[go: up one dir, main page]

WO2018181566A1 - 液晶配向剤、液晶配向膜、及び液晶表示素子 - Google Patents

液晶配向剤、液晶配向膜、及び液晶表示素子 Download PDF

Info

Publication number
WO2018181566A1
WO2018181566A1 PCT/JP2018/012958 JP2018012958W WO2018181566A1 WO 2018181566 A1 WO2018181566 A1 WO 2018181566A1 JP 2018012958 W JP2018012958 W JP 2018012958W WO 2018181566 A1 WO2018181566 A1 WO 2018181566A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
mass
polyamic acid
crystal aligning
aligning agent
Prior art date
Application number
PCT/JP2018/012958
Other languages
English (en)
French (fr)
Inventor
翔一朗 中原
真文 高橋
石川 和典
夏樹 佐藤
▲べ▼ 鴻基
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to KR1020197031006A priority Critical patent/KR102619748B1/ko
Priority to CN201880023171.2A priority patent/CN110462505A/zh
Priority to JP2019510034A priority patent/JP7188381B2/ja
Publication of WO2018181566A1 publication Critical patent/WO2018181566A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a liquid crystal alignment film capable of achieving both panel production cost and film formation quality.
  • liquid crystal alignment film As the liquid crystal alignment film, a so-called polyimide-based liquid crystal alignment film, which is obtained by applying and baking a liquid crystal alignment agent mainly composed of a polyimide precursor such as polyamic acid (also called polyamic acid) or a soluble polyimide solution, is widely used.
  • a polyimide precursor such as polyamic acid (also called polyamic acid) or a soluble polyimide solution
  • liquid crystal aligning agent having a high solid content is required in order to reduce the amount of liquid crystal aligning agent used and increase the production efficiency.
  • liquid crystal aligning agent that can achieve a stable film thickness even on a high definition substrate having a large level difference.
  • the above technical directions all press the storage stability of the varnish and increase the risk of causing liquid precipitation.
  • higher substrate and film adhesion is required due to higher definition of the substrate and slimming of the panel.
  • An object of the present invention is to provide a liquid crystal aligning agent that has high adhesion, does not cause precipitation even at a high solid content concentration, and can obtain a stable film thickness, and a liquid crystal alignment film using the same.
  • the present invention contains the following component (A), component (B), component (C) and component (D), and the component (C) is 20 to 50% by mass with respect to the total mass of the liquid crystal aligning agent. It is in the liquid crystal aligning agent to contain.
  • liquid crystal aligning agent that has high substrate adhesion, does not cause precipitation even at a high solid content concentration, and can obtain a stable film thickness, and a liquid crystal alignment film using the same.
  • the liquid crystal aligning agent of this invention is especially effective for application
  • the component (A) contained in the liquid crystal aligning agent of the present invention is at least one polymer selected from the group consisting of a polyimide precursor and a polyimide that is an imidized product thereof.
  • the polyimide precursor can be represented by the following formula (1).
  • X 1 is a tetravalent organic group derived from a tetracarboxylic acid derivative
  • Y 1 is a divalent organic group derived from a diamine
  • R 1 is a hydrogen atom or a carbon number of 1 to 5 Represents an alkyl group.
  • R 1 is preferably a hydrogen atom, a methyl group, or an ethyl group, and more preferably a hydrogen atom or a methyl group.
  • a 1 and A 2 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkynyl group having 2 to 5 carbon atoms. From the viewpoint of liquid crystal orientation, A 1 and A 2 are preferably a hydrogen atom or a methyl group.
  • the diamine used for the production of the polyimide precursor can be represented by the following formula (2).
  • a 1 and A 2 in the above formula (2) have the same definitions as A 1 and A 2 in the above formula (1), including preferred examples.
  • Examples of the structure of Y 1 are as shown in the following formulas (Y-1) to (Y-1).
  • n is an integer of 1 to 6.
  • the tetracarboxylic acid component for producing the polyimide precursor is not only tetracarboxylic dianhydride, but also its derivative tetracarboxylic acid, tetracarboxylic dihalide compound, tetracarboxylic dialkyl ester or tetracarboxylic dialkyl ester Dihalides can also be used.
  • the tetracarboxylic dianhydride is preferably represented by the following formula (3).
  • X 1 is a tetravalent organic group, and specific examples thereof include the following formulas (X1-1) to (X1-44).
  • R 3 to R 23 each independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, An alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, or a phenyl group.
  • R 3 to R 23 are preferably a hydrogen atom, a halogen atom, a methyl group, or an ethyl group, and more preferably a hydrogen atom or a methyl group.
  • formula (X1-1) include the following formulas (X1-1-1) to (X1-1-6).
  • (X1-1-1) is particularly preferred from the viewpoints of liquid crystal orientation and photoreaction sensitivity.
  • the polyamic acid ester which is one of the polyimide precursors used in the present invention can be synthesized by the following method (1), (2) or (3).
  • (1) When synthesizing from polyamic acid Polyamic acid ester can be synthesized by esterifying polyamic acid obtained from tetracarboxylic dianhydride and diamine. Specifically, it can be synthesized by reacting a polyamic acid and an esterifying agent in the presence of an organic solvent at ⁇ 20 ° C. to 150 ° C. for 30 minutes to 24 hours.
  • the esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like.
  • the addition amount of the esterifying agent is preferably 2 to 6 molar equivalents per 1 mol of the polyamic acid repeating unit.
  • the solvent used in the above reaction is ⁇ -butyrolactone, ⁇ -valerolactone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-butyl-2-pyrrolidone or ethyl carbitol because of the solubility of the polymer. These may be used alone or in combination of two or more.
  • the concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
  • Polyamic acid ester can be synthesized from tetracarboxylic acid diester dichloride and diamine. Specifically, it can be synthesized by reacting tetracarboxylic acid diester dichloride and diamine in the presence of a base and an organic solvent at ⁇ 20 ° C. to 150 ° C. for 30 minutes to 24 hours.
  • a base pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently.
  • the addition amount of the base is preferably 2 to 4 times the molar amount of the tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.
  • the solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or ⁇ -butyrolactone in view of the solubility of the monomer and polymer, and these may be used alone or in combination.
  • the polymer concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained.
  • the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
  • Polyamic acid ester can be synthesized by polycondensation of tetracarboxylic acid diester and diamine. Specifically, it can be synthesized by reacting a tetracarboxylic acid diester and a diamine in the presence of a condensing agent, a base, and an organic solvent at 0 ° C. to 150 ° C. for 30 minutes to 24 hours.
  • condensing agent examples include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide.
  • Nylmethylmorpholinium O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like.
  • the addition amount of the condensing agent is preferably 2 to 3 times the molar amount of the tetracarboxylic acid diester.
  • tertiary amines such as pyridine and triethylamine can be used.
  • the amount of the base added is preferably 2 to 4 times the mol of the diamine component from the viewpoint that it can be easily removed and a high molecular weight product can be easily obtained.
  • the reaction proceeds efficiently by adding Lewis acid as an additive.
  • Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the addition amount of the Lewis acid is preferably 0 to 1.0 times mol with respect to the diamine component.
  • the synthesis method (1) or (2) is particularly preferable.
  • the polymer solution can be precipitated by injecting the polyamic acid ester solution obtained as described above into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
  • a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
  • the polyamic acid which is one of the polyimide precursors used for this invention is compoundable by the method shown below. Specifically, it can be synthesized by reacting tetracarboxylic dianhydride and diamine at ⁇ 20 ° C. to 150 ° C. for 30 minutes to 24 hours in the presence of an organic solvent.
  • the organic solvent used in the above reaction is ⁇ -butyrolactone, ⁇ -valerolactone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-butyl-2-pyrrolidone or ethyl due to the solubility of the monomer and polymer.
  • Carbitol is preferred, and these may be used alone or in combination.
  • the concentration of the polymer is preferably 1 to 30% by mass and more preferably 5 to 20% by mass from the viewpoint that the polymer is hardly precipitated and a high molecular weight body is easily obtained.
  • the polyamic acid obtained as described above can be recovered by precipitating a polymer by pouring into a poor solvent while thoroughly stirring the reaction solution. Moreover, the powder of polyamic acid refine
  • a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
  • the polyimide used in the present invention can be produced by imidizing the polyamic acid ester or polyamic acid.
  • chemical imidization in which a basic catalyst is added to a polyamic acid solution obtained by dissolving the polyamic acid ester solution or the polyamic acid ester resin powder in an organic solvent is simple.
  • Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer is unlikely to decrease during the imidization process.
  • Chemical imidation can be performed by stirring the polyamic acid ester to be imidized in an organic solvent in the presence of a basic catalyst.
  • a basic catalyst As an organic solvent, the solvent used at the time of the polymerization reaction mentioned above can be used.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, triethylamine is preferred because it has sufficient basicity to allow the reaction to proceed.
  • the temperature for carrying out the imidization reaction is ⁇ 20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours.
  • the amount of the basic catalyst is 0.5 to 30 moles, preferably 2 to 20 moles, of the amic acid ester group.
  • the imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time. Since the added catalyst remains in the solution after the imidation reaction, the obtained imidized polymer is recovered by the means described below and redissolved in an organic solvent to obtain a liquid crystal aligning agent. It is preferable.
  • Chemical imidation which adds a catalyst to the solution of the said polyamic acid obtained by reaction with a diamine component and tetracarboxylic dianhydride is simple. Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer is unlikely to decrease during the imidization process. Chemical imidation can be performed by stirring a polymer to be imidized in an organic solvent in the presence of a basic catalyst and an acid anhydride. As an organic solvent, the solvent used at the time of the polymerization reaction mentioned above can be used.
  • Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the temperature for carrying out the imidization reaction is ⁇ 20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol times the amic acid group. Is double.
  • the imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time.
  • the liquid crystal aligning agent of the present invention is preferable.
  • the polyimide solution obtained as described above can be precipitated by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
  • the poor solvent is not particularly limited, and examples thereof include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, and benzene.
  • the liquid crystal aligning agent of this invention has the form of the solution in which the polyimide precursor and the polyimide were melt
  • the weight average molecular weight of the polyimide precursor and polyimide is preferably 2,000 to 500,000, more preferably 5,000 to 300,000, and still more preferably 10,000 to 100,000.
  • the number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000.
  • the content (concentration) of the polymer of the liquid crystal aligning agent of the present invention can be changed by setting the thickness of the coating film to be formed. From the viewpoint of forming a uniform and defect-free coating film, the total mass of the liquid crystal aligning agent. 1 mass% or more is preferable with respect to the storage stability of a solution, and 10 mass% or less is preferable. Among them, the content of the polymer is more preferably 2 to 8% by mass, and particularly preferably 3 to 7% by mass.
  • the component (B) contained in the liquid crystal aligning agent of the present invention is a non-amine Si coupling agent.
  • the non-amine Si coupling agent means a hydrolyzable silyl group-containing compound having no amino group in the molecule.
  • the content of the component (B) is preferably 0.1 to 2% by mass with respect to the polymer solid content in the liquid crystal aligning agent, because it does not interfere with the substrate adhesion of the coating film and other properties. It is more preferably 3 to 2% by mass, and particularly preferably 0.5 to 1.5% by mass. Further, two or more different types of component (B) may be used.
  • the component (C) contained in the liquid crystal aligning agent of the present invention is selected from the group consisting of ⁇ -butyrolactone, ⁇ -valerolactone, N-ethyl-2-pyrrolidone, N-butyl-2-pyrrolidone, and ethyl carbitol.
  • At least one organic solvent is a solvent that contributes to the dissolution of the polymer.
  • at least one selected from the group consisting of ⁇ -butyrolactone, ⁇ -valerolactone, and N-ethyl-2-pyrrolidone is preferable.
  • the content of the component (C) is preferably 20 to 50% by mass and preferably 25 to 50% by mass with respect to the total mass of the liquid crystal aligning agent for the purpose of improving the storage stability of the solution and the film formation quality of the coating film edge. More preferred is 30 to 50% by mass.
  • the component (D) contained in the liquid crystal aligning agent of the present invention is at least one selected from the group consisting of 1-butoxy-2-propanol, 2-butoxy-1-propanol, butyl cellosolve, butyl cellosolve acetate, and dipropylene glycol dimethyl ether. It is a seed organic solvent. This solvent is a solvent that contributes to uniform coating formation. Among these, at least one selected from 1-butoxy-2-propanol, butyl cellosolve, and butyl cellosolve acetate is preferable.
  • the content of the component (D) is preferably 5 to 40% by mass, more preferably 20 to 40% by mass with respect to the total mass of the liquid crystal aligning agent for the purpose of obtaining uniformity of the coating film and storage stability of the solution. 20 to 30% by mass is particularly preferable.
  • the component (B) is 0.3 to 2% by mass, the component (C) is 20 to 50% by mass, and the component (D) is 20% by mass with respect to the component (A). It is preferably ⁇ 40% by mass. Among them, the component (B) is 0.5 to 1.5% by mass, the component (C) is 30 to 50% by mass, and the component (D) is 20 to 30% by mass with respect to the component (A). Is particularly preferred.
  • N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, 1,3-dimethyl-imidazolidinone, methyl ethyl ketone, cyclohexanone, cyclopentanone, 3-methoxy-N examples thereof include N-dimethylpropanamide and 4-hydroxy-4-methyl-2-pentanone.
