[go: up one dir, main page]

WO2018180217A1 - Electrical contact, electromagnetic relay provided with same, and method for manufacturing electrical contact - Google Patents

Electrical contact, electromagnetic relay provided with same, and method for manufacturing electrical contact Download PDF

Info

Publication number
WO2018180217A1
WO2018180217A1 PCT/JP2018/008146 JP2018008146W WO2018180217A1 WO 2018180217 A1 WO2018180217 A1 WO 2018180217A1 JP 2018008146 W JP2018008146 W JP 2018008146W WO 2018180217 A1 WO2018180217 A1 WO 2018180217A1
Authority
WO
WIPO (PCT)
Prior art keywords
base
electrical contact
contact layer
contact
layer
Prior art date
Application number
PCT/JP2018/008146
Other languages
French (fr)
Japanese (ja)
Inventor
開 伊集院
青木 達也
西川 和宏
前田 正史
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Publication of WO2018180217A1 publication Critical patent/WO2018180217A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material
    • H01H1/0237Composite material having a noble metal as the basic material and containing oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/04Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/54Contact arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys

Definitions

  • the present invention relates to an electrical contact, an electromagnetic relay including the electrical contact, and a method for manufacturing the electrical contact.
  • an electromagnetic relay for example, as disclosed in Patent Document 1, an electrical contact disposed on a fixed contact spring and an electrical contact disposed on a movable contact spring are operated by an operation of an electromagnet including an iron core magnetic pole and a coil.
  • an electromagnet including an iron core magnetic pole and a coil.
  • the arrangement of contacting or separating is known.
  • the electrical contact used for the electromagnetic relay having the above-described configuration is required not only to be conductive but also to be durable. Therefore, as disclosed in Patent Document 2, for example, a configuration is known in which a material in which a metal oxide is dispersed in Ag is used as the material of the electrical contact. Thus, conductivity can be ensured by using Ag as the material of the electrical contact. Moreover, the durability as the electrical contact can be improved by dispersing a metal oxide in Ag. *
  • the electrical contact member disclosed in Patent Document 4 is obtained by spraying a mixed powder containing a refractory metal and a highly conductive metal onto a base material made of the highly conductive metal. That is, in the configuration disclosed in Patent Document 4, a contact layer is formed on the substrate by spraying the mixed powder onto the base material.
  • the denseness of the distribution of elements affecting the durability in the contact layer obtained by the mixed powder is the metal oxide.
  • the durability of the contact layer has a relationship with the dense distribution of elements that affect the durability.
  • the particles in the mixed powder have a certain size. Therefore, when noble metal particles and metal oxide particles are used as the mixed powder, the distribution of elements affecting the durability cannot be made very dense. Therefore, when the said contact layer is formed using the said mixed powder, a contact layer with high durability may not be obtained.
  • An object of the present invention is to provide an electrical contact capable of improving durability in an electrical contact having a contact layer formed of a plurality of particles on a base, and a method for manufacturing the electrical contact.
  • the electrical contact which concerns on one Embodiment of this invention is an electrical contact which supplies with electricity by contacting a to-be-contacted part.
  • the electrical contact includes a base portion including a conductive metal material, and a contact layer located on the base portion and energized between the contacted portion.
  • the contact layer includes an alloy having a noble metal and an oxide of a metal other than the noble metal, and is composed of a plurality of flat alloy particles that are diffusion-bonded.
  • the manufacturing method of the electrical contact which concerns on one Embodiment of this invention is a manufacturing method of the electrical contact which supplies with electricity by contacting a to-be-contacted part.
  • a base forming step for forming a base including a conductive metal material, and alloy particles including an alloy having a noble metal and an oxide of a metal other than the noble metal are injected together with a gas to the base.
  • a contact layer forming step of forming a contact layer on the base is a contact layer on the base.
  • the durability of the electrical contact can be improved.
  • FIG. 1 is a figure showing typically composition of a relay device provided with an electric contact concerning an embodiment.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of the electrical contact.
  • FIG. 3 is a photograph showing the result of observing the cross section of the electrical contact in the stacking direction of the base and contact layer and observing the cross section.
  • FIG. 4 is a diagram schematically showing how the lead frame is molded.
  • FIG. 5 is a diagram schematically showing a state in which a contact layer is formed on the protruding portion of the lead frame by a spray method.
  • FIG. 6 is a view corresponding to FIG. 2 illustrating a schematic configuration of an electrical contact according to another embodiment.
  • FIG. 7 is a diagram schematically showing how the base is fixed to the lead frame.
  • FIG. 8 is a diagram schematically showing a state in which a contact layer is formed on the base fixed to the lead frame by a spray method.
  • FIG. 9 is a view corresponding to FIG. 2 showing a
  • fixed In the following description, the expressions “fixed”, “connected”, “attached”, etc. (hereinafter referred to as “fixed”, etc.) are fixed not only when the members are directly fixed, but also through other members. It includes cases where That is, in the following description, expressions such as fixation include the meanings of direct and indirect fixation between members. *
  • FIG. 1 is a diagram schematically showing a relay device 1 (electromagnetic relay) including an electrical contact 2 according to an embodiment of the present invention.
  • FIG. 1 is the figure which looked at the relay apparatus 1 from the side.
  • the relay device 1 has a pair of electrical contacts 2 and 3 that are arranged to face each other with a predetermined interval.
  • the relay device 1 controls energization and interruption of current by switching between contact and separation of the pair of electrical contacts 2 and 3.
  • the electrical contact 3 is a contacted portion that contacts the electrical contact 2.
  • the relay device 1 may have two or more pairs of electrical contacts that are arranged to face each other at a predetermined interval. *
  • the relay device 1 has a pair of flat lead frames 4 and 5 provided with electrical contacts 2 and 3, respectively, and a drive mechanism 6. *
  • the pair of lead frames 4 and 5 are flat members formed of a conductive metal material such as Cu or Cu alloy.
  • the electrical conductivity of the pair of lead frames 4 and 5 is preferably 50% IACS or more.
  • the pair of lead frames 4 and 5 are arranged to face each other with a predetermined interval, and one end side is fixed.
  • the other end side of the pair of lead frames 4 and 5 is a free end, and the electrical contacts 2 and 3 are arranged opposite to the other end side.
  • the electrical contact 2 is electrically connected to the lead frame 4.
  • the electrical contact 3 is electrically connected to the lead frame 5. *
  • a power source is electrically connected to the lead frame 4, and a device driven by power supplied from the power source is electrically connected to the lead frame 5.
  • the drive mechanism 6 includes a cylindrical coil 6a (shown in a longitudinal section in FIG. 1), an iron core 6b positioned inside the coil 6a, and an armature 6c.
  • the armature 6c is a crank-shaped member formed of a magnetic material when viewed from the side.
  • One end side of the armature 6c is in contact with one lead frame 4 provided with the electrical contact 2 of the pair of lead frames 4 and 5.
  • the other end side of the armature 6c is located in the vicinity of the coil 6a and the iron core 6b, and is separated from the coil 6a and the iron core 6b toward the tip.
  • the bending part of the armature 6c is supported rotatably.
  • the rotation center of the armature 6c is indicated by P. *
  • a current is supplied to the coil 6a from a power source (not shown). Supply of current to the coil 6a is performed when an instruction to energize the relay device 1 is received from a control device (not shown). When a current is supplied to the coil 6a, a magnetic field is generated in the coil 6a and the iron core 6b. On the other hand, when the control device instructs the relay device 1 to shut off, no current is supplied to the coil 6a. *
  • the relay device 1 may include a return spring that separates the lead frame 4 from the lead frame 5 when no magnetic field is generated in the coil 6a and the iron core 6b.
  • the electrical contact 2 is located on the other end side of the lead frame 4.
  • the electrical contact 2 includes a base portion 11 constituted by a part of the lead frame 4 and a contact layer 12 formed on the base portion 11.
  • the base 11 is a protruding portion 4a in which a part of the lead frame 4 protrudes in a bottomed cylindrical shape on one side in the thickness direction (contact layer side).
  • the lead frame 4 has a recess 4 b on the other side in the thickness direction with respect to the base 11.
  • the protruding portion 4a constituting the base portion 11 is formed by denting a part of the lead frame 4 to one side in the thickness direction. That is, the base 11 is a single member with the lead frame 4. *
  • the base 11 can be easily formed on the lead frame 4 by using the protruding portion 4 a obtained by denting a part of the lead frame 4 in one side in the thickness direction as the base 11.
  • the manufacturing cost can be reduced.
  • the contact layer 12 functions as a contact portion that contacts the electrical contact 3 in the electrical contact 2.
  • the contact layer 12 includes, for example, a noble metal such as Ag and an oxide of a metal other than the noble metal such as Sn (hereinafter, metal oxide).
  • the contact layer 12 has a thickness of 0.01 mm to 2.0 mm, for example. As described above, when the contact layer 12 includes a noble metal such as Ag and a metal oxide, the electrical resistance of the contact layer 12 can be reduced and the durability of the contact layer 12 can be reduced as compared with the case where other conductive materials are used. Can be improved.
  • the electrical conductivity of the contact layer 12 is preferably 50% IACS or more.
  • the contact layer 12 is formed by causing fine alloy particles X containing Ag and a metal oxide to collide with the protruding portion 4a (base portion 11) of the lead frame 4 by, for example, a spray method or the like.
  • the alloy particles X can be obtained by seeing a cross section when the electrical contact 2 is cut in the stacking direction of the base 11 and the contact layer 12 as shown in FIG. It is deformed into an ellipse that is longer in the direction perpendicular to the stacking direction than in the direction.
  • the alloy particles X deformed in an elliptical shape are diffusion bonded to the base 11 or other alloy particles X.
  • the contact layer 12 includes an alloy of a noble metal (for example, Ag) and a metal oxide (for example, an oxide of a metal such as Sn), and is configured by a plurality of flat alloy particles X that are diffusion-bonded.
  • FIG. 3 is a photograph showing the result of observing a cross section of the electrical contact 2 in the stacking direction of the base 11 and the contact layer 12 and observing the cross section. *
  • the metal oxide is dispersed.
  • the size (diameter) of the metal oxide in the contact layer 12 is distributed around 50 to 500 nm. Thereby, a dense layer structure is obtained in the contact layer 12, and the durability of the entire contact layer 12 can be improved.
  • the minimum size of the metal strand to be used is determined. Therefore, when forming an electrical contact, a noble metal more than a required amount is used. However, as described above, by forming the contact layer 12 using the spray method, the contact layer 12 can be easily formed without making it thicker than necessary.
  • the amount of metal oxide in the alloy particles X is not limited by the amount of metal oxide added. Can be adjusted. Thereby, durability of the contact layer 12 can be improved.
  • the contact layer 12 is formed on the base 11 by the spray method etc. using the alloy particle X containing Ag and a metal oxide. Therefore, the size of the metal oxide can be reduced and the metal oxide can be dispersed in the alloy particles X as compared with the case where a mixed metal powder is used as in the method disclosed in the fourth embodiment. Can be made. Thereby, compared with the case where mixed powder is used, the contact layer 12 which has the structure
  • the noble metal contained in the contact layer 12 is not limited to Ag, but may be Au, Pt, Ir, Ru, Pd, Ni, or W. Further, the contact layer 12 is not limited to a noble metal, and may include an alloy containing a noble metal element as a main component. *
  • the metal oxide contained in the contact layer 12 is not limited to Sn oxide, but Zn, Al, Cu, Mg, Ni, Sb, In, Cd, Ga, Se, Tl, Te, Pb, Bi, Po The oxide of may be sufficient. *
  • the electrical contact 3 may have the same configuration as the electrical contact 2 or may have a different configuration.
  • the contact portion of the electrical contact 3 is also preferably made of a material containing a noble metal, like the electrical contact 2.
  • the contact part of the electrical contact 3 also has the same configuration as the contact layer 12 of the electrical contact 2 from the viewpoint of durability.
  • a metal plate made of a material containing Cu or a Cu alloy is sandwiched in a thickness direction by a pair of molds 41 and 42 and pressed, whereby the protrusion 4 a and the recess 4 b are formed on the metal plate.
  • the mold 41 has a mold convex portion 41a for forming the concave portion 4b in the metal plate.
  • the mold 42 has a mold recess 42a for forming the protrusion 4a on the metal plate.
  • the metal plate 41 is sandwiched in the thickness direction by the molds 41 and 42 and pressed to form the lead frame 4 having the protrusions 4a and the recesses 4b.
  • the mold convex part 41a and the mold concave part 42a of the molds 41 and 42 are each circular in a plan view. Therefore, the protrusion 4a formed on the lead frame 4 has a bottomed cylindrical shape.
  • FIG. 5 is a diagram schematically showing the state of layer formation, and the positional relationship and size relationship between the layer forming apparatus 50 used in the spray method and the lead frame 4 are different from actual ones. *
  • the layer forming apparatus 50 forms a contact layer 12 on the base 11 by a so-called cold spray method in which fine particles collide against the substrate in a solid phase state below the melting temperature to form a layer on the substrate. To do.
  • the layer forming apparatus 50 includes a spray gun 51 that discharges the alloy particles X using a high-pressure gas.
  • the spray gun 51 has a space 51a in which alloy particles X are supplied from the outside, and a nozzle 51b for discharging the alloy particles X in the space 51a.
  • the alloy particles X are supplied from the outside to the space 51a of the spray gun 51, and a high-pressure gas having a predetermined pressure (for example, a pressure higher than 1 MPa) and a predetermined temperature (below the melting temperature of the alloy particles X) is supplied.
  • a high-pressure gas having a predetermined pressure for example, a pressure higher than 1 MPa
  • a predetermined temperature below the melting temperature of the alloy particles X
  • the alloy particles X collide with the surface of the base 11 part of the alloy particles X bite into the base 11, and the base 11 and the contact layer 12 are cut in the stacking direction. Also, it is deformed into a long flat shape in a direction perpendicular to the stacking direction. Thereby, the flat alloy particles X are diffusion bonded to the base 11.
  • the alloy particle X collides with another alloy particle X the alloy particle X is deformed into a flat shape that is long in the orthogonal direction in the cross section. Thereby, the particles X are diffusion bonded.
  • FIG. 3 shows a cross-sectional photograph of the electrical contact when the contact layer 12 is formed by colliding the alloy particles X on the base 11. *
  • the alloy particle X is, for example, a particle containing an alloy having Ag which is a noble metal and an oxide of Sn.
  • Sn oxide is dispersed in the particles. Therefore, by forming the contact layer 12 using the alloy particles X, the Sn oxide can be further dispersed in the contact layer 12. Therefore, compared with the case where the contact layer is formed using the mixed powder of Ag and metal oxide, a finer layer structure can be obtained in the contact layer 12 as a whole, and thus the contact layer 12 having high durability can be obtained.
  • the alloy particles X preferably have a particle size of 1 ⁇ m to 100 ⁇ m. From the viewpoint of efficiently discharging the alloy particles X supplied into the space 51a of the spray gun 51 from the nozzle 51b of the spray gun 51, the particle size of the alloy particles X is more preferably 10 ⁇ m or more. From the viewpoint of obtaining a fine layer structure in the contact layer 12, it is more preferable to use the alloy particles X having a particle size distributed around 10 ⁇ m to 20 ⁇ m in the formation of the contact layer 12. *
  • the noble metal contained in the alloy particle X is not limited to Ag, but may be Au, Pt, Ir, Ru, Pd, Ni, and W.
  • the contact layer 12 is not limited to a noble metal, and may include an alloy containing a noble metal element as a main component. *
  • the metal oxide contained in the alloy particle X is not limited to the oxide of Sn, but oxidation of Zn, Al, Cu, Mg, Ni, Sb, In, Cd, Ga, Se, Tl, Te, Pb, Bi, and Po. It may be a thing. *
  • the high-pressure gas is preferably a gas that can prevent oxidation and alteration of the alloy particles X.
  • the high-pressure gas is preferably a gas having a high sound speed in the gas. Examples of such a gas include H 2 , He, N 2 , O 2, and a gas containing them as a main component.
  • the step of forming the base portion 11 corresponds to the base portion forming step.
  • the step of forming the contact layer 12 on the base 11 corresponds to the contact layer forming step.
  • the contact layer 12 is formed on the base 11 of the lead frame 4 as shown in FIG.
  • the contact layer 12 has a thickness of 0.01 mm to 2.0 mm, for example. *
  • the size (diameter) of the metal oxide in the contact layer 12 is distributed around 50 to 500 nm, for example. That is, the metal oxide can be dispersed in the contact layer 12. Therefore, since a detailed layer structure is obtained in the entire contact layer 12, the durability of the contact layer 12 can be improved.
  • the processing cost of the powder increases. Therefore, as in the present embodiment, by forming the contact layer 12 using the alloy particles X of Ag and metal oxide, the manufacturing cost can be reduced as compared with the case where the above mixed powder is used.
  • the contact layer 12 is formed by a cold spray method.
  • the contact layer 12 may be formed by a method other than the cold spray method. Examples of other forming methods include plasma spraying using plasma, methods using flame spraying such as flame spraying, and methods such as vapor deposition. Further, the contact layer may be formed by combining various forming methods. *
  • the contact layer 12 after forming the contact layer 12 on the base 11, you may finish-mold the contact layer 12 with a shaping
  • the base 11 of the first embodiment has a bottomed cylindrical shape.
  • the shape of the base may be any shape such as a polyhedral shape as long as the contact layer can be formed on the base.
  • the base 11 is constituted by a part of the lead frame 4.
  • the base of the electrical contact may be a member different from the lead frame.
  • FIG. 6 shows an example in which the base 111 of the electrical contact 102 is a member different from the lead frame 104.
  • the flat lead frame 104 has a through hole 104a on the other end side which is a free end.
  • the lead frame 104 is formed of a conductive metal material containing Cu or a Cu alloy, like the lead frame 4 of the first embodiment.
  • the electrical contact 102 includes a base 111 that is a separate member from the lead frame 104 and a contact layer 112. *
  • the base 111 is formed of a conductive metal material containing Cu or a Cu alloy, like the lead frame 104.
  • the base 111 includes a shaft 121 and a flange 122 located on one end side of the shaft 121. *
  • the shaft portion 121 can be disposed in the through hole 104 a of the lead frame 104. That is, the lead frame 104 has a through hole 104 a that can accommodate the shaft portion 121.
  • the shaft 121 is crushed on the other end side in a state of being disposed in the through hole 104 a of the lead frame 104. Therefore, the base 111 is fixed to the peripheral edge of the lead frame 104 facing the through hole 104 a in a state where the shaft 121 is disposed in the through hole 104 a of the lead frame 104. Thereby, the base 111 can be formed separately from the lead frame 104 and attached to the lead frame 104. *
  • the contact layer 112 is located on the surface of the flange portion 122 of the base portion 111.
  • the contact layer 112 is comprised by the alloy particle containing the alloy of noble metals, such as Ag, and a metal oxide like the contact layer of Embodiment 1, for example.
  • the lead frame 104 having the through hole 104a is formed, and the base 111 having the shaft portion 121 and the flange portion 122 is formed. Both the lead frame 104 and the base 111 are made of a conductive metal material containing Cu or a Cu alloy. *
  • the lead frame 104 and the base 111 are set to the pair of molds 141 and 142 in a state where the shaft 121 of the base 111 is disposed in the through hole 104 a of the lead frame 104.
  • the mold 141 has a pin 141a and a guide hole 141b.
  • the pin 141a moves in the guide hole 141b of the mold 141.
  • the other end side of the shaft portion 121 of the base portion 111 is disposed.
  • the mold 142 has a mold recess 142a.
  • the flange 122 of the base 111 is disposed in the mold recess 142a. Accordingly, the flange 122 of the base 111 can be held by the mold 142.
  • the lead frame 104 is held while being sandwiched between the pair of molds 141 and 142. *
  • the shaft 141 of the base 111 is moved by moving the pin 141a within the guide hole 141b of the mold 141 in a state where the pair of molds 141 and 142 is disposed with respect to the lead frame 104 and the base 111. Crush the other end of the.
  • the base 111 is fixed to the peripheral portion of the lead frame 104 facing the through hole 104a in a state where a part of the shaft 121 is disposed in the through hole 104a of the lead frame 104. Therefore, the shaft 121 of the base 111 can be fixed to the lead frame 104.
  • the contact layer 112 is formed on the flange portion 122 of the base 111 by the layer forming apparatus 50 having the same configuration as that of the above embodiment. Note that the method for forming the contact layer 112 by the layer forming apparatus 50 is the same as that in the first embodiment, and a detailed description thereof will be omitted. *
  • the process of fixing the base 111 to the lead frame 104 corresponds to the base forming process.
  • the step of forming the contact layer 112 on the base 111 corresponds to the contact layer forming step.
  • the base 111 can be formed separately from the lead frame 104. Thereby, the base 111 can be formed of a metal material different from that of the lead frame 104, or the base 111 can be formed in a free shape. Therefore, the design freedom of the base 111 can be improved.
  • the contact layer 12 is formed on the base 11.
  • an antioxidant layer may be formed on the base 11 and the contact layer 12 may be formed on the antioxidant layer. That is, before the contact layer forming step, the acid preventing layer may be formed on the surface of the substrate 11 by the antioxidant layer forming step.
  • FIG. 9 shows a schematic configuration of the electrical contact 202 in which the antioxidant layer 13 is formed on the base 11 and the contact layer 12 is formed on the antioxidant layer 13.
  • the antioxidant layer 13 includes a noble metal such as Ag.
  • the formation method of the antioxidant layer 13 may be any formation method as long as it can be formed, such as spraying or plating. *
  • the antioxidant layer 13 By forming the antioxidant layer 13 on the base 11 as described above, it is possible to prevent the base 11 from being oxidized when the contact layer 12 is formed. Therefore, it is possible to suppress an increase in electrical resistance inside the electrical contact 202.
  • the present invention is applicable to an electrical contact having a contact layer formed by a plurality of particles on a base.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Contacts (AREA)

