[go: up one dir, main page]

WO2018168004A1 - Metal fine particle dispersion, conductive ink and electronic device - Google Patents

Metal fine particle dispersion, conductive ink and electronic device Download PDF

Info

Publication number
WO2018168004A1
WO2018168004A1 PCT/JP2017/030889 JP2017030889W WO2018168004A1 WO 2018168004 A1 WO2018168004 A1 WO 2018168004A1 JP 2017030889 W JP2017030889 W JP 2017030889W WO 2018168004 A1 WO2018168004 A1 WO 2018168004A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal fine
fine particle
particle dispersion
ink
electrode
Prior art date
Application number
PCT/JP2017/030889
Other languages
French (fr)
Japanese (ja)
Inventor
亮太 山口
香 河村
矢次 健一
敦久 宮脇
小澤 徹
佑介 狩野
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Publication of WO2018168004A1 publication Critical patent/WO2018168004A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]

Definitions

  • the present invention relates to an organic electroluminescent element, an organic thin film transistor, an organic thin film solar cell, etc., in an organic electronic device, a conductive material used for wiring, electrode, etc. formed by printing, in particular, metal fine particles used for an electrode in contact with an organic semiconductor, and TECHNICAL FIELD
  • the present invention relates to a metal fine particle dispersion in which it is dispersed, a conductive ink prepared from the metal fine particle dispersion, a thin film transistor electrode formed by applying the conductive ink to form a conductive film, a thin film transistor having the electrode, and an electronic device It is an invention.
  • Nano-sized and micro-sized fine metal particles are used for the formation of wiring parts and electrode parts by printed electronics technology. By forming these metal fine particles into ink, wiring parts and electrode parts can be easily formed by printing. Is possible.
  • the source electrode and the drain electrode of the thin film transistor electrode greatly affect the charge mobility, which is one of the transistor characteristics, of the smoothness of the electrode surface. Therefore, it is necessary that the metal fine particles are nano-sized or a mixture of nano-sized particles.
  • Nano-sized metal fine particles cannot exist stably as a dispersion unless they are protected with organic matter because of their high surface activity.
  • the organic matter remaining on the surface after forming the electrode serves as an insulator, which obstructs the electron path at the interface between the electrode and the organic semiconductor, and deteriorates the transistor characteristics. It is difficult to develop high conductivity and high transistor characteristics while ensuring this dispersion stability.
  • a letterpress reverse printing method As a method for producing high-definition wiring portions and electrode portions by printing, a letterpress reverse printing method is known.
  • the letterpress reverse printing method printing is generally performed via a transfer member having a releasability made of silicone rubber. Therefore, when the metal fine particle dispersion, which is a nonpolar solvent, is used as an ink, the nonpolar solvent, which is a dispersion medium, swells the silicone rubber that is a transfer member having releasability, so that it can be reproduced continuously. An electrode image cannot be produced with good properties.
  • the metal fine particle dispersion In order to produce an electrode image by the letterpress reverse printing method, the metal fine particle dispersion must be dispersed in a low polarity or high polarity solvent.
  • Patent Document 1 A method to be used is disclosed (Patent Document 1, Patent Document 2). This is because the low molecular weight protective agent is detached from the electrode surface during coating film sintering, and thus organic substances remaining on the electrode surface can be reduced.
  • Patent Document 2 A method to be used is disclosed (Patent Document 1, Patent Document 2). This is because the low molecular weight protective agent is detached from the electrode surface during coating film sintering, and thus organic substances remaining on the electrode surface can be reduced.
  • any of these publications is a dispersion of metal fine particles using a low molecular weight protective agent in a nonpolar solvent, and cannot be suitably used as an ink for letterpress reverse printing.
  • Patent Document 3 a method of dispersing metal fine particles in a polar solvent by using a high molecular weight dispersant in combination with metal fine particles using a low molecular weight substance as a protective agent is disclosed.
  • Patent Document 4 Since the high molecular weight dispersant adheres firmly to the surface of the metal fine particles, a stable metal fine particle dispersion can be obtained even in a polar solvent.
  • the dispersant that adheres firmly to the metal surface does not desorb during low-temperature firing at 120 ° C., and prevents fusion between the metal fine particles, making it difficult to develop high conductivity.
  • This high sintering temperature makes it difficult to adapt to the transistor electrode corresponding to the flexible base material and its peripheral circuit.
  • the dispersant remaining on the electrode surface becomes an insulator at the interface with the semiconductor, and the transistor characteristics are remarkably deteriorated. Therefore, a metal fine particle dispersion consisting only of a low molecular weight protective agent that does not use a high molecular weight dispersant is required.
  • the problems to be solved by the present invention include metal fine particles that exhibit sufficient conductivity and transistor characteristics at a firing temperature of about 120 ° C., metal fine particle dispersions containing the metal fine particles, and metal fine particles using the metal fine particle dispersions It is an object of the present invention to provide a thin film transistor electrode, a thin film transistor, and an electronic device using an ink and a metal fine particle ink using the metal fine particle dispersion.
  • the present inventors use a high molecular weight dispersant by using a primary amine compound containing at least one hetero element in addition to an amino group as a protective agent.
  • the inventors have completed the invention of fine metal particles that can be stably dispersed in a polar solvent or a low-polar solvent. It has been found that the metal fine particle dispersion according to the present invention exhibits excellent conductivity when fired at a low temperature of about 120 ° C. and excellent transistor characteristics when fired at a low temperature of about 120 ° C. Further, it was found that the fine particle dispersion can be stably dispersed even at 23 ° C. in addition to exhibiting the above properties.
  • An electronic circuit including a conductive film or a conductive pattern according to (9) or an electronic device according to (11) in its configuration.
  • the present invention uses metal fine particles that exhibit sufficient conductivity and transistor characteristics at a baking temperature of about 120 ° C., metal fine particle ink using the metal fine particle dispersion, and metal fine particle ink using the metal fine particle dispersion. Thin film transistor electrodes, thin film transistors, and electronic devices.
  • FIG. 3 is a TG-DTA measurement result of a silver fine particle dispersion produced based on Example 1.
  • FIG. 4 is a TG-DTA measurement result of a silver fine particle dispersion produced based on Example 2.
  • FIG. 4 is a transmission electron microscope image of a silver fine particle dispersion produced based on Example 1.
  • FIG. 7 is a transmission electron microscope image of a silver fine particle dispersion produced based on Example 2.
  • the method for producing fine metal particles according to the present embodiment produces a complex compound by mixing an amine mixed solution containing a primary amine compound having a hetero element other than nitrogen of a primary amino group and a metal compound. Step (first step), step of heating and decomposing the complex compound to produce metal fine particles (second step), and purification step of removing unnecessary substances from the reaction product containing metal fine particles (third step) ) And.
  • boiling point means a boiling point at 1 atm.
  • an amine compound that can completely complex the metal compound. If it is a compound containing a primary amino group selected from one or more primary amine compounds containing 3 or more carbon atoms containing a hetero element in addition to nitrogen of the primary amino group, two or more types may be used alone. These compounds may be used as a mixture. From the viewpoint of reactivity, an amine compound having a high amine concentration per volume is preferable, and an amine compound having 8 or less carbon atoms is preferably included.
  • the surface of the generated metal fine particles is effectively coated from the viewpoint of stabilizing the dispersion by preventing collisions between the metal colloid particles.
  • an amine compound that can be used. If it is a compound containing a primary amino group selected from one or more primary amine compounds containing 4 or more carbon atoms containing a hetero element in addition to nitrogen of the primary amino group, it may be used alone or in combination of two or more. These compounds may be used as a mixture. In order to reduce the formation of aggregates due to contact between particles, an amine compound having a long chain structure or a branched structure having 6 or more carbon atoms is preferably contained.
  • the complex compound produced in the first step needs to have a useful amine compound in the second step. Even when the first step is started with only the useful amine compound in the first step, the useful amine compound in the second step can be added before the second step is started. Moreover, when starting a 1st process, the amine compound useful in a 1st process and the amine compound useful in a 2nd process can also be used together. When the same kind of compound can be used as the amine compound useful in the first step and the amine compound useful in the second step, only one kind may be used as the amine compound.
  • the amine compound which can be utilized for the 1st process and the 2nd process is illustrated below, it is not limited to this.
  • a branched structure may exist, and the element at the branched portion is a hetero element such as nitrogen or phosphorus other than carbon. There may be.
  • alkoxyalkylamines having 3 or more carbon atoms having an alkoxy group in addition to the primary amino group can be used.
  • an alkanolamine having 4 or more carbon atoms having a hydroxyl group in addition to the primary amino group can be used.
  • amine compound containing nitrogen as a hetero element other than nitrogen of the primary amino group a diamine having 4 or more carbon atoms having a secondary or tertiary amino group or the like in addition to the primary amine can be used.
  • amine compound containing nitrogen as a hetero element other than nitrogen of the primary amino group a polyamine having 4 or more carbon atoms having a secondary or tertiary amino group or the like in addition to the primary amine can also be used.
  • alkylthioalkylamines having 3 or more carbon atoms having an alkylthio group in addition to the primary amino group can be used.
  • an amine compound containing no hetero element other than nitrogen of the primary amino group can be used in combination as amines.
  • an alkylamine can be used as the primary amine, specifically, 1-octylamine, 2-ethylhexylamine, 1-nonylamine, 1-decylamine, isodecylamine, 1-undecylamine, Examples include 1-dodecylamine, 1-tridecylamine, 1-tetradecylamine, 1-pentadecylamine, 1-hexadecylamine, 1-heptadecylamine, stearylamine, oleylamine and the like.
  • dialkylamine can be used, and specifically, di-n-ethylamine, di-n-propylamine, diisopropylamine, di-n-butylamine, di-n-hexylamine, di-1-octylamine Bis (2-ethylhexyl) amine, di-1-nonylamine, di-1-decylamine, diisodecylamine, di-1-undecylamine, di-1-dodecylamine, dioleylamine and the like.
  • a tertiary amine compound can be used in combination as amines as long as the effects of the present invention are not impaired.
  • a trialkylamine can be used, and specifically, triethylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, heptacosafluorotributylamine, tri-n-amylamine, perfluorotria Myramine, tri-n-hexylamine, N, Nn-octylamine, tri-n-octylamine, tri-n-octylamine, tris (2-ethylhexyl) amine, tri-n-nonylamine, tri-n -Decylamine, triisodecylamine, tri-n-undecylamine, tri-n-dodecylamine, trioleylamine, 1- [N, N-bis (2-ethylhexyl)
  • alkanolamines having 4 or more carbon atoms having a hydroxyl group can be used as the tertiary amine compound.
  • amidines can be used in combination as long as the effects of the present invention are not impaired.
  • 1,5-diazabicyclo [4.3.0] -5-nonene, 1,8-diazabicyclo [5.4.0] -7-undecene and the like can be exemplified.
  • Carboxylic acids can be added as long as the effects of the present invention are not impaired.
  • Carboxylic acids include fatty acids having 1 to 22 carbon atoms, oleic acid, linoleic acid, linolenic acid, ricinoleic acid, 15-hydroxypentadecanoic acid, 12-hydroxystearic acid, cholic acid, deoxycholic acid, dehydrocol Acid, chenooxycholic acid, 12-oxochenodeoxycholic acid, glycocholic acid, colanic acid, lithocholic acid, hyodeoxycholic acid, ursodeoxycholic acid, apocholic acid, taurocholic acid, abietic acid, dehydroabietic acid, glycyrrhizic acid, glycyrrhizin Acid, lauroyl sarcosine, stearoyl sarcosine, oleoyl sarcosine acid, 6-aminohexanoic
  • thiols can be added as long as the effects of the present invention are not impaired.
  • thiols octanethiol, decanethiol, dodecanethiol, perfluorooctanethiol, perfluorodecanethiol, perfluorododecanethiol, benzenethiol, 3-methylbenzenethiol, 4-methylbenzenethiol, 3-fluorobenzenethiol, 4 -Fluorobenzenethiol, 3-chlorobenzenethiol, 4-chlorobenzenethiol, pentachlorobenzenethiol, 3-bromobenzenethiol, 4-bromobenzenethiol, 3-methoxybenzenethiol, 4-methoxybenzenethiol, 3-methylthiobenzenethiol, 4 -Methylthiobenzenethiol, 3-trifluorometh
  • phosphines can be added as long as the effects of the present invention are not impaired. Examples thereof include tri-1-butylphosphine, tri-1-octylphosphine, tricyclohexylphosphine, and triphenylphosphine.
  • the metal species of the metal fine particles of the present invention are limited as long as the metal can be chemically bonded to a nitrogen-containing functional group selected from a primary amino group, a secondary amino group, a tertiary amino group, and an amidino group.
  • a nitrogen-containing functional group selected from a primary amino group, a secondary amino group, a tertiary amino group, and an amidino group.
  • gold, silver, copper, nickel, zinc, aluminum, platinum, palladium, tin, chromium, lead, tungsten, or the like can be used.
  • the metal species may be one type, a mixture of two or more types, or an alloy.
  • carboxylate a chloride, an oxide, carbonate, nitrate etc. are mentioned, for example.
  • oxalate and formate are particularly preferable. Oxalates and formates are because the carboxylate ions are decomposed by heating to reduce silver ions and volatilize as carbon dioxide at the same time, so that impurities hardly remain.
  • (First step) In the first step of producing a complex compound, an amine compound and a silver compound are mixed to produce a complex compound therebetween.
  • the total amount of amine contained in the amine mixture is preferably equal to or greater than the stoichiometric amount of the metal in the metal compound. This is because if a metal compound that does not become a complex compound remains, uniform and stable dispersion of metal nanoparticles may be hindered.
  • the formation reaction of the complex compound between the amine mixture and the metal compound needs to be adjusted because the reactivity changes depending on the amine compound and the metal compound to be used, but the mixture containing the amine mixture and the metal compound can be adjusted from 30 ° C. It can be carried out by stirring at about 50 ° C. for about 5 minutes to 3 hours. Although the reaction time can be shortened by increasing the reaction temperature, the reaction temperature is preferably 50 ° C. or less from the viewpoint of avoiding an unexpected decomposition reaction by providing a sufficient temperature difference from the thermal decomposition start temperature in the second step. . In order to avoid chemical changes and ignition of the reaction system, particularly amine compounds, it is preferable to avoid mixing of carbon dioxide and moisture, and the reaction can be performed in an inert gas such as nitrogen or argon, or in a dry air atmosphere.
  • an inert gas such as nitrogen or argon
  • step metal complexes are formed by heating and decomposing the complex compound produced in the previous step.
  • the temperature at which the complex compound is decomposed by heating varies depending on the amine compound and the metal compound to be used, so adjustment is necessary, but the metal compound is decomposed to generate a metal, and the amine compound from the generated metal fine particles From the viewpoint of preventing desorption, it is preferable to react in the range of 70 ° C. to 150 ° C. for about 5 minutes to 2 hours.
  • the reaction temperature in this step should not exceed the boiling point of the amine compound due to the heat generated by the progress of the thermal decomposition reaction. It is preferable from the viewpoint of avoiding bumping.
  • in order to prevent ignition of the vaporized amine compound it is preferable to make it react on low oxygen concentration conditions.
  • the reaction heat due to thermal decomposition of the metal oxalate metal salt amine complex occurs, and therefore it is possible that the reaction heat cannot be controlled when the reaction scale is expanded. Therefore, when the ratio of the molar amount m2 of the amine to the molar amount m1 of the metal (m2 / m1) is, for example, in the range of 5-20, the amine solution is added excessively to generate oxalate during thermal decomposition. The reaction heat to be absorbed can be absorbed by the amine solution, and bumping can be prevented.
  • the reaction liquid after the thermal decomposition of the complex compound becomes, for example, a brown suspension when the metal species is silver. From this suspension, target metal fine particles can be obtained by a separation operation such as decantation.
  • Metal fine particle dispersion It is considered that the metal fine particles whose surface is coated with a protective agent by decantation reflects the chemical properties of the protective agent and is well dispersed in a solvent that gives an interaction within a specific range.
  • an amine compound containing a hetero element in addition to nitrogen of the primary amino group By selecting and using an amine compound containing a hetero element in addition to nitrogen of the primary amino group, the polarity of the surface of the fine particles coated with the amine compound can be increased and uniformly and stably in a polar solvent. Metal fine particles that can be dispersed are obtained.
  • the polar solvent in the present invention has at least one hydroxyl group, carboxyl group, amino group, ether group, carbonyl group, amide group, nitrile group, or ester group as a polar functional group, and has a solubility parameter (SP value). It refers to a solvent of 20 [MPa 1/2 ] or more.
  • the polar solvent used here may be used independently, but can also be mixed and used. If the SP value as a mixture is 20 [MPa 1/2 ] or more, a low polarity solvent having an SP value of less than 20 [MPa 1/2 ] can be used in combination.
  • the selection criterion is not limited to the SP value, and another parameter may be used as long as the polarity of the solvent can be evaluated based on an appropriate criterion.
  • the solubility parameter is a parameter related to mutual solubility of substances proposed by Hildebrand et al., And is determined by measuring the energy required for vaporization of a single component per average molar volume, as shown in Equation (1).
  • solubility parameter [MPa 1/2 ] E heat of vaporization T; Temperature R; gas constant V m; molar volume [Delta] H; vaporization enthalpy Delta] E; vaporization energy
  • the organic fine particle dispersion of the present invention is selected by selecting an organic solvent having a solubility parameter (SP value) of 20 [MPa 1/2 ] or more as a polar solvent, adding the metal nanoparticles obtained in the second step, and stirring. Can be obtained.
  • organic solvents having an SP value of 20 [MPa 1/2 ] or more are described in, for example, Polymer Handbook 4th Edition, John Wiley & Sons, Inc. And can be selected based on the value.
  • Examples of the organic solvent having an SP value of 20 [MPa 1/2 ] or more include the following hydroxyl group-containing solvents.
  • the value in () is the SP value of the solvent.
  • organic solvents having an SP value of 20 [MPa 1/2 ] or more include acetone (20.3), cyclopentanone (21.3), cyclohexanone (20.3), acetophenone (21.7), acrylonitrile. (24.3), propionitrile (22.1), n-butyronitrile (21.5), isobutyronitrile (20.1), ⁇ -butyrolactone (25.8), ⁇ -caprolactone (20.7) ), Propiolactone (27.2), 2,3-butylene carbonate (24.8), ethylene carbonate (30.1), 1,2-ethylene carbonate (27.2), dimethyl carbonate (20.3) ), Ethylene carbonate (30.1), dimethyl malonate (22.5), ethyl lactate (20.5), methyl benzoate (21.5), methyl salicylate (21.7), ethylene glycol diacetate Cole (20.5), ⁇ -caprolactam (26.0), dimethyl sulfoxide (29.7), N, N-dimethylformamide (24.8), N, N-di
  • solvents that can be used in combination include water, isoamyl alcohol, 3-methoxy-1-butanol, 2-pentanol, 3-methyl-1-pentanol, 3-methyl-2-pentanol, 1- Hexanol, 2-hexanol, 2-ethylhexanol, 1-octanol, isooctyl alcohol, 2-butyl-1-octanol, 1-nonanol, 1-decanol, lauryl alcohol, myristyl alcohol, cetyl alcohol, stearyl alcohol, oleyl alcohol, Alcohols such as 2- (2-ethoxyethoxy) ethanol, 2- (2-butoxyethoxy) ethanol, furfuryl alcohol, terpineol, phenol, 2-phenoxyethanol, 1-phenoxy-2-propanol, ethylene glycol , Propylene glycol, diethylene glycol, 1,2-butanediol, 1,3-butanediol, 1,
  • Hydrocarbon ethyl acetate, propyl acetate, isopropyl acetate, 1-methoxy-2-propyl acetate, 3-methoxybutyl acetate, ethylene glycol monomethyl ether acetate, 2- (2-ethoxyethoxy) ethyl acetate Cetates, 2- (2-butoxyethoxy) ethyl acetate, 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate, ⁇ -butyrolactone, esters such as ethyl lactate, methyl ethyl ketone, methyl isobutyl ketone, 2 -Ketones such as pentanone, 2-heptanone, cyclohexanone, ethers such as diethyl ether, 1,2-dimethoxyethane, ethylene glycol diethyl ether, diethylene glycol diethyl ether, tetrahydrofuran, N, N
  • amines, alkanolamines, amidines, carboxylic acids, thiols, and phosphines exemplified above may be added.
  • a fatty acid and a hydroxy fatty acid dispersibility in a nonpolar solvent is improved, and dispersion at a metal concentration of 50% or more becomes possible. Also, the dispersion stability at room temperature is improved.
  • Metal fine particle ink The metal fine particle dispersion of the present invention is converted into an ink by pad printing, screen printing, screen offset printing, ink jet printing, flexographic printing, letterpress printing, planographic offset printing, waterless planographic offset printing, gravure printing, gravure offset printing,
  • the image can be formed using a printing method selected from the group consisting of letterpress reversal printing, laser printing, xerographic printing, pad printing, and combinations thereof.
  • a low viscosity solvent of 50 mPa ⁇ s or less at 20 ° C.
  • a solvent include water, methanol, ethanol, 1-propanol, isopropanol, 1-butanol, sec-butanol, tert-butanol, isoamyl alcohol, 3-methoxy-1-butanol, 1-pentanol, 2 -Pentanol, 4-methyl-2-pentanol, 3-methyl-1-pentanol, 3-methyl-2-pentanol, 1-hexanol, 2-hexanol, 2-ethylhexanol, 1-octanol, isooctyl Alcohol, 2-butyl-1-octanol, 1-nonanol, 1-decanol, oleyl alcohol, 2- (2-ethoxyethoxy) ethanol, 2- (2-
  • the metal fine particle ink includes a binder component such as a resin, an antifoaming agent, an adhesion imparting agent to the base material, an antioxidant, and various catalysts for promoting film formation.
  • a binder component such as a resin, an antifoaming agent, an adhesion imparting agent to the base material, an antioxidant, and various catalysts for promoting film formation.
  • Various surfactants such as silicone surfactants and fluorine surfactants, leveling agents, mold release accelerators, and the like can be added as printing aids.
  • the metal fine particle ink of the present invention is excellent in dispersion stability, it can be suitably used for forming an image such as a thin film electrode. Furthermore, since firing at a low temperature is possible, the metal fine particle ink of this embodiment can be applied or printed on a substrate having low heat resistance such as a resin substrate or a paper substrate to form a wiring.
  • a thin film transistor having such a source electrode and a drain electrode is a thin film transistor with less variation in mobility and threshold voltage when driven.
  • the electrodes have the same thickness, both of which are made of extremely uniform conductors of 50 nm or more, preferably 100 to 200 nm, and can be easily formed into electrodes having an appropriate electrode shape with no abnormalities such as concave and convex shapes. Is obtained.
  • an electrode is optimal for obtaining a transistor array including a thin film transistor, an integrated circuit, and the like.
  • the thin film transistor since a stable channel shape can be obtained in the thin film transistor electrode, the thin film transistor has less variation in mobility and threshold voltage when driven.
  • Such excellent features are the features of transfer printing described above, which cannot be achieved by conventional printing methods such as screen printing and ink jet printing.
  • a letterpress on which a convex portion corresponding to an image reversal pattern is formed and a transferred member (blanket) having releasability are used. Applying metal fine particle ink to the entire surface of the member to be transferred and pressing the relief plate onto the coated surface on the member to be transferred, and transferring and removing the portion corresponding to the reversal pattern of the image on the relief plate And a step of transferring and printing an image on a support such as a substrate using a member to be transferred on which an image portion corresponding to the image pattern is formed by removing the reverse pattern pressed by the relief printing plate.
  • the printing method provided with.
  • the viscosity of the ink is excessive because the high-boiling solvent remains in the ink coating until the image formed on the transferred member by the letterpress is transferred to the printing substrate. Can be prevented, and can maintain appropriate adhesiveness and cohesive force necessary for transfer, and printing becomes possible.
  • the high boiling point solvent solvent added to the fine metal particle ink used for letterpress reverse printing one or more of ester solvents, alcohol solvents, ether solvents and hydrocarbon solvents are used.
  • the total ink composition contains 5 to 90% by mass, preferably 30 to 70% by mass, and more preferably 40 to 60% by mass.
  • the blending amount is adjusted in the range of 5 to 90% by mass depending on the printing speed and printing order of the letterpress reverse printing method.
  • the high boiling point solvent used in the ink is selected in consideration of the dispersion stability of the metal fine particles, and the following can be used, but is not limited thereto.
  • n-nonane (boiling point 150 ° C.), n-decane (boiling point 174 ° C.), n-undecane (boiling point 195 ° C.), n-dodecane (boiling point 216 ° C.), n-tridecane (boiling point 235 ° C.), n-tetradecane (Boiling point 253 ° C), n-hexanol (boiling point 157 ° C), n-heptanol (boiling point 177 ° C), n-octanol (boiling point 194 ° C), n-nonanol (boiling point 214 ° C), n-decanol (boiling
  • the metal fine particles of the present invention are excellent in low-temperature sinterability, and can exhibit excellent conductivity by sintering at a temperature of 120 ° C. or lower. Therefore, the metal fine particles of the present invention can be used for materials having low heat resistance such as resin films.
  • the firing method for sintering the metal fine particles is not limited to sintering by heat, and the metal fine particles may be fused.
  • the metal fine particles can be sintered by using visible light, infrared light or laser light irradiation, or plasma treatment including hydrogen gas.
  • visible light when visible light is used for sintering of the metal fine particles, it can be performed by light irradiation using a flash lamp.
  • the metal fine particles of this embodiment are used, wiring, electrodes, etc. having sufficiently low resistivity (6 ⁇ 10E-6 ⁇ ⁇ cm or less by baking at 120 ° C. when silver is used for the metal).
  • a conductive structure can be formed. Therefore, the metal fine particles of the present embodiment can be suitably used for manufacturing various electronic components such as a thin film transistor, an integrated circuit including a thin film transistor, a touch panel, an RFID, a flexible display, an organic EL, a circuit board, and a sensor device.
  • a thin film transistor is a transistor in which at least a gate electrode, an insulator layer, a source electrode and a drain electrode, and a semiconductor layer are stacked over a substrate.
  • the thin film transistor usually has a thickness of 0.1 to 3 ⁇ m excluding the substrate serving as a support.
  • a thin film transistor is formed by laminating a source electrode, a drain electrode, a gate electrode, a semiconductor layer, and an insulator layer made of a conductor in any order on a substrate so that the function of the transistor is exhibited. It can be manufactured easily.
  • the thin film transistor of the present invention can have horizontal and vertical transistor structures.
  • a bottom-gate (BG) or top-gate (TG) transistor defined by the positional relationship of the gate electrode with the transistor component can be used.
  • a transistor structure such as a bottom contact type, a top contact type, and a bottom top contact type can be adopted.
  • the thin film transistor of the present invention is characterized in that at least one electrode is formed using the metal fine particles of the present invention.
  • the electrode for the thin film organic transistor includes the metal fine particles of the present invention and other conductive materials (for example, gold, silver, copper, nickel, zinc, aluminum, calcium, magnesium, iron, platinum, palladium, tin, chromium).
  • Metal particles such as silver, palladium, and alloys of these metals such as silver / palladium; thermally decomposable metal compounds that give a conductive metal by thermal differentiation at a relatively low temperature, such as silver oxide, organic silver, and organic gold; zinc oxide (ZnO), conductive metal oxide particles such as indium tin oxide (ITO), etc.) can also be used as a mixture.
  • the electrode for a thin film organic transistor of the present invention is an ink jet printing method, a screen printing method, a screen offset printing method, a spin coating method, a bar coating method, a pad printing method, a slit coating method, a dip coating method, a spray coating method, a gravure printing method.
  • a printing method selected from the group consisting of a flexographic printing method, a lithographic offset printing method, a gravure offset printing method, a relief printing method, a relief printing method, a relief printing method, a relief printing method, and combinations thereof. it can.
  • a letterpress reverse printing method because an electrode image portion can be formed with a finer and smoother thin film.
  • the electrode width in the laminated section of the thin film transistor is not different in the thickness direction, and an electrode having no transfer abnormality is obtained.
  • a thin film transistor having such an electrode is a thin film transistor with less variation in mobility and threshold voltage when driven.
  • the method of forming transistor electrodes by letterpress reversal printing does not require an expensive vacuum device and can drastically reduce production costs including capital investment, compared to methods for obtaining the electrodes by vapor deposition or other dry methods. It becomes.
  • the process can be reduced in temperature, and a resin film can be used as the substrate, which is preferable for realizing flexibility and low cost.
  • the source and drain electrodes of the thin film transistor of the present invention By subjecting the source and drain electrodes of the thin film transistor of the present invention to surface treatment as necessary, the charge injection efficiency into the semiconductor layer can be improved.
  • the surface treatment material of the electrode for the thin film organic transistor can be arbitrarily selected according to the energy level of the semiconductor.
  • the electrode for a thin film organic transistor it can be formed by any known and commonly used dry or wet process.
  • the wet method include spin coating, bar coating, slit coating, dip coating, spray coating, dispenser, and ink jet.
  • the surface treatment amount of the thin film organic transistor electrode can be determined by measuring the work function of the electrode before and after the surface treatment using an atmospheric photoelectron spectrometer.
  • substrate for thin film organic transistor there are no limitations on the substrate applicable to the thin film transistor of the present invention.
  • silicon a thermal oxide film silicon whose surface is oxidized to be an insulating layer, glass, a thin metal plate such as stainless steel on which an insulating layer is formed; polycarbonate (PC)
  • Plastic films such as polyethylene terephthalate (PET), polyimide (PI), polyethersulfone (PES), polyethylene naphthalate (PEN), liquid crystal polymer (LCP), polyparaxylylene, polyphenylene sulfide (PPS), cellulose;
  • a composite film obtained by adding a gas barrier layer, a hard coat layer, etc. to a plastic film can be used.
  • a resin film can be suitably used as the substrate.
  • the insulator material used for the insulator layer of the thin film transistor of the present invention is not limited as long as it includes an insulating material, and a publicly known material can be used.
  • a publicly known material can be used.
  • oxides such as zirconia, silicon dioxide, aluminum oxide, titanium oxide, and tantalum oxide, ferroelectric oxides such as SrTiO 3 and BaTiO 3 , Dielectric fine particles such as nitrides such as silicon nitride and aluminum nitride, sulfides and fluorides can be dispersed.
  • the insulator layer and the gate electrode layer can be formed by any known and commonly used dry or wet processes.
  • the surface of the insulator layer may be formed by, for example, hexamethyldisilazane (HMDS), octyltrichlorosilane (OTS-8), octadecyltrichlorosilane, (OTS-18), dodecyltrichlorosilane (DTS), SAM (self-assembled film) treatment can be performed with various silane coupling agents such as fluorine-substituted octatrichlorosilane (PFOTS) and ⁇ -phenethyltrichlorosilane.
  • HMDS hexamethyldisilazane
  • OTS-8 octyltrichlorosilane
  • OTS-18 octadecyltrichlorosilane
  • DTS dodecyltrichlorosilane
  • SAM self-assembled film
  • a fluorine-based material is used.
  • a surfactant or the like can be used.
  • the thickness of the insulating layer and the gate electrode of the thin film transistor of the present invention is not particularly limited, but the thickness of the insulating layer is preferably 5 to 1000 nm from the viewpoint of suppressing variations in ON / OFF values.
  • the thickness of the gate electrode is preferably 20 to 1000 nm from the viewpoint of good followability to a flexible substrate.
  • organic semiconductor material As a semiconductor material used for the semiconductor layer of the thin film transistor, an organic or inorganic semiconductor material can be applied.
  • organic semiconductor materials include low-molecular organic semiconductors such as phthalocyanine derivatives, porphyrin derivatives, naphthalene tetracarboxylic acid diimide derivatives, fullerene derivatives, pentacene and pentacentriisopropylsilyl (TIPS) pentacene, and various pentacene precursors.
  • Body anthracene, perylene, pyrene, phenanthrene, coronene and other polycyclic aromatic compounds and derivatives thereof, oligothiophene and derivatives thereof, thiazole derivatives, fullerene derivatives, dinaphthothiophene compounds, carbon nanotubes and other carbon compounds, etc.
  • thiophene such as benzothienobenzothiophene, phenylene, vinylene, and the like, and copolymers thereof can be suitably used.
  • polythiophene poly(2-hexylthiophene) (P3HT)
  • P3HT polythiophene polymers
  • PQT-12 polythiophene-thienothiophene copolymers
  • B10TTT thiophene-thienothiophene copolymers
  • fluorenes such as F8T2 Polymers
  • phenylene vinylene polymers such as paraphenylene vinylene
  • arylamine polymers such as polytriarylamine, and the like
  • solution-soluble Si semiconductor precursors that can be modified into inorganic semiconductors by energy treatment such as heat treatment, EB, and Xe flash lamps, and oxide semiconductors such as IGZO, YGZO, and ZnO A precursor of the above can be applied.
  • an organic semiconductor is preferable to an inorganic semiconductor because the semiconductor layer can be easily formed at a lower temperature and is easy to handle.
  • organic semiconductors those having a high self-aggregation property and easy to take a crystal structure are preferable because more excellent transistor characteristics can be exhibited.
  • Solvents that can be applied to inks of organic and inorganic semiconductor materials only need to be able to dissolve the semiconductor materials at room temperature or slightly heated, have appropriate volatility, and form an organic semiconductor thin film after volatilization of the solvent.
  • An organic solvent such as can be used.
  • the method for forming the semiconductor layer of the thin film transistor is not particularly limited, and the thin film transistor can be formed by any known and commonly used dry or wet process.
  • a protective film layer can be formed on the uppermost layer if necessary.
  • the protective film layer By providing the protective film layer, the influence of outside air can be minimized, and the electrical characteristics of the thin film transistor can be stabilized.
  • the thin film transistor of the present invention can be manufactured by any of the manufacturing methods exemplified above. Further, the thin film transistor thus obtained can be a transistor array or an integrated circuit by integrating a plurality of elements.
  • the metal fine particle dispersion is subjected to dynamic light scattering measurement using a particle size distribution measuring device (UPA-EX manufactured by MicrotracBEL), the particle size distribution is calculated from the frequency of the obtained scattered light, and the volume average particle size value is a reference value. Used as.
  • thermogravimetric analysis 2-25 mg of fine metal particle dispersion is precisely weighed on an aluminum pan for thermogravimetric analysis and placed on an EXSTAR TG / DTA6300 differential thermogravimetric analyzer (made by SII NanoTechnology Co., Ltd.). The temperature was increased at a rate of 10 ° C. per minute until a weight reduction rate of 100 ° C. to 600 ° C. was measured.
  • a coating film was prepared by spin-coating a metal fine particle dispersion on a non-alkali glass substrate (40 mm ⁇ 50 mm) having a thickness of 0.7 mm.
  • the obtained coating film was sintered at 120 ° C. for 30 minutes with a constant temperature / dryer (clean oven DE411 made by Yamato Kagaku) to obtain a sintered film.
  • the number of rotations during spin coating was adjusted so that the thickness of the sintered film was 100 nm.
  • the volume resistivity was measured with a low resistivity meter Lorester EP (manufactured by Mitsubishi Chemical Corporation) using a four-terminal measurement method.
  • the volume resistivity was determined from the film thickness of the conductive film (sintered film) of the test piece. For example, the volume resistivity is shown by a method in which 8.8 ⁇ 10 ⁇ 6 ⁇ ⁇ cm is described as “8.8E-6 ⁇ ⁇ cm”.
  • a silver fine particle ink in which silver fine particles having an average particle size of nanometer order are uniformly dispersed in a liquid medium is uniformly applied to a silicone rubber surface of a transparent blanket in which a silicone rubber layer is formed on a film by a slit coater. It was dried to such an extent that the tack remained.
  • a glass relief plate on which a negative pattern of a desired source and drain electrode pattern was formed was pressed against the silver fine particle ink uniform coating surface to remove unnecessary portions.
  • the glass relief printing plate is obtained by wet etching of glass excellent in accuracy of convex acute angle portions (edges).
  • the pattern remaining on the blanket was further dried and the solvent in the silver fine particle ink was sufficiently volatilized, it was pressed onto the substrate at a pressure of 150 kPa to transfer the desired source and drain electrode patterns onto the substrate.
  • the average value was 0.8 nm.
  • the electrode pattern produced by letterpress reverse printing was produced with a channel length (L) of 20 ⁇ m and a channel width (W) of 100 ⁇ m.
  • the electrode film thickness was made to be 100 nm after sintering.
  • the fabricated device was subjected to a heat treatment in the atmosphere at 50 ° C. for about 10 minutes, and the Id-Vg and Id-Vd characteristics were measured with a semiconductor parameter measuring device (Keithley 4200CSC). The / OFF ratio was determined by a known method.
  • the unit of field effect mobility is cm 2 / Vs.
  • Example 1 Synthesis of silver fine particle dispersion
  • N, N-dimethylethylenediamine manufactured by Tokyo Chemical Industry Co., Ltd.
  • 3- (2-ethylhexyloxy) propyl After adding 325.6 g (1.738 mmol) of amine (manufactured by Tokyo Chemical Industry Co., Ltd.), the mixture was heated and stirred with an oil bath until the internal temperature of the amine solution reached 30 ° C.
  • the prepared metal fine particle dispersion was spin coated on a glass substrate to prepare a coating film.
  • the obtained coating film was sintered at 120 ° C. for 30 minutes with a constant temperature dryer to obtain a sintered film.
  • the volume resistivity estimated from the resistance value obtained by measurement and the sintered film thickness was 8.1E-6 ⁇ ⁇ cm.
  • a thin film transistor having a bottom gate bottom contact (BGBC) structure having a source electrode or a drain electrode formed by patterning a silver fine particle ink produced using the silver fine particle dispersion of the present invention by a letterpress reverse printing method was produced and evaluated by the following procedure. .
  • gate electrode A Cr film having a film thickness of 100 nm is formed on a non-alkali glass having a thickness of 0.7 mm by sputtering, then a photoresist is applied, exposed and developed, and the Cr film is formed by wet etching. A gate electrode was formed by patterning.
  • Source electrode and drain electrode by letterpress reverse printing method
  • Silver fine particle ink comprising the silver fine particle dispersion of the present invention containing 1-butanol or 1-propanol (manufactured by Kanto Chemical Co., Inc.) as a solvent on the insulating layer.
  • a source electrode and a drain electrode were produced by using a letterpress reverse printing method.
  • the channel length of the transistor was 20 ⁇ m and the channel width was 100 ⁇ m.
  • sintering was performed at 120 ° C. for 30 minutes in a clean oven.
  • the electrode thickness after sintering was 100 nm.
  • the fabricated device had a field effect mobility of 0.6 and an ON / OFF ratio of 3.8E + 6.
  • Example 2 Synthesis of silver fine particle dispersion
  • the prepared metal fine particle dispersion was spin coated on a glass substrate to prepare a coating film.
  • the obtained coating film was sintered at 120 ° C. for 30 minutes with a constant temperature / dryer to obtain a sintered film.
  • the volume resistivity estimated from the resistance value obtained by measurement and the sintered film thickness was 6.2E-6 ⁇ ⁇ cm.
  • a source electrode and a drain electrode were prepared by a letterpress reverse printing method using a silver fine particle ink produced using the silver fine particle dispersion of the present invention. Otherwise, a thin film transistor having a bottom gate bottom contact (BGBC) structure was produced in the same manner as in the method described in Example 1.
  • BGBC bottom gate bottom contact
  • the fabricated device had a field effect mobility of 0.8 and an ON / OFF ratio of 1.2E + 5.
  • Comparative Example 1 Synthesis of silver fine particle dispersion
  • the silver fine particle dispersion used in Comparative Example 1 was prepared by the method described in [Sample 1] of the examples described in WO2015 / 075929.
  • n-octylamine manufactured by Tokyo Chemical Industry Co., Ltd.
  • 7.6 mmol of N, N-dibutylethylenediamine manufactured by Tokyo Chemical Industry Co., Ltd.
  • 1 mmol of oleylamine manufactured by Tokyo Chemical Industry Co., Ltd.
  • Oleic acid 47.7 ⁇ L
  • n-dodecane manufactured by Tokyo Chemical Industry Co., Ltd.
  • n-nonanol manufactured by Tokyo Chemical Industry Co., Ltd.
  • the prepared metal fine particle dispersion was spin coated on a glass substrate to prepare a coating film.
  • the obtained coating film was sintered at 120 ° C. for 30 minutes with a constant temperature / dryer to obtain a sintered film.
  • the volume resistivity estimated from the resistance value obtained by measurement and the sintered film thickness was 6.0E + 1 ⁇ ⁇ cm.
  • a source electrode and a drain electrode were prepared by a letterpress reverse printing method using a silver fine particle ink prepared by adjusting the silver fine particle dispersion prepared in this Comparative Example. Otherwise, a thin film transistor having a bottom gate bottom contact (BGBC) structure was produced in the same manner as in the method described in Example 1.
  • BGBC bottom gate bottom contact
  • the fabricated device had a field effect mobility of 0.9 and an ON / OFF ratio of 5.7E + 5.
  • Comparative Example 2 Synthesis of silver fine particles
  • the conductive paste used in Comparative Example 2 was produced by the method described in Example 1 described in WO2007 / 120756.
  • Toluene was removed from the solution using a rotor evaporator to obtain a highly viscous silver fine particle dispersion.
  • To the resulting silver fine particle dispersion 125 ml of methanol and 125 ml of acetone were added to precipitate silver fine particles.
  • the solution containing silver particulates was filtered through a fine sintered glass funnel and the solid product was collected and dried in vacuo at room temperature. 2.3 g of a dark blue solid product as silver fine particles was obtained.
  • Cyclohexane (manufactured by Tokyo Chemical Industry Co., Ltd.) was added to the dark blue solid product obtained by synthesis so that the silver concentration was 50 wt%, and the mixture was stirred overnight to obtain a silver fine particle dispersion.
  • the prepared metal fine particle dispersion was spin coated on a glass substrate to prepare a coating film.
  • the obtained coating film was sintered at 120 ° C. for 30 minutes with a constant temperature / dryer to obtain a sintered film.
  • the volume resistivity estimated from the resistance value obtained by measurement and the sintered film thickness was 6.7E-6 ⁇ ⁇ cm.
  • a mixed solvent of 200 ml of isopropyl alcohol and 200 ml of hexane was added to the dispersion obtained after completion of the reaction and stirred for 2 minutes, followed by centrifugal concentration at 3000 rpm for 5 minutes. After removing the supernatant, 20 g of water was further added to the precipitate, followed by stirring for 2 minutes, and the organic solvent was removed under reduced pressure to obtain a silver fine particle dispersion.
  • the prepared metal fine particle dispersion was spin coated on a glass substrate to prepare a coating film.
  • the obtained coating film was sintered at 120 ° C. for 30 minutes with a constant temperature / dryer to obtain a sintered film.
  • the volume resistivity estimated from the resistance value obtained by the measurement and the sintered film thickness was 2.5E + 1 ⁇ ⁇ cm.
  • a source electrode and a drain electrode were prepared by a letterpress reverse printing method using a silver fine particle ink produced using the silver fine particle dispersion of the present invention. Otherwise, a thin film transistor having a bottom gate bottom contact (BGBC) structure was produced in the same manner as in the method described in Example 1.
  • BGBC bottom gate bottom contact
  • the fabricated device had a field effect mobility of 0.07 and an ON / OFF ratio of 6.5E + 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Thin Film Transistor (AREA)