  • N-methyl-2-pyrrolidone is preferably contained in an amount of 50% by mass or less, more preferably 25 to 30% by mass with respect to the total mass of the liquid crystal aligning agent because of high storage stability.
  • D 1 represents an alkyl group having 1 to 3 carbon atoms
  • D 2 represents an alkyl group having 1 to 3 carbon atoms
  • D-3 represents an alkyl group having 1 to 4 carbon atoms.
  • the poor solvent isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 1,2-
  • the liquid crystal aligning agent of the present invention includes at least one substituent selected from the group consisting of a crosslinkable compound having an epoxy group, an isocyanate group, an oxetane group or a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group and a lower alkoxyalkyl group. Or a crosslinkable compound having a polymerizable unsaturated bond. It is necessary to have two or more of these substituents and polymerizable unsaturated bonds in the crosslinkable compound.
  • crosslinkable compound having an epoxy group or an isocyanate group examples include bisphenolacetone glycidyl ether, phenol novolac epoxy resin, cresol novolac epoxy resin, triglycidyl isocyanurate, tetraglycidylaminodiphenylene, tetraglycidyl-m-xylenediamine, tetra Glycidyl-1,3-bis (aminoethyl) cyclohexane, tetraphenyl glycidyl ether ethane, triphenyl glycidyl ether ethane, bisphenol hexafluoroacetodiglycidyl ether, 1,3-bis (1- (2,3-epoxypropoxy)- 1-trifluoromethyl-2,2,2-trifluoromethyl) benzene, 4,4-bis (2,3-epoxypropoxy) octafluorobiphenyl Triglycidyl-p-amin
  • the crosslinkable compound having an oxetane group is a compound having at least two oxetane groups represented by the following formula [4A]. Specific examples include crosslinkable compounds of the formulas [4a] to [4k] described on pages 58 to 59 of WO2011 / 132751 (application: PCT / JP2011 / 059867).
  • the crosslinkable compound having a cyclocarbonate group is a crosslinkable compound having at least two cyclocarbonate groups represented by the following formula [5A]. Specific examples include crosslinkable compounds of the formulas [5-1] to [5-42] described on pages 76 to 82 of WO2012 / 014898 (application: PCT / JP2011 / 066980).
  • Examples of the crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group and an alkoxyl group include an amino resin having a hydroxyl group or an alkoxyl group, such as a melamine resin, a urea resin, a guanamine resin, and a glycoluril.
  • -Formaldehyde resin, succinylamide-formaldehyde resin or ethylene urea-formaldehyde resin Specifically, a melamine derivative, a benzoguanamine derivative, or glycoluril in which a hydrogen atom of an amino group is substituted with a methylol group, an alkoxymethyl group, or both can be used.
  • This melamine derivative or benzoguanamine derivative can also exist as a dimer or a trimer. These preferably have an average of 3 to 6 methyl
  • Examples of the melamine derivative or benzoguanamine derivative include MX-750 in which an average of 3.7 methoxymethyl groups are substituted per triazine ring, and an average of 5.8 methoxymethyl groups are substituted per triazine ring.
  • glycoluril examples include butoxymethylated glycoluri
  • Examples of the benzene or phenolic compound having a hydroxyl group or an alkoxyl group include 1,3,5-tris (methoxymethyl) benzene, 1,2,4-tris (isopropoxymethyl) benzene, 1,4-bis ( sec-butoxymethyl) benzene or 2,6-dihydroxymethyl-p-tert-butylphenol. More specifically, there are crosslinkable compounds of the formulas [6-1] to [6-48], which are listed on pages 62 to 66 of WO2011 / 132751 (application: the same as before).
  • crosslinkable compound having a polymerizable unsaturated bond examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and tri (meth) acryloyloxyethoxytrimethylol.
  • Crosslinkable compounds having three polymerizable unsaturated groups in the molecule such as propane or glycerin polyglycidyl ether poly (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (Meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol Rudi (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide bisphenol A type di (meth) acrylate, propylene oxide bisphenol type di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin Di (meth) acrylate, pentaerythritol di (meth) acrylate, ethylene glycol diglycidyl
  • E 1 represents a group selected from the group consisting of a cyclohexane ring, a bicyclohexane ring, a benzene ring, a biphenyl ring, a terphenyl ring, a naphthalene ring, a fluorene ring, an anthracene ring or a phenanthrene ring
  • E 2 Represents a group selected from the following formula [7a] or [7b], and n represents an integer of 1 to 4.
  • the crosslinkable compound used for the liquid crystal aligning agent of this invention may be 1 type, or may combine 2 or more types.
  • the content of the crosslinkable compound in the liquid crystal aligning agent of the present invention is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of all polymer components.
  • the amount is preferably 0.1 to 100 parts by mass with respect to 100 parts by mass of the polymer component. More preferred is 1 to 50 parts by mass.
  • the liquid crystal aligning agent of this invention can contain the compound which improves the uniformity of the film thickness at the time of apply
  • examples of the compound that improves the film thickness uniformity and surface smoothness of the liquid crystal alignment film include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
  • F-top EF301, EF303, EF352 (above, manufactured by Tochem Products), MegaFuck F171, F173, R-30 (above, manufactured by Dainippon Ink), Florard FC430, FC431 (or more) And Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (above, manufactured by Asahi Glass Co., Ltd.).
  • the amount of the surfactant used is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of all the polymer components contained in the liquid crystal aligning agent.
  • the liquid crystal aligning agent is a compound which is published on pages 69 to 73 of WO2011 / 132751 (application: same as before) as a compound which promotes charge transfer in the liquid crystal alignment film and promotes charge release of the device.
  • Nitrogen-containing heterocyclic amines of [M1] to formula [M156] can also be added. This amine may be added directly to the liquid crystal aligning agent, but it is preferable to add it after making a solution having a concentration of 0.1 to 10% by mass, preferably 1 to 7% by mass.
  • the solvent is not particularly limited as long as the specific polymer (A) is dissolved.
  • the liquid crystal aligning agent of the present invention includes, in addition to the above-mentioned poor solvent, crosslinkable compound, resin film or compound that improves the film thickness uniformity and surface smoothness of the liquid crystal aligning film, and a compound that promotes charge removal.
  • An imidization accelerator or the like for the purpose may be added.
  • the liquid crystal alignment film is a film obtained by applying a liquid crystal aligning agent to a substrate, drying and baking.
  • the substrate is not particularly limited as long as it is a highly transparent substrate, and may be a glass substrate, a silicon nitride substrate, or a plastic substrate such as an acrylic substrate or a polycarbonate substrate. At that time, it is preferable to use a substrate on which an ITO electrode or the like for driving the liquid crystal is used from the viewpoint of simplification of the process.
  • an opaque material such as a silicon wafer can be used as long as it is only on one side of the substrate, and a material that reflects light such as aluminum can be used for the electrode in this case.
  • the solvent can be evaporated by a heating means such as a hot plate, a thermal circulation oven, or an IR (infrared) oven to form a liquid crystal alignment film.
  • a heating means such as a hot plate, a thermal circulation oven, or an IR (infrared) oven to form a liquid crystal alignment film.
  • Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent of the present invention.
  • a condition of baking at 50 to 120 ° C. for 1 to 10 minutes and then baking at 150 to 300 ° C. for 5 to 120 minutes is mentioned in order to sufficiently remove the contained solvent.
  • the thickness of the liquid crystal alignment film after baking is too thin, the reliability of the liquid crystal display element may be lowered, and thus it is preferably 5 to 300 nm, and more preferably 10 to 200 nm.
  • the liquid crystal alignment treatment agent of the present invention is applied to a substrate and baked, and then subjected to alignment treatment by a rubbing treatment performed by a conventional apparatus or method, photo-alignment treatment, or no alignment treatment for vertical alignment applications. Therefore, it can be used as a liquid crystal alignment film.
  • a liquid crystal display element having a passive matrix structure As an example of a method for manufacturing a liquid crystal cell, a liquid crystal display element having a passive matrix structure will be described as an example.
  • an active matrix liquid crystal display element in which a switching element such as a TFT (Thin Film Transistor) is provided in each pixel portion constituting the image display may be used.
  • a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate.
  • These electrodes can be ITO electrodes, for example, and are patterned so as to display a desired image.
  • an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode.
  • the insulating film can be, for example, a SiO 2 —TiO 2 film formed by a sol-gel method.
  • a liquid crystal alignment film is formed on each substrate, the other substrate is overlaid on one substrate so that the liquid crystal alignment film faces each other, and the periphery is bonded with a sealant.
  • a spacer is usually mixed in the sealant, and it is preferable to spray a spacer for controlling the substrate gap on the in-plane portion where no sealant is provided.
  • a part of the sealant is provided with an opening that can be filled with liquid crystal from the outside.
  • a liquid crystal material is injected into the space surrounded by the two substrates and the sealing agent through the opening provided in the sealing agent, and then the opening is sealed with an adhesive.
  • a vacuum injection method may be used, or a method utilizing capillary action in the atmosphere may be used.
  • the liquid crystal material either a positive liquid crystal material or a negative liquid crystal material may be used, but a negative liquid crystal material is preferable.
  • a polarizing plate is installed. Specifically, a pair of polarizing plates is attached to the surfaces of the two substrates opposite to the liquid crystal layer. As described above, by using the liquid crystal aligning agent of the present invention, it is possible to obtain a liquid crystal aligning film excellent in the uniformity of the film thickness within the coating surface and the linearity and dimensional stability of the coating peripheral portion.
  • NMP N-methyl-2-pyrrolidone
  • BCS Butyl cellosolve
  • GBL ⁇ -butyrolactone
  • ⁇ Viscosity> As for the viscosity of the polymer solution, an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.) was used to collect a sample amount of 1.1 mL, cone rotor TE-1 (1 ° 34 ′, R24), temperature 25 ° C. Measured with ⁇ Measurement method of solid content concentration> 1.0 g of the solution was measured in an aluminum cup and subjected to heat treatment at 200 ° C. for 2 hours, then the amount of solid remaining on the cup was measured, and the solid content concentration of the solution was measured. ⁇ Evaluation of long-term storage stability> When the liquid crystal alignment agent is stored in a freezer at ⁇ 20 ° C.
  • the viscosity change during this period is within ⁇ 1 mPa ⁇ s, and the liquid appearance is also free from turbidity and precipitation. . Those having viscosity change, turbidity, and precipitation were evaluated as “bad”.
  • the liquid crystal aligning agent is filtered through a membrane filter having a pore size of 1.0 ⁇ m, spin-coated on a nitrogen silicon substrate, dried on a hot plate at a temperature of 80 ° C. for 5 minutes, and then baked at 230 ° C. for 15 minutes.
  • a 100 nm polyimide film is produced.
  • the polyimide film prepared on the nitrogen silicon substrate was stored for 24 hours in an environment of a temperature of 70 ° C. and a humidity of 80%. Then, after leaving at room temperature for 3 hours, adhesiveness was evaluated according to JIS K5600.
  • the polyimide film was scratched with a cutter knife at intervals of 2 mm to create 100 squares, and a cellophane tape was pressure-bonded thereon and peeled off instantaneously to examine the peeling state of the polyimide film from the nitrogen silicon substrate.
  • a cellophane tape was pressure-bonded thereon and peeled off instantaneously to examine the peeling state of the polyimide film from the nitrogen silicon substrate.
  • the coating can be performed without any in-plane unevenness.
  • the dropping pitches were compared when coating was performed under the condition that the film thickness after the main baking was 100 nm. At this time, the one having a wide dropping pitch has a small amount of dropping liquid per unit distance. A sample having a long dropping pitch was evaluated as “good”, and a sample having a short dropping pitch was determined as “bad”.
  • Polyamic acid B1 In a 2000 ml flask with a stirrer and a nitrogen inlet tube, 156.1 g (0.545 mol) of DA-5 was added, NMP 1593.0 g was added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution under water cooling, 116.7 g (0.535 mol) of CA-1 was added, 398 g of NMP was further added, and the mixture was stirred for 20 hours while heating at 50 ° C. in a nitrogen atmosphere, and the polyamic acid solution ( Viscosity: 510 mPa ⁇ s) was obtained. To 535.7 g of this polyamic acid solution, 264.3 g of NMP and 200.0 g of BCS were added and stirred to obtain a polyamic acid solution (B1). The solid content concentration was 6.0% by mass.
  • Polyamic acid B6 In a 2000 ml flask with a stirrer and a nitrogen inlet tube, 142.1 g (0.550 mol) of DA-3 was added, 1466.8 g of NMP was added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring the diamine solution under water cooling, 108.0 g (0.495 mol) of CA-1 was added, and 366.7 g of NMP was further added. The mixture was stirred for 20 hours while heating at 50 ° C., and the polyamic acid solution (viscosity: 89 mPa ⁇ s) was obtained. To 606.1 g of this polyamic acid solution, 93.9 g of NMP and 300.0 g of BCS were added and stirred to obtain a polyamic acid solution (B6). The solid content concentration was 6.0% by mass.
  • Example 6 165.4 g of polyamic acid solution B5 and 176.7 g of A5 were mixed, 0.9 g of NMP, 431.2 g of GBL, 25.8 g of GBL solution containing 1.0% by mass of AD-2 and 200.0 g of BCS were added. For 2 hours to obtain 1000 g of a liquid crystal aligning agent (C6). 1.0 g of this solution was measured on an aluminum cup, and the solid content concentration when treated at 200 ° C. for 2 hours was 4.3% by mass. Its viscosity was 11 mPa ⁇ s.
  • C6 liquid crystal aligning agent
  • Example 7 Mix 124.0 g of polyamic acid solution B5 and 206.2 g of A5, add 12.8 g of NMP, 426.9 g of GBL, 30.1 g of GBL solution containing 1.0 mass of AD-2 and 200.0 g of BCS. It stirred for 2 hours and obtained 1000g of liquid crystal aligning agents (C7). 1.0 g of this solution was measured on an aluminum cup, and the solid content concentration when treated at 200 ° C. for 2 hours was 4.3% by mass. The viscosity was 11 mPa ⁇ s.
  • the liquid crystal aligning agents of Examples 1 to 13 showed good results in any of long-term frozen storage stability, adhesion evaluation, and coating property evaluation.
  • the liquid crystal aligning agents of Comparative Examples 1 to 10 could not achieve good results in all evaluations. It should be noted that the entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2017-72075 filed on March 31, 2017 are cited herein as disclosure of the specification of the present invention. Incorporate.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

