[go: up one dir, main page]

WO2018181232A1 - 抵抗スポット溶接継手の製造方法 - Google Patents

抵抗スポット溶接継手の製造方法 Download PDF

Info

Publication number
WO2018181232A1
WO2018181232A1 PCT/JP2018/012260 JP2018012260W WO2018181232A1 WO 2018181232 A1 WO2018181232 A1 WO 2018181232A1 JP 2018012260 W JP2018012260 W JP 2018012260W WO 2018181232 A1 WO2018181232 A1 WO 2018181232A1
Authority
WO
WIPO (PCT)
Prior art keywords
energization
plate
steel
resistance spot
aluminum
Prior art date
Application number
PCT/JP2018/012260
Other languages
English (en)
French (fr)
Inventor
央海 澤西
松田 広志
池田 倫正
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020197028629A priority Critical patent/KR102276817B1/ko
Priority to JP2018530805A priority patent/JP6399266B1/ja
Priority to CN201880022069.0A priority patent/CN110475642B/zh
Publication of WO2018181232A1 publication Critical patent/WO2018181232A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • B23K11/115Spot welding by means of two electrodes placed opposite one another on both sides of the welded parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded
    • B23K11/18Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded of non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/16Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded
    • B23K11/20Resistance welding; Severing by resistance heating taking account of the properties of the material to be welded of different metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/30Features relating to electrodes

Definitions

  • the present invention relates to a method for manufacturing a resistance spot welded joint of dissimilar metal materials. Specifically, the present invention relates to a resistance spot welded joint manufacturing method in which a plate set in which two steel plates and one aluminum plate are overlapped is joined by resistance spot welding to produce a resistance spot welded joint.
  • the resistance spot welding method which is superior in cost and efficiency compared to other welding methods, is most often used for joining steel plates in a vehicle body, and the number of hits per vehicle is 3000 to 6000.
  • the resistance spot welding method is a method in which two or more stacked steel plates are sandwiched between a pair of electrodes, and a high current welding current is shortened between the upper and lower electrodes while pressing with a pair of electrodes from above and below the sandwiched steel plates. This is a method of energizing for a time and joining by resistance heating.
  • the resistance spot welding method in the joining in the case where aluminum plates are mixed, as in the joining in the case of steel plates.
  • the aluminum plate is a general term for a pure aluminum plate and an aluminum alloy plate.
  • the strength of the joint cannot be ensured because the soft aluminum plate is greatly reduced in thickness by pressurization of the electrode or a brittle intermetallic compound is formed at the joint interface. There is a problem.
  • Patent Document 1 describes a resistance spot welding method in which an iron / aluminum clad thin plate is inserted between a steel plate and an aluminum plate so that the same kind of materials face each other so that a high-strength joint can be obtained even at a low current. Yes.
  • Patent Document 2 by welding with one or more contact plates on both sides of a steel plate and an aluminum plate, the interface between the contact plate and the material to be joined generates resistance heat, and the steel and aluminum are resistance diffusion bonded.
  • a resistance spot welding method is described that provides a high strength joint.
  • Patent Document 3 when spot welding a steel material and an aluminum material, by optimizing each amount of Mn and Si in a steel plate and a steel plate surface oxide film, it is possible to suppress the occurrence of scattering while obtaining a large nugget diameter. It is described.
  • Patent Document 4 describes a dissimilar metal joining method that suppresses the growth of intermetallic compounds at the joining interface by optimizing the conditions for pulsation energization and increasing the pressure after completion of energization.
  • Patent Document 5 discloses a spot that can suppress the generation of dust from the surface of the steel sheet by optimizing the pre-energization and the subsequent energization conditions, reduce the welding current as much as possible, and obtain a dissimilar material joint having high joint strength. A welding method is described.
  • Japanese Patent No. 3117053 Japanese Patent No. 3504790 JP 2005-152958 A Japanese Patent No. 5624901 Japanese Patent No. 5572046
  • Patent Documents 1 and 2 require the use of a backing plate or a clad thin plate that is not necessary for the structure of the vehicle body, so that a significant increase in cost and weight cannot be achieved. There's a problem.
  • Patent Document 3 since it is necessary to limit the amount and distribution of alloy elements in the steel sheet and the oxide film, there is a problem that the use of the steel sheet that satisfies the required performance is restricted. In particular, the application of the invention of Patent Document 3 is extremely limited under the circumstances where high alloying is progressing with high strength in recent steel plates.
  • the energization time for pre-energization is 20 ms or less, and the energization time for pulsation energization is 10 ms or less, both of which are short. Required. Therefore, when the specific resistance of the steel plate is high or when the plate thickness is large, there is a concern that scattering occurs on the surface of the steel plate.
  • Patent Document 5 there is a problem that applicable plate sets are limited to plate sets of cold-rolled steel plates and 6000 series aluminum alloy plates. In Patent Document 5, it is necessary to perform pre-energization under conditions that do not melt the aluminum alloy plate. However, since the aluminum alloy plate has a lower melting point than a steel plate, depending on the plate assembly, the appropriate condition range of pre-energization may be. There is also the problem of becoming very narrow.
  • This invention is made
  • FIG. 1 is a diagram schematically showing resistance spot welding of the present invention, in which two steel plates (middle plate) 11 and a steel plate (lower plate) 12 and an aluminum plate (upper plate) 13 are overlaid. It is a figure which clamps a set with a pair of electrodes 14 and 15.
  • FIG. 2 is a figure which shows typically the electric current distribution of the energization initial stage of resistance spot welding.
  • FIG. 2 shows an initial current (welding current) when a plate assembly in which two steel plates 11 and 12 and an aluminum plate 13 are stacked is sandwiched between a pair of electrodes 14 and 15 and energized while being pressed. Is represented by reference numeral 21 in FIG.
  • the total thickness of the steel plates is larger in a three-layered plate set using two steel plates and one aluminum plate. For this reason, insufficient heat removal from the electrodes tends to cause scattering not only between the steel plates but also on the steel plate surface. For the above reasons, there is a limit to shortening the energization time and increasing the current.
  • the present invention has been completed by further studies based on these findings, and the gist is as follows.
  • a plate assembly in which two steel plates and one aluminum plate are overlapped and one of the plates arranged on the outermost side is a steel plate and the other is an aluminum plate is joined by resistance spot welding to form a resistance spot welded joint
  • a first nugget having a nugget diameter of 2 ⁇ t Fe (mm) or more is energized between the two steel plates.
  • a method of manufacturing a resistance spot welded joint including a second energization step of energizing after the energization suspending step.
  • a resistance spot welded joint consisting of two steel plates and one aluminum plate, which has a good joint strength regardless of the components and the plate set of the steel plates and aluminum plates. Can be manufactured.
  • FIG. 1 is a diagram schematically showing resistance spot welding of the present invention.
  • FIG. 2 is a diagram schematically showing a current distribution in the initial stage of energization of resistance spot welding.
  • FIG. 3 is a diagram illustrating an energization pattern.
  • FIG. 4 is a diagram showing the tip curvature radius and tip diameter of the electrode.
  • FIG. 5 is a diagram for explaining a tensile test (tensile shear test) of an example of the present invention.
  • FIG. 6 is a diagram for explaining a tensile test (cross tensile test) of an example of the present invention.
  • the method of manufacturing a resistance spot welded joint comprises a plate assembly in which two steel plates and one aluminum plate are overlapped and one of the plates arranged on the outermost side is a steel plate and the other is an aluminum plate.
  • a resistance spot welded joint by welding, when the thickness of the thinner steel plate of the two steel plates is t Fe (mm), the nugget diameter is 2 between the two steel plates when energized.
  • a first power supply step of forming a ⁇ t Fe (mm) or more of the nugget and has a current pause step of pausing the current after the first current step, and a second current supply step of energizing after the energization pause step .
  • the resistance spot welded joint is a generic name including a test piece used for strength test, cross-sectional observation, an automobile member joined by resistance spot welding, and the like.
  • the present invention obtains a resistance spot welded joint by resistance spot welding in which a plate assembly in which two steel plates and one aluminum plate are overlapped is sandwiched between a pair of electrodes and energized while being pressed (welded). It is a manufacturing method of a resistance spot welded joint.
  • the steel plate 11, the steel plate 12, and the aluminum plate 13 are overlapped to form a plate assembly.
  • one of the plates arranged on the outermost side is a steel plate 12 and the other is an aluminum plate 13.
  • the plates that contact the electrodes 14 and 15 are overlapped so as to become the steel plate 12 and the aluminum plate 13, respectively.
  • the steel plates 11 and 12 are not particularly limited, and examples thereof include cold rolled steel plates, hot rolled steel plates, and plated steel plates.
  • the plated steel sheet is a steel sheet having a metal plating layer on the surface, and examples of the metal plating layer include a Zn-based plating layer and an Al-based plating layer.
  • the Zn-based plating include general hot-dip galvanizing (GI), alloyed hot-dip galvanizing (GA), electrogalvanizing (EG), and Zn—Ni-based plating (for example, Zn containing 10 to 25% by mass of Ni).
  • GI general hot-dip galvanizing
  • GA alloyed hot-dip galvanizing
  • EG electrogalvanizing
  • Zn—Ni-based plating for example, Zn containing 10 to 25% by mass of Ni.
  • -Ni-based plating Zn-Al-based plating, Zn-Mg-based plating, Zn-Al-Mg-based plating, and the like.
  • Al plating examples include Al—Si plating (for example, Al—Si plating containing 10 to 20% by mass of Si).
  • the components of the steel plates 11 and 12 are not particularly limited.
  • the strength of the steel plates 11 and 12 is not particularly limited.
  • a JIS No. 5 tensile test piece is produced from the steel plate in a direction parallel to the rolling direction, and a tensile test is performed in accordance with the provisions of JIS Z 2241: 2011.
  • a high-strength steel sheet having a tensile strength of 590 MPa or more (590 MPa class or more), or 980 MPa or more (980 MPa class or more) can be used.
  • the steel plate 11 and the steel plate 12 may have the same or different components, and there is no problem whether the strength and the thickness are the same or different, and a plated steel plate having a metal plating layer and a steel plate having no metal plating layer are used. May be.
  • the components of the aluminum plate 13 are not particularly limited, and may be a pure aluminum plate or an aluminum alloy plate. Examples of the aluminum alloy plate include 5000 series (Al-Mg series), 6000 series (Al-Mg-Si series), 2000 series (Al-Cu series), and 7000 series (Al-Zn-Mg series) defined by JIS. And Al-Zn-Mg-Cu-based).
  • An oxide film is formed on the surface of the aluminum plate 13.
  • the thickness of the steel plates 11 and 12 and the aluminum plate 13 is not particularly limited, but is preferably in a range (about 0.5 to 4.0 mm) that can be used for a general automobile body.
  • a plate assembly in which the steel plates 11 and 12 and the aluminum plate 13 are overlapped is sandwiched between a pair of welding electrodes (electrode 14 and electrode 15), and energized while being pressed, and then the electrodes are released from the steel plate.
  • a welding apparatus that can be used in the resistance spot welding method of the present invention, a welding apparatus that includes a pair of upper and lower electrodes and can arbitrarily control the pressure and welding current during welding can be used.
  • the pressure mechanism air cylinder, servo motor, etc.
  • type stationary, robot gun, etc.
  • electrode shape, etc. of the welding apparatus there are no particular limitations on the pressure mechanism (air cylinder, servo motor, etc.), type (stationary, robot gun, etc.), electrode shape, etc. of the welding apparatus.
  • the present invention can be applied to both direct current and alternating current, and the type of power source (single-phase alternating current, alternating current inverter, direct current inverter) and the like are not particularly limited.
  • alternating current means “effective current”.
  • resistance spot welding is performed in a state that is always water-cooled.
  • the steel plates 11 and 12 and the aluminum plate 13 are overlapped so that one of the plates arranged on the outermost side is the steel plate 12 and the other is the aluminum plate 13 to form a plate set.
  • the plate assembly is sandwiched between a pair of welding electrodes (electrode 14 and electrode 15), energized while being pressed, and nuggets 16 and 17 are formed by resistance heating, and the stacked steel plates 11 and 12 and the aluminum plate 13 are joined. By doing so, a resistance spot welded joint is obtained.
  • this energization is a specific pattern. That is, the energization pattern of the present invention is, for example, as shown in FIG. 3, when the thickness of the thinner one of the two steel plates is t Fe (mm), the two steel plates 11 and 12 are energized. a first power supply step of nugget diameter forms a 2 ⁇ t Fe (mm) or more of the nugget between the energization pause step of pausing the current after the first energization step, a second current supply step of energizing after the energization pause step And have.
  • energization of one or more stages is performed as necessary, and then energization is performed after the third stage for the purpose of post heat treatment, for example, and then the energization is stopped.
  • the second energization process By forming a nugget having a diameter (nugget diameter) of 2 ⁇ t Fe (mm) or more between the steel plates 11 and 12 in the first energization process (first stage energization), the second energization process (second stage energization) The effect of preventing the nugget diameters of the nuggets 16 and 17 from being reduced due to excessive scattering during energization is obtained.
  • the steel plate 11 is deformed due to the thermal effect of energization in the first energization step for forming a nugget having a diameter of 2 ⁇ t Fe (mm) or more, the contact area between the steel plate 12 and the electrode 14 is increased.
  • the current density in the vicinity of the surface of the steel plate 12 during energization in the two energization process is reduced, and the effect of suppressing the occurrence of scattering from the surface of the steel plate 12 can also be obtained. Furthermore, the oxide film on the surface of the aluminum plate 13 is destroyed by the energization of the first energization process and the heat effect, and an energization path between the steel plate and the aluminum plate is secured. Therefore, an increase in heat input due to an excessive increase in current density at the center of the joint is suppressed in energization in the second energization process. In this first energization step, a nugget may or may not be formed between the steel plate and the aluminum plate.
  • the nugget diameter (mm) is desirably 6 ⁇ t Al or less. More preferably, the lower limit of the nugget diameter (mm) of the nugget formed between the steel plate and the aluminum plate in the first energization step is set to 1.5 ⁇ t Al or more.
  • the plate thickness t Fe and t Al is used mm as the unit, also with mm unit of 2 ⁇ T Fe and 6 ⁇ T Al obtained by substituting the thickness t Fe and t Al.
  • the nugget diameter of the nugget formed between the steel plates is the nugget of the steel plate 12 at the mating surface (joint surface) between the steel plate 12 brought into contact with the electrode 14 and the steel plate 12 (steel plate 11 in FIG. 1). Is the maximum diameter.
  • the nugget diameter of the nugget formed between the steel plate and the aluminum plate is the aluminum plate at the mating surface (joint surface) between the aluminum plate 13 and the plate in contact with the aluminum plate 13 (steel plate 11 in FIG. 1).
  • the nugget diameters of the nuggets 16 and 17 are shown in FIG.
  • the “nugget” is a melted and solidified portion generated in a welded portion in lap resistance welding. In this specification, a melted portion that becomes a nugget when solidified (that is, a melted portion before solidifying) is also called a nugget. There is a case.
  • the resistance spot welded joint of the steel plate 11, the steel plate 12, and the aluminum plate 13 which has favorable joint strength can be manufactured.
  • the resistance spot welded joint having a good joint strength refers to a resistance spot welded joint having either or both of tensile shear strength (TSS) and cross tensile strength (CTS).
  • the first energization process is conducted for a longer time and at a lower current than the second energization process, thereby causing the scattering between the steel plates as described above. While suppressing, a nugget diameter of 2 ⁇ t Fe (mm) or more is secured.
  • the energization path is limited by the oxide film on the surface of the aluminum plate 13 at the initial stage of energization, but this long time and low current energization destroys the oxide film, and the steel plates 11 and 12 and aluminum While ensuring the energization path between the plates 13, an excessive increase in heat input is prevented.
  • route between the steel plates 11 and 12 and the aluminum plate 13 is fully securable by making the electricity supply time t1 of a 1st electricity supply process into 40 ms or more.
  • energization is suspended for a predetermined energization suspension time t c (ms) (energization suspension process), and following this energization suspension process, the second energization process (second-stage energization process).
  • t c energization suspension time
  • second energization process second-stage energization process
  • the increase in current in the second energization step is effective in generating heat over a wide area by short-time energization, and the aluminum plate 13 in a wide area can be melted, thereby increasing the bonding diameter.
  • the contact diameter between the steel plate 12 and the electrode 14 is increased by energization in the first energization step, the scattering from the surface of the steel plate 12 is unlikely to occur.
  • the center of the joint where the oxide film is initially destroyed in the first energization process and energization starts is at a higher temperature.
  • the temperature at the center of the joint portion once decreases in the energization suspending process, and thus energization in the second energizing process can promote heat generation in the vicinity of the contact end between the steel plate 12 and the electrode 14 having a high current density. It is possible to increase the temperature of the aluminum plate 13 and to ensure the nugget diameter of the aluminum plate 13 and to reduce the heat input. Note that in the second energization step, scattering that does not cause an excessive decrease in the nugget diameter may occur. Further, the energization time t 2 in the second energizing step is preferably from the viewpoint of the nugget diameter ensuring the excess heat input suppressed, for example, 5 ⁇ 100 ms. Energizing time t 2 in the second energizing step is more preferably 5 ⁇ 90 ms, more preferably from 10 ⁇ 80 ms.
  • the effect of the present invention can be obtained more effectively by using an electrode having a tip radius of curvature R Fe of 20 mm or more as the electrode 14 in contact with the steel plate 12. be able to. This is because the contact radius between the electrode and the steel plate can be ensured by setting the tip curvature radius R Fe to 20 mm or more, and scattering from the steel plate surface can be easily suppressed. Furthermore, as the electrode 14 in contact with the steel plate 12, it is preferable to use an electrode satisfying the relationship of the following formulas (6) and (7) when the tip diameter of the electrode 14 in contact with the steel plate 12 is D Fe (mm). .
  • the tip curvature radius R Fe of the electrode 14 is more preferably 100 mm or more.
  • the upper limit of the tip curvature radius R Fe is not particularly specified.
  • the tip diameter D Fe of the electrode 14 is more preferably 4 mm or more, and further preferably 5 mm or more. Although not specified tip diameter D limit of Fe is particularly in view of ensuring the current density and the surface pressure is preferably set to 20mm or less.
  • the type of the tip of the electrode 14 is, for example, DR type (dome radius type), R type (radius type), or D type (dome type) described in JIS C 9304: 1999.
  • FIG. 4 shows the tip radius of curvature R and the tip diameter D of the electrode.
  • 4A is a diagram showing the tip radius of curvature R and the tip diameter D of the radius-shaped electrode
  • FIG. 4B is a diagram showing the tip radius of curvature R and the tip diameter D of the dome radius-shaped electrode.
  • the dome radius-shaped electrode has a curved surface on the tip side with a two-step curvature, but the radius of curvature of the tip of the electrode is a portion (center) that is first in contact with the plate to be resistance spot welded. Radius of curvature of the curved surface on the side.
  • the type of the tip of the electrode 15 brought into contact with the aluminum plate 13 is, for example, DR type (dome radius type), R type (radius type), or D type (dome type) described in JIS C 9304: 1999.
  • the tip diameter D Al of the electrode 15 brought into contact with the aluminum plate 13 is preferably 4 to 16 mm, for example, from the viewpoint of suppressing deformation of the aluminum plate and securing the surface pressure. More preferably, it is 6 to 16 mm.
  • the tip radius of curvature R Al of the electrode 15 brought into contact with the aluminum plate 13 is preferably set to, for example, 30 mm or more from the viewpoint of suppressing deformation of the aluminum plate and securing the surface pressure. More preferably, it is 40 mm or more.
  • the upper limit of the tip curvature radius R Al is not particularly defined.
  • t 1 of the first energizing step 50ms or more, and more preferably to 60ms or more.
  • t 1 is preferably 800 ms or less, and more preferably 600 ms or less.
  • energization pause time t c is preferably greater than or equal to 10 ms, and more preferably to more than 20ms.
  • t c is preferably 600 ms or less, and more preferably 400 ms or less.
  • the welding current (current when energized) in the present invention is not particularly limited, and the welding current is, for example, 4 to 40 kA. However, since it is necessary to obtain a predetermined nugget diameter in construction, an excessive current value causes scattering, so the current I 1 in the first energization process is, for example, 5 to 20 kA, and the current in the second energization process the value I 2 is, for example, 10 ⁇ 40 kA.
  • the applied pressure is, for example, 2.0 kN to 7.0 kN, and the applied pressure may be changed during welding and before and after welding.
  • the steel plates 11 and 12 and the aluminum plate 13 shown in Table 1 were used as test materials.
  • the tensile strengths of the steel plates 11 and 12 shown in Table 1 were obtained by preparing a JIS No. 5 tensile test piece in a direction parallel to the rolling direction from the steel plate and conducting a tensile test in accordance with the provisions of JIS Z 2241: 2011. Asked.
  • the steel plates 11 and 12 and the aluminum plate 13 shown in Table 1 are made of a three-layered plate set in which resistance spot welding is performed and one aluminum plate and two steel plates are overlapped as shown in FIG. A resistance spot welded joint was manufactured.
  • the aluminum plate 13 used had an oxide film formed on the surface.
  • An inverter DC resistance spot welder was used as the welding machine, and the tip curvature radius and tip diameter of the electrodes 14 and 15 and the energization pattern were set as shown in Table 2.
  • the electrodes 14 and 15 were all made of chromium-copper DR type electrodes. Resistance spot welding was performed at room temperature (20 ° C.), and the electrode was always water-cooled. The applied pressure was constant throughout the first energization process, the energization stop process, and the second energization process.
  • FIG. 5 the figure explaining the tension test (tensile shear test) of an Example is shown.
  • a tensile shear test between a steel plate and an aluminum plate was performed by pulling in the direction of the arrow from both sides of the resistance spot welded joint.
  • ruptured was computed.
  • the tensile shear strength (TSS) was evaluated as A when TSS ⁇ 1.5 kN, B when 1.5 kN> TSS ⁇ 1.0 kN, and F when 1.0 kN> TSS.
  • FIG. 6 is a view for explaining the tensile test (cross tensile test) of the example. As shown in FIG. 6, a cross tension test between a steel plate and an aluminum plate was performed by pulling in the direction of the arrow from both sides of the resistance spot welded joint. And the maximum load (cross tensile strength) when the junction part of a steel plate and an aluminum plate fracture
  • the cross tensile strength (CTS) was evaluated as A when CTS ⁇ 0.7 kN and F when 0.7 kN> CTS.
  • the evaluation results are shown in Table 3.
  • the evaluation of the cross tensile strength (CTS) was A.
  • Table 3 also shows the results of the tensile shear test performed by the same method as described above.
  • the evaluation of TSS was A.
  • the first energization process is performed under the same conditions as described above, and the nugget diameter 16 between the steel sheet 11 and the steel sheet 12 formed by energization of the first energization process by observing the cross section of the joint portion, and between the steel sheet 11 and the aluminum plate 13.
  • Each nugget diameter 17 was determined.
  • the nugget diameter 17 measured the maximum diameter (mm) of the nugget 17 of the aluminum plate 13 in the joint surface of the aluminum plate 13 and the board (steel plate 11) which contact
  • the nugget diameter 16 was determined by measuring the maximum diameter (mm) of the nugget 16 of the aluminum plate 12 at the joint surface between the steel plate 12 and the plate (steel plate 11) in contact with the steel plate 12. The measurement results are shown in Tables 2 and 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Resistance Welding (AREA)

Abstract

鋼板2枚とアルミニウム板1枚の3枚重ねの抵抗スポット溶接継手であって、鋼板やアルミニウム板の成分や板組によらず、良好な継手強度を有する抵抗スポット溶接継手を製造することができる抵抗スポット溶接継手の製造方法を提供する。2枚の鋼板と1枚のアルミニウム板を重ね合わせて最外側に配置される板の一方が鋼板で他方がアルミニウム板とした板組を、抵抗スポット溶接により接合し、抵抗スポット溶接継手を製造するにあたり、2枚の鋼板のうち薄い方の鋼板の板厚をtFe(mm)としたとき、通電して2枚の鋼板間にナゲット径が2√tFe(mm)以上のナゲットを形成する第1通電工程と、第1通電工程の後に通電を休止する通電休止工程と、通電休止工程の後に通電する第2通電工程とを有する。

Description

抵抗スポット溶接継手の製造方法
 本発明は、異種金属材料の抵抗スポット溶接継手の製造方法に関する。具体的には、2枚の鋼板と1枚のアルミニウム板とを重ね合わせた板組を、抵抗スポット溶接により接合し、抵抗スポット溶接継手を製造する抵抗スポット溶接継手の製造方法に関する。
 近年の自動車産業では、車体の軽量化による燃費向上を目的として、車体へのアルミニウム合金等の軽金属の適用が進められている。現在、車体における鋼板同士の接合には、他の溶接方法に比べてコストや効率面で優位にある抵抗スポット溶接法が最も多く用いられており、車1台あたりの打点数は3000点から6000点に及ぶ。抵抗スポット溶接法とは、重ね合わせた2枚以上の鋼板を一対の電極により挟んで、その挟んだ鋼板の上下から一対の電極で加圧しつつ、上下の電極間に高電流の溶接電流を短時間通電して抵抗発熱により接合する方法である。
 車体の生産工程のコストと効率の維持という観点からは、鋼板同士の場合の接合と同様に、アルミニウム板が混在する場合の接合においても抵抗スポット溶接法を用いることが有効である。なお、以下の説明において、アルミニウム板とは、純アルミニウム板とアルミニウム合金板の総称である。しかし、鋼とアルミニウムの異種金属材料接合においては、電極の加圧により軟質なアルミニウム板が大きく減厚したり、接合界面に脆弱な金属間化合物が形成したりすることで、継手強度が確保できないという課題がある。特に、鋼板2枚とアルミニウム板1枚を重ね合わせた3枚重ねの板組においては、鋼板-アルミニウム板間、鋼板-鋼板間ともに所望の接合径(ナゲット径)を得る必要があるため、継手の強度確保は更に困難となる。
 上記の課題を解決するため、以下に述べるような抵抗スポット溶接方法が提案されている。例えば、特許文献1には、鋼板とアルミニウム板の間に、鉄/アルミニウムクラッド薄板を同種材同士が向かい合うようにインサートさせることで、低電流でも高強度の継手が得られる抵抗スポット溶接方法が記載されている。
 特許文献2には、鋼板とアルミニウム板の両側に当て板を1枚以上添えて溶接を行うことで、当て板と被接合材料との界面が抵抗発熱し、鋼とアルミニウムが抵抗拡散接合されて高強度の継手が得られる抵抗スポット溶接方法が記載されている。
 特許文献3には、鋼材とアルミニウム材をスポット溶接するにあたり、鋼板および鋼板表面酸化皮膜におけるMnおよびSiの各量を適正化することで、大きいナゲット径を得つつ散り発生を抑制することができると記載されている。
 特許文献4には、パルセーション通電の条件を適正化するとともに、通電完了後の加圧力を増加させることで、接合界面の金属間化合物の成長を抑制する異種金属接合方法が記載されている。
 特許文献5には、前通電およびその後の通電条件を適正化することで、鋼板表面からのチリ発生を抑制するとともに、溶接電流もできるだけ小さくでき、高い接合強度を有する異材接合部が得られるスポット溶接方法が記載されている。
特許第3117053号公報 特許第3504790号公報 特開2005-152958号公報 特許第5624901号公報 特許第5572046号公報
 しかしながら、特許文献1および2に記載の抵抗スポット溶接方法では、車体の構造上不要である当て板やクラッド薄板の使用が必要となるため、大幅なコスト増や重量低減が十分に図れないなどの問題がある。
 また、特許文献3では、鋼板および酸化皮膜中の合金元素量および分布を限定する必要があるため、要求性能を満たす鋼板の使用が制限されるなどの課題がある。特に、最近の鋼板での高強度化に伴う高合金化が進んでいる状況下では、特許文献3の発明の適用は極めて制限される。
 特許文献4では、前通電の通電時間は20ms以下、パルセーション通電の通電時間は10ms以下といずれも短時間であり、接合径を拡大するためには前通電・パルセーション通電ともに高電流化が必須となる。そのため、鋼板の固有抵抗が高い場合や、板厚が大きい場合には鋼板表面における散り発生の懸念がある。
 特許文献5では、適用可能な板組は冷延鋼板と6000系アルミニウム合金板との板組に限定されているという問題がある。また、特許文献5では、アルミニウム合金板を溶融させない条件で前通電を行う必要があるが、アルミニウム合金板は鋼板と比較して低融点であるため、板組によっては前通電の適正条件範囲が非常に狭くなるという問題もある。
 加えて、これらの文献は全て鋼板とアルミニウム板の2枚重ねの板組みにおける課題解決を意図したものであり、鋼板2枚にアルミニウム板1枚を重ね合わせた3枚重ねの板組において、鋼板-アルミニウム板間だけでなく、鋼板-鋼板間においても所望のナゲット径を得る方法については述べられていない。
 本発明は、上記のような事情に鑑みてなされたものであり、鋼板2枚とアルミニウム板1枚の3枚重ねの抵抗スポット溶接継手であって、鋼板やアルミニウム板の成分や板組によらず、良好な継手強度を有する抵抗スポット溶接継手を製造することができる抵抗スポット溶接継手の製造方法を提供することを目的とする。
 本発明者らは、上記の目的を達成すべく、鋭意検討を重ねた結果、以下の知見を得た。図1は、本発明の抵抗スポット溶接を模式的に示す図であり、2枚の鋼板(中板)11および鋼板(下板)12とアルミニウム板(上板)13とが重ね合わせられた板組を、一対の電極14、15で挟持する図である。また、図2は、抵抗スポット溶接の通電初期の電流分布を模式的に示す図である。図2には、2枚の鋼板11、12とアルミニウム板13とが重ね合わせられた板組を、一対の電極14、15で挟持し加圧しながら通電したときの通電初期の電流(溶接電流)の分布が、図2中の符号21で表されている。
 2枚の鋼板と1枚のアルミニウム板との3枚重ねの板組の抵抗スポット溶接において良好な継手強度を確保するためには、図1のように鋼板-鋼板間や鋼板-アルミニウム板間で、それぞれナゲット径が大きいナゲット(鋼板-鋼板間のナゲット16、鋼板-アルミニウム板間のナゲット17)を得ることが有効である。加えて、過剰な入熱は、鋼板-アルミニウム板間の接合界面(鋼板とアルミニウム板の合わせ面)における脆弱な金属間化合物の成長による継手強度の低下を引き起こすため、入熱の低減も図らなければならない。
 この金属間化合物の成長抑制には、一般的に通電パターンを短時間化および高電流化することが有効であるが、アルミニウム板の表面には強固な酸化被膜が存在するため通電経路が制限され、図2に示すように通電初期は加圧によって酸化被膜が破壊された接合部中心23に電流が集中しやすい。故に、過度な短時間化および高電流化は、接合部(ナゲット)中心への鋼板-アルミニウム板間の入熱を増加・促進させることになる。さらに、過度な短時間化および高電流化によって、鋼板-鋼板間の散り発生も生じやすくなるため、鋼板-鋼板間でのナゲット径の確保が困難となる。また、鋼板1枚とアルミニウム板1枚を用いた2枚重ねの板組と比較すると、鋼板2枚とアルミニウム板1枚を用いた3枚重ねの板組では鋼板の総板厚が大きい。このため、電極への抜熱が不十分となることで、鋼板-鋼板間だけでなく鋼板表面での散り発生も生じやすくなる。以上の理由から、通電時間の短時間化および高電流化には限界がある。
 本発明は、これらの知見に基づき、さらに検討を加えて完成されたものであり、要旨は以下のとおりである。
 [1] 2枚の鋼板と1枚のアルミニウム板を重ね合わせて最外側に配置される板の一方が鋼板で他方がアルミニウム板とした板組を、抵抗スポット溶接により接合し、抵抗スポット溶接継手を製造するにあたり、
 2枚の鋼板のうち薄い方の鋼板の板厚をtFe(mm)としたとき、通電して2枚の鋼板間にナゲット径が2√tFe(mm)以上のナゲットを形成する第1通電工程と、
第1通電工程の後に通電を休止する通電休止工程と、
通電休止工程の後に通電する第2通電工程とを有する抵抗スポット溶接継手の製造方法。
 [2] 前記鋼板と接触させる電極の先端曲率半径をRFe(mm)とし、前記第1通電工程の電流をI(kA)、通電時間をt(ms)とし、前記通電休止工程の通電休止時間をt(ms)とし、前記第2通電工程の電流をI(kA)、通電時間をt(ms)としたとき、
前記第1通電工程、前記通電休止工程、および前記第2通電工程は、下記式(1)~(5)の関係を全て満たす、[1]に記載の抵抗スポット溶接継手の製造方法。
<I   (1)
>t   (2)
≧40   (3)
≧5   (4)
Fe≧20   (5)
 [3] 前記鋼板と接触させる電極の先端曲率半径をRFe(mm)、先端径をDFe(mm)としたとき、
前記第1通電工程、前記通電休止工程、および前記第2通電工程は、さらに、下記式(6)および(7)の関係を満たす、[1]または[2]に記載の抵抗スポット溶接継手の製造方法。
Fe≧50   (6)
Fe≧3   (7)
 本発明によれば、鋼板2枚とアルミニウム板1枚の3枚重ねの抵抗スポット溶接継手であって、鋼板やアルミニウム板の成分や板組によらず、良好な継手強度を有する抵抗スポット溶接継手を製造することができる。
図1は、本発明の抵抗スポット溶接を模式的に示す図である。 図2は、抵抗スポット溶接の通電初期の電流分布を模式的に示す図である。 図3は、通電パターンを説明する図である。 図4は、電極の先端曲率半径と先端径を示す図である。 図5は、本発明の実施例の引張試験(引張せん断試験)を説明する図である。 図6は、本発明の実施例の引張試験(十字引張試験)を説明する図である。
 本発明の抵抗スポット溶接継手の製造方法は、2枚の鋼板と1枚のアルミニウム板を重ね合わせて最外側に配置される板の一方が鋼板で他方がアルミニウム板とした板組を、抵抗スポット溶接により接合し、抵抗スポット溶接継手を製造するにあたり、2枚の鋼板のうち薄い方の鋼板の板厚をtFe(mm)としたとき、通電して2枚の鋼板間にナゲット径が2√tFe(mm)以上のナゲットを形成する第1通電工程と、第1通電工程の後に通電を休止する通電休止工程と、通電休止工程の後に通電する第2通電工程とを有するものである。なお、本発明において、抵抗スポット溶接継手とは強度試験、断面観察などに用いられるテストピースや、抵抗スポット溶接により接合された自動車部材等を含めた総称とする。
 本発明を図1~4を用いて以下に具体的に説明する。本発明は、2枚の鋼板と1枚のアルミニウム板を重ね合わせた板組を、一対の電極によって挟み加圧しながら通電して接合(溶接接合)する抵抗スポット溶接により抵抗スポット溶接継手を得る、抵抗スポット溶接継手の製造方法である。
 まず、鋼板11と鋼板12とアルミニウム板13とを重ね合わせて、板組とする。このとき、図1に示すように、最外側に配置される板の一方が鋼板12になり、他方がアルミニウム板13になるようにする。換言すると、電極14、15を接触させる板が、それぞれ鋼板12とアルミニウム板13となるように重ね合わせる。
 鋼板11、12は特に限定されず、例えば、冷延鋼板、熱延鋼板、めっき鋼板が挙げられる。なお、めっき鋼板とは、表面に金属めっき層を有する鋼板であり、金属めっき層としては、例えばZn系めっき層やAl系めっき層が挙げられる。Zn系めっきとしては、一般的な溶融亜鉛めっき(GI)、合金化溶融亜鉛めっき(GA)、電気亜鉛めっき(EG)、Zn-Ni系めっき(例えば、10~25質量%のNiを含むZn-Ni系めっき)、Zn-Al系めっき、Zn-Mg系めっき、Zn-Al-Mg系めっきなどが例示できる。また、Al系めっきとしては、Al-Si系めっき(例えば、10~20質量%のSiを含むAl-Si系めっき)などが例示できる。鋼板11、12の成分は、特に限定されない。また、鋼板11、12の強度も特に限定されないが、例えば鋼板から圧延方向に対して平行方向にJIS5号引張試験片を作製し、JIS Z 2241:2011の規定に準拠して引張試験を実施して求めた引張強さが590MPa以上(590MPa級以上)、さらには980MPa以上(980MPa級以上)の高強度鋼板を用いることができる。鋼板11と鋼板12は、成分が同じでも異なっていてもよく、強度や板厚が同じでも異なっても何ら問題ないし、金属めっき層を有するめっき鋼板と金属めっき層を有さない鋼板とを用いてもよい。アルミニウム板13の成分も特に限定されず、純アルミニウム板でもアルミニウム合金板でもよい。アルミニウム合金板としては、例えばJISで規定される5000系(Al-Mg系)、6000系(Al-Mg-Si系)、2000系(Al-Cu系)、7000系(Al-Zn-Mg系、Al-Zn-Mg-Cu系)等が挙げられる。なお、アルミニウム板13の表面には、酸化被膜が形成されている。また、鋼板11、12やアルミニウム板13の板厚についても特に限定はないが、一般的な自動車車体に用いられ得る範囲(0.5~4.0mm程度)であることが好ましい。
 次に、鋼板11、12およびアルミニウム板13を重ね合わせた板組を、一対の溶接電極(電極14および電極15)で挟み、加圧しながら通電した後に、電極を鋼板から解放する。本発明の抵抗スポット溶接方法で使用可能な溶接装置としては、上下一対の電極を備え、溶接中に加圧力および溶接電流をそれぞれ任意に制御可能な溶接装置を用いることができる。溶接装置の加圧機構(エアシリンダやサーボモータ等)や、形式(定置式、ロボットガン等)、電極の形状等はとくに限定されない。また、直流、交流のいずれにも本発明を適用でき、電源の種類(単相交流、交流インバータ、直流インバータ)など特に限定されるものではない。ここで交流の場合は、「電流」は「実効電流」を意味する。なお、常に水冷されている状態で抵抗スポット溶接を行う。
 このように、鋼板11、12とアルミニウム板13とを、最外側に配置される板の一方が鋼板12で他方がアルミニウム板13となるように重ねて板組とする。この板組を、一対の溶接電極(電極14および電極15)で挟み、加圧しながら通電して、抵抗発熱によりナゲット16、17を形成すると共に重ね合わせた鋼板11、12とアルミニウム板13を接合することで、抵抗スポット溶接継手が得られる。
 本発明においては、この通電を特定のパターンとする。すなわち、本発明の通電パターンは、例えば図3に示すように、2枚の鋼板のうち薄い方の鋼板の板厚をtFe(mm)としたとき、通電して2枚の鋼板11、12間にナゲット径が2√tFe(mm)以上のナゲットを形成する第1通電工程と、第1通電工程の後に通電を休止する通電休止工程と、通電休止工程の後に通電する第2通電工程とを有する。なお、第2通電工程終了後は、必要に応じて、1段以上の通電を行った後、例えば、後熱処理などを目的とした3段目以降の通電を行なった後、通電を停止する。
 第1通電工程(1段目の通電)で鋼板11、12間に2√tFe(mm)以上の径(ナゲット径)を有するナゲットを形成することで、第2通電工程(2段目の通電)において過剰な散りが発生することによるナゲット16、17のナゲット径の減少を防ぐ効果が得られる。加えて、2√tFe(mm)以上の径を有するナゲットを形成する第1通電工程の通電による熱影響で鋼板11が変形し、鋼板12と電極14との接触面積が拡大するため、第2通電工程の通電における鋼板12表面付近の電流密度が低下し、鋼板12表面からの散り発生を抑制する効果も併せて得ることができる。さらに、第1通電工程の通電およびその熱影響でアルミニウム板13表面の酸化被膜が破壊され、鋼板-アルミニウム板間の通電経路が確保される。そのため、第2通電工程の通電において接合部中心への電流密度の過剰増加に伴う入熱増加が抑制される。なお、この第1通電工程によって、鋼板-アルミニウム板間にナゲットが形成されてもよいし、されなくてもよい。ただし、過剰入熱による金属間化合物の成長を抑制するという観点からは、アルミニウム板13の板厚をtAl(mm)としたとき、第1通電工程で鋼板-アルミニウム板間に形成されるナゲットのナゲット径(mm)は6√tAl以下とするのが望ましい。さらに望ましくは、第1通電工程で鋼板-アルミニウム板間に形成されるナゲットのナゲット径(mm)の下限を1.5√tAl以上とする。
なお、板厚tFeやtAlは単位としてmmを用い、この板厚tFeやtAlを代入した2√tFeや6√tAlの単位もmmとする。鋼板間に形成されるナゲットのナゲット径とは、電極14と接触させる鋼板12と該鋼板12と接する鋼板(図1においては、鋼板11)との合わせ面(接合面)における、鋼板12のナゲットの最大径である。また、鋼板-アルミニウム板間に形成されるナゲットのナゲット径とは、アルミニウム板13と該アルミニウム板13と接する板(図1においては、鋼板11)との合わせ面(接合面)における、アルミニウム板13のナゲット17の最大径である。ナゲット16、17のナゲット径を、図1に示す。なお、「ナゲット」とは、重ね抵抗溶接において溶接部に生じる溶融凝固した部分であるが、本明細書においては、凝固するとナゲットになる溶融部(すなわち凝固する前の溶融部)もナゲットと呼ぶ場合がある。
 本発明においては、上記した特定の通電パターンで通電を行うことにより、過剰な散りの発生を抑制してナゲット16、17のナゲット径の減少を防ぐと共に、酸化被膜を破壊して電流密度の過剰増加に伴う入熱増加を抑制する。したがって、本発明においては、良好な継手強度を有する鋼板11と鋼板12とアルミニウム板13との抵抗スポット溶接継手を製造することができる。また、上述したように、鋼板やアルミニウム板の成分や板組によらず、具体的には、鋼板やアルミニウム板における表面の金属めっき層の有無や厚さ、酸化皮膜の組成や厚さ、母材強度、板厚によらず、適用することができる。
なお、本発明において、良好な継手強度を有する抵抗スポット溶接継手とは、引張せん断強度(TSS)および十字引張強度(CTS)のいずれか一方または両方が高い抵抗スポット溶接継手を指す。
 この通電パターンに関しては、図3に示すように、鋼板12と接触させる電極14の先端曲率半径をRFe(mm)とし、第1通電工程の電流をI(kA)、通電時間をt(ms)とし、通電休止工程の通電休止時間をt(ms)とし、第2通電工程の電流をI(kA)、通電時間をt(ms)としたとき、第1通電工程、通電休止工程、および第2通電工程は、上記式(1)~(5)の関係を全て満たすことにより、本発明の効果をより有効に得ることができる。
 詳述すると、上記式(1)~(2)に示すように、第1通電工程は第2通電工程よりも長時間且つ低電流の通電を行なうことによって、上述のように鋼板間の散りを抑制しつつ、2√tFe(mm)以上のナゲット径を確保する。また、図2に示すように通電初期はアルミニウム板13の表面の酸化被膜で通電経路が制限されるが、この長時間且つ低電流の通電によって、酸化被膜を破壊し、鋼板11、12とアルミニウム板13間の通電経路を確保しつつ、過度な入熱増加が生じないようにする。
また、上記式(3)に示すように、第1通電工程の通電時間tを40ms以上とすることで、鋼板11、12とアルミニウム板13間の通電経路を十分に確保することができる。
 そして、第1通電工程に続いて、所定の通電休止時間t(ms)の間通電を休止し(通電休止工程)、この通電休止工程に続いて、第2通電工程(2段目の通電)で第1通電工程よりも短時間且つ高電流の通電を行なう。これにより、瞬間的に広範囲を発熱させることができる。鋼板12と電極14の接触端近傍では、電流密度が高いため、高電流化するほどこの接触端近傍での発熱が促進されることとなる。したがって、第2通電工程での高電流化は、短時間の通電で広範囲を発熱させるのに有効となり、広範囲のアルミニウム板13を溶融させ、これにより接合径を拡大することができる。なお、上述したように、第1通電工程の通電によって鋼板12と電極14との接触径が拡大しているため、鋼板12表面からの散りは発生しにくい状態となっている。しかし、第1通電工程の通電終了時点では、第1通電工程において初期に酸化被膜が破壊されて通電が開始する接合部中心がより高温となっている。したがって、通電休止工程での通電休止時間tが短い場合は、第2通電工程の通電を短時間且つ高電流化したとしても、高温の接合部中心から再昇温するため、入熱が過大となり易い。そこで、上記式(4)に示すように、通電休止時間tが5ms以上の通電休止工程を行なった後に高電流且つ短時間の第2通電工程を行なうようにする。これにより、通電休止工程において接合部中心の温度が一旦低下するため、第2通電工程の通電では電流密度が高い鋼板12と電極14の接触端近傍の発熱を促すことができ、広範囲を効率的に昇温でき、アルミニウム板13のナゲット径の確保と入熱低減が両立できる。なお、第2通電工程では、過剰なナゲット径の減少が生じない程度の散りは発生してもよい。また、第2通電工程での通電時間tは、ナゲット径確保と過剰入熱抑制の観点より、例えば5~100msであることが好ましい。第2通電工程での通電時間tは、より好ましくは5~90msであり、さらに好ましくは10~80msである。
 上述した通電パターンに加えて、上記式(5)に示すように、鋼板12と接する電極14として、先端曲率半径RFeが20mm以上の電極を用いることで、本発明の効果をより有効に得ることができる。先端曲率半径RFeを20mm以上とすることにより、電極と鋼板の接触径を確保でき、鋼板表面からの散りを抑制しやすいためである。
さらには、鋼板12と接する電極14として、鋼板12と接触させる電極14の先端径をDFe(mm)としたとき、下記式(6)および(7)の関係を満たす電極を用いることが好ましい。これは、鋼板12と接する電極14の先端曲率半径RFeの拡大により、鋼板12と電極14の接触面積が大きくなることで、第2通電工程における通電面積が大きくなり、鋼板の発熱範囲および接合径が拡大できるためである。また、鋼板12と電極14の接触端近傍における電流密度の過大増加を防ぐことで、鋼板12表面からの散り発生を抑制しやすくなる効果も得られる。
Fe≧50   (6)
Fe≧3   (7)
なお、電極14の先端曲率半径RFeは、より好ましくは100mm以上である。先端曲率半径RFeの上限は特に規定しない。また、電極14の先端径DFeは、より好ましくは4mm以上であり、さらに好ましくは5mm以上である。先端径DFeの上限は特に規定しないが、電流密度と面圧の確保の観点より、20mm以下とすることが好ましい。
電極14の先端の形式は、例えばJIS C 9304:1999に記載されるDR形(ドームラジアス形)、R形(ラジアス形)、D形(ドーム形)である。図4に、電極の先端曲率半径Rと先端径Dを示す。図4(a)はラジアス形の電極の先端曲率半径Rと先端径Dを示す図であり、図4(b)はドームラジアス形の電極の先端曲率半径Rと先端径Dを示す図である。なお、図4(b)に示すように、ドームラジアス形の電極は先端側の曲面が2段の曲率を有するが、電極の先端曲率半径は、抵抗スポット溶接する板に最初に接する部分(中心側の曲面)の曲率半径Rである。
 アルミニウム板13と接触させる電極15の先端の形式は、例えばJIS C 9304:1999に記載されるDR形(ドームラジアス形)、R形(ラジアス形)、D形(ドーム形)である。
アルミニウム板13と接触させる電極15の先端径DAlは、アルミニウム板の変形の抑制と、面圧の確保の観点より、例えば4~16mmとすることが好ましい。より好ましくは6~16mmである。また、アルミニウム板13と接触させる電極15の先端曲率半径RAlは、同様にアルミニウム板の変形の抑制と、面圧の確保の観点より、例えば30mm以上とすることが好ましい。より好ましくは40mm以上である。先端曲率半径RAlの上限は特に規定しない。
 また、第2通電工程の通電で適用の適正電流範囲を拡大したい場合は、第1通電工程で鋼板11、12とアルミニウム板13間に十分な通電経路を確保しておくことが有効となる。そのため第1通電工程の通電時間tは50ms以上とすることが好ましく、60ms以上とすることがより好ましい。一方、タクトタイムの増加を抑制するという観点からは、tは800ms以下とすることが好ましく、600ms以下とすることがより好ましい。
 また、鋼板の板厚が大きい場合など、電極への抜熱が生じづらい板組においては、通電休止時間tは10ms以上とすることが好ましく、20ms以上とすることがより好ましい。一方、タクトタイムの増加を抑制するという観点からは、tは600ms以下とすることが好ましく、400ms以下とすることがより好ましい。
 本発明における溶接電流(通電時の電流)は、特に限定されず、溶接電流は例えば4~40kAである。ただし、施工上は所定のナゲット径を得る必要があり、過大な電流値は散り発生の原因となるため、第1通電工程の電流Iは例えば5~20kAであり、第2通電工程の電流値Iは例えば10~40kAである。
 また、溶接中の加圧力には特に制限はなく、例えば、加圧力は、例えば2.0kN~7.0kNであり、加圧力を溶接中および溶接前後に変化させてもよい。
 また、溶接中の抵抗値・電圧値といったパラメータを監視し、その変動に応じて電流値や通電時間を変化させる制御方法を用いても何ら問題無い。
 本発明の実施例を以下に示す。なおこの実施例で用いた板組や溶接条件、電極形状は、本発明の効果を示すために適用した一例であるため、他の条件を用いてもよいのは言うまでもない。
 (本発明例および比較例)
 供試材料として、表1に示した鋼板11、12とアルミニウム板13を用いた。表1に示した鋼板11、12の引張強さは、鋼板から圧延方向に対して平行方向にJIS5号引張試験片を作製し、JIS Z 2241:2011の規定に準拠して引張試験を実施して求めた。表1に示した鋼板11、12とアルミニウム板13は、図1に示すようにして、抵抗スポット溶接を行ない、アルミニウム板1枚と鋼板2枚とを重ね合わせた3枚重ねの板組からなる抵抗スポット溶接継手を製造した。なお、用いたアルミニウム板13は表面に酸化被膜が形成されていた。溶接機はインバータ直流式抵抗スポット溶接機を用い、電極14、15の先端曲率半径および先端径、ならびに、通電パターンを表2に示す条件とした。電極14、15は全てクロム銅のDR形製電極を用いた。抵抗スポット溶接は室温(20℃)で行い、電極を常に水冷した状態で行った。また、加圧力は、第1通電工程、通電休止工程、第2通電工程にわたって一定とした。
 得られた抵抗スポット溶接継手について、JIS Z 3136に基づく引張せん断試験を実施して継手強度を評価した。図5に、実施例の引張試験(引張せん断試験)を説明する図を示す。図5に示すように、抵抗スポット溶接継手の両側から矢印の方向に引っ張り、鋼板-アルミニウム板間の引張せん断試験を行った。そして、鋼板とアルミニウム板との接合部が破断したときの最大荷重(引張せん断強度)を算出した。
引張せん断強度(TSS)が、TSS≧1.5kNの場合をA、1.5kN>TSS≧1.0kNの場合をB、1.0kN>TSSの場合をFとして、それぞれ評価した。評価結果を表2に示す。本発明例では、引張せん断強度(TSS)の評価はA、Bのいずれかであった。
 さらに、表3に示す溶接条件にて得られた抵抗スポット溶接継手について、JIS Z 3137に基づく十字引張試験を実施して継手強度を評価した。図6に、実施例の引張試験(十字引張試験)を説明する図を示す。図6に示すように、抵抗スポット溶接継手の両側から矢印の方向に引っ張り、鋼板-アルミニウム板間の十字引張試験を行った。そして、鋼板とアルミニウム板との接合部が破断したときの最大荷重(十字引張強度)を算出した。
十字引張強度(CTS)が、CTS≧0.7kNの場合をA、0.7kN>CTSの場合をFとして、それぞれ評価した。評価結果を表3に示す。本発明例では、十字引張強度(CTS)の評価はAであった。また、上記と同様の方法で行った引張せん断試験の結果も表3に併せて示した。本発明例では、TSSの評価はAであった。
 また、上記と同様の条件で第1通電工程を行ない、接合部の断面観察によって第1通電工程の通電で形成された鋼板11と鋼板12間のナゲット径16、鋼板11とアルミニウム板13間のナゲット径17をそれぞれ求めた。なお、ナゲット径17は、アルミニウム板13とアルミニウム板13と接する板(鋼板11)との接合面における、アルミニウム板13のナゲット17の最大径(mm)を測定した。ナゲット径16は、鋼板12と鋼板12と接する板(鋼板11)との接合面における、アルミニウム板12のナゲット16の最大径(mm)を測定した。測定結果を表2、3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 11、12 鋼板
 13    アルミニウム板
 14、15 電極
 16    鋼板-鋼板間のナゲット
 17    鋼板-アルミニウム板間のナゲット

Claims (3)

  1.  2枚の鋼板と1枚のアルミニウム板を重ね合わせて最外側に配置される板の一方が鋼板で他方がアルミニウム板とした板組を、抵抗スポット溶接により接合し、抵抗スポット溶接継手を製造するにあたり、
     2枚の鋼板のうち薄い方の鋼板の板厚をtFe(mm)としたとき、通電して2枚の鋼板間にナゲット径が2√tFe(mm)以上のナゲットを形成する第1通電工程と、
    第1通電工程の後に通電を休止する通電休止工程と、
    通電休止工程の後に通電する第2通電工程とを有する抵抗スポット溶接継手の製造方法。
  2.  前記鋼板と接触させる電極の先端曲率半径をRFe(mm)とし、前記第1通電工程の電流をI(kA)、通電時間をt(ms)とし、前記通電休止工程の通電休止時間をt(ms)とし、前記第2通電工程の電流をI(kA)、通電時間をt(ms)としたとき、
    前記第1通電工程、前記通電休止工程、および前記第2通電工程は、下記式(1)~(5)の関係を全て満たす、請求項1に記載の抵抗スポット溶接継手の製造方法。
    <I   (1)
    >t   (2)
    ≧40   (3)
    ≧5   (4)
    Fe≧20   (5)
  3.  前記鋼板と接触させる電極の先端曲率半径をRFe(mm)、先端径をDFe(mm)としたとき、
    前記第1通電工程、前記通電休止工程、および前記第2通電工程は、さらに、下記式(6)および(7)の関係を満たす、請求項1または2に記載の抵抗スポット溶接継手の製造方法。
    Fe≧50   (6)
    Fe≧3   (7)
PCT/JP2018/012260 2017-03-31 2018-03-27 抵抗スポット溶接継手の製造方法 WO2018181232A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197028629A KR102276817B1 (ko) 2017-03-31 2018-03-27 저항 스폿 용접 조인트의 제조 방법
JP2018530805A JP6399266B1 (ja) 2017-03-31 2018-03-27 抵抗スポット溶接継手の製造方法
CN201880022069.0A CN110475642B (zh) 2017-03-31 2018-03-27 电阻点焊接头的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-069475 2017-03-31
JP2017069475 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018181232A1 true WO2018181232A1 (ja) 2018-10-04

Family

ID=63675862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012260 WO2018181232A1 (ja) 2017-03-31 2018-03-27 抵抗スポット溶接継手の製造方法

Country Status (4)

Country Link
JP (1) JP6399266B1 (ja)
KR (1) KR102276817B1 (ja)
CN (1) CN110475642B (ja)
WO (1) WO2018181232A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220111464A1 (en) * 2020-10-09 2022-04-14 Kabushiki Kaisha Toyota Chuo Kenkyusho Spot welding method
JP7485716B2 (ja) 2022-03-30 2024-05-16 株式会社豊田中央研究所 スポット溶接方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6958765B1 (ja) * 2020-03-05 2021-11-02 Jfeスチール株式会社 抵抗スポット溶接方法および抵抗スポット溶接継手の製造方法
CN115558750A (zh) * 2022-09-09 2023-01-03 首钢集团有限公司 一种基于辅助垫板制备高强钢局部软区的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008272825A (ja) * 2007-03-30 2008-11-13 Nissan Motor Co Ltd 異種金属の接合方法及び接合構造
JP2010172946A (ja) * 2009-01-30 2010-08-12 Jfe Steel Corp 高強度薄鋼板の抵抗スポット溶接方法
JP2013027890A (ja) * 2011-07-27 2013-02-07 Mazda Motor Corp アルミ合金板材とめっき鋼板材との接合体
JP2013151018A (ja) * 2011-12-27 2013-08-08 Mazda Motor Corp 溶接方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS504790A (ja) 1973-05-12 1975-01-18
JPS5436790A (en) 1977-08-26 1979-03-17 Hitachi Ltd Magnetic pole piece for internal chill
JP4469165B2 (ja) 2003-11-26 2010-05-26 株式会社神戸製鋼所 鋼材とアルミニウム材との異材接合体とその接合方法
JP3117053U (ja) 2005-09-26 2006-01-05 株式会社細山田商事 脱臭装置
KR100722130B1 (ko) * 2005-12-29 2007-05-25 주식회사 포스코 고강도 강판의 스폿 용접 방법
JP5572046B2 (ja) 2010-09-13 2014-08-13 株式会社神戸製鋼所 異材接合方法
JP5333560B2 (ja) * 2011-10-18 2013-11-06 Jfeスチール株式会社 高張力鋼板の抵抗スポット溶接方法及び抵抗スポット溶接継手
JP6108030B2 (ja) * 2014-12-01 2017-04-05 Jfeスチール株式会社 抵抗スポット溶接方法
JP2017047449A (ja) * 2015-09-02 2017-03-09 本田技研工業株式会社 金属接合品及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008272825A (ja) * 2007-03-30 2008-11-13 Nissan Motor Co Ltd 異種金属の接合方法及び接合構造
JP2010172946A (ja) * 2009-01-30 2010-08-12 Jfe Steel Corp 高強度薄鋼板の抵抗スポット溶接方法
JP2013027890A (ja) * 2011-07-27 2013-02-07 Mazda Motor Corp アルミ合金板材とめっき鋼板材との接合体
JP2013151018A (ja) * 2011-12-27 2013-08-08 Mazda Motor Corp 溶接方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220111464A1 (en) * 2020-10-09 2022-04-14 Kabushiki Kaisha Toyota Chuo Kenkyusho Spot welding method
JP2022063070A (ja) * 2020-10-09 2022-04-21 株式会社豊田中央研究所 スポット溶接方法
US11772186B2 (en) 2020-10-09 2023-10-03 Kabushiki Kaisha Toyota Chuo Kenkyusho Spot welding method
JP7590849B2 (ja) 2020-10-09 2024-11-27 株式会社豊田中央研究所 スポット溶接方法
JP7485716B2 (ja) 2022-03-30 2024-05-16 株式会社豊田中央研究所 スポット溶接方法

Also Published As

Publication number Publication date
JP6399266B1 (ja) 2018-10-03
JPWO2018181232A1 (ja) 2019-04-04
KR20190126099A (ko) 2019-11-08
CN110475642B (zh) 2021-09-28
CN110475642A (zh) 2019-11-19
KR102276817B1 (ko) 2021-07-12

Similar Documents

Publication Publication Date Title
JP6410003B1 (ja) 抵抗スポット溶接継手の製造方法
CN104661784B (zh) 接头强度优异的高强度钢板的点焊方法
JP5359571B2 (ja) 高張力鋼板の抵抗溶接方法および抵抗溶接継手の製造方法
JP6278154B2 (ja) 抵抗スポット溶接方法および溶接部材の製造方法
JP6399266B1 (ja) 抵抗スポット溶接継手の製造方法
KR101419191B1 (ko) 이재 접합 방법
WO2018159764A1 (ja) 抵抗スポット溶接方法
JP6168246B1 (ja) 抵抗スポット溶接方法および溶接部材の製造方法
JP6360056B2 (ja) 抵抗スポット溶接方法
US3664816A (en) Steel-to-aluminum transition piece
WO2015133096A1 (ja) 抵抗スポット溶接方法
JP2019177408A (ja) 接合構造体およびその製造方法
JP6160581B2 (ja) 抵抗スポット溶接方法
JP2022000315A (ja) ウェルドボンド継手の製造方法
JP2014172053A (ja) 溶接継手の製造方法
JP7047543B2 (ja) 接合構造体およびその製造方法
JP7003805B2 (ja) 接合構造体およびその製造方法
JP7355282B1 (ja) 溶接継手、溶接部材およびその製造方法、ならびに、抵抗スポット溶接方法
JP6811063B2 (ja) 抵抗スポット溶接方法および抵抗スポット溶接継手の製造方法
WO2023008263A1 (ja) 抵抗スポット溶接方法
JP6794006B2 (ja) 抵抗スポット溶接継手、抵抗スポット溶接方法および抵抗スポット溶接継手の製造方法
CN119855672A (zh) 焊接构件及其制造方法
JP2023037221A (ja) スポット溶接継手、自動車用部品、及びスポット溶接継手の製造方法
JPWO2018159764A1 (ja) 抵抗スポット溶接方法
JPH04172184A (ja) 抵抗スポット溶接性に優れたアルミニウム合金合わせ板および抵抗スポット溶接方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018530805

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776678

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197028629

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18776678

Country of ref document: EP

Kind code of ref document: A1