Abstract

The present invention provides: metal fine particles which exhibit sufficient electrical conductivity and transistor characteristics with a firing temperature around 120°C; a metal fine particle dispersion which contains the metal fine particles; a metal fine particle ink which uses the metal fine particle dispersion; and a thin film transistor electrode, a thin film transistor and an electronic device, each of which uses the metal fine particle ink that uses the metal fine particle dispersion. According to the present invention, metal fine particles which are able to be stably dispersed in a polar solvent or a solvent with low polarity without using a dispersant that has a high molecular weight are produced by using, as a protective agent, a primary amine that contains at least one hetero element other than an amino group. It is found that a metal fine particle dispersion according to the present invention exhibits excellent electrical conductivity by means of firing at a low temperature around 120°C, while exhibiting excellent transistor characteristics by means of firing at a low temperature around 120°C. It is also found that the fine particle dispersion is able to be stably dispersed at 23°C, while exhibiting the above-described characteristics.

Description

金属微粒子分散体、導電性インク、および電子デバイスMetal fine particle dispersion, conductive ink, and electronic device

本発明は、有機エレクトロルミネッセンス素子、有機薄膜トランジスタ、有機薄膜太陽電池等、有機電子デバイスにおいて、印刷により形成される配線、電極等に用いる導電性材料、特に、有機半導体と接する電極に用いる金属微粒子およびそれを分散させた金属微粒子分散体、該金属微粒子分散体から調整された導電性インク、該導電性インクを塗布し導電性膜を形成した薄膜トランジスタ電極、当該電極を有する薄膜トランジスタ、および、電子デバイスに関する発明である。 The present invention relates to an organic electroluminescent element, an organic thin film transistor, an organic thin film solar cell, etc., in an organic electronic device, a conductive material used for wiring, electrode, etc. formed by printing, in particular, metal fine particles used for an electrode in contact with an organic semiconductor, and TECHNICAL FIELD The present invention relates to a metal fine particle dispersion in which it is dispersed, a conductive ink prepared from the metal fine particle dispersion, a thin film transistor electrode formed by applying the conductive ink to form a conductive film, a thin film transistor having the electrode, and an electronic device It is an invention.

近年、電子デバイスの軽量化、薄膜化に加えて、フレキシブル、ストレッチャブルな基板に回路を形成するため、半導体材料、導電性材料、絶縁材料を印刷することで電子デバイスを作製するプリンタブルエレクトロニクス技術が注目されている。 In recent years, in addition to reducing the weight and thinning of electronic devices, in order to form circuits on flexible and stretchable substrates, printable electronics technology has been developed to produce electronic devices by printing semiconductor materials, conductive materials, and insulating materials. Attention has been paid.

プリンテッドエレクトロニクス技術による配線部分、電極部分の形成には、ナノサイズ、マイクロサイズの金属微粒子が用いられ、この金属微粒子をインク化することで、配線部分、電極部分を印刷により簡便に形成することが可能になる。薄膜トランジスタ用電極のソース電極、ドレイン電極は、電極表面の平滑性がトランジスタ特性のひとつである電荷移動度に大きく影響を及ぼす。したがって、金属微粒子はナノサイズのものであること、もしくは、ナノサイズのものが混在していることが必要となる。 Nano-sized and micro-sized fine metal particles are used for the formation of wiring parts and electrode parts by printed electronics technology. By forming these metal fine particles into ink, wiring parts and electrode parts can be easily formed by printing. Is possible. The source electrode and the drain electrode of the thin film transistor electrode greatly affect the charge mobility, which is one of the transistor characteristics, of the smoothness of the electrode surface. Therefore, it is necessary that the metal fine particles are nano-sized or a mixture of nano-sized particles.

ナノサイズの金属微粒子はその表面活性の高さから、有機物で保護しないと安定して分散体として存在することができない。しかし、電極形成後の表面に残存する有機物は、絶縁物として、電極と有機半導体との界面における電子パスを阻害する要因となり、トランジスタ特性を低下させる要因となる。この分散安定性を担保しながら高い導電性及び高いトランジスタ特性を発現させることは難しい。 Nano-sized metal fine particles cannot exist stably as a dispersion unless they are protected with organic matter because of their high surface activity. However, the organic matter remaining on the surface after forming the electrode serves as an insulator, which obstructs the electron path at the interface between the electrode and the organic semiconductor, and deteriorates the transistor characteristics. It is difficult to develop high conductivity and high transistor characteristics while ensuring this dispersion stability.

高精細な配線部分、電極部分を印刷により作製する方法としては凸版反転印刷法が知られている。凸版反転印刷法は、一般にシリコーンゴムからなる離型性を有する転写部材を介して印刷を行う。したがって、非極性溶媒である金属微粒子分散体をインクとして用いた場合、分散媒である非極性溶媒が、離型性を有する転写部材であるシリコーンゴムを膨潤させるため、連続的に、かつ、再現性よく電極画像を作製することができない。凸版反転印刷法により電極画像を作製するためには金属微粒子分散体を低極性又は高極性溶媒中に分散させなければならない。 As a method for producing high-definition wiring portions and electrode portions by printing, a letterpress reverse printing method is known. In the letterpress reverse printing method, printing is generally performed via a transfer member having a releasability made of silicone rubber. Therefore, when the metal fine particle dispersion, which is a nonpolar solvent, is used as an ink, the nonpolar solvent, which is a dispersion medium, swells the silicone rubber that is a transfer member having releasability, so that it can be reproduced continuously. An electrode image cannot be produced with good properties. In order to produce an electrode image by the letterpress reverse printing method, the metal fine particle dispersion must be dispersed in a low polarity or high polarity solvent.

高い導電性及びトランジスタ特性を発現させるために、電極形成後の表面に残存する有機物を少なくする方法として、金属微粒子を保護する有機物(保護剤)に低分子量の物質をもちいた金属微粒子分散体を用いる方法が開示されている(特許文献1、特許文献2)。低分子量の保護剤は、塗膜焼結時に電極表面から脱離するため、電極表面に残存する有機物を減らすことができるためである。しかしながら、いずれの公報も低分子量系保護剤を用いた金属微粒子を非極性溶媒中へ分散させたものであり、凸版反転印刷用のインクとして好適に用いることができない。 In order to develop high conductivity and transistor characteristics, as a method of reducing the amount of organic matter remaining on the surface after electrode formation, a metal fine particle dispersion using a low molecular weight substance as an organic matter (protective agent) for protecting metal fine particles is used. A method to be used is disclosed (Patent Document 1, Patent Document 2). This is because the low molecular weight protective agent is detached from the electrode surface during coating film sintering, and thus organic substances remaining on the electrode surface can be reduced. However, any of these publications is a dispersion of metal fine particles using a low molecular weight protective agent in a nonpolar solvent, and cannot be suitably used as an ink for letterpress reverse printing.

高い分散安定性を金属微粒子分散体に付与するために、低分子量の物質を保護剤として用いた金属微粒子に、高分子量の分散剤を併用し、極性溶媒に金属微粒子を分散させる方法が開示されている(特許文献3、特許文献4)。高分子量の分散剤は、金属微粒子表面に強固に付着するため、極性溶媒中でも安定な金属微粒子分散体を得ることができる。しかしながら、この金属表面へ強固に付着した分散剤は、120℃の低温焼成では脱離せず、金属微粒子間の融着を妨げるため、高い導電性を発現させることが困難となる。この高い焼結温度は、フレキシブル基材に対応したトランジスタ電極やその周辺回路への適応を困難にさせる。加えて、高分子量の分散剤を含む当該分散体を使用した場合には、電極表面に残存する分散剤が半導体との界面の絶縁体となって、トランジスタ特性を著しく低下させる。したがって、高分子量の分散剤を使用しない低分子量の保護剤のみからなる金属微粒子分散体が必要となる。 In order to impart high dispersion stability to a metal fine particle dispersion, a method of dispersing metal fine particles in a polar solvent by using a high molecular weight dispersant in combination with metal fine particles using a low molecular weight substance as a protective agent is disclosed. (Patent Document 3 and Patent Document 4). Since the high molecular weight dispersant adheres firmly to the surface of the metal fine particles, a stable metal fine particle dispersion can be obtained even in a polar solvent. However, the dispersant that adheres firmly to the metal surface does not desorb during low-temperature firing at 120 ° C., and prevents fusion between the metal fine particles, making it difficult to develop high conductivity. This high sintering temperature makes it difficult to adapt to the transistor electrode corresponding to the flexible base material and its peripheral circuit. In addition, when the dispersion containing a high molecular weight dispersant is used, the dispersant remaining on the electrode surface becomes an insulator at the interface with the semiconductor, and the transistor characteristics are remarkably deteriorated. Therefore, a metal fine particle dispersion consisting only of a low molecular weight protective agent that does not use a high molecular weight dispersant is required.

WO2007/120756号公報WO 2007/120756 特開2008-270245号公報JP 2008-270245 A WO2016/084312号公報WO2016 / 084312 特開2010-177084号公報JP 2010-177084 A

本発明が解決しようとする課題は、120℃程度の焼成温度で十分な導電性及びトランジスタ特性を発現する金属微粒子、該金属微粒子を含む金属微粒子分散体、該金属微粒子分散体を用いた金属微粒子インク、及び該金属微粒子分散体を用いた金属微粒子インクを用いた薄膜トランジスタ電極、薄膜トランジスタ、および電子デバイスを提供することにある。 The problems to be solved by the present invention include metal fine particles that exhibit sufficient conductivity and transistor characteristics at a firing temperature of about 120 ° C., metal fine particle dispersions containing the metal fine particles, and metal fine particles using the metal fine particle dispersions It is an object of the present invention to provide a thin film transistor electrode, a thin film transistor, and an electronic device using an ink and a metal fine particle ink using the metal fine particle dispersion.

本発明者らは、上記課題を解決するために鋭意検討した結果、アミノ基以外に少なくとも一種のヘテロ元素を含有する第一級アミン化合物を保護剤として用いることにより、高分子量の分散剤を使用することなく、極性溶媒又は低極性溶媒に安定的に分散可能な金属微粒子の発明を完成するに至った。本発明に係る金属微粒子分散体は、120℃程度の低温での焼成で優れた導電性を示すとともに、120℃程度の低温での焼成で優れたトランジスタ特性を示すことを見出した。また、当該微粒子分散体は、上記特性を示すことに加え、23℃においても安定に分散可能であることを見出した。 As a result of intensive studies to solve the above problems, the present inventors use a high molecular weight dispersant by using a primary amine compound containing at least one hetero element in addition to an amino group as a protective agent. Thus, the inventors have completed the invention of fine metal particles that can be stably dispersed in a polar solvent or a low-polar solvent. It has been found that the metal fine particle dispersion according to the present invention exhibits excellent conductivity when fired at a low temperature of about 120 ° C. and excellent transistor characteristics when fired at a low temperature of about 120 ° C. Further, it was found that the fine particle dispersion can be stably dispersed even at 23 ° C. in addition to exhibiting the above properties.

(1)アミノ基および少なくとも一種のヘテロ元素を有する第一級アミン化合物を含有する金属微粒子を極性溶媒に分散させた金属微粒子分散体。 (1) A metal fine particle dispersion in which metal fine particles containing a primary amine compound having an amino group and at least one hetero element are dispersed in a polar solvent.

(2)(1)記載のヘテロ元素が少なくとも窒素、酸素、硫黄又は燐のいずれかから選択されるヘテロ元素である(1)記載の金属微粒子分散体。 (2) The fine metal particle dispersion according to (1), wherein the heteroelement described in (1) is a heteroelement selected from at least one of nitrogen, oxygen, sulfur, and phosphorus.

(3)(1)記載の極性溶媒に、炭素数2から7のアルカノールを含有することを特徴とする(1)記載の金属微粒子分散体。 (3) The metal fine particle dispersion described in (1), wherein the polar solvent described in (1) contains an alkanol having 2 to 7 carbon atoms.

(4)(1)~(3)いずれか1記載の金属微粒子が銀である金属微粒子分散体。 (4) A metal fine particle dispersion wherein the metal fine particles according to any one of (1) to (3) are silver.

(5)(1)~(4)いずれか1記載の金属微粒子分散体を含有するインク。 (5) An ink containing the metal fine particle dispersion described in any one of (1) to (4).

(6)表面エネルギー調整剤を含むことを特徴とする(5)記載のインク。 (6) The ink according to (5), comprising a surface energy adjusting agent.

(7)印刷助剤を含むことを特徴とする(5)又は(6)記載のインク。 (7) The ink according to (5) or (6), which comprises a printing aid.

(8)(5)~(7)いずれか1記載のインクジェット又は凸版反転印刷用インク。 (8) The ink for ink jet or letterpress reverse printing according to any one of (5) to (7).

(9)(5)~(8)いずれか1記載のインクを用いて形成される導電膜又は導電パターン。 (9) A conductive film or a conductive pattern formed using the ink according to any one of (5) to (8).

(10)(5)~(8)いずれか1記載のインクを用いて形成される半導体デバイス用電極。 (10) An electrode for a semiconductor device formed using the ink according to any one of (5) to (8).

(11)(10)記載の半導体デバイス用電極を構成に含む電子デバイス (11) An electronic device comprising the semiconductor device electrode according to (10) in its configuration

(12)(9)記載の導電膜又は導電パターン、又は(11)記載の電子デバイスを構成に含む電子回路、を提供するものである。 (12) An electronic circuit including a conductive film or a conductive pattern according to (9) or an electronic device according to (11) in its configuration.

本発明は、120℃程度の焼成温度で十分な導電性及びトランジスタ特性を発現する金属微粒子、当該金属微粒子分散体を用いた金属微粒子インク、及び該金属微粒子分散体を用いた金属微粒子インクを用いた薄膜トランジスタ電極、薄膜トランジスタ、および電子デバイスを提供する。 The present invention uses metal fine particles that exhibit sufficient conductivity and transistor characteristics at a baking temperature of about 120 ° C., metal fine particle ink using the metal fine particle dispersion, and metal fine particle ink using the metal fine particle dispersion. Thin film transistor electrodes, thin film transistors, and electronic devices.

実施例1に基づいて作製した銀微粒子分散体のTG-DTA測定結果。3 is a TG-DTA measurement result of a silver fine particle dispersion produced based on Example 1. FIG. 実施例2に基づいて作製した銀微粒子分散体のTG-DTA測定結果。4 is a TG-DTA measurement result of a silver fine particle dispersion produced based on Example 2. FIG. 実施例1に基づいて作製した銀微粒子分散体の透過型電子顕微鏡像。4 is a transmission electron microscope image of a silver fine particle dispersion produced based on Example 1. FIG. 実施例2に基づいて作製した銀微粒子分散体の透過型電子顕微鏡像。7 is a transmission electron microscope image of a silver fine particle dispersion produced based on Example 2. FIG.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

(金属微粒子粒子の合成)
本実施形態に係る金属微粒子の製造方法は、少なくとも第一級アミノ基の窒素以外にヘテロ元素を有する第一級アミン化合物を含有するアミン混合液と、金属化合物とを混合して錯化合物を生成させる工程(第一工程)と、錯化合物を加熱して分解させて金属微粒子を生成する工程(第二工程)と、金属微粒子を含む反応生成物から不要物を除去する精製工程(第三工程)と、を備えている。本明細書において、「沸点」は、1気圧での沸点を意味する。
(Synthesis of metal fine particle)
The method for producing fine metal particles according to the present embodiment produces a complex compound by mixing an amine mixed solution containing a primary amine compound having a hetero element other than nitrogen of a primary amino group and a metal compound. Step (first step), step of heating and decomposing the complex compound to produce metal fine particles (second step), and purification step of removing unnecessary substances from the reaction product containing metal fine particles (third step) ) And. In this specification, “boiling point” means a boiling point at 1 atm.

錯化合物を生成させる工程(第一工程)では、金属化合物を完全に錯化できるアミン化合物を用いることが好ましい。第一級アミノ基の窒素以外にヘテロ元素を含有する炭素数3以上の第一級アミン化合物から一種以上選ばれる第一級アミノ基を含む化合物であれば、単体で用いても、二種以上の化合物を混合して用いても良い。反応性の観点から、体積当りのアミン濃度が高いアミン化合物が好ましく、炭素数が8以下のアミン化合物を含むことが好ましい。 In the step of generating the complex compound (first step), it is preferable to use an amine compound that can completely complex the metal compound. If it is a compound containing a primary amino group selected from one or more primary amine compounds containing 3 or more carbon atoms containing a hetero element in addition to nitrogen of the primary amino group, two or more types may be used alone. These compounds may be used as a mixture. From the viewpoint of reactivity, an amine compound having a high amine concentration per volume is preferable, and an amine compound having 8 or less carbon atoms is preferably included.

錯化合物を加熱して分解させて金属微粒子を形成する工程(第二工程)では、金属コロイド粒子同士の衝突を防止することによって分散安定化する観点から、生成した金属微粒子表面を効果的に被覆できるアミン化合物を用いることが好ましい。第一級アミノ基の窒素以外にヘテロ元素を含有する炭素数4以上の第一級アミン化合物から一種以上選ばれる第一級アミノ基を含む化合物であれば、単体で用いても、二種以上の化合物を混合して用いても良い。粒子間の接触による凝集体の形成を低減するため、炭素数が6以上の長鎖構造又は分岐構造を有するアミン化合物を含有することが好ましい。 In the step of forming metal fine particles by heating and decomposing the complex compound (second step), the surface of the generated metal fine particles is effectively coated from the viewpoint of stabilizing the dispersion by preventing collisions between the metal colloid particles. It is preferable to use an amine compound that can be used. If it is a compound containing a primary amino group selected from one or more primary amine compounds containing 4 or more carbon atoms containing a hetero element in addition to nitrogen of the primary amino group, it may be used alone or in combination of two or more. These compounds may be used as a mixture. In order to reduce the formation of aggregates due to contact between particles, an amine compound having a long chain structure or a branched structure having 6 or more carbon atoms is preferably contained.

錯化合物を生成させる工程(第一工程)と錯化合物を加熱して分解させて金属微粒子を形成する工程(第二工程)は連続して行うものであるため、第二工程を行う前に、第一工程で生成した錯化合物には、第二工程で有用なアミン化合物が共存している必要がある。第一工程において有用なアミン化合物だけで第一工程を開始した場合であっても、第二工程を開始する前に第二工程において有用なアミン化合物を添加することができる。また、第一工程を開始する時に、第一工程において有用なアミン化合物と第二工程において有用なアミン化合物を併用することもできる。第一工程において有用なアミン化合物と第二工程において有用なアミン化合物として同一種の化合物を利用できる場合には、アミン化合物として一種のみ利用しても良い。 Since the step of generating the complex compound (first step) and the step of heating and decomposing the complex compound to form metal fine particles (second step) are performed continuously, before performing the second step, The complex compound produced in the first step needs to have a useful amine compound in the second step. Even when the first step is started with only the useful amine compound in the first step, the useful amine compound in the second step can be added before the second step is started. Moreover, when starting a 1st process, the amine compound useful in a 1st process and the amine compound useful in a 2nd process can also be used together. When the same kind of compound can be used as the amine compound useful in the first step and the amine compound useful in the second step, only one kind may be used as the amine compound.

以下に第一工程と第二工程に利用できるアミン化合物を例示するが、これに限定されるものではない。尚、分子構造中に三価以上の共有結合が可能な元素を含有する場合には、分岐構造が存在しても良く、分岐部分の元素は炭素以外に例えば、窒素、リンなどのヘテロ元素であっても良い。 Although the amine compound which can be utilized for the 1st process and the 2nd process is illustrated below, it is not limited to this. In the case where the molecular structure contains an element capable of a covalent bond having a valence of 3 or more, a branched structure may exist, and the element at the branched portion is a hetero element such as nitrogen or phosphorus other than carbon. There may be.

第一級アミノ基の窒素以外にヘテロ元素として酸素を含有するアミン化合物として、第一級アミノ基の他にアルコキシ基を有する炭素数3以上のアルコキシアルキルアミン類を用いることができる。具体的には2-メトキシエチルアミン、2-エトキシエチルアミン、2-n-プロポキシエチルアミン、2-イソプロポキシエチルアミン、2-n-ブトキシエチルアミン、2-イソブトキシエチルアミン、2-tert-ブトキシエチルアミン、2-n-ペンチルオキシエチルアミン、2-n-ヘキシルオキシエチルアミン、2-n-ヘプチルオキシエチルアミン、2-n-オクチルオキシエチルアミン、2-(2-エチルヘキシルオキシ)エチルアミン、2-(2-ブチルヘキシルオキシ)エチルアミン、2-デシルオキシエチルアミン、2-ドデシルオキシエチルアミン、2-テトラデシルオキシエチルアミン、2-ステアリルオキシエチルアミン、2-オレイルオキシエチルアミン、3-メトキシプロピルアミン、3-エトキシプロピルアミン、3-n-プロポキシプロピルアミン、3-イソプロポキシプロピルアミン、3-n-ブトキシプロピルアミン、3-イソブトキシプロピルアミン、3-tert-ブトキシプロピルアミン、3-n-ペンチルオキシプロピルアミン、3-n-ヘキシルオキシプロピルアミン、3-n-ヘプチルオキシプロピルアミン、3-n-オクチルオキシプロピルアミン、3-(2-エチルヘキシルオキシ)プロピルアミン、3-(2-ブチルヘキシルオキシ)プロピルアミン、3-デシルオキシプロピルアミン、3-ドデシルオキシプロピルアミン、3-テトラデシルオキシプロピルアミン、3-ステアリルオキシプロピルアミン、3-オレイルオキシプロピルアミン、ビス(2-アミノエチル)エーテル、ビス(3-アミノプロピル)エーテル、1,2-ビス(3-アミノエトキシ)エタン、1,2-ビス(3-アミノプロポキシ)エタン等を例示することができる。 As the amine compound containing oxygen as a hetero element other than nitrogen of the primary amino group, alkoxyalkylamines having 3 or more carbon atoms having an alkoxy group in addition to the primary amino group can be used. Specifically, 2-methoxyethylamine, 2-ethoxyethylamine, 2-n-propoxyethylamine, 2-isopropoxyethylamine, 2-n-butoxyethylamine, 2-isobutoxyethylamine, 2-tert-butoxyethylamine, 2-n -Pentyloxyethylamine, 2-n-hexyloxyethylamine, 2-n-heptyloxyethylamine, 2-n-octyloxyethylamine, 2- (2-ethylhexyloxy) ethylamine, 2- (2-butylhexyloxy) ethylamine, 2-decyloxyethylamine, 2-dodecyloxyethylamine, 2-tetradecyloxyethylamine, 2-stearyloxyethylamine, 2-oleyloxyethylamine, 3-methoxypropylamine, 3-ethoxypro Ruamine, 3-n-propoxypropylamine, 3-isopropoxypropylamine, 3-n-butoxypropylamine, 3-isobutoxypropylamine, 3-tert-butoxypropylamine, 3-n-pentyloxypropylamine, 3 -N-hexyloxypropylamine, 3-n-heptyloxypropylamine, 3-n-octyloxypropylamine, 3- (2-ethylhexyloxy) propylamine, 3- (2-butylhexyloxy) propylamine, 3 -Decyloxypropylamine, 3-dodecyloxypropylamine, 3-tetradecyloxypropylamine, 3-stearyloxypropylamine, 3-oleyloxypropylamine, bis (2-aminoethyl) ether, bis (3-aminopropyl) D Ether, 1,2-bis (3-amino-ethoxy) ethane, can be exemplified 1,2-bis (3-amino-propoxy) ethane.

第一級アミノ基の窒素以外にヘテロ元素として酸素を含有するアミン化合物として、第一級アミノ基の他にヒドロキシル基を有する炭素数4以上のアルカノールアミン等を用いることができる。具体的には、2-(アミノエチルアミノ)エタノール、2-(アミノエトキシ)エタノール、3-(2-ヒドロキシエチルアミノ)プロピルアミン、N-(2-ヒドロキシプロピル)エチレンジアミン、N-(3-アミノプロピル)ジエタノールアミン等を例示することができる。 As the amine compound containing oxygen as a hetero element other than nitrogen of the primary amino group, an alkanolamine having 4 or more carbon atoms having a hydroxyl group in addition to the primary amino group can be used. Specifically, 2- (aminoethylamino) ethanol, 2- (aminoethoxy) ethanol, 3- (2-hydroxyethylamino) propylamine, N- (2-hydroxypropyl) ethylenediamine, N- (3-amino Propyl) diethanolamine and the like.

第一級アミノ基の窒素以外にヘテロ元素として窒素を含有するアミン化合物として、第一級アミンの他に第二級又は第三級アミノ基等を有する炭素数4以上のジアミンを用いることができる。具体的には、N-メチルエチレンジアミン、N-エチルエチレンジアミン、N-n-プロピルチルエチレンジアミン、N-イソプロピルチルエチレンジアミン、N-n-ブチルエチレンジアミン、N-イソブチルエチレンジアミン、N-tert-ブチルエチレンジアミン、N-メチル-1,3-プロパンジアミン、N-エチル-1,3-プロパンジアミン、3-n-プロピルアミノプロピルアミン、3-イソプロピルアミノプロピルアミン、3-n-ブチルアミノプロピルアミン、3-イソブチルアミノプロピルアミン、3-tert-ブチルアミノプロピルアミン、3-ドデシルアミノプロピルアミン、N,N-ジメチルエチレンジアミン、N,N-ジエチルエチレンジアミン、N,N-ジ-n-プロピルエチレンジアミン、N,N-ジイソプロピルエチレンジアミン、N,N-ジ-n-ブチルエチレンジアミン、N,N-ジイソブチルエチレンジアミン、N,N-ジ-tert-ブチルエチレンジアミン、N,N-ジメチル-1,3-プロパンジアミン、N,N-ジエチル-1,3-プロパンジアミン、3-(ジ-n-プロピルアミノ)プロピルアミン、3-(ジイソプロピルアミノ)プロピルアミン、3-(1,3-プジ-n-ブチルアミノ)プロピルアミン、3-(ジイソブチルアミノ)プロピルアミン、3-(ジ-tert-ブチルアミノ)プロピルアミン、N,N-ジメチル-1,4-ブタンジアミン、N,N-ジエチル-1,4-ブタンジアミン、N,N-ジブチル-1,4-ブタンジアミン、N,N-ジメチル-1,6-ヘキサンジアミン、N,N-ジエチル-1,6-ヘキサンジアミン、N,N-ジブチル-1,6-ヘキサンジアミン、N,N-ジメチルアミノエトキシプロピルアミン、N-(3-アミノプロピル)モルホリン、N-(2-アミノエチル)ピペリジン、N-(2-アミノエチル)-4-ピペコリン、N-(2-アミノエチル)-3-ピペコリン、N-(2-アミノエチル)-2-ピペコリン、N-(3-アミノプロピル)-4-ピペコリン、N-(3-アミノプロピル)-3-ピペコリン、N-(3-アミノプロピル)-2-ピペコリン、N-(tert-ブトキシカルボニル)-1,4-ジアミノブタン、N-(tert-ブトキシカルボニル)-1,5-ジアミノペンタン、N-(tert-ブトキシカルボニル)-1,6-ジアミノヘキサン等を例示することができる。 As the amine compound containing nitrogen as a hetero element other than nitrogen of the primary amino group, a diamine having 4 or more carbon atoms having a secondary or tertiary amino group or the like in addition to the primary amine can be used. . Specifically, N-methylethylenediamine, N-ethylethylenediamine, Nn-propyltylethylenediamine, N-isopropyltylethylenediamine, Nn-butylethylenediamine, N-isobutylethylenediamine, N-tert-butylethylenediamine, N- Methyl-1,3-propanediamine, N-ethyl-1,3-propanediamine, 3-n-propylaminopropylamine, 3-isopropylaminopropylamine, 3-n-butylaminopropylamine, 3-isobutylaminopropyl Amine, 3-tert-butylaminopropylamine, 3-dodecylaminopropylamine, N, N-dimethylethylenediamine, N, N-diethylethylenediamine, N, N-di-n-propylethylenediamine, N, N-di Sopropylethylenediamine, N, N-di-n-butylethylenediamine, N, N-diisobutylethylenediamine, N, N-di-tert-butylethylenediamine, N, N-dimethyl-1,3-propanediamine, N, N- Diethyl-1,3-propanediamine, 3- (di-n-propylamino) propylamine, 3- (diisopropylamino) propylamine, 3- (1,3-pudi-n-butylamino) propylamine, 3 -(Diisobutylamino) propylamine, 3- (di-tert-butylamino) propylamine, N, N-dimethyl-1,4-butanediamine, N, N-diethyl-1,4-butanediamine, N, N -Dibutyl-1,4-butanediamine, N, N-dimethyl-1,6-hexanediamine, N, N-diethyl- , 6-hexanediamine, N, N-dibutyl-1,6-hexanediamine, N, N-dimethylaminoethoxypropylamine, N- (3-aminopropyl) morpholine, N- (2-aminoethyl) piperidine, N -(2-aminoethyl) -4-pipecoline, N- (2-aminoethyl) -3-pipecoline, N- (2-aminoethyl) -2-pipecoline, N- (3-aminopropyl) -4-pipecoline N- (3-aminopropyl) -3-pipecoline, N- (3-aminopropyl) -2-pipecoline, N- (tert-butoxycarbonyl) -1,4-diaminobutane, N- (tert-butoxycarbonyl) ) -1,5-diaminopentane, N- (tert-butoxycarbonyl) -1,6-diaminohexane, and the like.

第一級アミノ基の窒素以外にヘテロ元素として窒素を含有するアミン化合物として、第一級アミンの他に第二級又は第三級アミノ基等を有する炭素数4以上のポリアミンを用いることもできる。具体的にはイミノビスエチルアミン、メチルイミノビスエチルアミン、イミノビスプロピルジアミン、メチルイミノビスプロピルアミン、1-(3-アミノエチル)ピペラジン、1-(3-アミノプロピル)ピペラジン、1,4-ビス(3-アミノエチル)ピペラジン、1,4-ビス(3-アミノプロピル)ピペラジン、トリエチレンテトラミン、テトラエチレンペンタミン等を例示することができる。 As the amine compound containing nitrogen as a hetero element other than nitrogen of the primary amino group, a polyamine having 4 or more carbon atoms having a secondary or tertiary amino group or the like in addition to the primary amine can also be used. . Specifically, iminobisethylamine, methyliminobisethylamine, iminobispropyldiamine, methyliminobispropylamine, 1- (3-aminoethyl) piperazine, 1- (3-aminopropyl) piperazine, 1,4-bis ( Examples thereof include 3-aminoethyl) piperazine, 1,4-bis (3-aminopropyl) piperazine, triethylenetetramine, tetraethylenepentamine and the like.

第一級アミノ基の窒素以外にヘテロ元素として硫黄を含有するアミン化合物として、第一級アミノ基の他にアルキルチオ基を有する炭素数3以上のアルキルチオアルキルアミン類を用いることができる。具体的には2-メチルチオエチルアミン、2-エチルチオエチルアミン、2-n-プロピルチオエチルアミン、2-イソプロピルチオエチルアミン、2-n-ブチルチオエチルアミン、2-イソブチルチオエチルアミン、2-tert-ブチルチオエチルアミン、2-n-ペンチルチオエチルアミン、2-n-ヘキシルチオエチルアミン、2-n-ヘプチルチオエチルアミン、2-n-オクチルチオエチルアミン、2-(2-エチルヘキシルチオ)エチルアミン、2-(2-ブチルヘキシルチオ)エチルアミン、2-デシルチオエチルアミン、2-ドデシルチオエチルアミン、2-テトラデシルチオエチルアミン、2-ステアリルチオエチルアミン、2-オレイルチオエチルアミン、3-メチルチオプロピルアミン、3-エチルチオプロピルアミン、3-n-プロピルチオアミン、3-イソプロピルチオプロピルアミン、3-n-ブチルチオプロピルアミン、3-イソブチルチオプロピルアミン、3-tert-ブチルチオプロピルアミン、3-n-ペンチルチオプロピルアミン、3-n-ヘキシルチオプロピルアミン、3-n-ヘプチルチオプロピルアミン、3-n-オクチルチオプロピルアミン、3-(2-エチルヘキシルチオ)プロピルアミン、3-(2-ブチルヘキシルチオ)プロピルアミン、3-デシルチオプロピルアミン、3-ドデシルチオプロピルアミン、3-テトラデシルチオプロピルアミン、3-ステアリルチオアミン、3-オレイルチオプロピルアミン等を例示することができる。 As the amine compound containing sulfur as a hetero element in addition to nitrogen of the primary amino group, alkylthioalkylamines having 3 or more carbon atoms having an alkylthio group in addition to the primary amino group can be used. Specifically, 2-methylthioethylamine, 2-ethylthioethylamine, 2-n-propylthioethylamine, 2-isopropylthioethylamine, 2-n-butylthioethylamine, 2-isobutylthioethylamine, 2-tert-butylthioethylamine 2-n-pentylthioethylamine, 2-n-hexylthioethylamine, 2-n-heptylthioethylamine, 2-n-octylthioethylamine, 2- (2-ethylhexylthio) ethylamine, 2- (2-butylhexyl) Thio) ethylamine, 2-decylthioethylamine, 2-dodecylthioethylamine, 2-tetradecylthioethylamine, 2-stearylthioethylamine, 2-oleylthioethylamine, 3-methylthiopropylamine, 3-ethylthiopropyl Min, 3-n-propylthioamine, 3-isopropylthiopropylamine, 3-n-butylthiopropylamine, 3-isobutylthiopropylamine, 3-tert-butylthiopropylamine, 3-n-pentylthiopropylamine 3-n-hexylthiopropylamine, 3-n-heptylthiopropylamine, 3-n-octylthiopropylamine, 3- (2-ethylhexylthio) propylamine, 3- (2-butylhexylthio) propylamine , 3-decylthiopropylamine, 3-dodecylthiopropylamine, 3-tetradecylthiopropylamine, 3-stearylthioamine, 3-oleylthiopropylamine and the like.

この他に、本発明の効果を損なわない範囲であれば、アミン類として第一級アミノ基の窒素以外にヘテロ元素を含まないアミン化合物を併用することができる。例えば、第一級アミンとしては、アルキルアミンを用いることができ、具体的には、1-オクチルアミン、2-エチルヘキシルアミン、1-ノニルアミン、1-デシルアミン、イソデシルアミン、1-ウンデシルアミン、1-ドデシルアミン、1-トリデシルアミン、1-テトラデシルアミン、1-ペンタデシルアミン、1-ヘキサデシルアミン、1-ヘプタデシルアミン、ステアリルアミン、オレイルアミン等を例示することができる。 In addition, as long as the effects of the present invention are not impaired, an amine compound containing no hetero element other than nitrogen of the primary amino group can be used in combination as amines. For example, an alkylamine can be used as the primary amine, specifically, 1-octylamine, 2-ethylhexylamine, 1-nonylamine, 1-decylamine, isodecylamine, 1-undecylamine, Examples include 1-dodecylamine, 1-tridecylamine, 1-tetradecylamine, 1-pentadecylamine, 1-hexadecylamine, 1-heptadecylamine, stearylamine, oleylamine and the like.

この他に、本発明の効果を損なわない範囲であれば、アミン類として第二級アミン化合物も併用することができる。例えば、ジアルキルアミンを用いることができ、具体的には、ジ-n-エチルアミン、ジ-n-プロピルアミン、ジイソプロピルアミン、ジ-n-ブチルアミン、ジ-n-ヘキシルアミン、ジ-1-オクチルアミン、ビス(2-エチルヘキシル)アミン、ジ-1-ノニルアミン、ジ-1-デシルアミン、ジイソデシルアミン、ジ-1-ウンデシルアミン、ジ-1-ドデシルアミン、ジオレイルアミン等を例示することができる。 In addition, secondary amine compounds can be used in combination as amines as long as the effects of the present invention are not impaired. For example, dialkylamine can be used, and specifically, di-n-ethylamine, di-n-propylamine, diisopropylamine, di-n-butylamine, di-n-hexylamine, di-1-octylamine Bis (2-ethylhexyl) amine, di-1-nonylamine, di-1-decylamine, diisodecylamine, di-1-undecylamine, di-1-dodecylamine, dioleylamine and the like.

この他に、本発明の効果を損なわない範囲であれば、アミン類として第三級アミン化合物も併用することができる。例えば、トリアルキルアミンを用いることができ、具体的には、トリエチルアミン、トリ-n-プロピルアミン、トリイソプロピルアミン、トリ-n-ブチルアミン、ヘプタコサフルオロトリブチルアミン、トリ-n-アミルアミン、パーフルオロトリアミルアミン、トリ-n-ヘキシルアミン、N,N-n-オクチルアミン、トリ-n-オクチルアミン、トリ-n-オクチルアミン、トリス(2-エチルヘキシル)アミン、トリ-n-ノニルアミン、トリ-n-デシルアミン、トリイソデシルアミン、トリ-n-ウンデシルアミン、トリ-n-ドデシルアミン、トリオレイルアミン、1-[N,N-ビス(2-エチルヘキシル)アミノメチル]ベンゾトリアゾール、1-[N,N-ビス(2-エチルヘキシル)アミノメチル]メチルベンゾトリアゾール、キヌクリジン、ジアザビシクロ[2.2.2]オクタン、テトラメチルエチレンジアミン、テトラメチルプロパンジアミン、ペンタメチルジエチレントリアミン、ペンタメチルジプロパントリアミン、ヘキサメチルトリエチレンテトラミン等を例示することができる。 In addition, a tertiary amine compound can be used in combination as amines as long as the effects of the present invention are not impaired. For example, a trialkylamine can be used, and specifically, triethylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, heptacosafluorotributylamine, tri-n-amylamine, perfluorotria Myramine, tri-n-hexylamine, N, Nn-octylamine, tri-n-octylamine, tri-n-octylamine, tris (2-ethylhexyl) amine, tri-n-nonylamine, tri-n -Decylamine, triisodecylamine, tri-n-undecylamine, tri-n-dodecylamine, trioleylamine, 1- [N, N-bis (2-ethylhexyl) aminomethyl] benzotriazole, 1- [N, N-bis (2-ethylhexyl) aminomethyl] methylbenzo Riazor can quinuclidine, diazabicyclo [2.2.2] octane, tetramethylethylenediamine, tetramethyl propanediamine, pentamethyldiethylenetriamine, pentamethyldipropylenetriamine propane triamine, be exemplified hexamethyl triethylenetetramine.

この他に、本発明の効果を損なわない範囲であれば、第三級アミン化合物としてヒドロキシル基を有する炭素数4以上のアルカノールアミン類を用いることができる。具体的には、N,N-ジメチルアミノエタノール、N,N-ジエチルアミノエタノール、N,N-ジ-n-プロピルアミノエタノール、N,N-ジイソプロピルアミノエタノール、N,N-ジ-n-ブチルアミノエタノール、N,N-ジイソブチルアミノエタノール、N,N-ジ-tert-ブチルアミノエタノール、N,N-ビス(2-ヒドロキシエチル)-1,3-プロパンジアミン、N,N-ジメチルアミノイソプロパノール、N,N-ジエチルアミノイソプロパノール、N,N-ジ-n-プロピルアミノイソプロパノール、N,N-ジイソプロピルアミノイソプロパノール、N,N-ジ-n-ブチルアミノイソプロパノール、N,N-ジイソブチルアミノイソプロパノール、N,N-ジ-tert-ブチルアミノイソプロパノール、2-(2-ジメチルアミノエトキシ)エタノール、2-(2-ジエチルアミノエトキシ)エタノール、ジエタノールアミン、N-メチルジエタノールアミン、N-エチルジエタノールアミン、N-n-プロピルジエタノールアミン、N-イソプロピルジエタノールアミン、N-n-ブチルジエタノールアミン、N-イソブチルジエタノールアミン、N-tert-ブチルジエタノールアミン、N-n-ヘキシルジエタノールアミン、N-n-オクチルジエタノールアミン、N-(2-エチルヘキシル)ジエタノールアミン、N-n-デシルジエタノールアミン、N-イソデシルジエタノールアミン、N-ドデシルジエタノールアミン、N-テトラデシルジエタノールアミン、N-ヘキサデシルジエタノールアミン、N-ステアリルジエタノールアミン、N-オレイルジエタノールアミン、2,2‘-[[(メチル-1H-ベンゾトリアゾール-1-イル)メチル]イミノ]ビスエタノール、ジイソプロパノールアミン、N-メチルジイソプロパノールアミン、N-エチルジイソプロパノールアミン、N-n-プロピルジイソプロパノールアミン、N-イソプロピルジイソプロパノールアミン、N-n-ブチルジイソプロパノールアミン、N-イソブチルジイソプロパノールアミン、N-tert-ブチルジイソプロパノールアミン、N-n-ヘキシルジイソプロパノールアミン、N-n-オクチルジイソプロパノールアミン、N-(2-エチルヘキシル)ジイソプロパノールアミン、N-n-デシルジイソプロパノールアミン、N-イソデシルジイソプロパノールアミン、N-ドデシルジイソプロパノールアミン、N-テトラデシルジイソプロパノールアミン、N-ヘキサデシルジイソプロパノールアミン、N-ステアリルジイソプロパノールアミン、N-オレイルジイソプロパノールアミン、トリエタノールアミン、トリイソプロパノールアミン、3-(ジメチルアミノ)-1,2-プロパンジオール、3-(ジエチルアミノ)-1,2-プロパンジオール等を例示することができる。 In addition, as long as the effects of the present invention are not impaired, alkanolamines having 4 or more carbon atoms having a hydroxyl group can be used as the tertiary amine compound. Specifically, N, N-dimethylaminoethanol, N, N-diethylaminoethanol, N, N-di-n-propylaminoethanol, N, N-diisopropylaminoethanol, N, N-di-n-butylamino Ethanol, N, N-diisobutylaminoethanol, N, N-di-tert-butylaminoethanol, N, N-bis (2-hydroxyethyl) -1,3-propanediamine, N, N-dimethylaminoisopropanol, N , N-diethylaminoisopropanol, N, N-di-n-propylaminoisopropanol, N, N-diisopropylaminoisopropanol, N, N-di-n-butylaminoisopropanol, N, N-diisobutylaminoisopropanol, N, N- Di-tert-butylaminoisopropanol, -(2-dimethylaminoethoxy) ethanol, 2- (2-diethylaminoethoxy) ethanol, diethanolamine, N-methyldiethanolamine, N-ethyldiethanolamine, Nn-propyldiethanolamine, N-isopropyldiethanolamine, Nn-butyldiethanolamine N-isobutyldiethanolamine, N-tert-butyldiethanolamine, Nn-hexyldiethanolamine, Nn-octyldiethanolamine, N- (2-ethylhexyl) diethanolamine, Nn-decyldiethanolamine, N-isodecyldiethanolamine, N -Dodecyldiethanolamine, N-tetradecyldiethanolamine, N-hexadecyldiethanolamine, N-stearyldiethanol Amine, N-oleyldiethanolamine, 2,2 ′-[[(methyl-1H-benzotriazol-1-yl) methyl] imino] bisethanol, diisopropanolamine, N-methyldiisopropanolamine, N-ethyldiisopropanolamine Nn-propyldiisopropanolamine, N-isopropyldiisopropanolamine, Nn-butyldiisopropanolamine, N-isobutyldiisopropanolamine, N-tert-butyldiisopropanolamine, Nn-hexyldiisopropanolamine Nn-octyldiisopropanolamine, N- (2-ethylhexyl) diisopropanolamine, Nn-decyldiisopropanolamine, N-isodecyldiisopropanolamine, N-dodecy Ludiisopropanolamine, N-tetradecyldiisopropanolamine, N-hexadecyldiisopropanolamine, N-stearyldiisopropanolamine, N-oleyldiisopropanolamine, triethanolamine, triisopropanolamine, 3- (dimethylamino) -1 2, 2-propanediol, 3- (diethylamino) -1,2-propanediol, and the like.

この他に、本発明の効果を損なわない範囲であれば、アミジン類も併用することができる。例えば、1,5-ジアザビシクロ[4.3.0]-5-ノネン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン等を例示することができる。 In addition, amidines can be used in combination as long as the effects of the present invention are not impaired. For example, 1,5-diazabicyclo [4.3.0] -5-nonene, 1,8-diazabicyclo [5.4.0] -7-undecene and the like can be exemplified.

この他に、本発明の効果を損なわない範囲であれば、カルボン酸類を添加することもできる。カルボン酸としては、炭素数が1から22までの脂肪酸の他、オレイン酸、リノール酸、リノレン酸、リシノール酸、15-ヒドロキシペンタデカン酸、12-ヒドロキシステアリン酸、コール酸、デオキシコール酸、デヒドロコール酸、ケノオキシコール酸、12-オキソケノデオキシコール酸、グリココール酸、コラン酸、リトコール酸、ヒオデオキシコール酸、ウルソデオキシコール酸、アポコール酸、タウロコール酸、アビエチン酸、デヒドロアビエチン酸、グリチルリチン酸、グリシルリジン酸、ラウロイルサルコシン、ステアロイルサルコシン、オレオイルサルコシン酸、6-アミノヘキサン酸、N-(tert-ブトキシカルボニル)-6-アミノヘキサン酸、桂皮酸、2-(2-(2-メトキシエトキシ)エトキシ)酢酸、2-ベンゾイル安息香酸等を例示することができる。 In addition, carboxylic acids can be added as long as the effects of the present invention are not impaired. Carboxylic acids include fatty acids having 1 to 22 carbon atoms, oleic acid, linoleic acid, linolenic acid, ricinoleic acid, 15-hydroxypentadecanoic acid, 12-hydroxystearic acid, cholic acid, deoxycholic acid, dehydrocol Acid, chenooxycholic acid, 12-oxochenodeoxycholic acid, glycocholic acid, colanic acid, lithocholic acid, hyodeoxycholic acid, ursodeoxycholic acid, apocholic acid, taurocholic acid, abietic acid, dehydroabietic acid, glycyrrhizic acid, glycyrrhizin Acid, lauroyl sarcosine, stearoyl sarcosine, oleoyl sarcosine acid, 6-aminohexanoic acid, N- (tert-butoxycarbonyl) -6-aminohexanoic acid, cinnamic acid, 2- (2- (2-methoxyethoxy) ethoxy) Acetic acid, - it can be exemplified benzoyl benzoate.

この他に、本発明の効果を損なわない範囲であれば、チオール類を添加することもできる。チオールとしては、オクタンチオール、デカンチオール、ドデカンチオール、パーフルオロオクタンチオール、パーフルオロデカンチオール、パーフルオロドデカンチオール、ベンゼンチオール、3-メチルベンゼンチオール、4-メチルベンゼンチオール、3-フルオロベンゼンチオール、4-フルオロベンゼンチオール、3-クロロベンゼンチオール、4-クロロベンゼンチオール、ペンタクロロベンゼンチオール、3-ブロモベンゼンチオール、4-ブロモベンゼンチオール、3-メトキシベンゼンチオール、4-メトキシベンゼンチオール、3-メチルチオベンゼンチオール、4-メチルチオベンゼンチオール、3-トリフルオロメトキシベンゼンチオール、4-トリフルオロメトキシベンゼンチオール、3-トリフルオロメチルチオベンゼンチオール、4-トリフルオロメチルチオベンゼンチオール、ペンタフルオロベンゼンチオール、3-トリフルオロメチルベンゼンチオール、4-トリフルオロメチルベンゼンチオール、4-トリフルオロメチル-2,3,5,6-テトラフルオロベンゼンチオール、3-ニトロベンゼンチオール、4-ニトロベンゼンチオール、フルオレンチオール、3-シアノベンゼンチオール、4-シアノベンゼンチオール、ビフェニルチオール、2-メルカプト-5-ニトロベンズイミダゾール、5-クロロ-2-メルカプトベンゾイミダゾール等を例示することができる。 In addition, thiols can be added as long as the effects of the present invention are not impaired. As thiols, octanethiol, decanethiol, dodecanethiol, perfluorooctanethiol, perfluorodecanethiol, perfluorododecanethiol, benzenethiol, 3-methylbenzenethiol, 4-methylbenzenethiol, 3-fluorobenzenethiol, 4 -Fluorobenzenethiol, 3-chlorobenzenethiol, 4-chlorobenzenethiol, pentachlorobenzenethiol, 3-bromobenzenethiol, 4-bromobenzenethiol, 3-methoxybenzenethiol, 4-methoxybenzenethiol, 3-methylthiobenzenethiol, 4 -Methylthiobenzenethiol, 3-trifluoromethoxybenzenethiol, 4-trifluoromethoxybenzenethiol, 3-trifluoromethylthiol Benzenethiol, 4-trifluoromethylthiobenzenethiol, pentafluorobenzenethiol, 3-trifluoromethylbenzenethiol, 4-trifluoromethylbenzenethiol, 4-trifluoromethyl-2,3,5,6-tetrafluorobenzenethiol 3-nitrobenzenethiol, 4-nitrobenzenethiol, fluorenethiol, 3-cyanobenzenethiol, 4-cyanobenzenethiol, biphenylthiol, 2-mercapto-5-nitrobenzimidazole, 5-chloro-2-mercaptobenzimidazole, etc. It can be illustrated.

この他に、本発明の効果を損なわない範囲であれば、ホスフィン類を添加することもできる。トリ-1-ブチルホスフィン、トリ-1-オクチルホスフィン、トリシクロヘキシルホスフィン、トリフェニルホスフィン等を例示することができる。 In addition, phosphines can be added as long as the effects of the present invention are not impaired. Examples thereof include tri-1-butylphosphine, tri-1-octylphosphine, tricyclohexylphosphine, and triphenylphosphine.

本発明の金属微粒子の金属種としては、その金属が1級アミノ基、2級アミノ基、3級アミノ基、アミジノ基から選択される窒素含有官能基と化学的に結合できるものであれば制限されず、例えば、金、銀、銅、ニッケル、亜鉛、アルミニウム、白金、パラジウム、スズ、クロム、鉛、タングステン等を用いることができる。また、金属種は、一種類であっても、二種類以上の混合物、または合金であっても良い。 The metal species of the metal fine particles of the present invention are limited as long as the metal can be chemically bonded to a nitrogen-containing functional group selected from a primary amino group, a secondary amino group, a tertiary amino group, and an amidino group. For example, gold, silver, copper, nickel, zinc, aluminum, platinum, palladium, tin, chromium, lead, tungsten, or the like can be used. Further, the metal species may be one type, a mixture of two or more types, or an alloy.

また、アミン化合物と反応して錯化合物を形成可能な金属化合物としては、例えば、カルボン酸塩、塩化物、酸化物、炭酸塩、硝酸塩等が挙げられる。これらの中でも、特に、シュウ酸塩、蟻酸塩が好ましい。シュウ酸塩、蟻酸塩は、カルボン酸イオンが加熱により分解し、銀イオンを還元すると同時に二酸化炭素として揮発するため、不純物が残留しにくいためである。 Moreover, as a metal compound which can react with an amine compound and can form a complex compound, carboxylate, a chloride, an oxide, carbonate, nitrate etc. are mentioned, for example. Among these, oxalate and formate are particularly preferable. Oxalates and formates are because the carboxylate ions are decomposed by heating to reduce silver ions and volatilize as carbon dioxide at the same time, so that impurities hardly remain.

(第一工程)
錯化合物を生成させる第一工程においては、アミン化合物と銀化合物とを混合することにより、両者間の錯化合物が生成する。アミン混合液に含まれるアミンの総量は、金属化合物中の金属の化学量論量以上であることが好ましい。錯化合物とならない金属化合物が残留すると、金属ナノ粒子の均一かつ安定的な分散が阻害される可能性があるためである。
(First step)
In the first step of producing a complex compound, an amine compound and a silver compound are mixed to produce a complex compound therebetween. The total amount of amine contained in the amine mixture is preferably equal to or greater than the stoichiometric amount of the metal in the metal compound. This is because if a metal compound that does not become a complex compound remains, uniform and stable dispersion of metal nanoparticles may be hindered.

アミン混合液と金属化合物との錯化合物の形成反応は、用いるアミン化合物と金属化合物によって反応性が変化するため調整が必要であるが、アミン混合液と金属化合物とを含む混合液を30℃から50℃程度で5分から3時間程度撹拌することにより行うことができる。反応温度を高めることによって反応時間を短縮することができるが、第二工程の熱分解開始温度と十分な温度差を設けることによって、予期しない分解反応を避ける観点から反応温度は50℃以下が好ましい。反応系、特にアミン化合物の化学変化や引火を避けるために、二酸化炭素や水分の混入を避けることが好ましく、窒素、アルゴンなどの不活性ガス、又は、乾燥空気雰囲気下で反応させることができる。 The formation reaction of the complex compound between the amine mixture and the metal compound needs to be adjusted because the reactivity changes depending on the amine compound and the metal compound to be used, but the mixture containing the amine mixture and the metal compound can be adjusted from 30 ° C. It can be carried out by stirring at about 50 ° C. for about 5 minutes to 3 hours. Although the reaction time can be shortened by increasing the reaction temperature, the reaction temperature is preferably 50 ° C. or less from the viewpoint of avoiding an unexpected decomposition reaction by providing a sufficient temperature difference from the thermal decomposition start temperature in the second step. . In order to avoid chemical changes and ignition of the reaction system, particularly amine compounds, it is preferable to avoid mixing of carbon dioxide and moisture, and the reaction can be performed in an inert gas such as nitrogen or argon, or in a dry air atmosphere.

(第二工程)
次の工程(第二工程)においては、先の工程で生成した錯化合物を加熱して分解させることにより金属微粒子を形成する。加熱により錯化合物を分解させる際の温度は、用いるアミン化合物と金属化合物によって変動するため調整が必要であるが、金属化合物を分解して金属を生成させ、また、生成する金属微粒子からのアミン化合物の脱離を防ぐ観点から、70℃から150℃の範囲で5分から2時間程度反応させることが好ましい。特に、低温で電極を形成するために、低沸点のアミン化合物を用いる場合には、本工程における反応温度がアミン化合物の沸点を超えないようにすることが、熱分解反応の進行に伴う発熱による突沸を避ける観点から好ましい。また、気化したアミン化合物の引火を防止するため、低酸素濃度条件で反応させることが好ましい。
(Second step)
In the next step (second step), metal complexes are formed by heating and decomposing the complex compound produced in the previous step. The temperature at which the complex compound is decomposed by heating varies depending on the amine compound and the metal compound to be used, so adjustment is necessary, but the metal compound is decomposed to generate a metal, and the amine compound from the generated metal fine particles From the viewpoint of preventing desorption, it is preferable to react in the range of 70 ° C. to 150 ° C. for about 5 minutes to 2 hours. In particular, when a low-boiling amine compound is used to form an electrode at a low temperature, the reaction temperature in this step should not exceed the boiling point of the amine compound due to the heat generated by the progress of the thermal decomposition reaction. It is preferable from the viewpoint of avoiding bumping. Moreover, in order to prevent ignition of the vaporized amine compound, it is preferable to make it react on low oxygen concentration conditions.

第二工程では、シュウ酸金属塩アミン錯体の熱分解に起因する発熱が生じるため、反応スケールを拡大した時に反応熱を制御できない可能性が考えられる。したがって、金属のモル量m1に対するアミンのモル量m2の比率(m2/m1)を、例えば、5~20の範囲になるようにアミン溶液を過剰に加えることにより、シュウ酸塩の熱分解時に発生する反応熱をアミン溶液に吸収させることができ、突沸を防止することができる。 In the second step, heat generation due to thermal decomposition of the metal oxalate metal salt amine complex occurs, and therefore it is possible that the reaction heat cannot be controlled when the reaction scale is expanded. Therefore, when the ratio of the molar amount m2 of the amine to the molar amount m1 of the metal (m2 / m1) is, for example, in the range of 5-20, the amine solution is added excessively to generate oxalate during thermal decomposition. The reaction heat to be absorbed can be absorbed by the amine solution, and bumping can be prevented.

錯化合物の加熱分解後の反応液は、例えば、金属種が銀の場合には褐色懸濁液となる。この懸濁液から、デカンテーション等の分離操作により、目的とする金属微粒子を得ることができる。 The reaction liquid after the thermal decomposition of the complex compound becomes, for example, a brown suspension when the metal species is silver. From this suspension, target metal fine particles can be obtained by a separation operation such as decantation.

(第三工程)
デカンテーション又は洗浄を行う際は、目的の金属微粒子が十分な分散性を示さないヘキサンやアルコール等の有機溶媒を用いることが好ましい。上述した本実施形態に係る製造方法によれば、100nm以下の平均粒径を有する金属微粒子を得ることができる。また、第三工程においては、金属微粒子を含む反応生成物から不要物を除去できればよく、デカンテーション以外の方法を採用することもできる。
(Third process)
When performing decantation or washing, it is preferable to use an organic solvent such as hexane or alcohol in which the target metal fine particles do not exhibit sufficient dispersibility. According to the manufacturing method according to this embodiment described above, metal fine particles having an average particle diameter of 100 nm or less can be obtained. Further, in the third step, it is sufficient if unnecessary substances can be removed from the reaction product containing metal fine particles, and a method other than decantation can also be adopted.

(金属微粒子分散体)
デカンテーションによって表面が保護剤に被覆された金属微粒子はその保護剤の化学的性質を反映し、特定範囲内の相互作用を与える溶剤中に良好に分散すると考えられる。第一級アミノ基の窒素以外にヘテロ元素を含有するアミン化合物を選択して使用することにより、アミン化合物に被覆された微粒子表面の極性を高めることができ、極性溶媒中に均一かつ安定的に分散させることが可能な金属微粒子が得られる。 
(Metal fine particle dispersion)
It is considered that the metal fine particles whose surface is coated with a protective agent by decantation reflects the chemical properties of the protective agent and is well dispersed in a solvent that gives an interaction within a specific range. By selecting and using an amine compound containing a hetero element in addition to nitrogen of the primary amino group, the polarity of the surface of the fine particles coated with the amine compound can be increased and uniformly and stably in a polar solvent. Metal fine particles that can be dispersed are obtained.

本発明における極性溶媒とは、極性官能基として、水酸基、カルボキシル基、アミノ基、エーテル基、カルボニル基、アミド基、ニトリル基、又はエステル基を少なくとも1以上有し、溶解度パラメーター(SP値)が20[MPa1/2]以上の溶剤を指す。なお、ここで用いる極性溶媒は、単独で使用しても良いが、混合して用いることもできる。混合物としてのSP値が20[MPa1/2]以上であれば、SP値が20[MPa1/2]未満の低極性溶媒などを併用することもできる。なお、選定基準としてSP値に限定されるものではなく、溶剤の極性を適切な基準で評価可能であれば、別のパラメーターを利用しても良い。 The polar solvent in the present invention has at least one hydroxyl group, carboxyl group, amino group, ether group, carbonyl group, amide group, nitrile group, or ester group as a polar functional group, and has a solubility parameter (SP value). It refers to a solvent of 20 [MPa 1/2 ] or more. In addition, the polar solvent used here may be used independently, but can also be mixed and used. If the SP value as a mixture is 20 [MPa 1/2 ] or more, a low polarity solvent having an SP value of less than 20 [MPa 1/2 ] can be used in combination. Note that the selection criterion is not limited to the SP value, and another parameter may be used as long as the polarity of the solvent can be evaluated based on an appropriate criterion.