高い基板との密着性を有し、高い固形分濃度においても析出を起こさず、かつ安定した膜厚を得られる液晶配向剤、及びそれを用いた液晶配向膜の提供。 下記成分(A)~(D)を含有し、(C)成分を、液晶配向剤の全質量に対し、20~50質量%含有する液晶配向剤。 (A):ポリイミド前駆体及びそのイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体。 (B):非アミン系のSiカップリング剤。 (C):γ-ブチロラクトン、γ-バレロラクトン、N-エチル-2-ピロリドン、N-ブチル-2-ピロリドン及びエチルカルビトールからなる群から選ばれる少なくとも1種の有機溶媒。 (D):1-ブトキシ-2-プロパノール、2-ブトキシ-1-プロパノール、ブチルセロソルブ、ブチルセロソルブアセテート及びジプロピレングリコールジメチルエーテルからなる群から選ばれる少なくとも1種の有機溶媒。

Description

液晶配向剤、液晶配向膜、及び液晶表示素子
 本発明は、パネル生産コストと成膜品質を両立できる液晶配向膜に関する。
 液晶配向膜としては、ポリアミック酸(ポリアミド酸とも言われる。)などのポリイミド前駆体や可溶性ポリイミドの溶液を主成分とする液晶配向剤を塗布し焼成した、いわゆるポリイミド系の液晶配向膜が広く使用されている。
 かかる液晶配向膜の成膜法としては、スピンコート、ディップコート、フレキソ印刷、インクジェット法などが知られている。近年では、製品に課せられる成膜品質や生産性に応じて、フレキソ印刷とインクジェット法が使い分けられているのが主流であり、液晶配向剤に必要な特性としては、塗布面内での膜厚の均一性と、塗布周辺部の成膜精度が挙げられ、特許文献1~3に示すような方法が提案されている。
国際公開第2014/024885号 国際公開第2014/084309号
 近年の液晶表示素子の大型化に伴い、液晶配向剤の使用量を低減させ製造効率を高める為、高固形分な液晶配向剤が求められている。また、近年の液晶表示素子の高精細化に伴い、段差の大きい高精細基板でも安定した膜厚が達成できる液晶配向剤への要求が高まっている。上記の技術的方向性は、全てワニスの保存安定性を圧迫し、液の析出を引き起こすリスクを高める。更に、基板の高精細化や、パネルのスリム化により、より高い基板と膜との密着性が求められるようになっている。
 本発明は、高い密着性を有しながら、高い固形分濃度においても析出を起こさず、かつ安定した膜厚を得られる液晶配向剤、及びそれを用いた液晶配向膜を提供することにある。
 本発明者は、上記課題の解決の為鋭意研究を重ねた結果、本発明を完成するに至った。
 本発明は、下記(A)成分、(B)成分、(C)成分及び(D)成分を含有し、かつ上記(C)成分を、液晶配向剤の全質量に対し、20~50質量%含有する液晶配向剤にある。
(A):ポリイミド前駆体及びそのイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体。
(B):非アミン系のSiカップリング剤。
(C):γ-ブチロラクトン、γ-バレロラクトン、N-エチル-2-ピロリドン、N-ブチル-2-ピロリドン、及びエチルカルビトールからなる群から選ばれる少なくとも1種の有機溶媒。
(D):1-ブトキシ-2-プロパノール、2-ブトキシ-1-プロパノール、ブチルセロソルブ、ブチルセロソルブアセテート、及びジプロピレングリコールジメチルエーテルからなる群から選ばれる少なくとも1種の有機溶媒。
 本発明によれば、高い基板密着性を有し、高い固形分濃度においても析出を起こさず、かつ安定した膜厚を得られる液晶配向剤、及びそれを用いた液晶配向膜を提供できる。本発明の液晶配向剤は、インクジェット法による塗布に特に有効であるが、フレキソ印刷等、従来の印刷法による塗布においても有効に用いることができる。
<(A)成分>
 本発明の液晶配向剤に含有される(A)成分とは、ポリイミド前駆体及びそのイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体である。
 ポリイミド前駆体は、以下の式(1)で表すことが出来る。
Figure JPOXMLDOC01-appb-C000001
 式(1)中、Xは、テトラカルボン酸誘導体由来の4価の有機基であり、Yはジアミン由来の2価の有機基であり、Rは、水素原子又は炭素数1~5のアルキル基を表す。イミド化反応の進行のしやすさの観点から、Rは水素原子、メチル基、又はエチル基が好ましく、水素原子又はメチル基がより好ましい。
 A及びAは、それぞれ独立して、水素原子又は、炭素数1~5のアルキル基、炭素数2~5のアルケニル基又は炭素数2~5のアルキニル基である。液晶配向性の点から、A及びAは水素原子又はメチル基が好ましい。
 以下、ポリイミド前駆体原料となる各成分について説明する。
<ジアミン>
 ポリイミド前駆体の製造に用いられるジアミンは以下の式(2)で表すことができる。
Figure JPOXMLDOC01-appb-C000002
 上記式(2)中のA及びAは、好ましい例も含めて、上記式(1)中のA及びAと同様の定義である。Yの構造を例示すると、以下の式(Y-1)~式(Y-1)の通りである。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020

