WO2018171496A1 - 汽车摄像测量组件与汽车三维四轮定位方法及系统 - Google Patents
汽车摄像测量组件与汽车三维四轮定位方法及系统 Download PDFInfo
- Publication number
- WO2018171496A1 WO2018171496A1 PCT/CN2018/079100 CN2018079100W WO2018171496A1 WO 2018171496 A1 WO2018171496 A1 WO 2018171496A1 CN 2018079100 W CN2018079100 W CN 2018079100W WO 2018171496 A1 WO2018171496 A1 WO 2018171496A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wheel
- plane
- camera
- automobile
- angle
- Prior art date
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 99
- 238000000034 method Methods 0.000 title claims abstract description 41
- 239000000284 extract Substances 0.000 claims abstract description 11
- 239000013598 vector Substances 0.000 claims description 57
- 238000003384 imaging method Methods 0.000 claims description 6
- SAZUGELZHZOXHB-UHFFFAOYSA-N acecarbromal Chemical compound CCC(Br)(CC)C(=O)NC(=O)NC(C)=O SAZUGELZHZOXHB-UHFFFAOYSA-N 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract description 12
- 230000008569 process Effects 0.000 abstract description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000009434 installation Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/26—Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
- G01B11/275—Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing wheel alignment
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B2210/00—Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
- G01B2210/10—Wheel alignment
- G01B2210/14—One or more cameras or other optical devices capable of acquiring a two-dimensional image
- G01B2210/143—One or more cameras on each side of a vehicle in the main embodiment
Definitions
- the invention relates to the technical field of automobile detection, in particular to a vehicle imaging measuring component and a three-dimensional four-wheel positioning method and system for an automobile.
- the four-wheel alignment parameters mainly include: toe angle Toe (the angle between the wheel centerline and the vehicle's geometric centerline), the camber angle (the angle between the wheel's plane of rotation and the vehicle's longitudinal vertical plane), and the kingpin's camber angle SAI (steering the knot pin axis in the transverse plane of the car) The angle with the lead axis) and the caster caster Caster (the angle between the axis of the kingpin and the vertical line in the vertical plane of the vehicle).
- the detection of the four wheel alignment parameters is generally performed by installing a clamp on the wheel hub of the automobile, installing a calibration plate on the fixture, then lifting the car to a certain height with a lift, rotating the steering wheel, and testing the calibration plate through the camera.
- the angle of the angle can be used to measure the positioning parameters. Since the accuracy of the position of the measuring head in the wheel is guaranteed by the clamp, if the positioning of the measuring head is not accurate, the measured value of the four-wheel positioning parameter is not accurate, so the accuracy of the fixture installation will be directly Affect the results of the measurement.
- the fixture structure design requirements can be applied to rims of different materials and different specifications. It is necessary to be stuck without deformation, and to ensure the coaxiality between the measuring head and the wheel. It is also necessary to compensate for the rim loss and the car needs to be lifted. Therefore, there are technical problems that the detection operation is very complicated, the requirement is high, the rapid measurement cannot be realized, and it is difficult to be promoted on the automobile assembly line.
- the main object of the present invention is to provide an automobile camera measurement component and a three-dimensional four-wheel alignment method and system for an automobile, which aim to solve the problem that the detection operation process is complicated and the accuracy is easy when the four-wheel positioning parameter detection is performed on the vehicle in the prior art. Impact, unable to achieve rapid measurement, so that it is difficult to get the technical problems of promotion on the automobile assembly line.
- the present invention provides an automotive camera measurement assembly including front and rear wheel measuring devices and control devices communicatively coupled to each other, the front and rear wheel measuring devices including at least four camera devices,
- the camera device is divided into a corresponding region of the first lateral facing wheel and the second lateral facing wheel of the automobile in the preset measuring area;
- the camera device corresponding to the first lateral facing wheel includes a first camera for detecting the stereoscopic mark, and detecting the first a second camera and a first type of line laser facing the wheel;
- the camera device corresponding to the second lateral pair of wheels includes a stereoscopic mark, and third and second line lasers for detecting the second laterally opposite wheel.
- the car camera measurement assembly further includes a slide rail, and the camera device corresponding to the second laterally facing wheel is disposed on the slide rail to reciprocate along the slide rail.
- the invention also provides a three-dimensional four-wheel positioning method for an automobile, wherein the automobile camera measurement assembly comprises front and rear wheel measuring devices communicably connected to each other, the front and rear wheel measuring devices comprising at least four camera devices, and the camera corresponding to the first lateral facing wheel
- the sub-device includes a first camera for detecting a stereoscopic mark, and a second camera and a first type of line laser for detecting the first laterally opposite wheel; the camera device corresponding to the second laterally facing wheel includes a stereoscopic mark, and for detecting The third camera and the second line laser of the second lateral facing wheel, the first camera is used as the first type camera, and the second camera and the third camera are used as the second type camera.
- the three-dimensional four-wheel positioning method of the automobile includes:
- the first type of camera is selected to capture and extract the position information of the stereoscopic mark to obtain the wheelbase of the wheel and obtain the position information of each camera and the corresponding line laser based on the wheelbase of the wheel;
- the location information to establish the measurement plane steps includes:
- the laser lines are acquired.
- a measurement plane is established based on the position information of the intersection of each laser line and the wheel hub.
- the step of acquiring coordinate information of the vehicle wheel plane and the wheel plane rotation kingpin based on the measurement plane includes:
- the corresponding line laser is projected onto the wheel tire surface and the second type camera and the laser line sent by the corresponding line laser have a preset calibration relationship, and the intersection of each laser line and the wheel tire surface is obtained. location information;
- the four wheel alignment parameters include a caster caster angle, a kingpin camber angle, a wheel camber angle, and a front wheel toe angle.
- the wheel plane rotation is obtained based on coordinate information of different wheel planes of the vehicle.
- the coordinate information of the main pin to obtain the value of the four-wheel positioning parameter includes:
- the rotating wheel plane is obtained corresponding to the rotating plane normal vector, and the rotated wheel plane provides at least two independent rotating plane normal vectors;
- the coordinate information of the wheel plane rotation kingpin is obtained based on the initial plane normal vector and each rotation plane normal vector, and the kingpin caster angle, the kingpin camber angle, the wheel camber angle and the front wheel toe angle are obtained according to the coordinate information of the rotating kingpin. .
- the step of obtaining the four-wheel positioning parameter based on the coordinate information of the different wheel planes and the wheel plane rotating kingpin of the vehicle includes:
- the corresponding structure of the automobile is adjusted based on the value of the four-wheel positioning parameter acquired by the measurement plane.
- the present invention further provides an automobile three-dimensional four-wheel positioning system, wherein the automobile camera measurement assembly includes front and rear wheel measuring devices communicably connected to each other, the front and rear wheel measuring devices including at least four camera devices, and a camera device corresponding to a lateral pair of wheels includes a first camera for detecting a stereoscopic mark, and a second camera and a first type of line laser for detecting the first laterally facing wheel; and the camera device corresponding to the second laterally facing wheel includes a stereoscopic mark, and a third camera and a second line laser for detecting the second laterally opposite wheel, the first camera being the first type of camera, and the second camera and the third camera being the second type of camera,
- the three-dimensional four-wheel alignment system of the automobile includes:
- a detecting module configured to: when the measurement instruction is detected, select a first type of camera to capture and extract position information of the stereoscopic mark to obtain a wheelbase of the wheel and obtain position information of each camera and the corresponding line laser based on the wheelbase;
- a first acquiring module configured to acquire position information of a laser line projected by the second type camera corresponding to the line laser to the wheel according to position information of each camera and the corresponding line laser to establish a measurement plane;
- a second acquiring module configured to acquire coordinate information of a vehicle wheel plane based on the measurement plane, and obtain coordinate information of a wheel plane rotation kingpin based on coordinate information of different wheel planes of the vehicle when the vehicle steering wheel rotates the corresponding angle to obtain four wheels The value of the positioning parameter.
- the first obtaining module includes:
- a first acquiring unit configured to preset a position between the position information of the laser line projected to the wheel hub by the corresponding line laser collected by the second type camera and the laser line sent by the second type camera and the corresponding line laser Relationship, obtaining position information of intersections of each laser line and the wheel hub;
- a establishing unit configured to establish a measurement plane based on the position information of the intersection of each laser line and the wheel hub.
- the second obtaining module includes:
- a second acquiring unit configured to preset a calibration relationship between a laser generated by a corresponding line laser collected by the second type camera and a laser line sent by the second type camera and the corresponding line laser, to obtain each laser Position information of the intersection of the line and the wheel tire surface;
- a third acquiring unit configured to acquire, according to the measurement plane, the tangent plane information of the corresponding plane of each laser line, and use the tangent plane as a wheel plane.
- the four-wheel positioning parameter includes a kingpin back-tilt angle, a kingpin camber angle, a wheel camber angle, and a front wheel toe angle.
- the second acquisition module further includes:
- a fourth acquiring unit configured to obtain an initial plane normal vector of the automobile according to an initial wheel plane equation in an initial state of the automobile
- a fifth obtaining unit configured to obtain a rotating plane normal vector corresponding to the rotating wheel plane when the steering wheel of the automobile rotates the corresponding angle, and provide a rotating plane normal vector of at least two independent directions after the rotating wheel plane;
- the obtaining unit is configured to obtain coordinate information of the wheel plane rotation kingpin based on the initial plane normal vector and each rotation plane normal vector, and obtain the kingpin back rake angle, the kingpin camber angle, and the wheel camber angle according to the coordinate information of the rotating kingpin And the front wheel toe angle.
- the three-dimensional four-wheel alignment system of the automobile further comprises:
- an adjustment module configured to adjust a corresponding structure of the automobile based on a value of the four-wheel positioning parameter acquired by the measurement plane.
- the invention selects the first type of camera to capture and extract the position information of the stereoscopic mark when the measurement instruction is detected, to obtain the wheelbase of the wheel and obtain the position information of each camera and the corresponding line laser based on the wheelbase of the wheel; according to each camera, corresponding Position information of the line laser, acquiring position information of the laser line projected by the second type camera corresponding to the line laser to the wheel to establish a measurement plane; acquiring coordinate information of the vehicle wheel plane based on the measurement plane, when the steering wheel of the automobile rotates the corresponding angle, based on The coordinate information of different wheel planes of the vehicle acquires the coordinate information of the wheel plane rotating kingpin to obtain the value of the four wheel positioning parameters.
- the computer measurement software directly controls the rotation direction of the steering wheel of the automobile and obtains the four-wheel positioning parameters of the automobile through the corresponding automobile camera measurement component, and the operation is simple and convenient, the accuracy is high, and the realization can be realized. Fast measurement, easy to promote.
- FIG. 1 is a schematic flow chart of a first embodiment of a three-dimensional four-wheel positioning method for an automobile according to the present invention
- FIG. 2 is a schematic view of a camera measuring assembly of the present invention
- FIG. 3 is a perspective view of a three-dimensional four-wheel alignment system (automobile side) of the automobile of the present invention
- FIG. 4 is a schematic view showing the relationship between the line laser and the camera in the front and rear wheel measuring device of the present invention
- Figure 5 is a schematic view showing the three-dimensional mark used for the calibration of the first type and the second type of the present invention
- Figure 6 is a schematic view of a mark used in the fifth type of calibration of the present invention.
- FIG. 7 is a schematic flow chart of a specific implementation of the system and method of the present invention.
- Figure 8 is a schematic diagram showing the definition of the caster angle of the main pin
- Figure 9 is a schematic diagram showing the definition of the main pin inclination angle
- Figure 10 is a schematic diagram of the main pin direction vector projected on the YZ plane
- Figure 11 is a schematic view of the main pin direction vector projected on the ZX plane.
- the invention provides an automobile camera measurement assembly, which comprises front and rear wheel measuring devices and control devices communicably connected to each other, wherein the front and rear wheel measuring devices comprise at least four camera devices, as shown in the figure.
- the sub-device is divided into a corresponding area of the first lateral facing wheel and the second lateral facing wheel of the automobile in the preset measuring area;
- the camera device corresponding to the first lateral facing wheel comprises a first camera for detecting the stereoscopic mark, and detecting the first a second camera and a first type of line laser facing the wheel;
- the camera device corresponding to the second lateral pair of wheels includes a stereoscopic mark, and third and second line lasers for detecting the second laterally opposite wheel.
- the camera measurement component of the present invention can be composed of two automobile front wheel measurement devices and two automobiles.
- the rear wheel measuring sub-device can be installed on the chute to realize the movement back and forth.
- the first lateral facing wheel and the second lateral facing wheel may be divided according to the vehicle steering wheel, such as two wheels closest to the steering wheel of the vehicle as the first lateral facing wheel, and the other two wheels of the vehicle as the second lateral facing wheel.
- the front and rear wheel measuring device includes the front and rear wheel measuring device including at least four camera devices, the camera device includes a camera, a stereoscopic mark, a line laser, and the camera device is as shown in FIG. 4, and the camera is shown in FIG. 2, 1, 2, and 3. 4,5,6, the three-dimensional mark is shown as B1, B2 in Figure 2, wherein the front wheel measuring device is mainly composed of one camera, one stereo mark, several sets of line laser projectors, etc., rear wheel measurement The device is mainly composed of two cameras, one mirror, and several sets of line laser projectors.
- one camera is used to capture the laser line projected on the wheel, the other camera is used to capture the stereoscopic sign of the front wheel measuring device, and the camera for photographing the stereoscopic sign of the front wheel measuring device is the first.
- Camera as shown in Figure 2, camera 5 captures stereoscopic signs 1, camera 6 captures stereoscopic signs 2, camera 5 and camera 6 are a camera, front and rear wheel measuring device components and functions can be interchanged, such as front wheel measuring sub-devices mainly by Two cameras and several sets of line laser projectors are formed, and the rear wheel measurement sub-device is mainly composed of one camera, one stereo mark, several sets of line laser projectors, etc., and the relationship between the line laser projector and the camera (camera) As shown in Fig.
- one camera of the front wheel measurement sub-device is used to capture the laser line projected on the wheel, and the other camera is used to photograph the stereoscopic mark of the rear wheel measurement unit, wherein the front and rear wheel measurement device of the car can be set to reflect Mirror, the main purpose of using the mirror is to increase the object distance, increase the focal length of the lens, reduce the lens distortion, and thus improve the system measurement accuracy.
- the automotive imaging measurement assembly further includes a sliding track, the second lateral pair The camera device corresponding to the wheel is disposed on the sliding track to reciprocate along the sliding track.
- the image measuring assembly of the present invention further includes a sliding track such as a chute, and the camera device corresponding to the second lateral facing wheel is disposed on the sliding track to reciprocate along the sliding track to be adapted to different
- the measurement of the length of the vehicle makes the component more widely used.
- the invention provides a three-dimensional four-wheel positioning method for an automobile.
- the automobile camera measurement component comprises a front and rear wheel measuring device of the automobile
- the front and rear wheel measuring device comprises a camera, a three-dimensional mark and a line.
- the laser and the line laser respectively project a laser line to the corresponding wheel, and the camera extracts the position information of the laser line projected by the line laser to the wheel.
- the three-dimensional four-wheel positioning method of the automobile includes:
- Step S10 when detecting the measurement instruction, selecting the first type of camera corresponding to the stereoscopic mark to capture and extract the position information of the stereoscopic mark to obtain the wheelbase of the wheel and obtain the position information of each camera and the corresponding line laser based on the wheelbase of the wheel;
- the calibration of the system mainly includes: the first type of calibration: the internal parameter calibration of the camera 1 - camera 6, the internal parameters include Main point, equivalent focal length and lens distortion; second type calibration: calibration of camera 1 camera 4 camera coordinate system and corresponding laser line; third type calibration: camera 5 and camera 3, camera 6 and camera 4 The calibration of the coordinate relationship; the calibration of the fourth type: the coordinate relationship calibration of the stereoscopic mark B1 and the camera 1, the stereoscopic mark B2 and the camera 2; the fifth type of calibration: the calibration of the coordinate relationship between the camera 1 and the camera 2.
- the so-called three-dimensional mark refers to a mark body composed of non-coplanar easy-to-recognize marks (such as a round mark, a cross-hair mark or a top-angle mark).
- the three-dimensional mark As shown in FIG. 5 and FIG. 6, the calibration process of the system may be performed at intervals of a preset time (for example, half a year or one year), except that it must be implemented before the first installation and use.
- the rear wheel measuring device After the car is put in, the rear wheel measuring device is adjusted according to the wheelbase of the vehicle, so that the position of the front and rear wheel measuring device is consistent with the position of the front and rear tires.
- the 3D (three-dimensional) four-wheel positioning measurement software on the computer runs, before and after.
- the line laser starts to work, and the first type camera corresponding to the stereoscopic flag firstly captures and extracts the position information of the stereoscopic mark, as shown in FIG.
- the first type of camera is the camera 5 and the camera 6, and then According to the principle of optical fluoroscopic imaging, the positional relationship between the camera 5 and the stereoscopic mark B1, the camera 6 and the stereoscopic mark B2 is calculated, and the position information of each camera, the corresponding line laser or the related position information of each camera and the corresponding line laser is obtained.
- Step S20 the other cameras corresponding to the stereoscopic signs in the front and rear wheel measuring devices are used as the second type of cameras, and the positions of the laser lines projected by the second type of cameras corresponding to the line lasers to the wheels are obtained according to the position information of the respective cameras and the corresponding line lasers.
- the other cameras corresponding to the stereoscopic signs in the front and rear wheel measuring devices are used as the second type of cameras.
- the camera 5 corresponds to the shooting stereoscopic signs B1
- the camera 6 corresponds to the shooting stereoscopic signs B2
- the camera 1 the camera 1
- the camera 2 Camera 3
- camera 4 is a second type of camera. Since the camera obtains the position information of each camera and the corresponding line laser in step S10, according to the position information of each camera and the corresponding line laser, the second type camera corresponding line laser can be obtained and projected onto the wheel.
- the position information of the laser line to establish the measurement plane is as follows, the camera 1 - camera 4 and the corresponding line laser start working, the schematic diagram of the relationship between the line laser and the camera is shown in Figure 5, the line laser projects the laser line to the tire hub After that, the camera collects the tire image, extracts the intersection of each laser line and the hub from the acquired image, and combines the relationship between the camera and the line laser plane calibrated by the second type calibration, that is, a plane, that is, a measurement plane can be established.
- the axis direction of the car can be easily determined by the axis of the four wheels, that is, the axial direction.
- the reference coordinate system O-XYZ can be established, and the global coordinate system of the four-wheel positioning system can also be established.
- O is the center point of the four axes
- the plane corresponding to XYZ is the measurement plane.
- Step S30 acquiring coordinate information of the vehicle wheel plane based on the measurement plane, and acquiring coordinate information of the wheel plane rotation kingpin based on coordinate information of different wheel planes of the vehicle when the vehicle steering wheel rotates the corresponding angle to obtain the four-wheel positioning parameter value.
- the rotating kingpin refers to an axis about which the wheel rotates, and acquires coordinate information of the vehicle wheel plane in an initial state based on the measurement plane, in particular, the steering wheel rotation of the automobile is based on the initial state, and when the steering wheel of the automobile rotates by a corresponding angle, The angle of rotation is the same, but the direction is different. Therefore, each rotation can provide two relatively independent directions according to the plane after rotation. After the rotation, the coordinate information of the wheel plane changes, and the normal vector of the wheel plane changes, based on the initial state.
- the lower wheel plane equation and the rotated wheel plane and the corresponding normal equation can obtain the coordinate information of the rotating kingpin, and the values of each parameter are obtained based on the definition of the four wheel alignment parameters.
- the schematic diagram of the specific implementation is shown in FIG. 7 .
- the first type of camera corresponding to the stereoscopic mark is selected to capture and extract the position information of the stereoscopic mark to obtain the wheelbase of the wheel and obtain each camera based on the wheelbase of the wheel, and the corresponding line laser
- the position information of the front and rear wheel measuring device is divided into other cameras corresponding to the three-dimensional mark as the second type camera, and according to the position information of each camera and the corresponding line laser, the laser line of the second type camera corresponding to the line laser is projected to the wheel.
- Position information to establish a measurement plane acquiring coordinate information of a vehicle wheel plane based on the measurement plane, and acquiring coordinate information of a wheel plane rotation kingpin based on coordinate information of different wheel planes of the vehicle when the vehicle steering wheel rotates the corresponding angle to obtain four wheels
- the value of the positioning parameter Since the application does not need to lift the car after the vehicle enters, the computer measurement software directly controls the rotation direction of the steering wheel of the automobile and obtains the four-wheel positioning parameters of the automobile through the corresponding automobile camera measurement component, and the operation is simple and convenient, the accuracy is high, and the realization can be realized. Rapid measurement and easy to promote, thus solving the problem of detecting four-wheel positioning parameters in the prior art, the detection operation process is complicated, the accuracy is easily affected, and the rapid measurement cannot be realized, so that it is difficult to be promoted on the automobile assembly line. technical problem.
- step S20 includes:
- Step S21 according to the position information of the laser line projected to the wheel hub by the corresponding line laser collected by the second type camera, and the preset calibration relationship between the laser signal sent by the second type camera and the corresponding line laser, and acquiring each Position information of the intersection of the laser line and the wheel hub;
- Step S22 establishing a measurement plane based on the position information of the intersection of each laser line and the wheel hub.
- the camera collects the wheel hub image and combines with the second type calibration center.
- the relationship between the calibrated camera and the line laser plane, the wheel hub position information is extracted with high precision from the wheel hub image, and the intersection of each laser line and the hub is extracted from the wheel hub image collected by the camera, and then the intersection is fitted with one of the intersection points.
- the space circle is defined as the "axis center" of the wheel. The axis of the four tires can establish a plane, that is, the measurement plane.
- a third embodiment of a three-dimensional four-wheel positioning method for an automobile is provided.
- the second type of camera and the corresponding line laser are sent.
- There is a preset calibration relationship between the laser lines, and the step of acquiring coordinate information of the vehicle wheel plane and the wheel plane rotation kingpin based on the measurement plane includes:
- the corresponding line laser is projected onto the wheel tire surface and the second type camera and the laser line sent by the corresponding line laser have a preset calibration relationship, and the intersection of each laser line and the wheel tire surface is obtained. location information;
- the camera collects the image of the surface of the wheel tire from the image of the wheel tire.
- Wheel plane information is obtained by a plurality of tangent planes projected onto the three-dimensional laser line of the tire surface of the wheel.
- a predetermined calibration relationship exists between the surface of the wheel tire and the laser line sent by the second type of camera and the corresponding line laser according to the corresponding line laser collected by the second type of camera, and each laser is obtained.
- a fourth embodiment of a three-dimensional four-wheel positioning method for an automobile is provided.
- the four-wheel positioning parameter includes a caster tilt angle, The main pin inclination angle, the wheel camber angle and the front wheel toe angle, when the steering wheel of the automobile rotates the corresponding angle, the coordinate information of the wheel plane rotation kingpin is obtained based on the coordinate information of the different wheel planes of the vehicle, to obtain the four wheel positioning parameters.
- the value steps include:
- the rotating wheel plane is obtained corresponding to the rotating plane normal vector, and the rotated wheel plane provides at least two independent rotating plane normal vectors;
- the coordinate information of the wheel plane rotation kingpin is obtained based on the initial plane normal vector and each rotation plane normal vector, and the kingpin caster angle, the kingpin camber angle, the wheel camber angle and the front wheel toe angle are obtained according to the coordinate information of the rotating kingpin. .
- the coordinate information of the main pin that is, the direction vector of the king pin (ie, the wheel plane rotation axis) in the O-XYZ coordinate system is And n z >0.
- the initial plane normal vector of the automobile is obtained according to the initial wheel plane equation in the initial state of the automobile; when the steering wheel of the automobile is rotated by the corresponding angle, the rotating plane normal vector corresponding to the rotating wheel plane is obtained, and the rotated wheel plane provides at least two Rotating plane normal vectors in independent directions; obtaining coordinate information of the wheel plane rotation kingpin based on the initial plane normal vector and each rotation plane normal vector, and obtaining the kingpin caster angle, the kingpin tilt angle according to the coordinate information of the rotating kingpin, Wheel camber and front wheel toe angle. Since the values of the four-wheel positioning parameters are accurately and quickly obtained according to the formulas, the structure of the vehicle can be adjusted according to the value of the four-wheel positioning parameter of the vehicle.
- the step S30 includes:
- the wheelbase of the front and rear wheels is obtained based on the measurement plane, and the corresponding structure of the vehicle is adjusted according to the wheelbase and the value of the four wheel alignment parameters.
- the wheelbase of the front and rear wheels is obtained based on the measurement plane, and the corresponding structure of the automobile is adjusted according to the wheelbase and the value of the four wheel alignment parameters, and the corresponding structure of the automobile includes each tire of the automobile.
- the wheelbase of the front and rear wheels is obtained based on the measurement plane, and the corresponding structure of the vehicle is adjusted according to the wheelbase and the value of the four wheel alignment parameters. Therefore, the structure of the car can be adjusted in time after the detection operation to make the car meet the requirements.
- the present invention provides a three-dimensional four-wheel alignment system for an automobile.
- the specific implementation of the three-dimensional four-wheel alignment system of the automobile of the present invention is substantially the same as the embodiment of the three-dimensional four-wheel alignment method of the automobile described above, and details are not described herein again.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
本发明公开了一种汽车摄像测量组件,汽车三维四轮定位方法及系统,该方法包括:当检测到测量指令时,选取与立体标志对应的第一类相机拍摄并提取立体标志的位置信息,以获取车轮轴距并得到各相机,相应线激光器的位置信息;将前后轮测量装置中除与立体标志对应的其他相机作为第二类相机,根据各相机,相应线激光器的位置信息,获取对应线激光器投射的激光线的位置信息以建立测量平面;基于该测量平面获取车轮平面的坐标信息,当汽车方向盘旋转相应角度时,基于不同车轮平面的坐标信息获取车轮平面旋转主销的坐标信息,以获取四轮定位参数的取值。本发明旨在解决现有技术中无法实现快速测量四轮定位参数检测时,检测操作过程复杂的技术问题。
Description
本申请要求于2017年03月24日提交中国专利局、申请号为201710182059.0、发明名称为“汽车摄像测量组件与汽车三维四轮定位方法及系统”的中国专利申请的优先权,其全部内容通过引用结合在申请中。
本发明涉及汽车检测技术领域,尤其涉及一种汽车摄像测量组件与汽车三维四轮定位方法及系统。
随着科技的发展与进步,普通人的汽车保有量持续增加,对汽车检测技术也相应提出了更高的要求,作为车辆检测的一项重要内容,四轮定位参数主要包括:前束角角Toe(车轮中心线与车辆几何中心线之间的夹角)、外倾角Camber(车轮旋转平面与车辆纵向垂直面的夹角)、主销内倾角SAI(在汽车横向平面内转向结主销轴线与铅轴线的夹角)及主销后倾角Caster(在汽车纵向垂直平面内转向结主销轴线与铅垂线的夹角)等。
现有技术中四轮定位参数的检测一般是通过在汽车轮毂上安装夹具,在夹具上安装标定板,然后用举升机将汽车举到一定高度,再旋转方向盘,通过摄像头测试标定盘相应转过的角度才能测出定位参数,由于测量头在车轮的位置准确度全靠夹具保证,如果测量头定位不准,则测得的四轮定位参数值就不准,因此夹具安装的精度将直接影响测量的结果。而夹具结构设计要求能适用于不同材料、不同规格的轮辋,既要卡牢不变形,又要保证测量头与车轮的同轴度,还必须进行轮辋失圆补偿,且需要将汽车举升,因而存在检测操作十分复杂,要求高,无法实现快速测量,难以在汽车总装线上得到推广的技术问题。
发明内容
本发明的主要目的在于提供一种汽车摄像测量组件与汽车三维 四轮定位方法及系统,旨在解决现有技术中在对车辆进行四轮定位参数检测时,检测操作过程复杂,准确度易受影响,无法实现快速测量,以致难以在汽车总装线上得到推广的技术问题。
为实现上述目的,本发明提供一种汽车摄像测量组件,所述汽车摄像测量组件包括相互通信连接的前后轮测量装置和控制装置,所述前后轮测量装置包括至少四个摄像子装置,所述摄像子装置分设于预置测量区中汽车第一横向对轮和第二横向对轮对应区域;与第一横向对轮对应的摄像子装置包括用于检测立体标志的第一相机,以及检测第一横向对轮的第二相机和第一类线激光器;与第二横向对轮对应的摄像子装置包括立体标志,以及用于检测第二横向对轮的第三相机和第二线激光器。
优选地,所述汽车摄像测量组件还包括滑动轨道,所述与第二横向对轮对应的摄像子装置设置于滑动轨道上以沿着滑动轨道往返运动。
本发明还提供一种汽车三维四轮定位方法,汽车摄像测量组件包括相互通信连接的前后轮测量装置,所述前后轮测量装置包括至少四个摄像子装置,与第一横向对轮对应的摄像子装置包括用于检测立体标志的第一相机,以及检测第一横向对轮的第二相机和第一类线激光器;与第二横向对轮对应的摄像子装置包括立体标志,以及用于检测第二横向对轮的第三相机和第二线激光器,将第一相机作为第一类相机,第二相机与第三相机作为第二类相机,
所述汽车三维四轮定位方法包括:
当检测到测量指令时,选取第一类相机拍摄并提取立体标志的位置信息,以获取车轮轴距并基于车轮轴距得到各相机,相应线激光器的位置信息;
根据各相机,相应线激光器的位置信息,获取第二类相机对应线激光器投射到车轮的激光线的位置信息以建立测量平面;
基于所述测量平面获取车辆车轮平面的坐标信息,当汽车方向盘旋转相应角度时,基于车辆不同车轮平面的坐标信息获取车轮平面旋转主销的坐标信息,以获取四轮定位参数的取值。
优选地,第二类相机与对应线激光器发送的激光线之间存在预设标定关系,所述根据各相机,相应线激光器的位置信息,获取第二类相机对应线激光器投射到车轮的激光线的位置信息以建立测量平面步骤包括:
根据第二类相机所采集到的对应线激光器投射到车轮轮毂的激光线的位置信息与所述第二类相机与对应线激光器发送的激光线之间存在预设标定关系,获取各激光线与车轮轮毂交点的位置信息;
基于所述各激光线与车轮轮毂交点的位置信息拟合建立测量平面。
优选地,第二类相机与对应线激光器发送的激光线之间存在预设标定关系,所述基于所述测量平面获取车辆车轮平面与车轮平面旋转主销的坐标信息步骤包括:
根据第二类相机所采集到的对应线激光器投射到车轮轮胎表面与所述第二类相机与对应线激光器发送的激光线之间存在预设标定关系,获取各激光线与车轮轮胎表面交点的位置信息;
基于所述测量平面获取该各激光线对应平面的切平面信息,并将该切平面作为车轮平面。
优选地,四轮定位参数包括主销后倾角、主销内倾角、车轮外倾角和前轮前束角,所述当汽车方向盘旋转相应角度时,基于车辆不同车轮平面的坐标信息获取车轮平面旋转主销的坐标信息,以获取四轮定位参数的取值步骤包括:
根据汽车初始状态下初始车轮平面方程,获取汽车初始平面法向量;
当汽车方向盘旋转相应角度时,获取旋转后车轮平面对应旋转平面法向量,旋转后车轮平面提供至少两个独立方向的旋转平面法向量;
基于初始平面法向量与各个旋转平面法向量得到车轮平面旋转主销的坐标信息,并根据旋转主销的坐标信息求取主销后倾角、主销内倾角、车轮外倾角和前轮前束角。
优选地,所述当汽车方向盘旋转相应角度时,基于车辆不同车轮 平面与车轮平面旋转主销的坐标信息获取四轮定位参数的取值步骤之后包括:
基于所述测量平面获取的四轮定位参数的取值调整汽车相应结构。
此外,为实现上述目的,本发明还提供一种汽车三维四轮定位系统,汽车摄像测量组件包括相互通信连接的前后轮测量装置,所述前后轮测量装置包括至少四个摄像子装置,与第一横向对轮对应的摄像子装置包括用于检测立体标志的第一相机,以及检测第一横向对轮的第二相机和第一类线激光器;与第二横向对轮对应的摄像子装置包括立体标志,以及用于检测第二横向对轮的第三相机和第二线激光器,将第一相机作为第一类相机,第二相机与第三相机作为第二类相机,
所述汽车三维四轮定位系统包括:
检测模块,用于当检测到测量指令时,选取第一类相机拍摄并提取立体标志的位置信息,以获取车轮轴距并基于车轮轴距得到各相机,相应线激光器的位置信息;
第一获取模块,用于根据各相机,相应线激光器的位置信息,获取第二类相机对应线激光器投射到车轮的激光线的位置信息以建立测量平面;
第二获取模块,用于基于所述测量平面获取车辆车轮平面的坐标信息,当汽车方向盘旋转相应角度时,基于车辆不同车轮平面的坐标信息获取车轮平面旋转主销的坐标信息,以获取四轮定位参数的取值。
优选地,第二类相机与对应线激光器发送的激光线之间存在预设标定关系,所述第一获取模块包括:
第一获取单元,用于根据第二类相机所采集到的对应线激光器投射到车轮轮毂的激光线的位置信息与所述第二类相机与对应线激光器发送的激光线之间存在预设标定关系,获取各激光线与车轮轮毂交点的位置信息;
建立单元,用于基于所述各激光线与车轮轮毂交点的位置信息拟合建立测量平面。
优选地,第二类相机与对应线激光器发送的激光线之间存在预设标定关系,所述第二获取模块包括:
第二获取单元,用于根据第二类相机所采集到的对应线激光器投射到车轮轮胎表面与所述第二类相机与对应线激光器发送的激光线之间存在预设标定关系,获取各激光线与车轮轮胎表面交点的位置信息;
第三获取单元,用于基于所述测量平面获取该各激光线对应平面的切平面信息,并将该切平面作为车轮平面。
优选地,四轮定位参数包括主销后倾角、主销内倾角、车轮外倾角和前轮前束角,所述第二获取模块还包括:
第四获取单元,用于根据汽车初始状态下初始车轮平面方程,获取汽车初始平面法向量;
第五获取单元,用于当汽车方向盘旋转相应角度时,获取旋转后车轮平面对应旋转平面法向量,旋转后车轮平面提供至少两个独立方向的旋转平面法向量;
求取单元,用于基于初始平面法向量与各个旋转平面法向量得到车轮平面旋转主销的坐标信息,并根据旋转主销的坐标信息求取主销后倾角、主销内倾角、车轮外倾角和前轮前束角。
优选地,所述汽车三维四轮定位系统还包括:
调整模块,用于基于所述测量平面获取的四轮定位参数的取值调整汽车相应结构。
本发明通过当检测到测量指令时,选取第一类相机拍摄并提取立体标志的位置信息,以获取车轮轴距并基于车轮轴距得到各相机,相应线激光器的位置信息;根据各相机,相应线激光器的位置信息,获取第二类相机对应线激光器投射到车轮的激光线的位置信息以建立测量平面;基于所述测量平面获取车辆车轮平面的坐标信息,当汽车方向盘旋转相应角度时,基于车辆不同车轮平面的坐标信息获取车轮平面旋转主销的坐标信息,以获取四轮定位参数的取值。由于本申请在汽车驶入后不用托举汽车,直接通过计算机测量软件控制汽车方向盘旋转相应角度并通过相应汽车摄像测量组件获取得到汽车四轮定 位参数,操作简单便捷,准确度高,且能实现快速测量,易推广。
图1为本发明汽车三维四轮定位方法第一实施例的流程示意图;
图2为本发明摄像测量组件的示意图;
图3为本发明汽车三维四轮定位系统(汽车一侧)立体示意图;
图4为本发明前后轮测量装置中线激光器与相机的布设关系示意图;
图5为本发明第一类、第二类标定所用立体标志的示意图;
图6为本发明第五类标定所用标志的示意图;
图7为本发明系统和方法具体实施的流程示意图;
图8为主销后倾角定义示意图;
图9为主销内倾角定义示意图;
图10为主销方向矢量在YZ平面投影示意图;
图11主销方向矢量在ZX平面投影示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做持续说明。
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供一种一种汽车摄像测量组件,所述汽车摄像测量组件包括相互通信连接的前后轮测量装置和控制装置,所述前后轮测量装置包括至少四个摄像子装置,如图所述摄像子装置分设于预置测量区中汽车第一横向对轮和第二横向对轮对应区域;与第一横向对轮对应的摄像子装置包括用于检测立体标志的第一相机,以及检测第一横向对轮的第二相机和第一类线激光器;与第二横向对轮对应的摄像子装置包括立体标志,以及用于检测第二横向对轮的第三相机和第二线激光器。
为实施该测量方法,设计了完整的汽车摄像测量组件,为方便理解,用以具体实施例说明,如图2所示,本发明的摄像测量组件可由2个汽车前轮测量装置、2个汽车后轮测量装置等组成、其中控制装 置可是1个交换机、1台计算机构成,为适应待测汽车的轴距变化,后轮测量子装置可安装在滑槽上,以实现前后移动。另外,本申请中第一横向对轮和第二横向对轮可根据车辆方向盘作为基准划分,如距离车辆方向盘最近的两车轮作为第一横向对轮,车辆其他两轮作为第二横向对轮。
前后轮测量装置包括所述前后轮测量装置包括至少四个摄像子装置,摄像子装置包括相机,立体标志,线激光器,摄像子装置如图4所示,相机如图2中1,2,3,4,5,6所示,立体标志如图2中B1,B2所示,其中前轮测量装置主要由1台相机、1个立体标志、若干组线激光投射器等组成,后轮测量子装置主要由2台相机、1个反射镜、若干组线激光投射器组成。后轮测量子装置中一台相机用于拍摄投射在车轮上的激光线,另外一台相机用于拍摄前轮测量装置的立体标志,用于拍摄前轮测量装置的立体标志的相机为第一相机,如图2中相机5拍摄立体标志1、相机6拍摄立体标志2,相机5与相机6是一相机,前、后轮测量装置组成和功能可以互换,如前轮测量子装置主要由2台相机、若干组线激光投射器组成,而后轮测量子装置主要由1台相机、1个立体标志、若干组线激光投射器等组成,线激光投射器与相机(摄像机)的布设关系示意图如图4所示,前轮测量子装置其中1台相机用于拍摄投射在车轮上的激光线,另外一台相机用于拍摄后轮测量单元的立体标志,其中汽车前后轮测量装置可设置反射镜,使用反射镜的主要目的是增加物距,增加镜头焦距,减小镜头畸变,进而提高系统测量精度。
进一步地,在本发明汽车摄像测量组件的基础上,提供汽车摄像测量组件的第二实施例,在第二实施例中,所述汽车摄像测量组件还包括滑动轨道,所述与第二横向对轮对应的摄像子装置设置于滑动轨道上以沿着滑动轨道往返运动。
如图2所示,本发明的摄像测量组件还包括滑动轨道如滑槽等,与第二横向对轮对应的摄像子装置设置于滑动轨道上以沿着滑动轨道往返运动,以能够适应于不同长度车辆的测量,使该组件应用范围更广。
本发明提供一种汽车三维四轮定位方法,在本发明汽车三维四轮定位方法的第一实施例中,汽车摄像测量组件包括汽车前后轮测量装置,前后轮测量装置包括相机,立体标志,线激光器,线激光器分别向对应车轮投射激光线,相机提取线激光器投射到车轮的激光线的位置信息,参照图1,该汽车三维四轮定位方法包括:
步骤S10,当检测到测量指令时,选取与立体标志对应的第一类相机拍摄并提取立体标志的位置信息,以获取车轮轴距并基于车轮轴距得到各相机,相应线激光器的位置信息;
在测量之前,需要对系统进行标定,用以具体实施例说明,如图2所示,本系统所涉及的标定主要有:第一类标定:相机1-相机6的内参数标定,内参数包括主点、等效焦距和镜头畸变;第二类标定:相机1-相机4的相机坐标系与对应激光线之间关系的标定;第三类标定:相机5与相机3、相机6与相机4的坐标关系标定;第四类标定:立体标志B1和相机1、立体标志B2和相机2的坐标关系标定;第五类标定:相机1与相机2的坐标关系标定。所谓立体标志是指由不共面的易识别标志(如:圆标志、十字丝标志或者对顶角标志)组成的标志体,以上标定中除图2中立体标志B1和B2之外,立体标志还可如图5、图6所示,对系统进行标定过程除首次安装使用前必须实施外,可以间隔预设时间(如半年或者一年)实施一次。
汽车使入后,根据汽车轴距调整后轮测量装置,使前后轮测量装置位置与前后轮胎位置保持一致,当检测到测量指令时,计算机上3D(三维)四轮定位测量软件运行,前后后轮测量装置中各相机,线激光器开始工作,控制与立体标志对应的第一类相机首先拍摄并提取立体标志的位置信息,如图2所示,第一类相机为相机5与相机6,然后根据光学透视成像原理计算出相机5与立体标志B1、相机6与立体标志B2之间的位置关系,进而得到各相机,相应线激光器的位置信息或者各相机,相应线激光器的相关位置信息。
步骤S20,将前后轮测量装置中除与立体标志对应的其他相机作为第二类相机,根据各相机,相应线激光器的位置信息,获取第二类相机对应线激光器投射到车轮的激光线的位置信息以建立测量平面;
将前后轮测量装置中除与立体标志对应的其他相机作为第二类相机,如图2中相机5对应拍摄立体标志B1、相机6对应拍摄立体标志B2,因而相机1,相机1,相机2,相机3,相机4为第二类相机,由于步骤S10中获取得到各相机,相应线激光器的位置信息,根据各相机,相应线激光器的位置信息,可获取第二类相机对应线激光器投射到车轮的激光线的位置信息以建立测量平面,具体过程如下,相机1-相机4以及对应的线激光器开始工作,线激光器与相机的布设关系示意图如图5所示,线激光器向轮胎轮毂投射激光线后,相机采集轮胎图像,从采集的图像中提取每条激光线与轮毂的交点,结合第二类标定所标定出的相机与线激光平面的关系,即可以建立一个平面,即测量平面。同时,由四个车轮的轴心可以容易确定出汽车的轴线方向,即轴向,获得测量平面和轴向后,就可以建立基准坐标系O—XYZ,也四轮定位系统的全局坐标系,O为四个轴心的中心点,XYZ对应的平面为测量平面。
步骤S30,基于所述测量平面获取车辆车轮平面的坐标信息,当汽车方向盘旋转相应角度时,基于车辆不同车轮平面的坐标信息获取车轮平面旋转主销的坐标信息,以获取四轮定位参数的取值。
旋转主销指车轮转动时所绕的轴线,基于所述测量平面获取初始状态下车辆车轮平面的坐标信息,特别地,汽车方向盘旋转以初始状态下为基准,当汽车方向盘旋转相应角度时,向左右旋转的角度相同,但是方向不同,因而每次旋转,根据旋转后平面可以提供两个相对独立的方向,旋转后由于车轮平面坐标信息发生变化,因而车轮平面的法向量发生变化,基于初始状态下车轮平面方程与旋转后的车轮平面与对应法向方程可以获取旋转主销的坐标信息,基于四轮定位参数的定义求取各个参数的取值,具体实施的流程示意图如图7所示。
在本实施例中,通过当检测到测量指令时,选取与立体标志对应的第一类相机拍摄并提取立体标志的位置信息,以获取车轮轴距并基于车轮轴距得到各相机,相应线激光器的位置信息;将前后轮测量装置中除与立体标志对应的其他相机作为第二类相机,根据各相机,相应线激光器的位置信息,获取第二类相机对应线激光器投射到车轮的 激光线的位置信息以建立测量平面;基于所述测量平面获取车辆车轮平面的坐标信息,当汽车方向盘旋转相应角度时,基于车辆不同车轮平面的坐标信息获取车轮平面旋转主销的坐标信息,以获取四轮定位参数的取值。由于本申请在汽车驶入后不用托举汽车,直接通过计算机测量软件控制汽车方向盘旋转相应角度并通过相应汽车摄像测量组件获取得到汽车四轮定位参数,操作简单便捷,准确度高,且能实现快速测量,易推广,因而能够解决现有技术中在对车辆进行四轮定位参数检测时,检测操作过程复杂,准确度易受影响,无法实现快速测量,以致难以在汽车总装线上得到推广的技术问题。
进一步地,在本发明汽车三维四轮定位方法的第一实施例的基础上,提供汽车三维四轮定位方法第二实施例,在第二实施例中,步骤S20包括:
步骤S21,根据第二类相机所采集到的对应线激光器投射到车轮轮毂的激光线的位置信息与所述第二类相机与对应线激光器发送的激光线之间存在预设标定关系,获取各激光线与车轮轮毂交点的位置信息;
步骤S22,基于所述各激光线与车轮轮毂交点的位置信息拟合建立测量平面。
由于第二类相机与对应线激光器发送的激光线之间存在预设标定关系,因而当相机采集对应线激光器投射到车轮轮毂的激光线后,相机采集车轮轮毂图像,并结合第二类标定所标定出的相机与线激光平面的关系,从车轮轮毂图像中高精度提取车轮轮毂位置信息,并从相机采集的车轮轮毂图像中提取每条激光线与轮毂的交点,进而利用这些交点拟合出一个空间圆,该空间圆圆心定义为车轮的“轴心”,四个轮胎的轴心即可以建立一个平面,即测量平面。
在本实施例中,通过根据第二类相机所采集到的对应线激光器投射到车轮轮毂的激光线的位置信息与所述第二类相机与对应线激光器发送的激光线之间存在预设标定关系,获取各激光线与车轮轮毂交点的位置信息;基于所述各激光线与车轮轮毂交点的位置信息拟合建立测量平面。此过程由于准确建立测量平面,因而为准确检测四轮定 位参数提供基础支持,且此过程不需要托举车辆,使得测量更为简单便捷。
进一步地,在本发明汽车三维四轮定位方法的第二实施例的基础上,提供汽车三维四轮定位方法第三实施例,在第三实施例中,第二类相机与对应线激光器发送的激光线之间存在预设标定关系,所述基于所述测量平面获取车辆车轮平面与车轮平面旋转主销的坐标信息步骤包括:
根据第二类相机所采集到的对应线激光器投射到车轮轮胎表面与所述第二类相机与对应线激光器发送的激光线之间存在预设标定关系,获取各激光线与车轮轮胎表面交点的位置信息;
基于所述测量平面获取该各激光线对应平面的切平面信息,并将该切平面作为车轮平面。
由于第二类相机与对应线激光器发送的激光线之间存在预设标定关系,因而当相机采集对应线激光器投射到车轮轮胎表面的激光线后,相机采集车轮轮胎表面图像,从车轮轮胎图像中高精度提取车轮轮胎表面位置信息,结合第二类标定所标定出的相机与线激光平面的关系,得到多条投射到车轮轮胎表面的激光线的三维空间坐标,基于所述测量平面进一步求取以上多条投射到车轮轮胎表面三维空间激光线的切平面即可得到车轮平面信息。
在本实施例中,通过根据第二类相机所采集到的对应线激光器投射到车轮轮胎表面与所述第二类相机与对应线激光器发送的激光线之间存在预设标定关系,获取各激光线与车轮轮胎表面交点的位置信息;基于所述测量平面获取该各激光线对应平面的切平面信息,并将该切平面作为车轮平面。由于基于所述测量平面准确获取车轮平面的坐标信息,因而为准确检测四轮定位参数奠定基础。
进一步地,在本发明汽车三维四轮定位方法的第一实施例的基础上,提供汽车三维四轮定位方法第四实施例,在第四实施例中,四轮定位参数包括主销后倾角、主销内倾角、车轮外倾角和前轮前束角,所述当汽车方向盘旋转相应角度时,基于车辆不同车轮平面的坐标信息获取车轮平面旋转主销的坐标信息,以获取四轮定位参数的取值步 骤包括:
根据汽车初始状态下初始车轮平面方程,获取汽车初始平面法向量;
当汽车方向盘旋转相应角度时,获取旋转后车轮平面对应旋转平面法向量,旋转后车轮平面提供至少两个独立方向的旋转平面法向量;
基于初始平面法向量与各个旋转平面法向量得到车轮平面旋转主销的坐标信息,并根据旋转主销的坐标信息求取主销后倾角、主销内倾角、车轮外倾角和前轮前束角。
由于在之前步骤中获取初始状态下初始车轮平面的坐标信息,因而根据初始车轮平面方程
可以得到初始平面法向量
[x y z]
T为车轮平面的坐标信息且已获取,l
0为常量,假设
表示第m次旋转后对应轮胎平面法向,平面绕主销旋转角度为θ,则旋转后的平面法向量方程为:
如果旋转了m次,每次旋转,根据旋转后平面的法向,可以提供2两个相对独立的方向,未知数分别为θ
1,θ
2,…,θ
m,以及旋转轴的两个方向矢量
共计m+2个未知数。因此,当2m≥m+2的时候,方程可以求解,此时m≥2,因而至转动初始轮胎平面两次后,可求解
假设
表示第m次旋转后对应轮胎平面法向,因此,
满足方程组
为主销的坐标信息,即主销(即车轮平面旋转轴)在O—XYZ坐标系中的方向矢量为
且n
z>0。则
在YZ平面的投影如图10所示。因此,主销后倾角α计算公式为:α=-tan
-1(n
y/n
z),(图8主销后倾角定义示意图)。
在ZX平面的投 影如图11所示。因此,主销内倾角β计算公式为:β=-tan
-1(n
x/n
z)
,(图9主销后倾角定义示意图),则前束角角θ
Toe计算公式为:
外倾角θ
Camber计算公式为:θ
Camber=arccosn
z,即求得四轮定位参数的取值,上述公式可由软件获取。
在本实施例中,通过根据汽车初始状态下初始车轮平面方程,获取汽车初始平面法向量;当汽车方向盘旋转相应角度时,获取旋转后车轮平面对应旋转平面法向量,旋转后车轮平面提供至少两个独立方向的旋转平面法向量;基于初始平面法向量与各个旋转平面法向量得到车轮平面旋转主销的坐标信息,并根据旋转主销的坐标信息求取主销后倾角、主销内倾角、车轮外倾角和前轮前束角。由于根据各公式准确快速求取四轮定位参数的取值,因而能够根据车辆的四轮定位参数的取值调整汽车结构。
进一步地,在本发明汽车三维四轮定位方法的第一实施例的基础上,提供汽车三维四轮定位方法第五实施例,在第五实施例中,所述步骤S30之后包括:
基于所述测量平面获取前后车轮的轴距,并根据轴距与四轮定位参数的取值调整汽车相应结构。
基于所述测量平面获取前后车轮的轴距,并根据轴距与四轮定位参数的取值调整汽车相应结构,汽车相应结构包括汽车各轮胎等。
在本实施例中,通过基于所述测量平面获取前后车轮的轴距,并根据轴距与四轮定位参数的取值调整汽车相应结构。因而能够在检测操作后及时调整汽车结构,以使汽车符合要求。
本发明提供一种汽车三维四轮定位系统,本发明汽车三维四轮定位系统的具体实施方式与上述汽车三维四轮定位方法各实施例基本相同,在此不再赘述。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
Claims (20)
- 一种汽车摄像测量组件,其特征在于,所述汽车摄像测量组件包括相互通信连接的前后轮测量装置和控制装置,所述前后轮测量装置包括至少四个摄像子装置,所述摄像子装置分设于预置测量区中汽车第一横向对轮和第二横向对轮对应区域;与第一横向对轮对应的摄像子装置包括用于检测立体标志的第一相机,以及检测第一横向对轮的第二相机和第一类线激光器;与第二横向对轮对应的摄像子装置包括立体标志,以及用于检测第二横向对轮的第三相机和第二线激光器。
- 如权利要求1所述的汽车摄像测量组件,其特征在于,所述汽车摄像测量组件还包括滑动轨道,所述与第二横向对轮对应的摄像子装置设置于滑动轨道上以沿着滑动轨道往返运动。
- 一种汽车三维四轮定位方法,其特征在于,汽车摄像测量组件包括相互通信连接的前后轮测量装置,所述前后轮测量装置包括至少四个摄像子装置,与第一横向对轮对应的摄像子装置包括用于检测立体标志的第一相机,以及检测第一横向对轮的第二相机和第一类线激光器;与第二横向对轮对应的摄像子装置包括立体标志,以及用于检测第二横向对轮的第三相机和第二线激光器,将第一相机作为第一类相机,第二相机与第三相机作为第二类相机,所述汽车三维四轮定位方法包括:当检测到测量指令时,选取第一类相机拍摄并提取立体标志的位置信息,以获取车轮轴距并基于车轮轴距得到各相机,相应线激光器的位置信息;根据各相机,相应线激光器的位置信息,获取第二类相机对应线激光器投射到车轮的激光线的位置信息以建立测量平面;基于所述测量平面获取车辆车轮平面的坐标信息,当汽车方向盘旋转相应角度时,基于车辆不同车轮平面的坐标信息获取车轮平面旋转主销的坐标信息,以获取四轮定位参数的取值。
- 如权利要求3所述的汽车三维四轮定位方法,其特征在于, 第二类相机与对应线激光器发送的激光线之间存在预设标定关系,所述根据各相机,相应线激光器的位置信息,获取第二类相机对应线激光器投射到车轮的激光线的位置信息以建立测量平面步骤包括:根据第二类相机所采集到的对应线激光器投射到车轮轮毂的激光线的位置信息与所述第二类相机与对应线激光器发送的激光线之间存在预设标定关系,获取各激光线与车轮轮毂交点的位置信息;基于所述各激光线与车轮轮毂交点的位置信息拟合建立测量平面。
- 如权利要求4所述的汽车三维四轮定位方法,其特征在于:四轮定位参数包括主销后倾角、主销内倾角、车轮外倾角和前轮前束角,所述当汽车方向盘旋转相应角度时,基于车辆不同车轮平面的坐标信息获取车轮平面旋转主销的坐标信息,以获取四轮定位参数的取值步骤包括:根据汽车初始状态下初始车轮平面方程,获取汽车初始平面法向量;当汽车方向盘旋转相应角度时,获取旋转后车轮平面对应旋转平面法向量,旋转后车轮平面提供至少两个独立方向的旋转平面法向量;基于初始平面法向量与各个旋转平面法向量得到车轮平面旋转主销的坐标信息,并根据旋转主销的坐标信息求取主销后倾角、主销内倾角、车轮外倾角和前轮前束角。
- 如权利要求4所述的汽车三维四轮定位方法,其特征在于,所述当汽车方向盘旋转相应角度时,基于车辆不同车轮平面与车轮平面旋转主销的坐标信息获取四轮定位参数的取值步骤之后包括:基于所述测量平面获取的四轮定位参数的取值调整汽车相应结构。
- 如权利要求4所述的汽车三维四轮定位方法,其特征在于,第二类相机与对应线激光器发送的激光线之间存在预设标定关系,所述基于所述测量平面获取车辆车轮平面与车轮平面旋转主销的坐标信息步骤包括:根据第二类相机所采集到的对应线激光器投射到车轮轮胎表面与所述第二类相机与对应线激光器发送的激光线之间存在预设标定关系,获取各激光线与车轮轮胎表面交点的位置信息;基于所述测量平面获取该各激光线对应平面的切平面信息,并将该切平面作为车轮平面。
- 如权利要求5所述的汽车三维四轮定位方法,其特征在于:四轮定位参数包括主销后倾角、主销内倾角、车轮外倾角和前轮前束角,所述当汽车方向盘旋转相应角度时,基于车辆不同车轮平面的坐标信息获取车轮平面旋转主销的坐标信息,以获取四轮定位参数的取值步骤包括:根据汽车初始状态下初始车轮平面方程,获取汽车初始平面法向量;当汽车方向盘旋转相应角度时,获取旋转后车轮平面对应旋转平面法向量,旋转后车轮平面提供至少两个独立方向的旋转平面法向量;基于初始平面法向量与各个旋转平面法向量得到车轮平面旋转主销的坐标信息,并根据旋转主销的坐标信息求取主销后倾角、主销内倾角、车轮外倾角和前轮前束角。
- 如权利要求5所述的汽车三维四轮定位方法,其特征在于,所述当汽车方向盘旋转相应角度时,基于车辆不同车轮平面与车轮平面旋转主销的坐标信息获取四轮定位参数的取值步骤之后包括:基于所述测量平面获取的四轮定位参数的取值调整汽车相应结构。
- 如权利要求3所述的汽车三维四轮定位方法,其特征在于:四轮定位参数包括主销后倾角、主销内倾角、车轮外倾角和前轮前束角,所述当汽车方向盘旋转相应角度时,基于车辆不同车轮平面的坐标信息获取车轮平面旋转主销的坐标信息,以获取四轮定位参数的取值步骤包括:根据汽车初始状态下初始车轮平面方程,获取汽车初始平面法向量;当汽车方向盘旋转相应角度时,获取旋转后车轮平面对应旋转平面法向量,旋转后车轮平面提供至少两个独立方向的旋转平面法向量;基于初始平面法向量与各个旋转平面法向量得到车轮平面旋转主销的坐标信息,并根据旋转主销的坐标信息求取主销后倾角、主销内倾角、车轮外倾角和前轮前束角。
- 如权利要求3所述的汽车三维四轮定位方法,其特征在于,所述当汽车方向盘旋转相应角度时,基于车辆不同车轮平面与车轮平面旋转主销的坐标信息获取四轮定位参数的取值步骤之后包括:基于所述测量平面获取的四轮定位参数的取值调整汽车相应结构。
- 一种汽车三维四轮定位系统,其特征在于,汽车摄像测量组件包括相互通信连接的前后轮测量装置,所述前后轮测量装置包括至少四个摄像子装置,与第一横向对轮对应的摄像子装置包括用于检测立体标志的第一相机,以及检测第一横向对轮的第二相机和第一类线激光器;与第二横向对轮对应的摄像子装置包括立体标志,以及用于检测第二横向对轮的第三相机和第二线激光器,将第一相机作为第一类相机,第二相机与第三相机作为第二类相机,所述汽车三维四轮定位系统包括:检测模块,用于当检测到测量指令时,选取第一类相机拍摄并提取立体标志的位置信息,以获取车轮轴距并基于车轮轴距得到各相机,相应线激光器的位置信息;第一获取模块,用于根据各相机,相应线激光器的位置信息,获取第二类相机对应线激光器投射到车轮的激光线的位置信息以建立测量平面;第二获取模块,用于基于所述测量平面获取车辆车轮平面的坐标信息,当汽车方向盘旋转相应角度时,基于车辆不同车轮平面的坐标信息获取车轮平面旋转主销的坐标信息,以获取四轮定位参数的取值。
- 如权利要求12所述的汽车三维四轮定位系统,其特征在于,第二类相机与对应线激光器发送的激光线之间存在预设标定关系,所 述第一获取模块包括:第一获取单元,用于根据第二类相机所采集到的对应线激光器投射到车轮轮毂的激光线的位置信息与所述第二类相机与对应线激光器发送的激光线之间存在预设标定关系,获取各激光线与车轮轮毂交点的位置信息;建立单元,用于基于所述各激光线与车轮轮毂交点的位置信息拟合建立测量平面。
- 如权利要求13所述的汽车三维四轮定位系统,其特征在于:四轮定位参数包括主销后倾角、主销内倾角、车轮外倾角和前轮前束角,所述第二获取模块还包括:第四获取单元,用于根据汽车初始状态下初始车轮平面方程,获取汽车初始平面法向量;第五获取单元,用于当汽车方向盘旋转相应角度时,获取旋转后车轮平面对应旋转平面法向量,旋转后车轮平面提供至少两个独立方向的旋转平面法向量;求取单元,用于基于初始平面法向量与各个旋转平面法向量得到车轮平面旋转主销的坐标信息,并根据旋转主销的坐标信息求取主销后倾角、主销内倾角、车轮外倾角和前轮前束角。
- 如权利要求13所述的汽车三维四轮定位系统,其特征在于,所述汽车三维四轮定位系统还包括:调整模块,用于基于所述测量平面获取的四轮定位参数的取值调整汽车相应结构。
- 如权利要求13所述的汽车三维四轮定位系统,其特征在于,第二类相机与对应线激光器发送的激光线之间存在预设标定关系,所述第二获取模块包括:第二获取单元,用于根据第二类相机所采集到的对应线激光器投射到车轮轮胎表面与所述第二类相机与对应线激光器发送的激光线之间存在预设标定关系,获取各激光线与车轮轮胎表面交点的位置信息;第三获取单元,用于基于所述测量平面获取该各激光线对应平面 的切平面信息,并将该切平面作为车轮平面。
- 如权利要求16所述的汽车三维四轮定位系统,其特征在于:四轮定位参数包括主销后倾角、主销内倾角、车轮外倾角和前轮前束角,所述第二获取模块还包括:第四获取单元,用于根据汽车初始状态下初始车轮平面方程,获取汽车初始平面法向量;第五获取单元,用于当汽车方向盘旋转相应角度时,获取旋转后车轮平面对应旋转平面法向量,旋转后车轮平面提供至少两个独立方向的旋转平面法向量;求取单元,用于基于初始平面法向量与各个旋转平面法向量得到车轮平面旋转主销的坐标信息,并根据旋转主销的坐标信息求取主销后倾角、主销内倾角、车轮外倾角和前轮前束角。
- 如权利要求16所述的汽车三维四轮定位系统,其特征在于,所述汽车三维四轮定位系统还包括:调整模块,用于基于所述测量平面获取的四轮定位参数的取值调整汽车相应结构。
- 如权利要求12所述的汽车三维四轮定位系统,其特征在于:四轮定位参数包括主销后倾角、主销内倾角、车轮外倾角和前轮前束角,所述第二获取模块还包括:第四获取单元,用于根据汽车初始状态下初始车轮平面方程,获取汽车初始平面法向量;第五获取单元,用于当汽车方向盘旋转相应角度时,获取旋转后车轮平面对应旋转平面法向量,旋转后车轮平面提供至少两个独立方向的旋转平面法向量;求取单元,用于基于初始平面法向量与各个旋转平面法向量得到车轮平面旋转主销的坐标信息,并根据旋转主销的坐标信息求取主销后倾角、主销内倾角、车轮外倾角和前轮前束角。
- 如权利要求12所述的汽车三维四轮定位系统,其特征在于,所述汽车三维四轮定位系统还包括:调整模块,用于基于所述测量平面获取的四轮定位参数的取值调整汽车相应结构。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710182059.0A CN106813599B (zh) | 2017-03-23 | 2017-03-23 | 汽车摄像测量组件与汽车三维四轮定位方法及系统 |
CN201710182059.0 | 2017-03-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018171496A1 true WO2018171496A1 (zh) | 2018-09-27 |
Family
ID=59115487
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/079100 WO2018171496A1 (zh) | 2017-03-23 | 2018-03-15 | 汽车摄像测量组件与汽车三维四轮定位方法及系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106813599B (zh) |
WO (1) | WO2018171496A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114778143A (zh) * | 2022-05-16 | 2022-07-22 | 长安大学 | 一种无靶标非接触式汽车四轮定位检测装置及检测方法 |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106813599B (zh) * | 2017-03-23 | 2018-12-21 | 深圳市鹰眼在线电子科技有限公司 | 汽车摄像测量组件与汽车三维四轮定位方法及系统 |
PL3425328T3 (pl) * | 2017-07-07 | 2022-02-14 | Car-O-Liner Group AB | Sposób określania kątów wrzeciona |
CN107677223B (zh) * | 2017-10-25 | 2024-06-25 | 烟台大学 | 一种非接触四轮定位仪的车轮拍摄测量装置及测量方法 |
CN107843439A (zh) * | 2017-10-25 | 2018-03-27 | 北京工商大学 | 一种转向轮的主销定位参数检测方法及装置 |
CN108303042A (zh) * | 2017-12-31 | 2018-07-20 | 南京沃宇机电有限公司 | 一种汽车前轮前束角的测量方法 |
CN109000565B (zh) * | 2018-04-28 | 2022-02-18 | 中兴通讯股份有限公司 | 一种测量方法、装置及终端 |
CN109702467B (zh) * | 2018-12-07 | 2023-11-03 | 上海蔚来汽车有限公司 | 一种车轮自动安装方法及车轮自动安装装置 |
CN109807610B (zh) * | 2019-01-21 | 2020-03-13 | 奥克斯空调股份有限公司 | 一种脚轮安装设备、方法及装置 |
CN109781016B (zh) * | 2019-03-13 | 2024-04-16 | 江西五十铃汽车有限公司 | 一种实时测量汽车等高性能的方法 |
CN109883326A (zh) * | 2019-03-29 | 2019-06-14 | 湖南省鹰眼在线电子科技有限公司 | 一种摄像测量式汽车三维四轮定位方法、系统及介质 |
CN110160451B (zh) * | 2019-06-13 | 2024-05-17 | 北京博科测试系统股份有限公司 | 一种非接触式车身高度测量系统 |
CN110470490A (zh) * | 2019-09-20 | 2019-11-19 | 湖南省鹰眼在线电子科技有限公司 | 一种基于三维传感的汽车四轮定位方法及装置 |
CN112857838B (zh) * | 2021-02-18 | 2022-01-18 | 吉林大学 | 一种拖拉机转向圆原地检测装置及方法 |
CN113607090B (zh) * | 2021-07-23 | 2024-01-16 | 深圳市鹰眼在线电子科技有限公司 | 曲面屏幕的三维形貌测量系统、方法及装置 |
CN114370824B (zh) * | 2021-12-30 | 2024-06-04 | 北京无线电计量测试研究所 | 车轮直径测量装置及测量方法 |
US11713064B1 (en) * | 2022-09-20 | 2023-08-01 | Bnsf Railway Company | System and method for detecting axle body and filet cracks in rail vehicles |
CN116465331A (zh) * | 2023-04-21 | 2023-07-21 | 河南埃尔森智能科技有限公司 | 一种基于双目多线激光的四轮定位系统和方法 |
CN116985938A (zh) * | 2023-08-15 | 2023-11-03 | 炎展科技(上海)有限公司 | 汽车前桥的改装方法 |
CN117889785A (zh) * | 2023-12-06 | 2024-04-16 | 深圳市易检车服科技有限公司 | 一种车辆参数检测方法、装置、终端设备及介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0895056A2 (en) * | 1997-08-01 | 1999-02-03 | CORGHI S.p.A. | Method and device for regulating the attitude of a motor vehicle. |
US6690456B2 (en) * | 2000-09-02 | 2004-02-10 | Beissbarth Gmbh | Wheel alignment apparatus |
CN101978240A (zh) * | 2008-03-26 | 2011-02-16 | 罗伯特.博世有限公司 | 用于底盘测量系统的测量头、底盘测量系统以及用于确定底盘测量系统的测量头的位置参数的方法 |
CN105136484A (zh) * | 2015-06-02 | 2015-12-09 | 深圳科澳汽车科技有限公司 | 轴间四轮定位检测装置及检测方法 |
CN106813599A (zh) * | 2017-03-23 | 2017-06-09 | 深圳市鹰眼在线电子科技有限公司 | 汽车摄像测量组件与汽车三维四轮定位方法及系统 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7369222B2 (en) * | 2005-05-13 | 2008-05-06 | Snap-On Technologies, Inc. | Wheel aligner measurement module attachment system |
US7864309B2 (en) * | 2007-05-04 | 2011-01-04 | Burke E. Porter Machinery Company | Non contact wheel alignment sensor and method |
CN103217129A (zh) * | 2007-08-31 | 2013-07-24 | 实耐宝公司 | 车轮定位系统和方法 |
CN100582724C (zh) * | 2008-01-14 | 2010-01-20 | 深圳市元征科技股份有限公司 | 四轮定位仪及进行四轮定位检测的方法 |
IT1395807B1 (it) * | 2009-09-25 | 2012-10-26 | Corghi Spa | Apparato e procedimento per la verifica dell'assetto di un veicolo. |
CN102749209A (zh) * | 2012-07-02 | 2012-10-24 | 麦苗 | 通道式汽车车轮定位仪及其检测方法 |
CN106352817A (zh) * | 2016-08-31 | 2017-01-25 | 李志伟 | 一种非接触四轮定位仪及其定位方法 |
-
2017
- 2017-03-23 CN CN201710182059.0A patent/CN106813599B/zh active Active
-
2018
- 2018-03-15 WO PCT/CN2018/079100 patent/WO2018171496A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0895056A2 (en) * | 1997-08-01 | 1999-02-03 | CORGHI S.p.A. | Method and device for regulating the attitude of a motor vehicle. |
US6690456B2 (en) * | 2000-09-02 | 2004-02-10 | Beissbarth Gmbh | Wheel alignment apparatus |
CN101978240A (zh) * | 2008-03-26 | 2011-02-16 | 罗伯特.博世有限公司 | 用于底盘测量系统的测量头、底盘测量系统以及用于确定底盘测量系统的测量头的位置参数的方法 |
CN105136484A (zh) * | 2015-06-02 | 2015-12-09 | 深圳科澳汽车科技有限公司 | 轴间四轮定位检测装置及检测方法 |
CN106813599A (zh) * | 2017-03-23 | 2017-06-09 | 深圳市鹰眼在线电子科技有限公司 | 汽车摄像测量组件与汽车三维四轮定位方法及系统 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114778143A (zh) * | 2022-05-16 | 2022-07-22 | 长安大学 | 一种无靶标非接触式汽车四轮定位检测装置及检测方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106813599A (zh) | 2017-06-09 |
CN106813599B (zh) | 2018-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018171496A1 (zh) | 汽车摄像测量组件与汽车三维四轮定位方法及系统 | |
US20210387637A1 (en) | Apparatus and method for calibrating and aligning automotive sensors | |
US11420643B2 (en) | Device and method for calibrating vehicle assistance systems | |
US7424387B1 (en) | Method for use with an optical aligner system for positioning a fixture relative to a vehicle | |
US8638452B2 (en) | Measuring head for a chassis measuring system, chassis measuring system and method for determining the position parameters of measuring heads of a chassis measuring system | |
CN110542376B (zh) | 一种用于定位adas标定目标板放置位置的装置和定位方法 | |
US20200088515A1 (en) | Wheel aligner with improved accuracy and no-stop positioning, using a drive direction calculation | |
CN100447527C (zh) | 抗闪光定位系统 | |
CN102032869B (zh) | 用于检查车辆姿态的设备和方法 | |
EP1277027B1 (en) | Measurement of wheel and axle alignment of motor vehicles | |
US8522609B2 (en) | Method and device for wheel suspension alignment | |
US6842238B2 (en) | Device for measuring the parameters of a vehicle characteristic attitude | |
US9791268B2 (en) | Device and method for measuring the characteristic angles and dimensions of wheels, steering system and chassis of vehicles in general | |
CN111380703A (zh) | 基于轮定位仪将校准装置对准车辆的方法及校准系统 | |
US20100238291A1 (en) | Method as well as device for determining the position and alignment of a camera of a driver-assistance system of a vehicle relative to the vehicle | |
US8196461B2 (en) | Method and device for checking the referencing of measuring heads in a chassis measuring system | |
CN103847639B (zh) | 车载摄像头动态车辅线标定方法 | |
JP2007525682A (ja) | ホイールアラインメント測定システムならびにホイールリムの空間位置を決定するための、測定方法および測定ユニット | |
CN103954458B (zh) | 一种非接触式四轮定位仪及其检测方法 | |
JP2023538351A (ja) | センサ校正のための車両床ターゲット位置合わせ | |
CN112834239B (zh) | Aebs下线检测方法及系统 | |
CN105799592A (zh) | 用于确定车辆特征的位置的方法和相应装置 | |
ES2963423T3 (es) | Procedimiento para determinar la posición y orientación del sistema de coordenadas de al menos una cámara en un vehículo con respecto al sistema de coordenadas del vehículo | |
CN112200876B (zh) | 一种5d四轮定位标定系统的标定方法 | |
CN110470490A (zh) | 一种基于三维传感的汽车四轮定位方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18771842 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/01/2020) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18771842 Country of ref document: EP Kind code of ref document: A1 |