担持炭素材料の質量に対してナフィオン固形分の質量が1.0倍、非多孔質炭素に対しては0.5倍の割合で配合した。軽く撹拌した後、超音波でPt触媒を解砕した。更にエタノールを加えてPt触媒と電解質樹脂とを合わせた合計の固形分濃度が1.0質量%となるように調整し、Pt触媒と電解質樹脂とが混合した触媒層インク液を調製した。
以上のようにして作製した触媒層を用い、以下の方法でMEA(膜電極複合体)を作製した。
ナフィオン膜(Dupont社製NR211)から、一辺6cmの正方形状の電解質膜を切り出した。また、テフロン(登録商標)シート上に塗布された、アノード及びカソードの各触媒層については、それぞれカッターナイフで一辺2.5cmの正方形状に切り出した。
このようにして切り出されたアノード及びカソードの各触媒層の間に、各触媒層が電解質膜の中心部を挟んだ。そして、それぞれ接すると共に、互いにずれが無いように、この電解質膜を挟み込み、120℃、100kg/cm2で10分間プレスした。次いで、室温まで冷却した後、アノード及びカソードの各触媒層から、テフロン(登録商標)シートのみを注意深く剥ぎ取り、アノード及びカソードの各触媒層が電解質膜に定着した、触媒層-電解質膜接合体を調製した。
なお、作製された各MEAにおける触媒金属成分、炭素材料、及び電解質材料の各成分の目付量については、プレス前の触媒層付テフロン(登録商標)シートの質量とプレス後に剥がしたテフロン(登録商標)シートの質量との差から、ナフィオン膜(電解質膜)に定着させた触媒層の質量を求め、触媒層の組成の質量比より算出した。
〔大電流特性の評価〕
各実験例で調製され、また、準備された触媒担体用炭素材料を用いて作製したMEAについて、それぞれセルに組み込み、燃料電池測定装置にセットして、次の手順で燃料電池の性能評価を行った。
反応ガスについては、カソード側に空気を、また、アノード側に純水素を、それぞれ利用率が40%と70%となるように、セル下流に設けられた背圧弁で圧力調整し、背圧0.04MPaで供給した。また、セル温度は80℃に設定し、供給する反応ガスについては、カソード及びアノード共に、加湿器中で60℃に保温された蒸留水でバブリングを行い、低加湿状態での発電評価を行った。
(合格ランク)
A:1000mA/cm2における出力電圧が0.65V以上であるもの。
B:1000mA/cm2における出力電圧が0.60V以上0.65V未満であるもの。
(不合格ランク)
C:合格ランクBに満たないもの。
上記セルにおいて、アノードはそのまま(ガス利用率40%の純水素を、加湿器中で60℃に保温された蒸留水でバブリング加湿して供給)とした。一方、カソードには上記と同じ加湿条件(加湿器中で60℃に保温された蒸留水でバブリング)のアルゴンガスを流した。この状態を保ちながら、セル電圧を1.0Vにして4秒間保持する操作と、セル電圧を1.3Vにして4秒間保持する操作とを繰り返す操作(矩形波的電圧変動の繰返し操作)を1サイクルとし、この矩形波的電圧変動の繰返し操作を400サイクル実施した。その後、上記の大電流特性の評価と同様にして電池性能を調査し、耐久性試験を実施した。そして、下記の合格ランクA及びBと、不合格ランクCとの基準で評価を行った。結果を表1に示す。
(合格ランク)
A:1000mA/cm2における出力電圧の低下率が10%以下であるもの。
B:1000mA/cm2における出力電圧の低下率が10%超~15%未満であるもの。
(不合格ランク)
C:合格ランクBに満たないもの、即ち、出力電圧の低下率が15%以上であるもの。
本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
Claims (5)
- 3次元的に分岐した3次元樹状構造を有する多孔質炭素材料であって、下記の(A)、(B)、及び(C)を同時に満たす固体高分子形燃料電池の触媒担体用炭素材料。
(A)励起光として波長532nmのレーザー光を用いたラマン分光測定において、試料に照射するビーム径を1μm直径の円形とし、同じ試料に対して任意の50測定点について測定し、得られたD-バンド強度(1360cm-1近傍)とG-バンド強度(1580cm-1近傍)との相対強度比ID/IG(R値)の標準偏差δ(R)が0.01~0.07であること。
(B)窒素ガス吸着等温線のBET解析により求められるBET比表面積SBETが400~1520m2/gであること。
(C)窒素ガス吸着等温線において、相対圧p/p0が0.4から0.8までの間に吸着された窒素ガス吸着量VN:0.4-0.8が100~300cc(STP)/gであること。 - 前記(A)のラマン分光測定において、G-バンド(1580cm-1近傍)の半値全幅ΔGの標準偏差δ(ΔG)が0.10~1.30である請求項1に記載の固体高分子形燃料電池の触媒担体用炭素材料。
- 上記(A)のラマン分光測定において、測定されたR値の平均値Raveが1.3~1.85である請求項1又は2に記載の固体高分子形燃料電池の触媒担体用炭素材料。
- 上記(A)のラマン分光測定において、測定されたΔG値の平均値ΔGaveが45~75cm-1である請求項2に記載の固体高分子形燃料電池の触媒担体用炭素材料。
- 硝酸銀のアンモニア水溶液からなる反応溶液中にアセチレンガスを吹き込んで銀アセチリドを合成するアセチリド生成工程と、
前記銀アセチリドを40~80℃の温度で加熱処理して銀粒子内包中間体を作成する第1の加熱処理工程と、
前記銀粒子内包中間体を120~200℃の温度で自己分解爆発反応させて分解生成物を得る第2の加熱処理工程と、
前記分解生成物を酸素含有雰囲気中80~150℃及び酸素含有量が1~25体積%の条件で10分~100分の加熱処理をして、酸素を含む気体による燃焼で非芳香族性炭素を除去した酸化処理後の分解生成物を得る酸化処理工程と、
前記酸化処理後の分解生成物から銀を除去して炭素材料中間体を得る洗浄工程と、
前記炭素材料中間体を真空中又は不活性ガス雰囲気中1600~2300℃の温度で加熱処理して触媒担体用炭素材料を得る第3の加熱処理工程と、
を有する固体高分子形燃料電池の触媒担体用炭素材料の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA3058358A CA3058358C (en) | 2017-03-31 | 2018-04-02 | Carbon material for catalyst carrier of polymer electrolyte fuel cell, and method of producing the same |
US16/499,792 US11302928B2 (en) | 2017-03-31 | 2018-04-02 | Carbon material for catalyst carrier of polymer electrolyte fuel cell, and method of producing the same |
CN201880023216.6A CN110476286B (zh) | 2017-03-31 | 2018-04-02 | 固体高分子型燃料电池的催化剂载体用碳材料及其制造方法 |
EP18777621.6A EP3621136B1 (en) | 2017-03-31 | 2018-04-02 | Carbon material for catalyst carrier of polymer electrolyte fuel cell, and method for manufacturing same |
JP2019509443A JP6802363B2 (ja) | 2017-03-31 | 2018-04-02 | 固体高分子形燃料電池の触媒担体用炭素材料及びその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-070829 | 2017-03-31 | ||
JP2017070829 | 2017-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018182048A1 true WO2018182048A1 (ja) | 2018-10-04 |
Family
ID=63676604
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/014175 WO2018182048A1 (ja) | 2017-03-31 | 2018-04-02 | 固体高分子形燃料電池の触媒担体用炭素材料及びその製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11302928B2 (ja) |
EP (1) | EP3621136B1 (ja) |
JP (1) | JP6802363B2 (ja) |
CN (1) | CN110476286B (ja) |
CA (1) | CA3058358C (ja) |
WO (1) | WO2018182048A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020202819A1 (ja) * | 2019-04-04 | 2020-10-08 | ナミックス株式会社 | 多孔質炭素及び樹脂組成物 |
JP2021061142A (ja) * | 2019-10-04 | 2021-04-15 | 日本製鉄株式会社 | 固体高分子形燃料電池の触媒担体用多孔質炭素材料、固体高分子形燃料電池用触媒層、及び燃料電池 |
WO2022054486A1 (ja) * | 2020-09-10 | 2022-03-17 | 日清紡ホールディングス株式会社 | 金属担持触媒、電池電極及び電池 |
JP2023503095A (ja) * | 2020-10-21 | 2023-01-26 | コーロン インダストリーズ インク | 燃料電池触媒用炭素系担体、これを含む触媒、これを含む膜電極アセンブリー、及びこれを製造する方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7033118B2 (ja) * | 2017-02-27 | 2022-03-09 | 株式会社クラレ | 炭素質材料、ならびに該炭素質材料を含有する電気二重層キャパシタ用電極材料、電気二重層キャパシタ用電極および電気二重層キャパシタ |
DE102021108985A1 (de) | 2021-04-12 | 2022-10-13 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren zum Herstellen eines Kohlenstoffmaterials, Kohlenstoffmaterial und Verwendung eines Kohlenstoffmaterials in einer Brennstoffzelle |
CN113830764A (zh) * | 2021-11-09 | 2021-12-24 | 四川金汇能新材料股份有限公司 | 一种三聚氰胺参杂的多孔碳材料及其制备方法、应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009075264A1 (ja) * | 2007-12-12 | 2009-06-18 | Nippon Steel Chemical Co., Ltd. | 金属内包樹状炭素ナノ構造物、炭素ナノ構造体、金属内包樹状炭素ナノ構造物の作製方法、炭素ナノ構造体の作製方法、及びキャパシタ |
WO2014129597A1 (ja) | 2013-02-21 | 2014-08-28 | 新日鉄住金化学株式会社 | 触媒担体用炭素材料 |
WO2015088025A1 (ja) | 2013-12-13 | 2015-06-18 | 新日鐵住金株式会社 | 固体高分子形燃料電池用の担体炭素材料及び金属触媒粒子担持炭素材料、並びにこれらの製造方法 |
WO2015141810A1 (ja) | 2014-03-19 | 2015-09-24 | 新日鐵住金株式会社 | 固体高分子形燃料電池用の担体炭素材料及び触媒金属粒子担持炭素材料 |
WO2016133132A1 (ja) | 2015-02-18 | 2016-08-25 | 新日鐵住金株式会社 | 触媒担体用炭素材料、固体高分子形燃料電池用触媒、固体高分子形燃料電池、及び触媒担体用炭素材料の製造方法 |
JP2017070829A (ja) | 2017-01-20 | 2017-04-13 | 株式会社ケー・ユー技研 | 個別指導用間仕切り |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4697770B2 (ja) * | 2004-08-30 | 2011-06-08 | Jx日鉱日石エネルギー株式会社 | 炭素材料及びそれを用いた非水電解液二次電池 |
WO2010050595A1 (ja) * | 2008-10-31 | 2010-05-06 | 三菱化学株式会社 | 非水系二次電池用負極材料 |
JP5297786B2 (ja) * | 2008-12-16 | 2013-09-25 | 株式会社キャタラー | 固体高分子型燃料電池のアノード触媒層 |
CN102918687A (zh) * | 2010-05-18 | 2013-02-06 | 丰田自动车株式会社 | 负极活性物质的评价方法和负极活性物质 |
WO2015045852A1 (ja) * | 2013-09-30 | 2015-04-02 | 日産自動車株式会社 | 触媒用炭素粉末ならびに当該触媒用炭素粉末を用いる触媒、電極触媒層、膜電極接合体および燃料電池 |
-
2018
- 2018-04-02 EP EP18777621.6A patent/EP3621136B1/en active Active
- 2018-04-02 CN CN201880023216.6A patent/CN110476286B/zh active Active
- 2018-04-02 CA CA3058358A patent/CA3058358C/en active Active
- 2018-04-02 JP JP2019509443A patent/JP6802363B2/ja active Active
- 2018-04-02 US US16/499,792 patent/US11302928B2/en active Active
- 2018-04-02 WO PCT/JP2018/014175 patent/WO2018182048A1/ja unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009075264A1 (ja) * | 2007-12-12 | 2009-06-18 | Nippon Steel Chemical Co., Ltd. | 金属内包樹状炭素ナノ構造物、炭素ナノ構造体、金属内包樹状炭素ナノ構造物の作製方法、炭素ナノ構造体の作製方法、及びキャパシタ |
WO2014129597A1 (ja) | 2013-02-21 | 2014-08-28 | 新日鉄住金化学株式会社 | 触媒担体用炭素材料 |
WO2015088025A1 (ja) | 2013-12-13 | 2015-06-18 | 新日鐵住金株式会社 | 固体高分子形燃料電池用の担体炭素材料及び金属触媒粒子担持炭素材料、並びにこれらの製造方法 |
WO2015141810A1 (ja) | 2014-03-19 | 2015-09-24 | 新日鐵住金株式会社 | 固体高分子形燃料電池用の担体炭素材料及び触媒金属粒子担持炭素材料 |
WO2016133132A1 (ja) | 2015-02-18 | 2016-08-25 | 新日鐵住金株式会社 | 触媒担体用炭素材料、固体高分子形燃料電池用触媒、固体高分子形燃料電池、及び触媒担体用炭素材料の製造方法 |
JP2017070829A (ja) | 2017-01-20 | 2017-04-13 | 株式会社ケー・ユー技研 | 個別指導用間仕切り |
Non-Patent Citations (1)
Title |
---|
See also references of EP3621136A4 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020202819A1 (ja) * | 2019-04-04 | 2020-10-08 | ナミックス株式会社 | 多孔質炭素及び樹脂組成物 |
JPWO2020202819A1 (ja) * | 2019-04-04 | 2020-10-08 | ||
CN113646386A (zh) * | 2019-04-04 | 2021-11-12 | 纳美仕有限公司 | 多孔质碳及树脂组合物 |
JP7436053B2 (ja) | 2019-04-04 | 2024-02-21 | ナミックス株式会社 | 多孔質炭素及び樹脂組成物 |
JP2021061142A (ja) * | 2019-10-04 | 2021-04-15 | 日本製鉄株式会社 | 固体高分子形燃料電池の触媒担体用多孔質炭素材料、固体高分子形燃料電池用触媒層、及び燃料電池 |
JP7277770B2 (ja) | 2019-10-04 | 2023-05-19 | 日本製鉄株式会社 | 固体高分子形燃料電池の触媒担体用多孔質炭素材料、固体高分子形燃料電池用触媒層、及び燃料電池 |
WO2022054486A1 (ja) * | 2020-09-10 | 2022-03-17 | 日清紡ホールディングス株式会社 | 金属担持触媒、電池電極及び電池 |
JP2023503095A (ja) * | 2020-10-21 | 2023-01-26 | コーロン インダストリーズ インク | 燃料電池触媒用炭素系担体、これを含む触媒、これを含む膜電極アセンブリー、及びこれを製造する方法 |
JP7416938B2 (ja) | 2020-10-21 | 2024-01-17 | コーロン インダストリーズ インク | 燃料電池触媒用炭素系担体、これを含む触媒、これを含む膜電極アセンブリー、及びこれを製造する方法 |
Also Published As
Publication number | Publication date |
---|---|
US11302928B2 (en) | 2022-04-12 |
JPWO2018182048A1 (ja) | 2020-02-06 |
EP3621136A1 (en) | 2020-03-11 |
JP6802363B2 (ja) | 2020-12-16 |
EP3621136B1 (en) | 2022-01-26 |
CN110476286B (zh) | 2022-12-02 |
CN110476286A (zh) | 2019-11-19 |
CA3058358C (en) | 2021-07-27 |
EP3621136A4 (en) | 2021-01-06 |
CA3058358A1 (en) | 2018-10-04 |
US20200044261A1 (en) | 2020-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018182048A1 (ja) | 固体高分子形燃料電池の触媒担体用炭素材料及びその製造方法 | |
JP6802362B2 (ja) | 固体高分子形燃料電池の触媒担体用炭素材料およびその製造方法 | |
WO2019004472A1 (ja) | 固体高分子形燃料電池触媒担体、固体高分子形燃料電池触媒担体の製造方法、固体高分子形燃料電池用触媒層、及び燃料電池 | |
JP6854685B2 (ja) | 固体高分子形燃料電池の触媒担体用炭素材料及びその製造方法、並びに前記触媒担体用炭素材料を用いた固体高分子形燃料電池用触媒担体 | |
WO2017208742A1 (ja) | 触媒担持用カーボン及びその製造方法 | |
JP7110377B2 (ja) | 固体高分子形燃料電池の触媒担体用炭素材料及びその製造方法 | |
WO2018182045A1 (ja) | 固体高分子形燃料電池の触媒担体用炭素材料及びその製造方法 | |
JP2020166942A (ja) | 触媒担体用炭素材料、触媒担体用炭素材料の製造方法、燃料電池用触媒層、及び燃料電池 | |
JP6815918B2 (ja) | 銀アセチリド及びその製造方法 | |
JP7605606B2 (ja) | 固体高分子形燃料電池触媒担体用炭素材料、固体高分子形燃料電池用触媒層、及び燃料電池 | |
JP2020166941A (ja) | 触媒担体用炭素材料、燃料電池用触媒層、及び燃料電池 | |
JP2021061142A (ja) | 固体高分子形燃料電池の触媒担体用多孔質炭素材料、固体高分子形燃料電池用触媒層、及び燃料電池 | |
WO2024202884A1 (ja) | 固体高分子型燃料電池の触媒担体用炭素材料、固体高分子型燃料電池用触媒層、燃料電池、及び固体高分子型燃料電池の触媒担体用炭素材料の製造方法 | |
WO2024202883A1 (ja) | 固体高分子型燃料電池の触媒担体用炭素材料、固体高分子型燃料電池用触媒層、燃料電池、及び固体高分子型燃料電池の触媒担体用炭素材料の製造方法 | |
JP2022156985A (ja) | 固体高分子形燃料電池の触媒担体用炭素材料及びその製造方法 | |
WO2025005289A1 (ja) | 固体高分子型燃料電池の触媒担体用炭素材料、固体高分子型燃料電池用触媒層、及び燃料電池 | |
JP2024127510A (ja) | 燃料電池用電極触媒及びそれを備える固体高分子型燃料電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18777621 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3058358 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2019509443 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018777621 Country of ref document: EP Effective date: 20191031 |