 式中nは、1~6の整数である。
<テトラカルボン酸成分>
 ポリイミド前駆体を製造するためのテトラカルボン酸成分としては、テトラカルボン酸二無水物だけでなく、その誘導体であるテトラカルボン酸、テトラカルボン酸ジハライド化合物、テトラカルボン酸ジアルキルエステル又はテトラカルボン酸ジアルキルエステルジハライドを用いることもできる。
 テトラカルボン酸二無水物は、好ましくは下記式(3)で表される。
Figure JPOXMLDOC01-appb-C000021
式(3)中、Xは4価の有機基であり、具体例としては、下記式(X1-1)~(X1-44)が挙げられる。
Figure JPOXMLDOC01-appb-C000022
 式(X1-1)~(X1-4)中、R~R23は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基である。液晶配向性の点から、R~R23は、水素原子、ハロゲン原子、メチル基、又はエチル基が好ましく、水素原子又はメチル基がより好ましい。
 式(X1-1)の具体例としては、下記式(X1-1-1)~(X1-1-6)が挙げられる。液晶配向性及び光反応の感度の点から、(X1-1-1)が特に好ましい。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
<ポリアミック酸エステルの製造方法>
 本発明に用いられるポリイミド前駆体の一つであるポリアミック酸エステルは、以下の(1)、(2)又は(3)の方法で合成することができる。
(1)ポリアミック酸から合成する場合
 ポリアミック酸エステルは、テトラカルボン酸二無水物とジアミンから得られるポリアミック酸をエステル化することによって合成できる。具体的には、ポリアミック酸とエステル化剤を有機溶剤の存在下で-20℃~150℃、30分~24時間反応させることによって合成できる。
 エステル化剤としては、精製によって容易に除去できるものが好ましく、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタール、N,N-ジメチルホルムアミドジプロピルアセタール、N,N-ジメチルホルムアミドジネオペンチルブチルアセタール、N,N-ジメチルホルムアミドジ-t-ブチルアセタール、1-メチル-3-p-トリルトリアゼン、1-エチル-3-p-トリルトリアゼン、1-プロピル-3-p-トリルトリアゼン、4-(4,6-ジメトキシ-1,3,5-トリアジンー2-イル)-4-メチルモルホリニウムクロリドなどが挙げられる。エステル化剤の添加量は、ポリアミック酸の繰り返し単位1モルに対して、2~6モル当量が好ましい。
 上記の反応に用いる溶媒は、ポリマーの溶解性からγ-ブチロラクトン、γ-バレロラクトン、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-ブチル-2-ピロリドン又はエチルカルビトールが好ましく、これらは1種又は2種以上を混合して用いてもよい。合成時の濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。
(2)テトラカルボン酸ジエステルジクロリドとジアミンとの反応により合成する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルジクロリドとジアミンから合成することができる。具体的には、テトラカルボン酸ジエステルジクロリドとジアミンとを塩基と有機溶剤の存在下で-20℃~150℃、30分~24時間反応させることによって合成できる。
 前記塩基には、ピリジン、トリエチルアミン、4-ジメチルアミノピリジンなどが使用できるが、反応が穏和に進行するためにピリジンが好ましい。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、テトラカルボン酸ジエステルジクロリドに対して、2~4倍モルが好ましい。
 上記の反応に用いる溶媒は、モノマー及びポリマーの溶解性からN-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。合成時のポリマー濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの合成に用いる溶媒は脱水されていることが好ましく、窒素雰囲気中で、外気の混入を防ぐのが好ましい。
(3)テトラカルボン酸ジエステルとジアミンから合成する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルとジアミンを重縮合することにより合成することができる。
 具体的には、テトラカルボン酸ジエステルとジアミンを縮合剤、塩基、及び有機溶剤の存在下で0℃~150℃において、30分~24時間反応させることによって合成することができる。
 前記縮合剤には、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニルなどが使用できる。縮合剤の添加量は、テトラカルボン酸ジエステルに対して2~3倍モルが好ましい。
 前記塩基には、ピリジン、トリエチルアミンなどの3級アミンが使用できる。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという点から、ジアミン成分に対して2~4倍モルが好ましい。
 また、上記反応において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウムなどのハロゲン化リチウムが好ましい。ルイス酸の添加量はジアミン成分に対して0~1.0倍モルが好ましい。
 上記3つのポリアミック酸エステルの合成方法の中でも、高分子量のポリアミック酸エステルが得られるため、上記(1)又は上記(2)の合成法が特に好ましい。
 上記のようにして得られるポリアミック酸エステルの溶液は、よく撹拌させながら貧溶媒に注入することで、ポリマーを析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
<ポリアミック酸の製造方法>
 本発明に用いられるポリイミド前駆体の1つであるポリアミック酸は、以下に示す方法により合成することができる。具体的には、テトラカルボン酸二無水物とジアミンとを有機溶媒の存在下で-20℃~150℃において、30分~24時間反応させることによって合成できる。
 上記の反応に用いる有機溶媒は、モノマー及びポリマーの溶解性からγ-ブチロラクトン、γ-バレロラクトン、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-ブチル-2-ピロリドン又はエチルカルビトールが好ましく、これらは1種又は2種以上を混合して用いてもよい。ポリマーの濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという点から、1~30質量%が好ましく、5~20質量%がより好ましい。
 上記のようにして得られたポリアミック酸は、反応溶液をよく撹拌させながら貧溶媒に注入することで、ポリマーを析出させて回収できる。また、析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥することで精製されたポリアミック酸の粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
<ポリイミドの製造方法>
 本発明に用いられるポリイミドは、前記ポリアミック酸エステル又はポリアミック酸をイミド化することで製造できる。ポリアミック酸エステルからポリイミドを製造する場合、前記ポリアミック酸エステル溶液、又はポリアミック酸エステル樹脂粉末を有機溶媒に溶解させて得られるポリアミック酸溶液に塩基性触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の過程で重合体の分子量低下が起こりにくいので好ましい。
 化学的イミド化は、イミド化させたいポリアミック酸エステルを、有機溶媒中において塩基性触媒存在下で撹拌することで行うことができる。有機溶媒としては前述した重合反応時に用いる溶媒を使用できる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもトリエチルアミンは反応を進行させるのに充分な塩基性を持つので好ましい。
 イミド化反応を行うときの温度は、-20℃~140℃、好ましくは0℃~100℃であり、反応時間は1~100時間で行うことができる。塩基性触媒の量はアミック酸エステル基の0.5~30モル倍、好ましくは2~20モル倍である。得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御できる。イミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、液晶配向剤とすることが好ましい。
 ポリアミック酸からポリイミドを製造する場合、ジアミン成分とテトラカルボン酸二無水物との反応で得られた前記ポリアミック酸の溶液に触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の過程で重合体の分子量低下が起こりにくいので好ましい。
 化学的イミド化は、イミド化させたい重合体を、有機溶媒中において塩基性触媒と酸無水物の存在下で攪拌することにより行うことができる。有機溶媒としては前述した重合反応時に用いる溶媒を使用できる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。また、酸無水物としては無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。
 イミド化反応を行うときの温度は、-20℃~140℃、好ましくは0℃~100℃であり、反応時間は1~100時間で行うことができる。塩基性触媒の量はアミック酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はアミック酸基の1~50モル倍、好ましくは3~30モル倍である。得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御できる。
 ポリアミック酸エステル又はポリアミック酸のイミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、本発明の液晶配向剤とすることが好ましい。
 上記のようにして得られるポリイミドの溶液は、よく撹拌させながら貧溶媒に注入することで、ポリイミドを析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。
 前記貧溶媒は、特に限定されないが、メタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン等が挙げられる。
<液晶配向剤>
 本発明の液晶配向剤は、ポリイミド前駆体及びポリイミドが有機溶媒中に溶解された溶液の形態を有する。ポリイミド前駆体及びポリイミドの重量平均分子量で2,000~500,000が好ましく、より好ましくは5,000~300,000であり、更に好ましくは、10,000~100,000である。また、数平均分子量は、好ましくは、1,000~250,000であり、より好ましくは、2,500~150,000であり、更に好ましくは、5,000~50,000である。
 本発明の液晶配向剤の重合体の含有量(濃度)は、形成させる塗膜の厚みの設定によって変更できるが、均一で欠陥のない塗膜を形成させるという点から、液晶配向剤の全質量に対し、1質量%以上が好ましく、溶液の保存安定性の点から10質量%以下が好ましい。なかでも、重合体の含有量は2~8質量%がより好ましく、3~7質量%が特に好ましい。
<(B)成分>
 本発明の液晶配向剤に含有される(B)成分は、非アミン系のSiカップリング剤である。非アミン系のSiカップリング剤とは、分子中にアミノ基をもたない、加水分解性シリル基含有化合物を意味する。その具体例は、以下のように例示されるが、これらに限定されない。
 ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、トリス-(トリメトキシシリルプロピル)イソシアヌレート、3-ウレイドプロピルトリアルコキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン。
 この中でも、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-ウレイドプロピルトリエトキシシランが好ましい。
 (B)成分の含有量は、塗膜の基板密着性と、その他の特性を妨げないことを理由として、液晶配向剤におけるポリマー固形分に対して、0.1~2質量%が好ましく、0.3~2質量%がより好ましく、0.5~1.5質量%が特に好ましい。また、(B)成分は2種以上の異なる種類を用いてもよい。
<(C)成分>
 本発明の液晶配向剤に含有される(C)成分は、γ-ブチロラクトン、γ-バレロラクトン、N-エチル-2-ピロリドン、N-ブチル-2-ピロリドン、及びエチルカルビトールからなる群から選ばれる少なくとも1種の有機溶媒である。この溶媒は、ポリマーの溶解に寄与する溶媒である。その中でも、γ-ブチロラクトン、γ-バレロラクトン及びN-エチル-2-ピロリドンからなる群から選ばれる少なくとも1種が好ましい。
 (C)成分の含有量は、溶液の保管安定性と塗膜エッジの成膜品質を高める理由で、液晶配向剤の全質量に対し、20~50質量%が好ましく、25~50質量%がより好ましく、30~50質量%が特に好ましい。
<(D)成分>
 本発明の液晶配向剤に含有される(D)成分は、1-ブトキシ―2-プロパノール、2-ブトキシ-1-プロパノール、ブチルセロソルブ、ブチルセロソルブアセテート、及びジプロピレングリコールジメチルエーテルからなる群から選ばれる少なくとも1種の有機溶媒である。この溶媒は、均一な塗膜形成に寄与する溶媒である。なかでも、1-ブトキシ―2-プロパノール、ブチルセロソルブ、ブチルセロソルブアセテートから選ばれる少なくとも1種が好ましい。
 (D)成分の含有量は、塗膜の均一性と溶液の保管安定性を得る目的で、液晶配向剤の全質量に対し、5~40質量%が好ましく、20~40質量%がより好ましく、20~30質量%が特に好ましい。
 本発明の液晶配向剤における各成分は、(A)成分に対して、(B)成分が0.3~2質量%、(C)成分が20~50質量%、(D)成分は、20~40質量%であるのが好ましい。なかでも、(A)成分に対して、(B)成分が0.5~1.5質量%、(C)成分が30~50質量%、(D)成分は、20~30質量%であるのが特に好ましい。
<その他の溶媒>
 本発明の液晶配向剤に用いる(C)成分及び(D)成分以外の溶媒の具体例を下記に挙げるが、これらの例に限定されるものではない。
 例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド、1,3-ジメチル-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、3-メトキシーN,N-ジメチルプロパンアミド又は4-ヒドロキシ-4-メチル-2-ペンタノンなどを挙げることができる。
 なかでも、N-メチル-2-ピロリドンを、保管安定性が高いために液晶配向剤の全質量に対し、50質量%以下含有すると好ましく、25~30質量%含有すると更に好ましい。
 更に、ポリイミド前駆体及びポリイミドの溶媒への溶解性が高い場合は、下記式[D-1]~式[D-3]で示される溶媒を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000029
 式[D-1]中、Dは炭素数1~3のアルキル基を示し、式[D-2]中、Dは炭素数1~3のアルキル基を示し、式[D-3]中、Dは炭素数1~4のアルキル基を示す。
 下記に、貧溶媒の具体例を挙げるが、これらの例に限定されるものではない。例えば、エタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、ジプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、4-ヘプタノン、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、2-(メトキシメトキシ)エタノール、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、2-(ヘキシルオキシ)エタノール、フルフリルアルコール、ジエチレングリコール、プロピレングリコール、1-(ブトキシエトキシ)プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ダイアセトンアルコール、プロピレングリコールジアセタート、ジイソペンチルエーテル、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル、ジイソブチルケトン、又は前記式[D-1]~式[D-3]で示される溶媒などを挙げることができる。
<架橋性化合物>
 本発明の液晶配向剤には、エポキシ基、イソシアネート基、オキセタン基又はシクロカーボネート基を有する架橋性化合物、ヒドロキシル基、ヒドロキシアルキル基及び低級アルコキシアルキル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物、又は重合性不飽和結合を有する架橋性化合物を含んでいても良い。これら置換基や重合性不飽和結合は、架橋性化合物中に2個以上有する必要がある。
 エポキシ基又はイソシアネート基を有する架橋性化合物としては、例えば、ビスフェノールアセトングリシジルエーテル、フェノールノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂、トリグリシジルイソシアヌレート、テトラグリシジルアミノジフェニレン、テトラグリシジル-m-キシレンジアミン、テトラグリシジル-1,3-ビス(アミノエチル)シクロヘキサン、テトラフェニルグリシジルエーテルエタン、トリフェニルグリシジルエーテルエタン、ビスフェノールヘキサフルオロアセトジグリシジルエーテル、1,3-ビス(1-(2,3-エポキシプロポキシ)-1-トリフルオロメチル-2,2,2-トリフルオロメチル)ベンゼン、4,4-ビス(2,3-エポキシプロポキシ)オクタフルオロビフェニル、トリグリシジル-p-アミノフェノール、テトラグリシジルメタキシレンジアミン、2-(4-(2,3-エポキシプロポキシ)フェニル)-2-(4-(1,1-ビス(4-(2,3-エポキシプロポキシ)フェニル)エチル)フェニル)プロパン又は1,3-ビス(4-(1-(4-(2,3-エポキシプロポキシ)フェニル)-1-(4-(1-(4-(2,3-エポキシプロポキシ)フェニル)-1-メチルエチル)フェニル)エチル)フェノキシ)-2-プロパノールなどが挙げられる。
 オキセタン基を有する架橋性化合物は、下記式[4A]で示されるオキセタン基を少なくとも2個有する化合物である。
Figure JPOXMLDOC01-appb-C000030
 具体的には、WO2011/132751(出願:PCT/JP2011/059867)の58~59頁に掲載される式[4a]~式[4k]の架橋性化合物が挙げられる。
 シクロカーボネート基を有する架橋性化合物としては、下記式[5A]で示されるシクロカーボネート基を少なくとも2個有する架橋性化合物である。
Figure JPOXMLDOC01-appb-C000031
 具体的には、WO2012/014898(出願:PCT/JP2011/066980)の76~82頁に掲載される式[5-1]~式[5-42]の架橋性化合物が挙げられる。
 ヒドロキシル基及びアルコキシル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物としては、例えば、ヒドロキシル基又はアルコキシル基を有するアミノ樹脂、例えば、メラミン樹脂、尿素樹脂、グアナミン樹脂、グリコールウリル-ホルムアルデヒド樹脂、スクシニルアミド-ホルムアルデヒド樹脂又はエチレン尿素-ホルムアルデヒド樹脂などが挙げられる。具体的には、アミノ基の水素原子がメチロール基又はアルコキシメチル基又はその両方で置換されたメラミン誘導体、ベンゾグアナミン誘導体、又はグリコールウリルを用いることができる。このメラミン誘導体又はベンゾグアナミン誘導体は、2量体又は3量体として存在することもできる。これらはトリアジン環1個当たり、メチロール基又はアルコキシメチル基を平均3個以上6個以下有するものが好
ましい。
 上記のメラミン誘導体又はベンゾグアナミン誘導体の例としては、トリアジン環1個当たりメトキシメチル基が平均3.7個置換されているMX-750、トリアジン環1個当たりメトキシメチル基が平均5.8個置換されているMW-30(以上、三和ケミカル社製)やサイメル300、301、303、350、370、771、325、327、703、712などのメトキシメチル化メラミン、サイメル235、236、238、212、253、254などのメトキシメチル化ブトキシメチル化メラミン、サイメル506、508などのブトキシメチル化メラミン、サイメル1141のようなカルボキシル基含有メトキシメチル化イソブトキシメチル化メラミン、サイメル1123のようなメトキシメチル化エトキシメチル化ベンゾグアナミン、サイメル1123-10のようなメトキシメチル化ブトキシメチル化ベンゾグアナミン、サイメル1128のようなブトキシメチル化ベンゾグアナミン、サイメル1125-80のようなカルボキシル基含有メトキシメチル化エトキシメチル化ベンゾグアナミン(以上、三井サイアナミド社製)が挙げられる。また、グリコールウリルの例として、サイメル1170のようなブトキシメチル化グリコールウリル、サイメル1172のようなメチロール化グリコールウリルなど、パウダーリンク1174のようなメトキシメチロール化グリコールウリル等が挙げられる。
 ヒドロキシル基又はアルコキシル基を有するベンゼン又はフェノール性化合物としては、例えば、1,3,5-トリス(メトキシメチル)ベンゼン、1,2,4-トリス(イソプロポキシメチル)ベンゼン、1,4-ビス(sec-ブトキシメチル)ベンゼン又は2,6-ジヒドロキシメチル-p-tert-ブチルフェノールが挙げられる。
 より具体的には、WO2011/132751(出願:前と同じ)の62~66頁に掲載される、式[6-1]~式[6-48]の架橋性化合物が挙げられる。
 重合性不飽和結合を有する架橋性化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリ(メタ)アクリロイルオキシエトキシトリメチロールプロパン又はグリセリンポリグリシジルエーテルポリ(メタ)アクリレートなどの重合性不飽和基を分子内に3個有する架橋性化合物、更に、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキサイドビスフェノールA型ジ(メタ)アクリレート、プロピレンオキサイドビスフェノール型ジ(メタ)アクリレート、1,6-へキサンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、エチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート、フタル酸ジグリシジルエステルジ(メタ)アクリレート又はヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレートなどの重合性不飽和基を分子内に2個有する架橋性化合物、加えて、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-フェノキシ-2-ヒドロキシプロピル(メタ)アクリレート、2-(メタ)アクリロイルオキシ-2-ヒドロキシプロピルフタレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルリン酸エステル又はN-メチロール(メタ)アクリルアミド等の重合性不飽和基を分子内に1個有する架橋性化合物等が挙げられる。
 更に、下記式[7A]で示される化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000032
 式[7A]中、Eはシクロヘキサン環、ビシクロヘキサン環、ベンゼン環、ビフェニル環、ターフェニル環、ナフタレン環、フルオレン環、アントラセン環又はフェナントレン環からからなる群から選ばれる基を示し、Eは下記式[7a]又は式[7b]から選ばれる基を示し、nは1~4の整数を示す。
Figure JPOXMLDOC01-appb-C000033
 上記は架橋性化合物の一例であり、これらに限定されるものではない。また、本発明の液晶配向剤に用いる架橋性化合物は、1種類でも、2種類以上組み合わせてもよい。
 本発明の液晶配向剤における、架橋性化合物の含有量は、全ての重合体成分100質量部に対して、0.1~150質量部が好ましい。なかでも、架橋反応が進行し目的の効果を発現させるためには、の重合体成分100質量部に対して、0.1~100質量部が好ましい。より好ましいのは、1~50質量部である。
 本発明の液晶配向剤は、塗布した際の膜厚の均一性や表面平滑性を向上させる化合物を含有することができる。
 液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。
 より具体的には、例えば、エフトップEF301、EF303、EF352(以上、トーケムプロダクツ社製)、メガファックF171、F173、R-30(以上、大日本インキ社製)、フロラードFC430、FC431(以上、住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(以上、旭硝子社製)などが挙げられる。
 界面活性剤の使用量は、液晶配向剤に含有される全ての重合体成分100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。
 更に、液晶配向剤には、液晶配向膜中の電荷移動を促進して素子の電荷抜けを促進させる化合物として、WO2011/132751(出願:前と同じ)の69~73頁に掲載される、式[M1]~式[M156]の窒素含有複素環アミンを添加することもできる。このアミンは、液晶配向剤に直接添加しても構わないが、濃度0.1~10質量%、好ましくは1~7質量%の溶液にしてから添加することが好ましい。この溶媒は、特定重合体(A)を溶解させるならば特に限定されない。
 本発明の液晶配向剤には、上記の貧溶媒、架橋性化合物、樹脂被膜又は液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物及び電荷抜けを促進させる化合物の他に、本発明に記載の重合体以外の重合体、配向膜と基板との密着性を向上させる目的のシランカップリング剤、更には塗膜を焼成する際にポリイミド前駆体の加熱によるイミド化を効率よく進行させる目的のイミド化促進剤等を添加しても良い。
<液晶配向膜・液晶表示素子>
 液晶配向膜は、液晶配向剤を基板に塗布し、乾燥、焼成して得られる膜である。基板としては透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板とともに、アクリル基板やポリカーボネート基板などのプラスチック基板等でもよい。その際、液晶を駆動させるためのITO電極などが形成された基板を用いると、プロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウエハーなどの不透明な物でも使用でき、この場合の電極にはアルミニウムなどの光を反射する材料も使用できる。
 液晶配向剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン又はIR(赤外線)型オーブンなどの加熱手段により、溶媒を蒸発させて液晶配向膜とすることができる。本発明の液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含有される溶媒を十分に除去するために50~120℃で1~10分焼成し、その後、150~300℃で5~120分焼成する条件が挙げられる。焼成後の液晶配向膜の厚みは、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nmが好ましく、10~200nmがより好ましい。
 本発明の液晶配向処理剤は、基板上に塗布、焼成した後、従来の装置、方法で行われるラビング処理や、光配向処理などで配向処理をして、又は垂直配向用途などでは配向処理無しで、液晶配向膜として用いることができる。
 液晶セルの作製方法の一例として、パッシブマトリクス構造の液晶表示素子を例にとり説明する。なお、画像表示を構成する各画素部分にTFT(Thin Film Transistor)などのスイッチング素子が設けられたアクティブマトリクス構造の液晶表示素子であってもよい。具体的には、透明なガラス製の基板を準備し、一方の基板の上にコモン電極を、他方の基板の上にセグメント電極を設ける。これらの電極は、例えばITO電極とすることができ、所望の画像表示ができるようパターニングされている。次いで、各基板の上に、コモン電極とセグメント電極を被覆するようにして絶縁膜を設ける。絶縁膜は、例えば、ゾル-ゲル法によって形成されたSiO-TiOの膜とすることができる。
 次に、各基板の上に液晶配向膜を形成し、一方の基板に他方の基板を互いの液晶配向膜面が対向するようにして重ね合わせ、周辺をシール剤で接着する。シール剤には、基板間隙を制御するために、通常、スペーサーを混入しておき、また、シール剤を設けない面内部分にも、基板間隙制御用のスペーサーを散布しておくことが好ましい。シール剤の一部には、外部から液晶を充填可能な開口部を設けておく。次いで、シール剤に設けた開口部を通じて、2枚の基板とシール剤で包囲された空間内に液晶材料を注入し、その後、この開口部を接着剤で封止する。注入には、真空注入法を用いてもよいし、大気中で毛細管現象を利用した方法を用いてもよい。液晶材料は、ポジ型液晶材料やネガ型液晶材料のいずれを用いてもよいが、好ましいのは、ネガ型液晶材料である。次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に一対の偏光板を貼り付ける。
 上記のようにして、本発明の液晶配向剤を用いることで、塗布面内の膜厚の均一性や、塗布周辺部の直線性及び寸法安定性に優れる液晶配向膜を得ることができる。
 以下に実施例を挙げて、本発明を更に具体的に説明する。但し、本発明は、これらの実施例に限定して解釈されるものではない。以後で使用する化合物の略号、各特性の測定方法は、次のとおりである。
<化合物の略号>
 下記において「Boc」はtert-ブトキシカルボニル基である。
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036

<溶媒の略号>
 NMP:N-メチル-2-ピロリドン、 BCS:ブチルセロソルブ
 GBL:γ-ブチロラクトン
<粘度>
 重合体溶液の粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL分取し、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
<固形分濃度の測定法>
 溶液1.0gをアルミニウム製カップに測りとり、200℃、2時間の条件で加熱処理した後、カップの上に残存している固体量を計測し、溶液の固形分濃度を測定した。
<長期保管安定性の評価>
 液晶配向剤について、-20℃の冷凍庫にて1年間保管した際、この間の粘度変化が±1mPa・s以内であって、液体の外観についても、濁りや析出がないものを、保管「良好」。粘度変化、濁り、析出があったものを「不良」として評価した。
<クロスカット試験による密着性評価>
 液晶配向剤を孔径1.0μmのメンブランフィルターで濾過した後、窒素珪素基板上にスピンコートし、温度80℃のホットプレート上で5分間の乾燥後、230℃で15分間焼成することで膜厚100nmのポリイミド膜を作製する。窒素珪素基板上に作製したポリイミド膜を、温度70℃、湿度80%の環境下に24時間保管した。その後、室温に3時間放置した後、JIS K 5600に従って、密着性を評価した。
 ポリイミド膜にカッターナイフで2mm間隔にキズを入れて100個のマス目を作成し、その上からセロハンテープを圧着し瞬間的に引き剥がしてポリイミド膜の窒素珪素基板からの剥がれ状態を調べた。1マス内にて、50%以上の膜が剥がれた場合、そのマスの膜は剥がれたとし、100個のマス目について、不良率を算出した。
<印刷試験による塗膜の評価>
 実施例1~3、比較例1~3の液晶配向剤を、液晶配向膜印刷機(飯沼ゲージ製 ドクターブレード方式S-150)、アニロックスロール(仕様:深度17マイクロメートル、400メッシュ)に液晶配向剤を1mL滴下し、8x8cmの塗布面を有する印刷版(コムラテック製 仕様:400メッシュ、開口率30%、角度75度)を用いて、アニロックスロール圧は、Nip幅5mm、印圧マイナス0.12mmの条件で、10×10cmのCrが蒸着されたガラス基板の中心に塗膜を形成した。その後、60℃のホットプレート上で2分間乾燥後、IRオーブンにて230℃15分間焼成し、ガラス基板上にポリイミド膜を得た。このポリイミド膜について、全ての実施例及び比較例にて、均一な塗膜が得られた。この塗膜の膜厚を測定した。厚い膜が形成できる場合、液晶配向剤の使用効率が高いと判断できるため、評価は「良好」となる。
<インクジェット塗布での塗布液使用量の評価>
 下記実施例4~11、比較例4~6について、インクジェット塗布装置(石井表記社製)を用いて、Crを蒸着したガラス基板上に、成膜後の膜厚が100nmになるように、塗布速度250mm/sec、ディスペンス量70pL、塗布面積36×36mmで行った。塗膜の膜厚は、110℃のホットプレート上で1分仮乾燥を行った後、230℃15分の条件で、IRオーブンで焼成した。この際、全ての実施例及び比較例で、面内にムラのない状態で塗布ができることを確認した。この条件下において、本焼成後の膜厚が100nmになる条件で塗布した際の、滴下ピッチを比較した。この際、広い滴下ピッチになるものは、単位距離あたりの滴下液量が少ないことになる。滴下ピッチが長いものは「良好」、滴下ピッチが短いものを「不良」とした。
<合成例>
[ポリアミック酸A1]
 撹拌装置付き及び窒素導入管付きの2000mlフラスコにDA-1を27.8g(0.140モル)、DA-4を111.6g(0.560モル)入れ、NMP1194gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を水冷下で撹拌しながらCA-2を30.2g(0.154モル)加え、更にNMPを341g加え、窒素雰囲気下で1時間撹拌した。その後、CA-4を131.4g(0.525モル)とNMPを170.5g入れ、50度で加熱しながら20時間撹拌してポリアミック酸溶液(粘度:1376mPa・s)を得た。このポリアミック酸溶液346.7gにNMPを91.4g、GBLを309.9g、AD-2を1.1質量%含むNMP溶液を52.0g及びBCSを200.0g加えて撹拌しポリアミック酸溶液(A1)を得た。その固形分濃度は5.8質量%であった。
[ポリアミック酸A2]  
 撹拌装置付き及び窒素導入管付きの2000ml四つ口フラスコにDA-1を21.8g(0.110モル)と、DA-4を87.7g(0.440モル)入れ、NMPとGBLが各50質量%の比率でブレンドされた溶媒(以下、溶媒1ともいう)を1314.8g加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を水冷下で撹拌しながらCA-2を99.2g(0.506モル)と溶媒1を563.5g加えて、窒素雰囲気下、水冷下で5時間攪拌してポリアミック酸溶液(粘度:115mPa・s)を得た。このポリアミック酸溶液606.1gにNMPを92.0g、GBLを42.0g、AD-2を1.0質量%含むGBL溶液を60.0g及びBCSを200.0g加えて撹拌し、ポリアミック酸溶液(A2)を得た。その固形分濃度は6.0質量%であった。
[ポリアミック酸A3]
 撹拌装置付き及び窒素導入管付きの2000mlフラスコにDA-2を127.1g(0.426モル)、DA-7を42.7g(0.284モル)入れ、NMP1369.3gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を水冷下で撹拌しながらCA-2を132.3g(0.674モル)加え、更にNMPを342.3g加え、窒素雰囲気下で4時間撹拌してポリアミック酸溶液(粘度:736mPa・s)を得た。このポリアミック酸溶液411.0gにNMPを55.7g、GBLを273.3g、AD-2を1.7質量%含むGBL溶液を60.0g及びBCSを200.0g加えて撹拌し、ポリアミック酸溶液(A3)を得た。その固形分濃度は6.0質量%であった。
[ポリアミック酸A4]
 撹拌装置付き及び窒素導入管付きの2000mlフラスコにDA-2を127.1g(0.426モル)、DA-7を42.7g(0.284モル)入れ、NMP1369.3gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を水冷下で撹拌しながらCA-2を132.3g(0.674モル)加え、更にNMPを342.3g加え、窒素雰囲気下で4時間撹拌してポリアミック酸溶液(粘度:736mPa・s)を得た。このポリアミック酸溶液411.0gにNMPを103.3g、GBLを225.7g、AD-2を1.4質量%含むGBL溶液を60.0g及びBCSを200.0g加えて撹拌し、ポリアミック酸溶液(A4)を得た。その固形分濃度は6.0質量%であった。
[ポリアミック酸A5]
 撹拌装置付き及び窒素導入管付きの2000mlフラスコにDA-2を127.1g(0.426モル)、DA-7を42.7g(0.284モル)入れ、NMPを1363.6g加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を水冷下で撹拌しながらCA-2を131.0g(0.668モル)加え、更にNMPを340.9g加え、窒素雰囲気下で4時間撹拌してポリアミック酸溶液(A5)(粘度:304mPa・s)を得た。その固形分濃度は14.6質量%であった。
[ポリアミック酸A6]
 撹拌装置付き及び窒素導入管付きの2000mlフラスコにDA-1を27.8g(0.140モル)、DA-4を111.6g(0.560モル)入れ、NMP1273.0gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を水冷下で撹拌しながらCA-2を28.8g(0.115モル)加え、更にNMPを254.6g加え、窒素雰囲気下で1時間撹拌した。その後、CA-4を131.4g(0.525モル)とNMPを169.7g入れ、50度で加熱しながら20時間撹拌してポリアミック酸溶液(粘度:521mPa・s)を得た。このポリアミック酸溶液193.3gにNMPを77.7g、GBLを500.0g、AD-2を1.1質量%含むGBL溶液を29.0g及びBCSを200.0g加えて撹拌しポリアミック酸溶液(A6)を得た。その固形分濃度は3.1質量%であった。
[ポリアミック酸A7]  
 撹拌装置付き及び窒素導入管付きの2000ml四つ口フラスコにDA-1を21.8g(0.110モル)と、DA-4を87.7g(0.440モル)入れ、溶媒1を1448.3g加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を水冷下で撹拌しながらCA-2を91.6g(0.468モル)と溶媒1を362.1g加えて、窒素雰囲気下、水冷下で4時間攪拌してポリアミック酸溶液(粘度:65mPa・s)を得た。このポリアミック酸溶液404.0gにNMPを61.0g、GBLを195.0g、AD-2を1.0質量%含むGBL溶液を40.0g及びBCSを300.0g加えて撹拌し、ポリアミック酸溶液(A7)を得た。その固形分濃度は4.0質量%であった。
[ポリアミック酸A8]  
 撹拌装置付き及び窒素導入管付きの2000ml四つ口フラスコにDA-1を21.8g(0.110モル)と、DA-4を87.7g(0.440モル)入れ、溶媒1を1448.3g加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を水冷下で撹拌しながらCA-2を91.6g(0.468モル)と溶媒1を362.1g加えて、窒素雰囲気下、水冷下で4時間攪拌してポリアミック酸溶液(粘度:65mPa・s)を得た。このポリアミック酸溶液404.0gにNMPを61.0g、GBLを312.0g、AD-2を1.0質量%含むGBL溶液を40.0g及びBCSを183.0g加えて撹拌し、ポリアミック酸溶液(A8)を得た。その固形分濃度は4.0質量%であった。
[ポリアミック酸A9]  
 撹拌装置付き及び窒素導入管付きの2000ml四つ口フラスコにDA-1を21.8g(0.110モル)と、DA-4を87.7g(0.440モル)入れ、溶媒1を1448.3g加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を水冷下で撹拌しながらCA-2を91.6g(0.468モル)と溶媒1を362.1g加えて、窒素雰囲気下、水冷下で4時間攪拌してポリアミック酸溶液(粘度:65mPa・s)を得た。このポリアミック酸溶液404.0gにNMPを61.0g、GBLを312.0g、AD-3を1.0質量%含むGBL溶液を40.0g及びBCSを183.0g加えて撹拌し、ポリアミック酸溶液(A9)を得た。その固形分濃度は4.0質量%であった。
[ポリアミック酸A10]  
 撹拌装置付き及び窒素導入管付きの2000ml四つ口フラスコにDA-1を21.8g(0.110モル)と、DA-4を87.7g(0.440モル)入れ、溶媒1を1448.3g加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を水冷下で撹拌しながらCA-2を91.6g(0.468モル)と溶媒1を362.1g加えて、窒素雰囲気下、水冷下で4時間攪拌してポリアミック酸溶液(粘度:65mPa・s)を得た。このポリアミック酸溶液404.0gにNMPを61.0g、GBLを312.0g、AD-4を1.0質量%含むGBL溶液を40.0g及びBCSを183.0g加えて撹拌し、ポリアミック酸溶液(A10)を得た。その固形分濃度は4.0質量%であった。
[ポリアミック酸A11]  
 撹拌装置付き及び窒素導入管付きの2000ml四つ口フラスコにDA-4を87.7g入れ、溶媒1を1052.5g加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を水冷下で撹拌しながらCA-2を70.1gと溶媒1を382.7g加えて、窒素雰囲気下、水冷下で3時間攪拌した。その後、DA-1を21.8gと溶媒1を191.3g加えて攪拌した。DA-2が溶解した後、CA-3を33.0gと溶媒1を287.0g加えて、再び窒素雰囲気下、水冷下で3時間攪拌してポリアミック酸溶液(粘度:65mPa・s)を得た。このポリアミック酸溶液398.0gにNMPを146.5g、GBLを33.5g、AD-2を1.3質量%含むGBL溶液を39.0g及びBCSを383.0g加えて撹拌し、ポリアミック酸溶液(A11)を得た。その固形分濃度は3.9質量%であった。
[ポリアミック酸A12]
 撹拌装置付き及び窒素導入管付きの2000mlフラスコにDA-1を27.8g(0.140モル)、DA-4を111.6g(0.560モル)入れ、NMP1194gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を水冷下で撹拌しながらCA-2を30.2g(0.154モル)加え、更にNMPを341g加え、窒素雰囲気下で1時間撹拌した。その後、CA-4を131.4g(0.525モル)とNMPを170.5g入れ、50度で加熱しながら20時間撹拌してポリアミック酸溶液(粘度:1376mPa・s)を得た。このポリアミック酸溶液346.7gにNMPを91.4g、GBLを309.9g、AD-1を1.1質量%含むNMP溶液を52.0g及びBCSを200.0g加えて撹拌しポリアミック酸溶液(A12)を得た。その固形分濃度は5.8質量%であった。
[ポリアミック酸A13]  
 撹拌装置付き及び窒素導入管付きの2000ml四つ口フラスコにDA-1を21.8g(0.110モル)と、DA-4を87.7g(0.440モル)入れ、NMPとGBLが各50質量%の比率でブレンドされた溶媒(以下溶媒1)を1314.8g加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を水冷下で撹拌しながらCA-2を99.2g(0.506モル)と溶媒1を563.5g加えて、窒素雰囲気下、水冷下で5時間攪拌してポリアミック酸溶液(粘度:115mPa・s)を得た。このポリアミック酸溶液606.1gにNMPを92.0g、GBLを42.0g、AD-1を1.0質量%含むGBL溶液を60.0g及びBCSを200.0g加えて撹拌し、ポリアミック酸溶液(A13)を得た。その固形分濃度は6.0質量%であった。
[ポリアミック酸A14]
 撹拌装置付き及び窒素導入管付きの2000mlフラスコにDA-2を127.1g(0.426モル)、DA-7を42.7g(0.284モル)入れ、NMP1369.3gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を水冷下で撹拌しながらCA-2を132.3g(0.674モル)加え、更にNMPを342.3g加え、窒素雰囲気下で4時間撹拌してポリアミック酸溶液(粘度:736mPa・s)を得た。このポリアミック酸溶液411.0gにNMPを329.0g、GBLを273.3g、AD-1を1.7質量%含むNMP溶液を60.0g及びBCSを200.0g加えて撹拌し、ポリアミック酸溶液(A14)を得た。その固形分濃度は6.0質量%であった。
[ポリアミック酸A15]
 撹拌装置付き及び窒素導入管付きの2000mlフラスコにDA-1を27.8g(0.140モル)、DA-4を111.6g(0.560モル)入れ、NMP1194gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を水冷下で撹拌しながらCA-2を30.2g(0.154モル)加え、更にNMPを341g加え、窒素雰囲気下で1時間撹拌した。その後、CA-4を131.4g(0.525モル)とNMPを170.5g入れ、50度で加熱しながら20時間撹拌してポリアミック酸溶液(粘度:1376mPa・s)を得た。このポリアミック酸溶液346.7gにNMPを401.3g、AD-1を1.1質量%含むNMP溶液を52.0g及びBCSを200.0g加えて撹拌しポリアミック酸溶液(A15)を得た。その固形分濃度は5.8質量%であった。
[ポリアミック酸A16]
 撹拌装置付き及び窒素導入管付きの2000mlフラスコにDA-1を27.8g(0.140モル)、DA-4を111.6g(0.560モル)入れ、NMP1273.0gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を水冷下で撹拌しながらCA-2を28.8g(0.115モル)加え、更にNMPを254.6g加え、窒素雰囲気下で1時間撹拌した。その後、CA-4を131.4g(0.525モル)とNMPを169.7g入れ、50度で加熱しながら20時間撹拌してポリアミック酸溶液(粘度:521mPa・s)を得た。このポリアミック酸溶液193.3gにNMPを77.7g、GBLを500.0g、AD-1を1.1質量%含むGBL溶液を29.0g及びBCSを200.0g加えて撹拌しポリアミック酸溶液(A16)を得た。その固形分濃度は3.1質量%であった。
[ポリアミック酸A17]  
 撹拌装置付き及び窒素導入管付きの2000ml四つ口フラスコにDA-1を21.8g(0.110モル)と、DA-4を87.7g(0.440モル)入れ、NMPとGBLが各50質量%の比率でブレンドされた溶媒(以下溶媒1)を1314.8g加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を水冷下で撹拌しながらCA-2を99.2g(0.506モル)と溶媒1を563.5g加えて、窒素雰囲気下、水冷下で5時間攪拌してポリアミック酸溶液(粘度:115mPa・s)を得た。このポリアミック酸溶液260.0gにNMPを136.0g、GBLを378.0g、AD-2を1.0質量%含むGBL溶液を26.0g及びBCSを200.0g加えて撹拌し、ポリアミック酸溶液(A17)を得た。その固形分濃度は2.6質量%であった。
[ポリアミック酸A18]
 撹拌装置付き及び窒素導入管付きの2000ml四つ口フラスコにDA-1を21.8g(0.110モル)と、DA-4を87.7g(0.440モル)入れ、NMPとGBLが各50質量%の比率でブレンドされた溶媒(以下溶媒1)を1448.3g加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を水冷下で撹拌しながらCA-2を91.6g(0.468モル)と溶媒1を362.1g加えて、窒素雰囲気下、水冷下で4時間攪拌してポリアミック酸溶液(粘度:65mPa・s)を得た。このポリアミック酸溶液404.0gにNMPを21.0g、GBLを352.0g、AD-1を1.0質量%含むNMP溶液を40.0g及びBCS183.0g加えて撹拌し、ポリアミック酸溶液(A18)を得た。その固形分濃度は4.0質量%であった。
[ポリアミック酸A19]
 撹拌装置付き及び窒素導入管付きの2000ml四つ口フラスコにDA-1を21.8g(0.110モル)と、DA-4を87.7g(0.440モル)入れ、NMPとGBLが各50質量%の比率でブレンドされた溶媒(以下溶媒1)を1314.8g加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を水冷下で撹拌しながらCA-2を99.2g(0.506モル)と溶媒1を563.5g加えて、窒素雰囲気下、水冷下で5時間攪拌してポリアミック酸溶液(粘度:115mPa・s)を得た。このポリアミック酸溶液606.1gにNMPを92.0g、GBLを102.0g及びBCSを200.0g加えて撹拌し、ポリアミック酸溶液(A19)を得た。その固形分濃度は6.0質量%であった。
[ポリアミック酸A20]
 撹拌装置付き及び窒素導入管付きの2000ml四つ口フラスコにDA-1を21.8g(0.110モル)と、DA-4を87.7g(0.440モル)入れ、NMPを1314.8g加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を水冷下で撹拌しながらCA-2を99.2g(0.506モル)とNMPを563.5g加えて、窒素雰囲気下、水冷下で5時間攪拌してポリアミック酸溶液(粘度:115mPa・s)を得た。このポリアミック酸溶液606.1gにNMPを134.0g、AD-1を1.0質量%含むNMP溶液を60.0g及びBCSを200.0g加えて撹拌し、ポリアミック酸溶液(A20)を得た。その固形分濃度は6.0質量%であった。
[ポリアミック酸B1]
 撹拌装置付き及び窒素導入管付きの2000mlフラスコにDA-5を156.1g(0.545モル)入れ、NMP1593.0gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を水冷下で撹拌しながらCA-1を116.7g(0.535モル)加え、更にNMPを398g加え、窒素雰囲気下、50度で加熱しながら20時間撹拌してポリアミック酸溶液(粘度:510mPa・s)を得た。このポリアミック酸溶液535.7gにNMPを264.3g、及びBCS200.0g加えて撹拌し、ポリアミック酸溶液(B1)を得た。その固形分濃度は6.0質量%であった。
[ポリアミック酸B2]
 撹拌装置付き及び窒素導入管付きの2000mlフラスコにDA-3を129.2g(0.500モル)入れ、NMP1594gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を水冷下で撹拌しながらCA-1を92.2g(0.423モル)加え、更にNMPを398g加え、50度で加熱しながら20時間撹拌してポリアミック酸溶液(粘度:135mPa・s)を得た。このポリアミック酸溶液606.1gにNMPを193.9g、及びBCSを200.0g加えて撹拌し、ポリアミック酸溶液(B2)を得た。その固形分濃度は6.0質量%であった。
[ポリアミック酸B3]
 撹拌装置付き及び窒素導入管付きの2000mlフラスコにDA-2を143.2g(0.480モル)入れ、NMP1418.8gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を水冷下で撹拌しながらCA-1を98.6g(0.452モル)加え、更にNMPを354.7g加え、窒素雰囲気下、50度で加熱しながら20時間撹拌してポリアミック酸溶液(粘度:302mPa・s)を得た。このポリアミック酸溶液526.3gにNMPを273.7g、及びBCSを200.0g加えて撹拌しポリアミック酸溶液(B3)を得た。その固形分濃度は6.0質量%であった。
[ポリアミック酸B4]
 撹拌装置付き及び窒素導入管付きの2000mlフラスコにDA-2を65.6g(0.220モル)、DA-6を87.2g(0.220モル)入れ、NMP1788.3gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を水冷下で撹拌しながらCA-1を91.0g(0.417モル)加え、更にNMPを357.7g加え、窒素雰囲気下、50度で加熱しながら23時間撹拌してポリアミック酸溶液(粘度:226mPa・s)を得た。このポリアミック酸溶液555.6gにNMPを244.4g、及びBCSを200.0g加えて撹拌し、その固形分濃度は6.0質量%であった。
[ポリアミック酸B5]
 撹拌装置付き及び窒素導入管付きの2000mlフラスコにDA-2を65.6g(0.220モル)、DA-6を87.2g(0.220モル)入れ、NMP1782.6gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を水冷下で撹拌しながらCA-1を90.2g(0.414モル)加え、更にNMPを356.5g加え、窒素雰囲気下、50度で加熱しながら23時間撹拌してポリアミック酸溶液(B5)(粘度:116mPa・s)を得た。その固形分濃度は10.4質量%であった。
[ポリアミック酸B6]
 撹拌装置付き及び窒素導入管付きの2000mlフラスコにDA-3を142.1g(0.550モル)入れ、NMP1466.8gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を水冷下で撹拌しながらCA-1を108.0g(0.495モル)加え、更にNMPを366.7g加え、50度で加熱しながら20時間撹拌してポリアミック酸溶液(粘度:89mPa・s)を得た。このポリアミック酸溶液606.1gにNMPを93.9g、及びBCSを300.0g加えて撹拌し、ポリアミック酸溶液(B6)を得た。その固形分濃度は6.0質量%であった。
[ポリアミック酸B7]
 撹拌装置付き及び窒素導入管付きの2000mlフラスコにDA-5を171.8g入れ、NMP1676gを加え、窒素を送りながら撹拌し溶解させた。このジアミン溶液を水冷下で撹拌しながらCA-1を113.8g加え、更に固形分濃度が12質量%になるようにNMPを加え、窒素雰囲気下、50度で加熱しながら20時間撹拌してポリアミック酸溶液(粘度:90mPa・s)を得た。このポリアミック酸溶液535.7gにNMPを264.3g、及びBCSを200.0g加えて撹拌し、ポリアミック酸溶液(B7)を得た。その固形分濃度は6.0質量%であった。
[実施例1]
 ポリアミック酸溶液B1を193g、A1を807g混合して、室温で2時間撹拌することで、ポリマー固形分が5.8質量%で、ポリマー固形分の質量比が、B1:A1=2:8となる液晶配向剤(C1)を1000g得た。その粘度は39mPa・sであった。
[実施例2]
 ポリアミック酸溶液B2を200g、A2を800g混合して、室温で2時間撹拌することで、ポリマー固形分が6.0質量%で、ポリマー固形分の質量比が、B2:A2=2:8となる液晶配向剤(C2)を1000g得た。その粘度は39mPa・sであった。
[実施例3]
 ポリアミック酸溶液B3を400g、A3を600g混合して、室温で2時間撹拌することで、ポリマー固形分が6.0質量%で、ポリマー固形分の質量比が、B3:A3=4:6となる液晶配向剤(C3)を1000g得た。その粘度は38mPa・sであった。
[実施例4]
 ポリアミック酸溶液B4を400g、A3を600g混合して、室温で2時間撹拌することで、ポリマー固形分が6.0質量%で、ポリマー固形分の質量比が、B4:A3=4:6となる液晶配向剤(C4)を1000g得た。その粘度は40mPa・sであった。
[実施例5]
 ポリアミック酸溶液B4を300g、A4を700g混合して、室温で2時間撹拌することで、ポリマー固形分が6.0質量%で、ポリマー固形分の重質量が、B4:A4=3:7となるポ液晶配向剤(C5)を1000g得た。その粘度は39mPa・sであった。
[実施例6]
 ポリアミック酸溶液B5を165.4g、A5を176.7g混合し、NMPを0.9g、GBLを431.2g、AD-2を1.0質量%含むGBL溶液を25.8g及びBCS200.0g加えて2時間撹拌し、液晶配向剤(C6)を1000g得た。この溶液1.0gをアルミカップの上に測りとり、200℃2時間の条件で処理した際の固形分濃度は4.3質量%であった。その粘度は11mPa・sであった。
[実施例7]
 ポリアミック酸溶液B5を124.0g、A5を206.2g混合し、NMPを12.8g、GBLを426.9g、AD-2を1.0質量含むGBL溶液を30.1g及びBCS200.0g加えて2時間撹拌し、液晶配向剤(C7)を1000g得た。この溶液1.0gをアルミカップの上に測りとり、200℃2時間の条件で処理した際の固形分濃度は4.3質量%であった。また、その粘度は11mPa・sであった。
[実施例8]
 ポリアミック酸溶液B1を116.7g、A6を883.3g混合して、室温で2時間撹拌することで、ポリマー固形分が3.5質量%で、ポリマー固形分の質量比が、B1:A6=2:8となる液晶配向剤(C8)を1000g得た。その粘度は11mPa・sであった。
[実施例9]
 ポリアミック酸溶液B6を143.0g、A7を857.0g混合して、室温で2時間撹拌することで、ポリマー固形分が4.3質量%で、ポリマー固形分の質量比が、B6:A7=2:8となる液晶配向剤(C9)を1000g得た。その粘度は11mPa・sであった。
[実施例10]
 ポリアミック酸溶液B6を143.0g、A8を857.0g混合して、室温で2時間撹拌することで、ポリマー固形分が4.3質量%で、ポリマー固形分の質量が、B6:A8=2:8となる液晶配向剤(C10)を1000g得た。その粘度は11mPa・sであった。
[実施例11]
 ポリアミック酸溶液B6を143.0g、A9を857.0g混合して、室温で2時間撹拌することで、ポリマー固形分が4.3質量%で、ポリマー固形分の質量比が、B6:A9=2:8となる液晶配向剤(C11)を1000g得た。その粘度は11mPa・sであった。
[実施例12]
 ポリアミック酸溶液B6を143.0g、A10を857.0g混合して、室温で2時間撹拌することで、ポリマー固形分が4.3質量%で、ポリマー固形分の質量比が、B6:A10=2:8となる液晶配向剤(C12)を1000g得た。その粘度は11mPa・sであった。
[実施例13]
 ポリアミック酸溶液B7を179.2g、A11を820.9g混合して、室温で2時間撹拌することで、ポリマー固形分が4.3質量%で、ポリマー固形分の質量比が、B7:A11=25:75となる液晶配向剤(C13)を1000g得た。その粘度は11mPa・sであった。
[比較例1]
 ポリアミック酸溶液B1を193g、A12を807g混合して、室温で2時間撹拌することで、ポリマー固形分が5.8質量%で、ポリマー固形分の質量比が、B1:A12=2:8となる液晶配向剤(D1)を1000g得た。その粘度は、39mPa・sであった。
[比較例2]
 ポリアミック酸溶液B2を200g、A13を800g混合して、室温で2時間撹拌することで、ポリマー固形分が6.0質量%で、ポリマー固形分の質量比が、B2:A13=2:8となる液晶配向剤(D2)を1000g得た。その粘度は39mPa・sであった。
[比較例3]
 ポリアミック酸溶液B3を400g、A14を600g混合して、室温で2時間撹拌することで、ポリマー固形分が6.0質量%で、ポリマー固形分の質量比が、B3:A14=4:6となる液晶配向剤(D3)を1000g得た。その粘度は40mPa・sであった。
[比較例4]
 ポリアミック酸溶液B1を193g、A15を807g混合して、室温で2時間撹拌することで、ポリマー固形分が5.8質量%で、ポリマー固形分の質量比が、B1:A15=2:8となる液晶配向剤(D4)を1000g得た。その粘度は38mPa・sであった。
[比較例5]
 ポリアミック酸溶液B5を165.4g、A5を176.7g混合し、NMPを0.9g、GBLを431.2g、AD-1を1.0質量%含むGBL溶液を25.8g及びBCS200.0g加えて2時間撹拌し、液晶配向剤(D5)を1000g得た。この溶液1.0gをアルミカップの上に測りとり、200℃2時間の条件で処理した際の固形分濃度は4.3質量%であった。また、その粘度は11mPa・sであった。
[比較例6]
 ポリアミック酸溶液B1を116.7g、A16を883.3g混合して、室温で2時間撹拌することで、ポリマー固形分が3.5質量%で、ポリマー固形分の質量比が、B1:A16=2:8となる液晶配向剤(D6)を1000g得た。その粘度は12mPa・sであった。
[比較例7]
 ポリアミック酸溶液B2を96.7g、A16を903.3g混合して、室温で2時間撹拌することで、ポリマー固形分が2.9質量%で、ポリマー固形分の質量比が、B2:A17=2:8となる液晶配向剤(D7)を1000g得た。その粘度は11mPa・sであった。
[比較例8]
 ポリアミック酸溶液B6を143.0g、A18を857.0g混合して、室温で2時間撹拌することで、ポリマー固形分が4.3質量%で、ポリマー固形分の質量比が、B6:A18=2:8となる液晶配向剤(D8)を1000g得た。その粘度は11mPa・sであった。
[比較例9]
 ポリアミック酸溶液B2を200g、A19を800g混合して、室温で2時間撹拌することで、ポリマー固形分が6.0質量%で、ポリマー固形分の質量比が、B2:A19=2:8となる液晶配向剤(D9)を1000g得た。その粘度は39mPa・sであった。
[比較例10]
 ポリアミック酸溶液B2を200g、A20を800g混合して、室温で2時間撹拌することで、ポリマー固形分が6.0質量%で、ポリマー固形分の質量比が、B2:A20=2:8となる液晶配向剤(D10)を1000g得た。その粘度は39mPa・sであった。
 上記で得られた各液晶配向剤について、長期冷凍保管安定性、密着性評価、印刷試験、及びインクジェット試験を行った。結果を表1、2、3に示す。
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
 以上のように、実施例1~13の液晶配向剤は、長期冷凍保管安定性、密着性評価、塗布性の評価のいずれにおいても良好な結果を示した。一方、比較例1~10の液晶配向剤は、全ての評価で良好な結果を両立することはできなかった。
 なお、2017年3月31日に出願された日本特許出願2017-72075号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (11)

  1.  下記(A)成分、(B)成分、(C)成分及び(D)成分を含有し、かつ上記(C)成分を、液晶配向剤の全質量に対し、20~50質量%含有する液晶配向剤。
    (A):ポリイミド前駆体及びそのイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体。
    (B):非アミン系のSiカップリング剤。
    (C):γ-ブチロラクトン、γ-バレロラクトン、N-エチル-2-ピロリドン、N-ブチル-2-ピロリドン、及びエチルカルビトールからなる群から選ばれる少なくとも1種の有機溶媒。
    (D):1-ブトキシ-2-プロパノール、2-ブトキシ-1-プロパノール、ブチルセロソルブ、ブチルセロソルブアセテート、及びジプロピレングリコールジメチルエーテルからなる群から選ばれる少なくとも1種の有機溶媒。
  2.  前記(B)成分が、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-イソシアネートプロピルトリエトキシシラン、及び3-ウレイドプロピルトリエトキシシランからなる群から選ばれる少なくとも1種である、請求項1に記載の液晶配向剤。
  3.  前記(C)成分が、γ-ブチロラクトン、γ-バレロラクトン、及びN-エチル-2-ピロリドンからなる群から選ばれる少なくとも1種の有機溶媒である、請求項1又は2に記載の液晶配向剤。
  4.  前記(D)成分が、1-ブトキシ―2-プロパノール、ブチルセロソルブ、及びブチルセロソルブアセテートからなる群から選ばれる少なくとも1種の有機溶媒である請求項1~3のいずれか1項に記載の液晶配向剤。
  5.  前記(A)成分を、液晶配向剤の全質量に対し、0.1~10質量%含有する請求項1~4のいずれか1項に記載の液晶配向剤。
  6.  前記(B)成分を、液晶配向剤におけるポリマー固形分に対して、0.1~2質量%含有する請求項1~5のいずれか1項に記載の液晶配向剤。
  7.  前記(D)成分を、液晶配向剤の全質量に対し、5~40質量%含有する請求項1~6のいずれか1項に記載の液晶配向剤。
  8.  N-メチル-2-ピロリドンを、液晶配向剤の全質量に対し、50質量%以下含有する、請求項1~7のいずれか1項に記載の液晶配向剤。
  9.  N-メチル-2-ピロリドンを、液晶配向剤の全質量に対し、25~30質量%含有する、請求項1~8のいずれか1項に記載の液晶配向剤。
  10.  請求項1~9に記載の液晶配向剤から得られる液晶配向膜。
  11.  請求項10に記載の液晶配向膜を具備する液晶表示素子。
PCT/JP2018/012958 2017-03-31 2018-03-28 液晶配向剤、液晶配向膜、及び液晶表示素子 WO2018181566A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197031006A KR102619748B1 (ko) 2017-03-31 2018-03-28 액정 배향제, 액정 배향막, 및 액정 표시 소자
CN201880023171.2A CN110462505A (zh) 2017-03-31 2018-03-28 液晶取向剂、液晶取向膜和液晶表示元件
JP2019510034A JP7188381B2 (ja) 2017-03-31 2018-03-28 液晶配向剤、液晶配向膜、及び液晶表示素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-072075 2017-03-31
JP2017072075 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018181566A1 true WO2018181566A1 (ja) 2018-10-04

Family

ID=63676097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012958 WO2018181566A1 (ja) 2017-03-31 2018-03-28 液晶配向剤、液晶配向膜、及び液晶表示素子

Country Status (5)

Country Link
JP (1) JP7188381B2 (ja)
KR (1) KR102619748B1 (ja)
CN (1) CN110462505A (ja)
TW (1) TWI808076B (ja)
WO (1) WO2018181566A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020158555A (ja) * 2019-03-25 2020-10-01 ユニチカ株式会社 ポリイミド前駆体溶液
CN118878823A (zh) * 2024-06-17 2024-11-01 波米科技有限公司 一种聚合物a、制备方法及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015060357A1 (ja) * 2013-10-23 2015-04-30 日産化学工業株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子
JP5930237B2 (ja) * 2012-10-18 2016-06-08 日産化学工業株式会社 組成物、液晶配向処理剤、液晶配向膜および液晶表示素子

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5201330B2 (ja) * 2007-02-23 2013-06-05 Jsr株式会社 水平配向膜形成用液晶配向剤および液晶表示素子
CN101627333B (zh) * 2007-03-08 2011-08-03 Jsr株式会社 液晶取向剂和横电场式液晶显示元件
JP5273357B2 (ja) * 2007-07-06 2013-08-28 Jsr株式会社 液晶配向剤および液晶表示素子
KR101818787B1 (ko) * 2010-03-15 2018-01-15 닛산 가가쿠 고교 가부시키 가이샤 폴리아믹산에스테르 액정 배향제 및 그것을 사용한 액정 배향막
KR102116155B1 (ko) 2012-08-06 2020-05-27 닛산 가가쿠 가부시키가이샤 액정 배향제, 및 그것을 사용한 액정 배향막
KR20150070276A (ko) * 2012-10-18 2015-06-24 닛산 가가쿠 고교 가부시키 가이샤 조성물, 액정 배향 처리제, 액정 배향막 및 액정 표시 소자
TWI564283B (zh) * 2012-10-18 2017-01-01 Nissan Chemical Ind Ltd A liquid crystal alignment agent, a liquid crystal alignment film, and a liquid crystal display device
KR20170029022A (ko) 2012-11-29 2017-03-14 닛산 가가쿠 고교 가부시키 가이샤 액정 배향 처리제, 액정 배향막 및 액정 표시 소자
KR102420194B1 (ko) * 2014-10-20 2022-07-12 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막, 및 그것을 사용한 액정 표시 소자
KR20170089760A (ko) * 2014-11-21 2017-08-04 제이엔씨 주식회사 폴리아믹산 또는 그 유도체를 포함하는 액정 배향제, 액정 배향막 및 액정 표시 소자

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5930237B2 (ja) * 2012-10-18 2016-06-08 日産化学工業株式会社 組成物、液晶配向処理剤、液晶配向膜および液晶表示素子
WO2015060357A1 (ja) * 2013-10-23 2015-04-30 日産化学工業株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020158555A (ja) * 2019-03-25 2020-10-01 ユニチカ株式会社 ポリイミド前駆体溶液
JP7245504B2 (ja) 2019-03-25 2023-03-24 ユニチカ株式会社 ポリイミド前駆体溶液の製造方法
CN118878823A (zh) * 2024-06-17 2024-11-01 波米科技有限公司 一种聚合物a、制备方法及其应用

Also Published As

Publication number Publication date
KR102619748B1 (ko) 2023-12-29
JP7188381B2 (ja) 2022-12-13
CN110462505A (zh) 2019-11-15
TWI808076B (zh) 2023-07-11
JPWO2018181566A1 (ja) 2020-02-06
TW201901253A (zh) 2019-01-01
KR20190129111A (ko) 2019-11-19

Similar Documents

Publication Publication Date Title
JP7351382B2 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
WO2013125595A1 (ja) 組成物、液晶配向処理剤、液晶配向膜及び液晶表示素子
WO2017061575A1 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
WO2018062353A1 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
WO2014084309A1 (ja) 液晶配向処理剤、液晶配向膜および液晶表示素子
JP6750627B2 (ja) 液晶配向剤、液晶配向膜および液晶表示素子
JP6652739B2 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
JP6798550B2 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
JP7188381B2 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
TWI762475B (zh) 液晶配向劑、液晶配向膜及液晶顯示元件
JP7093058B2 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
WO2014126102A1 (ja) 液晶配向膜の製造方法、液晶配向膜、液晶表示素子及び液晶配向剤
TWI823833B (zh) 液晶配向劑、液晶配向膜及液晶顯示元件
JP7001063B2 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
WO2017094898A1 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
TWI780023B (zh) 液晶配向劑、液晶配向膜之製造方法及液晶顯示元件
TW201823303A (zh) 液晶配向劑、液晶配向膜及液晶顯示元件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18778275

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019510034

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197031006

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18778275

Country of ref document: EP

Kind code of ref document: A1