Abstract

[Problem] To provide: an electrical contact having a contact layer formed by a plurality of particles on a base, wherein durability can be improved; and a method for manufacturing the electrical contact. [Solution] An electrical contact, having: a base 11 including an electroconductive metal material; and a contact layer 12 located on the base 11, the contact layer 12 conducting electricity with another electrical contact. The contact layer 12 comprises a plurality of flat-shaped alloy particles X which contain a noble metal and metal oxide alloy and which are diffusion-bonded.

Description

電気接点、それを備えた電磁リレー及び電気接点の製造方法Electrical contact, electromagnetic relay including the same, and method of manufacturing electrical contact
本発明は、電気接点、それを備えた電磁リレー及び電気接点の製造方法に関する。 The present invention relates to an electrical contact, an electromagnetic relay including the electrical contact, and a method for manufacturing the electrical contact.
一般に、自動車及び事務機などには、各種の電磁リレーが用いられる。このような電磁リレーとして、例えば特許文献1に開示されるように、鉄心磁極及びコイルを含む電磁石の動作によって、固定接点ばねに配置された電気接点と可動接点ばねに配置された電気接点とを、接触または離間させる構成が知られている。  In general, various electromagnetic relays are used in automobiles and office machines. As such an electromagnetic relay, for example, as disclosed in Patent Document 1, an electrical contact disposed on a fixed contact spring and an electrical contact disposed on a movable contact spring are operated by an operation of an electromagnet including an iron core magnetic pole and a coil. The arrangement of contacting or separating is known. *
上述のような構成を有する電磁リレーに用いられる電気接点は、導電性だけでなく、耐久性も要求される。そのため、例えば特許文献2に開示されるように、前記電気接点の材料として、Agに金属酸化物を分散させた材料を用いる構成が知られている。このように前記電気接点の材料としてAgを用いることによって、導電性を確保できる。また、Agに金属酸化物を分散させることによって、前記電気接点としての耐久性を向上できる。  The electrical contact used for the electromagnetic relay having the above-described configuration is required not only to be conductive but also to be durable. Therefore, as disclosed in Patent Document 2, for example, a configuration is known in which a material in which a metal oxide is dispersed in Ag is used as the material of the electrical contact. Thus, conductivity can be ensured by using Ag as the material of the electrical contact. Moreover, the durability as the electrical contact can be improved by dispersing a metal oxide in Ag. *
しかしながら、Agは高価な金属であるため、前記電気接点を全てAgによって形成した場合、電気接点の製造コストが増大する。そのため、電気接点として、例えば特許文献3、4に開示されるように、接点部がAg合金によって形成され、基部がCu合金によって形成された複合接点が用いられる。  However, since Ag is an expensive metal, when all the electrical contacts are made of Ag, the manufacturing cost of the electrical contacts increases. Therefore, as an electrical contact, for example, as disclosed in Patent Documents 3 and 4, a composite contact in which a contact portion is formed of an Ag alloy and a base portion is formed of a Cu alloy is used. *
前記特許文献3に開示された複合接点では、Cu合金素線と、該Cu合金素線よりも外径の小さいAg合金素線とを成形金型の孔内で突き合わせた状態で鍛造することにより、前記Cu合金素線と前記Ag合金素線とを接合する。その後、鍔部を成形することによって複合接点を得る。上述のように前記Cu合金素線と前記Ag合金素線とを接合することにより、Cu合金とAg合金との接合強度を向上できる。  In the composite contact disclosed in Patent Document 3, a Cu alloy wire and an Ag alloy wire having an outer diameter smaller than that of the Cu alloy wire are forged in a state where they are abutted in the hole of the molding die. The Cu alloy wire and the Ag alloy wire are joined together. Thereafter, a composite contact is obtained by molding the collar. As described above, the bonding strength between the Cu alloy and the Ag alloy can be improved by bonding the Cu alloy strand and the Ag alloy strand. *
また、前記特許文献4に開示された電気接点部材は、耐火性金属と高導電性金属とを含む混合粉末を、高導電性金属からなる基材に溶射することによって、得られる。すなわち、前記特許文献4に開示された構成では、前記基材に対して前記混合粉末を溶射することによって、前記基板上に接点層が形成される。 Moreover, the electrical contact member disclosed in Patent Document 4 is obtained by spraying a mixed powder containing a refractory metal and a highly conductive metal onto a base material made of the highly conductive metal. That is, in the configuration disclosed in Patent Document 4, a contact layer is formed on the substrate by spraying the mixed powder onto the base material.
特開2005-166341号公報JP 2005-166341 A 特開2011-86563号公報JP 2011-86563 A 特開2013-30475号公報JP 2013-30475 A 特開2005-197098号公報Japanese Patent Laid-Open No. 2005-197098
前記特許文献4に開示された電気接点部材のように、混合粉末を用いて、溶射によって基材(基部)上に接点層を形成する場合、混合粉末を構成する粒子は、装置によって吐出可能な粒径を有する。  When the contact layer is formed on the base material (base) by thermal spraying using the mixed powder as in the electric contact member disclosed in Patent Document 4, particles constituting the mixed powder can be discharged by the apparatus. Have a particle size. *
ところで、例えば、前記混合粉末として、貴金属の粒子及び金属酸化物の粒子を用いた場合、前記混合粉末によって得られる接点層内において耐久性に影響する元素の分布の緻密さは、前記金属酸化物の粒子の粒径に依存する。また、前記接点層の耐久性は、前記耐久性に影響する元素の分布の緻密さと関係を有する。  By the way, for example, when noble metal particles and metal oxide particles are used as the mixed powder, the denseness of the distribution of elements affecting the durability in the contact layer obtained by the mixed powder is the metal oxide. Depends on the particle size. In addition, the durability of the contact layer has a relationship with the dense distribution of elements that affect the durability. *
上述のように、前記混合粉末を用いて得られる前記接点層では、前記混合粉末中の粒子はある程度の粒径を有する。そのため、前記混合粉末として、貴金属の粒子及び金属酸化物の粒子を用いた場合、前記耐久性に影響する元素の分布をあまり緻密にすることができない。よって、前記混合粉末を用いて前記接点層を形成した場合には、高い耐久性を有する接点層が得られない可能性がある。  As described above, in the contact layer obtained using the mixed powder, the particles in the mixed powder have a certain size. Therefore, when noble metal particles and metal oxide particles are used as the mixed powder, the distribution of elements affecting the durability cannot be made very dense. Therefore, when the said contact layer is formed using the said mixed powder, a contact layer with high durability may not be obtained. *
このように、従来の構成では、混合粉末中の金属酸化物の粒径の影響によって、電気接点の耐久性をあまり向上できなかった。  Thus, in the conventional configuration, the durability of the electrical contact could not be improved so much due to the influence of the particle size of the metal oxide in the mixed powder. *
本発明の目的は、基部上に複数の粒子によって形成された接点層を有する電気接点において、耐久性を向上可能な電気接点及びその製造方法を提供することにある。 An object of the present invention is to provide an electrical contact capable of improving durability in an electrical contact having a contact layer formed of a plurality of particles on a base, and a method for manufacturing the electrical contact.
本発明の一実施形態に係る電気接点は、被接触部と接触することにより通電する電気接点である。この電気接点は、導電性の金属材料を含む基部と、前記基部上に位置し、前記被接触部との間で通電する接点層と、を備える。前記接点層は、貴金属と該貴金属以外の金属の酸化物とを有する合金を含み、拡散接合された複数の扁平状の合金粒子によって構成される。  The electrical contact which concerns on one Embodiment of this invention is an electrical contact which supplies with electricity by contacting a to-be-contacted part. The electrical contact includes a base portion including a conductive metal material, and a contact layer located on the base portion and energized between the contacted portion. The contact layer includes an alloy having a noble metal and an oxide of a metal other than the noble metal, and is composed of a plurality of flat alloy particles that are diffusion-bonded. *
本発明の一実施形態に係る電気接点の製造方法は、被接触部と接触することにより通電する電気接点の製造方法である。この製造方法は、導電性の金属材料を含む基部を形成する基部形成工程と、前記基部に対し、貴金属と該貴金属以外の金属の酸化物とを有する合金を含む合金粒子を、気体とともに噴射することにより、前記基部上に接点層を形成する接点層形成工程と、を有する。 The manufacturing method of the electrical contact which concerns on one Embodiment of this invention is a manufacturing method of the electrical contact which supplies with electricity by contacting a to-be-contacted part. In this manufacturing method, a base forming step for forming a base including a conductive metal material, and alloy particles including an alloy having a noble metal and an oxide of a metal other than the noble metal are injected together with a gas to the base. And a contact layer forming step of forming a contact layer on the base.
本発明の一実施形態に係る電気接点及び電気接点の製造方法によれば、電気接点の耐久性を向上できる。 According to the electrical contact and the electrical contact manufacturing method according to the embodiment of the present invention, the durability of the electrical contact can be improved.
図1は、実施形態に係る電気接点を備えたリレー装置の構成を模式的に示す図である。 Drawing 1 is a figure showing typically composition of a relay device provided with an electric contact concerning an embodiment. 図2は、電気接点の概略構成を示す断面図である。FIG. 2 is a cross-sectional view showing a schematic configuration of the electrical contact. 図3は、電気接点を基部及び接点層の積層方向に切断して、その断面をSEMによって観察した結果を示す写真である。FIG. 3 is a photograph showing the result of observing the cross section of the electrical contact in the stacking direction of the base and contact layer and observing the cross section. 図4は、リードフレームの成形の様子を模式的に示す図である。FIG. 4 is a diagram schematically showing how the lead frame is molded. 図5は、リードフレームの突出部上にスプレー法によって接点層を形成する様子を模式的に示す図である。FIG. 5 is a diagram schematically showing a state in which a contact layer is formed on the protruding portion of the lead frame by a spray method. 図6は、その他の実施形態に係る電気接点の概略構成を示す図2相当図である。FIG. 6 is a view corresponding to FIG. 2 illustrating a schematic configuration of an electrical contact according to another embodiment. 図7は、リードフレームに基部を固定する様子を模式的に示す図である。FIG. 7 is a diagram schematically showing how the base is fixed to the lead frame. 図8は、リードフレームに固定された基部上にスプレー法によって接点層を形成する様子を模式的に示す図である。FIG. 8 is a diagram schematically showing a state in which a contact layer is formed on the base fixed to the lead frame by a spray method. 図9は、その他の実施形態に係る電気接点の概略構成を示す図2相当図である。FIG. 9 is a view corresponding to FIG. 2 showing a schematic configuration of an electrical contact according to another embodiment.