溶解性パラメーターとはHildebrandらにより提唱された物質の相互溶解性に関わるパラメーターで、式(1)に示す通り、平均モル体積当りの単一成分の気化に要するエネルギーを測定することによって求められる。
δ = (E/V1/2 =  (ΔHevap - RT)/V1/2  式(1) 
ここで、δ:溶解性パラメーター[MPa1/2
E;気化熱
    T;温度
    R;気体定数
    V;モル体積
    ΔH;気化エンタルピー
    ΔE;気化エネルギー
The solubility parameter is a parameter related to mutual solubility of substances proposed by Hildebrand et al., And is determined by measuring the energy required for vaporization of a single component per average molar volume, as shown in Equation (1).
δ = (E / V m ) 1/2 = (ΔH evap −RT) / V m ) 1/2 equation (1)
Where δ: solubility parameter [MPa 1/2 ]
E; heat of vaporization T; Temperature R; gas constant V m; molar volume [Delta] H; vaporization enthalpy Delta] E; vaporization energy

極性溶媒として溶解性パラメーター(SP値)が20[MPa1/2]以上の有機溶剤を選定し、第二工程で得られた金属ナノ粒子を加え、攪拌することにより本発明の金属微粒子分散体を得ることができる。SP値が20[MPa1/2]以上である有機溶剤は、例えば、Polymer Handbook 第4版, John Wiley &Sons, Inc.に記載されており、その値を基に選ぶことができる。 The organic fine particle dispersion of the present invention is selected by selecting an organic solvent having a solubility parameter (SP value) of 20 [MPa 1/2 ] or more as a polar solvent, adding the metal nanoparticles obtained in the second step, and stirring. Can be obtained. Organic solvents having an SP value of 20 [MPa 1/2 ] or more are described in, for example, Polymer Handbook 4th Edition, John Wiley & Sons, Inc. And can be selected based on the value.

SP値が20[MPa1/2]以上である有機溶剤として以下の水酸基含有溶媒を挙げることができる。()内の値はその溶剤のSP値である。メタノール(29.7)、エタノール(26.0)、1-プロパノール(24.3)、イソプロパノール(23.5)、1-ブタノール(23.3)、イソブタノール(21.5)、sec-ブタノール(22.1)、tert-ブタノール(21.7)、アミルアルコール(22.3)、tert-アミルアルコール(22.3)、1-ヘキサノール(21.9)、シクロヘキサノール(23.3)、ベンジルアルコール(24.8)、2-エチル-1-ブタノール(21.5)、1-ヘプタノール(21.7)、1-オクタノール(21.1)、4-メチル-2-ペンタノール(20.5)、ネオペンチルグリコール(22.5)、プロピオニトリル(22.1)、エチレングリコール(29.9)、プロピレングリコール(25.8)、1,3-ブタンジオール(23.7)、1,4-ブタンジオール(24.8)、2,3-ブタンジオール(22.7)、イソブチレングリコール(22.9)、2,2-ジメチル-1,3-ブタンジオール(20.5)、2-メチル-1,3-ペンタンジオール(21.1)、2-メチル-2,4-ペンタンジオール(19.8)、ジエチレングリコール(24.8)、トリエチレングリコール(21.9)、テトラエチレングリコール(20.3)、1,5-ペンタンジオール(23.5)、2,4-ペンタンジオール(22.1)、ジプロピレングリコール(20.7)、2,5-ヘキサンジオール(21.2)、グリセリン(33.8)、ジエチレングリコールモノブチルエーテル(20.9)、エチレングリコールモノベンジルエーテル(22.3)、エチレングリコールモノエチルエーテル(21.5)、エチレングリコールモノメチルエーテル(23.3)、エチレングリコールモノフェニルエーテル(23.5)、プロピレングリコールジメチルエーテル(20.7)などを挙げることができる。 Examples of the organic solvent having an SP value of 20 [MPa 1/2 ] or more include the following hydroxyl group-containing solvents. The value in () is the SP value of the solvent. Methanol (29.7), ethanol (26.0), 1-propanol (24.3), isopropanol (23.5), 1-butanol (23.3), isobutanol (21.5), sec-butanol (22.1), tert-butanol (21.7), amyl alcohol (22.3), tert-amyl alcohol (22.3), 1-hexanol (21.9), cyclohexanol (23.3), Benzyl alcohol (24.8), 2-ethyl-1-butanol (21.5), 1-heptanol (21.7), 1-octanol (21.1), 4-methyl-2-pentanol (20. 5), neopentyl glycol (22.5), propionitrile (22.1), ethylene glycol (29.9), propylene glycol (25.8) 1,3-butanediol (23.7), 1,4-butanediol (24.8), 2,3-butanediol (22.7), isobutylene glycol (22.9), 2,2-dimethyl- 1,3-butanediol (20.5), 2-methyl-1,3-pentanediol (21.1), 2-methyl-2,4-pentanediol (19.8), diethylene glycol (24.8) , Triethylene glycol (21.9), tetraethylene glycol (20.3), 1,5-pentanediol (23.5), 2,4-pentanediol (22.1), dipropylene glycol (20.7) ), 2,5-hexanediol (21.2), glycerin (33.8), diethylene glycol monobutyl ether (20.9), ethylene glycol monobenzyl ether Ter (22.3), ethylene glycol monoethyl ether (21.5), ethylene glycol monomethyl ether (23.3), ethylene glycol monophenyl ether (23.5), propylene glycol dimethyl ether (20.7), etc. be able to.

SP値が20[MPa1/2]以上である有機溶剤として、その他、アセトン(20.3)、シクロペンタノン(21.3)、シクロヘキサノン(20.3)、アセトフェノン(21.7)、アクリロニトリル(24.3)、プロピオニトリル(22.1)、n-ブチロニトリル(21.5)、イソブチロニトリル(20.1)、γ-ブチロラクトン(25.8)、ε-カプロラクトン(20.7)、プロピオラクトン(27.2)、炭酸-2,3-ブチレン(24.8)、炭酸エチレン(30.1)、炭酸1,2-エチレン(27.2)、炭酸ジメチル(20.3)、炭酸エチレン(30.1)、マロン酸ジメチル(22.5)、乳酸エチル(20.5)、安息香酸メチル(21.5)、サリチル酸メチル(21.7)、二酢酸エチレングリコール(20.5)、ε-カプロラクタム(26.0)、ジメチルスルホキシド(29.7)、N,N-ジメチルホルムアミド(24.8)、N,N-ジメチルアセトアミド(22.1)、N-メチルホルムアミド(32.9)、N-メチルアセトアミド(29.9)、N-エチルアセトアミド(25.2)、N,N-ジエチルホルムアミド(21.7)、ホルムアミド(39.3)、ピロリジン(30.1)、1-メチル-2-ピロリジノン(23.1)、ヘキサメチルリン酸トリアミド(21.5)、ナフタレン(20.3)も例示することができる。 Other organic solvents having an SP value of 20 [MPa 1/2 ] or more include acetone (20.3), cyclopentanone (21.3), cyclohexanone (20.3), acetophenone (21.7), acrylonitrile. (24.3), propionitrile (22.1), n-butyronitrile (21.5), isobutyronitrile (20.1), γ-butyrolactone (25.8), ε-caprolactone (20.7) ), Propiolactone (27.2), 2,3-butylene carbonate (24.8), ethylene carbonate (30.1), 1,2-ethylene carbonate (27.2), dimethyl carbonate (20.3) ), Ethylene carbonate (30.1), dimethyl malonate (22.5), ethyl lactate (20.5), methyl benzoate (21.5), methyl salicylate (21.7), ethylene glycol diacetate Cole (20.5), ε-caprolactam (26.0), dimethyl sulfoxide (29.7), N, N-dimethylformamide (24.8), N, N-dimethylacetamide (22.1), N— Methylformamide (32.9), N-methylacetamide (29.9), N-ethylacetamide (25.2), N, N-diethylformamide (21.7), formamide (39.3), pyrrolidine (30 .1), 1-methyl-2-pyrrolidinone (23.1), hexamethylphosphoric triamide (21.5), and naphthalene (20.3).

併用できる溶剤の例としては具体例としては、水、イソアミルアルコール、3-メトキシ-1-ブタノール、2-ペンタノール、3-メチル-1-ペンタノール、3-メチル-2-ペンタノール、1-ヘキサノール、2-ヘキサノール、2-エチルヘキサノール、1-オクタノール、イソオクチルアルコール、2-ブチル-1-オクタノール、1-ノナノール、1-デカノール、ラウリルアルコール、ミリスチルアルコール、セチルアルコール、ステアリルアルコール、オレイルアルコール、2-(2-エトキシエトキシ)エタノール、2-(2-ブトキシエトキシ)エタノール、フルフリルアルコール、ターピネオール、フェノール、2-フェノキシエタノール、1-フェノキシ-2-プロパノールなどのアルコール類、エチレングリコール、プロピレングリコール、ジエチレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、オクタンジオール、トリエチレングリコールなどのジオール類、グリセリンなどのポリオール類、ペンタン、ヘキサン、オクタン、ノナン、デカン、ウンデカン、ドデカン、オクタデカン、シクロヘキサン、メチルシクロヘキサン、p-メンタン、トルエン、キシレンなどの脂肪族炭化水素、リモネン、シメン、テルピネン、α-フェランドレンなどの不飽和炭化水素、酢酸エチル、酢酸プロピル、酢酸イソプロピル、1-メトキシ-2-プロピルアセテート、3-メトキシブチルアセテート、エチレングリコールモノメチルエーテルアセテート、2-(2-エトキシエトキシ)エチルアセテート、2-(2-ブトキシエトキシ)エチルアセテート、2,2,4-トリメチル-1,3-ペンタンジオールモノイソブチレート、γ-ブチロラクトン、乳酸エチルなどのエステル類、メチルエチルケトン、メチルイソブチルケトン、2-ペンタノン、2-ヘプタノン、シクロヘキサノンなどのケトン類、ジエチルエーテル、1,2-ジメトキシエタン、エチレングリコールジエチルエーテル、ジエチレングリコールジエチルエーテル、テトラヒドロフランなどのエーテル類、N,N-ジメチルホルムアミド、N-メチルピロリドン、N,N-ジメチルアセトアミドなどのアミド類などが挙げられる。前記分散溶媒は、単独または二種以上を用いても良い。 Specific examples of solvents that can be used in combination include water, isoamyl alcohol, 3-methoxy-1-butanol, 2-pentanol, 3-methyl-1-pentanol, 3-methyl-2-pentanol, 1- Hexanol, 2-hexanol, 2-ethylhexanol, 1-octanol, isooctyl alcohol, 2-butyl-1-octanol, 1-nonanol, 1-decanol, lauryl alcohol, myristyl alcohol, cetyl alcohol, stearyl alcohol, oleyl alcohol, Alcohols such as 2- (2-ethoxyethoxy) ethanol, 2- (2-butoxyethoxy) ethanol, furfuryl alcohol, terpineol, phenol, 2-phenoxyethanol, 1-phenoxy-2-propanol, ethylene glycol , Propylene glycol, diethylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, octanediol, diols such as triethylene glycol, and polyols such as glycerin , Pentane, hexane, octane, nonane, decane, undecane, dodecane, octadecane, cyclohexane, methylcyclohexane, p-menthane, toluene, xylene and other aliphatic hydrocarbons, limonene, cymene, terpinene, α-ferrandylene, etc. Hydrocarbon, ethyl acetate, propyl acetate, isopropyl acetate, 1-methoxy-2-propyl acetate, 3-methoxybutyl acetate, ethylene glycol monomethyl ether acetate, 2- (2-ethoxyethoxy) ethyl acetate Cetates, 2- (2-butoxyethoxy) ethyl acetate, 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate, γ-butyrolactone, esters such as ethyl lactate, methyl ethyl ketone, methyl isobutyl ketone, 2 -Ketones such as pentanone, 2-heptanone, cyclohexanone, ethers such as diethyl ether, 1,2-dimethoxyethane, ethylene glycol diethyl ether, diethylene glycol diethyl ether, tetrahydrofuran, N, N-dimethylformamide, N-methylpyrrolidone, Examples thereof include amides such as N, N-dimethylacetamide. The dispersion solvent may be used alone or in combination of two or more.

本発明の金属微粒子分散体には、分散安定性を付与するために、上に例示したアミン類、アルカノールアミン類、アミジン類、カルボン酸類、チオール類、ホスフィン類を加えることもできる。特に脂肪酸及びヒドロキシ脂肪酸を添加することにより非極性溶媒への分散性が向上し金属濃度50%以上での分散が可能となる。また、室温での分散安定性も向上する。 In order to impart dispersion stability to the metal fine particle dispersion of the present invention, amines, alkanolamines, amidines, carboxylic acids, thiols, and phosphines exemplified above may be added. In particular, by adding a fatty acid and a hydroxy fatty acid, dispersibility in a nonpolar solvent is improved, and dispersion at a metal concentration of 50% or more becomes possible. Also, the dispersion stability at room temperature is improved.

金属微粒子の平均粒径は、例えば、以下の方法で算出できる。まず、金属微粒子を電子顕微鏡(TEM)で観察する。得られた像における特定の金属微粒子の面積Sの平方根を当該金属微粒子の粒径aと定義する(a=S1/2)。任意の50個の金属微粒子の粒径aを算出する。算出された粒径aの平均値を金属微粒子の1次粒子の平均粒径と定義する。又は、動的光散乱法、極小角X線散乱によっても金属微粒子の平均粒径を求めることができる。 The average particle diameter of the metal fine particles can be calculated by the following method, for example. First, metal fine particles are observed with an electron microscope (TEM). The square root of the area S of specific metal fine particles in the obtained image is defined as the particle size a of the metal fine particles (a = S 1/2 ). The particle diameter a of 50 arbitrary metal fine particles is calculated. The average value of the calculated particle diameter a is defined as the average particle diameter of the primary particles of the metal fine particles. Alternatively, the average particle diameter of the metal fine particles can also be obtained by a dynamic light scattering method or minimal angle X-ray scattering.

(金属微粒子インク)
本発明の金属微粒子分散体は、インク化することによりパッド印刷、スクリーン印刷、スクリーンオフセット印刷、インクジェット印刷、フレキソ印刷、凸版印刷、平版オフセット印刷、水無平版オフセット印刷、グラビア印刷、グラビアオフセット印刷、凸版反転印刷、レーザー印刷、ゼログラフィー印刷、パッド印刷、およびこれらの組合せからなる群から選択される印刷方法を用いて画像を形成することができる。
(Metal fine particle ink)
The metal fine particle dispersion of the present invention is converted into an ink by pad printing, screen printing, screen offset printing, ink jet printing, flexographic printing, letterpress printing, planographic offset printing, waterless planographic offset printing, gravure printing, gravure offset printing, The image can be formed using a printing method selected from the group consisting of letterpress reversal printing, laser printing, xerographic printing, pad printing, and combinations thereof.

本発明の金属微粒子分散体をインク化する場合、20℃で50mPa・s以下の低粘度の溶媒をさらに添加することができる。このような溶媒としては、例えば、水、メタノール、エタノール、1-プロパノール、イソプロパノール、1-ブタノール、sec-ブタノール、tert-ブタノール、イソアミルアルコール、3-メトキシ-1-ブタノール、1-ペンタノール、2-ペンタノール、4-メチル-2-ペンタノール、3-メチル-1-ペンタノール、3-メチル-2-ペンタノール、1-ヘキサノール、2-ヘキサノール、2-エチルヘキサノール、1-オクタノール、イソオクチルアルコール、2-ブチル-1-オクタノール、1-ノナノール、1-デカノール、オレイルアルコール、2-(2-エトキシエトキシ)エタノール、2-(2-ブトキシエトキシ)エタノール、フルフリルアルコール、ターピネオール、2-フェノキシエタノール、1-フェノキシ-2-プロパノールなどのアルコール類、ペンタン、ヘキサン、オクタン、ノナン、デカン、ウンデカン、ドデカン、オクタデカン、シクロヘキサン、メチルシクロヘキサン、p-メンタン、トルエン、キシレンなどの脂肪族炭化水素、リモネン、シメン、テルピネン、α-フェランドレンなどの不飽和炭化水素、酢酸エチル、酢酸プロピル、酢酸イソプロピル、1-メトキシ-2-プロピルアセテート、3-メトキシブチルアセテート、エチレングリコールモノメチルアセテート、2-(2-エトキシエトキシ)エチルアセテート、2-(2-ブトキシエトキシ)エチルアセテート、2,2,4-トリメチル-1,3-ペンタンジオールモノイソブチレート、γ-ブチロラクトン、乳酸エチルなどのエステル類、メチルエチルケトン、メチルイソブチルケトン、2-ペンタノン、2-ヘプタノン、シクロヘキサノンなどのケトン類、ジエチルエーテル、1,2-ジメトキシエタン、エチレングリコールジエチルエーテル、ジエチレングリコールジエチルエーテル、テトラヒドロフランなどのエーテル類、N,N-ジメチルホルムアミド、1-メチル-2-ピロリジノン、N,N-ジメチルアセトアミドなどのアミド類などが挙げられる。前記分散溶媒は、単独または二種以上を用いても良く、二種以上を併用する場合は、混合液として粘度が20℃で50mPa・s以下であることが好ましい。 When forming the metal fine particle dispersion of the present invention into an ink, a low viscosity solvent of 50 mPa · s or less at 20 ° C. can be further added. Examples of such a solvent include water, methanol, ethanol, 1-propanol, isopropanol, 1-butanol, sec-butanol, tert-butanol, isoamyl alcohol, 3-methoxy-1-butanol, 1-pentanol, 2 -Pentanol, 4-methyl-2-pentanol, 3-methyl-1-pentanol, 3-methyl-2-pentanol, 1-hexanol, 2-hexanol, 2-ethylhexanol, 1-octanol, isooctyl Alcohol, 2-butyl-1-octanol, 1-nonanol, 1-decanol, oleyl alcohol, 2- (2-ethoxyethoxy) ethanol, 2- (2-butoxyethoxy) ethanol, furfuryl alcohol, terpineol, 2-phenoxyethanol , 1-Fe Alcohols such as xyl-2-propanol, pentane, hexane, octane, nonane, decane, undecane, dodecane, octadecane, cyclohexane, methylcyclohexane, p-menthane, aliphatic hydrocarbons such as limonene, cymene, terpinene , Unsaturated hydrocarbons such as α-ferrandrene, ethyl acetate, propyl acetate, isopropyl acetate, 1-methoxy-2-propyl acetate, 3-methoxybutyl acetate, ethylene glycol monomethyl acetate, 2- (2-ethoxyethoxy) ethyl Acetates, 2- (2-butoxyethoxy) ethyl acetate, 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate, γ-butyrolactone, esters such as ethyl lactate, methyl ethyl ketone, Ketones such as butyl isobutyl ketone, 2-pentanone, 2-heptanone, cyclohexanone, ethers such as diethyl ether, 1,2-dimethoxyethane, ethylene glycol diethyl ether, diethylene glycol diethyl ether, tetrahydrofuran, N, N-dimethylformamide, Examples thereof include amides such as 1-methyl-2-pyrrolidinone and N, N-dimethylacetamide. The dispersion solvent may be used alone or in combination of two or more. When two or more of the dispersion solvents are used in combination, the viscosity of the mixed solution is preferably 50 mPa · s or less at 20 ° C.

金属微粒子インクには、前記溶媒(分散媒)の他、必要に応じて、樹脂等のバインダー成分、消泡剤、基材への密着付与剤、酸化防止剤、皮膜形成促進のための各種触媒、シリコーン系界面活性剤、フッ素系界面活性剤の様な各種界面活性剤、レベリング剤、離型促進剤等を印刷助剤として添加できる。 In addition to the above solvent (dispersion medium), the metal fine particle ink includes a binder component such as a resin, an antifoaming agent, an adhesion imparting agent to the base material, an antioxidant, and various catalysts for promoting film formation. Various surfactants such as silicone surfactants and fluorine surfactants, leveling agents, mold release accelerators, and the like can be added as printing aids.

本発明の金属微粒子インクは、分散安定性に優れているため、薄膜電極のような画像の形成にも好適に用いることができる。さらに、低温での焼成が可能であることから、樹脂基板、紙基板等の耐熱性の低い基板の上に本実施形態の金属微粒子インクを塗布又は印刷して配線を形成することもできる。 Since the metal fine particle ink of the present invention is excellent in dispersion stability, it can be suitably used for forming an image such as a thin film electrode. Furthermore, since firing at a low temperature is possible, the metal fine particle ink of this embodiment can be applied or printed on a substrate having low heat resistance such as a resin substrate or a paper substrate to form a wiring.

(凸版反転印刷による画像形成)
本発明の金属微粒子インクを用いて半導体デバイス用電極を作製する場合には、より狭い線幅かつ平滑な薄膜形成が可能である、凸版反転印刷を好適に用いることができる。また、凸版反転印刷法では、薄膜トランジスタの積層断面における、採用した電極幅が厚み方向で相違することがなく、転写異常のない、デバイス用電極が得られる。このようなソース電極及びドレイン電極を有する薄膜トランジスタは、駆動した際に、移動度や閾値電圧のバラツキがより少ない薄膜トランジスタとなる。
(Image formation by letterpress reverse printing)
When producing an electrode for a semiconductor device using the metal fine particle ink of the present invention, letterpress reversal printing which can form a thin film having a narrower line width and a smoother shape can be suitably used. Further, in the letterpress reverse printing method, the employed electrode width in the cross section of the thin film transistor is not different in the thickness direction, and a device electrode without transfer abnormality can be obtained. A thin film transistor having such a source electrode and a drain electrode is a thin film transistor with less variation in mobility and threshold voltage when driven.

具体的には、電極厚みが同一であり、そのいずれもが50nm以上、好ましくは100~200nmといった極めて均一な導電体からなり、凹型、凸型といった異常のない、適正な電極形状の電極が容易に得られる。その結果、このような電極は薄膜トランジスタをはじめとするトランジスタアレイや集積回路等を得るのに最適である。また、薄膜トランジスタ用電極においては安定したチャネル形状が得られるため、駆動した際に、移動度や閾値電圧のバラツキがより少ない薄膜トランジスタとなる。この様な優れた特徴は、スクリーン印刷法やインクジェット印刷法の様な、従来の印刷方法では到底達し得ない、上記した転写印刷の特徴である。 Specifically, the electrodes have the same thickness, both of which are made of extremely uniform conductors of 50 nm or more, preferably 100 to 200 nm, and can be easily formed into electrodes having an appropriate electrode shape with no abnormalities such as concave and convex shapes. Is obtained. As a result, such an electrode is optimal for obtaining a transistor array including a thin film transistor, an integrated circuit, and the like. In addition, since a stable channel shape can be obtained in the thin film transistor electrode, the thin film transistor has less variation in mobility and threshold voltage when driven. Such excellent features are the features of transfer printing described above, which cannot be achieved by conventional printing methods such as screen printing and ink jet printing.

凸版反転印刷法は、画像の反転パターンに対応する凸部が形成された凸版と、離形性を有する被転写部材(ブランケット)とが用いられる。金属微粒子インクを該被転写部材の表面全面に塗布する工程と、当該凸版を当該被転写部材上の塗布された面に押圧して、画像の反転パターンに対応する部分を凸版上に転移・除去する工程と、凸版で押圧された反転パターンが除去されることにより、画像パターンに対応する画像部が形成された被転写部材を用いて、基板等の支持体上に画像を転写印刷する工程と、を備えた印刷方法である。 In the letterpress reverse printing method, a letterpress on which a convex portion corresponding to an image reversal pattern is formed and a transferred member (blanket) having releasability are used. Applying metal fine particle ink to the entire surface of the member to be transferred and pressing the relief plate onto the coated surface on the member to be transferred, and transferring and removing the portion corresponding to the reversal pattern of the image on the relief plate And a step of transferring and printing an image on a support such as a substrate using a member to be transferred on which an image portion corresponding to the image pattern is formed by removing the reverse pattern pressed by the relief printing plate. The printing method provided with.

凸版反転印刷は、凸版により被転写部材上に形成された画像が被印刷基材上に転写印刷されるまでの間、高沸点溶剤がインキ塗膜中に残留することにより、インキの粘度が過度に上昇することを防ぎ、転写に必要な適度な粘着性および凝集力を保持でき、印刷が可能となる。 In letterpress reversal printing, the viscosity of the ink is excessive because the high-boiling solvent remains in the ink coating until the image formed on the transferred member by the letterpress is transferred to the printing substrate. Can be prevented, and can maintain appropriate adhesiveness and cohesive force necessary for transfer, and printing becomes possible.

凸版反転印刷に使用する金属微粒子インクに添加する高沸点溶剤溶剤としては、エステル系溶剤、アルコール系溶剤、エーテル系溶剤及び炭化水素系溶剤のいずれか1つ以上が用いられ、この遅乾性溶剤は全インキ組成物中、5~90質量%、好ましくは30~70質量%、さらに好ましくは40~60質量%含有されることが好ましい。また、その配合量は、凸版反転印刷法の印刷速度や印刷順序によって、5~90質量%の範囲で調整される。充分な量の高沸点溶剤が用いられない場合、ブランケット上のインク塗膜が乾燥し過ぎるため、凸版へインク塗膜が転移せず、ブランケット上に良好な画像が形成されないなどの不具合が生じる。また、過剰になるとブランケット上のインク塗膜が乾燥せず凸版に転移しないため好ましくない。 As the high boiling point solvent solvent added to the fine metal particle ink used for letterpress reverse printing, one or more of ester solvents, alcohol solvents, ether solvents and hydrocarbon solvents are used. The total ink composition contains 5 to 90% by mass, preferably 30 to 70% by mass, and more preferably 40 to 60% by mass. The blending amount is adjusted in the range of 5 to 90% by mass depending on the printing speed and printing order of the letterpress reverse printing method. When a sufficient amount of the high boiling point solvent is not used, the ink coating film on the blanket is dried too much, so that the ink coating film does not transfer to the relief plate and a good image is not formed on the blanket. Moreover, since it will not dry and the ink coating film on a blanket will not transfer to a letterpress if it becomes excess, it is not preferable.

上記インクに使用する高沸点溶剤は、金属微粒子の分散安定性を考慮して選択され、次に挙げるものを用いることができるが、これに限られるものではない。例えば、n-ノナン(沸点150℃)、n-デカン(沸点174℃)、n-ウンデカン(沸点195℃)、n-ドデカン(沸点216℃)、n-トリデカン(沸点235℃)、n-テトラデカン(沸点253℃)、n-ヘキサノール(沸点157℃)、n-ヘプタノール(沸点177℃)、n-オクタノール(沸点194℃)、n-ノナノール(沸点214℃)、n-デカノール(沸点233℃)、n-ウンデカノール(沸点243℃)、トリデカノール、ペンタデカノール、エステル系溶剤として、酢酸ブチル(沸点126℃)、酢酸イソブチル(沸点118℃)、乳酸エチル(沸点155℃)、3-メトキシ-3-メチル-1-ブチルアセテート(沸点188℃)、プロピレングリコールモノメチルアセテート(PGMAc)、プロピレングリコールモノエチルアセテート(PGMEA)、エトキシエチルプロピオネート(EEP)等が挙げられ、これらを混合して用いてもよい。 The high boiling point solvent used in the ink is selected in consideration of the dispersion stability of the metal fine particles, and the following can be used, but is not limited thereto. For example, n-nonane (boiling point 150 ° C.), n-decane (boiling point 174 ° C.), n-undecane (boiling point 195 ° C.), n-dodecane (boiling point 216 ° C.), n-tridecane (boiling point 235 ° C.), n-tetradecane (Boiling point 253 ° C), n-hexanol (boiling point 157 ° C), n-heptanol (boiling point 177 ° C), n-octanol (boiling point 194 ° C), n-nonanol (boiling point 214 ° C), n-decanol (boiling point 233 ° C) N-undecanol (boiling point 243 ° C.), tridecanol, pentadecanol, ester solvents such as butyl acetate (boiling point 126 ° C.), isobutyl acetate (boiling point 118 ° C.), ethyl lactate (boiling point 155 ° C.), 3-methoxy-3 -Methyl-1-butyl acetate (boiling point 188 ° C), propylene glycol monomethyl acetate (PGMAc), propylene Glycol monoethyl acetate (PGMEA), ethoxyethyl propionate (EEP) and the like, may be used as a mixture thereof.

(金属微粒子の焼結方法)
本発明の金属微粒子は低温焼結性に優れており、120℃以下の温度で焼結させることによって優れた導電性を発現することができる。したがって、本発明の金属微粒子は樹脂フィルムなどの耐熱性の低い材料にも利用が可能である。
(Sintering method of metal fine particles)
The metal fine particles of the present invention are excellent in low-temperature sinterability, and can exhibit excellent conductivity by sintering at a temperature of 120 ° C. or lower. Therefore, the metal fine particles of the present invention can be used for materials having low heat resistance such as resin films.

ここで、金属微粒子を焼結させる焼成方法としては、熱による焼結に制限されるものではなく、金属微粒子の融着が生じればよい。例えば、可視光、赤外光又はレーザー光の照射、水素ガスをはじめとするプラズマ処理を用いても金属微粒子を焼結することができる。例えば、金属微粒子の焼結に可視光を用いる場合、フラッシュランプを用いた光照射により行うことができる。 Here, the firing method for sintering the metal fine particles is not limited to sintering by heat, and the metal fine particles may be fused. For example, the metal fine particles can be sintered by using visible light, infrared light or laser light irradiation, or plasma treatment including hydrogen gas. For example, when visible light is used for sintering of the metal fine particles, it can be performed by light irradiation using a flash lamp.

本実施形態の金属微粒子を使用すれば、十分に低い抵抗率(金属に銀を用いた場合には、120℃の焼成により6×10E-6Ω・cm以下)をもった、配線、電極等の導電構造を形成できる。したがって、本実施形態の金属微粒子は、薄膜トランジスタ、薄膜トランジスタを含む集積回路、タッチパネル、RFID、フレキシブルディスプレイ、有機EL、回路基板、センサーデバイス等の様々な電子部品の製造に好適に用いることができる。 If the metal fine particles of this embodiment are used, wiring, electrodes, etc. having sufficiently low resistivity (6 × 10E-6 Ω · cm or less by baking at 120 ° C. when silver is used for the metal). A conductive structure can be formed. Therefore, the metal fine particles of the present embodiment can be suitably used for manufacturing various electronic components such as a thin film transistor, an integrated circuit including a thin film transistor, a touch panel, an RFID, a flexible display, an organic EL, a circuit board, and a sensor device.

(薄膜有機トランジスタ)
本発明において薄膜トランジスタとは、少なくともゲート電極と、絶縁体層と、ソース電極及びドレイン電極と、半導体層とを基板上に積層したトランジスタである。薄膜トランジスタは、通常、支持体となる基板を含めない厚さが0.1~3μmである。
(Thin film organic transistor)
In the present invention, a thin film transistor is a transistor in which at least a gate electrode, an insulator layer, a source electrode and a drain electrode, and a semiconductor layer are stacked over a substrate. The thin film transistor usually has a thickness of 0.1 to 3 μm excluding the substrate serving as a support.

薄膜トランジスタは、導電体からなるソース電極と、ドレイン電極と、ゲート電極と、半導体層と、絶縁体層とを、トランジスタの機能が発現する様に、基板上に、任意の順序で積層することで容易に製造することができる。 A thin film transistor is formed by laminating a source electrode, a drain electrode, a gate electrode, a semiconductor layer, and an insulator layer made of a conductor in any order on a substrate so that the function of the transistor is exhibited. It can be manufactured easily.

本発明の薄膜トランジスタは、横型および縦型のトランジスタ構造をとることができる。横型トランジスタとして例えば、ゲート電極のトランジスタ構成要素との位置関係により定義されるボトムゲート型(BG)又はトップゲート型(TG)のトランジスタが適用できる。またBG型やTG型それぞれにソース・ドレイン電極と有機半導体層の位置関係より、ボトムコンタクト型、トップコンタクト型、ボトムトップコンタクト型等のトランジスタ構造をとることができる。 The thin film transistor of the present invention can have horizontal and vertical transistor structures. As the lateral transistor, for example, a bottom-gate (BG) or top-gate (TG) transistor defined by the positional relationship of the gate electrode with the transistor component can be used. Further, depending on the positional relationship between the source / drain electrodes and the organic semiconductor layer in each of the BG type and the TG type, a transistor structure such as a bottom contact type, a top contact type, and a bottom top contact type can be adopted.

(薄膜有機トランジスタ用電極)
本発明の薄膜トランジスタは、少なくとも一つの電極が本発明の金属微粒子を用いて形成されることを特徴とする。また、当該薄膜有機トランジスタ用電極には、本発明の金属微粒子と他の導電性材料(例えば、金、銀、銅、ニッケル、亜鉛、アルミニウム、カルシウム、マグネシウム、鉄、白金、パラジウム、スズ、クロム、鉛、等の金属粒子や、銀/パラジウム等のこれら金属の合金;酸化銀、有機銀、有機金等の比較的低温で熱分化して導電性金属を与える熱分解性金属化合物;酸化亜鉛(ZnO)、酸化インジュウムスズ(ITO)等の導電性金属酸化物粒子等)とを混合して用いることもできる。
(Electrode for thin film organic transistor)
The thin film transistor of the present invention is characterized in that at least one electrode is formed using the metal fine particles of the present invention. In addition, the electrode for the thin film organic transistor includes the metal fine particles of the present invention and other conductive materials (for example, gold, silver, copper, nickel, zinc, aluminum, calcium, magnesium, iron, platinum, palladium, tin, chromium). Metal particles such as silver, palladium, and alloys of these metals such as silver / palladium; thermally decomposable metal compounds that give a conductive metal by thermal differentiation at a relatively low temperature, such as silver oxide, organic silver, and organic gold; zinc oxide (ZnO), conductive metal oxide particles such as indium tin oxide (ITO), etc.) can also be used as a mixture.

本発明の薄膜有機トランジスタ用電極は、インクジェット印刷法、スクリーン印刷法、スクリーンオフセット印刷法、スピンコート法、バーコート法、パッド印刷法、スリットコート法、ディップコート法、スプレーコート法、グラビア印刷法、フレキソ印刷法、平版オフセット印刷法、グラビアオフセット印刷法、凸版オフセット印刷法、凸版印刷法、凸版反転印刷法等およびこれらの組合せからなる群から選択される印刷方法を用いて画像形成することができる。中でも、より高精細かつ平滑な薄膜で電極画像部が形成できることから、凸版反転印刷法を用いることが好ましい。 The electrode for a thin film organic transistor of the present invention is an ink jet printing method, a screen printing method, a screen offset printing method, a spin coating method, a bar coating method, a pad printing method, a slit coating method, a dip coating method, a spray coating method, a gravure printing method. Forming an image using a printing method selected from the group consisting of a flexographic printing method, a lithographic offset printing method, a gravure offset printing method, a relief printing method, a relief printing method, a relief printing method, and combinations thereof. it can. Among these, it is preferable to use a letterpress reverse printing method because an electrode image portion can be formed with a finer and smoother thin film.

凸版反転印刷法では、薄膜トランジスタの積層断面における電極幅が、厚み方向で相違することがなく、転写異常のない、電極が得られる。このような電極を有する薄膜トランジスタは、駆動した際に、移動度や閾値電圧のバラツキがより少ない薄膜トランジスタとなる。 In the letterpress reverse printing method, the electrode width in the laminated section of the thin film transistor is not different in the thickness direction, and an electrode having no transfer abnormality is obtained. A thin film transistor having such an electrode is a thin film transistor with less variation in mobility and threshold voltage when driven.

凸版反転印刷法によりトランジスタ用電極を形成する方法は、蒸着等の乾式により当該電極を得る方法に比べて、高価な真空装置が必要なく、設備投資も含めた生産コストの劇的な低減が可能となる。また、プロセスの低温化が可能であり、また基板として樹脂フィルムを用いることができることから、フレキシブル性および低コストの実現の上で好ましい。 The method of forming transistor electrodes by letterpress reversal printing does not require an expensive vacuum device and can drastically reduce production costs including capital investment, compared to methods for obtaining the electrodes by vapor deposition or other dry methods. It becomes. In addition, the process can be reduced in temperature, and a resin film can be used as the substrate, which is preferable for realizing flexibility and low cost.

本発明の薄膜トランジスタのソース及びドレイン電極は必要に応じて表面処理をすることで、半導体層への電荷注入効率を向上させることができる。薄膜有機トランジスタ用電極の表面処理材料は半導体のエネルギー準位と合わせて任意に選択することができるが、例えば、オクタンチオール、デカンチオール、ドデカンチオール、パーフルオロオクタンチオール、パーフルオロデカンチオール、パーフルオロドデカンチオール、ベンゼンチオール、3-メチルベンゼンチオール、4-メチルベンゼンチオール、3-フルオロベンゼンチオール、4-フルオロベンゼンチオール、3-クロロベンゼンチオール、4-クロロベンゼンチオール、ペンタクロロベンゼンチオール、3-ブロモベンゼンチオール、4-ブロモベンゼンチオール、3-メトキシベンゼンチオール、4-メトキシベンゼンチオール、3-メチルチオベンゼンチオール、4-メチルチオベンゼンチオール、、3-トリフルオロメトキシベンゼンチオール、4-トリフルオロメトキシベンゼンチオール、3-トリフルオロメチルチオベンゼンチオール、4-トリフルオロメチルチオベンゼンチオール、ペンタフルオロベンゼンチオール、3-トリフルオロメチルベンゼンチオール、4-トリフルオロメチルベンゼンチオール、4-トリフルオロメチル-2,3,5,6-テトラフルオロベンゼンチオール、3-ニトロベンゼンチオール、4-ニトロベンゼンチオール、フルオレンチオール、3-シアノベンゼンチオール、4-シアノベンゼンチオール、ビフェニルチオール、2-メルカプト-5-ニトロベンズイミダゾール、5-クロロ-2-メルカプトベンゾイミダゾール等のチオール化合物;ジフェニルジスルフィド等のジスルフィド化合物;ジフェニルスルフィド等のスルフィド化合物;長鎖フルオロアルキルシラン等のシランカップリング剤;モリブデン酸化物、バナジウム酸化物、タングステン酸化物、レニウム酸化物等の金属酸化物などを使用することができる。中でも電極表面と化学的に結合可能な官能基を有するものが好ましい。 By subjecting the source and drain electrodes of the thin film transistor of the present invention to surface treatment as necessary, the charge injection efficiency into the semiconductor layer can be improved. The surface treatment material of the electrode for the thin film organic transistor can be arbitrarily selected according to the energy level of the semiconductor. For example, octanethiol, decanethiol, dodecanethiol, perfluorooctanethiol, perfluorodecanethiol, perfluoro Dodecanethiol, benzenethiol, 3-methylbenzenethiol, 4-methylbenzenethiol, 3-fluorobenzenethiol, 4-fluorobenzenethiol, 3-chlorobenzenethiol, 4-chlorobenzenethiol, pentachlorobenzenethiol, 3-bromobenzenethiol, 4-bromobenzenethiol, 3-methoxybenzenethiol, 4-methoxybenzenethiol, 3-methylthiobenzenethiol, 4-methylthiobenzenethiol, 3-trifluoro Romethoxybenzenethiol, 4-trifluoromethoxybenzenethiol, 3-trifluoromethylthiobenzenethiol, 4-trifluoromethylthiobenzenethiol, pentafluorobenzenethiol, 3-trifluoromethylbenzenethiol, 4-trifluoromethylbenzenethiol, 4-trifluoromethyl-2,3,5,6-tetrafluorobenzenethiol, 3-nitrobenzenethiol, 4-nitrobenzenethiol, fluorenethiol, 3-cyanobenzenethiol, 4-cyanobenzenethiol, biphenylthiol, 2-mercapto Thiol compounds such as -5-nitrobenzimidazole and 5-chloro-2-mercaptobenzimidazole; disulfide compounds such as diphenyl disulfide; Sulfide compounds such as I de; silane coupling agents such as long chain fluoroalkyl silane; molybdenum oxide, vanadium oxide, tungsten oxide, etc. can be used metal oxides such as rhenium oxide. Among them, those having a functional group that can be chemically bonded to the electrode surface are preferable.

薄膜有機トランジスタ用電極の表面処理方法としては、公知慣用の、乾式、湿式のいずれのプロセスでも形成させることができる。湿式法の具体例としては、スピンコート法、バーコート法、スリットコート法、ディップコート法、スプレーコート法、ディスペンサー法、インクジェット法等が挙げられる。 As a surface treatment method of the electrode for a thin film organic transistor, it can be formed by any known and commonly used dry or wet process. Specific examples of the wet method include spin coating, bar coating, slit coating, dip coating, spray coating, dispenser, and ink jet.

薄膜有機トランジスタ用電極の表面処理量は、表面処理前後の電極の仕事関数を、大気中光電子分光装置を用いて測定することで求めることができる。 The surface treatment amount of the thin film organic transistor electrode can be determined by measuring the work function of the electrode before and after the surface treatment using an atmospheric photoelectron spectrometer.

(薄膜有機トランジスタ用基材)
本発明の薄膜トランジスタに適用できる基板に制限は無く、例えば、シリコン、絶縁層となるよう表面を酸化シリコン化した熱酸化膜シリコン、ガラス、絶縁層を形成したステンレス等の金属薄板;ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリイミド(PI)、ポリエーテルスルフォン(PES)、ポリエチレンナフタレート(PEN)、液晶ポリマー(LCP)、ポリパラキシリレン、ポリフェニレンサルファイド(PPS)、セルロース等のプラスチックフィルム;これらプラスチックフィルムにガスバリヤー層、ハードコート層等を付与した複合フィルム等が使用できる。なかでも、トランジスタのフレキシブル化の観点から、基板としては樹脂フィルムを好適に使用できる。
(Substrate for thin film organic transistor)
There are no limitations on the substrate applicable to the thin film transistor of the present invention. For example, silicon, a thermal oxide film silicon whose surface is oxidized to be an insulating layer, glass, a thin metal plate such as stainless steel on which an insulating layer is formed; polycarbonate (PC) Plastic films such as polyethylene terephthalate (PET), polyimide (PI), polyethersulfone (PES), polyethylene naphthalate (PEN), liquid crystal polymer (LCP), polyparaxylylene, polyphenylene sulfide (PPS), cellulose; A composite film obtained by adding a gas barrier layer, a hard coat layer, etc. to a plastic film can be used. Among these, from the viewpoint of making the transistor flexible, a resin film can be suitably used as the substrate.

(薄膜有機トランジスタ用絶縁層)
本発明の薄膜トランジスタの絶縁体層に用いられる絶縁体材料としては、絶縁性を有する材料を含んでいれば制限はなく、公知公用の材料を用いることができる。例えば、ポリパラキシリレン樹脂、ポリスチレン樹脂、ポリカーボネート樹脂、ポリビニルアルコール樹脂、ポリ酢酸ビニル樹脂、ポリスルホン樹脂、ポリアクリロニトリル系樹脂、メタクリル系樹脂、ポリ塩化ビニリデン系樹脂、フッ素系樹脂、エポキシ樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリビニルピロリドン系樹脂、ポリシアネート樹脂、ポリオレフィン樹脂、ポリテルペン樹脂、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系樹脂、(メタ)アクリル樹脂、ジアリルフタレート樹脂、メラミン樹脂、ウレタン樹脂、ポリエステル樹脂、アルキッド樹脂、ベンゾシクロブテン樹脂等の有機膜を形成する樹脂や、加水分解および必要に応じて加熱処理により無機皮膜を形成する、シラン化合物、シラザン化合物、マグネシウムアルコキシド化合物、アルミニウムアルコキシド化合物、タンタルアルコキシド化合物、イオン性液体、イオン性ゲルが使用できる。又、これら単体又は2種類以上を併用してもよく、必要に応じてジルコニア、二酸化珪素、酸化アルミニウム、酸化チタン、酸化タンタル等の酸化物、SrTiO、BaTiO等の強誘電性酸化物、窒化珪素、窒化アルミニウム等の窒化物、硫化物、フッ化物等の誘電体微粒子を分散させることができる。
(Insulating layer for thin film organic transistor)
The insulator material used for the insulator layer of the thin film transistor of the present invention is not limited as long as it includes an insulating material, and a publicly known material can be used. For example, polyparaxylylene resin, polystyrene resin, polycarbonate resin, polyvinyl alcohol resin, polyvinyl acetate resin, polysulfone resin, polyacrylonitrile resin, methacrylic resin, polyvinylidene chloride resin, fluorine resin, epoxy resin, polyimide resin , Polyamide resins, polyamideimide resins, polyvinylpyrrolidone resins, polycyanate resins, polyolefin resins, polyterpene resins, polyvinylidene fluoride, polytetrafluoroethylene and other fluorine resins, (meth) acrylic resins, diallyl phthalate resins, melamine resins, Resins that form organic films such as urethane resins, polyester resins, alkyd resins, benzocyclobutene resins, and silanes that form inorganic films by hydrolysis and heat treatment if necessary Compound, silazane compound, a magnesium alkoxide compound, an aluminum alkoxide compound, a tantalum alkoxide compounds, ionic liquids, ionic gels can be used. These may be used alone or in combination of two or more. If necessary, oxides such as zirconia, silicon dioxide, aluminum oxide, titanium oxide, and tantalum oxide, ferroelectric oxides such as SrTiO 3 and BaTiO 3 , Dielectric fine particles such as nitrides such as silicon nitride and aluminum nitride, sulfides and fluorides can be dispersed.

この絶縁体層、およびゲート電極層は、公知慣用の、乾式、湿式のいずれのプロセスでも形成させることができる。 The insulator layer and the gate electrode layer can be formed by any known and commonly used dry or wet processes.

絶縁体層表面は、トランジスタ特性の向上のために、例えば、ヘキサメチルジシラザン(HMDS)、オクチルトリクロロシラン(OTS-8)、オクタデシルトリクロロシラン、(OTS-18)、ドデシルトリクロロシラン(DTS)、フッ素置換オクタトリクロロシラン(PFOTS)、β-フェネチルトリクロロシラン等の各種シランカップリング剤でSAM(自己組織膜)処理を行うことができる。 In order to improve the transistor characteristics, the surface of the insulator layer may be formed by, for example, hexamethyldisilazane (HMDS), octyltrichlorosilane (OTS-8), octadecyltrichlorosilane, (OTS-18), dodecyltrichlorosilane (DTS), SAM (self-assembled film) treatment can be performed with various silane coupling agents such as fluorine-substituted octatrichlorosilane (PFOTS) and β-phenethyltrichlorosilane.

また、上記SAM処理を行った絶縁体層と半導体層との界面の親和性が不充分である場合には、それを良好にし、かつトランジスタ特性を向上させるために、必要であれば、フッ素系界面活性剤等を用いることができる。 In addition, when the affinity of the interface between the insulator layer and the semiconductor layer subjected to the SAM treatment is insufficient, if necessary, in order to improve it and improve the transistor characteristics, a fluorine-based material is used. A surfactant or the like can be used.

本発明の薄膜トランジスタの絶縁層、ゲート電極の厚みは、特に制限されるものではないが、絶縁層の厚みはON/OFF値のバラツキを抑えられる点で5~1000nmが好ましい。ゲート電極の厚みは、フレキシブル基材への追従性が良い点で20~1000nmが好ましい。 The thickness of the insulating layer and the gate electrode of the thin film transistor of the present invention is not particularly limited, but the thickness of the insulating layer is preferably 5 to 1000 nm from the viewpoint of suppressing variations in ON / OFF values. The thickness of the gate electrode is preferably 20 to 1000 nm from the viewpoint of good followability to a flexible substrate.

(薄膜有機トランジスタ用半導体層)
薄膜トランジスタの半導体層に用いられる半導体材料としては、有機、無機の半導体材料が適用できる。有機半導体材料としては、例えば、低分子有機半導体して、フタロシアニン誘導体、ポリフィリン誘導体、ナフタレンテトラカルボン酸ジイミド誘導体、フラーレン誘導体、ペンタセンおよびペンタセントリイソプロピルシリル(TIPS)ペンタセン等のアセン系化合物、各種ペンタセン前駆体、アントラセン、ペリレン、ピレン、フェナントレン、コロネン等の多環芳香族化合物およびその誘導体、オリゴチオフェンおよびその誘導体、チアゾール誘導体、フラーレン誘導体、ジナフトチオフェン系化合物、カーボンナノチューブ等の炭素系化合物、その他、ベンゾチエノベンゾチオフェン等のチオフェン、フェニレン、ビニレン等を組み合わせた各種低分子半導体の一種以上およびこれら共重合体が好適に使用できる。
(Semiconductor layer for thin film organic transistor)
As a semiconductor material used for the semiconductor layer of the thin film transistor, an organic or inorganic semiconductor material can be applied. Examples of organic semiconductor materials include low-molecular organic semiconductors such as phthalocyanine derivatives, porphyrin derivatives, naphthalene tetracarboxylic acid diimide derivatives, fullerene derivatives, pentacene and pentacentriisopropylsilyl (TIPS) pentacene, and various pentacene precursors. Body, anthracene, perylene, pyrene, phenanthrene, coronene and other polycyclic aromatic compounds and derivatives thereof, oligothiophene and derivatives thereof, thiazole derivatives, fullerene derivatives, dinaphthothiophene compounds, carbon nanotubes and other carbon compounds, etc. One or more kinds of various low-molecular semiconductors combined with thiophene such as benzothienobenzothiophene, phenylene, vinylene, and the like, and copolymers thereof can be suitably used.

また、高分子化合物として、ポリチオフェン、ポリ(3-ヘキシルチオフェン)(P3HT)、PQT-12等のポリチオフェン系高分子、B10TTT、PB12TTT、PB14TTT等のチオフェン-チエノチオフェン共重合体、F8T2等のフルオレン系高分子、その他、パラフェニレンビニレン等のフェニレンビニレン系高分子、ポリトリアリールアミン等のアリールアミン系高分子等が好適に使用できる。また、これら有機半導体材料に加え、加熱処理やEB、Xeフラッシュランプ等のエネルギー線照射により無機半導体へと改質可能な溶液溶解性のSi半導体前駆体、IGZO、YGZO、ZnO等の酸化物半導体の前駆体等が適用できる。 In addition, as a polymer compound, polythiophene, poly (3-hexylthiophene) (P3HT), polythiophene polymers such as PQT-12, thiophene-thienothiophene copolymers such as B10TTT, PB12TTT, PB14TTT, and fluorenes such as F8T2 Polymers, phenylene vinylene polymers such as paraphenylene vinylene, arylamine polymers such as polytriarylamine, and the like can be suitably used. In addition to these organic semiconductor materials, solution-soluble Si semiconductor precursors that can be modified into inorganic semiconductors by energy treatment such as heat treatment, EB, and Xe flash lamps, and oxide semiconductors such as IGZO, YGZO, and ZnO A precursor of the above can be applied.

薄膜トランジスタの半導体層に用いられる半導体材料としては、より低温かつ簡便に半導体層を形成することができ、取扱いが容易であることから、無機半導体よりも有機半導体の方が好ましい。有機半導体の中でも、自己凝集性が高く、結晶構造を取り易いものが、より優れたトランジスタ特性を発揮することができるので好ましい。 As a semiconductor material used for the semiconductor layer of the thin film transistor, an organic semiconductor is preferable to an inorganic semiconductor because the semiconductor layer can be easily formed at a lower temperature and is easy to handle. Among organic semiconductors, those having a high self-aggregation property and easy to take a crystal structure are preferable because more excellent transistor characteristics can be exhibited.

有機および無機半導体材料のインク化に適用可能な溶剤は、常温もしくは多少の加熱で該半導体材料を溶解でき、適度の揮発性を有し、溶剤揮発後に有機半導体薄膜を形成できればよく、例えば、トルエン、キシレン、クロロホルム、クロロベンゼン類、シクロヘキシルベンゼン、テトラリン、1-メチル-2-ピロリジノン、ジメチルスルホキシド、イソホロン、スルホラン、テトラヒドロフラン、メシチレン、アニソール、ナフタレン誘導体、ベンゾニトリル、アミルベンゼン、γ-ブチロラクトン、アセトン、メチルエチルケトン等の有機溶剤を用いることができる。 Solvents that can be applied to inks of organic and inorganic semiconductor materials only need to be able to dissolve the semiconductor materials at room temperature or slightly heated, have appropriate volatility, and form an organic semiconductor thin film after volatilization of the solvent. , Xylene, chloroform, chlorobenzenes, cyclohexylbenzene, tetralin, 1-methyl-2-pyrrolidinone, dimethyl sulfoxide, isophorone, sulfolane, tetrahydrofuran, mesitylene, anisole, naphthalene derivatives, benzonitrile, amylbenzene, γ-butyrolactone, acetone, methyl ethyl ketone An organic solvent such as can be used.

