WO2018180468A1 - Internal combustion engine control device - Google Patents
Internal combustion engine control device Download PDFInfo
- Publication number
- WO2018180468A1 WO2018180468A1 PCT/JP2018/009742 JP2018009742W WO2018180468A1 WO 2018180468 A1 WO2018180468 A1 WO 2018180468A1 JP 2018009742 W JP2018009742 W JP 2018009742W WO 2018180468 A1 WO2018180468 A1 WO 2018180468A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- internal combustion
- increase correction
- combustion engine
- correction coefficient
- value
- Prior art date
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 85
- 239000000446 fuel Substances 0.000 claims abstract description 209
- 238000012937 correction Methods 0.000 claims abstract description 138
- 238000002347 injection Methods 0.000 claims abstract description 77
- 239000007924 injection Substances 0.000 claims abstract description 77
- 238000000034 method Methods 0.000 claims description 61
- 230000008569 process Effects 0.000 claims description 58
- 230000003247 decreasing effect Effects 0.000 claims description 17
- 230000007423 decrease Effects 0.000 claims description 13
- 238000012545 processing Methods 0.000 claims description 13
- 238000005070 sampling Methods 0.000 abstract 2
- 230000008859 change Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 230000000875 corresponding effect Effects 0.000 description 7
- 238000001514 detection method Methods 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000007493 shaping process Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/06—Introducing corrections for particular operating conditions for engine starting or warming up
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D45/00—Electrical control not provided for in groups F02D41/00 - F02D43/00
Definitions
- the present invention relates to an internal combustion engine control device, and more particularly to an internal combustion engine control device applied to a general-purpose machine such as a generator or a vehicle such as a motorcycle.
- a temperature sensor in a fuel injection system is generally used for detecting a warm-up state of an internal combustion engine. More specifically, the fuel injection system calculates the temperature of the internal combustion engine based on the output of the temperature sensor, detects the warm-up state of the internal combustion engine based on the calculated temperature of the internal combustion engine, and determines the ignition timing. And control of fuel injection. For this reason, when adopting a fuel injection system, it is necessary to attach a temperature sensor to the internal combustion engine. Furthermore, when installing a temperature sensor in the internal combustion engine, it is necessary to install wires and couplers for wiring, and it is necessary to process the part of the internal combustion engine where the temperature sensor is installed.
- the ratio of the cost of the fuel injection system to the sales price is higher than that of the carburetor system.
- a temperature sensor is required to be omitted from the fuel injection system for the purpose of cost reduction.
- Patent Document 1 relates to the electronic control unit 20 of the engine 10 by paying attention to the correlation between the temperature of the injector 15 and the temperature of the engine 10 and calculating the temperature of the engine 10 from the temperature of the injector 15.
- a configuration for controlling the engine 10 at the temperature of the engine 10 is disclosed.
- Patent Document 2 relates to a post-startup injection amount control device 54 for the internal combustion engine 2, and a post-startup fuel increase correction for performing an increase correction of the fuel injection amount during a predetermined period from the start of the internal combustion engine 2, and the internal combustion engine. 2 discloses a configuration for executing warm-up fuel increase correction for correcting increase in fuel injection amount in accordance with the temperature 2.
- the increase due to the correction is decreased with the passage of time from the start of the internal combustion engine.
- a technique for reducing the increase in this way there is a method in which the increase correction is decreased by a predetermined value in synchronization with the rotational speed of the internal combustion engine.
- the increase correction is decreased in synchronization with the rotational speed of the internal combustion engine, there is an advantage that there is no need to divide timer resources for time measurement.
- the warm-up fuel increase correction is performed.
- the increase in the fuel injection amount does not become zero at an early stage, when the temperature of the internal combustion engine (internal combustion engine temperature) is calculated from the temperature of the injector (injector temperature) as in the configuration disclosed in Patent Document 1. Since the reaction of the internal combustion engine temperature at the time of starting the internal combustion engine is quicker than that by the water temperature detection, the increase in the fuel injection amount due to the warm-up fuel increase correction tends to become zero at an early stage.
- the injector temperature is correlated with a temperature sensitive part such as a plug seat in the combustion chamber.
- a temperature sensitive part such as a plug seat in the combustion chamber.
- the present invention has been made after the above study, and provides an internal combustion engine control device that can appropriately perform fuel increase correction at the start of the internal combustion engine to suppress a decrease in drivability and occurrence of engine stall. For the purpose.
- the present invention is applied to an internal combustion engine, and calculates an injector temperature based on the coil resistance value of the injector and an internal combustion engine temperature based on the injector temperature.
- the injector temperature using a start-up fuel increase correction coefficient
- a fuel injection amount calculation unit that calculates a fuel injection amount that is obtained by correcting the reference injection amount calculated from the above, and a thinning counter that counts every predetermined period after the start of the internal combustion engine, the fuel injection amount calculation unit
- Count value is that rotational speed of the internal combustion engine is set to be higher as large as the first aspect.
- the fuel injection amount calculation unit obtains a constant value from the previous value of the starting fuel increase correction coefficient every time the count value of the decimation counter reaches the predetermined count value. It is a second aspect to execute a calculation process for calculating the current value of the starting fuel increase correction coefficient by subtraction.
- the fuel injection amount calculation unit sets the previous value of the start-up fuel increase correction coefficient at a constant rate each time the count value of the thinning counter reaches the predetermined count value. It is a third aspect to execute a calculation process for calculating the current value of the start-time fuel increase correction coefficient by reducing the starting fuel increase correction coefficient.
- the present invention provides that the fuel injection amount calculation unit starts the engine every time the count value reaches the predetermined count value until the count value of the thinning counter reaches a predetermined threshold value.
- a first calculation process for calculating the current value of the start time fuel increase correction coefficient by decreasing the previous value of the hour fuel increase correction coefficient at a constant rate is executed, and the count value of the decimation counter is set to a predetermined threshold value. After that, every time the count value reaches the predetermined count value, the current value of the starting fuel increase correction coefficient is calculated by subtracting a constant value from the previous value of the starting fuel increase correction coefficient. Executing the calculation process 2 is a fourth aspect.
- the fuel injection amount calculation unit decreases the start-up fuel increase correction coefficient every time the count value of the thinning counter reaches a predetermined count value, and the predetermined count value Is set so as to increase as the rotational speed of the internal combustion engine increases. Therefore, the period from the start of the internal combustion engine until the start-time fuel increase correction coefficient becomes zero is determined as the rotational speed of the internal combustion engine. It can be made substantially constant without being affected, and the fuel increase correction at the start of the internal combustion engine can be appropriately executed to suppress drivability deterioration and engine stall.
- the fuel injection amount calculation unit starts from the previous value of the starting fuel increase correction coefficient every time the count value of the thinning counter reaches a predetermined count value. Since the calculation process for calculating the current value of the starting fuel increase correction coefficient is performed by subtracting a certain value, the degree of decrease in the fuel increase correction amount at the start is adjusted according to the characteristics at the start of the internal combustion engine. Can be linearly changed, and drivability deterioration and engine stall can be more appropriately suppressed.
- the fuel injection amount calculation unit calculates the previous value of the start-time fuel increase correction coefficient every time the count value of the thinning counter reaches a predetermined count value. Since the calculation process for calculating the current value of the fuel increase correction coefficient at start-up is performed by decreasing it at a constant rate, the fuel increase correction amount at start-up is reduced in accordance with the characteristics at the start of the internal combustion engine. The degree can be changed non-linearly, and drivability deterioration and engine stall can be more appropriately suppressed.
- the fuel injection amount calculation unit determines that the count value reaches the predetermined count value until the count value of the thinning counter reaches the predetermined threshold value.
- the first calculation process for calculating the current value of the start-time fuel increase correction coefficient by decreasing the previous value of the start-time fuel increase correction coefficient at a constant rate is executed, and the count value of the thinning counter reaches a predetermined threshold value After that, every time the count value reaches the predetermined count value, a second calculation process is performed to calculate the current value of the start time fuel increase correction coefficient by subtracting a certain value from the previous value of the start time fuel increase correction coefficient. Therefore, the degree of decrease in the fuel increase correction amount at the start can be switched from non-linear to linear according to the characteristics at the start of the internal combustion engine. It is possible to more appropriately suppress the raw.
- FIG. 1A is a schematic diagram showing a configuration of an internal combustion engine control apparatus according to an embodiment of the present invention.
- FIG. 1B is a schematic diagram showing the configuration of the injector in FIG. 1A.
- FIG. 2 shows the change in the count value of the thinning counter and the change in the start-up fuel increase correction coefficient in accordance with the change in the engine speed when the start-up fuel increase correction coefficient calculation process of the internal combustion engine control apparatus in the present embodiment is executed. It is a figure shown with the execution timing of a fuel injection amount calculation process.
- FIG. 3A is a diagram illustrating an example of table data representing a relationship between an engine speed and a predetermined count value used in the start-up fuel increase correction coefficient calculation process of the internal combustion engine control apparatus according to the present embodiment.
- FIG. 3B is a diagram showing an example of a change in the start-up fuel increase correction coefficient accompanying a change in the number of thinning-outs in the start-up fuel increase correction coefficient calculation process.
- FIG. 4 is a flowchart illustrating an example of the flow of the start-up fuel increase correction coefficient calculation process of the internal combustion engine control device according to the present embodiment.
- the internal combustion engine control device in the present embodiment is typically suitably mounted on an internal combustion engine mounting body such as a general-purpose machine such as a generator or a vehicle such as a motorcycle.
- the internal combustion engine control device will be described as being mounted on a vehicle such as a motorcycle.
- FIG. 1A is a schematic diagram showing a configuration of an internal combustion engine control apparatus according to the present embodiment
- FIG. 1B is a schematic diagram showing a configuration of an injector in FIG. 1A.
- the internal combustion engine control device 1 is based on the temperature of functional parts of an engine that is an internal combustion engine such as a gasoline engine mounted on a vehicle not shown.
- the electronic control unit (Electronic Control Unit: ECU) 10 is provided.
- the ECU 10 operates by using electric power from the battery B mounted on the vehicle, and includes a waveform shaping circuit 11, a thermistor element 12 (temperature detection element), an A / D converter 13, an ignition circuit 14, and a drive circuit. 15, resistance value detection circuit 16, EEPROM (Electrically Erasable Programmable Read-Only Memory) 17, ROM (Read-Only Memory) 18, RAM (Random Access Memory) 19, timer 20 and central processing unit ce ) 21.
- Each component of the ECU 10 is accommodated in a casing 10a of the ECU 10. Also, typically, the ECU 10 and the engine are in contact with the outside air, and the ECU 10 is arranged away from the engine 10 so as not to be affected by the radiant heat of the engine and the heat transfer from the engine. Is.
- the waveform shaping circuit 11 shapes a crank pulse signal corresponding to the rotation angle of the crankshaft 3 of the engine output from the crank angle sensor 2 to generate a digital pulse signal.
- the waveform shaping circuit 11 outputs the digital pulse signal thus generated to the CPU 21.
- the thermistor element 12 is separated from the heat generating element that is typically the ignition circuit 14 in the casing 10a of the ECU 10, and is located on the atmosphere side of the ECU 10 (for example, a casing whose distance to the casing 10a is about several millimeters).
- a chip thermistor disposed at a position close to the body 10a, and detects an ambient temperature (outside temperature), which is an ambient temperature outside the casing 10a of the ECU 10.
- the thermistor element 12 exhibits an electrical resistance value corresponding to the ambient temperature, and outputs an electrical signal indicating a voltage corresponding to the electrical resistance value to the A / D converter 13.
- the thermistor element 12 may be replaced with another temperature sensor such as a thermocouple as long as it can output such an electrical signal.
- the temperature detected by the thermistor element 12 is equal to the ambient temperature (outside temperature) that is the ambient temperature around the engine.
- the A / D converter 13 is an electric signal indicating the opening degree of the throttle valve of the engine output from the throttle opening degree sensor 4 and an electric signal indicating the oxygen concentration in the atmosphere sucked into the engine output from the oxygen sensor 5. , And the electrical signal indicating the ambient temperature output from the thermistor element 12 is converted from an analog form to a digital form. The A / D converter 13 outputs these electrical signals thus converted into digital form to the CPU 21.
- the ignition circuit 14 includes a switching element such as a transistor that is controlled to be turned on / off in accordance with a control signal from the CPU 21. When the switching element is turned on / off, the fuel in the engine is passed through a spark plug (not shown). And the operation of the ignition coil 6 for generating a secondary voltage for igniting the air-fuel mixture.
- the ignition circuit 14 is typically a driver IC (Integrated Circuit) that is a semiconductor element, and is a component that generates the largest amount of heat in the housing 10a.
- the drive circuit 15 includes a switching element such as a transistor that is controlled to be turned on / off according to a control signal from the CPU 21, and the switching element is turned on / off to energize the coil 7a of the injector 7 that supplies fuel to the engine. / Switch the de-energized state.
- the injector 7 is attached to an intake pipe or a cylinder head (not shown) of the engine, and heat generated from the engine is transferred.
- the equivalent circuit 7b of the coil 7a of the injector 7 is represented by a series circuit including an inductance component L and an electric resistance component R.
- the coil 7a is a component for electrically driving the solenoid 7c of the injector 7, and the fuel is ejected from the injector 7 when the solenoid 7c operates in the energized state of the coil 7a.
- the resistance value detection circuit 16 measures an electrical resistance value (resistance value) that is a physical quantity that varies depending on the electrical resistance component of the coil 7a of the injector 7, and sends an electrical signal indicating the measured resistance value to the CPU 21. Output.
- the EEPROM 17 stores data relating to various learning values such as a fuel injection amount learning value and a throttle reference position learning value. Note that the EEPROM 17 may be replaced with another storage medium such as a data flash as long as it can store data relating to such various learning values.
- the ROM 18 is configured by a non-volatile storage device, and stores various control data such as a control program for starting fuel increase correction coefficient calculation processing, which will be described later, and table data used in starting fuel increase correction coefficient calculation processing. is doing.
- the RAM 19 is composed of a volatile storage device and functions as a working area for the CPU 21.
- the timer 20 performs a time measurement process according to a control signal from the CPU 21.
- the CPU 21 controls the operation of the entire ECU10.
- the CPU 21 executes a control program stored in the ROM 18, thereby causing an injector temperature calculation unit 21a, an engine temperature calculation unit 21b, an operation state control unit 21c, a fuel injection amount calculation unit 21d, and a thinning-out. It functions as a counter 21e.
- the injector temperature calculation unit 21 a calculates the temperature of the injector 7 (injector temperature) corresponding to the resistance value of the coil 7 a of the injector 7.
- the engine temperature calculation unit 21b calculates the temperature of the engine (engine temperature) based on the injector temperature calculated by the injector temperature calculation unit 21a.
- the operation state control unit 21c controls the operation state of the engine by controlling the ignition circuit 14 and the drive circuit 15 based on the engine temperature calculated by the engine temperature calculation unit 21b.
- the fuel injection amount calculation unit 21d calculates the fuel injection amount.
- the fuel injection amount is obtained by correcting the reference injection amount calculated from the injector temperature using the starting fuel increase correction coefficient KAST when the engine is started. Is calculated.
- the thinning counter 21e counts every fixed period after the engine is started.
- the starting fuel increase correction coefficient KAST is typically a correction coefficient that is multiplied by the basic fuel injection amount at the time of starting the engine to increase the fuel injection amount.
- an injector temperature can be cited as a suitable example from the viewpoint of simplicity of measurement, etc., but as a functional component of the engine, a resistance value corresponding to the engine temperature can be measured. If there is any other functional equipment, the temperature of the functional equipment may be used as the temperature of the functional parts of the engine. Also, when acquiring the engine temperature having a correlation with the injector temperature, taking into account that the temperature of the engine spark plug seat is close to the actual temperature inside the engine, actually measuring the temperature of the engine spark plug seat, It is easy to obtain this as the engine temperature.
- the internal combustion engine control device 1 having such a configuration appropriately executes fuel increase correction at engine startup by executing the following startup fuel increase correction coefficient calculation processing, thereby reducing drivability and Suppresses the occurrence of engine stalls.
- the operation of the internal combustion engine control device 1 when executing the start time fuel increase correction coefficient calculation processing in the present embodiment will be specifically described with reference to FIGS. 2 and 3 as well.
- FIG. 2 shows the count value CTKAST of the decimation counter and the start-up fuel increase correction coefficient KAST according to the change in the engine speed NE when the start-up fuel increase correction coefficient calculation process of the internal combustion engine control apparatus 1 in this embodiment is executed. It is a figure which shows this change with the execution timing of fuel injection amount calculation processing.
- FIG. 3A is a diagram showing an example of table data representing the relationship between the engine speed NE and a predetermined count value used in the start-up fuel increase correction coefficient calculation process of the internal combustion engine control apparatus 1 in the present embodiment.
- FIG. 3B is a diagram showing an example of a change in the start-up fuel increase correction coefficient accompanying a change in the number of thinning-outs in the start-up fuel increase correction coefficient calculation process.
- a predetermined start-up fuel increase correction end condition is typically set from when the engine is started.
- the thinning counter 21e counts down the count value CTKAST from the predetermined count value at every execution timing of the fuel injection amount calculation process (fuel injection amount calculation timing).
- the fuel injection amount calculation unit 21d typically has a numerical value of 1 or more.
- the value of a certain start-up fuel increase correction coefficient KAST is decreased, and the count value CTKAST of the thinning counter 21e is set to a predetermined count value again.
- the thinning counter 21e may be an addition counter.
- the predetermined count value which is the initial value by which the thinning counter 21e counts down the count value CTKAST, is set to increase as the engine speed NE increases. Specifically, even if the engine speed NE is increased, the engine speed is set such that the time interval during which the start time fuel increase correction coefficient KAST is decreased is substantially constant without depending on the engine speed NE. The predetermined count value is set to increase as NE increases.
- the fuel injection amount calculation unit 21d subtracts a constant value from the previous value of the start time fuel increase correction coefficient KAST, thereby reducing the start time fuel increase.
- the current value of the correction coefficient KAST may be calculated, or, as indicated by the curve L3 in FIG. 3B, the previous value of the start-time fuel increase correction coefficient KAST is decreased at a constant rate so that the previous value is obtained as shown in FIG. 3B.
- the current value of the start-time fuel increase correction coefficient KAST may be calculated which is decreased with a non-linear characteristic different from the mode indicated by the curve L2.
- the fuel injection amount calculation unit 21d starts the fuel at start-up every time the count value CTKAST reaches a predetermined count value until the count value CTKAST of the thinning counter 21e reaches a predetermined threshold value.
- a process of calculating the current value of the starting fuel increase correction coefficient KAST by decreasing the previous value of the increase correction coefficient KAST at a constant rate is executed, and after the count value CTKAST of the decimation counter reaches a predetermined threshold value, the thinning is performed.
- FIG. 4 is a flowchart showing an example of the flow of the startup fuel increase correction coefficient calculation process of the internal combustion engine control apparatus 1 in the present embodiment.
- the flowchart shown in FIG. 4 starts when the ignition switch of the vehicle is switched from the off state to the on state and the CPU 21 operates, and the start time fuel increase correction coefficient calculation processing proceeds to step S1.
- the start-up fuel increase correction coefficient calculation process is repeatedly executed at predetermined control intervals while the CPU 21 is operating with the ignition switch of the vehicle turned on.
- step S1 the fuel injection amount calculation unit 21d determines whether or not the post-startup fuel increase correction end flag is on, thereby determining whether or not post-startup fuel increase correction is being performed. Is determined.
- step S1: Yes the fuel injection amount calculation unit 21d determines that post-startup fuel increase correction is being performed, and starts The fuel increase correction coefficient calculation process proceeds to the process of step S2.
- step S1: No the fuel injection amount calculation unit 21d determines that post-startup fuel increase correction is not being performed, and this time series.
- the start-time fuel increase correction coefficient calculation process ends. Note that the initial state of the post-startup fuel increase correction end flag is the off state.
- step S2 the thinning counter 21e subtracts 1 from the count value CTKAST. Thereby, the process of step S2 is completed, and the start time fuel increase correction coefficient calculation process proceeds to the process of step S3.
- step S3 the fuel injection amount calculation unit 21d determines whether the count value CTKAST of the thinning counter 21e is equal to or less than zero. As a result of the determination, if the count value CTKAST of the thinning counter 21e is equal to or less than zero (step S3: Yes), the fuel injection amount calculation unit 21d advances the start time fuel increase correction coefficient calculation processing to the processing of step S4. On the other hand, when the count value CTKAST of the thinning-out counter 21e is not less than or equal to zero (step S3: No), the fuel injection amount calculation unit 21d ends the current series of start time fuel increase correction coefficient calculation processing.
- step S4 the fuel injection amount calculation unit 21d retrieves a predetermined count value corresponding to the current engine speed NE from the table data shown in FIG. 3A, and the predetermined count obtained by retrieving the count value CTKAST of the thinning counter 21e. Set to value. Thereby, the process of step S4 is completed, and the start time fuel increase correction coefficient calculation process proceeds to the process of step S5.
- step S5 the fuel injection amount calculation unit 21d determines whether or not the value of the start time fuel increase correction coefficient KAST is equal to or less than a predetermined threshold value. As a result of the determination, if the value of the start time fuel increase correction coefficient KAST is equal to or less than the predetermined threshold value (step S5: Yes), the fuel injection amount calculation unit 21d advances the start time fuel increase correction coefficient calculation process to the process of step S7. . On the other hand, when the value of the start time fuel increase correction coefficient KAST is not less than or equal to the predetermined threshold value (step S5: No), the fuel injection amount calculation unit 21d advances the start time fuel increase correction coefficient calculation process to the process of step S6.
- the predetermined threshold value may be set as a single value or a plurality as required. Further, a process for calculating the current value of the starting fuel increase correction coefficient KAST by decreasing the previous value of the starting fuel increase correction coefficient KAST at a constant rate, and a constant value from the previous value of the starting fuel increase correction coefficient KAST. When it is not necessary to combine the process of calculating the current value of the start-time fuel increase correction coefficient KAST by subtracting, it is not necessary to set the predetermined threshold value, and either one of the processes may be executed. .
- step S6 the fuel injection amount calculation unit 21d sets a value obtained by multiplying the previous start time fuel increase correction coefficient KAST by a predetermined coefficient ⁇ (0 ⁇ ⁇ 1) as the current start time fuel increase correction coefficient KAST. To do. Thereby, the process of step S6 is completed, and the start time fuel increase correction coefficient calculation process proceeds to the process of step S8.
- the predetermined coefficient ⁇ may be not only a constant value but also a variable value, or a combination thereof, as necessary.
- step S7 the fuel injection amount calculation unit 21d sets a value obtained by subtracting the positive predetermined value ⁇ from the previous start time fuel increase correction coefficient KAST as the current start time fuel increase correction coefficient KAST. Thereby, the process of step S7 is completed, and the start time fuel increase correction coefficient calculation process proceeds to the process of step S8.
- the predetermined value ⁇ may be not only a constant value but also a variable value, or a combination thereof, as necessary.
- step S8 the fuel injection amount calculation unit 21d determines whether or not the starting fuel increase correction coefficient KAST is 1 or less. As a result of the determination, if the starting fuel increase correction coefficient KAST is 1 or less (step S8: Yes), the fuel injection amount calculating unit 21d advances the starting fuel increase correction coefficient calculating process to the process of step S9. On the other hand, if the start time fuel increase correction coefficient KAST is not 1 or less (step S8: No), the fuel injection amount calculation unit 21d ends the current start time fuel increase correction coefficient calculation process.
- step S9 the fuel injection amount calculation unit 21d sets the post-startup fuel increase correction end flag to the on state. Thereby, the process of step S9 is completed, and this series of start time fuel increase correction coefficient calculation process ends.
- the fuel injection amount calculation unit 21d starts the fuel increase correction coefficient KAST at the start every time the count value CTKAST of the decimation counter 21e becomes a predetermined count value. Since the predetermined count value is set so as to increase as the engine speed NE increases, the period from the start of the engine to the start-time fuel increase correction coefficient KAST becomes zero. It can be made substantially constant without being influenced by NE, and the fuel increase correction at the time of starting the engine can be appropriately executed to suppress the decrease in drivability and the occurrence of engine stall.
- the fuel injection amount calculation unit 21d has a constant value from the previous value of the starting fuel increase correction coefficient KAST every time the count value CTKAST of the thinning counter 21e becomes a predetermined count value. Since the current value of the starting fuel increase correction coefficient KAST is calculated by subtracting, the degree of decrease in the fuel increasing correction amount at the start can be linearly changed in accordance with the characteristics at the start of the engine. It is possible to more appropriately suppress the degradation of engine performance and engine stall.
- the fuel injection amount calculation unit 21d keeps the previous value of the starting fuel increase correction coefficient KAST constant every time the count value CTKAST of the thinning counter 21e becomes a predetermined count value. Since the current value of the starting fuel increase correction coefficient KAST is calculated by decreasing the ratio, the degree of decrease in the fuel increasing correction amount at the start can be changed nonlinearly in accordance with the characteristics at the start of the engine. It is possible to more appropriately suppress a decrease in drivability and an engine stall.
- the current value of the starting fuel increase correction coefficient KAST is calculated by decreasing the previous value of the starting fuel increase correction coefficient KAST at a constant rate, and after the count value CTKAST of the thinning counter 21e reaches the predetermined threshold value, Every time the count value CTKAST of the decimation counter 21e becomes a predetermined count value, the current value of the start time fuel increase correction coefficient KAST is calculated by subtracting a constant value from the previous value of the start time fuel increase correction coefficient KAST.
- the degree of decrease in the fuel increase correction amount at the start according to the engine start characteristics Can be switched from the non-linear to linear, it is possible to more appropriately suppress the occurrence of reduction and engine stall in drivability.
- the type, shape, arrangement, number, and the like of the members are not limited to the above-described embodiment, and the gist of the invention is appropriately replaced such that the constituent elements are appropriately replaced with those having the same operational effects.
- the gist of the invention is appropriately replaced such that the constituent elements are appropriately replaced with those having the same operational effects.
- it can be changed as appropriate without departing from the scope.
- the temperature of the spark plug seat of the engine is used as the engine temperature corresponding to the injector temperature.
- the present invention is not limited to this.
- the engine cooling water temperature or the cylinder wall temperature is used. Also good.
- the configuration of the present embodiment may be used not only for a single cylinder engine but also for a multi-cylinder engine.
- the temperature of the cylinder can be estimated from the coil resistance value of the injector of each cylinder of the multi-cylinder engine, and the fuel injection amount of the cylinder can be controlled in accordance with the temperature of each cylinder.
- the present invention can provide an internal combustion engine control device that can appropriately perform fuel increase correction at the time of starting the internal combustion engine and suppress the decrease in drivability and the occurrence of engine stall. Because of its universal character, it is expected to be widely applicable to general-purpose machines such as generators and internal combustion engine control devices for vehicles such as motorcycles.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
An internal combustion engine control device (1) that comprises an injector temperature calculation unit (21a), an engine temperature calculation unit (21b), an operating state control unit (21c), a fuel injection amount calculation unit (21d), and a sampling counter (21e). Every time the counter value of the sampling counter (21e) becomes a prescribed counter value, the fuel injection amount calculation unit (21d) reduces a startup fuel increase correction coefficient. The prescribed counter value is set so as to increase as engine rotational speed increases.
Description
本発明は、内燃機関制御装置に関し、特に、発電機等の汎用機や自動二輪車等の車両に適用される内燃機関制御装置に関する。
The present invention relates to an internal combustion engine control device, and more particularly to an internal combustion engine control device applied to a general-purpose machine such as a generator or a vehicle such as a motorcycle.
近年、発電機等の汎用機や小型自動二輪車等の車両においては、キャブレタシステムでは今後より厳しくなる排気ガス規制に対応することが困難になるため、排気ガスの低減を目的として燃料噴射システムの採用が推進されている。しかしながら、発電機等の汎用機や小型自動二輪車等の車両の販売価格は大型自動二輪車や四輪自動車等の車両の販売と比較して安価であるために、このような販売価格を考えた場合、キャブレタシステムと比較して高コストな燃料噴射システムをそのまま発電機等の汎用機や小型自動二輪車等の車両に採用することは困難である。このため、発電機等の汎用機や小型自動二輪車等の車両においては、燃料噴射システムに関する部品、特にセンサ類については、コストの低減が求められている。
In recent years, in general-purpose machines such as generators and vehicles such as small motorcycles, it has become difficult to meet exhaust gas regulations that will become stricter in the future with carburetor systems, so a fuel injection system has been adopted to reduce exhaust gas. Is promoted. However, since the selling price of vehicles such as general-purpose machines such as generators and small motorcycles is lower than that of vehicles such as large motorcycles and four-wheeled vehicles, such selling prices are considered. It is difficult to adopt a fuel injection system that is more expensive than a carburetor system as it is for a general-purpose machine such as a generator or a vehicle such as a small motorcycle. For this reason, in general-purpose machines such as generators and vehicles such as small motorcycles, cost reduction is required for parts related to the fuel injection system, particularly sensors.
ここで、例えば燃料噴射システムにおける温度センサは、内燃機関の暖機状態の検出のために用いられることが一般的である。具体的には、燃料噴射システムは、温度センサの出力に基づいて内燃機関の温度を算出し、このように算出した内燃機関の温度に基づいて内燃機関の暖機状態を検出して、点火時期及び燃料噴射の制御を行っている。このため、燃料噴射システムを採用する場合には、内燃機関に温度センサを装着する必要がある。更に、内燃機関に温度センサを設置する際には、配線用のワイヤやカプラを設置する必要がある上に、温度センサを設置する内燃機関の部位を加工する必要がある。この結果、販売価格における燃料噴射システムのコストの割合はキャブレタシステムのものと比較して高くなる。このため、特に発電機等の汎用機や小型自動二輪車等の車両において燃料噴射システムを制御する内燃機関制御装置においては、コストダウンを目的として燃料噴射システムから温度センサを省略することが求められている。
Here, for example, a temperature sensor in a fuel injection system is generally used for detecting a warm-up state of an internal combustion engine. More specifically, the fuel injection system calculates the temperature of the internal combustion engine based on the output of the temperature sensor, detects the warm-up state of the internal combustion engine based on the calculated temperature of the internal combustion engine, and determines the ignition timing. And control of fuel injection. For this reason, when adopting a fuel injection system, it is necessary to attach a temperature sensor to the internal combustion engine. Furthermore, when installing a temperature sensor in the internal combustion engine, it is necessary to install wires and couplers for wiring, and it is necessary to process the part of the internal combustion engine where the temperature sensor is installed. As a result, the ratio of the cost of the fuel injection system to the sales price is higher than that of the carburetor system. For this reason, in an internal combustion engine control device that controls a fuel injection system in a vehicle such as a general-purpose machine such as a generator or a small motorcycle, a temperature sensor is required to be omitted from the fuel injection system for the purpose of cost reduction. Yes.
かかる状況下で、特許文献1は、エンジン10の電子制御装置20に関し、インジェクタ15の温度とエンジン10の温度との相関に着目し、インジェクタ15の温度からエンジン10の温度を算出し、算出されたエンジン10の温度にてエンジン10を制御する構成を開示する。
Under such circumstances, Patent Document 1 relates to the electronic control unit 20 of the engine 10 by paying attention to the correlation between the temperature of the injector 15 and the temperature of the engine 10 and calculating the temperature of the engine 10 from the temperature of the injector 15. A configuration for controlling the engine 10 at the temperature of the engine 10 is disclosed.
また、特許文献2は、内燃機関2の始動後噴射量制御装置54に関し、内燃機関2の始動時から所定の期間中に、燃料噴射量の増量補正を行う始動後燃料増量補正と、内燃機関2の温度に応じて燃料噴射量の増量補正を行う暖機燃料増量補正と、を実行する構成を開示する。
Further, Patent Document 2 relates to a post-startup injection amount control device 54 for the internal combustion engine 2, and a post-startup fuel increase correction for performing an increase correction of the fuel injection amount during a predetermined period from the start of the internal combustion engine 2, and the internal combustion engine. 2 discloses a configuration for executing warm-up fuel increase correction for correcting increase in fuel injection amount in accordance with the temperature 2.
本発明者の検討によれば、内燃機関の始動後燃料増量補正による燃料噴射量の増量補正では、一般的に、内燃機関の始動時から時間経過と共にその補正による増量を減少させていくものであるが、このように増量を減少させていく手法として、内燃機関の回転数に同期させて増量補正を所定値ずつ減少させていくものが挙げられる。かかる手法を用いる場合、内燃機関の回転数に同期させて増量補正を減少させるので、時間計測のためにタイマリソースを割く必要がないという利点があるが、内燃機関の始動直後に内燃機関の回転数が高くなると、始動後燃料増量補正による燃料噴射量の増量自体が早期にゼロになってしまい、実質的な増量補正実行時間が短くなってしまう。
According to the study by the present inventor, in the fuel injection amount increase correction by the fuel increase correction after starting the internal combustion engine, generally, the increase due to the correction is decreased with the passage of time from the start of the internal combustion engine. However, as a technique for reducing the increase in this way, there is a method in which the increase correction is decreased by a predetermined value in synchronization with the rotational speed of the internal combustion engine. When such a method is used, since the increase correction is decreased in synchronization with the rotational speed of the internal combustion engine, there is an advantage that there is no need to divide timer resources for time measurement. When the number increases, the increase in the fuel injection amount by the fuel increase correction after the start becomes zero at an early stage, and the substantial increase correction execution time is shortened.
ここで、特許文献2が開示する構成のように水温センサを用いて内燃機関温度を検出する場合には、内燃機関の始動直後の水温上昇の反応自体が遅いために、暖機燃料増量補正による燃料噴射量の増量が早期にゼロにはならないものであるが、特許文献1が開示する構成のようにインジェクタの温度(インジェクタ温度)から内燃機関の温度(内燃機関温度)を算出する場合には、内燃機関始動時における内燃機関温度の反応が水温検出によるものよりも迅速であるために、暖機燃料増量補正による燃料噴射量の増量が早期にゼロになる傾向にある。特に、インジェクタ温度を燃焼室内のプラグ座のような温度変化に敏感な部位に相関させるとより顕著となる。そして、更に、内燃機関の回転数が高くなるような状況では、始動後燃料増量補正による燃料噴射量の増量がより早期にゼロになってしまうため、実際の燃料噴射量が所要の燃料噴射量よりもかなり少なくなってしまい、ドライバビリティの低下やエンストの発生を招く可能性があると考えられる。
Here, when the temperature of the internal combustion engine is detected using the water temperature sensor as in the configuration disclosed in Patent Document 2, since the reaction of the water temperature increase immediately after the start of the internal combustion engine is slow, the warm-up fuel increase correction is performed. Although the increase in the fuel injection amount does not become zero at an early stage, when the temperature of the internal combustion engine (internal combustion engine temperature) is calculated from the temperature of the injector (injector temperature) as in the configuration disclosed in Patent Document 1. Since the reaction of the internal combustion engine temperature at the time of starting the internal combustion engine is quicker than that by the water temperature detection, the increase in the fuel injection amount due to the warm-up fuel increase correction tends to become zero at an early stage. In particular, it becomes more prominent if the injector temperature is correlated with a temperature sensitive part such as a plug seat in the combustion chamber. Further, in a situation where the rotational speed of the internal combustion engine becomes high, the increase in the fuel injection amount by the post-startup fuel increase correction becomes zero earlier, so the actual fuel injection amount becomes the required fuel injection amount. It is considered that there is a possibility that it will lead to a decrease in drivability and an engine stall.
本発明は、以上の検討を経てなされたものであり、内燃機関の始動時の燃料増量補正を適切に実行して、ドライバビリティの低下やエンストの発生を抑制可能な内燃機関制御装置を提供することを目的とする。
The present invention has been made after the above study, and provides an internal combustion engine control device that can appropriately perform fuel increase correction at the start of the internal combustion engine to suppress a decrease in drivability and occurrence of engine stall. For the purpose.
以上の目的を達成するべく、本発明は、内燃機関に適用されると共に、インジェクタのコイル抵抗値に基づいてインジェクタ温度を算出するインジェクタ温度算出部と、前記インジェクタ温度に基づいて内燃機関温度を算出する内燃機関温度算出部と、前記内燃機関温度に基づいて前記内燃機関の運転状態を制御する運転状態制御部と、を有する内燃機関制御装置において、始動時燃料増量補正係数を用いて前記インジェクタ温度から算出される基準噴射量を補正した燃料噴射量を算出する燃料噴射量算出部と、前記内燃機関の始動後から一定周期毎にカウントする間引きカウンタと、を更に備え、前記燃料噴射量算出部は、前記間引きカウンタのカウント値が所定カウント値になる毎に前記始動時燃料増量補正係数を減少させ、前記所定カウント値は、前記内燃機関の回転数が高いほど大きくなるように設定されていることを第1の局面とする。
In order to achieve the above object, the present invention is applied to an internal combustion engine, and calculates an injector temperature based on the coil resistance value of the injector and an internal combustion engine temperature based on the injector temperature. In the internal combustion engine control device having an internal combustion engine temperature calculation unit that controls an operation state of the internal combustion engine based on the internal combustion engine temperature, the injector temperature using a start-up fuel increase correction coefficient A fuel injection amount calculation unit that calculates a fuel injection amount that is obtained by correcting the reference injection amount calculated from the above, and a thinning counter that counts every predetermined period after the start of the internal combustion engine, the fuel injection amount calculation unit Each time the count value of the decimation counter reaches a predetermined count value, the start-up fuel increase correction coefficient is decreased, Count value is that rotational speed of the internal combustion engine is set to be higher as large as the first aspect.
本発明は、第1の局面に加えて、前記燃料噴射量算出部は、前記間引きカウンタのカウント値が前記所定カウント値になる毎に、前記始動時燃料増量補正係数の前回値から一定値を減算することにより前記始動時燃料増量補正係数の今回値を算出する算出処理を実行することを第2の局面とする。
According to the present invention, in addition to the first aspect, the fuel injection amount calculation unit obtains a constant value from the previous value of the starting fuel increase correction coefficient every time the count value of the decimation counter reaches the predetermined count value. It is a second aspect to execute a calculation process for calculating the current value of the starting fuel increase correction coefficient by subtraction.
本発明は、第1の局面に加えて、前記燃料噴射量算出部は、前記間引きカウンタのカウント値が前記所定カウント値になる毎に、前記始動時燃料増量補正係数の前回値を一定の割合で減少させることにより前記始動時燃料増量補正係数の今回値を算出する算出処理を実行することを第3の局面とする。
According to the present invention, in addition to the first aspect, the fuel injection amount calculation unit sets the previous value of the start-up fuel increase correction coefficient at a constant rate each time the count value of the thinning counter reaches the predetermined count value. It is a third aspect to execute a calculation process for calculating the current value of the start-time fuel increase correction coefficient by reducing the starting fuel increase correction coefficient.
本発明は、第1の局面に加えて、前記燃料噴射量算出部は、前記間引きカウンタの前記カウント値が所定閾値になるまでは、前記カウント値が前記所定カウント値になる毎に、前記始動時燃料増量補正係数の前回値を一定の割合で減少させることにより前記始動時燃料増量補正係数の今回値を算出する第1の算出処理を実行し、前記間引きカウンタの前記カウント値が所定閾値になった後は、前記カウント値が前記所定カウント値になる毎に、前記始動時燃料増量補正係数の前回値から一定値を減算することにより前記始動時燃料増量補正係数の今回値を算出する第2の算出処理を実行することを第4の局面とする。
In addition to the first aspect, the present invention provides that the fuel injection amount calculation unit starts the engine every time the count value reaches the predetermined count value until the count value of the thinning counter reaches a predetermined threshold value. A first calculation process for calculating the current value of the start time fuel increase correction coefficient by decreasing the previous value of the hour fuel increase correction coefficient at a constant rate is executed, and the count value of the decimation counter is set to a predetermined threshold value. After that, every time the count value reaches the predetermined count value, the current value of the starting fuel increase correction coefficient is calculated by subtracting a constant value from the previous value of the starting fuel increase correction coefficient. Executing the calculation process 2 is a fourth aspect.
本発明の第1の局面にかかる内燃機関制御装置によれば、燃料噴射量算出部は、間引きカウンタのカウント値が所定カウント値になる毎に始動時燃料増量補正係数を減少させ、所定カウント値は、内燃機関の回転数が高いほど大きくなるように設定されているものであるため、内燃機関の始動時から始動時燃料増量補正係数がゼロになるまでの期間を、内燃機関の回転数の影響を受けることなくほぼ一定にすることができ、内燃機関の始動時の燃料増量補正を適切に実行して、ドライバビリティの低下やエンストの発生を抑制することができる。
According to the internal combustion engine control apparatus of the first aspect of the present invention, the fuel injection amount calculation unit decreases the start-up fuel increase correction coefficient every time the count value of the thinning counter reaches a predetermined count value, and the predetermined count value Is set so as to increase as the rotational speed of the internal combustion engine increases. Therefore, the period from the start of the internal combustion engine until the start-time fuel increase correction coefficient becomes zero is determined as the rotational speed of the internal combustion engine. It can be made substantially constant without being affected, and the fuel increase correction at the start of the internal combustion engine can be appropriately executed to suppress drivability deterioration and engine stall.
また、本発明の第2の局面にかかる内燃機関制御装置によれば、燃料噴射量算出部は、間引きカウンタのカウント値が所定カウント値になる毎に、始動時燃料増量補正係数の前回値から一定値を減算することにより始動時燃料増量補正係数の今回値を算出する算出処理を実行するものであるため、内燃機関の始動時の特性に合わせてその始動時の燃料増量補正量の減少度合を線形に変化させることができ、ドライバビリティの低下やエンストの発生をより適切に抑制することができる。
Further, according to the internal combustion engine control apparatus according to the second aspect of the present invention, the fuel injection amount calculation unit starts from the previous value of the starting fuel increase correction coefficient every time the count value of the thinning counter reaches a predetermined count value. Since the calculation process for calculating the current value of the starting fuel increase correction coefficient is performed by subtracting a certain value, the degree of decrease in the fuel increase correction amount at the start is adjusted according to the characteristics at the start of the internal combustion engine. Can be linearly changed, and drivability deterioration and engine stall can be more appropriately suppressed.
また、本発明の第3の局面にかかる内燃機関制御装置によれば、燃料噴射量算出部は、間引きカウンタのカウント値が所定カウント値になる毎に、始動時燃料増量補正係数の前回値を一定の割合で減少させることにより始動時燃料増量補正係数の今回値を算出する算出処理を実行するものであるため、内燃機関の始動時の特性に合わせてその始動時の燃料増量補正量の減少度合を非線形に変化させることができ、ドライバビリティの低下やエンストの発生をより適切に抑制することができる。
Further, according to the internal combustion engine control apparatus according to the third aspect of the present invention, the fuel injection amount calculation unit calculates the previous value of the start-time fuel increase correction coefficient every time the count value of the thinning counter reaches a predetermined count value. Since the calculation process for calculating the current value of the fuel increase correction coefficient at start-up is performed by decreasing it at a constant rate, the fuel increase correction amount at start-up is reduced in accordance with the characteristics at the start of the internal combustion engine. The degree can be changed non-linearly, and drivability deterioration and engine stall can be more appropriately suppressed.
また、本発明の第4の局面にかかる内燃機関制御装置によれば、燃料噴射量算出部は、間引きカウンタのカウント値が所定閾値になるまでは、カウント値が所定カウント値になる毎に、始動時燃料増量補正係数の前回値を一定の割合で減少させることにより始動時燃料増量補正係数の今回値を算出する第1の算出処理を実行し、間引きカウンタのカウント値が所定閾値になった後は、カウント値が所定カウント値になる毎に、始動時燃料増量補正係数の前回値から一定値を減算することにより始動時燃料増量補正係数の今回値を算出する第2の算出処理を実行するものであるため、内燃機関の始動時の特性に合わせてその始動時の燃料増量補正量の減少度合を非線形から線形に切り換えることができ、ドライバビリティの低下やエンストの発生をより適切に抑制することができる。
Further, according to the internal combustion engine control apparatus according to the fourth aspect of the present invention, the fuel injection amount calculation unit determines that the count value reaches the predetermined count value until the count value of the thinning counter reaches the predetermined threshold value. The first calculation process for calculating the current value of the start-time fuel increase correction coefficient by decreasing the previous value of the start-time fuel increase correction coefficient at a constant rate is executed, and the count value of the thinning counter reaches a predetermined threshold value After that, every time the count value reaches the predetermined count value, a second calculation process is performed to calculate the current value of the start time fuel increase correction coefficient by subtracting a certain value from the previous value of the start time fuel increase correction coefficient. Therefore, the degree of decrease in the fuel increase correction amount at the start can be switched from non-linear to linear according to the characteristics at the start of the internal combustion engine. It is possible to more appropriately suppress the raw.
以下、図面を適宜参照して、本発明の実施形態における内燃機関制御装置につき、詳細に説明する。
Hereinafter, an internal combustion engine control apparatus according to an embodiment of the present invention will be described in detail with reference to the drawings as appropriate.
〔内燃機関制御装置の構成〕
まず、図1A及び図1Bを参照して、本実施形態における内燃機関制御装置の構成について説明する。本実施形態における内燃機関制御装置は、典型的には、発電機等の汎用機や自動二輪車等の車両といった内燃機関搭載体に好適に搭載されるものであるが、以下、説明の便宜上、かかる内燃機関制御装置は、自動二輪車等の車両に搭載されるものとして説明する。 [Configuration of internal combustion engine controller]
First, with reference to FIG. 1A and FIG. 1B, the structure of the internal combustion engine control apparatus in this embodiment is demonstrated. The internal combustion engine control device in the present embodiment is typically suitably mounted on an internal combustion engine mounting body such as a general-purpose machine such as a generator or a vehicle such as a motorcycle. The internal combustion engine control device will be described as being mounted on a vehicle such as a motorcycle.
まず、図1A及び図1Bを参照して、本実施形態における内燃機関制御装置の構成について説明する。本実施形態における内燃機関制御装置は、典型的には、発電機等の汎用機や自動二輪車等の車両といった内燃機関搭載体に好適に搭載されるものであるが、以下、説明の便宜上、かかる内燃機関制御装置は、自動二輪車等の車両に搭載されるものとして説明する。 [Configuration of internal combustion engine controller]
First, with reference to FIG. 1A and FIG. 1B, the structure of the internal combustion engine control apparatus in this embodiment is demonstrated. The internal combustion engine control device in the present embodiment is typically suitably mounted on an internal combustion engine mounting body such as a general-purpose machine such as a generator or a vehicle such as a motorcycle. The internal combustion engine control device will be described as being mounted on a vehicle such as a motorcycle.
図1Aは、本実施形態における内燃機関制御装置の構成を示す模式図であり、図1Bは、図1A中のインジェクタの構成を示す模式図である。
FIG. 1A is a schematic diagram showing a configuration of an internal combustion engine control apparatus according to the present embodiment, and FIG. 1B is a schematic diagram showing a configuration of an injector in FIG. 1A.
図1A及び図1Bに示すように、本実施形態における内燃機関制御装置1は、いずれも図示を省略する車両に搭載されたガソリンエンジン等の内燃機関であるエンジンの機能部品の温度に基づいてエンジンの運転状態を制御するものであり、電子制御ユニット(Electronic Control Unit:ECU)10を備えている。
As shown in FIGS. 1A and 1B, the internal combustion engine control device 1 according to the present embodiment is based on the temperature of functional parts of an engine that is an internal combustion engine such as a gasoline engine mounted on a vehicle not shown. The electronic control unit (Electronic Control Unit: ECU) 10 is provided.
ECU10は、車両に搭載されたバッテリBからの電力を利用して動作するものであり、波形整形回路11、サーミスタ素子12(温度検出素子)、A/D変換器13、点火回路14、駆動回路15、抵抗値検出回路16、EEPROM(Electrically Erasable Programmable Read-Only Memory)17、ROM(Read-Only Memory)18、RAM(Random Access Memory)19、タイマ20、及び中央処理ユニット(Central Processing Unit:CPU)21を備えている。かかるECU10の各構成要素は、ECU10の筐体10a内に収容される。また、典型的には、ECU10及びエンジンは、それらの周囲が外気に触れており、かつ、ECU10は、エンジンの放射熱及びエンジンからの伝熱の影響を受けないようにそれから離間して配置されるものである。
The ECU 10 operates by using electric power from the battery B mounted on the vehicle, and includes a waveform shaping circuit 11, a thermistor element 12 (temperature detection element), an A / D converter 13, an ignition circuit 14, and a drive circuit. 15, resistance value detection circuit 16, EEPROM (Electrically Erasable Programmable Read-Only Memory) 17, ROM (Read-Only Memory) 18, RAM (Random Access Memory) 19, timer 20 and central processing unit ce ) 21. Each component of the ECU 10 is accommodated in a casing 10a of the ECU 10. Also, typically, the ECU 10 and the engine are in contact with the outside air, and the ECU 10 is arranged away from the engine 10 so as not to be affected by the radiant heat of the engine and the heat transfer from the engine. Is.
波形整形回路11は、クランク角センサ2から出力されたエンジンのクランクシャフト3の回転角に対応するクランクパルス信号を整形してデジタルパルス信号を生成する。波形整形回路11は、このように生成したデジタルパルス信号をCPU21に出力する。
The waveform shaping circuit 11 shapes a crank pulse signal corresponding to the rotation angle of the crankshaft 3 of the engine output from the crank angle sensor 2 to generate a digital pulse signal. The waveform shaping circuit 11 outputs the digital pulse signal thus generated to the CPU 21.
サーミスタ素子12は、ECU10の筐体10a内において、典型的には点火回路14である発熱素子から離間してECU10の雰囲気側の位置(例えば、筐体10aへの距離が数ミリメータ程度である筐体10aに近接した位置)に配置されたチップサーミスタであり、ECU10の筐体10a外の周囲の大気温度である雰囲気温度(外気温)を検出する。具体的には、サーミスタ素子12は、その雰囲気温度に対応した電気抵抗値を呈して、その電気抵抗値に応じた電圧を示す電気信号をA/D変換器13に出力する。なお、かかる電気信号を出力可能なものであれば、サーミスタ素子12を熱電対等の他の温度センサに代替してもよい。なお、サーミスタ素子12が検出する温度は、エンジンの周囲の大気温度である雰囲気温度(外気温)に等しいものである。
The thermistor element 12 is separated from the heat generating element that is typically the ignition circuit 14 in the casing 10a of the ECU 10, and is located on the atmosphere side of the ECU 10 (for example, a casing whose distance to the casing 10a is about several millimeters). A chip thermistor disposed at a position close to the body 10a, and detects an ambient temperature (outside temperature), which is an ambient temperature outside the casing 10a of the ECU 10. Specifically, the thermistor element 12 exhibits an electrical resistance value corresponding to the ambient temperature, and outputs an electrical signal indicating a voltage corresponding to the electrical resistance value to the A / D converter 13. The thermistor element 12 may be replaced with another temperature sensor such as a thermocouple as long as it can output such an electrical signal. The temperature detected by the thermistor element 12 is equal to the ambient temperature (outside temperature) that is the ambient temperature around the engine.
A/D変換器13は、スロットル開度センサ4から出力されたエンジンのスロットルバルブの開度を示す電気信号、酸素センサ5から出力されたエンジンに吸気される大気中の酸素濃度を示す電気信号、及びサーミスタ素子12から出力された雰囲気温度を示す電気信号を、アナログ形態からデジタル形態に各々変換する。A/D変換器13は、このようにデジタル形態に変換したこれらの電気信号をCPU21に出力する。
The A / D converter 13 is an electric signal indicating the opening degree of the throttle valve of the engine output from the throttle opening degree sensor 4 and an electric signal indicating the oxygen concentration in the atmosphere sucked into the engine output from the oxygen sensor 5. , And the electrical signal indicating the ambient temperature output from the thermistor element 12 is converted from an analog form to a digital form. The A / D converter 13 outputs these electrical signals thus converted into digital form to the CPU 21.
点火回路14は、CPU21からの制御信号に従ってオン/オフ制御されるトランジスタ等のスイッチング素子を備え、このスイッチング素子がオン/オフ動作することによって、図示を省略する点火プラグを介してエンジン内の燃料及び空気の混合気に点火するための2次電圧を発生する点火コイル6の動作を制御する。また、点火回路14は、典型的には半導体素子であるドライバIC(Integrated Circuit)であり、筐体10a内で発熱量が最も大きい構成要素である。
The ignition circuit 14 includes a switching element such as a transistor that is controlled to be turned on / off in accordance with a control signal from the CPU 21. When the switching element is turned on / off, the fuel in the engine is passed through a spark plug (not shown). And the operation of the ignition coil 6 for generating a secondary voltage for igniting the air-fuel mixture. The ignition circuit 14 is typically a driver IC (Integrated Circuit) that is a semiconductor element, and is a component that generates the largest amount of heat in the housing 10a.
駆動回路15は、CPU21からの制御信号に従ってオン/オフ制御されるトランジスタ等のスイッチング素子を備え、このスイッチング素子がオン/オフ動作することによって、エンジンに燃料を供給するインジェクタ7のコイル7aの通電/非通電状態を切り換える。ここで、インジェクタ7は、エンジンの図示を省略する吸気管やシリンダヘッドに装着され、エンジンから生じる熱が伝熱される。また、特に図1Bに示すように、インジェクタ7のコイル7aの等価回路7bは、インダクタンス成分Lと電気抵抗成分Rとから成る直列回路で表される。かかるコイル7aは、インジェクタ7のソレノイド7cを電気的に駆動するための構成部品であり、コイル7aの通電状態においてソレノイド7cが動作することにより、インジェクタ7から燃料が噴出されるものである。
The drive circuit 15 includes a switching element such as a transistor that is controlled to be turned on / off according to a control signal from the CPU 21, and the switching element is turned on / off to energize the coil 7a of the injector 7 that supplies fuel to the engine. / Switch the de-energized state. Here, the injector 7 is attached to an intake pipe or a cylinder head (not shown) of the engine, and heat generated from the engine is transferred. Further, as shown in FIG. 1B in particular, the equivalent circuit 7b of the coil 7a of the injector 7 is represented by a series circuit including an inductance component L and an electric resistance component R. The coil 7a is a component for electrically driving the solenoid 7c of the injector 7, and the fuel is ejected from the injector 7 when the solenoid 7c operates in the energized state of the coil 7a.
抵抗値検出回路16は、インジェクタ7のコイル7aの電気抵抗成分に依存して変動する物理量である電気抵抗値(抵抗値)を測定し、このように測定した抵抗値を示す電気信号をCPU21に出力する。
The resistance value detection circuit 16 measures an electrical resistance value (resistance value) that is a physical quantity that varies depending on the electrical resistance component of the coil 7a of the injector 7, and sends an electrical signal indicating the measured resistance value to the CPU 21. Output.
EEPROM17は、燃料噴射量学習値やスロットル基準位置学習値といった各種学習値に関するデータ等を記憶する。なお、このような各種学習値に関するデータ等を記憶可能なものであれば、EEPROM17をデータフラッシュ等の他の記憶媒体に代替してもよい。
The EEPROM 17 stores data relating to various learning values such as a fuel injection amount learning value and a throttle reference position learning value. Note that the EEPROM 17 may be replaced with another storage medium such as a data flash as long as it can store data relating to such various learning values.
ROM18は、不揮発性の記憶装置によって構成され、後述する始動時燃料増量補正係数算出処理用等の制御プログラム、及び始動時燃料増量補正係数算出処理等で用いられるテーブルデータ等の各種制御データを格納している。
The ROM 18 is configured by a non-volatile storage device, and stores various control data such as a control program for starting fuel increase correction coefficient calculation processing, which will be described later, and table data used in starting fuel increase correction coefficient calculation processing. is doing.
RAM19は、揮発性の記憶装置によって構成され、CPU21のワーキングエリアとして機能する。
The RAM 19 is composed of a volatile storage device and functions as a working area for the CPU 21.
タイマ20は、CPU21からの制御信号に従って計時処理を実行する。
The timer 20 performs a time measurement process according to a control signal from the CPU 21.
CPU21は、ECU10全体の動作を制御する。本実施形態では、CPU21は、ROM18内に格納されている制御プログラムを実行することにより、インジェクタ温度算出部21a、エンジン温度算出部21b、運転状態制御部21c、燃料噴射量算出部21d、及び間引きカウンタ21eとして機能する。ここで、インジェクタ温度算出部21aは、インジェクタ7のコイル7aの抵抗値に対応するインジェクタ7の温度(インジェクタ温度)を算出する。エンジン温度算出部21bは、インジェクタ温度算出部21aによって算出されたインジェクタ温度に基づいてエンジンの温度(エンジン温度)を算出する。運転状態制御部21cは、エンジン温度算出部21bによって算出されたエンジン温度に基づいて点火回路14及び駆動回路15を制御することによってエンジンの運転状態を制御する。燃料噴射量算出部21dは、燃料噴射量を算出するものであるが、特に、エンジンの始動時に始動時燃料増量補正係数KASTを用いてインジェクタ温度から算出される基準噴射量を補正した燃料噴射量を算出する。間引きカウンタ21eは、エンジンの始動後から一定周期毎にカウントする。かかる始動時燃料増量補正係数KASTは、典型的にはエンジンの始動時の基本燃料噴射量に乗算されてその燃料噴射量を増量する補正係数である。
CPU21 controls the operation of the entire ECU10. In the present embodiment, the CPU 21 executes a control program stored in the ROM 18, thereby causing an injector temperature calculation unit 21a, an engine temperature calculation unit 21b, an operation state control unit 21c, a fuel injection amount calculation unit 21d, and a thinning-out. It functions as a counter 21e. Here, the injector temperature calculation unit 21 a calculates the temperature of the injector 7 (injector temperature) corresponding to the resistance value of the coil 7 a of the injector 7. The engine temperature calculation unit 21b calculates the temperature of the engine (engine temperature) based on the injector temperature calculated by the injector temperature calculation unit 21a. The operation state control unit 21c controls the operation state of the engine by controlling the ignition circuit 14 and the drive circuit 15 based on the engine temperature calculated by the engine temperature calculation unit 21b. The fuel injection amount calculation unit 21d calculates the fuel injection amount. In particular, the fuel injection amount is obtained by correcting the reference injection amount calculated from the injector temperature using the starting fuel increase correction coefficient KAST when the engine is started. Is calculated. The thinning counter 21e counts every fixed period after the engine is started. The starting fuel increase correction coefficient KAST is typically a correction coefficient that is multiplied by the basic fuel injection amount at the time of starting the engine to increase the fuel injection amount.
なお、エンジンの機能部品の温度としては、その測定の簡便性等の観点からインジェクタ温度が好適な例として挙げられるが、エンジンの機能部品としては、エンジン温度に対応した抵抗値が測定できるものであればその他の機能備品を用いることができ、その機能備品の温度を、エンジンの機能部品の温度として用いてもよい。また、インジェクタ温度が相関を有するエンジン温度を取得する際には、エンジンの点火プラグ座の温度が実際のエンジン内部の温度に近いことを考慮して、エンジンの点火プラグ座の温度を実測し、これをエンジン温度とし取得することが簡便である。
In addition, as a temperature of the functional component of the engine, an injector temperature can be cited as a suitable example from the viewpoint of simplicity of measurement, etc., but as a functional component of the engine, a resistance value corresponding to the engine temperature can be measured. If there is any other functional equipment, the temperature of the functional equipment may be used as the temperature of the functional parts of the engine. Also, when acquiring the engine temperature having a correlation with the injector temperature, taking into account that the temperature of the engine spark plug seat is close to the actual temperature inside the engine, actually measuring the temperature of the engine spark plug seat, It is easy to obtain this as the engine temperature.
このような構成を有する内燃機関制御装置1は、以下に示す始動時燃料増量補正係数算出処理を実行することにより、エンジンの始動時の燃料増量補正を適切に実行して、ドライバビリティの低下やエンストの発生を抑制する。以下、図2及び図3をも参照して、本実施形態における始動時燃料増量補正係数算出処理を実行する際の内燃機関制御装置1の動作について具体的に説明する。
The internal combustion engine control device 1 having such a configuration appropriately executes fuel increase correction at engine startup by executing the following startup fuel increase correction coefficient calculation processing, thereby reducing drivability and Suppresses the occurrence of engine stalls. Hereinafter, the operation of the internal combustion engine control device 1 when executing the start time fuel increase correction coefficient calculation processing in the present embodiment will be specifically described with reference to FIGS. 2 and 3 as well.
〔始動時燃料増量補正係数算出処理〕
図2は、本実施形態における内燃機関制御装置1の始動時燃料増量補正係数算出処理を実行した際のエンジン回転数NEの変化に応じた間引きカウンタのカウント値CTKAST及び始動時燃料増量補正係数KASTの変化を、燃料噴射量算出処理の実行タイミングと共に示す図である。また、図3Aは、本実施形態における内燃機関制御装置1の始動時燃料増量補正係数算出処理で用いられるエンジン回転数NEと所定カウント値との関係を表すテーブルデータの一例を示す図であり、図3Bは、かかる始動時燃料増量補正係数算出処理での間引き回数の変化に伴う始動時燃料増量補正係数の変化の一例を示す図である。 [Start-up fuel increase correction coefficient calculation processing]
FIG. 2 shows the count value CTKAST of the decimation counter and the start-up fuel increase correction coefficient KAST according to the change in the engine speed NE when the start-up fuel increase correction coefficient calculation process of the internal combustion engine control apparatus 1 in this embodiment is executed. It is a figure which shows this change with the execution timing of fuel injection amount calculation processing. FIG. 3A is a diagram showing an example of table data representing the relationship between the engine speed NE and a predetermined count value used in the start-up fuel increase correction coefficient calculation process of the internal combustion engine control apparatus 1 in the present embodiment. FIG. 3B is a diagram showing an example of a change in the start-up fuel increase correction coefficient accompanying a change in the number of thinning-outs in the start-up fuel increase correction coefficient calculation process.
図2は、本実施形態における内燃機関制御装置1の始動時燃料増量補正係数算出処理を実行した際のエンジン回転数NEの変化に応じた間引きカウンタのカウント値CTKAST及び始動時燃料増量補正係数KASTの変化を、燃料噴射量算出処理の実行タイミングと共に示す図である。また、図3Aは、本実施形態における内燃機関制御装置1の始動時燃料増量補正係数算出処理で用いられるエンジン回転数NEと所定カウント値との関係を表すテーブルデータの一例を示す図であり、図3Bは、かかる始動時燃料増量補正係数算出処理での間引き回数の変化に伴う始動時燃料増量補正係数の変化の一例を示す図である。 [Start-up fuel increase correction coefficient calculation processing]
FIG. 2 shows the count value CTKAST of the decimation counter and the start-up fuel increase correction coefficient KAST according to the change in the engine speed NE when the start-up fuel increase correction coefficient calculation process of the internal combustion engine control apparatus 1 in this embodiment is executed. It is a figure which shows this change with the execution timing of fuel injection amount calculation processing. FIG. 3A is a diagram showing an example of table data representing the relationship between the engine speed NE and a predetermined count value used in the start-up fuel increase correction coefficient calculation process of the internal combustion engine control apparatus 1 in the present embodiment. FIG. 3B is a diagram showing an example of a change in the start-up fuel increase correction coefficient accompanying a change in the number of thinning-outs in the start-up fuel increase correction coefficient calculation process.
図2(a)から図2(d)に示すように、本実施形態における始動時燃料増量補正係数算出処理では、典型的にはエンジンを始動させる際から所定の始動時燃料増量補正終了条件を満たすまでの期間中で、燃料噴射量算出処理の実行タイミング(燃料噴射量の演算タイミング)毎に、間引きカウンタ21eは、そのカウント値CTKASTを所定カウント値からカウントダウンする。そして、間引きカウンタ21eのカウント値CTKASTがゼロになる度毎に(時刻t=t1、t2、t3、t4、t5及びt6)、燃料噴射量算出部21dが、典型的には1以上の数値である始動時燃料増量補正係数KASTの値を減少させると共に、間引きカウンタ21eのカウント値CTKASTを再度所定カウント値に設定する。なお、間引きカウンタ21eは、加算カウンタとすることも可能である。
As shown in FIG. 2 (a) to FIG. 2 (d), in the start-up fuel increase correction coefficient calculation processing in this embodiment, a predetermined start-up fuel increase correction end condition is typically set from when the engine is started. During the period until the fuel consumption is satisfied, the thinning counter 21e counts down the count value CTKAST from the predetermined count value at every execution timing of the fuel injection amount calculation process (fuel injection amount calculation timing). Each time the count value CTKAST of the thinning counter 21e becomes zero (time t = t1, t2, t3, t4, t5, and t6), the fuel injection amount calculation unit 21d typically has a numerical value of 1 or more. The value of a certain start-up fuel increase correction coefficient KAST is decreased, and the count value CTKAST of the thinning counter 21e is set to a predetermined count value again. Note that the thinning counter 21e may be an addition counter.
ここで、図3Aに曲線L1で示すように、間引きカウンタ21eがそのカウント値CTKASTをカウントダウンする初期値である所定カウント値は、エンジン回転数NEが高くなるほど大きくなるように設定されている。具体的には、エンジン回転数NEが高くなっても、始動時燃料増量補正係数KASTが減少されるその時間間隔がエンジン回転数NEに依存せずにほぼ一定間隔になるように、エンジン回転数NEが高くなるにつれて所定カウント値を増大する設定がなされている。
Here, as indicated by a curve L1 in FIG. 3A, the predetermined count value, which is the initial value by which the thinning counter 21e counts down the count value CTKAST, is set to increase as the engine speed NE increases. Specifically, even if the engine speed NE is increased, the engine speed is set such that the time interval during which the start time fuel increase correction coefficient KAST is decreased is substantially constant without depending on the engine speed NE. The predetermined count value is set to increase as NE increases.
また、図3Bに曲線L2で示すように、燃料噴射量算出部21dは、始動時燃料増量補正係数KASTの前回値から一定値を減算することにより、かかる前回値を減少させた始動時燃料増量補正係数KASTの今回値を算出してもよいし、図3Bに曲線L3で示すように、始動時燃料増量補正係数KASTの前回値を一定の割合で減少させることにより、かかる前回値を図3Bに曲線L2で示す態様よりも異なった非線形の特性で減少させた始動時燃料増量補正係数KASTの今回値を算出してもよい。
Further, as shown by a curve L2 in FIG. 3B, the fuel injection amount calculation unit 21d subtracts a constant value from the previous value of the start time fuel increase correction coefficient KAST, thereby reducing the start time fuel increase. The current value of the correction coefficient KAST may be calculated, or, as indicated by the curve L3 in FIG. 3B, the previous value of the start-time fuel increase correction coefficient KAST is decreased at a constant rate so that the previous value is obtained as shown in FIG. 3B. Alternatively, the current value of the start-time fuel increase correction coefficient KAST may be calculated which is decreased with a non-linear characteristic different from the mode indicated by the curve L2.
また、図3Bに曲線L4で示すように、燃料噴射量算出部21dは、間引きカウンタ21eのカウント値CTKASTが所定閾値になるまでは、カウント値CTKASTが
所定カウント値になる毎に、始動時燃料増量補正係数KASTの前回値を一定の割合で減少させることにより始動時燃料増量補正係数KASTの今回値を算出する処理を実行し、間引きカウンタのカウント値CTKASTが所定閾値になった後は、間引きカウンタ21eのカウント値が所定カウント値になる毎に、始動時燃料増量補正係数KASTの前回値から一定値を減算することにより始動時燃料増量補正係数KASTの今回値を算出する処理を実行してもよい(カウント値CTKASTが所定閾値になるまでは、図3Bに示す曲線L2と同じ特性を呈し、間引きカウンタのカウント値CTKASTが所定閾値になった後は、図3Bに示す曲線L3と同じ特性を呈する)。 Further, as shown by a curve L4 in FIG. 3B, the fuel injection amount calculation unit 21d starts the fuel at start-up every time the count value CTKAST reaches a predetermined count value until the count value CTKAST of the thinningcounter 21e reaches a predetermined threshold value. A process of calculating the current value of the starting fuel increase correction coefficient KAST by decreasing the previous value of the increase correction coefficient KAST at a constant rate is executed, and after the count value CTKAST of the decimation counter reaches a predetermined threshold value, the thinning is performed. Every time the count value of the counter 21e becomes a predetermined count value, a process of calculating the current value of the start time fuel increase correction coefficient KAST by subtracting a constant value from the previous value of the start time fuel increase correction coefficient KAST is executed. (Until the count value CTKAST reaches a predetermined threshold value, it exhibits the same characteristics as the curve L2 shown in FIG. After pointer count value CTKAST reaches a predetermined threshold, it exhibits the same characteristics as the curve L3 shown in FIG. 3B).
所定カウント値になる毎に、始動時燃料増量補正係数KASTの前回値を一定の割合で減少させることにより始動時燃料増量補正係数KASTの今回値を算出する処理を実行し、間引きカウンタのカウント値CTKASTが所定閾値になった後は、間引きカウンタ21eのカウント値が所定カウント値になる毎に、始動時燃料増量補正係数KASTの前回値から一定値を減算することにより始動時燃料増量補正係数KASTの今回値を算出する処理を実行してもよい(カウント値CTKASTが所定閾値になるまでは、図3Bに示す曲線L2と同じ特性を呈し、間引きカウンタのカウント値CTKASTが所定閾値になった後は、図3Bに示す曲線L3と同じ特性を呈する)。 Further, as shown by a curve L4 in FIG. 3B, the fuel injection amount calculation unit 21d starts the fuel at start-up every time the count value CTKAST reaches a predetermined count value until the count value CTKAST of the thinning
以下、図4を参照して、始動時燃料増量補正係数KASTの前回値を一定の割合で減少させるその今回値の算出と、始動時燃料増量補正係数KASTの前回値から一定値を減算するその今回値の算出と、を組み合わせた始動時燃料増量補正係数算出処理における燃料噴射量算出部21dの動作について詳しく説明する。
In the following, referring to FIG. 4, the calculation of the current value for decreasing the previous value of the starting fuel increase correction coefficient KAST at a constant rate, and the subtraction of the constant value from the previous value of the starting fuel increase correction coefficient KAST The operation of the fuel injection amount calculation unit 21d in the starting fuel increase correction coefficient calculation process that combines the calculation of the current value will be described in detail.
図4は、本実施形態における内燃機関制御装置1の始動時燃料増量補正係数算出処理の流れの一例を示すフローチャートである。
FIG. 4 is a flowchart showing an example of the flow of the startup fuel increase correction coefficient calculation process of the internal combustion engine control apparatus 1 in the present embodiment.
図4に示すフローチャートは、車両のイグニッションスイッチがオフ状態からオン状態に切り換えられてCPU21が稼働したタイミングで開始となり、始動時燃料増量補正係数算出処理はステップS1の処理に進む。かかる始動時燃料増量補正係数算出処理は、車両のイグニッションスイッチがオン状態でCPU21が稼働している間、所定の制御周期毎に繰り返し実行される。
The flowchart shown in FIG. 4 starts when the ignition switch of the vehicle is switched from the off state to the on state and the CPU 21 operates, and the start time fuel increase correction coefficient calculation processing proceeds to step S1. The start-up fuel increase correction coefficient calculation process is repeatedly executed at predetermined control intervals while the CPU 21 is operating with the ignition switch of the vehicle turned on.
ステップS1の処理では、燃料噴射量算出部21dが、始動後燃料増量補正終了フラグの状態がオン状態であるか否かを判別することによって、始動後燃料増量補正を実施中であるか否かを判別する。判別の結果、始動後燃料増量補正終了フラグの状態がオフ状態である場合(ステップS1:Yes)、燃料噴射量算出部21dは、始動後燃料増量補正を実施中であると判別し、始動時燃料増量補正係数算出処理をステップS2の処理に進める。一方、始動後燃料増量補正終了フラグの状態がオン状態である場合には(ステップS1:No)、燃料噴射量算出部21dは、始動後燃料増量補正を実施中でないと判別し、今回の一連の始動時燃料増量補正係数算出処理を終了する。なお、始動後燃料増量補正終了フラグの初期状態は、オフ状態である。
In the process of step S1, the fuel injection amount calculation unit 21d determines whether or not the post-startup fuel increase correction end flag is on, thereby determining whether or not post-startup fuel increase correction is being performed. Is determined. As a result of the determination, when the post-startup fuel increase correction end flag is in the off state (step S1: Yes), the fuel injection amount calculation unit 21d determines that post-startup fuel increase correction is being performed, and starts The fuel increase correction coefficient calculation process proceeds to the process of step S2. On the other hand, if the post-startup fuel increase correction end flag is in the on state (step S1: No), the fuel injection amount calculation unit 21d determines that post-startup fuel increase correction is not being performed, and this time series. The start-time fuel increase correction coefficient calculation process ends. Note that the initial state of the post-startup fuel increase correction end flag is the off state.
ステップS2の処理では、間引きカウンタ21eが、そのカウント値CTKASTを1減算する。これにより、ステップS2の処理は完了し、始動時燃料増量補正係数算出処理はステップS3の処理に進む。
In the process of step S2, the thinning counter 21e subtracts 1 from the count value CTKAST. Thereby, the process of step S2 is completed, and the start time fuel increase correction coefficient calculation process proceeds to the process of step S3.
ステップS3の処理では、燃料噴射量算出部21dが、間引きカウンタ21eのカウント値CTKASTがゼロ以下であるか否かを判別する。判別の結果、間引きカウンタ21eのカウント値CTKASTがゼロ以下である場合(ステップS3:Yes)、燃料噴射量算出部21dは、始動時燃料増量補正係数算出処理をステップS4の処理に進める。一方、間引きカウンタ21eのカウント値CTKASTがゼロ以下でない場合には(ステップS3:No)、燃料噴射量算出部21dは、今回の一連の始動時燃料増量補正係数算出処理を終了する。
In step S3, the fuel injection amount calculation unit 21d determines whether the count value CTKAST of the thinning counter 21e is equal to or less than zero. As a result of the determination, if the count value CTKAST of the thinning counter 21e is equal to or less than zero (step S3: Yes), the fuel injection amount calculation unit 21d advances the start time fuel increase correction coefficient calculation processing to the processing of step S4. On the other hand, when the count value CTKAST of the thinning-out counter 21e is not less than or equal to zero (step S3: No), the fuel injection amount calculation unit 21d ends the current series of start time fuel increase correction coefficient calculation processing.
ステップS4の処理では、燃料噴射量算出部21dが、図3Aに示すテーブルデータから現在のエンジン回転数NEに対応する所定カウント値を検索し、間引きカウンタ21eのカウント値CTKASTを検索された所定カウント値に設定する。これにより、ステップS4の処理は完了し、始動時燃料増量補正係数算出処理はステップS5の処理に進む。
In the process of step S4, the fuel injection amount calculation unit 21d retrieves a predetermined count value corresponding to the current engine speed NE from the table data shown in FIG. 3A, and the predetermined count obtained by retrieving the count value CTKAST of the thinning counter 21e. Set to value. Thereby, the process of step S4 is completed, and the start time fuel increase correction coefficient calculation process proceeds to the process of step S5.
ステップS5の処理では、燃料噴射量算出部21dが、始動時燃料増量補正係数KASTの値が所定閾値以下であるか否かを判別する。判別の結果、始動時燃料増量補正係数KASTの値が所定閾値以下である場合(ステップS5:Yes)、燃料噴射量算出部21dは、始動時燃料増量補正係数算出処理をステップS7の処理に進める。一方、始動時燃料増量補正係数KASTの値が所定閾値以下でない場合には(ステップS5:No)、燃料噴射量算出部21dは、始動時燃料増量補正係数算出処理をステップS6の処理に進める。なお、かかる所定閾値は、必要に応じて、単数のみならず複数設定してもよい。また、始動時燃料増量補正係数KASTの前回値を一定の割合で減少させることにより始動時燃料増量補正係数KASTの今回値を算出する処理と、始動時燃料増量補正係数KASTの前回値から一定値を減算することにより始動時燃料増量補正係数KASTの今回値を算出する処理と、を汲む合わせる必要がないときには、かかる所定閾値を設定する必要はなく、かかる処理の何れか一方を実行すればよい。
In step S5, the fuel injection amount calculation unit 21d determines whether or not the value of the start time fuel increase correction coefficient KAST is equal to or less than a predetermined threshold value. As a result of the determination, if the value of the start time fuel increase correction coefficient KAST is equal to or less than the predetermined threshold value (step S5: Yes), the fuel injection amount calculation unit 21d advances the start time fuel increase correction coefficient calculation process to the process of step S7. . On the other hand, when the value of the start time fuel increase correction coefficient KAST is not less than or equal to the predetermined threshold value (step S5: No), the fuel injection amount calculation unit 21d advances the start time fuel increase correction coefficient calculation process to the process of step S6. Note that the predetermined threshold value may be set as a single value or a plurality as required. Further, a process for calculating the current value of the starting fuel increase correction coefficient KAST by decreasing the previous value of the starting fuel increase correction coefficient KAST at a constant rate, and a constant value from the previous value of the starting fuel increase correction coefficient KAST. When it is not necessary to combine the process of calculating the current value of the start-time fuel increase correction coefficient KAST by subtracting, it is not necessary to set the predetermined threshold value, and either one of the processes may be executed. .
ステップS6の処理では、燃料噴射量算出部21dが、前回の始動時燃料増量補正係数KASTに所定係数α(0<α<1)を乗算した値を今回の始動時燃料増量補正係数KASTに設定する。これにより、ステップS6の処理は完了し、始動時燃料増量補正係数算出処理はステップS8の処理に進む。なお、かかる所定係数αは、必要に応じて、一定値のみならず可変値であってもよく、これらの組み合わせとしてもよい。
In the process of step S6, the fuel injection amount calculation unit 21d sets a value obtained by multiplying the previous start time fuel increase correction coefficient KAST by a predetermined coefficient α (0 <α <1) as the current start time fuel increase correction coefficient KAST. To do. Thereby, the process of step S6 is completed, and the start time fuel increase correction coefficient calculation process proceeds to the process of step S8. Note that the predetermined coefficient α may be not only a constant value but also a variable value, or a combination thereof, as necessary.
ステップS7の処理では、燃料噴射量算出部21dが、前回の始動時燃料増量補正係数KASTから正の所定値βを減算した値を今回の始動時燃料増量補正係数KASTに設定する。これにより、ステップS7の処理は完了し、始動時燃料増量補正係数算出処理はステップS8の処理に進む。なお、かかる所定値βは、必要に応じて、一定値のみならず可変値であってもよく、これらの組み合わせとしてもよい。
In step S7, the fuel injection amount calculation unit 21d sets a value obtained by subtracting the positive predetermined value β from the previous start time fuel increase correction coefficient KAST as the current start time fuel increase correction coefficient KAST. Thereby, the process of step S7 is completed, and the start time fuel increase correction coefficient calculation process proceeds to the process of step S8. Note that the predetermined value β may be not only a constant value but also a variable value, or a combination thereof, as necessary.
ステップS8の処理では、燃料噴射量算出部21dが、始動時燃料増量補正係数KASTが1以下であるか否かを判別する。判別の結果、始動時燃料増量補正係数KASTが1以下である場合(ステップS8:Yes)、燃料噴射量算出部21dは、始動時燃料増量補正係数算出処理をステップS9の処理に進める。一方、始動時燃料増量補正係数KASTが1以下でない場合には(ステップS8:No)、燃料噴射量算出部21dは、今回の一連の始動時燃料増量補正係数算出処理を終了する。
In step S8, the fuel injection amount calculation unit 21d determines whether or not the starting fuel increase correction coefficient KAST is 1 or less. As a result of the determination, if the starting fuel increase correction coefficient KAST is 1 or less (step S8: Yes), the fuel injection amount calculating unit 21d advances the starting fuel increase correction coefficient calculating process to the process of step S9. On the other hand, if the start time fuel increase correction coefficient KAST is not 1 or less (step S8: No), the fuel injection amount calculation unit 21d ends the current start time fuel increase correction coefficient calculation process.
ステップS9の処理では、燃料噴射量算出部21dが、始動後燃料増量補正終了フラグの状態をオン状態に設定する。これにより、ステップS9の処理は完了し、今回の一連の始動時燃料増量補正係数算出処理は終了する。
In step S9, the fuel injection amount calculation unit 21d sets the post-startup fuel increase correction end flag to the on state. Thereby, the process of step S9 is completed, and this series of start time fuel increase correction coefficient calculation process ends.
以上の説明から明らかなように、本実施形態における内燃機関制御装置1では、燃料噴射量算出部21dが、間引きカウンタ21eのカウント値CTKASTが所定カウント値になる毎に始動時燃料増量補正係数KASTを減少させ、所定カウント値は、エンジン回転数NEが高いほど大きくなるように設定されているので、エンジンの始動時から始動時燃料増量補正係数KASTがゼロになるまでの期間を、エンジン回転数NEの影響を受けることなくほぼ一定にすることができ、エンジンの始動時の燃料増量補正を適切に実行して、ドライバビリティの低下やエンストの発生を抑制することができる。
As is apparent from the above description, in the internal combustion engine control apparatus 1 according to the present embodiment, the fuel injection amount calculation unit 21d starts the fuel increase correction coefficient KAST at the start every time the count value CTKAST of the decimation counter 21e becomes a predetermined count value. Since the predetermined count value is set so as to increase as the engine speed NE increases, the period from the start of the engine to the start-time fuel increase correction coefficient KAST becomes zero. It can be made substantially constant without being influenced by NE, and the fuel increase correction at the time of starting the engine can be appropriately executed to suppress the decrease in drivability and the occurrence of engine stall.
また、本実施形態における内燃機関制御装置1では、燃料噴射量算出部21dが、間引きカウンタ21eのカウント値CTKASTが所定カウント値になる毎に、始動時燃料増量補正係数KASTの前回値から一定値を減算することにより始動時燃料増量補正係数KASTの今回値を算出するので、エンジンの始動時の特性に合わせてその始動時の燃料増量補正量の減少度合を線形に変化させることができ、ドライバビリティの低下やエンストの発生をより適切に抑制することができる。
Further, in the internal combustion engine control apparatus 1 in the present embodiment, the fuel injection amount calculation unit 21d has a constant value from the previous value of the starting fuel increase correction coefficient KAST every time the count value CTKAST of the thinning counter 21e becomes a predetermined count value. Since the current value of the starting fuel increase correction coefficient KAST is calculated by subtracting, the degree of decrease in the fuel increasing correction amount at the start can be linearly changed in accordance with the characteristics at the start of the engine. It is possible to more appropriately suppress the degradation of engine performance and engine stall.
また、本実施形態における内燃機関制御装置1では、燃料噴射量算出部21dが、間引きカウンタ21eのカウント値CTKASTが所定カウント値になる毎に、始動時燃料増量補正係数KASTの前回値を一定の割合で減少させることにより始動時燃料増量補正係数KASTの今回値を算出するので、エンジンの始動時の特性に合わせてその始動時の燃料増量補正量の減少度合を非線形に変化させることができ、ドライバビリティの低下やエンストの発生をより適切に抑制することができる。
In the internal combustion engine control apparatus 1 according to the present embodiment, the fuel injection amount calculation unit 21d keeps the previous value of the starting fuel increase correction coefficient KAST constant every time the count value CTKAST of the thinning counter 21e becomes a predetermined count value. Since the current value of the starting fuel increase correction coefficient KAST is calculated by decreasing the ratio, the degree of decrease in the fuel increasing correction amount at the start can be changed nonlinearly in accordance with the characteristics at the start of the engine. It is possible to more appropriately suppress a decrease in drivability and an engine stall.
また、本実施形態における内燃機関制御装置1では、燃料噴射量算出部21dが、間引きカウンタ21eのカウント値CTKASTが所定閾値になるまでは、間引きカウンタ21eのカウント値CTKASTが所定カウント値になる毎に、始動時燃料増量補正係数KASTの前回値を一定の割合で減少させることにより始動時燃料増量補正係数KASTの今回値を算出し、間引きカウンタ21eのカウント値CTKASTが所定閾値になった後は、間引きカウンタ21eのカウント値CTKASTが所定カウント値になる毎に、始動時燃料増量補正係数KASTの前回値から一定値を減算することにより始動時燃料増量補正係数KASTの今回値を算出するので、エンジンの始動時の特性に合わせてその始動時の燃料増量補正量の減少度合を非線形から線形に切り換えることができ、ドライバビリティの低下やエンストの発生をより適切に抑制することができる。
Further, in the internal combustion engine control apparatus 1 in the present embodiment, every time the fuel injection amount calculation unit 21d reaches the count value CTKAST of the decimation counter 21e until the count value CTKAST of the decimation counter 21e reaches a predetermined threshold value. In addition, the current value of the starting fuel increase correction coefficient KAST is calculated by decreasing the previous value of the starting fuel increase correction coefficient KAST at a constant rate, and after the count value CTKAST of the thinning counter 21e reaches the predetermined threshold value, Every time the count value CTKAST of the decimation counter 21e becomes a predetermined count value, the current value of the start time fuel increase correction coefficient KAST is calculated by subtracting a constant value from the previous value of the start time fuel increase correction coefficient KAST. The degree of decrease in the fuel increase correction amount at the start according to the engine start characteristics Can be switched from the non-linear to linear, it is possible to more appropriately suppress the occurrence of reduction and engine stall in drivability.
なお、本発明は、部材の種類、形状、配置、個数等は前述の実施形態に限定されるものではなく、その構成要素を同等の作用効果を奏するものに適宜置換する等、発明の要旨を逸脱しない範囲で適宜変更可能であることはもちろんである。
In the present invention, the type, shape, arrangement, number, and the like of the members are not limited to the above-described embodiment, and the gist of the invention is appropriately replaced such that the constituent elements are appropriately replaced with those having the same operational effects. Of course, it can be changed as appropriate without departing from the scope.
例えば、本実施形態では、インジェクタ温度に対応するエンジン温度として、エンジンの点火プラグ座の温度を用いているが、これに限定するものではなく、例えば、エンジン冷却水温やシリンダー壁温等を用いてもよい。
For example, in this embodiment, the temperature of the spark plug seat of the engine is used as the engine temperature corresponding to the injector temperature. However, the present invention is not limited to this. For example, the engine cooling water temperature or the cylinder wall temperature is used. Also good.
また、本実施形態の構成は、単気筒エンジンのみならず多気筒エンジンに用いてもよい。その場合には、多気筒エンジンの各気筒のインジェクタのコイル抵抗値からその気筒の温度を推定し、各気筒の温度に合わせてその気筒の燃料噴射量等を制御することができる。
Further, the configuration of the present embodiment may be used not only for a single cylinder engine but also for a multi-cylinder engine. In that case, the temperature of the cylinder can be estimated from the coil resistance value of the injector of each cylinder of the multi-cylinder engine, and the fuel injection amount of the cylinder can be controlled in accordance with the temperature of each cylinder.
以上のように、本発明は、内燃機関の始動時の燃料増量補正を適切に実行して、ドライバビリティの低下やエンストの発生を抑制可能な内燃機関制御装置を提供することができるものであり、その汎用普遍的な性格から発電機等の汎用機や自動二輪車等の車両の内燃機関制御装置に広く適用され得るものと期待される。
As described above, the present invention can provide an internal combustion engine control device that can appropriately perform fuel increase correction at the time of starting the internal combustion engine and suppress the decrease in drivability and the occurrence of engine stall. Because of its universal character, it is expected to be widely applicable to general-purpose machines such as generators and internal combustion engine control devices for vehicles such as motorcycles.
Claims (4)
- 内燃機関に適用されると共に、インジェクタのコイル抵抗値に基づいてインジェクタ温度を算出するインジェクタ温度算出部と、前記インジェクタ温度に基づいて内燃機関温度を算出する内燃機関温度算出部と、前記内燃機関温度に基づいて前記内燃機関の運転状態を制御する運転状態制御部と、を有する内燃機関制御装置において、
始動時燃料増量補正係数を用いて前記インジェクタ温度から算出される基準噴射量を補正した燃料噴射量を算出する燃料噴射量算出部と、
前記内燃機関の始動後から一定周期毎にカウントする間引きカウンタと、を更に備え、
前記燃料噴射量算出部は、前記間引きカウンタのカウント値が所定カウント値になる毎に前記始動時燃料増量補正係数を減少させ、
前記所定カウント値は、前記内燃機関の回転数が高いほど大きくなるように設定されていることを特徴とする特徴とする内燃機関制御装置。 An injector temperature calculation unit that is applied to an internal combustion engine and calculates an injector temperature based on a coil resistance value of the injector, an internal combustion engine temperature calculation unit that calculates an internal combustion engine temperature based on the injector temperature, and the internal combustion engine temperature An internal combustion engine control device having an operation state control unit for controlling an operation state of the internal combustion engine based on
A fuel injection amount calculation unit that calculates a fuel injection amount obtained by correcting a reference injection amount calculated from the injector temperature using a starting fuel increase correction coefficient;
A decimation counter that counts at regular intervals from the start of the internal combustion engine,
The fuel injection amount calculation unit decreases the starting fuel increase correction coefficient every time the count value of the thinning counter reaches a predetermined count value,
The internal combustion engine controller according to claim 1, wherein the predetermined count value is set so as to increase as the rotational speed of the internal combustion engine increases. - 前記燃料噴射量算出部は、前記間引きカウンタのカウント値が前記所定カウント値になる毎に、前記始動時燃料増量補正係数の前回値から一定値を減算することにより前記始動時燃料増量補正係数の今回値を算出する算出処理を実行することを特徴とする請求項1に記載の内燃機関制御装置。 The fuel injection amount calculation unit subtracts a constant value from the previous value of the start time fuel increase correction coefficient every time the count value of the decimation counter reaches the predetermined count value, thereby determining the start time fuel increase correction coefficient. The internal combustion engine control device according to claim 1, wherein a calculation process for calculating a current value is executed.
- 前記燃料噴射量算出部は、前記間引きカウンタのカウント値が前記所定カウント値になる毎に、前記始動時燃料増量補正係数の前回値を一定の割合で減少させることにより前記始動時燃料増量補正係数の今回値を算出する算出処理を実行することを特徴とする請求項1に記載の内燃機関制御装置。 The fuel injection amount calculation unit decreases the previous value of the start time fuel increase correction coefficient at a constant rate each time the count value of the decimation counter reaches the predetermined count value, thereby increasing the start time fuel increase correction coefficient. The internal combustion engine control device according to claim 1, wherein calculation processing for calculating a current value of the engine is executed.
- 前記燃料噴射量算出部は、
前記間引きカウンタの前記カウント値が所定閾値になるまでは、前記カウント値が前記所定カウント値になる毎に、前記始動時燃料増量補正係数の前回値を一定の割合で減少させることにより前記始動時燃料増量補正係数の今回値を算出する第1の算出処理を実行し、
前記間引きカウンタの前記カウント値が所定閾値になった後は、前記カウント値が前記所定カウント値になる毎に、前記始動時燃料増量補正係数の前回値から一定値を減算することにより前記始動時燃料増量補正係数の今回値を算出する第2の算出処理を実行することを特徴とする請求項1に記載の内燃機関制御装置。 The fuel injection amount calculation unit
Until the count value of the decimation counter reaches a predetermined threshold value, the previous value of the start-up fuel increase correction coefficient is decreased at a constant rate each time the count value reaches the predetermined count value. Execute the first calculation process for calculating the current value of the fuel increase correction coefficient,
After the count value of the decimation counter reaches a predetermined threshold value, every time the count value reaches the predetermined count value, a predetermined value is subtracted from the previous value of the start time fuel increase correction coefficient, thereby The internal combustion engine control device according to claim 1, wherein a second calculation process for calculating a current value of the fuel increase correction coefficient is executed.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017060938A JP2018162748A (en) | 2017-03-27 | 2017-03-27 | Internal combustion engine control device |
JP2017-060938 | 2017-03-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018180468A1 true WO2018180468A1 (en) | 2018-10-04 |
Family
ID=63675443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/009742 WO2018180468A1 (en) | 2017-03-27 | 2018-03-13 | Internal combustion engine control device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2018162748A (en) |
WO (1) | WO2018180468A1 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59194042A (en) * | 1983-04-19 | 1984-11-02 | Toyota Motor Corp | Controlling method of fuel injection quantity and fuel injection control device for internal-combustion engine |
JPH023035U (en) * | 1988-06-17 | 1990-01-10 | ||
JPH0361644A (en) * | 1989-07-29 | 1991-03-18 | Daihatsu Motor Co Ltd | Correction of fuel injection quantity in warming |
JPH05214981A (en) * | 1992-01-31 | 1993-08-24 | Suzuki Motor Corp | Post-start injection quantity control device for internal combustion engine |
JP2003003891A (en) * | 2001-06-20 | 2003-01-08 | Daihatsu Motor Co Ltd | Air/fuel ratio control device for internal combustion engine |
JP2007146826A (en) * | 2005-10-28 | 2007-06-14 | Toyota Motor Corp | Fuel injection control device for internal combustion engine |
JP2007278073A (en) * | 2006-04-03 | 2007-10-25 | Nissan Motor Co Ltd | Engine control method and engine controller |
JP2016098665A (en) * | 2014-11-19 | 2016-05-30 | 株式会社ケーヒン | Fuel injection control device |
-
2017
- 2017-03-27 JP JP2017060938A patent/JP2018162748A/en active Pending
-
2018
- 2018-03-13 WO PCT/JP2018/009742 patent/WO2018180468A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59194042A (en) * | 1983-04-19 | 1984-11-02 | Toyota Motor Corp | Controlling method of fuel injection quantity and fuel injection control device for internal-combustion engine |
JPH023035U (en) * | 1988-06-17 | 1990-01-10 | ||
JPH0361644A (en) * | 1989-07-29 | 1991-03-18 | Daihatsu Motor Co Ltd | Correction of fuel injection quantity in warming |
JPH05214981A (en) * | 1992-01-31 | 1993-08-24 | Suzuki Motor Corp | Post-start injection quantity control device for internal combustion engine |
JP2003003891A (en) * | 2001-06-20 | 2003-01-08 | Daihatsu Motor Co Ltd | Air/fuel ratio control device for internal combustion engine |
JP2007146826A (en) * | 2005-10-28 | 2007-06-14 | Toyota Motor Corp | Fuel injection control device for internal combustion engine |
JP2007278073A (en) * | 2006-04-03 | 2007-10-25 | Nissan Motor Co Ltd | Engine control method and engine controller |
JP2016098665A (en) * | 2014-11-19 | 2016-05-30 | 株式会社ケーヒン | Fuel injection control device |
Also Published As
Publication number | Publication date |
---|---|
JP2018162748A (en) | 2018-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5903812B2 (en) | Control device for internal combustion engine | |
CN106150695B (en) | Control device for internal combustion engine | |
EP3604780B1 (en) | Internal combustion engine control device | |
WO2018180468A1 (en) | Internal combustion engine control device | |
CN108474318B (en) | Internal combustion engine control device | |
JP6553537B2 (en) | Internal combustion engine control system | |
JP6739317B2 (en) | Internal combustion engine controller | |
WO2018110229A1 (en) | Internal combustion engine control device | |
US10890132B2 (en) | Internal combustion engine control device | |
CN108884773B (en) | Internal combustion engine control device | |
JP6692269B2 (en) | Internal combustion engine controller | |
JP2018162749A (en) | Internal combustion engine control device | |
JP2009019778A (en) | Temperature control system of heating element | |
JP6378738B2 (en) | Internal combustion engine control device | |
JP6463124B2 (en) | Internal combustion engine control device | |
JP6393564B2 (en) | Fuel injection control device | |
JP2018071361A (en) | Internal combustion engine control device | |
JP2004353469A (en) | Control device of internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18777938 Country of ref document: EP Kind code of ref document: A1 |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18777938 Country of ref document: EP Kind code of ref document: A1 |