以下、図面を参照し、本発明の実施の形態を詳しく説明する。なお、図中の同一または相当部分については同一の符号を付してその説明は繰り返さない。また、各図中の構成部材の寸法は、実際の構成部材の寸法及び各構成部材の寸法比率等を忠実に表したものではない。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected about the same or an equivalent part in a figure, and the description is not repeated. Moreover, the dimension of the structural member in each figure does not faithfully represent the actual dimension of the structural member, the dimensional ratio of each structural member, or the like. *
なお、以下の説明において、“固定”、“接続”及び“取り付ける”等(以下、固定等)の表現は、部材同士が直接、固定等される場合だけでなく、他の部材を介して固定等される場合も含む。すなわち、以下の説明において、固定等の表現には、部材同士の直接的及び間接的な固定等の意味が含まれる。  In the following description, the expressions “fixed”, “connected”, “attached”, etc. (hereinafter referred to as “fixed”, etc.) are fixed not only when the members are directly fixed, but also through other members. It includes cases where That is, in the following description, expressions such as fixation include the meanings of direct and indirect fixation between members. *
(リレー装置) 図1は、本発明の実施形態に係る電気接点2を備えたリレー装置1(電磁リレー)を模式的に示す図である。なお、図1は、リレー装置1を側方から見た図である。リレー装置1は、所定の間隔をあけて対向して配置される一対の電気接点2,3を有する。リレー装置1は、一対の電気接点2,3の接触と離間とを切り替えることにより、電流の通電及び遮断を制御する。電気接点3が、電気接点2と接触する被接触部である。なお、リレー装置1は、所定の間隔をあけて対向して配置される電気接点を二対以上、有してもよい。  (Relay Device) FIG. 1 is a diagram schematically showing a relay device 1 (electromagnetic relay) including an electrical contact 2 according to an embodiment of the present invention. In addition, FIG. 1 is the figure which looked at the relay apparatus 1 from the side. The relay device 1 has a pair of electrical contacts 2 and 3 that are arranged to face each other with a predetermined interval. The relay device 1 controls energization and interruption of current by switching between contact and separation of the pair of electrical contacts 2 and 3. The electrical contact 3 is a contacted portion that contacts the electrical contact 2. Note that the relay device 1 may have two or more pairs of electrical contacts that are arranged to face each other at a predetermined interval. *
リレー装置1は、電気接点2,3がそれぞれ設けられた平板状の一対のリードフレーム4,5と、駆動機構6とを有する。  The relay device 1 has a pair of flat lead frames 4 and 5 provided with electrical contacts 2 and 3, respectively, and a drive mechanism 6. *
一対のリードフレーム4,5は、例えばCuまたはCu合金などの導電性の金属材料によって形成された平板状の部材である。一対のリードフレーム4,5の電気伝導度は、50%IACS以上が好ましい。  The pair of lead frames 4 and 5 are flat members formed of a conductive metal material such as Cu or Cu alloy. The electrical conductivity of the pair of lead frames 4 and 5 is preferably 50% IACS or more. *
一対のリードフレーム4,5は、所定の間隔をあけて対向して配置され、一端側が固定される。一対のリードフレーム4,5の他端側は自由端であり、該他端側に電気接点2,3が対向して配置される。電気接点2は、リードフレーム4に対して電気的に接続される。電気接点3は、リードフレーム5に対して電気的に接続される。  The pair of lead frames 4 and 5 are arranged to face each other with a predetermined interval, and one end side is fixed. The other end side of the pair of lead frames 4 and 5 is a free end, and the electrical contacts 2 and 3 are arranged opposite to the other end side. The electrical contact 2 is electrically connected to the lead frame 4. The electrical contact 3 is electrically connected to the lead frame 5. *
なお、特に図示しないが、例えば、リードフレーム4には、電源が電気的に接続され、リードフレーム5には、前記電源から供給される電力によって駆動する装置が電気的に接続される。  Although not particularly illustrated, for example, a power source is electrically connected to the lead frame 4, and a device driven by power supplied from the power source is electrically connected to the lead frame 5. *
駆動機構6は、筒状のコイル6a(図1では長手方向の断面で示す)と、コイル6aの内側に位置する鉄心6bと、接極子6cとを有する。接極子6cは、磁性材料によって形成された、側方から見てクランク状の部材である。接極子6cの一端側は、一対のリードフレーム4,5のうち、電気接点2が設けられた一方のリードフレーム4に接触する。接極子6cの他端側は、コイル6a及び鉄心6bの近傍に位置し、先端に向かうほどコイル6a及び鉄心6bから離間している。なお、詳しい説明は省略するが、接極子6cの屈曲部は、回転可能に支持される。図1に、接極子6cの回転中心をPで示す。  The drive mechanism 6 includes a cylindrical coil 6a (shown in a longitudinal section in FIG. 1), an iron core 6b positioned inside the coil 6a, and an armature 6c. The armature 6c is a crank-shaped member formed of a magnetic material when viewed from the side. One end side of the armature 6c is in contact with one lead frame 4 provided with the electrical contact 2 of the pair of lead frames 4 and 5. The other end side of the armature 6c is located in the vicinity of the coil 6a and the iron core 6b, and is separated from the coil 6a and the iron core 6b toward the tip. In addition, although detailed description is abbreviate | omitted, the bending part of the armature 6c is supported rotatably. In FIG. 1, the rotation center of the armature 6c is indicated by P. *
コイル6aには、図示しない電源から電流が供給される。コイル6aに対する電流の供給は、図示しない制御装置からリレー装置1に通電の指示があった場合に行われる。コイル6aに電流が供給された場合には、コイル6a及び鉄心6bに磁界が生じる。一方、前記制御装置からリレー装置1に遮断の指示があった場合には、コイル6aに対して電流は供給されない。  A current is supplied to the coil 6a from a power source (not shown). Supply of current to the coil 6a is performed when an instruction to energize the relay device 1 is received from a control device (not shown). When a current is supplied to the coil 6a, a magnetic field is generated in the coil 6a and the iron core 6b. On the other hand, when the control device instructs the relay device 1 to shut off, no current is supplied to the coil 6a. *
コイル6a及び鉄心6bに磁界が生じた場合、該磁界によって、接極子6cの他端側がコイル6a及び鉄心6bに対して近づく。すなわち、接極子6cは、回転中心Pを中心として、他端側がコイル6a及び鉄心6cに近づく方向に回転する(図1の矢印参照)。これにより、接極子6cの一端側がリードフレーム4をリードフレーム5側に押す。よって、リードフレーム4に設けられた電気接点2が、リードフレーム5に設けられた電気接点3に接触する。したがって、電気接点2,3を介して、一対のリードフレーム4,5に電流が流れる。すなわち、コイル6a及び鉄心6bに磁界が生じた場合には、リレー装置1は通電状態である。  When a magnetic field is generated in the coil 6a and the iron core 6b, the other end side of the armature 6c approaches the coil 6a and the iron core 6b by the magnetic field. That is, the armature 6c rotates around the rotation center P in a direction in which the other end approaches the coil 6a and the iron core 6c (see the arrow in FIG. 1). Thereby, the one end side of the armature 6c pushes the lead frame 4 to the lead frame 5 side. Therefore, the electrical contact 2 provided on the lead frame 4 comes into contact with the electrical contact 3 provided on the lead frame 5. Therefore, a current flows through the pair of lead frames 4 and 5 through the electrical contacts 2 and 3. That is, when a magnetic field is generated in the coil 6a and the iron core 6b, the relay device 1 is in an energized state. *
一方、コイル6a及び鉄心6bに磁界が生じていない場合、接極子6cの他端側はコイル6a及び鉄心6bに対して離間している。この場合、接極子6cがリードフレーム4をリードフレーム5側に押していないため、電気接点2,3は接触しない。したがって、一対のリードフレーム4,5には電流が流れない。すなわち、コイル6a及び鉄心6bに磁界が生じていない場合には、リレー装置1は遮断状態である。  On the other hand, when no magnetic field is generated in the coil 6a and the iron core 6b, the other end side of the armature 6c is separated from the coil 6a and the iron core 6b. In this case, since the armature 6c does not push the lead frame 4 toward the lead frame 5, the electrical contacts 2 and 3 do not contact each other. Therefore, no current flows through the pair of lead frames 4 and 5. That is, when no magnetic field is generated in the coil 6a and the iron core 6b, the relay device 1 is in a cut-off state. *
なお、特に図示しないが、リレー装置1は、コイル6a及び鉄心6bに磁界が生じていない場合にリードフレーム4をリードフレーム5から離間させる復帰ばね等を有してもよい。  Although not particularly illustrated, the relay device 1 may include a return spring that separates the lead frame 4 from the lead frame 5 when no magnetic field is generated in the coil 6a and the iron core 6b. *
(電気接点) 次に、電気接点2の構成について、図2を用いて詳細に説明する。  (Electric contact) Next, the structure of the electric contact 2 is demonstrated in detail using FIG. *
電気接点2は、リードフレーム4の他端側に位置する。電気接点2は、リードフレーム4の一部によって構成される基部11と、基部11上に形成された接点層12とを有する。  The electrical contact 2 is located on the other end side of the lead frame 4. The electrical contact 2 includes a base portion 11 constituted by a part of the lead frame 4 and a contact layer 12 formed on the base portion 11. *
基部11は、リードフレーム4の一部が厚み方向の一方側(接点層側)に有底円筒状に突出した突出部4aである。リードフレーム4は、基部11に対して、厚み方向の他方側に凹部4bを有する。詳しくは後述するように、基部11を構成する突出部4aは、リードフレーム4の一部を厚み方向の一方側に凹ませることにより形成される。すなわち、基部11は、リードフレーム4と単一の部材である。  The base 11 is a protruding portion 4a in which a part of the lead frame 4 protrudes in a bottomed cylindrical shape on one side in the thickness direction (contact layer side). The lead frame 4 has a recess 4 b on the other side in the thickness direction with respect to the base 11. As will be described in detail later, the protruding portion 4a constituting the base portion 11 is formed by denting a part of the lead frame 4 to one side in the thickness direction. That is, the base 11 is a single member with the lead frame 4. *
このように、リードフレーム4の一部を厚み方向の一方側に凹ませることによって得られる突出部4aを基部11とすることで、リードフレーム4に基部11を容易に形成することができる。しかも、基部を別部材によって構成する場合に比べて、部品点数が少なくなるため、製造コストを低減できる。  In this way, the base 11 can be easily formed on the lead frame 4 by using the protruding portion 4 a obtained by denting a part of the lead frame 4 in one side in the thickness direction as the base 11. In addition, since the number of parts is reduced as compared with the case where the base is configured by another member, the manufacturing cost can be reduced. *