薄膜トランジスタの半導体層の成膜方法としては、特に制限はなく、公知慣用の、乾式、湿式のいずれのプロセスでも形成させることができる。 The method for forming the semiconductor layer of the thin film transistor is not particularly limited, and the thin film transistor can be formed by any known and commonly used dry or wet process.

本発明の薄膜トランジスタは必要であれば最上層に保護膜層を形成することができる。保護膜層を設けることで外気の影響を最小限にでき、薄膜トランジスタの電気的特性を安定化することができる。 In the thin film transistor of the present invention, a protective film layer can be formed on the uppermost layer if necessary. By providing the protective film layer, the influence of outside air can be minimized, and the electrical characteristics of the thin film transistor can be stabilized.

本発明の薄膜トランジスタは、上記に例示した任意の製造方法で製造することができる。更に、こうして得られた薄膜トランジスタは、複数の素子を集積化することでトランジスタアレイや集積回路とすることができる。 The thin film transistor of the present invention can be manufactured by any of the manufacturing methods exemplified above. Further, the thin film transistor thus obtained can be a transistor array or an integrated circuit by integrating a plurality of elements.

以下、実施例をもって本発明を具体的に説明する。ここで「%」は、特に断らない限り「質量%」である。 Hereinafter, the present invention will be specifically described with reference to examples. Here, “%” is “% by mass” unless otherwise specified.

〔小角X線測定による平均一次粒子径の測定〕
金属微粒子分散体を小角X線測定装置(リガク製SmartLab)で極小角X線散乱(USAXS)測定を行い、得られた散乱曲線から平均一次粒子径を算出した。
[Measurement of average primary particle size by small-angle X-ray measurement]
The metal fine particle dispersion was subjected to minimal angle X-ray scattering (USAXS) measurement with a small angle X-ray measuring device (SmartLab manufactured by Rigaku), and the average primary particle size was calculated from the obtained scattering curve.

〔ヘテロダイン法による粒子径分布の測定〕
金属微粒子分散体を粒子径分布測定装置(MicrotracBEL製UPA-EX)で動的光散乱測定を行い、得られた散乱光の周波数から粒子径分布を算出して、体積平均粒径値を基準値として用いた。
[Measurement of particle size distribution by heterodyne method]
The metal fine particle dispersion is subjected to dynamic light scattering measurement using a particle size distribution measuring device (UPA-EX manufactured by MicrotracBEL), the particle size distribution is calculated from the frequency of the obtained scattered light, and the volume average particle size value is a reference value. Used as.

〔熱重量分析による重量減少率の測定〕
金属微粒子分散体2~25mgを熱重量分析用アルミパンに精密にはかり、EXSTAR TG/DTA6300型示差熱重量分析装置(エスアイアイ・ナノテクノロジー株式会社製)に載せ、空気気流下、室温~600℃まで毎分10℃の割合で昇温して、100℃~600℃の重量減少率を測定した。
[Measurement of weight loss rate by thermogravimetric analysis]
2-25 mg of fine metal particle dispersion is precisely weighed on an aluminum pan for thermogravimetric analysis and placed on an EXSTAR TG / DTA6300 differential thermogravimetric analyzer (made by SII NanoTechnology Co., Ltd.). The temperature was increased at a rate of 10 ° C. per minute until a weight reduction rate of 100 ° C. to 600 ° C. was measured.

〔焼結膜の作製方法と体積抵抗率の測定〕
0.7mm厚の無アルカリガラス基板(40mm×50mm)上に金属微粒子分散体をスピンコートすることにより塗布膜を作製した。得られた塗布膜を120℃で30分間恒温・乾燥器(クリーンオーブンDE411ヤマト科学製)で焼結することにより焼結膜を得た。焼結膜の膜厚は、100nmとなるようにスピンコート時の回転数を調整した。体積抵抗率は、四端子測定法の低抵抗率計ロレスターEP(三菱化学株式会社製)にて測定した。試験片の導電性膜(焼結膜)の膜厚から体積抵抗率を求めた。なお、体積抵抗率は、例えば、8.8×10-6Ω・cmを「8.8E-6Ω・cm」と記載する方法により示した。
[Production method of sintered film and measurement of volume resistivity]
A coating film was prepared by spin-coating a metal fine particle dispersion on a non-alkali glass substrate (40 mm × 50 mm) having a thickness of 0.7 mm. The obtained coating film was sintered at 120 ° C. for 30 minutes with a constant temperature / dryer (clean oven DE411 made by Yamato Kagaku) to obtain a sintered film. The number of rotations during spin coating was adjusted so that the thickness of the sintered film was 100 nm. The volume resistivity was measured with a low resistivity meter Lorester EP (manufactured by Mitsubishi Chemical Corporation) using a four-terminal measurement method. The volume resistivity was determined from the film thickness of the conductive film (sintered film) of the test piece. For example, the volume resistivity is shown by a method in which 8.8 × 10 −6 Ω · cm is described as “8.8E-6 Ω · cm”.

〔凸版反転印刷法による電極の作製〕
平均粒子径がナノメートルオーダーの銀微粒子が均一に液媒体に分散させられた、銀微粒子インクを、フィルム上にシリコーンゴム層を形成した透明ブランケットのシリコーンゴム面にスリットコーターにより均一に塗布し、タックが残る程度に乾燥させた。所望するソース及びドレイン電極パターンのネガパターンを形成したガラス凸版を、該銀微粒子インク均一塗布面に押し当てて不要な部分を除去した。ガラス凸版は凸状の鋭角部分(エッジ)の精度に優れたガラスのウェットエッチングにより得たものである。ブランケット上に残存したパターンを、さらに乾燥させ銀微粒子インク中の溶媒が十分に揮発した後に、基材上に150kPaの圧力で押し当てて、所望するソース及びドレイン電極パターンを基材上に転写した。尚、透明ブランケットのシリコーンゴム面全面を対象に、1×1μm角の範囲を任意に10箇所設けて、それらの算術平均粗さを測定したところ、その平均値は0.8nmであった。凸版反転印刷により作製された電極パターンは、チャネル長(L)20μm、チャネル幅(W)100μmで作製した。電極の膜厚は、焼結後に100nmとなるように作製した。
[Production of electrodes by letterpress reverse printing method]
A silver fine particle ink in which silver fine particles having an average particle size of nanometer order are uniformly dispersed in a liquid medium is uniformly applied to a silicone rubber surface of a transparent blanket in which a silicone rubber layer is formed on a film by a slit coater. It was dried to such an extent that the tack remained. A glass relief plate on which a negative pattern of a desired source and drain electrode pattern was formed was pressed against the silver fine particle ink uniform coating surface to remove unnecessary portions. The glass relief printing plate is obtained by wet etching of glass excellent in accuracy of convex acute angle portions (edges). After the pattern remaining on the blanket was further dried and the solvent in the silver fine particle ink was sufficiently volatilized, it was pressed onto the substrate at a pressure of 150 kPa to transfer the desired source and drain electrode patterns onto the substrate. . In addition, when the 10 × 1 μm square range was arbitrarily provided over the entire silicone rubber surface of the transparent blanket and the arithmetic average roughness thereof was measured, the average value was 0.8 nm. The electrode pattern produced by letterpress reverse printing was produced with a channel length (L) of 20 μm and a channel width (W) of 100 μm. The electrode film thickness was made to be 100 nm after sintering.

〔薄膜有機トランジスタの特性評価〕
作製した素子は、大気中で50℃、約10分の熱処理を行った後にId-Vg、Id-Vd特性を半導体パラメーター測定装置(ケースレー社4200CSC)により測定し、これより電界効果移動度及びON/OFF比を周知の方法より求めた。電界効果移動度の単位は、cm/Vsである。
[Characteristic evaluation of thin-film organic transistors]
The fabricated device was subjected to a heat treatment in the atmosphere at 50 ° C. for about 10 minutes, and the Id-Vg and Id-Vd characteristics were measured with a semiconductor parameter measuring device (Keithley 4200CSC). The / OFF ratio was determined by a known method. The unit of field effect mobility is cm 2 / Vs.

(実施例1)
(銀微粒子分散体の合成)
アルゴンガス雰囲気下で冷却管、温度計、撹拌機を備えた1LフラスコにN,N-ジメチルエチレンジアミン(東京化成工業社製)153.2g(1.738mmol)、3-(2-エチルヘキシルオキシ)プロピルアミン(東京化成工業社製)325.6g(1.738mmol)を添加後、このアミン液の内温が30℃になるまでオイルバスで加熱攪拌した。加熱攪拌下、シュウ酸銀(松田産業社製)35.2g(0.116mmol)を添加して、内温が40℃になるまで加熱攪拌した。温度を保持しながら1時間加熱攪拌を維持した後、フラスコ上部を開放し、オイルバスを94℃まで昇温した。シュウ酸銀―アミン錯体の熱分解による反応熱によって反応液が94-100℃まで上昇した後、反応液の温度が低下したことを確認後、フラスコをオイルバスから外し、アルゴンガス雰囲気下で反応液の内温が40℃以下になるまで冷却した。N-ヘキサン(関東化学社製)167.0gをフラスコに添加した後、10分間攪拌を維持した。攪拌停止後、30分程度静置した後、デカンテーションにより上澄み液630.9gを除去した。同様の操作をN-ヘキサン167.0gで1回、N-ヘキサン83gで2回繰り返して、銀微粒子を洗浄した。銀微粒子の重量が30.1g程度になるまで乾燥後、分散液中の銀濃度が20wt%となるように1-ブタノール(関東化学社製)61.2gを添加し、30分から1時間程度攪拌することで、褐色透明な銀微粒子分散体91.2gを得た。
Example 1
(Synthesis of silver fine particle dispersion)
In a 1 L flask equipped with a condenser, thermometer, and stirrer under an argon gas atmosphere, 153.2 g (1.738 mmol) of N, N-dimethylethylenediamine (manufactured by Tokyo Chemical Industry Co., Ltd.), 3- (2-ethylhexyloxy) propyl After adding 325.6 g (1.738 mmol) of amine (manufactured by Tokyo Chemical Industry Co., Ltd.), the mixture was heated and stirred with an oil bath until the internal temperature of the amine solution reached 30 ° C. Under heat and stirring, 35.2 g (0.116 mmol) of silver oxalate (manufactured by Matsuda Sangyo Co., Ltd.) was added, and the mixture was heated and stirred until the internal temperature reached 40 ° C. After maintaining heating and stirring for 1 hour while maintaining the temperature, the upper part of the flask was opened, and the oil bath was heated to 94 ° C. After the reaction solution rose to 94-100 ° C due to the heat of reaction due to thermal decomposition of the silver oxalate-amine complex, it was confirmed that the temperature of the reaction solution had dropped, and then the flask was removed from the oil bath and reacted in an argon gas atmosphere. It cooled until the internal temperature of a liquid became 40 degrees C or less. After adding 167.0 g of N-hexane (manufactured by Kanto Chemical Co., Inc.) to the flask, stirring was maintained for 10 minutes. After the stirring was stopped, the mixture was allowed to stand for about 30 minutes, and then 630.9 g of the supernatant was removed by decantation. The same operation was repeated once with 167.0 g of N-hexane and twice with 83 g of N-hexane to wash the silver fine particles. After drying until the weight of the silver fine particles is about 30.1 g, 61.2 g of 1-butanol (manufactured by Kanto Chemical Co., Inc.) is added so that the silver concentration in the dispersion is 20 wt%, and the mixture is stirred for about 30 minutes to 1 hour. As a result, 91.2 g of a brown transparent silver fine particle dispersion was obtained.

(銀微粒子分散体の評価)
〔小角X線測定による平均一次粒子径の測定〕
USAXS測定により算出された平均一次粒子径は、17nmと見積もられた。
(Evaluation of silver fine particle dispersion)
[Measurement of average primary particle size by small-angle X-ray measurement]
The average primary particle size calculated by USAXS measurement was estimated to be 17 nm.

〔ヘテロダイン法による粒子径分布の測定〕
動的光散乱測定により算出された粒子径分布より、体積平均粒径値は14.8nmと見積もられた。
[Measurement of particle size distribution by heterodyne method]
From the particle size distribution calculated by dynamic light scattering measurement, the volume average particle size value was estimated to be 14.8 nm.

〔熱重量分析による重量減少率の測定〕
作製した銀微粒子分散体約1gをブリキ製シャーレにとり、室温で低沸点の有機溶媒を乾燥させ、不揮発物を得た。この不揮発分12.74mgを熱重量分析用アルミパンに精密にはかり、空気気流下において室温~600℃まで毎分10℃の割合で昇温して、重量減少率を測定した。このとき、120℃での重量減少率が-1.2%、200℃での重量減少率が-3.7%を示し、300℃での重量減少率が-4.9%を示し、553℃では-5.0%の重量減少率であった。
[Measurement of weight loss rate by thermogravimetric analysis]
About 1 g of the produced silver fine particle dispersion was placed in a tin petri dish, and an organic solvent having a low boiling point was dried at room temperature to obtain a nonvolatile material. The non-volatile content of 12.74 mg was precisely weighed on an aluminum pan for thermogravimetric analysis, and the temperature was increased from room temperature to 600 ° C. at a rate of 10 ° C. per minute under an air stream, and the weight reduction rate was measured. At this time, the weight reduction rate at 120 ° C. was −1.2%, the weight reduction rate at 200 ° C. was −3.7%, the weight reduction rate at 300 ° C. was −4.9%, and 553 At 0 ° C., the weight loss rate was −5.0%.

 〔焼結膜の体積抵抗率の測定〕
作製した金属微粒子分散体をガラス基材上にスピンコートすることにより塗布膜を作製した。得られた塗布膜を120℃で30分間恒温乾燥器で焼結することにより焼結膜を得た。測定により得られた抵抗値及び焼結膜厚より見積もられた体積抵抗率は、8.1E-6Ω・cmであった。
[Measurement of volume resistivity of sintered film]
The prepared metal fine particle dispersion was spin coated on a glass substrate to prepare a coating film. The obtained coating film was sintered at 120 ° C. for 30 minutes with a constant temperature dryer to obtain a sintered film. The volume resistivity estimated from the resistance value obtained by measurement and the sintered film thickness was 8.1E-6 Ω · cm.

(薄膜有機トランジスタの作製)
本発明の銀微粒子分散体を用いて作製した銀微粒子インクを凸版反転印刷法によりパターン形成したソース電極又はドレイン電極を有するボトムゲートボトムコンタクト(BGBC)構造の薄膜トランジスタを下記の手順で作製し評価した。
(Production of thin-film organic transistors)
A thin film transistor having a bottom gate bottom contact (BGBC) structure having a source electrode or a drain electrode formed by patterning a silver fine particle ink produced using the silver fine particle dispersion of the present invention by a letterpress reverse printing method was produced and evaluated by the following procedure. .

(1)ゲート電極の作製
厚さ0.7mmの無アルカリガラス上に膜厚100nmのCr膜をスパッタリング法により成膜した後、フォトレジストを塗布して露光・現像し、ウェットエッチングでCr膜をパターニングすることでゲート電極を形成した。
(1) Fabrication of gate electrode A Cr film having a film thickness of 100 nm is formed on a non-alkali glass having a thickness of 0.7 mm by sputtering, then a photoresist is applied, exposed and developed, and the Cr film is formed by wet etching. A gate electrode was formed by patterning.

(2)絶縁層の作製
ポリパラキシリレン樹脂(日本パリレン社製、商品名パリレン-C)をゲート電極が形成された支持体上にCVD法により化学蒸着し、厚さ1000nmの絶縁層を形成した。
(2) Production of insulating layer Polyparaxylylene resin (trade name Parylene-C, manufactured by Japan Parylene Co., Ltd.) is chemically deposited on the support on which the gate electrode is formed by the CVD method to form an insulating layer having a thickness of 1000 nm. did.

(3)凸版反転印刷法によるソース電極およびドレイン電極の作製
絶縁層上に、1-ブタノール又は1-プロパノール(関東化学社製)を溶媒に含む本発明の銀微粒子分散体からなる銀微粒子インクを用い、凸版反転印刷法によりソース電極およびドレイン電極を作製した。トランジスタのチャネル長は20μm、チャネル幅は100μmとした。パターン形成後、クリーンオーブン中で120℃30分焼結した。焼結後の電極厚さは、100nmであった。
(3) Preparation of source electrode and drain electrode by letterpress reverse printing method Silver fine particle ink comprising the silver fine particle dispersion of the present invention containing 1-butanol or 1-propanol (manufactured by Kanto Chemical Co., Inc.) as a solvent on the insulating layer. A source electrode and a drain electrode were produced by using a letterpress reverse printing method. The channel length of the transistor was 20 μm and the channel width was 100 μm. After pattern formation, sintering was performed at 120 ° C. for 30 minutes in a clean oven. The electrode thickness after sintering was 100 nm.

(5)電極の表面処理
ペンタフルオロベンゼンチオール(東京化成工業社製)のイソプロピルアルコール(関東化学社製)30mmol/L溶液中に上記ソース電極及びドレイン電極基板を20分間浸漬させた後に、イソプロピルアルコールで洗浄し、エアーガンで乾燥させた。
(5) Surface treatment of electrode After immersing the above-mentioned source and drain electrode substrates in a 30 mmol / L solution of pentafluorobenzenethiol (manufactured by Tokyo Chemical Industry Co., Ltd.) in isopropyl alcohol (manufactured by Kanto Chemical Co., Inc.) for 20 minutes, isopropyl alcohol And dried with an air gun.

(6)半導体層の形成
有機半導体2,7-ジオクチル[1]ベンゾチエノ[3,2-b][1]ベンゾチオフェン(C8-BTBT)(アルドリッチ社製)のパラキシレン0.4重量%溶液を用いて、ドロップキャスト法により先に形成したソース電極及びドレイン電極のチャネル上に半導体層を形成し、ホットプレート上で50℃10分乾燥させた。
(6) Formation of Semiconductor Layer A para-xylene 0.4 wt% solution of organic semiconductor 2,7-dioctyl [1] benzothieno [3,2-b] [1] benzothiophene (C8-BTBT) (Aldrich) The semiconductor layer was formed on the channel of the source electrode and the drain electrode previously formed by the drop casting method, and dried on a hot plate at 50 ° C. for 10 minutes.

(薄膜有機トランジスタの特性評価)
作製した素子の電界効果移動度は0.6であり、ON/OFF比は3.8E+6であった。
(Characteristic evaluation of thin-film organic transistors)
The fabricated device had a field effect mobility of 0.6 and an ON / OFF ratio of 3.8E + 6.

(実施例2)
(銀微粒子分散体の合成)
実施例1記載のN,N-ジメチルエチレンジアミン153.2g(1.738mmol)、3-(2-エチルヘキシルオキシ)プロピルアミン325.6g(1.738mmol)の代わりに、3-メトキシプロピルアミン(東京化成工業社製)93.0g(1.042mmol)、3-(2-エチルヘキシルオキシ)プロピルアミン195.4g(1.042mmol)をそれぞれ使用した以外は同様の操作によって、茶色透明な銀微粒子分散体93.7gを得た。
(Example 2)
(Synthesis of silver fine particle dispersion)
Instead of 153.2 g (1.738 mmol) of N, N-dimethylethylenediamine described in Example 1 and 325.6 g (1.738 mmol) of 3- (2-ethylhexyloxy) propylamine, 3-methoxypropylamine (Tokyo Kasei) Kogyo Co., Ltd.) 93.0 g (1.042 mmol) and 3- (2-ethylhexyloxy) propylamine 195.4 g (1.042 mmol) were used in the same manner, except that brown transparent silver fine particle dispersion 93 0.7 g was obtained.

(銀微粒子分散体の評価)
〔小角X線測定による平均一次粒子径の測定〕
USAXS測定により算出された平均一次粒子径は、15nmと見積もられた。
(Evaluation of silver fine particle dispersion)
[Measurement of average primary particle size by small-angle X-ray measurement]
The average primary particle size calculated by USAXS measurement was estimated to be 15 nm.

〔ヘテロダイン法による粒子径分布の測定〕
動的光散乱測定により算出された粒子径分布より、体積平均粒径値は18.9nmと見積もられた。
[Measurement of particle size distribution by heterodyne method]
From the particle size distribution calculated by dynamic light scattering measurement, the volume average particle size value was estimated to be 18.9 nm.

〔熱重量分析による重量減少率の測定〕
作製した銀微粒子分散体約1gをブリキ製シャーレにとり、室温で低沸点の有機溶媒を乾燥させ、不揮発物を得た。この不揮発分12.74mgを熱重量分析用アルミパンに精密にはかり、空気気流下において室温~600℃まで毎分10℃の割合で昇温して、重量減少率を測定した。このとき、120℃での重量減少率が-1.7%、200℃での重量減少率が-3.7%を示し、300℃での重量減少率が-4.4%を示し、575℃では-4.5%の重量減少率であった。
[Measurement of weight loss rate by thermogravimetric analysis]
About 1 g of the produced silver fine particle dispersion was placed in a tin petri dish, and an organic solvent having a low boiling point was dried at room temperature to obtain a nonvolatile material. The non-volatile content of 12.74 mg was precisely weighed on an aluminum pan for thermogravimetric analysis, and the temperature was increased from room temperature to 600 ° C. at a rate of 10 ° C. per minute under an air stream, and the weight reduction rate was measured. At this time, the weight reduction rate at 120 ° C. was −1.7%, the weight reduction rate at 200 ° C. was −3.7%, the weight reduction rate at 300 ° C. was −4.4%, and 575 The decrease in weight was -4.5% at ° C.

 〔焼結膜の体積抵抗率の測定〕
作製した金属微粒子分散体をガラス基材上にスピンコートすることにより塗布膜を作製した。得られた塗布膜を120℃で30分間恒温・乾燥器で焼結することにより焼結膜を得た。測定により得られた抵抗値及び焼結膜厚より見積もられた体積抵抗率は、6.2E-6Ω・cmであった。
[Measurement of volume resistivity of sintered film]
The prepared metal fine particle dispersion was spin coated on a glass substrate to prepare a coating film. The obtained coating film was sintered at 120 ° C. for 30 minutes with a constant temperature / dryer to obtain a sintered film. The volume resistivity estimated from the resistance value obtained by measurement and the sintered film thickness was 6.2E-6 Ω · cm.

(薄膜トランジスタの作製)
本発明の銀微粒子分散体を用いて作製した銀微粒子インクを用いて凸版反転印刷法によりソース電極及びドレイン電極を作製した。それ以外は実施例1記載の方法と同様にしてボトムゲートボトムコンタクト(BGBC)構造の薄膜トランジスタを作製した。
(Production of thin film transistor)
A source electrode and a drain electrode were prepared by a letterpress reverse printing method using a silver fine particle ink produced using the silver fine particle dispersion of the present invention. Otherwise, a thin film transistor having a bottom gate bottom contact (BGBC) structure was produced in the same manner as in the method described in Example 1.

(薄膜有機トランジスタの特性評価)
作製した素子の電界効果移動度は0.8であり、ON/OFF比は1.2E+5であった。
(Characteristic evaluation of thin-film organic transistors)
The fabricated device had a field effect mobility of 0.8 and an ON / OFF ratio of 1.2E + 5.

(比較例1)
(銀微粒子分散体の合成)
比較例1に使用した銀微粒子分散体は、WO2015/075929号公報記載の実施例の[サンプル1]に記載されている方法により作製した。
(Comparative Example 1)
(Synthesis of silver fine particle dispersion)
The silver fine particle dispersion used in Comparative Example 1 was prepared by the method described in [Sample 1] of the examples described in WO2015 / 075929.

具体的には、n-オクチルアミン(東京化成工業社製)11.4mmolと、N、N-ジブチルエチレンジアミン(東京化成工業社製)7.6mmolと、オレイルアミン(東京化成工業社製)1mmolと、オレイン酸47.7μLとを混合し、アミン混合液を調製した。 Specifically, 11.4 mmol of n-octylamine (manufactured by Tokyo Chemical Industry Co., Ltd.), 7.6 mmol of N, N-dibutylethylenediamine (manufactured by Tokyo Chemical Industry Co., Ltd.), 1 mmol of oleylamine (manufactured by Tokyo Chemical Industry Co., Ltd.), Oleic acid (47.7 μL) was mixed to prepare an amine mixture.

一方、シュウ酸(関東化学社製)水溶液と硝酸銀(関東化学社製)水溶液とを混合して
、シュウ酸銀を合成した。
Meanwhile, an aqueous solution of oxalic acid (manufactured by Kanto Chemical Co., Inc.) and an aqueous solution of silver nitrate (manufactured by Kanto Chemical Co., Ltd.) were mixed to synthesize silver oxalate.

アミン混合液にシュウ酸銀1.5gを加え、得られた反応液を30℃で約15分間撹拌
したところ、白色の銀錯化合物が生成した。さらに、反応液を110℃で約10分間撹拌
したところ、数分間の二酸化炭素の発泡の後、青褐色の銀ナノ粒子が分散した懸濁液が得
られた。懸濁液にメタノール(関東化学社製)を10mL加えて遠心分離し、上澄み液を
除去し、銀微粒子の沈殿物を回収した。この銀微粒子に、n-ドデカン(東京化成工業社製)とn-ノナノール(東京化成工業社製)を体積比で3:1になるように調整した混合液を加えて、銀濃度が50wt%となるように、銀微粒子分散体を希釈した。
When 1.5 g of silver oxalate was added to the amine mixture and the resulting reaction solution was stirred at 30 ° C. for about 15 minutes, a white silver complex compound was formed. Furthermore, when the reaction solution was stirred at 110 ° C. for about 10 minutes, a suspension in which blue-brown silver nanoparticles were dispersed after foaming of carbon dioxide for several minutes was obtained. 10 mL of methanol (manufactured by Kanto Chemical Co., Inc.) was added to the suspension and centrifuged, the supernatant was removed, and the silver fine particle precipitate was collected. To this silver fine particle, a mixed solution prepared by adjusting the volume ratio of n-dodecane (manufactured by Tokyo Chemical Industry Co., Ltd.) and n-nonanol (manufactured by Tokyo Chemical Industry Co., Ltd.) to a volume ratio of 3: 1 was added, and the silver concentration was 50 wt%. The silver fine particle dispersion was diluted so that

〔ヘテロダイン法による粒子径分布の測定〕
動的光散乱測定により算出された粒子径分布より、体積平均粒径値は4.9nmと見積もられた。
[Measurement of particle size distribution by heterodyne method]
From the particle size distribution calculated by dynamic light scattering measurement, the volume average particle size value was estimated to be 4.9 nm.

〔熱重量分析による重量減少率の測定〕
作製した銀微粒子分散体約1gをアルミ製シャーレにとり、室温で低沸点の有機溶媒を乾燥させ、不揮発物を得た。この不揮発分9.56mgを熱重量分析用アルミパンに精密にはかり、空気気流下において室温~600℃まで毎分10℃の割合で昇温して、重量減少率を測定した。このとき、120℃での重量減少率が-1.1%、200℃での重量減少率が-4.0%、300℃での重量減少率が-7.5%を示し、581℃では-8.4%の重量減少率であった。
[Measurement of weight loss rate by thermogravimetric analysis]
About 1 g of the produced silver fine particle dispersion was placed in an aluminum petri dish, and an organic solvent having a low boiling point was dried at room temperature to obtain a nonvolatile material. 9.56 mg of this non-volatile content was precisely weighed on an aluminum pan for thermogravimetric analysis, and the temperature was increased from room temperature to 600 ° C. at a rate of 10 ° C. per minute under an air stream, and the weight reduction rate was measured. At this time, the weight reduction rate at 120 ° C. was −1.1%, the weight reduction rate at 200 ° C. was −4.0%, the weight reduction rate at 300 ° C. was −7.5%, and at 581 ° C. The weight loss rate was -8.4%.

 〔焼結膜の体積抵抗率の測定〕
作製した金属微粒子分散体をガラス基材上にスピンコートすることにより塗布膜を作製した。得られた塗布膜を120℃で30分間恒温・乾燥器で焼結することにより焼結膜を得た。測定により得られた抵抗値及び焼結膜厚より見積もられた体積抵抗率は、6.0E+1Ω・cmであった。
[Measurement of volume resistivity of sintered film]
The prepared metal fine particle dispersion was spin coated on a glass substrate to prepare a coating film. The obtained coating film was sintered at 120 ° C. for 30 minutes with a constant temperature / dryer to obtain a sintered film. The volume resistivity estimated from the resistance value obtained by measurement and the sintered film thickness was 6.0E + 1 Ω · cm.

(薄膜トランジスタの作製)
本発明の銀微粒子分散液に代えて、本比較例において作製した銀微粒子分散体を調整して作製した銀微粒子インクを用いて、凸版反転印刷法によりソース電極及びドレイン電極を作製した。それ以外は実施例1記載の方法と同様にしてボトムゲートボトムコンタクト(BGBC)構造の薄膜トランジスタを作製した。
(Production of thin film transistor)
Instead of the silver fine particle dispersion of the present invention, a source electrode and a drain electrode were prepared by a letterpress reverse printing method using a silver fine particle ink prepared by adjusting the silver fine particle dispersion prepared in this Comparative Example. Otherwise, a thin film transistor having a bottom gate bottom contact (BGBC) structure was produced in the same manner as in the method described in Example 1.

(薄膜有機トランジスタの特性評価)
作製した素子の電界効果移動度は0.9であり、ON/OFF比は5.7E+5であった。
(Characteristic evaluation of thin-film organic transistors)
The fabricated device had a field effect mobility of 0.9 and an ON / OFF ratio of 5.7E + 5.

(比較例2)
(銀微粒子の合成)
比較例2に使用した導電ペーストは、WO2007/120756号公報記載の実施例1に記載されている方法により作製した。
(Comparative Example 2)
(Synthesis of silver fine particles)
The conductive paste used in Comparative Example 2 was produced by the method described in Example 1 described in WO2007 / 120756.

具体的には、酢酸銀3.34gおよびドデシルアミン(東京化成工業社製)37.1gを、トルエン(関東化学社製)400mlに溶解させた。水素化ホウ素ナトリウム(NaBH)(東京化成工業社製)1.51gを、水150mlに溶解させた。NaBH水溶液液を5分間かけて、滴下漏斗で反応フラスコに攪拌しながら滴加した後、2時間半の攪拌をおこなった。溶液を静置して2相にした後、分液漏斗で水相を除去した。ローターエバポレータを用いて溶液からトルエンを除去して、高粘度の銀微粒子分散体を得た。得られた銀微粒子分散体に、メタノール125ml、アセトン125mlを添加して、銀微粒子を沈澱させた。銀微粒子を含む溶液を微細焼結ガラス漏斗で濾過し、固体生成物を集め、室温で真空乾燥した。銀微粒子である濃い青色の固体生成物2.3gを得た。 Specifically, 3.34 g of silver acetate and 37.1 g of dodecylamine (manufactured by Tokyo Chemical Industry Co., Ltd.) were dissolved in 400 ml of toluene (manufactured by Kanto Chemical Co., Inc.). 1.51 g of sodium borohydride (NaBH 4 ) (manufactured by Tokyo Chemical Industry Co., Ltd.) was dissolved in 150 ml of water. The NaBH 4 aqueous solution was added dropwise to the reaction flask with stirring using a dropping funnel over 5 minutes, followed by stirring for 2.5 hours. The solution was allowed to stand for two phases, and then the aqueous phase was removed with a separatory funnel. Toluene was removed from the solution using a rotor evaporator to obtain a highly viscous silver fine particle dispersion. To the resulting silver fine particle dispersion, 125 ml of methanol and 125 ml of acetone were added to precipitate silver fine particles. The solution containing silver particulates was filtered through a fine sintered glass funnel and the solid product was collected and dried in vacuo at room temperature. 2.3 g of a dark blue solid product as silver fine particles was obtained.

合成により得られた濃い青色の固体生成物に、シクロヘキサン(東京化成工業社製)を銀濃度が50wt%となるように加え、一晩攪拌することにより銀微粒子分散体を得た。 Cyclohexane (manufactured by Tokyo Chemical Industry Co., Ltd.) was added to the dark blue solid product obtained by synthesis so that the silver concentration was 50 wt%, and the mixture was stirred overnight to obtain a silver fine particle dispersion.

〔ヘテロダイン法による粒子径分布の測定〕
動的光散乱測定により算出された粒子径分布より、体積平均粒径値は27.0nmと見積もられた。
[Measurement of particle size distribution by heterodyne method]
From the particle size distribution calculated by dynamic light scattering measurement, the volume average particle size value was estimated to be 27.0 nm.

〔熱重量分析による重量減少率の測定〕
作製した銀微粒子分散体約1gをブリキ製シャーレにとり、室温で低沸点の有機溶媒を乾燥させ、不揮発物を得た。この不揮発分9.56mgを熱重量分析用アルミパンに精密にはかり、空気気流下において室温~600℃まで毎分10℃の割合で昇温して、重量減少率を測定した。このとき、120℃での重量減少率が-0.8%、200℃での重量減少率が-7.7%、300℃での重量減少率が-11.7%を示し、548℃では-13.7%の重量減少率であった。
[Measurement of weight loss rate by thermogravimetric analysis]
About 1 g of the produced silver fine particle dispersion was placed in a tin petri dish, and an organic solvent having a low boiling point was dried at room temperature to obtain a nonvolatile material. 9.56 mg of this non-volatile content was precisely weighed on an aluminum pan for thermogravimetric analysis, and the temperature was increased from room temperature to 600 ° C. at a rate of 10 ° C. per minute under an air stream, and the weight reduction rate was measured. At this time, the weight loss rate at 120 ° C was -0.8%, the weight loss rate at 200 ° C was -7.7%, and the weight loss rate at 300 ° C was -11.7%. The weight loss rate was -13.7%.

〔焼結膜の体積抵抗率の測定〕
作製した金属微粒子分散体をガラス基材上にスピンコートすることにより塗布膜を作製した。得られた塗布膜を120℃で30分間恒温・乾燥器で焼結することにより焼結膜を得た。測定により得られた抵抗値及び焼結膜厚より見積もられた体積抵抗率は、6.7E-6Ω・cmであった。
[Measurement of volume resistivity of sintered film]
The prepared metal fine particle dispersion was spin coated on a glass substrate to prepare a coating film. The obtained coating film was sintered at 120 ° C. for 30 minutes with a constant temperature / dryer to obtain a sintered film. The volume resistivity estimated from the resistance value obtained by measurement and the sintered film thickness was 6.7E-6 Ω · cm.

(薄膜トランジスタの作製)
本発明の銀微粒子分散液に代えて、本比較例において作製した銀微粒子分散体を調整して作製した銀微粒子インクを用いて、凸版反転印刷法によりソース電極及びドレイン電極の作製を試みた。しかし、当該銀微粒子分散体は、ブランケット上にインクを塗布し、乾燥させる工程において、ブランケット上で銀微粒子間での凝集が発生した。結果、凸版反転印刷法により薄膜有機トランジスタ用電極を作製できなかった。
(Production of thin film transistor)
In place of the silver fine particle dispersion of the present invention, an attempt was made to produce a source electrode and a drain electrode by a letterpress reverse printing method using a silver fine particle ink produced by adjusting the silver fine particle dispersion produced in this Comparative Example. However, in the silver fine particle dispersion, aggregation was generated between the silver fine particles on the blanket in the step of applying ink on the blanket and drying. As a result, an electrode for a thin film organic transistor could not be produced by the letterpress reverse printing method.

(比較例3)
<銀微粒子分散体の合成>末端にp-トルエンスルホニルオキシ基を有するメトキシポリエチレングリコール化合物5.39g(2.5mmol)、分岐状ポリエチレンイミン(アルドリッチ社製、分子量25,000)を20.0g(0.8mmol)、炭酸カリウム0.07g及びN,N-ジメチルアセトアミド100mlを、窒素雰囲気下、100℃で6時間攪拌した。得られた反応混合物に酢酸エチルとヘキサンの混合溶液(V/V=1/2)300mlを加え、室温で強力攪拌した後、生成物の固形物を濾過した。その固形物を酢酸エチルとヘキサンの混合溶液(V/V=1/2)100mlを用いて2回繰り返し洗浄した後、減圧乾燥して、分岐状ポリエチレンイミンにポリエチレングリコールが結合した高分子化合物の固体を24.4g得た。
(Comparative Example 3)
<Synthesis of Silver Fine Particle Dispersion> 5.39 g (2.5 mmol) of a methoxypolyethylene glycol compound having a p-toluenesulfonyloxy group at the terminal, 20.0 g of branched polyethyleneimine (manufactured by Aldrich, molecular weight 25,000) 0.8 mmol), 0.07 g of potassium carbonate and 100 ml of N, N-dimethylacetamide were stirred at 100 ° C. for 6 hours under a nitrogen atmosphere. To the resulting reaction mixture, 300 ml of a mixed solution of ethyl acetate and hexane (V / V = 1/2) was added, and after vigorous stirring at room temperature, the solid product was filtered. The solid was washed twice with 100 ml of a mixed solution of ethyl acetate and hexane (V / V = 1/2), dried under reduced pressure, and a polymer compound in which polyethylene glycol was bonded to branched polyethyleneimine. 24.4 g of solid was obtained.

 得られた高分子化合物を0.592g用いた水溶液138.8gに酸化銀10.0gを加えて25℃で30分間攪拌した。引き続き、ジメチルエタノールアミン46.0gを攪拌しながら徐々に加えたところ、反応溶液は褐色に変わり、若干発熱したが、そのまま放置して25℃で30分間攪拌した。その後、10%アスコルビン酸水溶液15.2gを攪拌しながら徐々に加えた。その温度を保ちながらさらに20時間攪拌を続けて、褐色の分散体を得た。 10.0 g of silver oxide was added to 138.8 g of an aqueous solution using 0.592 g of the obtained polymer compound, and the mixture was stirred at 25 ° C. for 30 minutes. Subsequently, when 46.0 g of dimethylethanolamine was gradually added with stirring, the reaction solution turned brown and slightly exothermic, but was left as it was and stirred at 25 ° C. for 30 minutes. Thereafter, 15.2 g of a 10% ascorbic acid aqueous solution was gradually added with stirring. While maintaining the temperature, stirring was continued for another 20 hours to obtain a brown dispersion.

上記で得られた反応終了後の分散液にイソプロピルアルコール200mlとヘキサン200mlの混合溶剤を加えて2分間攪拌した後、3000rpmで5分間遠心濃縮を行った。上澄みを除去した後、沈殿物にさらに水20gを加えて2分間攪拌して、減圧下有機溶剤を除去して銀微粒子分散体を得た。 A mixed solvent of 200 ml of isopropyl alcohol and 200 ml of hexane was added to the dispersion obtained after completion of the reaction and stirred for 2 minutes, followed by centrifugal concentration at 3000 rpm for 5 minutes. After removing the supernatant, 20 g of water was further added to the precipitate, followed by stirring for 2 minutes, and the organic solvent was removed under reduced pressure to obtain a silver fine particle dispersion.

(銀微粒子分散体の評価)
〔小角X線測定による平均一次粒子径の測定〕
USAXS測定により算出された平均一次粒子径は、22nmと見積もられた。
(Evaluation of silver fine particle dispersion)
[Measurement of average primary particle size by small-angle X-ray measurement]
The average primary particle size calculated by USAXS measurement was estimated to be 22 nm.

〔ヘテロダイン法による粒子径分布の測定〕
動的光散乱測定により算出された粒子径分布より、体積平均粒径値は45.9nmと見積もられた。
[Measurement of particle size distribution by heterodyne method]
From the particle size distribution calculated by the dynamic light scattering measurement, the volume average particle size value was estimated to be 45.9 nm.

〔熱重量分析による重量減少率の測定〕
作製した銀微粒子分散体約1gをブリキ製シャーレにとり、室温で低沸点の有機溶媒を乾燥させ、不揮発物を得た。この不揮発分5.14mgを熱重量分析用アルミパンに精密にはかり、空気気流下において室温~600℃まで毎分10℃の割合で昇温して、重量減少率を測定した。このとき、200℃での重量減少率が-0.9%を示し、300℃での重量減少率が-2.4%を示し、443℃では-2.9%の重量減少率であった。
[Measurement of weight loss rate by thermogravimetric analysis]
About 1 g of the produced silver fine particle dispersion was placed in a tin petri dish, and an organic solvent having a low boiling point was dried at room temperature to obtain a nonvolatile material. This non-volatile content (5.14 mg) was precisely weighed on an aluminum pan for thermogravimetric analysis, and the temperature was increased from room temperature to 600 ° C. at a rate of 10 ° C. per minute under an air stream, and the weight reduction rate was measured. At this time, the weight reduction rate at 200 ° C. was −0.9%, the weight reduction rate at 300 ° C. was −2.4%, and the weight reduction rate at −443 ° C. was −2.9%. .

 〔焼結膜の体積抵抗率の測定〕
作製した金属微粒子分散体をガラス基材上にスピンコートすることにより塗布膜を作製した。得られた塗布膜を120℃で30分間恒温・乾燥器で焼結することにより焼結膜を得た。測定により得られた抵抗値及び焼結膜厚より見積もられた体積抵抗率は、2.5E+1Ω・cmであった。
[Measurement of volume resistivity of sintered film]
The prepared metal fine particle dispersion was spin coated on a glass substrate to prepare a coating film. The obtained coating film was sintered at 120 ° C. for 30 minutes with a constant temperature / dryer to obtain a sintered film. The volume resistivity estimated from the resistance value obtained by the measurement and the sintered film thickness was 2.5E + 1 Ω · cm.

(薄膜トランジスタの作製)
本発明の銀微粒子分散体を用いて作製した銀微粒子インクを用いて凸版反転印刷法によりソース電極及びドレイン電極を作製した。それ以外は実施例1記載の方法と同様にしてボトムゲートボトムコンタクト(BGBC)構造の薄膜トランジスタを作製した。
(Production of thin film transistor)
A source electrode and a drain electrode were prepared by a letterpress reverse printing method using a silver fine particle ink produced using the silver fine particle dispersion of the present invention. Otherwise, a thin film transistor having a bottom gate bottom contact (BGBC) structure was produced in the same manner as in the method described in Example 1.

(薄膜有機トランジスタの特性評価)
作製した素子の電界効果移動度は0.07であり、ON/OFF比は6.5E+5であった。
(Characteristic evaluation of thin-film organic transistors)
The fabricated device had a field effect mobility of 0.07 and an ON / OFF ratio of 6.5E + 5.

実施例1及び2並びに比較例1から3で得られた結果を表1にまとめた。 The results obtained in Examples 1 and 2 and Comparative Examples 1 to 3 are summarized in Table 1.

表1記載の「凸版反転印刷の可否」において、「○」は得られた銀微粒子分散体をインク化することにより、当該印刷方法により画像を形成することが可能であったことを示している。「△」は当該銀微粒子分散体をインク化することにより、当該印刷方法により画像を形成することは可能であるが、ブランケットの膨潤により連続して印刷することが不可能であったことを示している。「×」は、銀微粒子分散体をインク化しても、離型性基材上で微粒子間凝集により印刷画像を作製することが不可能であったことを示している。 In Table 1, “Loss of letterpress reversal printing”, “◯” indicates that the obtained silver fine particle dispersion was converted into an ink so that an image could be formed by the printing method. . “△” indicates that it was possible to form an image by the printing method by converting the silver fine particle dispersion into an ink, but continuous printing was impossible due to swelling of the blanket. ing. “X” indicates that even if the silver fine particle dispersion was converted to ink, it was impossible to produce a printed image due to aggregation between fine particles on the releasable substrate.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (12)

アミノ基および少なくとも一種のヘテロ元素を有する第一級アミン化合物を含有する金属微粒子を極性溶媒に分散させた金属微粒子分散体。 A metal fine particle dispersion in which metal fine particles containing a primary amine compound having an amino group and at least one hetero element are dispersed in a polar solvent. 請求項1記載のヘテロ元素が少なくとも窒素、酸素、硫黄又は燐のいずれかから選択されるヘテロ元素である請求項1記載の金属微粒子分散体。 The metal fine particle dispersion according to claim 1, wherein the hetero element according to claim 1 is a hetero element selected from at least one of nitrogen, oxygen, sulfur and phosphorus. 請求項1記載の極性溶媒に、炭素数2から7のアルカノールを含有することを特徴とする請求項1記載の金属微粒子分散体。 The metal fine particle dispersion according to claim 1, wherein the polar solvent according to claim 1 contains an alkanol having 2 to 7 carbon atoms. 請求項1~3いずれか1項記載の金属微粒子が銀である金属微粒子分散体。 A metal fine particle dispersion wherein the metal fine particles according to any one of claims 1 to 3 are silver. 請求項1~4いずれか1項記載の金属微粒子分散体を含有するインク。 An ink containing the metal fine particle dispersion according to any one of claims 1 to 4. 表面エネルギー調整剤を含むことを特徴とする請求項5記載のインク。 6. The ink according to claim 5, further comprising a surface energy adjusting agent. 印刷助剤を含むことを特徴とする請求項5又は6記載のインク。 The ink according to claim 5 or 6, further comprising a printing aid. 請求項5~7いずれか1項記載のインクジェット又は凸版反転印刷用インク。 The ink for ink jet or letterpress reverse printing according to any one of claims 5 to 7. 請求項5~8いずれか1項記載のインクを用いて形成される導電膜又はパターン。 A conductive film or pattern formed using the ink according to any one of claims 5 to 8. 請求項5~8いずれか1項記載のインクを用いて形成される半導体デバイス用電極。 An electrode for a semiconductor device formed using the ink according to any one of claims 5 to 8. 請求項10記載の半導体デバイス電極を構成に含む電子デバイス。 An electronic device comprising the semiconductor device electrode according to claim 10 in its configuration. 請求項9記載の導電膜又は導電パターン、又は請求項11記載の電子デバイスを構成に含む電子回路。 An electronic circuit comprising the conductive film or conductive pattern according to claim 9 or the electronic device according to claim 11 in its configuration.
PCT/JP2017/030889 2017-03-15 2017-08-29 Metal fine particle dispersion, conductive ink and electronic device WO2018168004A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-049820 2017-03-15
JP2017049820 2017-03-15

Publications (1)

Publication Number Publication Date
WO2018168004A1 true WO2018168004A1 (en) 2018-09-20

Family

ID=63523455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030889 WO2018168004A1 (en) 2017-03-15 2017-08-29 Metal fine particle dispersion, conductive ink and electronic device

Country Status (1)

Country Link
WO (1) WO2018168004A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071198A1 (en) * 2018-10-02 2020-04-09 ヤスハラケミカル株式会社 Solvent composition for conductive paste, vehicle, and conductive paste

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036057A (en) * 2011-08-03 2013-02-21 Dai Ichi Kogyo Seiyaku Co Ltd Silver particle dispersion composition, conductive circuit using the same, and method for forming the conductive circuit
JP2015161008A (en) * 2014-02-28 2015-09-07 ハリマ化成株式会社 Method for preparing silver fine particles
WO2016204105A1 (en) * 2015-06-15 2016-12-22 株式会社大阪ソーダ Composition for manufacturing metal nanoparticles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036057A (en) * 2011-08-03 2013-02-21 Dai Ichi Kogyo Seiyaku Co Ltd Silver particle dispersion composition, conductive circuit using the same, and method for forming the conductive circuit
JP2015161008A (en) * 2014-02-28 2015-09-07 ハリマ化成株式会社 Method for preparing silver fine particles
WO2016204105A1 (en) * 2015-06-15 2016-12-22 株式会社大阪ソーダ Composition for manufacturing metal nanoparticles

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071198A1 (en) * 2018-10-02 2020-04-09 ヤスハラケミカル株式会社 Solvent composition for conductive paste, vehicle, and conductive paste
JP2020057691A (en) * 2018-10-02 2020-04-09 ヤスハラケミカル株式会社 Solvent composition for conductive paste, vehicle, and conductive paste
CN112640002A (en) * 2018-10-02 2021-04-09 安原化学股份有限公司 Solvent composition for conductive paste, carrier, and conductive paste
KR20210068395A (en) * 2018-10-02 2021-06-09 야스하라 케미카루 가부시키가이샤 Solvent composition for conductive paste, vehicle, and conductive paste
CN112640002B (en) * 2018-10-02 2022-09-23 安原化学股份有限公司 Solvent composition for conductive paste, carrier, and conductive paste
JP7198031B2 (en) 2018-10-02 2022-12-28 ヤスハラケミカル株式会社 Conductive paste solvent composition, vehicle, and conductive paste
KR102707721B1 (en) 2018-10-02 2024-09-19 야스하라 케미카루 가부시키가이샤 Solvent composition for conductive paste, vehicle, and conductive paste
TWI870359B (en) * 2018-10-02 2025-01-21 日商安原化學股份有限公司 Solvent composition for conductive slurry, vehicle (vehicle) and conductive slurry

Similar Documents

Publication Publication Date Title
US7847397B2 (en) Nanoparticles with covalently bonded stabilizer
US8274084B2 (en) Method and structure for establishing contacts in thin film transistor devices
JP5428104B2 (en) Organic semiconductor composition
EP2423264B1 (en) Phthalocyanine nanowires, ink composition and electronic element each containing same, and method for producing phthalocyanine nanowires
US8940562B1 (en) Fully-printed carbon nanotube thin film transistor backplanes for active matrix organic light emitting devices and liquid crystal displays
EP2304821B1 (en) Mixed solvent systems for deposition of organic semiconductors
KR102027362B1 (en) Semiconductor composition
JP5470763B2 (en) Carbon nanotube dispersion solution, organic semiconductor composite solution, organic semiconductor thin film, and organic field effect transistor
JP2012156502A (en) Electronic device
US8319206B2 (en) Thin film transistors comprising surface modified carbon nanotubes
US20090004771A1 (en) Methods for making electronic devices with a solution deposited gate dielectric
WO2006137233A1 (en) Method for organic semiconductor material thin film formation and process for producing organic thin film transistor
JP2018154806A (en) Metal fine particle dispersion, conductive ink, and electronic device
JP6393936B2 (en) THIN FILM TRANSISTOR, TRANSISTOR ARRAY, THIN FILM TRANSISTOR MANUFACTURING METHOD, AND TRANSISTOR ARRAY MANUFACTURING METHOD
US20090001356A1 (en) Electronic devices having a solution deposited gate dielectric
JP5715664B2 (en) Organic semiconductor composition
WO2018168004A1 (en) Metal fine particle dispersion, conductive ink and electronic device
JP2007188923A (en) Field effect transistor and picture display device
US20100093129A1 (en) Semiconducting ink formulation
Shin et al. The effect of thermal annealing on pentacene thin film transistor with micro contact printing
Brković et al. Electrical and morphological characterization of multiwalled carbon nanotubes functionalized via the Bingel reaction
JP5103982B2 (en) Method for manufacturing organic semiconductor element
JP2006093539A (en) Semiconductor composition, semiconductor composition and thin film transistor using dispersion solution thereof
JP2018059137A (en) Metal microparticle, metal microparticle dispersed material, conductive ink and electronic device
Luzio Combining new materials and solution processes for high-efficiency organic electronics.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901050

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17901050

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP