WO2018181658A1 - Glass plate slip sheet and production method therefor - Google Patents
Glass plate slip sheet and production method therefor Download PDFInfo
- Publication number
- WO2018181658A1 WO2018181658A1 PCT/JP2018/013108 JP2018013108W WO2018181658A1 WO 2018181658 A1 WO2018181658 A1 WO 2018181658A1 JP 2018013108 W JP2018013108 W JP 2018013108W WO 2018181658 A1 WO2018181658 A1 WO 2018181658A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sheet
- glass plate
- glass
- group
- short fibers
- Prior art date
Links
- 239000011521 glass Substances 0.000 title claims abstract description 156
- 238000004519 manufacturing process Methods 0.000 title claims description 23
- 239000000835 fiber Substances 0.000 claims abstract description 112
- 229920001131 Pulp (paper) Polymers 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 25
- 239000002002 slurry Substances 0.000 claims description 20
- 230000018044 dehydration Effects 0.000 claims description 14
- 238000006297 dehydration reaction Methods 0.000 claims description 14
- 238000002360 preparation method Methods 0.000 claims description 13
- 238000001035 drying Methods 0.000 claims description 12
- 239000004973 liquid crystal related substance Substances 0.000 claims description 9
- 239000013055 pulp slurry Substances 0.000 claims description 5
- 239000002994 raw material Substances 0.000 abstract description 2
- 239000000123 paper Substances 0.000 description 87
- -1 jojoba oil Substances 0.000 description 58
- 229920001296 polysiloxane Polymers 0.000 description 37
- 239000002518 antifoaming agent Substances 0.000 description 30
- 125000004432 carbon atom Chemical group C* 0.000 description 24
- 229920002545 silicone oil Polymers 0.000 description 21
- 150000002430 hydrocarbons Chemical class 0.000 description 14
- 239000000126 substance Substances 0.000 description 14
- 235000014113 dietary fatty acids Nutrition 0.000 description 13
- 239000000194 fatty acid Substances 0.000 description 13
- 229930195729 fatty acid Natural products 0.000 description 13
- 239000010408 film Substances 0.000 description 13
- 230000002209 hydrophobic effect Effects 0.000 description 13
- 229910052623 talc Inorganic materials 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 239000000454 talc Substances 0.000 description 10
- 150000004665 fatty acids Chemical class 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 229920005989 resin Polymers 0.000 description 9
- 239000011347 resin Substances 0.000 description 9
- 125000002947 alkylene group Chemical group 0.000 description 8
- 239000003921 oil Substances 0.000 description 7
- 235000019198 oils Nutrition 0.000 description 7
- 238000010009 beating Methods 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 6
- 150000002148 esters Chemical class 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 125000004122 cyclic group Chemical group 0.000 description 5
- PRAKJMSDJKAYCZ-UHFFFAOYSA-N dodecahydrosqualene Natural products CC(C)CCCC(C)CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C PRAKJMSDJKAYCZ-UHFFFAOYSA-N 0.000 description 5
- 239000000945 filler Substances 0.000 description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000004205 dimethyl polysiloxane Substances 0.000 description 4
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 4
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 4
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 4
- 239000002655 kraft paper Substances 0.000 description 4
- 239000002480 mineral oil Substances 0.000 description 4
- 235000010446 mineral oil Nutrition 0.000 description 4
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 4
- 229930195734 saturated hydrocarbon Natural products 0.000 description 4
- 239000011122 softwood Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 235000015112 vegetable and seed oil Nutrition 0.000 description 4
- 239000008158 vegetable oil Substances 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 3
- 125000003545 alkoxy group Chemical group 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 3
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 3
- 125000000732 arylene group Chemical group 0.000 description 3
- 238000003490 calendering Methods 0.000 description 3
- 230000003749 cleanliness Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 239000000356 contaminant Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 239000003623 enhancer Substances 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 150000002191 fatty alcohols Chemical class 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 125000005702 oxyalkylene group Chemical group 0.000 description 3
- 239000011295 pitch Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 2
- WNWHHMBRJJOGFJ-UHFFFAOYSA-N 16-methylheptadecan-1-ol Chemical compound CC(C)CCCCCCCCCCCCCCCO WNWHHMBRJJOGFJ-UHFFFAOYSA-N 0.000 description 2
- XDOFQFKRPWOURC-UHFFFAOYSA-N 16-methylheptadecanoic acid Chemical compound CC(C)CCCCCCCCCCCCCCC(O)=O XDOFQFKRPWOURC-UHFFFAOYSA-N 0.000 description 2
- WZJUBBHODHNQPW-UHFFFAOYSA-N 2,4,6,8-tetramethyl-1,3,5,7,2$l^{3},4$l^{3},6$l^{3},8$l^{3}-tetraoxatetrasilocane Chemical compound C[Si]1O[Si](C)O[Si](C)O[Si](C)O1 WZJUBBHODHNQPW-UHFFFAOYSA-N 0.000 description 2
- BANXPJUEBPWEOT-UHFFFAOYSA-N 2-methyl-Pentadecane Chemical compound CCCCCCCCCCCCCC(C)C BANXPJUEBPWEOT-UHFFFAOYSA-N 0.000 description 2
- LEEDMQGKBNGPDN-UHFFFAOYSA-N 2-methylnonadecane Chemical compound CCCCCCCCCCCCCCCCCC(C)C LEEDMQGKBNGPDN-UHFFFAOYSA-N 0.000 description 2
- SGVYKUFIHHTIFL-UHFFFAOYSA-N 2-methylnonane Chemical compound CCCCCCCC(C)C SGVYKUFIHHTIFL-UHFFFAOYSA-N 0.000 description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical group OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 239000005642 Oleic acid Substances 0.000 description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 235000021314 Palmitic acid Nutrition 0.000 description 2
- 239000004264 Petrolatum Substances 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 2
- 229920001807 Urea-formaldehyde Polymers 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 125000003368 amide group Chemical group 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 125000004103 aminoalkyl group Chemical group 0.000 description 2
- 239000010775 animal oil Substances 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000004359 castor oil Substances 0.000 description 2
- 235000019438 castor oil Nutrition 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 235000005687 corn oil Nutrition 0.000 description 2
- 239000002285 corn oil Substances 0.000 description 2
- NOPFSRXAKWQILS-UHFFFAOYSA-N docosan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCCCCCO NOPFSRXAKWQILS-UHFFFAOYSA-N 0.000 description 2
- UKMSUNONTOPOIO-UHFFFAOYSA-N docosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 125000003700 epoxy group Chemical group 0.000 description 2
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 2
- 239000005357 flat glass Substances 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 125000005456 glyceride group Chemical group 0.000 description 2
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 2
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 239000011121 hardwood Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- 239000000944 linseed oil Substances 0.000 description 2
- 235000021388 linseed oil Nutrition 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 125000005641 methacryl group Chemical group 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 2
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- 235000021313 oleic acid Nutrition 0.000 description 2
- 125000006353 oxyethylene group Chemical group 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 229940066842 petrolatum Drugs 0.000 description 2
- 235000019271 petrolatum Nutrition 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920013716 polyethylene resin Polymers 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 239000008159 sesame oil Substances 0.000 description 2
- 235000011803 sesame oil Nutrition 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- DAJSVUQLFFJUSX-UHFFFAOYSA-M sodium;dodecane-1-sulfonate Chemical compound [Na+].CCCCCCCCCCCCS([O-])(=O)=O DAJSVUQLFFJUSX-UHFFFAOYSA-M 0.000 description 2
- 235000012424 soybean oil Nutrition 0.000 description 2
- 239000003549 soybean oil Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 239000012209 synthetic fiber Substances 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- HLZKNKRTKFSKGZ-UHFFFAOYSA-N tetradecan-1-ol Chemical compound CCCCCCCCCCCCCCO HLZKNKRTKFSKGZ-UHFFFAOYSA-N 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- 125000003944 tolyl group Chemical group 0.000 description 2
- IIYFAKIEWZDVMP-UHFFFAOYSA-N tridecane Chemical compound CCCCCCCCCCCCC IIYFAKIEWZDVMP-UHFFFAOYSA-N 0.000 description 2
- RSJKGSCJYJTIGS-UHFFFAOYSA-N undecane Chemical compound CCCCCCCCCCC RSJKGSCJYJTIGS-UHFFFAOYSA-N 0.000 description 2
- KJIOQYGWTQBHNH-UHFFFAOYSA-N undecanol Chemical compound CCCCCCCCCCCO KJIOQYGWTQBHNH-UHFFFAOYSA-N 0.000 description 2
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- YYGNTYWPHWGJRM-UHFFFAOYSA-N (6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene Chemical compound CC(C)=CCCC(C)=CCCC(C)=CCCC=C(C)CCC=C(C)CCC=C(C)C YYGNTYWPHWGJRM-UHFFFAOYSA-N 0.000 description 1
- ALSTYHKOOCGGFT-KTKRTIGZSA-N (9Z)-octadecen-1-ol Chemical compound CCCCCCCC\C=C/CCCCCCCCO ALSTYHKOOCGGFT-KTKRTIGZSA-N 0.000 description 1
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- FFJCNSLCJOQHKM-CLFAGFIQSA-N (z)-1-[(z)-octadec-9-enoxy]octadec-9-ene Chemical compound CCCCCCCC\C=C/CCCCCCCCOCCCCCCCC\C=C/CCCCCCCC FFJCNSLCJOQHKM-CLFAGFIQSA-N 0.000 description 1
- CJJXHKDWGQADHB-DPMBMXLASA-N (z,12r)-12-hydroxyoctadec-9-enoic acid;propane-1,2,3-triol Chemical compound OCC(O)CO.CCCCCC[C@@H](O)C\C=C/CCCCCCCC(O)=O CJJXHKDWGQADHB-DPMBMXLASA-N 0.000 description 1
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 1
- 125000004973 1-butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000006017 1-propenyl group Chemical group 0.000 description 1
- NSLNFHKUIKHPGY-UHFFFAOYSA-N 2,2,4,4,6,6,8-heptamethyl-8-phenyl-1,3,5,7,2,4,6,8-tetraoxatetrasilocane Chemical compound O1[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si]1(C)C1=CC=CC=C1 NSLNFHKUIKHPGY-UHFFFAOYSA-N 0.000 description 1
- 229940043268 2,2,4,4,6,8,8-heptamethylnonane Drugs 0.000 description 1
- VMAWODUEPLAHOE-UHFFFAOYSA-N 2,4,6,8-tetrakis(ethenyl)-2,4,6,8-tetramethyl-1,3,5,7,2,4,6,8-tetraoxatetrasilocane Chemical compound C=C[Si]1(C)O[Si](C)(C=C)O[Si](C)(C=C)O[Si](C)(C=C)O1 VMAWODUEPLAHOE-UHFFFAOYSA-N 0.000 description 1
- URZHQOCYXDNFGN-UHFFFAOYSA-N 2,4,6-trimethyl-2,4,6-tris(3,3,3-trifluoropropyl)-1,3,5,2,4,6-trioxatrisilinane Chemical compound FC(F)(F)CC[Si]1(C)O[Si](C)(CCC(F)(F)F)O[Si](C)(CCC(F)(F)F)O1 URZHQOCYXDNFGN-UHFFFAOYSA-N 0.000 description 1
- LXOFYPKXCSULTL-UHFFFAOYSA-N 2,4,7,9-tetramethyldec-5-yne-4,7-diol Chemical compound CC(C)CC(C)(O)C#CC(C)(O)CC(C)C LXOFYPKXCSULTL-UHFFFAOYSA-N 0.000 description 1
- OVPQPMTZOLCPHB-UHFFFAOYSA-N 2-(2-heptoxyethoxy)ethanol Chemical compound CCCCCCCOCCOCCO OVPQPMTZOLCPHB-UHFFFAOYSA-N 0.000 description 1
- WGIMXKDCVCTHGW-UHFFFAOYSA-N 2-(2-hydroxyethoxy)ethyl dodecanoate Chemical compound CCCCCCCCCCCC(=O)OCCOCCO WGIMXKDCVCTHGW-UHFFFAOYSA-N 0.000 description 1
- IYIIBCJQSKOFMI-UHFFFAOYSA-N 2-(3-ethenoxypropyl)-2,4,6,8-tetramethyl-1,3,5,7,2,4,6,8-tetraoxatetrasilocane Chemical compound C(=C)OCCC[Si]1(O[SiH](O[SiH](O[SiH](O1)C)C)C)C IYIIBCJQSKOFMI-UHFFFAOYSA-N 0.000 description 1
- JRQWDOKLDQKWLK-UHFFFAOYSA-N 2-(4-ethenylphenyl)-2,4,6,8-tetramethyl-1,3,5,7,2,4,6,8-tetraoxatetrasilocane Chemical compound C(=C)C1=CC=C(C=C1)[Si]1(O[SiH](O[SiH](O[SiH](O1)C)C)C)C JRQWDOKLDQKWLK-UHFFFAOYSA-N 0.000 description 1
- JVVCQYXPXRTSKU-UHFFFAOYSA-N 2-[3-(4-ethenylphenyl)propyl]-2,4,6,8-tetramethyl-1,3,5,7,2,4,6,8-tetraoxatetrasilocane Chemical compound C(=C)C1=CC=C(C=C1)CCC[Si]1(O[SiH](O[SiH](O[SiH](O1)C)C)C)C JVVCQYXPXRTSKU-UHFFFAOYSA-N 0.000 description 1
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 1
- UBESITQVAPQMMN-UHFFFAOYSA-N 2-dodecylphenol;sodium Chemical compound [Na].CCCCCCCCCCCCC1=CC=CC=C1O UBESITQVAPQMMN-UHFFFAOYSA-N 0.000 description 1
- CEBKHWWANWSNTI-UHFFFAOYSA-N 2-methylbut-3-yn-2-ol Chemical compound CC(C)(O)C#C CEBKHWWANWSNTI-UHFFFAOYSA-N 0.000 description 1
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 1
- JQKADLCEIMNYPL-UHFFFAOYSA-N 3-(2,4,6,8-tetramethyl-1,3,5,7,2,4,6,8-tetraoxatetrasilocan-2-yl)propyl prop-2-enoate Chemical compound C(C=C)(=O)OCCC[Si]1(O[SiH](O[SiH](O[SiH](O1)C)C)C)C JQKADLCEIMNYPL-UHFFFAOYSA-N 0.000 description 1
- YHCCCMIWRBJYHG-UHFFFAOYSA-N 3-(2-ethylhexoxymethyl)heptane Chemical compound CCCCC(CC)COCC(CC)CCCC YHCCCMIWRBJYHG-UHFFFAOYSA-N 0.000 description 1
- WDQOEAOLRIMQDA-UHFFFAOYSA-N 3-methylbutyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCC(C)C WDQOEAOLRIMQDA-UHFFFAOYSA-N 0.000 description 1
- JDVJHBVFCDLXDB-UHFFFAOYSA-N 4-(2,4,6,8-tetramethyl-1,3,5,7,2,4,6,8-tetraoxatetrasilocan-2-yl)butanoic acid Chemical compound C(=O)(O)CCC[Si]1(O[SiH](O[SiH](O[SiH](O1)C)C)C)C JDVJHBVFCDLXDB-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 235000019489 Almond oil Nutrition 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 241000566146 Asio Species 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 235000021357 Behenic acid Nutrition 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 244000020518 Carthamus tinctorius Species 0.000 description 1
- 235000003255 Carthamus tinctorius Nutrition 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- XMSXQFUHVRWGNA-UHFFFAOYSA-N Decamethylcyclopentasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 XMSXQFUHVRWGNA-UHFFFAOYSA-N 0.000 description 1
- IUMSDRXLFWAGNT-UHFFFAOYSA-N Dodecamethylcyclohexasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 IUMSDRXLFWAGNT-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- FPVVYTCTZKCSOJ-UHFFFAOYSA-N Ethylene glycol distearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCOC(=O)CCCCCCCCCCCCCCCCC FPVVYTCTZKCSOJ-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 235000019487 Hazelnut oil Nutrition 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 240000000797 Hibiscus cannabinus Species 0.000 description 1
- 235000018330 Macadamia integrifolia Nutrition 0.000 description 1
- 240000000912 Macadamia tetraphylla Species 0.000 description 1
- 235000003800 Macadamia tetraphylla Nutrition 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- RGMZNZABJYWAEC-UHFFFAOYSA-N Methyltris(trimethylsiloxy)silane Chemical compound C[Si](C)(C)O[Si](C)(O[Si](C)(C)C)O[Si](C)(C)C RGMZNZABJYWAEC-UHFFFAOYSA-N 0.000 description 1
- QSYLVEUYPSIPPN-UHFFFAOYSA-N N-dodecanoyl-N-[3-(2,4,6,8-tetramethyl-1,3,5,7,2,4,6,8-tetraoxatetrasilocan-2-yl)propyl]dodecanamide Chemical compound C(CCCCCCCCCCC)(=O)N(CCC[Si]1(O[SiH](O[SiH](O[SiH](O1)C)C)C)C)C(CCCCCCCCCCC)=O QSYLVEUYPSIPPN-UHFFFAOYSA-N 0.000 description 1
- BCAGCXRFMPMBEC-UHFFFAOYSA-N N-methyl-N-[3-(2,4,6,8-tetramethyl-1,3,5,7,2,4,6,8-tetraoxatetrasilocan-2-yl)propyl]prop-2-enamide Chemical compound C(C=C)(=O)N(CCC[Si]1(O[SiH](O[SiH](O[SiH](O1)C)C)C)C)C BCAGCXRFMPMBEC-UHFFFAOYSA-N 0.000 description 1
- 241000772415 Neovison vison Species 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229920002367 Polyisobutene Polymers 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 235000019484 Rapeseed oil Nutrition 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000004147 Sorbitan trioleate Substances 0.000 description 1
- PRXRUNOAOLTIEF-ADSICKODSA-N Sorbitan trioleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCC\C=C/CCCCCCCC)[C@H]1OC[C@H](O)[C@H]1OC(=O)CCCCCCC\C=C/CCCCCCCC PRXRUNOAOLTIEF-ADSICKODSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- BHEOSNUKNHRBNM-UHFFFAOYSA-N Tetramethylsqualene Natural products CC(=C)C(C)CCC(=C)C(C)CCC(C)=CCCC=C(C)CCC(C)C(=C)CCC(C)C(C)=C BHEOSNUKNHRBNM-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 229920002978 Vinylon Polymers 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 238000012644 addition polymerization Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000004450 alkenylene group Chemical group 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- 239000008168 almond oil Substances 0.000 description 1
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 1
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- CEGOLXSVJUTHNZ-UHFFFAOYSA-K aluminium tristearate Chemical compound [Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CEGOLXSVJUTHNZ-UHFFFAOYSA-K 0.000 description 1
- 229940063655 aluminum stearate Drugs 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000010477 apricot oil Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 150000008378 aryl ethers Chemical class 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 235000021302 avocado oil Nutrition 0.000 description 1
- 239000008163 avocado oil Substances 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 229940116226 behenic acid Drugs 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- IFVTZJHWGZSXFD-UHFFFAOYSA-N biphenylene Chemical group C1=CC=C2C3=CC=CC=C3C2=C1 IFVTZJHWGZSXFD-UHFFFAOYSA-N 0.000 description 1
- HOARHIIWXZMCMV-UHFFFAOYSA-N bis[[ethoxy(dimethyl)silyl]oxy]-dimethylsilane Chemical compound CCO[Si](C)(C)O[Si](C)(C)O[Si](C)(C)OCC HOARHIIWXZMCMV-UHFFFAOYSA-N 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 125000005569 butenylene group Chemical group 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 229940078456 calcium stearate Drugs 0.000 description 1
- 239000010495 camellia oil Substances 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 125000000392 cycloalkenyl group Chemical group 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- DDJSWKLBKSLAAZ-UHFFFAOYSA-N cyclotetrasiloxane Chemical compound O1[SiH2]O[SiH2]O[SiH2]O[SiH2]1 DDJSWKLBKSLAAZ-UHFFFAOYSA-N 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229960000735 docosanol Drugs 0.000 description 1
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 1
- ANXXYABAFAQBOT-UHFFFAOYSA-N dodecyl-methyl-bis(trimethylsilyloxy)silane Chemical compound CCCCCCCCCCCC[Si](C)(O[Si](C)(C)C)O[Si](C)(C)C ANXXYABAFAQBOT-UHFFFAOYSA-N 0.000 description 1
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 125000005678 ethenylene group Chemical group [H]C([*:1])=C([H])[*:2] 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- FNJRMGIMHUHYGH-UHFFFAOYSA-N ethyl-tris(trimethylsilyloxy)silane Chemical compound C[Si](C)(C)O[Si](CC)(O[Si](C)(C)C)O[Si](C)(C)C FNJRMGIMHUHYGH-UHFFFAOYSA-N 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 229940095098 glycol oleate Drugs 0.000 description 1
- 239000008169 grapeseed oil Substances 0.000 description 1
- 239000010468 hazelnut oil Substances 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- LWKQBOVTDFASEV-UHFFFAOYSA-N hexadecyl-methyl-bis(trimethylsilyloxy)silane Chemical compound CCCCCCCCCCCCCCCC[Si](C)(O[Si](C)(C)C)O[Si](C)(C)C LWKQBOVTDFASEV-UHFFFAOYSA-N 0.000 description 1
- HTDJPCNNEPUOOQ-UHFFFAOYSA-N hexamethylcyclotrisiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O1 HTDJPCNNEPUOOQ-UHFFFAOYSA-N 0.000 description 1
- UQEAIHBTYFGYIE-UHFFFAOYSA-N hexamethyldisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)C UQEAIHBTYFGYIE-UHFFFAOYSA-N 0.000 description 1
- 125000004836 hexamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- 125000006038 hexenyl group Chemical group 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229920006007 hydrogenated polyisobutylene Polymers 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 229940078546 isoeicosane Drugs 0.000 description 1
- KUVMKLCGXIYSNH-UHFFFAOYSA-N isopentadecane Natural products CCCCCCCCCCCCC(C)C KUVMKLCGXIYSNH-UHFFFAOYSA-N 0.000 description 1
- 125000000555 isopropenyl group Chemical group [H]\C([H])=C(\*)C([H])([H])[H] 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229940119170 jojoba wax Drugs 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 229960004488 linolenic acid Drugs 0.000 description 1
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- PHLASVAENYNAOW-UHFFFAOYSA-N methyl-bis[[methyl(diphenyl)silyl]oxy]-phenylsilane Chemical compound C=1C=CC=CC=1[Si](C)(C=1C=CC=CC=1)O[Si](C=1C=CC=CC=1)(C)O[Si](C)(C=1C=CC=CC=1)C1=CC=CC=C1 PHLASVAENYNAOW-UHFFFAOYSA-N 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000012184 mineral wax Substances 0.000 description 1
- 229940043348 myristyl alcohol Drugs 0.000 description 1
- JXTPJDDICSTXJX-UHFFFAOYSA-N n-Triacontane Natural products CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC JXTPJDDICSTXJX-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- AFFLGGQVNFXPEV-UHFFFAOYSA-N n-decene Natural products CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 1
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 1
- DYUWTXWIYMHBQS-UHFFFAOYSA-N n-prop-2-enylprop-2-en-1-amine Chemical compound C=CCNCC=C DYUWTXWIYMHBQS-UHFFFAOYSA-N 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- GSGDTSDELPUTKU-UHFFFAOYSA-N nonoxybenzene Chemical compound CCCCCCCCCOC1=CC=CC=C1 GSGDTSDELPUTKU-UHFFFAOYSA-N 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000010466 nut oil Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- HMMGMWAXVFQUOA-UHFFFAOYSA-N octamethylcyclotetrasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 HMMGMWAXVFQUOA-UHFFFAOYSA-N 0.000 description 1
- VERNMKKMBJGSQB-UHFFFAOYSA-N octamethyltetrasiloxane-1,7-diol Chemical compound C[Si](C)(O)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O VERNMKKMBJGSQB-UHFFFAOYSA-N 0.000 description 1
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229940055577 oleyl alcohol Drugs 0.000 description 1
- XMLQWXUVTXCDDL-UHFFFAOYSA-N oleyl alcohol Natural products CCCCCCC=CCCCCCCCCCCO XMLQWXUVTXCDDL-UHFFFAOYSA-N 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000012766 organic filler Substances 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 229920006136 organohydrogenpolysiloxane Polymers 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 125000004817 pentamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- 125000002255 pentenyl group Chemical group C(=CCCC)* 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 239000010773 plant oil Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 229940096992 potassium oleate Drugs 0.000 description 1
- MLICVSDCCDDWMD-KVVVOXFISA-M potassium;(z)-octadec-9-enoate Chemical compound [K+].CCCCCCCC\C=C/CCCCCCCC([O-])=O MLICVSDCCDDWMD-KVVVOXFISA-M 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 150000003839 salts Chemical group 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000003333 secondary alcohols Chemical class 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 125000005372 silanol group Chemical group 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- XCPXWEJIDZSUMF-UHFFFAOYSA-M sodium;dioctyl phosphate Chemical compound [Na+].CCCCCCCCOP([O-])(=O)OCCCCCCCC XCPXWEJIDZSUMF-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 235000019337 sorbitan trioleate Nutrition 0.000 description 1
- 229960000391 sorbitan trioleate Drugs 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 229940032094 squalane Drugs 0.000 description 1
- 229940031439 squalene Drugs 0.000 description 1
- TUHBEKDERLKLEC-UHFFFAOYSA-N squalene Natural products CC(=CCCC(=CCCC(=CCCC=C(/C)CCC=C(/C)CC=C(C)C)C)C)C TUHBEKDERLKLEC-UHFFFAOYSA-N 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- 150000003459 sulfonic acid esters Chemical class 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229910000349 titanium oxysulfate Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- STCOOQWBFONSKY-UHFFFAOYSA-N tributyl phosphate Chemical compound CCCCOP(=O)(OCCCC)OCCCC STCOOQWBFONSKY-UHFFFAOYSA-N 0.000 description 1
- 229940117985 trimethyl pentaphenyl trisiloxane Drugs 0.000 description 1
- SCRSFLUHMDMRFP-UHFFFAOYSA-N trimethyl-(methyl-octyl-trimethylsilyloxysilyl)oxysilane Chemical compound CCCCCCCC[Si](C)(O[Si](C)(C)C)O[Si](C)(C)C SCRSFLUHMDMRFP-UHFFFAOYSA-N 0.000 description 1
- LINXHFKHZLOLEI-UHFFFAOYSA-N trimethyl-[phenyl-bis(trimethylsilyloxy)silyl]oxysilane Chemical compound C[Si](C)(C)O[Si](O[Si](C)(C)C)(O[Si](C)(C)C)C1=CC=CC=C1 LINXHFKHZLOLEI-UHFFFAOYSA-N 0.000 description 1
- SVTUWEUXLNHYPF-UHFFFAOYSA-N trimethyl-[propyl-bis(trimethylsilyloxy)silyl]oxysilane Chemical compound CCC[Si](O[Si](C)(C)C)(O[Si](C)(C)C)O[Si](C)(C)C SVTUWEUXLNHYPF-UHFFFAOYSA-N 0.000 description 1
- 125000003258 trimethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- 229940057402 undecyl alcohol Drugs 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 125000005023 xylyl group Chemical group 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H27/00—Special paper not otherwise provided for, e.g. made by multi-step processes
- D21H27/30—Multi-ply
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/065—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of paper or cardboard
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D85/00—Containers, packaging elements or packages, specially adapted for particular articles or materials
- B65D85/30—Containers, packaging elements or packages, specially adapted for particular articles or materials for articles particularly sensitive to damage by shock or pressure
- B65D85/48—Containers, packaging elements or packages, specially adapted for particular articles or materials for articles particularly sensitive to damage by shock or pressure for glass sheets
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/02—Material of vegetable origin
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H27/00—Special paper not otherwise provided for, e.g. made by multi-step processes
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/133302—Rigid substrates, e.g. inorganic substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/20—Displays, e.g. liquid crystal displays, plasma displays
Definitions
- the paper for packaging the glass plates In the process of laminating and storing and transporting a plurality of glass plates for flat panel displays such as liquid crystal displays, plasma displays, organic electroluminescence (organic EL) displays, etc., the paper for packaging the glass plates, and The present invention relates to paper sandwiched between glass plates and the production of these papers.
- flat panel displays such as liquid crystal displays, plasma displays, organic electroluminescence (organic EL) displays, etc.
- Glass plates for flat panel displays are used for high-definition displays compared to general architectural window glass plates, vehicle window glass plates, etc., so impurities on the glass surface are as much as possible on the glass surface. It is required to have a clean surface, and to have excellent flatness for high-speed response and widening of the viewing angle.
- Patent Document 1 discloses a technique for forming a fluorine coating film on the surface of a slip sheet.
- Patent Document 2 includes a paper sheet in which a polyethylene resin foam sheet and a polyethylene resin film are bonded
- Patent Document 3 includes a paper made of pulp containing 50 mass% or more of exposed chemical pulp.
- Patent Document 4 defines the amount of resin in the paper and considers contamination of the glass surface.
- a glass sheet slip sheet using the prepared raw materials is disclosed.
- the color filter substrate is made by forming a thin film such as a semiconductor film, ITO film (transparent conductive film), insulating film, aluminum metal film, etc. on a glass plate by sputtering or vacuum evaporation, but it is a contaminant on the glass plate surface. This is because a circuit pattern formed from a thin film is disconnected or a short circuit occurs due to a defect in the insulating film.
- a photolithography pattern is formed on a glass plate.
- An organic EL display is manufactured by forming a thin film such as an ITO anode, an organic light emitting layer, or a cathode on a glass substrate by sputtering, vapor deposition, printing, etc., and therefore does not emit light when a foreign substance that obstructs the thin film exists on the glass substrate surface. Problems arise.
- a glass plate for a flat panel display has a fine circuit formed on its surface, so even if it is a very small amount of foreign matter, its adhesion is particularly avoided.
- the short fibers attract a foreign substance and the risk that the foreign substance is transferred to the surface of the glass plate is increased.
- an object of the present invention is to provide a slip sheet for a glass plate that may be brought into contact with either the front or back glass plate.
- the present inventors originally suppressed the difference in the amount of short fibers present on the front and back surfaces of the slip sheet by reducing the amount of short fibers contained in the slip sheet for glass plate. It is found that the difference in the state of the front and back surfaces of the glass sheet interleaf can be suppressed, and as a result, it is possible to provide a glass sheet interleaf that may be brought into contact with either the front or back surface of the glass sheet. Completed the invention.
- a first aspect of the present invention is a glass sheet interleaf made of wood pulp, wherein the content of short fibers having a fiber length of 200 ⁇ m or less is 10.5% by weight or less. It is.
- the content of the short fiber is preferably 1.2% by weight or more.
- the average fiber diameter of the short fibers is preferably 10 to 50 ⁇ m.
- the abundance of the short fibers on the surface of the glass sheet interleaf is preferably 300 to 850 fibers / m 2 .
- the difference between the short fiber existing amount on one surface of the glass sheet interleaf and the short fiber existing amount on the other surface is 15% or less of the short fiber existing amount on the other surface. Is preferred.
- the thickness of the glass sheet interleaf is preferably 20 to 200 ⁇ m.
- the glass sheet slip sheet preferably has an average deviation (MMD) of the friction coefficient of the surface by the KES method of 0.022 or less.
- the glass plate is preferably for a display, and more preferably for a TFT liquid crystal display or an organic EL display.
- a second aspect of the present invention is a method for producing the above glass sheet interleaving paper, A slurry preparation step for preparing a wood pulp slurry; A sheet forming step for forming the slurry into a sheet; A wet paper web preparation step for dehydrating the sheet to form a wet paper web; Including at least a drying step of drying the wet paper to obtain the slip sheet;
- the present invention relates to a manufacturing method in which dehydration is performed from both sides of the sheet in the wet paper preparation step.
- the difference between the suction dehydration rate on one surface of the sheet and the suction dehydration rate on the other surface is preferably 10% or less of the suction dehydration rate on the other surface.
- the manufacturing method includes an additional suction step of further sucking both sides of the interleaving paper after the drying step.
- the present invention also relates to the glass sheet interleaving paper according to the first aspect of the present invention and a laminate with the glass sheet.
- this invention relates also to the protection method of the glass plate including the process of arrange
- the paper for glass plates of this invention Since the amount of short fibers contained in the interleaving paper for glass plate of the present invention is small, the difference in the amount of short fibers on the front and back surfaces of the interleaving paper is suppressed, and the difference in the state of the front and back surfaces of the interleaving paper for glass plates Is suppressed. Therefore, either of the front and back surfaces of the slip sheet for glass plate of the present invention may be brought into contact with the glass plate. Thereby, the paper for glass plates of this invention is excellent in the handleability.
- glass sheet interleaving paper is originally wound in a roll shape and shipped, but in the wound state, the front (front) surface and back surface of the interleaving paper are in contact with each other.
- the short fibers on the surface of the slip sheet are transferred to the back surface in the wound state even when trying to bring the back surface of the slip sheet into contact with the surface of the glass plate. There is a risk that the cleanliness of the back surface will be reduced.
- the slip sheet for the glass plate of the present invention has a roll shape because the transition of the short fibers from one surface of the slip sheet to the other surface is suppressed even when it is wound into a roll shape. There is no need to worry about a reduction in the cleanliness of the surface of the interleaving paper due to winding.
- the interleaving paper for glass plate of the present invention has a small amount of short fibers that attract foreign matter, it is possible to effectively suppress or avoid the transfer of fine foreign matter that becomes a problem from the interleaving paper to the glass plate. . In this way, by suppressing or avoiding the transfer of fine foreign matter that becomes a problem on the glass plate, it becomes possible to prevent circuit disconnection of a color film or the like in a manufacturing process of a TFT liquid crystal display or the like.
- a first aspect of the present invention is a glass sheet interleaf made of wood pulp, wherein the content of short fibers having a fiber length of 200 ⁇ m or less is 10.5 based on the weight of the glass sheet interleaf. It is a slip sheet for glass plate that is not more than wt%.
- Wood pulp usable in the present invention includes softwood bleached kraft pulp (NBKP), hardwood bleached kraft pulp (LBKP), softwood bleached sulfite pulp (NBSP), hardwood bleached sulfite pulp (LBSP), and thermomechanical pulp (TMP). These are wood pulps such as single or mixed. This wood pulp is mainly used, and if necessary, non-wood pulp such as hemp, bamboo, cocoon, kenaf, cocoon, cocoon and cotton, modified pulp such as cationized pulp, mercerized pulp, rayon, vinylon, nylon, Synthetic fibers such as acrylic and polyester, chemical fibers, or microfibrillated pulp can be used alone or in combination.
- NNKP softwood bleached kraft pulp
- LKP hardwood bleached kraft pulp
- NBSP softwood bleached sulfite pulp
- LBSP hardwood bleached sulfite pulp
- TMP thermomechanical pulp
- the pulp may contaminate the glass plate surface. Therefore, chemical pulp with as little resin as possible, for example, softwood bleached kraft pulp, is used alone. It is preferable to do. Also, high yield pulp such as groundwood pulp is not preferred because it contains a large amount of resin.
- mixing synthetic fibers and chemical fibers improves cutting performance and improves workability when making interleaving paper into a lithographic plate. However, care must be taken because recyclability deteriorates in terms of waste disposal. .
- the form of the wood pulp is not particularly limited, and can take any form such as a sheet, a block, or a flake.
- the sheet-like pulp can be obtained using, for example, a pulp machine having four steps of wire part, press part, dry part, and finishing.
- pulp fiber is made using a long mesh or a vacuum filter, and in the press part, it is dehydrated using a roll press.
- dry part it is dried with a cylinder dryer or a fract dryer, and finally both ends of the sheet pulp are cut off and wound up on a roll.
- the block-like pulp can be obtained, for example, by laminating the sheet-like pulp, and the flake-like pulp can be obtained, for example, by pulverizing the sheet-like pulp.
- the thickness of the sheet pulp is preferably 0.7 to 1.5 mm, more preferably 0.9 to 1.3 mm, and even more preferably 1.0 to 1.2 mm. .
- the basis weight of the sheet pulp is preferably 400 to 1300 g / m 2 , more preferably 500 to 1200 g / m 2 , still more preferably 500 to 1100 g / m 2 , and 500 to 1000 g. / M 2 is more preferable, and 700 to 1000 g / m 2 is even more preferable.
- the content of short fibers having a fiber length of 200 ⁇ m or less contained in the interleaving paper is limited to 10.5% by weight or less based on the weight of the interleaving paper.
- the content of short fibers is preferably 10.0% by weight or less, more preferably 9.5% by weight or less, and even more preferably 9.0% by weight or less.
- the content of short fibers having a fiber length of 200 ⁇ m or less contained in the slip sheet for glass plate of the present invention is preferably not 0 in terms of maintaining the strength of the slip sheet and adjusting the air permeability. % Or more is more preferable, 0.8% by weight or more is even more preferable, and 1.2% by weight or more is even more preferable.
- the short fiber has a fiber length of 200 ⁇ m or less.
- “fiber length” does not mean the average fiber length. Accordingly, all the short fibers having a fiber length of 200 ⁇ m or less have a fiber length of 200 ⁇ m or less. In other words, the maximum fiber length of the short fibers is 200 ⁇ m or less.
- the fiber length refers to the length of the fiber when the fiber is straightened.
- the content of short fibers having a fiber length of 200 ⁇ m or less can be measured, for example, by slurrying slip sheets and measuring the number of short fibers of 200 ⁇ m or less in the slurry.
- the average fiber diameter of the short fibers is preferably 10 ⁇ m to 50 ⁇ m, more preferably 12 ⁇ m to 40 ⁇ m, and even more preferably 15 ⁇ m to 30 ⁇ m.
- the “average fiber diameter” means the number average of the fiber diameters of the short fibers.
- the average fiber diameter is obtained by, for example, magnifying and observing a plurality of positions on the surface of the interleaf paper for a glass plate with an electron microscope, randomly selecting a predetermined number of fibers from each electron microscope image, and determining the diameter of the selected fibers. Measured and averaged.
- the number of fibers to be selected is 100 or more, preferably 150 or more, more preferably 200 or more, and even more preferably 300 or more.
- the average fiber diameter of the short fibers can also be measured, for example, by slurrying slip sheets and averaging the fiber diameters of short fibers of 200 ⁇ m or less in the slurry.
- the abundance of the short fibers on the surface of the glass sheet interleaf of the present invention is preferably 300 to 850 / m 2 , more preferably 330 to 800 / m 2 , and 350 to More preferably, it is 750 / m 2 .
- the amount of short fibers is relatively small, the amount of foreign matter attracted by the short fibers can be reduced.
- the difference between the amount of the short fibers on one surface and the amount of the short fibers on the other surface is 15% of the amount of the short fibers on the other surface. Or less, more preferably 12% or less, even more preferably 10% or less. That is, in the interleaving paper for a glass plate of the present invention, it is preferable that the amount of short fibers on one surface does not vary so much as to be within the above specific range from the amount of short fibers on the other surface.
- the “abundance” means the number of the short fibers per unit area of the surface of the slip sheet, for example, by observing a plurality of positions on the surface of the slip sheet for the glass plate with an electron microscope, It can be determined by averaging the number of short fibers observed at the location per unit area. It can also be determined by obtaining the number of short fibers of 200 ⁇ m or less per unit area from fibers dropped by rubbing a predetermined area with a sheet or the like with the surface of the interleaf facing downward. Furthermore, it can also be determined by dividing the slip sheet into two very thin sheets at the center in the thickness direction, slurrying each sheet, and measuring the number of short fibers of 200 ⁇ m or less in the slurry. Alternatively, the abundance of short fibers can also be determined by thoroughly washing the surface of a predetermined area of the glass sheet interleaf with water, and using the dropped fibers in a fiber length measuring machine.
- the interleaving paper for the glass plate of the present invention Since the amount of short fibers contained in the interleaving paper for the glass plate of the present invention is small, it is possible to suppress fluctuations in the abundance of short fibers on the front and back surfaces of the interleaving paper. Differences in the physical state of the front and back surfaces are suppressed. In particular, the amount of foreign matter attracted by the short fibers is reduced, and the amount of foreign matter is not greatly different between the front and back surfaces of the slip sheet. Accordingly, the interleaving paper for glass plate of the present invention may be brought into contact with either the front or back surface of the glass plate.
- the foreign matter that is a problem in the present invention is a fine foreign matter that contaminates the surface of the glass plate.
- the foreign material may be either solid or liquid.
- the size of the foreign matter is not particularly limited, but is 0.1 ⁇ m to 50 ⁇ m, preferably 0.1 ⁇ m to 40 ⁇ m. More preferably, the thickness is 0.1 ⁇ m to 30 ⁇ m.
- size means a volume average (median) particle diameter. The volume average particle diameter can be measured, for example, by a laser diffraction scattering method.
- the foreign matter may include a hydrophobic substance.
- the foreign matter may be composed only of a hydrophobic substance.
- the hydrophobic substance is not particularly limited.
- the hydrophobic substance is preferably non-volatile, and oils (excluding silicone oils.
- oils excluding silicone oils.
- aliphatic hydrocarbons excluding silicones
- silicones excluding silicones
- silicones excluding silicones
- pitches excluding rubbers
- talc especially talc adsorbing hydrophobic foreign matter
- silicone and talc especially hydrophobic foreign matter
- Aliphatic hydrocarbons include, for example, linear or branched hydrocarbons, especially mineral oil (liquid paraffin, etc.), paraffin, petrolatum, ie petrolatum, naphthalene, etc .; hydrogenated polyisobutene, isoeicosane, polydecene, pearl reamer, etc. And polyisobutenes and decene / butene copolymers; and mixtures thereof.
- aliphatic hydrocarbons mention may also be made of linear or branched or optionally cyclic C 6 -C 16 lower alkanes. Examples that may be mentioned include hexane, undecane, dodecane, tridecane and isoparaffins such as isohexadecane and isodecane.
- vegetable oils include, for example, linseed oil, camellia oil, macadamia nut oil, sunflower oil, apricot oil, soybean oil, arara oil, hazelnut oil, corn oil, olive oil, avocado oil, sasanqua oil, castor oil, safflower Mention may be made of oil, jojoba oil, almond oil, grape seed oil, sesame oil, peanut oil, and mixtures thereof.
- animal oils include, for example, mink oil, squalene, perhydrosqualene and squalane.
- Examples of synthetic glycerides include caprylic / capric triglycerides.
- Fatty acids should be in acidic form (ie, not in salt form to avoid soaping) and may be saturated or unsaturated and have 6 to 30 carbon atoms, especially 9 to 30 carbons. Contains atoms and is optionally substituted, in particular with one or more hydroxyl groups (especially 1 to 4). When the fatty acid is unsaturated, the compound can contain 1 to 3 conjugated or non-conjugated carbon-carbon double bonds.
- the fatty acid is selected from, for example, myristic acid, palmitic acid, stearic acid, behenic acid, oleic acid, linoleic acid, linolenic acid and isostearic acid.
- aliphatic alcohol as used herein means any saturated, linear or branched C 8 -C 30 alcohol, optionally with one or more hydroxyl groups ( In particular 1 to 4).
- C 12 -C 22 aliphatic alcohols are preferred, and C 16 -C 18 saturated aliphatic alcohols are more preferred.
- lauryl alcohol, cetyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, behenyl alcohol, undecyl alcohol, myristyl alcohol, and mixtures thereof can be mentioned.
- esters of fatty acids and / or fatty alcohols are saturated or unsaturated, linear or branched C 1 -C 26 aliphatic mono- or polyacid esters, and saturated or unsaturated, linear Specific examples include C 1 -C 26 aliphatic monohydric alcohols or polyhydric alcohol esters, and the total number of carbon atoms in the ester is preferably 10 or more.
- Resin (excluding silicone) is not particularly limited as long as it is hydrophobic.
- the resin include thermoplastic resins such as polyolefin, polystyrene, poly (meth) acrylate, polyacrylamide, polyvinyl chloride, polyvinylidene chloride, polyacrylonitrile, polyester, polycarbonate, polyamide, polyimide, polyurethane, melamine resin, and urea resin. And the like, and a mixture thereof.
- Silicone includes silicone oil. Silicone oil is hydrophobic and its molecular structure may be cyclic, linear or branched. Kinematic viscosity at 25 ° C. of the silicone oil is usually in the range of 0.65 ⁇ 100,000mm 2 / s, it may be in the range of 0.65 ⁇ 10,000mm 2 / s.
- silicone oil examples include linear organopolysiloxanes, cyclic organopolysiloxanes, and branched organopolysiloxanes.
- Examples of the linear organopolysiloxane, cyclic organopolysiloxane, and branched organopolysiloxane include the following general formulas (1), (2), and (3): R 1 3 SiO— (R 1 2 SiO) a —SiR 1 3 (1) R 1 (4-c) Si (OSiR 1 3 ) c (3) (Where Each R 1 is independently a hydrogen atom, a hydroxyl group, or a group selected from a group represented by a substituted or unsubstituted monovalent hydrocarbon group or an alkoxy group; a is an integer of 0 to 1000; b is an integer of 3 to 100, c is an integer of 1 to 4, preferably an integer of 2 to 4)
- the organopolysiloxane represented by these is mentioned.
- the substituted or unsubstituted monovalent hydrocarbon group is typically a substituted or unsubstituted one having 1 to 30 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 4 carbon atoms.
- a saturated saturated hydrocarbon group a substituted or unsubstituted monovalent unsaturated hydrocarbon group having 2 to 30 carbon atoms, preferably 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms;
- a monovalent aromatic hydrocarbon group having 6 to 30 carbon atoms, more preferably 6 to 12 carbon atoms.
- Examples of the monovalent saturated hydrocarbon group having 1 to 30 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
- a linear or branched alkyl group such as a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group and a decyl group, and a cycloalkyl group such as a cyclopentyl group, a cyclohexyl group, a cycloheptyl group and a cyclooctyl group.
- a cycloalkyl group such as a cyclopentyl group, a cyclohexyl group, a cycloheptyl group and a cyclooctyl group.
- Examples of the monovalent unsaturated hydrocarbon group having 2 to 30 carbon atoms include vinyl, 1-propenyl, allyl, isopropenyl, 1-butenyl, 2-butenyl, pentenyl, and hexenyl groups.
- Linear or branched alkenyl groups such as cyclopentenyl group, cyclohexenyl group and the like cycloalkenyl group; cyclopentenylethyl group, cyclohexenylethyl group, cyclohexenylpropyl group and the like cycloalkenylalkyl group; and ethynyl group, Alkynyl groups such as propargyl group can be mentioned.
- Examples of the monovalent aromatic hydrocarbon group having 6 to 30 carbon atoms include aryl groups such as a phenyl group, a tolyl group, a xylyl group, and a mesityl group.
- a phenyl group is preferred.
- the aromatic hydrocarbon group includes a group in which an aromatic hydrocarbon and an aliphatic saturated hydrocarbon are combined in addition to a group consisting of only an aromatic hydrocarbon. Examples of the group in which an aromatic hydrocarbon and a saturated hydrocarbon are combined include an aralkyl group such as a benzyl group or a phenethyl group.
- the hydrogen atom on the monovalent hydrocarbon group may be substituted with one or more substituents, and examples of the substituent include a halogen atom (a fluorine atom, a chlorine atom, a bromine atom and an iodine atom), a hydroxyl group , Carbinol group, epoxy group, glycidyl group, acyl group, carboxyl group, amino group, methacryl group, mercapto group, amide group, oxyalkylene group and the like.
- a halogen atom a fluorine atom, a chlorine atom, a bromine atom and an iodine atom
- a hydroxyl group Carbinol group, epoxy group, glycidyl group, acyl group, carboxyl group, amino group, methacryl group, mercapto group, amide group, oxyalkylene group and the like.
- alkoxy group examples include a methoxy group, an ethoxy group, and a propoxy group, but a methoxy group or an ethoxy group is preferable, and a methoxy group is more preferable.
- the linear organopolysiloxane may be a trimethylsiloxy group-blocked dimethylpolysiloxane having a molecular chain at both ends (a low-viscosity dimethylsilicone such as 2 mPa ⁇ s or 6 mPa ⁇ s to a high viscosity such as 1 million mPa ⁇ s).
- a low-viscosity dimethylsilicone such as 2 mPa ⁇ s or 6 mPa ⁇ s to a high viscosity such as 1 million mPa ⁇ s.
- Organohydrogenpolysiloxane trimethylsiloxy group-capped methylphenyl polysiloxane with both molecular chains, trimethylsiloxy group-capped dimethylsiloxane / methylphenylsiloxane copolymer with both molecular chains, trimethylsiloxy group-capped diphenylpolysiloxane with both molecular chains , A trimethylsiloxy group-capped dimethylsiloxane / diphenylsiloxane copolymer, both ends of a molecular chain, trimethylpentaphenyltrisiloxane, phenyl (trimethylsiloxy) siloxane, Polyalkylpolysiloxane, trimethylsiloxy group-capped dimethylpolysiloxane / methylalkylsiloxane copolymer with both ends of the molecular chain, trimethylsiloxy group-capped dimethylsiloxane / methyl (3,3,3,
- Cyclic organopolysiloxanes include hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), dodecamethylcyclohexasiloxane (D6), 1,1-diethylhexamethyl.
- Cyclotetrasiloxane phenylheptamethylcyclotetrasiloxane, 1,1-diphenylhexamethylcyclotetrasiloxane, 1,3,5,7-tetravinyltetramethylcyclotetrasiloxane, 1,3,5,7-tetramethylcyclotetra Siloxane, 1,3,5,7-tetracyclohexyltetramethylcyclotetrasiloxane, tris (3,3,3-trifluoropropyl) trimethylcyclotrisiloxane, 1,3,5,7-tetra (3-methacryloxyp Pyr) tetramethylcyclotetrasiloxane, 1,3,5,7-tetra (3-acryloxypropyl) tetramethylcyclotetrasiloxane, 1,3,5,7-tetra (3-carboxypropyl) tetramethylcyclotetrasiloxane 1,3,5,7-tetra (3-vinyl
- branched organopolysiloxane examples include methyltristrimethylsiloxysilane, ethyltristrimethylsiloxysilane, propyltristrimethylsiloxysilane, tetrakistrimethylsiloxysilane, and phenyltristrimethylsiloxysilane.
- dimethylpolysiloxane diethylpolysiloxane, methylphenylpolysiloxane, polydimethyl-polydiphenylsiloxane copolymer, polymethyl-3,3,3-trifluoropropylsiloxane and the like are preferable.
- dimethylpolysiloxane is typical.
- the silicone oil in the present invention may be a modified silicone oil.
- the modified silicone oil include polyoxyalkylene-modified silicone oil.
- the polyoxyalkylene-modified silicone oil is a silicone oil having a polyoxyalkylene group bonded to the molecule via a silicon-carbon bond, and preferably exhibits water solubility at room temperature, specifically at 25 ° C. More preferably, it is a nonionic one.
- the polyoxyalkylene-modified silicone oil is, for example, a copolymer of a silicone oil composed of linear or branched siloxane and a polyoxyalkylene, and there are various types. ) Is preferred.
- R 1 is independently the same as above, Each R 2 is independently R 1 or A;
- A is independently a group represented by R 3 G, R 3 is a substituted or unsubstituted divalent hydrocarbon group, and G is a carbon number of 2 to 5 such as ethylene oxide or propylene oxide.
- a polyoxyalkylene group comprising at least one alkylene oxide of d represents an integer of 1 to 500; e represents an integer of 1 to 50).
- Examples of the substituted or unsubstituted divalent hydrocarbon group include a linear or branched divalent hydrocarbon group having 1 to 30 carbon atoms. Specific examples include a methylene group, a dimethylene group, and trimethylene.
- a linear or branched alkylene group having 1 to 30 carbon atoms such as a group, tetramethylene group, pentamethylene group, hexamethylene group, heptamethylene group, octamethylene group; vinylene group, arylene group, butenylene group, Alkenylene groups having 2 to 30 carbon atoms such as hexenylene group and octenylene group; arylene groups having 6 to 30 carbon atoms such as phenylene group and diphenylene group; alkylene arylene groups having 7 to 30 carbon atoms such as dimethylenephenylene group And hydrogen atoms bonded to carbon atoms of these groups are at least partially halogen atoms such as fluorine, hydroxyl groups, The
- polyoxyalkylene-modified silicone oil examples include the following. (Where x is 20 to 160, y is 1 to 25, and the value of x / y is 50 to 2, A is, for example, — (CH 2 ) 3 O— (CH 2 CH 2 O) m — (CH 2 CH 2 CH 2 O) n —R 4 , where m is 7 to 40, n is 0 to 40, m + n
- the value of is at least 1 and may be graft polymerized or randomly polymerized, and R 4 represents a hydrogen atom or the above substituted or unsubstituted monovalent hydrocarbon group.
- m is 7-30 and n is 0-30)
- modified silicone oil examples include aminoalkyl-modified silicone oil.
- the aminoalkyl-modified silicone oil is a silicone oil in which an aminoalkyl group is bonded to the molecule via a silicon-carbon bond, and preferably exhibits a viscosity of 10 to 100,000 cs at room temperature, specifically at 25 ° C. It is.
- G is represented by the formula: — (NR 4 CH 2 CH 2 ) z NR 4 2 (wherein R 4 is independently as defined above, z Is a number of 0 ⁇ z ⁇ 4).
- the amount of silicone contained in the interleaf paper for glass plate is preferably 0.5 ppm or less, and 0.4 ppm or less based on the absolute dry mass of the interleaf paper. More preferably, 0.3 ppm or less is even more preferable, 0.2 ppm or less is even more preferable, and 0.1 ppm or less is particularly preferable.
- absolute dry means a state in which moisture is not substantially present in an object to be dried by drying.
- the thickness of the slip sheet for glass plate of the present invention is preferably 20 to 200 ⁇ m, more preferably 30 to 150 ⁇ m, and still more preferably 40 to 200 ⁇ m.
- the thickness of the slip sheet for glass plate of the present invention is preferably 20 to 200 ⁇ m, more preferably 30 to 150 ⁇ m, and still more preferably 40 to 200 ⁇ m.
- the basis weight of the interleaving paper for glass plate of the present invention is preferably 20 to 80 g / m 2 , more preferably 25 to 70 g / m 2 , and even more preferably 30 to 60 g / m 2. preferable.
- the average deviation (MMD) of the friction coefficient of the surface by the KES method is preferably 0.022 or less, preferably 0.020 or less, and 0.019 or less. More preferably, it is still more preferably 0.018 or less, and still more preferably 0.017 or less.
- MMD uses a friction tester (KES-SE manufactured by Kato Tech Co., Ltd.), and a 10 mm square friction element consisting of a bundle of piano wires with a diameter of 0.5 mm is fixed with a tension of 20 g / cm.
- MMD the coefficient of friction of the paper surface varies greatly depending on the position of the paper surface.
- the MMD exceeds 0.022, minute irregularities on the surfaces of the papers increase and the catching between the papers increases, which is not preferable.
- the MMD is preferably 0.001 to 0.022, more preferably 0.002 to 0.020, and still more preferably 0.004 to 0.019.
- the slip sheet for glass plate of the present invention can be produced on the basis of a usual method such as a papermaking method.
- the second aspect of the present invention is a method for producing a glass sheet interleaving paper, A slurry preparation step for preparing a wood pulp slurry; A sheet forming step for forming the slurry into a sheet; A wet paper web preparation step for dehydrating the sheet to form a wet paper web; Including at least a drying step of drying the wet paper to obtain the slip sheet; In the wet paper preparation step, the dehydration is performed from both sides of the sheet slurry.
- a wood pulp slurry can be prepared by a conventionally known method.
- cellulose fibers constituting the wood pulp are disaggregated to prepare an aqueous suspension to prepare a slurry.
- the above-mentioned slurry if necessary, an adhesive, an antifungal agent, an antifoaming agent, a filler, a wet paper strength enhancer, a dry paper strength enhancer, a sizing agent, Coloring agents, fixing agents, yield improvers, slime control agents and the like can be added.
- an adhesive an antifungal agent, an antifoaming agent, a filler, a wet paper strength enhancer, a dry paper strength enhancer, a sizing agent, Coloring agents, fixing agents, yield improvers, slime control agents and the like can be added.
- it is preferable to pay close attention when adding these chemicals so that insects, dust and the like are not mixed.
- silicone-based antifoaming agent is frequently used as an antifoaming agent used to prevent deterioration in cleaning ability due to generation of foam in the production process of wood pulp and interleaf paper, particularly in the cleaning process.
- Antifoam-derived silicone remains in the pulp and interleaf.
- the silicone-based antifoaming agent is produced, for example, by mixing a modified silicone, a surfactant or the like with a mixture of silicone oil and hydrophobic silica.
- Talc is an inorganic powder obtained by pulverizing talc, and is a hydrous magnesium silicate having a general structure: Mg 3 (SiO 2 ) 2 (OH) 2 or Mg 3 Si 4 O 10 (OH) 2 having a layered structure. Talc is used as a filler, pitch control agent, coating agent and the like.
- a non-silicone antifoaming agent is used as an antifoaming agent in the case of using an antifoaming agent in order to reduce the content of a foreign matter that is a problem contained in the interleaf paper for glass plate.
- a filler it is preferable to use a filler other than talc.
- wood pulp obtained by using a non-silicone antifoaming agent and / or wood pulp not containing talc it is preferable to use wood pulp obtained by using a non-silicone antifoaming agent and / or wood pulp not containing talc.
- non-silicone-based antifoaming agents include mineral oil-based antifoaming agents, higher alcohol-based antifoaming agents, fatty acid-based antifoaming agents, fatty acid ester-based antifoaming agents, amide-based antifoaming agents, and amine-based antifoaming agents. , Phosphate ester defoamers, metal soap defoamers, sulfonate ester defoamers, polyether defoamers and vegetable oil defoamers.
- the mineral oil-based antifoaming agent includes, for example, mineral oil such as hydrocarbon oil, mineral wax and the like.
- Higher alcohol-based antifoaming agents include, for example, octyl alcohol, hexadecyl alcohol and the like.
- the fatty acid-based antifoaming agent includes, for example, palmitic acid, oleic acid, stearic acid and the like.
- the fatty acid ester antifoaming agent includes, for example, isoamyl stearate, glycerin monoricinoleate, sorbitol monolaurate, soliitol trioleate and the like.
- the amide antifoaming agent includes, for example, acrylate polyamine.
- the amine-based antifoaming agent includes, for example, diallylamine.
- the phosphate ester antifoaming agent includes, for example, tributyl phosphate, sodium octyl phosphate, and the like.
- the metal soap antifoaming agent includes, for example, aluminum stearate, calcium stearate, potassium oleate and the like.
- sulfonic acid ester-based antifoaming agent examples include sodium lauryl sulfonate, sodium dodecyl sulfonate, and the like.
- Polyether-based antifoaming agents include, for example, polyoxyalkylenes such as (poly) oxyethylene (poly) oxypropylene adducts; diethylene glycol heptyl ether, polyoxyethylene oleyl ether, polyoxypropylene butyl ether, polyoxyethylene polyoxypropylene (Poly) oxyalkylene alkyl ethers such as 2-ethylhexyl ether, higher alcohols having 8 or more carbon atoms and secondary alcohols having 12 to 14 carbon atoms such as oxyethyleneoxypropylene adducts; polyoxypropylene phenyl ether, polyoxy (Poly) oxyalkylene (alkyl) aryl ethers such as ethylene nonylphenyl ether; 2,4,7,9-tetramethyl-5-decyne-4,7-diol, 2,5-dimethyl-3-he Acetylene ethers obtained by addition polymerization of alkylene oxide to
- Plant oil-based antifoaming agents include, for example, vegetable oils such as soybean oil, corn oil, coconut oil, linseed oil, rapeseed oil, cottonseed oil, sesame oil, castor oil and the like.
- non-silicone antifoaming agent can include inorganic particles such as hydrophobic silica.
- hydrophobic silica it is preferable to use silica hydrophobized by substituting silanol groups of hydrophilic silica with alkyl groups such as methyl groups.
- the non-silicone antifoaming agent can contain a surfactant or the like as necessary. Accordingly, the non-silicone antifoaming agent may be an emulsion type.
- fillers other than talc inorganic fillers such as kaolin, calcium carbonate, titanium oxide, and barium sulfate, and organic fillers such as urea resin can be used.
- the preferred beating degree is 300 to 650 ml c. s. f. It is.
- the sheet can be formed by a conventionally known method. For example, by discharging the slurry onto a flat wire (for example, a long net paper machine) or by scooping a sheet from the slurry with a wire wound around a cylindrical cylinder (for example, a circular paper machine) , You can get a sheet.
- a flat wire for example, a long net paper machine
- a cylindrical cylinder for example, a circular paper machine
- dehydration is performed from both sides of the sheet in a wet paper preparation step in which the sheet is dehydrated to form a wet paper.
- the short fiber which has the fiber length of 200 micrometers or less contained in the said sheet
- the method of dehydration is arbitrary, and a conventionally known method can be used. For example, there is a method of making paper using a twin wire type paper machine such as an on-top former or a gap former.
- adjustment by a press part can be considered, for example, it can dehydrate by pressing the said sheet
- the sheet extending in the horizontal direction is sandwiched from above and below by a net, and may be dehydrated by suction by a suction device in the vertical direction. Because there is a difference between the suction force and the downward suction force, there is a possibility that more short fibers may remain on the sheet surface on the upper side compared to the sheet surface on the lower side. It is preferable that the sheet extending in the vertical direction is sandwiched by a net and sucked in the left-right direction to be dehydrated. In this case, it is preferable to maintain the moving direction of the wet paper so as to be in the vertical direction or in an inclined range within 30 ° from the vertical direction.
- the difference between the suction dehydration rate on one surface of the sheet and the suction dehydration rate on the other surface is preferably 10% or less of the suction dehydration rate on the other surface. That is, in the method for producing a glass sheet slip sheet of the present invention, it is preferable that suction from both sides of the sheet is performed with substantially the same suction force.
- the sheet forming step and the wet paper web preparation step may be performed separately using separate devices, but may be performed continuously or partially overlapping in the same device.
- the wet paper may be formed by dewatering while placing the slurry on a wire (net) to form a sheet.
- the interleaf paper can be obtained by drying wet paper by a conventionally known method using a dryer roll or the like.
- both sides of the slip sheet after the drying step are further sucked. It is preferable to include an additional suction step.
- calendering may be performed during and / or after papermaking of the glass sheet interleaf.
- Surface properties and thickness can be adjusted by processing.
- the glass sheet slip sheet of the first aspect of the present invention can be efficiently manufactured by the manufacturing method of the second aspect of the present invention.
- the glass sheet slip sheet of the present invention is used by being inserted between the glass sheets.
- the glass sheet interleaving paper is typically inserted one by one between a plurality of glass sheets to form a laminated body as a whole, and the laminated body is a target for storage and transportation.
- a glass plate for flat panel displays, such as a plasma display panel, a liquid crystal display panel (especially TFT liquid crystal display panel), and an organic electroluminescent display panel.
- Fine electrodes, partition walls, etc. are formed on the surface of the glass plate for flat panel display, but by using the interleaving paper for the glass plate of the present invention, transfer of fine foreign matter that becomes a problem to the glass plate Therefore, even if a fine electrode, a partition, or the like is formed on the surface of the glass plate, inconvenience due to the foreign matter can be suppressed or avoided, and as a result, display defects can be suppressed or avoided. be able to.
- the size and weight of a glass plate for a flat panel display have increased with the increase in the size of the display.
- the slip sheet for a glass plate of the present invention has the surface of such a large or heavy glass plate. It can be well protected.
- the interleaving paper for a glass plate of the present invention has a very small content of fine foreign matters, particularly hydrophobic foreign matters such as talc adsorbing silicone, pitch, resin, rubber, oil (excluding silicone) and hydrophobic foreign matters. Since there are few, even if it presses with a heavy glass plate, it will suppress thru
- the interleaf paper for glass plate was cut into 20 cm ⁇ 20 cm, and only one side of the paper was sufficiently washed with demetalized ion water to drop the short fibers.
- the liquid after washing was collected, and the fiber length of each fiber in the liquid was measured with the Kajaani fiber length measuring device “Metso Fiber image analyzer FS5”. The number of fiber lengths of 200 ⁇ m or less was counted to determine the ratio of the short fibers per unit area.
- Example 1 100 parts by weight of softwood bleached kraft pulp was prepared and after beating, the beating degree was 550 ml c. s. f. A slurry prepared as above was obtained.
- a paper strength enhancer 0.2 part by mass of polyacrylamide (trade name: Polystron 1250, manufactured by Arakawa Chemical Industry Co., Ltd.) was added to the total pulp mass to prepare a pulp slurry having a concentration of 0.4% by weight. This was paper-made using a long web paper machine equipped with an on-top former in the wire part to obtain a slip sheet for a glass plate having a basis weight of 55 g / m 2 .
- the wire part uses 76 mesh plain woven plastic wire, and the difference in the dewatering rate of the on-top former on both sides of the wet paper (based on the dewatering rate of the upper on-top former) is 7% or more and 10% or less It adjusted so that it might become.
- Example 2 A basis weight of 55 g / in the same manner as in Example 1 except that the difference in the dewatering rate of the on-top former on both sides of the wet paper was adjusted to 5% or less (based on the dewatering rate of the upper on-top former). An m 2 slip sheet for glass plate was obtained.
- Example 1 A glass sheet slip with a basis weight of 55 g / m 2 was obtained in the same manner as in Example 1 except that the on-top former was not used.
- Table 1 shows the measurement results of the glass sheets for the examples and comparative examples. Moreover, when the transfer to the glass plate of the interleaving paper for the glass plate obtained in Examples and Comparative Examples was confirmed by a transport test, the liquid crystal panel was formed using the glass plate using the interleaving paper of the example. No disconnection of the color film was observed. On the other hand, disconnection of the color film was observed during the formation of an array of a liquid crystal panel using a glass plate using the interleaving paper for glass plate of Comparative Example 1.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Mathematical Physics (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Paper (AREA)
- Packaging Frangible Articles (AREA)
- Buffer Packaging (AREA)
- Laminated Bodies (AREA)
Abstract
Description
木材パルプのスラリーを調製するスラリー調製工程、
前記スラリーをシート状とするシート形成工程、
前記シートを脱水して湿紙を形成する湿紙調製工程、
前記湿紙を乾燥して前記合紙を得る乾燥工程
を少なくとも含み、
前記湿紙調製工程において脱水を前記シートの両面から行う、製造方法に関する。 A second aspect of the present invention is a method for producing the above glass sheet interleaving paper,
A slurry preparation step for preparing a wood pulp slurry;
A sheet forming step for forming the slurry into a sheet;
A wet paper web preparation step for dehydrating the sheet to form a wet paper web;
Including at least a drying step of drying the wet paper to obtain the slip sheet;
The present invention relates to a manufacturing method in which dehydration is performed from both sides of the sheet in the wet paper preparation step.
R1 3SiO-(R1 2SiO)a-SiR1 3 (1)
R1 (4-c)Si(OSiR1 3)c (3)
(式中、
R1は、それぞれ独立して、水素原子、水酸基、或いは、置換若しくは非置換の一価炭化水素基、アルコキシ基で示される基から選択される基であり、
aは、0~1000の整数であり、
bは3~100の整数であり、
cは1~4の整数、好ましくは2~4の整数である)
で表されるオルガノポリシロキサンが挙げられる。 Examples of the linear organopolysiloxane, cyclic organopolysiloxane, and branched organopolysiloxane include the following general formulas (1), (2), and (3):
R 1 3 SiO— (R 1 2 SiO) a —SiR 1 3 (1)
R 1 (4-c) Si (OSiR 1 3 ) c (3)
(Where
Each R 1 is independently a hydrogen atom, a hydroxyl group, or a group selected from a group represented by a substituted or unsubstituted monovalent hydrocarbon group or an alkoxy group;
a is an integer of 0 to 1000;
b is an integer of 3 to 100,
c is an integer of 1 to 4, preferably an integer of 2 to 4)
The organopolysiloxane represented by these is mentioned.
R2 3SiO-(R1 2SiO)d-(R1ASiO)e-SiR2 3 (4)
(式中、
R1は、それぞれ独立して、上記と同様であり、
R2は、それぞれ独立して、R1又はAであり、
Aは、それぞれ独立して、R3Gで表される基であり、R3は、置換若しくは非置換の二価炭化水素基であり、Gはエチレンオキサイド、プロピレンオキサイド等の炭素数2~5のアルキレンオキサイドを少なくとも1種含有してなるポリオキシアルキレン基を表し、
dは1~500の整数を表し、
eは1~50の整数を表す)。 Specifically, the polyoxyalkylene-modified silicone oil is, for example, a copolymer of a silicone oil composed of linear or branched siloxane and a polyoxyalkylene, and there are various types. ) Is preferred.
R 2 3 SiO— (R 1 2 SiO) d — (R 1 ASiO) e —SiR 2 3 (4)
(Where
R 1 is independently the same as above,
Each R 2 is independently R 1 or A;
A is independently a group represented by R 3 G, R 3 is a substituted or unsubstituted divalent hydrocarbon group, and G is a carbon number of 2 to 5 such as ethylene oxide or propylene oxide. A polyoxyalkylene group comprising at least one alkylene oxide of
d represents an integer of 1 to 500;
e represents an integer of 1 to 50).
xは20~160であり、yは1~25であり、x/yの値は50~2であり、
Aは、例えば-(CH2)3O-(CH2CH2O)m-(CH2CH2CH2O)n-R4であり、mは7~40、nは0~40、m+nの値は少なくとも1であり、グラフト重合されたものでもランダム重合されたものでもよく、R4は水素原子又は上記置換若しくは非置換の一価炭化水素基を表す。好適には、mは7~30、nは0~30である) For example, specific examples of the polyoxyalkylene-modified silicone oil include the following.
x is 20 to 160, y is 1 to 25, and the value of x / y is 50 to 2,
A is, for example, — (CH 2 ) 3 O— (CH 2 CH 2 O) m — (CH 2 CH 2 CH 2 O) n —R 4 , where m is 7 to 40, n is 0 to 40, m + n The value of is at least 1 and may be graft polymerized or randomly polymerized, and R 4 represents a hydrogen atom or the above substituted or unsubstituted monovalent hydrocarbon group. Preferably, m is 7-30 and n is 0-30)
木材パルプのスラリーを調製するスラリー調製工程、
前記スラリーをシート状とするシート形成工程、
前記シートを脱水して湿紙を形成する湿紙調製工程、
前記湿紙を乾燥して前記合紙を得る乾燥工程
を少なくとも含み、
前記湿紙調製工程において脱水をシート状スラリーの両面から行う、製造方法である。 The second aspect of the present invention is a method for producing a glass sheet interleaving paper,
A slurry preparation step for preparing a wood pulp slurry;
A sheet forming step for forming the slurry into a sheet;
A wet paper web preparation step for dehydrating the sheet to form a wet paper web;
Including at least a drying step of drying the wet paper to obtain the slip sheet;
In the wet paper preparation step, the dehydration is performed from both sides of the sheet slurry.
JIS P8226(2006年)で規定された光学的自動分析法による繊維長測定方法として、カヤーニ繊維長測定器「Metso Fiber image analyzer FS5」(Metso Automation社製)を用いた。 [Measurement of short fiber content]
A Kajaani fiber length measuring instrument “Metso Fiber image analyzer FS5” (manufactured by Metso Automation) was used as a fiber length measuring method by an optical automatic analysis method defined in JIS P8226 (2006).
ガラス板用合紙を20cm×20cmにカットし、紙の一方の面のみを脱金属イオン水で充分に洗浄し、短繊維を脱落させた。洗浄後の液を回収し、前記カヤーニ繊維長測定器「Metso Fiber image analyzer FS5」にて当該液中における各繊維の繊維長を測定した。200μm以下の繊維長の本数をカウントして単位面積当たりの当該短繊維の割合を決定した。 [Abundance of short fibers on the paper surface]
The interleaf paper for glass plate was cut into 20 cm × 20 cm, and only one side of the paper was sufficiently washed with demetalized ion water to drop the short fibers. The liquid after washing was collected, and the fiber length of each fiber in the liquid was measured with the Kajaani fiber length measuring device “Metso Fiber image analyzer FS5”. The number of fiber lengths of 200 μm or less was counted to determine the ratio of the short fibers per unit area.
アルミ製で75度の角度がつけられたL字架台上のガラス載置面に発泡ウレタンを敷き、ガラス板を垂直方向に載置するための載置面と、載置面の後端部から垂直方向に延びる背もたれ面に向けて、サイズ680mm×880mm×0.7mmのガラス板120枚と各ガラス板の間にガラス板用合紙を挿入して、背もたれ面に平行となるように立てかけ、架台に固定された帯状のベルトを後端部から背もたれ面へ全周にわたり掛け渡してガラス板を固定した。上記のようにセットされた架台は、外部からの埃や塵等の混入を防ぐため包装資材で全面を被覆した。その後、トラックでの輸送テストを実施した。輸送テスト条件は、輸送距離1000km(輸送途中に40℃×95%RHの環境下に5日間保管)でテストを実施した。 [Transfer test method to glass plate (transport test)]
Aluminum foam is placed on the glass mounting surface on the L-shaped frame with an angle of 75 degrees, and the mounting surface for mounting the glass plate in the vertical direction and the rear end of the mounting surface Insert a sheet of glass plate between 120 glass plates of size 680 mm x 880 mm x 0.7 mm and each glass plate toward the backrest surface extending in the vertical direction, and lean against the backrest surface so that it is parallel to the backrest surface. A fixed belt-like belt was stretched over the entire circumference from the rear end portion to the backrest surface to fix the glass plate. The gantry set as described above was entirely covered with a packaging material in order to prevent dust and dirt from entering from the outside. After that, a truck transportation test was conducted. The transportation test was conducted at a transportation distance of 1000 km (stored for 5 days in an environment of 40 ° C. × 95% RH during transportation).
針葉樹晒クラフトパルプを100質量部用意し、これを離解後に叩解度を550mlc.s.f.に調製したスラリーを得た。紙力増強剤としてポリアクリルアミド(商品名:ポリストロン1250、荒川化学工業社製)を全パルプ質量に対して0.2質量部添加し、0.4重量%濃度のパルプスラリーを調成した。これを、ワイヤーパートにオントップフォーマを備えた長網抄紙機を用いて抄紙し、坪量55g/m2のガラス板用合紙を得た。前記ワイヤーパートにおいては、76メッシュの平織のプラスチックワイヤーを使用し、湿紙の両面におけるオントップフォーマの脱水割合の差が(上側のオントップフォーマの脱水割合を基準として)7%以上10%以下となるように調整した。 [Example 1]
100 parts by weight of softwood bleached kraft pulp was prepared and after beating, the beating degree was 550 ml c. s. f. A slurry prepared as above was obtained. As a paper strength enhancer, 0.2 part by mass of polyacrylamide (trade name: Polystron 1250, manufactured by Arakawa Chemical Industry Co., Ltd.) was added to the total pulp mass to prepare a pulp slurry having a concentration of 0.4% by weight. This was paper-made using a long web paper machine equipped with an on-top former in the wire part to obtain a slip sheet for a glass plate having a basis weight of 55 g / m 2 . The wire part uses 76 mesh plain woven plastic wire, and the difference in the dewatering rate of the on-top former on both sides of the wet paper (based on the dewatering rate of the upper on-top former) is 7% or more and 10% or less It adjusted so that it might become.
湿紙の両面におけるオントップフォーマの脱水割合の差が(上側のオントップフォーマの脱水割合を基準として)5%以下となるように調整した以外は実施例1と同様の手法で坪量55g/m2のガラス板用合紙を得た。 [Example 2]
A basis weight of 55 g / in the same manner as in Example 1 except that the difference in the dewatering rate of the on-top former on both sides of the wet paper was adjusted to 5% or less (based on the dewatering rate of the upper on-top former). An m 2 slip sheet for glass plate was obtained.
オントップフォーマを使用しない以外は実施例1と同様の手法で坪量55g/m2のガラス板用合紙を得た。 [Comparative Example 1]
A glass sheet slip with a basis weight of 55 g / m 2 was obtained in the same manner as in Example 1 except that the on-top former was not used.
Claims (15)
- 木材パルプを原料とするガラス板用合紙であって、
200μm以下の繊維長を有する短繊維の含有量が10.5重量%以下であるガラス板用合紙。 It is a slip sheet for glass plate made from wood pulp,
A slip sheet for glass plate in which the content of short fibers having a fiber length of 200 μm or less is 10.5% by weight or less. - 前記短繊維の含有量が1.2重量%以上である、請求項1に記載のガラス板用合紙。 The glass sheet slip sheet according to claim 1, wherein the content of the short fibers is 1.2% by weight or more.
- 前記短繊維の平均繊維径が10~50μmである、請求項1又は2に記載のガラス板用合紙。 3. The glass sheet interleaf according to claim 1, wherein an average fiber diameter of the short fibers is 10 to 50 μm.
- 表面における前記短繊維の存在量が300本~850本/m2である、請求項1又は2に記載のガラス板用合紙。 The slip sheet for glass plate according to claim 1 or 2, wherein the amount of the short fibers on the surface is 300 to 850 fibers / m 2 .
- 一方の表面における前記短繊維の存在量と他方の表面における前記短繊維の存在量との差が該他方の表面における前記短繊維の存在量の15%以下である、請求項1又は2に記載のガラス板用合紙。 The difference between the abundance of the short fibers on one surface and the abundance of the short fibers on the other surface is 15% or less of the abundance of the short fibers on the other surface. Slip sheet for glass plate.
- 厚みが20~200μmである、請求項1又は2に記載のガラス板用合紙。 3. The glass sheet interleaf according to claim 1, wherein the thickness is 20 to 200 μm.
- KES法による表面の摩擦係数の平均偏差(MMD)が0.022以下である、請求項1又は2に記載のガラス板用合紙。 The interleaving paper for a glass plate according to claim 1 or 2, wherein the mean deviation (MMD) of the friction coefficient of the surface by the KES method is 0.022 or less.
- 前記ガラス板がディスプレイ用である、請求項1又は2に記載のガラス板用合紙。 The glass sheet slip sheet according to claim 1 or 2, wherein the glass sheet is for display.
- 前記ディスプレイがTFT液晶ディスプレイ又は有機ELディスプレイである、請求項8記載のガラス板用合紙。 The slip sheet for glass plates according to claim 8, wherein the display is a TFT liquid crystal display or an organic EL display.
- 請求項1~9のいずれかに記載のガラス板用合紙及びガラス板からなる積層体。 A laminate comprising the glass sheet interleaving paper according to any one of claims 1 to 9 and a glass sheet.
- 請求項1~9のいずれかに記載のガラス板用合紙をガラス板間に配置する工程を含む、ガラス板の保護方法。 A method for protecting a glass plate, comprising a step of arranging the interleaving paper for a glass plate according to any one of claims 1 to 9 between the glass plates.
- 請求項1~9のいずれかに記載のガラス板用合紙の製造方法であって、
木材パルプのスラリーを調製するスラリー調製工程、
前記スラリーをシート状とするシート形成工程、
前記シートを脱水して湿紙を形成する湿紙調製工程、
前記湿紙を乾燥して前記合紙を得る乾燥工程
を少なくとも含み、
前記湿紙調製工程において脱水を前記シートの両面から行う、製造方法。 A method for producing a glass sheet interleaving paper according to any one of claims 1 to 9,
A slurry preparation step for preparing a wood pulp slurry;
A sheet forming step for forming the slurry into a sheet;
A wet paper web preparation step for dehydrating the sheet to form a wet paper web;
Including at least a drying step of drying the wet paper to obtain the slip sheet;
A manufacturing method in which dehydration is performed from both sides of the sheet in the wet paper preparation step. - 前記脱水を吸引により行う、請求項12記載の製造方法。 The manufacturing method according to claim 12, wherein the dehydration is performed by suction.
- 前記シートの一方の表面における前記吸引の脱水割合と他方の表面における前記吸引の脱水割合との差が該他方の表面における前記吸引の脱水割合の10%以下である、請求項13記載の製造方法。 The manufacturing method according to claim 13, wherein a difference between the suction dewatering rate on one surface of the sheet and the suction dewatering rate on the other surface is 10% or less of the suction dewatering rate on the other surface. .
- 前記乾燥工程後の合紙の両面を更に吸引する追加吸引工程を含む、請求項13又は14に記載の製造方法。 The manufacturing method according to claim 13 or 14, further comprising an additional suction step of sucking both surfaces of the interleaving paper after the drying step.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880003358.6A CN110446813B (en) | 2017-03-30 | 2018-03-29 | Liner paper for glass plate and its making method |
KR1020187014559A KR102064252B1 (en) | 2017-03-30 | 2018-03-29 | Glass board and its manufacturing method |
JP2019510097A JP6598229B2 (en) | 2017-03-30 | 2018-03-29 | Interleaving paper for glass plate and manufacturing method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017067198 | 2017-03-30 | ||
JP2017-067198 | 2017-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018181658A1 true WO2018181658A1 (en) | 2018-10-04 |
Family
ID=63676318
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/013108 WO2018181658A1 (en) | 2017-03-30 | 2018-03-29 | Glass plate slip sheet and production method therefor |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6598229B2 (en) |
KR (1) | KR102064252B1 (en) |
CN (1) | CN110446813B (en) |
TW (1) | TWI729282B (en) |
WO (1) | WO2018181658A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022079207A1 (en) | 2020-10-14 | 2022-04-21 | Agc Glass Europe | Glass sheet arrangement for transport |
JP7118200B1 (en) | 2021-03-29 | 2022-08-15 | 特種東海製紙株式会社 | Interleaving paper for glass plate and method for suppressing generation of paper dust from interleaving paper for glass plate |
WO2022209669A1 (en) * | 2021-03-29 | 2022-10-06 | 特種東海製紙株式会社 | Spacer paper for glass plate |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111501411B (en) * | 2020-04-22 | 2021-07-30 | 宁波思特雷斯金属防护材料有限公司 | Production process of sulfur-free circuit board isolation paper |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61289199A (en) * | 1985-06-13 | 1986-12-19 | 日本板硝子株式会社 | Composite paper for glass |
JP2004277991A (en) * | 2003-02-28 | 2004-10-07 | Futamura Chemical Industries Co Ltd | Interleaving paper for glassy plate material |
JP2005248409A (en) * | 2004-03-08 | 2005-09-15 | Daifuku Paper Mfg Co Ltd | Insertion paper for glass and method for producing the same |
WO2014098162A1 (en) * | 2012-12-21 | 2014-06-26 | 旭硝子株式会社 | Paper slip sheet for glass and glass sheet package |
WO2015178383A1 (en) * | 2014-05-19 | 2015-11-26 | 旭硝子株式会社 | Cleaning device and cleaning method for cleaning slip sheet for glass plate, glass plate laminate, glass plate packaging, manufacturing method of slip sheet for glass plate, and slip sheet for glass plate |
JP2016035125A (en) * | 2014-08-04 | 2016-03-17 | 王子ホールディングス株式会社 | Interleaving paper for glass plate |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008208478A (en) | 2007-02-26 | 2008-09-11 | Nicca Chemical Co Ltd | Insertion paper for display glass and method for producing the same |
JP5916481B2 (en) | 2012-03-30 | 2016-05-11 | 大王製紙株式会社 | Glass interleaving paper and laminate |
WO2014104187A1 (en) * | 2012-12-27 | 2014-07-03 | 特種東海製紙株式会社 | Wood pulp for glass plate-isolating paper and glass plate-isolating paper |
CN103866647B (en) * | 2014-03-27 | 2016-03-16 | 潍坊恒联美林生活用纸有限公司 | A kind of colored water suction lining paper manufacturing technique |
JP2016191182A (en) | 2015-03-31 | 2016-11-10 | 特種東海製紙株式会社 | Slip sheet for glass plate and inspection method therefor |
CN104911944B (en) * | 2015-05-26 | 2017-03-01 | 浙江科技学院 | Waterproof antiwear type papery mouse packing paper and its production method |
-
2018
- 2018-03-29 KR KR1020187014559A patent/KR102064252B1/en active Active
- 2018-03-29 CN CN201880003358.6A patent/CN110446813B/en active Active
- 2018-03-29 WO PCT/JP2018/013108 patent/WO2018181658A1/en active Application Filing
- 2018-03-29 TW TW107110999A patent/TWI729282B/en active
- 2018-03-29 JP JP2019510097A patent/JP6598229B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61289199A (en) * | 1985-06-13 | 1986-12-19 | 日本板硝子株式会社 | Composite paper for glass |
JP2004277991A (en) * | 2003-02-28 | 2004-10-07 | Futamura Chemical Industries Co Ltd | Interleaving paper for glassy plate material |
JP2005248409A (en) * | 2004-03-08 | 2005-09-15 | Daifuku Paper Mfg Co Ltd | Insertion paper for glass and method for producing the same |
WO2014098162A1 (en) * | 2012-12-21 | 2014-06-26 | 旭硝子株式会社 | Paper slip sheet for glass and glass sheet package |
WO2015178383A1 (en) * | 2014-05-19 | 2015-11-26 | 旭硝子株式会社 | Cleaning device and cleaning method for cleaning slip sheet for glass plate, glass plate laminate, glass plate packaging, manufacturing method of slip sheet for glass plate, and slip sheet for glass plate |
JP2016035125A (en) * | 2014-08-04 | 2016-03-17 | 王子ホールディングス株式会社 | Interleaving paper for glass plate |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022079207A1 (en) | 2020-10-14 | 2022-04-21 | Agc Glass Europe | Glass sheet arrangement for transport |
JP7118200B1 (en) | 2021-03-29 | 2022-08-15 | 特種東海製紙株式会社 | Interleaving paper for glass plate and method for suppressing generation of paper dust from interleaving paper for glass plate |
WO2022209669A1 (en) * | 2021-03-29 | 2022-10-06 | 特種東海製紙株式会社 | Spacer paper for glass plate |
WO2022209223A1 (en) * | 2021-03-29 | 2022-10-06 | 特種東海製紙株式会社 | Glass spacer paper and method for controlling generation of paper dust from glass spacer paper |
JP2022152430A (en) * | 2021-03-29 | 2022-10-12 | 特種東海製紙株式会社 | Spacer paper for glass plate |
JP2022152429A (en) * | 2021-03-29 | 2022-10-12 | 特種東海製紙株式会社 | Spacer paper for glass plate, and method for controlling generation of paper dust from spacer paper for glass plate |
TWI811978B (en) * | 2021-03-29 | 2023-08-11 | 日商特種東海製紙股份有限公司 | Glass plate interleaving paper, laminated body, and process for suppressing production of paper dust |
JP7326377B2 (en) | 2021-03-29 | 2023-08-15 | 特種東海製紙株式会社 | Paper for glass plate |
Also Published As
Publication number | Publication date |
---|---|
CN110446813B (en) | 2022-02-25 |
TW201840929A (en) | 2018-11-16 |
JPWO2018181658A1 (en) | 2019-11-21 |
TWI729282B (en) | 2021-06-01 |
KR20180135855A (en) | 2018-12-21 |
JP6598229B2 (en) | 2019-10-30 |
CN110446813A (en) | 2019-11-12 |
KR102064252B1 (en) | 2020-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6598229B2 (en) | Interleaving paper for glass plate and manufacturing method thereof | |
KR101538437B1 (en) | Wood pulp for glass plate-isolating paper and glass plate-isolating paper | |
JP6459079B2 (en) | Wood pulp for glass board and paper for glass board | |
JP2016125146A (en) | Wood pulp for glass plate inserting paper, and glass plate inserting paper | |
JP6760764B2 (en) | Wood pulp for glass plate interleaving paper and its use, interleaving paper for glass plate, laminate using it, method of protecting glass plate, and inspection method of wood pulp for glass plate interleaving paper or interleaving paper for glass plate | |
WO2019188927A1 (en) | Glass plate interleaving paper and method for manufacturing same | |
JP2016191182A (en) | Slip sheet for glass plate and inspection method therefor | |
JP2016098468A (en) | Wood pulp for glass plate-isolating slip paper and glass plate-isolating slip paper | |
JP6884009B2 (en) | Inspection method of wood pulp for glass plate interleaving paper and its use, interleaving paper for glass plate, and wood pulp for glass plate interleaving paper or interleaving paper for glass plate | |
JP6903123B2 (en) | Insertion paper for glass plates and its manufacturing method | |
TWI763813B (en) | Glass plate-interleaving paper and manufacturing method thereof, laminate, and method for protecting glass plate | |
KR102626487B1 (en) | Wood pulp for glass plate-interleaving paper and glass plate-interleaving paper | |
JP6867207B2 (en) | Inspection method of wood pulp for glass plate interleaving paper and its use, interleaving paper for glass plate, and wood pulp for glass plate interleaving paper or interleaving paper for glass plate | |
JP2019119527A (en) | Surface protection sheet and method for manufacturing the same | |
JP2020059966A (en) | Wood pulp for glass plate interleaving paper and glass plate interleaving paper | |
JP2016191181A (en) | Slip sheet for glass plate and inspection method therefor | |
JP6937413B2 (en) | Wood pulp for glass plate interleaving paper and its use, interleaving paper for glass plate, laminate using it, method of protecting glass plate, and inspection method of wood pulp for glass plate interleaving paper or interleaving paper for glass plate | |
WO2023136311A1 (en) | Pulp for glass interleaving paper, glass interleaving paper, and production method therefor | |
JP2016121410A (en) | Wood pulp for glass plate inserting paper and glass plate inserting paper |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 20187014559 Country of ref document: KR Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18774986 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019510097 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18774986 Country of ref document: EP Kind code of ref document: A1 |