接点層12は、電気接点2において、電気接点3と接触する接点部として機能する。接点層12は、例えば、Agなどの貴金属とSnなどの該貴金属以外の金属の酸化物(以下、金属酸化物)とを含む。接点層12は、例えば、厚みが0.01mmから2.0mmである。このように、接点層12がAgなどの貴金属と
金属酸化物とを含むことにより、他の導電材料を用いた場合に比べて、接点層12の電気抵抗を小さくできるとともに、接点層12の耐久性を向上できる。なお、接点層12の電気伝導度は、50%IACS以上が好ましい。 
The contact layer 12 functions as a contact portion that contacts the electrical contact 3 in the electrical contact 2. The contact layer 12 includes, for example, a noble metal such as Ag and an oxide of a metal other than the noble metal such as Sn (hereinafter, metal oxide). The contact layer 12 has a thickness of 0.01 mm to 2.0 mm, for example. As described above, when the contact layer 12 includes a noble metal such as Ag and a metal oxide, the electrical resistance of the contact layer 12 can be reduced and the durability of the contact layer 12 can be reduced as compared with the case where other conductive materials are used. Can be improved. The electrical conductivity of the contact layer 12 is preferably 50% IACS or more.
詳しくは後述するように、接点層12は、例えばスプレー法等によって、リードフレーム4の突出部4a(基部11)上にAg及び金属酸化物を含む微小な合金粒子Xを衝突させることにより形成される。合金粒子Xを基部11等に衝突させることにより、合金粒子Xは、図3に示すように、電気接点2を基部11及び接点層12の積層方向に切断した場合の断面で見て、前記積層方向よりも該積層方向に直交する方向に長い楕円状に変形する。そして、楕円状に変形した合金粒子Xは、基部11または他の合金粒子Xと拡散接合する。すなわち、接点層12は、貴金属(例えばAg)及び金属酸化物(例えばSnなどの金属の酸化物)の合金を含み、拡散接合された複数の扁平状の合金粒子Xによって構成される。なお、図3は、電気接点2を基部11及び接点層12の積層方向に切断して、その断面をSEMによって観察した結果を示す写真である。  As will be described in detail later, the contact layer 12 is formed by causing fine alloy particles X containing Ag and a metal oxide to collide with the protruding portion 4a (base portion 11) of the lead frame 4 by, for example, a spray method or the like. The By causing the alloy particles X to collide with the base 11 or the like, the alloy particles X can be obtained by seeing a cross section when the electrical contact 2 is cut in the stacking direction of the base 11 and the contact layer 12 as shown in FIG. It is deformed into an ellipse that is longer in the direction perpendicular to the stacking direction than in the direction. The alloy particles X deformed in an elliptical shape are diffusion bonded to the base 11 or other alloy particles X. That is, the contact layer 12 includes an alloy of a noble metal (for example, Ag) and a metal oxide (for example, an oxide of a metal such as Sn), and is configured by a plurality of flat alloy particles X that are diffusion-bonded. FIG. 3 is a photograph showing the result of observing a cross section of the electrical contact 2 in the stacking direction of the base 11 and the contact layer 12 and observing the cross section. *
上述のように得られた接点層12では、金属酸化物が分散している。接点層12内の金属酸化物の大きさ(直径)は、50~500nmを中心に分布する。これにより、接点層12において緻密な層構造が得られ、接点層12の全体で耐久性を向上できる。  In the contact layer 12 obtained as described above, the metal oxide is dispersed. The size (diameter) of the metal oxide in the contact layer 12 is distributed around 50 to 500 nm. Thereby, a dense layer structure is obtained in the contact layer 12, and the durability of the entire contact layer 12 can be improved. *
また、上述のようにリードフレーム4の突出部4a上に微小な合金粒子Xを衝突させることにより、電気接点2の基部11における接点層12側の面は、微小な合金粒子Xの一部が位置する凹凸を有する。  Further, by causing the minute alloy particles X to collide with the protrusion 4a of the lead frame 4 as described above, a part of the minute alloy particles X is formed on the surface of the base 11 of the electrical contact 2 on the contact layer 12 side. It has unevenness. *
上述の特許文献3に開示される方法のように、2種類の金属素線を突き合わせた状態で鍛造することによって電気接点を得る場合には、まず金属素線を製造する必要がある。しかしながら、上述のように、合金粒子Xを用いて接点層12を形成することにより、金属素線を製造する工程を省略することができ、電気接点2の生産性を向上できる。  In the case where an electrical contact is obtained by forging in a state where two kinds of metal strands are in contact with each other as in the method disclosed in Patent Document 3 described above, it is necessary to first manufacture the metal strands. However, as described above, by forming the contact layer 12 using the alloy particles X, the step of manufacturing the metal strand can be omitted, and the productivity of the electrical contact 2 can be improved. *
また、前記特許文献3に開示される方法では、用いる金属素線の最小のサイズが決まっている。そのため、電気接点を形成する際には、必要量以上の貴金属が用いられる。しかしながら、上述のように、スプレー法を用いて接点層12を形成することにより、接点層12を容易に且つ必要以上に厚くすることなく形成することができる。  Further, in the method disclosed in Patent Document 3, the minimum size of the metal strand to be used is determined. Therefore, when forming an electrical contact, a noble metal more than a required amount is used. However, as described above, by forming the contact layer 12 using the spray method, the contact layer 12 can be easily formed without making it thicker than necessary. *
しかも、上述のようにリードフレーム4の突出部4aである基部11上に接点層12を形成することにより、基部11の分だけ、接点層12を形成する必要がなくなる。  In addition, by forming the contact layer 12 on the base 11 that is the protruding portion 4a of the lead frame 4 as described above, it is not necessary to form the contact layer 12 by the amount of the base 11. *
したがって、接点層12を形成する際に用いる貴金属の量を減らすことができる。よって、電気接点2の製造コストを低減できる。  Therefore, the amount of noble metal used when forming the contact layer 12 can be reduced. Therefore, the manufacturing cost of the electrical contact 2 can be reduced. *
さらに、上述のように基部11上に合金粒子Xを衝突させることによって接点層12を形成することにより、金属酸化物の添加量の制限を受けることなく、合金粒子X内の金属酸化物の量を調整できる。これにより、接点層12の耐久性を向上できる。  Furthermore, by forming the contact layer 12 by colliding the alloy particles X on the base 11 as described above, the amount of metal oxide in the alloy particles X is not limited by the amount of metal oxide added. Can be adjusted. Thereby, durability of the contact layer 12 can be improved. *
そして、本実施形態では、Ag及び金属酸化物を含む合金粒子Xを用いて、スプレー法等によって、基部11上に接点層12が形成される。したがって、上述の実施形態4に開示される方法のように金属の混合粉末を用いた場合に比べて、金属酸化物のサイズを小さくすることができるとともに、金属酸化物を合金粒子X内で分散させることができる。これにより、混合粉末を用いた場合に比べて、より緻密な元素分布の組織を有する接点層12が得られる。したがって、接点層12の全体で耐久性を向上できるため、電気接点2の耐消耗性及び耐溶着性を向上できる。  And in this embodiment, the contact layer 12 is formed on the base 11 by the spray method etc. using the alloy particle X containing Ag and a metal oxide. Therefore, the size of the metal oxide can be reduced and the metal oxide can be dispersed in the alloy particles X as compared with the case where a mixed metal powder is used as in the method disclosed in the fourth embodiment. Can be made. Thereby, compared with the case where mixed powder is used, the contact layer 12 which has the structure | tissue of denser element distribution is obtained. Therefore, since the durability of the entire contact layer 12 can be improved, the wear resistance and welding resistance of the electrical contact 2 can be improved. *
なお、接点層12に含まれる貴金属は、Agに限らず、Au、Pt、Ir、Ru、Pd、Ni、Wであってもよい。また、接点層12は、貴金属に限らず、貴金属の元素を主成分とする合金を含んでいてもよい。  The noble metal contained in the contact layer 12 is not limited to Ag, but may be Au, Pt, Ir, Ru, Pd, Ni, or W. Further, the contact layer 12 is not limited to a noble metal, and may include an alloy containing a noble metal element as a main component. *
また、接点層12に含まれる金属酸化物は、Snの酸化物に限らず、Zn、Al、Cu、Mg、Ni、Sb、In、Cd、Ga、Se、Tl、Te、Pb、Bi、Poの酸化物であってもよい。  The metal oxide contained in the contact layer 12 is not limited to Sn oxide, but Zn, Al, Cu, Mg, Ni, Sb, In, Cd, Ga, Se, Tl, Te, Pb, Bi, Po The oxide of may be sufficient. *
電気接点3も、電気接点2と同様の構成を有してもよいし、異なる構成を有してもよい。ただし、電気接点3の接点部も、電気接点2と同様、貴金属を含む材料によって構成されることが好ましい。また、電気接点3の接点部も、耐久性の観点から、電気接点2の接点層12と同様の構成を有することが好ましい。  The electrical contact 3 may have the same configuration as the electrical contact 2 or may have a different configuration. However, the contact portion of the electrical contact 3 is also preferably made of a material containing a noble metal, like the electrical contact 2. Moreover, it is preferable that the contact part of the electrical contact 3 also has the same configuration as the contact layer 12 of the electrical contact 2 from the viewpoint of durability. *
(電気接点の製造方法) 次に、上述のような構成を有する電気接点2の製造方法について、図4及び図5を用いて説明する。  (Manufacturing method of an electrical contact) Next, the manufacturing method of the electrical contact 2 which has the above structures is demonstrated using FIG.4 and FIG.5. *
図4に示すように、例えばCuまたはCu合金を含む材料からなる金属板を、一対の金型41,42によって厚み方向に挟み込んでプレスすることにより、前記金属板に突出部4a及び凹部4bを形成する。具体的には、金型41は、前記金属板に凹部4bを形成するための金型凸部41aを有する。金型42は、前記金属板に突出部4aを形成するための金型凹部42aを有する。金型41,42によって、前記金属板を厚み方向に挟み込んでプレスすることにより、突出部4a及び凹部4bを有するリードフレーム4が形成される。  As shown in FIG. 4, for example, a metal plate made of a material containing Cu or a Cu alloy is sandwiched in a thickness direction by a pair of molds 41 and 42 and pressed, whereby the protrusion 4 a and the recess 4 b are formed on the metal plate. Form. Specifically, the mold 41 has a mold convex portion 41a for forming the concave portion 4b in the metal plate. The mold 42 has a mold recess 42a for forming the protrusion 4a on the metal plate. The metal plate 41 is sandwiched in the thickness direction by the molds 41 and 42 and pressed to form the lead frame 4 having the protrusions 4a and the recesses 4b. *
なお、金型41,42の金型凸部41a及び金型凹部42aは、それぞれ、平面視で円形状である。よって、リードフレーム4に形成される突出部4aは、有底円筒状である。  In addition, the mold convex part 41a and the mold concave part 42a of the molds 41 and 42 are each circular in a plan view. Therefore, the protrusion 4a formed on the lead frame 4 has a bottomed cylindrical shape. *
次に、図5に示すように、上述のように形成されたリードフレーム4の突出部4a上に、スプレー法を用いて接点層12を形成する。なお、図5は、層形成の様子を模式的に示した図であり、スプレー法に用いる層形成装置50とリードフレーム4との位置関係及び大小関係等は、実際とは異なる。  Next, as shown in FIG. 5, the contact layer 12 is formed on the protruding portion 4a of the lead frame 4 formed as described above by using a spray method. FIG. 5 is a diagram schematically showing the state of layer formation, and the positional relationship and size relationship between the layer forming apparatus 50 used in the spray method and the lead frame 4 are different from actual ones. *
層形成装置50は、微小な粒子を溶融温度以下の固相状態で基材に衝突させることによって該基材上に層を形成する、いわゆるコールドスプレー法によって、基部11上に接点層12を形成する。層形成装置50は、高圧ガスを用いて合金粒子Xを吐出するスプレーガン51を有する。スプレーガン51は、内部に、外部から合金粒子Xが供給される空間51aを有するとともに、空間51a内の合金粒子Xを吐出するためのノズル51bを有する。  The layer forming apparatus 50 forms a contact layer 12 on the base 11 by a so-called cold spray method in which fine particles collide against the substrate in a solid phase state below the melting temperature to form a layer on the substrate. To do. The layer forming apparatus 50 includes a spray gun 51 that discharges the alloy particles X using a high-pressure gas. The spray gun 51 has a space 51a in which alloy particles X are supplied from the outside, and a nozzle 51b for discharging the alloy particles X in the space 51a. *
スプレーガン51の空間51aには、外部から合金粒子Xが供給されるとともに、所定の圧力(例えば1MPaよりも高い圧力)及び所定の温度(合金粒子Xの溶融温度以下)の高圧ガスが供給される。これにより、スプレーガン51のノズル51bから、空間51a内の合金粒子Xが吐出される。  The alloy particles X are supplied from the outside to the space 51a of the spray gun 51, and a high-pressure gas having a predetermined pressure (for example, a pressure higher than 1 MPa) and a predetermined temperature (below the melting temperature of the alloy particles X) is supplied. The Thereby, the alloy particles X in the space 51a are discharged from the nozzle 51b of the spray gun 51. *
ノズル51bから吐出された合金粒子Xは、リードフレーム4の基部11に衝突する。これにより、基部11上に、合金粒子Xによって接点層12が形成される。合金粒子Xは、基部11の表面に対して衝突した際に、基部11に一部が食い込むことにより、基部11及び接点層12を積層方向に切断した場合の断面で見て、前記積層方向よりも該積層方向に直交する方向に長い扁平状に変形する。これにより、扁平状の合金粒子Xは、基部11に対して拡散接合される。一方、合金粒子Xは、他の合金粒子Xと衝突した際にも、前記断面において、前記直交方向に長い扁平状に変形する。これにより、粒子X同士が拡散接合される。図3に、基部11上に合金粒子Xを衝突させることにより、接点層12を形成した場合の電気接点の断面写真を示す。  The alloy particles X discharged from the nozzle 51 b collide with the base 11 of the lead frame 4. Thereby, the contact layer 12 is formed by the alloy particles X on the base 11. When the alloy particles X collide with the surface of the base 11, part of the alloy particles X bite into the base 11, and the base 11 and the contact layer 12 are cut in the stacking direction. Also, it is deformed into a long flat shape in a direction perpendicular to the stacking direction. Thereby, the flat alloy particles X are diffusion bonded to the base 11. On the other hand, even when the alloy particle X collides with another alloy particle X, the alloy particle X is deformed into a flat shape that is long in the orthogonal direction in the cross section. Thereby, the particles X are diffusion bonded. FIG. 3 shows a cross-sectional photograph of the electrical contact when the contact layer 12 is formed by colliding the alloy particles X on the base 11. *
合金粒子Xは、例えば、貴金属であるAgと、Snの酸化物とを有する合金を含む粒子である。合金粒子Xでは、粒子内にSnの酸化物が分散している。そのため、合金粒子Xを用いて接点層12を形成することにより、接点層12内でSnの酸化物をより分散させることができる。よって、Ag及び金属酸化物の混合粉末を用いて接点層を形成する場合に比べて、接点層12全体でより綿密な層構造が得られるため、高い耐久性を有する接点層12が得られる。  The alloy particle X is, for example, a particle containing an alloy having Ag which is a noble metal and an oxide of Sn. In the alloy particles X, Sn oxide is dispersed in the particles. Therefore, by forming the contact layer 12 using the alloy particles X, the Sn oxide can be further dispersed in the contact layer 12. Therefore, compared with the case where the contact layer is formed using the mixed powder of Ag and metal oxide, a finer layer structure can be obtained in the contact layer 12 as a whole, and thus the contact layer 12 having high durability can be obtained. *
なお、合金粒子Xは、粒径が1μmから100μmが好ましい。また、スプレーガン51の空間51a内に供給した合金粒子Xを、スプレーガン51のノズル51bから効率良く吐出させる観点から、合金粒子Xの粒径は10μm以上がより好ましい。なお、接点層12において綿密な層構造を得る観点から、粒径が10μm~20μmを中心に分布した合金粒子Xを、接点層12の形成に用いることがより好ましい。  The alloy particles X preferably have a particle size of 1 μm to 100 μm. From the viewpoint of efficiently discharging the alloy particles X supplied into the space 51a of the spray gun 51 from the nozzle 51b of the spray gun 51, the particle size of the alloy particles X is more preferably 10 μm or more. From the viewpoint of obtaining a fine layer structure in the contact layer 12, it is more preferable to use the alloy particles X having a particle size distributed around 10 μm to 20 μm in the formation of the contact layer 12. *
また、合金粒子Xに含まれる貴金属は、Agに限らず、Au、Pt、Ir、Ru、Pd、Ni、Wであってもよい。接点層12は、貴金属に限らず、貴金属の元素を主成分とする合金を含んでいてもよい。  Further, the noble metal contained in the alloy particle X is not limited to Ag, but may be Au, Pt, Ir, Ru, Pd, Ni, and W. The contact layer 12 is not limited to a noble metal, and may include an alloy containing a noble metal element as a main component. *
合金粒子Xに含まれる金属酸化物は、Snの酸化物に限らず、Zn、Al、Cu、Mg、Ni、Sb、In、Cd、Ga、Se、Tl、Te、Pb、Bi、Poの酸化物であってもよい。  The metal oxide contained in the alloy particle X is not limited to the oxide of Sn, but oxidation of Zn, Al, Cu, Mg, Ni, Sb, In, Cd, Ga, Se, Tl, Te, Pb, Bi, and Po. It may be a thing. *
高圧ガスは、合金粒子Xの酸化及び変質を防止可能なガスが好ましい。また、高圧ガスは、ガス中での音速が速いガスが好ましい。このようなガスとして、例えば、H、He、N、O及びそれらを主成分とするガスが挙げられる。  The high-pressure gas is preferably a gas that can prevent oxidation and alteration of the alloy particles X. The high-pressure gas is preferably a gas having a high sound speed in the gas. Examples of such a gas include H 2 , He, N 2 , O 2, and a gas containing them as a main component.
ここで、基部11を形成する工程が、基部形成工程に対応する。基部11上に接点層12を形成する工程が、接点層形成工程に対応する。  Here, the step of forming the base portion 11 corresponds to the base portion forming step. The step of forming the contact layer 12 on the base 11 corresponds to the contact layer forming step. *
以上により、図2に示すように、リードフレーム4の基部11上に、接点層12が形成される。接点層12の厚みは、例えば、0.01mmから2.0mmである。  Thus, the contact layer 12 is formed on the base 11 of the lead frame 4 as shown in FIG. The contact layer 12 has a thickness of 0.01 mm to 2.0 mm, for example. *
上述のように、合金粒子Xを用いてスプレー法によって接点層12を形成した場合、接点層12内の金属酸化物の大きさ(直径)は、例えば50~500nmを中心に分布する。すなわち、接点層12内に金属酸化物を分散させることができる。よって、接点層12の全体で綿密な層構造が得られるため、接点層12の耐久性を向上できる。  As described above, when the contact layer 12 is formed by spraying using the alloy particles X, the size (diameter) of the metal oxide in the contact layer 12 is distributed around 50 to 500 nm, for example. That is, the metal oxide can be dispersed in the contact layer 12. Therefore, since a detailed layer structure is obtained in the entire contact layer 12, the durability of the contact layer 12 can be improved. *
しかも、Ag及び金属酸化物の混合粉末において、上述のような微小な金属酸化物を得ようとすると、粉末の加工コストが高くなる。よって、本実施形態のように、Ag及び金属酸化物の合金粒子Xを用いて接点層12を形成することにより、上述の混合粉末を用いる場合に比べて、製造コストを低減できる。  In addition, in the mixed powder of Ag and the metal oxide, if an attempt is made to obtain a fine metal oxide as described above, the processing cost of the powder increases. Therefore, as in the present embodiment, by forming the contact layer 12 using the alloy particles X of Ag and metal oxide, the manufacturing cost can be reduced as compared with the case where the above mixed powder is used. *
(その他の実施形態) 以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。  Other Embodiments Although the embodiments of the present invention have been described above, the above-described embodiments are merely examples for carrying out the present invention. Therefore, the present invention is not limited to the above-described embodiment, and the above-described embodiment can be appropriately modified and implemented without departing from the spirit of the invention. *
前記実施形態では、接点層12は、コールドスプレー法によって形成される。しかしながら、接点層12を形成可能な方法であれば、コールドスプレー法以外の方法によって形成してもよい。他の形成方法としては、例えば、プラズマを利用したプラズマ溶射、フレーム溶射などの溶射を用いた方法、蒸着などの方法がある。また、種々の形成方法を組み合わせて接点層を形成してもよい。  In the embodiment, the contact layer 12 is formed by a cold spray method. However, as long as the contact layer 12 can be formed, the contact layer 12 may be formed by a method other than the cold spray method. Examples of other forming methods include plasma spraying using plasma, methods using flame spraying such as flame spraying, and methods such as vapor deposition. Further, the contact layer may be formed by combining various forming methods. *
なお、接点層の形成にコールドスプレー法を用いることにより、合金粒子X内のAg等の成分元素が酸化及び変質することを回避できる。  In addition, by using a cold spray method for formation of a contact layer, it can avoid that component elements, such as Ag in the alloy particle X, are oxidized and denatured. *
一方、接点層の形成にプラズマ溶射またはフレーム溶射などの溶射を用いることにより、接点層を形成する際に合金粒子Xの一部が液相になる。これにより、合金粒子Xが基部及び他の合金粒子Xに対して付着しやすくなるため、電気接点を容易に形成できる。  On the other hand, by using thermal spraying such as plasma spraying or flame spraying for forming the contact layer, a part of the alloy particles X becomes a liquid phase when the contact layer is formed. Thereby, since the alloy particle X becomes easy to adhere with respect to a base and the other alloy particle X, an electrical contact can be formed easily. *
前記実施形態において、基部11上に接点層12を形成した後、接点層12を、成形型によって仕上げ成形してもよい。これにより、接点層12の厚みを均一にできるとともに、接点層12の表面形状をコントロールすることができる。また、接点層12内の空孔をつぶすことができ、層の密度を向上できる。  In the said embodiment, after forming the contact layer 12 on the base 11, you may finish-mold the contact layer 12 with a shaping | molding die. Thereby, the thickness of the contact layer 12 can be made uniform, and the surface shape of the contact layer 12 can be controlled. Moreover, the void | hole in the contact layer 12 can be crushed and the density of a layer can be improved. *
前記実施形態1の基部11は有底円筒状である。しかしながら、基部の形状は、基部上に接点層を形成可能な形状であれば、多面体形状など、どのような形状であってもよい。  The base 11 of the first embodiment has a bottomed cylindrical shape. However, the shape of the base may be any shape such as a polyhedral shape as long as the contact layer can be formed on the base. *
前記実施形態では、リー
ドフレーム4の一部によって基部11が構成される。しかしながら、電気接点の基部がリードフレームとは別の部材であってもよい。図6に、電気接点102の基部111がリードフレーム104とは別の部材である一例を示す。 
In the embodiment, the base 11 is constituted by a part of the lead frame 4. However, the base of the electrical contact may be a member different from the lead frame. FIG. 6 shows an example in which the base 111 of the electrical contact 102 is a member different from the lead frame 104.
図6に示すように、平板状のリードフレーム104は、自由端である他端側に、貫通穴104aを有する。なお、リードフレーム104は、実施形態1のリードフレーム4と同様、CuまたはCu合金を含む導電性の金属材料によって形成される。  As shown in FIG. 6, the flat lead frame 104 has a through hole 104a on the other end side which is a free end. Note that the lead frame 104 is formed of a conductive metal material containing Cu or a Cu alloy, like the lead frame 4 of the first embodiment. *
電気接点102は、リードフレーム104とは別部材の基部111と、接点層112とを有する。  The electrical contact 102 includes a base 111 that is a separate member from the lead frame 104 and a contact layer 112. *
基部111は、リードフレーム104と同様、CuまたはCu合金を含む導電性の金属材料によって形成される。基部111は、軸部121と、軸部121の一端側に位置する鍔部122とを有する。  The base 111 is formed of a conductive metal material containing Cu or a Cu alloy, like the lead frame 104. The base 111 includes a shaft 121 and a flange 122 located on one end side of the shaft 121. *
軸部121は、リードフレーム104の貫通穴104a内に配置可能である。すなわち、リードフレーム104は、軸部121を収容可能な貫通穴104aを有する。軸部121は、リードフレーム104の貫通穴104a内に配置された状態で、他端側が潰される。よって、基部111は、リードフレーム104の貫通穴104a内に軸部121が配置された状態で、リードフレーム104における貫通穴104aに面する周縁部に固定される。これにより、基部111を、リードフレーム104とは別に形成して、リードフレーム104に取り付けることができる。  The shaft portion 121 can be disposed in the through hole 104 a of the lead frame 104. That is, the lead frame 104 has a through hole 104 a that can accommodate the shaft portion 121. The shaft 121 is crushed on the other end side in a state of being disposed in the through hole 104 a of the lead frame 104. Therefore, the base 111 is fixed to the peripheral edge of the lead frame 104 facing the through hole 104 a in a state where the shaft 121 is disposed in the through hole 104 a of the lead frame 104. Thereby, the base 111 can be formed separately from the lead frame 104 and attached to the lead frame 104. *
基部111の鍔部122の表面上には、接点層112が位置する。なお、接点層112は、実施形態1の接点層と同様、例えばAgなどの貴金属及び金属酸化物の合金を含む合金粒子によって構成される。  The contact layer 112 is located on the surface of the flange portion 122 of the base portion 111. In addition, the contact layer 112 is comprised by the alloy particle containing the alloy of noble metals, such as Ag, and a metal oxide like the contact layer of Embodiment 1, for example. *
次に、上述の構成を有する電気接点102の製造方法について、図7及び図8を用いて説明する。  Next, a method for manufacturing the electrical contact 102 having the above-described configuration will be described with reference to FIGS. *
まず、貫通穴104aを有するリードフレーム104を形成するとともに、軸部121及び鍔部122を有する基部111を形成する。リードフレーム104及び基部111は、いずれも、CuまたはCu合金を含む導電性の金属材料によって形成される。  First, the lead frame 104 having the through hole 104a is formed, and the base 111 having the shaft portion 121 and the flange portion 122 is formed. Both the lead frame 104 and the base 111 are made of a conductive metal material containing Cu or a Cu alloy. *
図7に示すように、リードフレーム104の貫通穴104a内に基部111の軸部121を配置した状態で、一対の金型141,142に対して、リードフレーム104及び基部111をセットする。  As shown in FIG. 7, the lead frame 104 and the base 111 are set to the pair of molds 141 and 142 in a state where the shaft 121 of the base 111 is disposed in the through hole 104 a of the lead frame 104. *
金型141は、ピン141aと、ガイド穴141bとを有する。ピン141aは、金型141のガイド穴141b内を移動する。金型141のガイド穴141b内には、基部111の軸部121の他端側が配置される。  The mold 141 has a pin 141a and a guide hole 141b. The pin 141a moves in the guide hole 141b of the mold 141. In the guide hole 141 b of the mold 141, the other end side of the shaft portion 121 of the base portion 111 is disposed. *
金型142は、金型凹部142aを有する。金型凹部142a内には、基部111の鍔部122が配置される。これにより、金型142によって、基部111の鍔部122を保持できる。  The mold 142 has a mold recess 142a. The flange 122 of the base 111 is disposed in the mold recess 142a. Accordingly, the flange 122 of the base 111 can be held by the mold 142. *
なお、リードフレーム104は、一対の金型141,142の間に挟まれた状態で保持される。  The lead frame 104 is held while being sandwiched between the pair of molds 141 and 142. *
上述のように、リードフレーム104及び基部111に対して一対の金型141,142を配置した状態で、金型141のガイド穴141b内でピン141aを移動させることにより、基部111の軸部121の他端側を押しつぶす。これにより、基部111は、軸部121の一部がリードフレーム104の貫通穴104a内に配置された状態で、リードフレーム104において貫通穴104aに面する周縁部に固定される。よって、基部111の軸部121を、リードフレーム104に対して固定できる。  As described above, the shaft 141 of the base 111 is moved by moving the pin 141a within the guide hole 141b of the mold 141 in a state where the pair of molds 141 and 142 is disposed with respect to the lead frame 104 and the base 111. Crush the other end of the. Thereby, the base 111 is fixed to the peripheral portion of the lead frame 104 facing the through hole 104a in a state where a part of the shaft 121 is disposed in the through hole 104a of the lead frame 104. Therefore, the shaft 121 of the base 111 can be fixed to the lead frame 104. *
その後、図8に示すように、前記実施形態と同様の構成を有する層形成装置50によって、基部111の鍔部122上に接点層112を形成する。なお、層形成装置50による接点層112の形成方法は、実施形態1の場合と同様なので、詳しい説明を省略する。  Thereafter, as shown in FIG. 8, the contact layer 112 is formed on the flange portion 122 of the base 111 by the layer forming apparatus 50 having the same configuration as that of the above embodiment. Note that the method for forming the contact layer 112 by the layer forming apparatus 50 is the same as that in the first embodiment, and a detailed description thereof will be omitted. *
ここで、基部111をリードフレーム104に対して固定する工程が基部形成工程に対応する。基部111上に接点層112を形成する工程が接点層形成工程に対応する。  Here, the process of fixing the base 111 to the lead frame 104 corresponds to the base forming process. The step of forming the contact layer 112 on the base 111 corresponds to the contact layer forming step. *
以上により、基部111をリードフレーム104とは別に形成できる。これにより、基部111をリードフレーム104とは異なる金属材料によって形成したり、基部111を自由な形状によって形成したりすることができる。したがって、基部111の設計自由度を向上できる。  As described above, the base 111 can be formed separately from the lead frame 104. Thereby, the base 111 can be formed of a metal material different from that of the lead frame 104, or the base 111 can be formed in a free shape. Therefore, the design freedom of the base 111 can be improved. *
前記実施形態では、基部11上に接点層12が形成される。しかしながら、基部11上に酸化防止層を形成し、該酸化防止層上に接点層12を形成してもよい。すなわち、接点層形成工程の前に、酸化防止層形成工程によって、基材11の表面上に酸防止層を形成してもよい。図9に、基部11上に酸化防止層13が形成され、酸化防止層13上に接点層12が形成された電気接点202の概略構成を示す。酸化防止層13は、例えばAgなどの貴金属を含む。酸化防止層13の形成方法は、スプレー法、めっきなど、形成可能な方法であればどのような形成方法であってもよい。  In the embodiment, the contact layer 12 is formed on the base 11. However, an antioxidant layer may be formed on the base 11 and the contact layer 12 may be formed on the antioxidant layer. That is, before the contact layer forming step, the acid preventing layer may be formed on the surface of the substrate 11 by the antioxidant layer forming step. FIG. 9 shows a schematic configuration of the electrical contact 202 in which the antioxidant layer 13 is formed on the base 11 and the contact layer 12 is formed on the antioxidant layer 13. The antioxidant layer 13 includes a noble metal such as Ag. The formation method of the antioxidant layer 13 may be any formation method as long as it can be formed, such as spraying or plating. *
上述のように基部11上に酸化防止層13を形成することにより、接点層12が形成される際などに基部11が酸化することを防止できる。よって、電気接点202の内部で電気抵抗が増大することを抑制できる。 By forming the antioxidant layer 13 on the base 11 as described above, it is possible to prevent the base 11 from being oxidized when the contact layer 12 is formed. Therefore, it is possible to suppress an increase in electrical resistance inside the electrical contact 202.
本発明は、基部上に複数の粒子によって形成された接点層を有する電気接点に利用可能である。 The present invention is applicable to an electrical contact having a contact layer formed by a plurality of particles on a base.
1 リレー装置(電磁リレー)2、102、202 電気接点3 電気接点(被接触部)11、111 基部12、112 接点層13 酸化防止層50 成膜装置51 スプレーガンX 合金粒子 1 Relay device (electromagnetic relay) 2, 102, 202 Electrical contact 3 Electrical contact (contacted portion) 11, 111 Base portion 12, 112 Contact layer 13 Antioxidation layer 50 Film forming device 51 Spray gun X alloy particles

Claims (10)

  1. 被接触部と接触することにより通電する電気接点であって、 導電性の金属材料を含む基部と、 前記基部上に位置し、前記被接触部との間で通電する接点層と、を備え、 前記接点層は、貴金属と該貴金属以外の金属の酸化物とを有する合金を含み、拡散接合された複数の扁平状の合金粒子によって構成される、電気接点。 An electrical contact that is energized by contact with the contacted part, comprising: a base including a conductive metal material; and a contact layer that is located on the base and that is energized between the contacted part, The contact layer includes an alloy having a noble metal and an oxide of a metal other than the noble metal, and is configured by a plurality of diffusion-bonded flat alloy particles.
  2. 請求項1に記載の電気接点において、 前記基部における前記接点層側の面は、前記複数の扁平状の合金粒子の一部が位置する凹凸を有する、電気接点。 2. The electrical contact according to claim 1, wherein a surface of the base on the contact layer side has unevenness where a part of the plurality of flat alloy particles is located.
  3. 請求項1または2に記載の電気接点において、 前記基部上に位置する酸化防止層をさらに備え、 前記接点層は、前記酸化防止層上に位置する、電気接点。 The electrical contact according to claim 1, further comprising an antioxidant layer located on the base, wherein the contact layer is located on the antioxidant layer.
  4. 請求項1から3のいずれか一つに記載の電気接点を備えた電磁リレー。 The electromagnetic relay provided with the electrical contact as described in any one of Claim 1 to 3.
  5. 被接触部と接触することにより通電する電気接点の製造方法であって、 導電性の金属材料を含む基部を形成する基部形成工程と、 前記基部に対し、貴金属と該貴金属以外の金属の酸化物とを有する合金を含む合金粒子を、気体とともに噴射することにより、前記基部上に接点層を形成する接点層形成工程と、を有する、電気接点の製造方法。 A method for manufacturing an electrical contact that is energized by contact with a contacted part, comprising: a base forming step for forming a base including a conductive metal material; and a noble metal and an oxide of a metal other than the noble metal with respect to the base And a contact layer forming step of forming a contact layer on the base by injecting alloy particles containing an alloy having a gas together with a gas.
  6. 請求項5に記載の電気接点の製造方法において、 前記接点層形成工程では、前記合金粒子を用いた溶射によって、前記基材上に接点層を形成する、電気接点の製造方法。 6. The method of manufacturing an electrical contact according to claim 5, wherein, in the contact layer forming step, a contact layer is formed on the substrate by thermal spraying using the alloy particles.
  7. 請求項5または6に記載の電気接点の製造方法において、 前記接点層形成工程の前に、前記基材の表面上に酸化防止層を形成する酸化防止層形成工程をさらに有する、電気接点の製造方法。 The method of manufacturing an electrical contact according to claim 5 or 6, further comprising an antioxidant layer forming step of forming an antioxidant layer on the surface of the base material before the contact layer forming step. Method.
  8. 請求項7に記載の電気接点の製造方法において、 前記酸化防止層は、前記貴金属によって構成されている、電気接点の製造方法。 The method for manufacturing an electrical contact according to claim 7, wherein the antioxidant layer is composed of the noble metal.
  9. 請求項5から8のいずれか一つに記載の電気接点の製造方法において、 前記気体は、不活性ガスである、電気接点の製造方法。 The method for manufacturing an electrical contact according to any one of claims 5 to 8, wherein the gas is an inert gas.
  10. 請求項5から9のいずれか一つに記載の電気接点の製造方法において、 前記合金粒子の粒径が、1μmから100μmである、電気接点の製造方法。 10. The method of manufacturing an electrical contact according to claim 5, wherein the alloy particles have a particle size of 1 μm to 100 μm.
PCT/JP2018/008146 2017-03-27 2018-03-02 Electrical contact, electromagnetic relay provided with same, and method for manufacturing electrical contact WO2018180217A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017061824 2017-03-27
JP2017-061824 2017-03-27

Publications (1)

Publication Number Publication Date
WO2018180217A1 true WO2018180217A1 (en) 2018-10-04

Family

ID=63675547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008146 WO2018180217A1 (en) 2017-03-27 2018-03-02 Electrical contact, electromagnetic relay provided with same, and method for manufacturing electrical contact

Country Status (1)

Country Link
WO (1) WO2018180217A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0316725A (en) * 1989-06-15 1991-01-24 Tanaka Kikinzoku Kogyo Kk flat spring material
JP2005276647A (en) * 2004-03-25 2005-10-06 Matsushita Electric Works Ltd High frequency switch
JP2013514614A (en) * 2009-12-18 2013-04-25 メタロー テクノロジーズ インターナショナル エスエー Electrical contact pad and method of manufacturing electrical contact
JP2017036464A (en) * 2015-08-06 2017-02-16 日本発條株式会社 Conductive member, conductive member for gas insulated switchgear, and manufacturing method of conductive member for gas insulated switchgear

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0316725A (en) * 1989-06-15 1991-01-24 Tanaka Kikinzoku Kogyo Kk flat spring material
JP2005276647A (en) * 2004-03-25 2005-10-06 Matsushita Electric Works Ltd High frequency switch
JP2013514614A (en) * 2009-12-18 2013-04-25 メタロー テクノロジーズ インターナショナル エスエー Electrical contact pad and method of manufacturing electrical contact
JP2017036464A (en) * 2015-08-06 2017-02-16 日本発條株式会社 Conductive member, conductive member for gas insulated switchgear, and manufacturing method of conductive member for gas insulated switchgear

Similar Documents

Publication Publication Date Title
US9293286B2 (en) Electromagnetic relay
US8207803B2 (en) Electromagnetic relay
JP5284830B2 (en) Electromagnetic relay
CN102668006B (en) For electric contact and the manufacture method thereof of relay
US9859078B2 (en) Electromagnetic relay
JP4577290B2 (en) Electromagnetic relay
WO2020170900A1 (en) Relay
WO2018180287A1 (en) Electrical contact, electromagnetic relay provided with same, and method for manufacturing electrical contact
WO2018180217A1 (en) Electrical contact, electromagnetic relay provided with same, and method for manufacturing electrical contact
CN117790205A (en) Switching device
WO2018180216A1 (en) Electrical contact, electromagnetic relay having same, and method for manufacturing electrical contact
US20190280402A1 (en) Tape-shaped contact member and method for manufacturing same
US10381174B2 (en) Contact member, sliding contact, electrical device and method for producing contact member having electrical contact surface layer comprising coated particles
US6798323B2 (en) Welded AC electromagnet lamination assembly incorporating shading coil
US10790106B2 (en) Relay device
US20230343535A1 (en) High-durability electrical contact structure
CN110520957A (en) Contact making device and electromagnetic relay
US11062868B2 (en) Electromagnetic relay
JP7434769B2 (en) electromagnetic relay
CN107026053A (en) Electromagnetic relay
JP2005120427A (en) Material for electric contact, and electric contact
US20030057073A1 (en) System and method for electrical contacts and connections in switches and relays
WO2019093402A1 (en) Solenoid device
JP7135876B2 (en) relay
JP2021082575A (en) Switching device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18774422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP