WO2018167330A1 - Optoelectronic system for tracking paths of movement in the evaluation of physical and sports performance - Google Patents
Optoelectronic system for tracking paths of movement in the evaluation of physical and sports performance Download PDFInfo
- Publication number
- WO2018167330A1 WO2018167330A1 PCT/ES2017/070151 ES2017070151W WO2018167330A1 WO 2018167330 A1 WO2018167330 A1 WO 2018167330A1 ES 2017070151 W ES2017070151 W ES 2017070151W WO 2018167330 A1 WO2018167330 A1 WO 2018167330A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- speed
- electronic system
- opto
- camera
- infrared light
- Prior art date
Links
- 230000005693 optoelectronics Effects 0.000 title claims abstract description 26
- 230000033001 locomotion Effects 0.000 title claims abstract description 18
- 238000011156 evaluation Methods 0.000 title abstract description 12
- 230000037078 sports performance Effects 0.000 title abstract description 4
- 230000036314 physical performance Effects 0.000 title description 3
- 230000001133 acceleration Effects 0.000 claims abstract description 14
- 230000000386 athletic effect Effects 0.000 claims abstract description 6
- 238000012360 testing method Methods 0.000 claims description 15
- 238000006073 displacement reaction Methods 0.000 claims description 9
- 238000005259 measurement Methods 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 7
- 238000012512 characterization method Methods 0.000 claims description 6
- 238000004590 computer program Methods 0.000 claims description 4
- 238000012423 maintenance Methods 0.000 claims description 4
- 238000005070 sampling Methods 0.000 claims description 4
- RZSCFTDHFNHMOR-UHFFFAOYSA-N n-(2,4-difluorophenyl)-2-[3-(trifluoromethyl)phenoxy]pyridine-3-carboxamide;1,1-dimethyl-3-(4-propan-2-ylphenyl)urea Chemical compound CC(C)C1=CC=C(NC(=O)N(C)C)C=C1.FC1=CC(F)=CC=C1NC(=O)C1=CC=CN=C1OC1=CC=CC(C(F)(F)F)=C1 RZSCFTDHFNHMOR-UHFFFAOYSA-N 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- 238000011161 development Methods 0.000 claims description 2
- 238000000554 physical therapy Methods 0.000 claims description 2
- 230000001141 propulsive effect Effects 0.000 claims description 2
- 230000001788 irregular Effects 0.000 claims 2
- 238000012549 training Methods 0.000 abstract description 13
- 238000012544 monitoring process Methods 0.000 abstract description 3
- 230000036541 health Effects 0.000 abstract description 2
- 230000037081 physical activity Effects 0.000 abstract description 2
- 230000003387 muscular Effects 0.000 abstract 1
- 238000004891 communication Methods 0.000 description 8
- 230000004888 barrier function Effects 0.000 description 4
- 210000003205 muscle Anatomy 0.000 description 4
- 238000009795 derivation Methods 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 241000950638 Symphysodon discus Species 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- HOQADATXFBOEGG-UHFFFAOYSA-N isofenphos Chemical compound CCOP(=S)(NC(C)C)OC1=CC=CC=C1C(=O)OC(C)C HOQADATXFBOEGG-UHFFFAOYSA-N 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000002232 neuromuscular Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011477 surgical intervention Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C23/00—Non-electrical signal transmission systems, e.g. optical systems
- G08C23/04—Non-electrical signal transmission systems, e.g. optical systems using light waves, e.g. infrared
Definitions
- Opto-electronic system for monitoring trajectories in the evaluation of physical and sports performance
- the present invention consists of an opto-electronic system designed to record the path described over time by one or more foci of infrared light that move within an area perpendicular to the system axis.
- the recording and processing of the data obtained from the series of the Cartesian coordinate pairs of the positions of each focus and the instants of time relative to those positions allows the determination of a series of physical parameters, such as: distances between foci, lengths of the paths traveled, described angles, instantaneous speeds, average speeds, maximum speeds, accelerations and other physical quantities derived from them.
- This opto-electronic system can be applied in different fields related to training control and sports performance, physical activity and health. Some examples could be: athletics tests, muscle strength training exercises, physical fitness assessment, physical rehabilitation programs in injured or elderly people, etc.
- the system set forth in the present invention is especially useful for controlling or monitoring physical performance in muscle strength training exercises, such as, bench press, counter-movement jump, squats, dominated, paddles and different exercises.
- weight lifting (weightlifting), among others; also, to characterize athletics tests such as speed races, long jump, triple jump and discus throws, javelin, weight and hammer; also to assess range of motion and range of joint movement of different joints.
- the main users of these exercises are high-level athletes and athletes, practitioners of numerous sports at recreational or amateur level, professionals belonging to fire departments, bodies and security forces, as well as professionals in the field of physiotherapy and physical rehabilitation .
- This opto-electronic system is part of the electronic instrumentation sector applied to metrology, in different areas such as sports physical preparation and sports training, physical fitness assessment, as well as in the equipment sector for evaluation of physical-sports performance and for the physical rehabilitation of people who leave bodily injuries or the elderly.
- the devices used so far to characterize the exercises for the development of physical strength are mainly based on three techniques.
- the first uses position transducers that measure the displacement of the moving object (usually a weight bar or the athlete's own body) and, by successive mathematical derivations, the speed and acceleration of the movement is obtained.
- the first system of this type is the one developed by Bosco and collaborators in the 1990s, called “Ergopower", as stated in [BOSCO et al., "A dynamometer for evaluation of dynamic muscle work”, Eur J Appl Physiol, 1995, Vol. 70, pages 379-386] and from which different variants and trademarks emerged in later years, all of which focused their attention on mechanical power as the main variable to control during strength training.
- beacons or barriers of photoelectric cells which are usually located at distances of 5 or 10 meters along the track where the race takes place. Its operation is based on the measurement of timed times using the signals generated by the photocells of the barriers to the passage of the athlete.
- timed times using the signals generated by the photocells of the barriers to the passage of the athlete.
- high-speed cameras are used whose records are subsequently processed to determine test times and speeds. It also uses bars of LEDs and photodiodes placed on the floor of the track to measure times of passage of the athlete, for example, those manufactured by the company Microgate that can be found at: http://www.microgate.it/Training/ Products / OptoJump-Next / Description. Likewise, linear speed tansductors (known as "encoders") connected with a cable to the athlete's waist have been used to measure their travel speed.
- encoders linear speed tansductors
- conveyors of mechanical angles manufactured for this purpose are generally used.
- a type of infrared vision camera has been used with a built-in graphics processor that locates the geometric center of one or several infrared light bulbs and assigns a pair of Cartesian coordinates to each point, performing this operation with a sampling frequency of 100 Hz.
- This camera is the one that incorporates the remote control of the popular Nintendo Wii console [CHUNG LEE, J. "Hacking the nintendo wii remote”, Pervasive Computing, 2008, July-September, www.computer.org/pervasive].
- the system presented here measures the position of one or more moving points, with a resolution of 0.1% of the full scale, within a range of variable dimensions and with a configurable sampling frequency between 100 Hz and 1000 Hz.
- an infrared vision camera is used that has an embedded graphics processor, which locates one or more foci (up to 4) that emit infrared light, determines its geometric center and assigns a pair of Cartesian coordinates (xi, yi) to each one of them; all in a time of 1 ms.
- the camera's viewing range is a rectangular window of 1,024 pixels in the horizontal direction and 768 pixels in the vertical direction and the lens opening angles are 35 ° and 25 ° respectively, so that at a greater distance from the camera, greater are the measures in units of length of the range of vision.
- the field of view of the camera is approximately 1,000 mm x 750 mm. That is, an infrared light source that moves in a plane perpendicular to the axis of view of the camera lens, located at 1,500 mm, can perform a movement registered by the camera within a 1,000 mm x 750 mm rectangle, representing 1 mm each pixel, approximately.
- a previous calibration must be carried out that gives us the conversion of units in pixels to units in millimeters.
- the communication that makes possible the transfer of data collected by the camera to the computer is done by USB standard cable through an electronic circuit developed for this purpose.
- This system has two advantages over the operation of the Wii remote control camera described in the background and prior art section, which are: 1) improvement of the sampling frequency, which in this system is configurable between 100 Hz and 1000 Hz, while the Wii remote is 100 Hz, and 2) improves communication via USB cable, since the wireless bluetooth communication used by the Wii remote usually presents pairing or synchronization difficulties between the remote control and the computer, which has variations and is complicated according to the operating system used (Windows XP, Windows 7, Windows Vista, Windows 8, Windows 10, Mac OS, Linux, etc); while The cable communication system is automatic detection (plug and play), which simplifies its use.
- FIG. General view of the different parts of the opto-electronic system.
- FIG.- View of the calibration strip.
- FIG 3. Mini-flashlights with LED. a) mini-flashlight powered by 1.5V battery and b) mini-flashlight powered by button battery.
- FIG 4.- a) Infrared vision camera with the infrared light lighting system and b) piece of reflective material.
- FIG 6. Example of graphical representation of the displacement and velocity variables vs. time as a result of a repetition in a squat exercise.
- FIG 7. Drawing of an aerial view of the application of the system to a sprint race test.
- FIG 1 The operation of the opto-electronic system for tracking trajectories is illustrated in FIG 1, where the infrared vision camera 1 housed in a box 2 and with its objective 3 oriented towards the outside can be seen.
- the camera can locate from one to four sources of infrared light emission that are in your field of vision.
- Inside the box there is also an electronic circuit 4 that controls the operation of the camera, performing several functions: it supplies power to the camera with voltage regulation, starts and stops the camera operation, collects the data delivered by the camera adapting its voltage levels, and sends them according to the serial communication protocol to the computer, with a frequency of 100 Hz to 1000 Hz through a communication cable 5 with USB 6 type connector.
- the camera is supported on a support 8 that keeps it in a certain orientation and in a fixed position in the space.
- the computer collects the data through a virtual COM port (VCP) assigned to said USB connection, where a computer program records and processes the data of said coordinates and times and presents through physical tables and graphs the physical variables of interest: position, distance traveled, instantaneous velocity, maximum velocity, average velocity, angle between segments defined by pairs of foci, angular velocity, linear and angular acceleration, etc. This allows qualitative and quantitative characterization of the movement of the infrared light emitting foci.
- VCP virtual COM port
- a graphic processor embedded in it determines the geometric center of that focus and assigns it the position coordinates (Xi, Yi) with respect to the rectangular field of 1,024x768 pixels representing its viewing range.
- the information of these coordinates is sent to the computer through the USB cable, but the program must translate that information from pixels to units of length. Therefore, a calibration system is planned, which must be carried out prior to the measurement series.
- FIG 2 there is a rigid strip 9, near whose ends two infrared light bulbs 10 are fixed at an exact distance between them (1,000 mm, for example).
- the computer program records the coordinates (in pixels) of the positions of the two bulbs of the strip captured by the camera and associates the distance between those coordinates with the actual distance in millimeters (1,000 mm) between the lights.
- This directly proportional correspondence allows to obtain the mathematical transformation of each data in pixels to units of length (millimeters), being able to obtain the positions and displacements of the focus in millimeters.
- the spotlights that are fixed on the body in motion and of which the camera has to follow and record its trajectory, must emit infrared light and at the same time must be light in weight so that they interfere as little as possible in the movement that is wanted to register.
- LEDs light emitting diodes
- FIG 3 shows two examples of mini-flashlights with LED 7 powered, a) with a button cell and b) with a 1.5V battery. Another way to achieve spotlights that emit infrared light is by using elements that act by reflection.
- a piece of sheet of reflective material 12 will be attached to the body of which its movement is to be recorded, which, when illuminated by an infrared light source located in a position close to the camera lens, will reflect the light in the direction from which it receives it, so that said piece of reflective material will be "seen” by the camera as a focus of infrared light.
- the size of said piece of reflective material can range between 5 cm 2 and 30 cm 2 of surface, depending on the distance that separates it from the camera lens.
- an infrared light source is shown as a ring of LEDs mounted on a printed circuit board 11, located around the camera lens. The LEDs of this infrared light source are electrically powered by the computer through the USB cable.
- a piece of sheet of reflective material is also shown.
- infrared light bulbs can also be used to be fixed at the ends of the calibration strip.
- This system can be applied in different situations where you want to characterize the dynamics of certain training exercises. Compared to other systems described in the background and prior art section, this system is very precise in the evaluation of strength exercises such as squats, bench presses, dominated, vertical jumps without squat jump (SJ) and jump with counter-movement (CMJ), and these same jumps with loads.
- strength exercises such as squats, bench presses, dominated, vertical jumps without squat jump (SJ) and jump with counter-movement (CMJ), and these same jumps with loads.
- FIG 5 A representation of the application of the opto-electronic system for the evaluation of a squat exercise can be seen in FIG 5.
- the infrared light bulb is placed on the weight bar that the athlete moves to correctly record the movements.
- the displacements in these exercises occur in the vertical direction, so it is interesting to place the camera rotated 90 ° with respect to its longitudinal axis, so that the X coordinate of the camera, which corresponds to a greater viewing range (1,024 pixels), match the direction of movement, so the camera's capacity is better utilized.
- the routes in the phases of up and down of the exercises, the duration times of those routes, the instantaneous speed, the maximum speed, the average speed, the speed are determined average in the propulsive phase, instantaneous acceleration, instantaneous force, average force, instantaneous power, average power and maximum power in those phases.
- An example of a graph generated by the computer program for the displacement and velocity variables is shown in FIG 6. time as a result of a squat exercise.
- the placement of the light emitting bulbs should be conveniently chosen, so that each two bulbs determine one of the two segments that will define the joint to be flexed. Knowing the coordinates of these four points, the slopes of the two segments are determined and by geometric calculations the angle that they form at each moment is determined.
- FIG 8 A representation of the application of the opto-electronic system to an evaluation of the flexibility and range of motion of a joint can be seen in FIG 8; in section a) the measurement method with angle conveyor is appreciated and in section b) the two pieces of reflective sheet that define a straight segment can be seen; the change that occurs in the slope of said segment when performing the exercise, allows to determine the angle of rotation in said joint with great precision, using trigonometric calculations.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
The invention relates to an optoelectronic system designed for locating, tracking and recording the path of movement described over time by one or more infrared light sources moving within a flat area. This permits the determination of a series of variables, such as: distance between sources, length of the travelled path of movement, described angle, instantaneous velocity, average velocity, maximum velocity, acceleration and other physical parameters derived therefrom. This optoelectronic system can be used in different areas relating to the monitoring of training and sports performance, physical activity and health, such as: athletics events, muscular strength training exercises, evaluation of physical condition, physical rehabilitation programs for injured people or older people, etc.
Description
DESCRIPCIÓN DESCRIPTION
Sistema opto-electrónico para el seguimiento de trayectorias en la evaluación del rendimiento físico y deportivo Opto-electronic system for monitoring trajectories in the evaluation of physical and sports performance
Objeto de la invención Object of the invention
La presente invención consiste en un sistema opto-electrónico diseñado para registrar la trayectoria descrita a lo largo del tiempo por uno o varios focos de luz infrarroja que se mueven dentro de un área perpendicular al eje del sistema. El registro y procesado de los datos obtenidos a partir de la serie de los pares de coordenadas cartesianas de las posiciones de cada foco y los instantes de tiempo relativos a esas posiciones, permite la determinación de una serie de parámetros físicos, tales como: distancias entre focos, longitudes de las trayectorias recorridas, ángulos descritos, velocidades instantáneas, velocidades medias, velocidades máximas, aceleraciones y otras magnitudes físicas derivadas de éstas. The present invention consists of an opto-electronic system designed to record the path described over time by one or more foci of infrared light that move within an area perpendicular to the system axis. The recording and processing of the data obtained from the series of the Cartesian coordinate pairs of the positions of each focus and the instants of time relative to those positions, allows the determination of a series of physical parameters, such as: distances between foci, lengths of the paths traveled, described angles, instantaneous speeds, average speeds, maximum speeds, accelerations and other physical quantities derived from them.
Este sistema opto-electrónico puede aplicarse en distintos ámbitos relativos al control del entrenamiento y el rendimiento deportivo, la actividad física y la salud. Algunos ejemplos podrían ser: pruebas de atletismo, ejercicios de entrenamiento de fuerza muscular, evaluación de la condición física, programas de rehabilitación física en personas lesionadas o en personas mayores, etc. This opto-electronic system can be applied in different fields related to training control and sports performance, physical activity and health. Some examples could be: athletics tests, muscle strength training exercises, physical fitness assessment, physical rehabilitation programs in injured or elderly people, etc.
Concretamente, el sistema que se expone en la presente invención es especialmente útil para controlar o monitorizar el rendimiento físico en ejercicios de entrenamiento de fuerza muscular, tales como, press de banca, salto con contra-movimiento, sentadillas, dominadas, remo y diferentes ejercicios de levantamiento de peso (halterofilia), entre otros; también, para caracterizar pruebas de atletismo como carreras de velocidad, salto de longitud, triple salto y lanzamientos de disco, jabalina, peso y martillo; igualmente para evaluar amplitud de movimiento y rango de movimiento articular de diferentes articulaciones. Las principales personas usuarias de estos ejercicios son atletas y deportistas de alto nivel, practicantes de numerosos deportes a nivel recreativo o aficionado, profesionales pertenecientes a cuerpos de bomberos, a cuerpos y fuerzas de seguridad, así como profesionales del sector de fisioterapia y la rehabilitación física. Specifically, the system set forth in the present invention is especially useful for controlling or monitoring physical performance in muscle strength training exercises, such as, bench press, counter-movement jump, squats, dominated, paddles and different exercises. weight lifting (weightlifting), among others; also, to characterize athletics tests such as speed races, long jump, triple jump and discus throws, javelin, weight and hammer; also to assess range of motion and range of joint movement of different joints. The main users of these exercises are high-level athletes and athletes, practitioners of numerous sports at recreational or amateur level, professionals belonging to fire departments, bodies and security forces, as well as professionals in the field of physiotherapy and physical rehabilitation .
Sector de la técnica
Este sistema opto-electrónico se encuadra en el sector de la instrumentación electrónica aplicada a la metrología, en distintos ámbitos como el de la preparación física deportiva y el entrenamiento deportivo, la evaluación de la condición física, así como en el sector de equipos para la evaluación del rendimiento físico-deportivo y para la rehabilitación física de personas que salen de lesiones corporales o de personas mayores. Technical sector This opto-electronic system is part of the electronic instrumentation sector applied to metrology, in different areas such as sports physical preparation and sports training, physical fitness assessment, as well as in the equipment sector for evaluation of physical-sports performance and for the physical rehabilitation of people who leave bodily injuries or the elderly.
Antecedentes de la invención y estado de la técnica Background of the invention and state of the art
Los dispositivos utilizados hasta ahora para caracterizar los ejercicios para el desarrollo de la fuerza física, se basan principalmente en tres técnicas. La primera emplea transductores de posición que miden el desplazamiento del objeto que se mueve (generalmente una barra de pesas o el propio cuerpo del atleta) y, por derivaciones matemáticas sucesivas, se obtiene la velocidad y la aceleración del movimiento. Posiblemente, el primer sistema de este tipo sea el desarrollado por Bosco y colaboradores en la década de 1990, denominado "Ergopower", tal y como se plantea en [BOSCO et al., "A dynamometer for evaluation of dynamic muscle work", Eur J Appl Physiol, 1995, Vol. 70, páginas 379-386] y del cual surgieron diferentes variantes y marcas comerciales en años posteriores, todas las cuales centraban su atención en la potencia mecánica como principal variable a controlar durante el entrenamiento de fuerza. Otro sistema de este tipo se plantea en [SIEGEL, J., GILDERS, R., STARON, R., Y HAGERMAN, F., "Human muscle power output during upper and lower body exercises", JSCR, 2002, Vol. 16(2), páginas 173-178]; este sistema utiliza luces y reflectores en un pórtico construido a propósito para las distancias de desplazamiento en ejercicios de press de banca. Una segunda técnica plantea el entrenamiento de la fuerza basado en el control de la velocidad de ejecución, tal y como se plantea en [SÁNCHEZ-MEDINA, L. y GONZÁLEZ-BADILLO, J.J. "Velocity loss as an indicator of neuromuscular fatigue during resistance training", Med Sci Sports Exerc, 2011 , Sep., Vol. 43(9), páginas 1.725-1.734] y para ello utiliza un tipo de transductor electromecánico que mide directamente la velocidad en los movimientos realizados en dichos ejercicios (ver www.tforcesystem.com). Así, a partir de la velocidad, por integración matemática se obtiene el desplazamiento y por derivación matemática se obtiene la aceleración. La tercera técnica está basada en el uso de dispositivos (acelerómetros) que miden la aceleración y por integración matemática determinan sucesivamente la velocidad y el desplazamiento. Ejemplos de estos dispositivos comerciales pueden encontrarse en: www.myotest.com, www.sensorize.it, www.trainwithpush.com, www.realtracksystems.com, www.vincid.com, alguno de los cuales también plantea el entrenamiento de la fuerza basado en el control de la velocidad.
La evaluación de la velocidad en distintas disciplinas del atletismo, se suele realizar utilizando balizas o barreras de células fotoeléctricas, que suelen situarse a distancias de 5 o 10 metros a lo largo de la pista por donde transcurre la carrera. Su funcionamiento se basa en la medida de los tiempos cronometrados utilizando las señales que generan las fotocélulas de las barreras al paso del atleta. Existen numerosos cronómetros comerciales que funcionan con barreras de células fotoeléctricas, los más modernos emplean sistemas completamente inalámbricos. The devices used so far to characterize the exercises for the development of physical strength, are mainly based on three techniques. The first uses position transducers that measure the displacement of the moving object (usually a weight bar or the athlete's own body) and, by successive mathematical derivations, the speed and acceleration of the movement is obtained. Possibly, the first system of this type is the one developed by Bosco and collaborators in the 1990s, called "Ergopower", as stated in [BOSCO et al., "A dynamometer for evaluation of dynamic muscle work", Eur J Appl Physiol, 1995, Vol. 70, pages 379-386] and from which different variants and trademarks emerged in later years, all of which focused their attention on mechanical power as the main variable to control during strength training. Another system of this type is set out in [SIEGEL, J., GILDERS, R., STARON, R., and HAGERMAN, F., "Human muscle power output during upper and lower body exercises", JSCR, 2002, Vol. 16 (2), pages 173-178]; This system uses lights and reflectors on a porch built on purpose for travel distances in bench press exercises. A second technique proposes strength training based on the control of the speed of execution, as stated in [SÁNCHEZ-MEDINA, L. and GONZÁLEZ-BADILLO, JJ "Velocity loss as an indicator of neuromuscular fatigue during resistance training ", Med Sci Sports Exerc, 2011, Sep., Vol. 43 (9), pages 1,725-1,734] and for this it uses a type of electromechanical transducer that directly measures the speed in the movements made in these exercises (see www.tforcesystem .com). Thus, from the speed, by mathematical integration the displacement is obtained and by mathematical derivation the acceleration is obtained. The third technique is based on the use of devices (accelerometers) that measure acceleration and by mathematical integration successively determine speed and displacement. Examples of these commercial devices can be found at: www.myotest.com, www.sensorize.it, www.trainwithpush.com, www.realtracksystems.com, www.vincid.com, some of which also raises strength training based on speed control. The evaluation of the speed in different disciplines of athletics, is usually carried out using beacons or barriers of photoelectric cells, which are usually located at distances of 5 or 10 meters along the track where the race takes place. Its operation is based on the measurement of timed times using the signals generated by the photocells of the barriers to the passage of the athlete. There are numerous commercial chronometers that work with photoelectric cell barriers, the most modern employing completely wireless systems.
En otros casos se utiliza cámaras de alta velocidad cuyos registros se procesa posteriormente para determinar tiempos y velocidades de las pruebas. También se utiliza barras de LEDs y fotodiodos colocados en el suelo de la pista para medir tiempos de paso del atleta, por ejemplo, los fabricados por la empresa Microgate que se pueden encontrar en: http://www.microgate.it/Training/Products/OptoJump-Next/Description. Igualmente se ha utilizado tansductores lineales de velocidad (conocidos como "encoders") conectados con un cable a la cintura del atleta para medir su velocidad de desplazamiento. In other cases, high-speed cameras are used whose records are subsequently processed to determine test times and speeds. It also uses bars of LEDs and photodiodes placed on the floor of the track to measure times of passage of the athlete, for example, those manufactured by the company Microgate that can be found at: http://www.microgate.it/Training/ Products / OptoJump-Next / Description. Likewise, linear speed tansductors (known as "encoders") connected with a cable to the athlete's waist have been used to measure their travel speed.
Para medir los desplazamientos angulares y el rango de movimiento en la evaluación de la flexibilidad de las articulaciones, se utiliza generalmente transportadores de ángulos mecánicos fabricados al efecto. To measure the angular displacements and the range of motion in the evaluation of the flexibility of the joints, conveyors of mechanical angles manufactured for this purpose are generally used.
En cuanto a los dispositivos utilizados para el seguimiento de trayectorias de puntos móviles se ha utilizado un tipo de cámara de visión infrarroja con procesador gráfico incorporado que localiza el centro geométrico de uno o varios focos de luz infrarroja y asigna un par de coordenadas cartesianas a cada punto, realizando esta operación con una frecuencia de muestreo de 100 Hz. Esta cámara es la que incorpora el mando a distancia de la popular consola Wii de Nintendo [CHUNG LEE, J. "Hacking the nintendo wii remote", Pervasive Computing, 2008, July-September, www.computer.org/pervasive]. Una aplicación que utiliza ese mando a distancia puede encontrarse en: [ABELLÁN, F.J., ARENAS, A., NÚÑEZ, M.J. y VICTORIA, L, "The use of a Nintendo Wii remote control in physics experiments", Eur J Phys, 2013, Vol. 34, páginas 1.277-1.286], artículo en el que se estudia la adquisición y registro de datos en prácticas de laboratorio de física. Este mando a distancia se comunica con la consola de Nintendo de forma inalámbrica mediante el protocolo de comunicación y dispositivo de Bluetooth. Descripción de la invención
La caracterización dinámica de distintos ejercicios físicos y deportivos suele realizarse a partir de la medida del tiempo, junto con una de estas tres variables: posición, velocidad o aceleración. Del procesado del par de variables medidas: espacio+tiempo, velocidad+tiempo o aceleración+tiempo, se deduce mediante operaciones de integración o derivación matemática el resto de las variables en cada caso. A partir de estas variables puede obtenerse otras como fuerza y potencia. As for the devices used to track mobile point trajectories, a type of infrared vision camera has been used with a built-in graphics processor that locates the geometric center of one or several infrared light bulbs and assigns a pair of Cartesian coordinates to each point, performing this operation with a sampling frequency of 100 Hz. This camera is the one that incorporates the remote control of the popular Nintendo Wii console [CHUNG LEE, J. "Hacking the nintendo wii remote", Pervasive Computing, 2008, July-September, www.computer.org/pervasive]. An application that uses that remote control can be found at: [ABELLÁN, FJ, ARENAS, A., NÚÑEZ, MJ and VICTORIA, L, "The use of a Nintendo Wii remote control in physics experiments", Eur J Phys, 2013, Vol. 34, pages 1,277-1,286], an article that studies the acquisition and registration of data in physics laboratory practices. This remote controller communicates with the Nintendo console wirelessly using the communication protocol and Bluetooth device. Description of the invention The dynamic characterization of different physical and sports exercises is usually done from the measurement of time, together with one of these three variables: position, speed or acceleration. From the processing of the pair of measured variables: space + time, speed + time or acceleration + time, the rest of the variables in each case are deduced by means of integration or mathematical derivation operations. From these variables, others such as force and power can be obtained.
El sistema que aquí se presenta mide la posición de uno o más puntos que se desplazan, con una resolución del 0.1 % del fondo de escala, dentro de un rango de dimensiones variables y con una frecuencia de muestreo configurable entre 100 Hz y 1000 Hz. Para ello se utiliza una cámara de visión infrarroja que tiene un procesador gráfico embebido, que localiza uno o varios focos (hasta 4) que emiten luz infrarroja, determina su centro geométrico y le asigna un par de coordenadas cartesianas (xi, yi) a cada uno de ellos; todo ello en un tiempo de 1 ms. El rango de visión de la cámara es una ventana rectangular de 1.024 pixeles en la dirección horizontal y 768 pixeles en la vertical y los ángulos de apertura del objetivo son de 35° y 25° respectivamente, de forma que a mayor distancia de la cámara, mayores son las medidas en unidades de longitud del rango de visión. Por ejemplo, a una distancia de unos 1.500 mm el campo de visión de la cámara es de 1.000 mm x 750 mm, aproximadamente. Es decir, un foco de luz infrarroja que se mueva en un plano perpendicular al eje de visión del objetivo de la cámara, situada a 1.500 mm, podrá realizar un movimiento registrado por la cámara dentro de un rectángulo de 1.000 mm x 750 mm, representando 1 mm cada pixel, aproximadamente. Lógicamente, para determinar exactamente la relación mm/pixel deberá realizarse un calibrado previo que nos proporcione la conversión de unidades en pixeles a unidades en milímetros. The system presented here measures the position of one or more moving points, with a resolution of 0.1% of the full scale, within a range of variable dimensions and with a configurable sampling frequency between 100 Hz and 1000 Hz. To do this, an infrared vision camera is used that has an embedded graphics processor, which locates one or more foci (up to 4) that emit infrared light, determines its geometric center and assigns a pair of Cartesian coordinates (xi, yi) to each one of them; all in a time of 1 ms. The camera's viewing range is a rectangular window of 1,024 pixels in the horizontal direction and 768 pixels in the vertical direction and the lens opening angles are 35 ° and 25 ° respectively, so that at a greater distance from the camera, greater are the measures in units of length of the range of vision. For example, at a distance of about 1,500 mm the field of view of the camera is approximately 1,000 mm x 750 mm. That is, an infrared light source that moves in a plane perpendicular to the axis of view of the camera lens, located at 1,500 mm, can perform a movement registered by the camera within a 1,000 mm x 750 mm rectangle, representing 1 mm each pixel, approximately. Logically, in order to determine exactly the mm / pixel ratio, a previous calibration must be carried out that gives us the conversion of units in pixels to units in millimeters.
La comunicación que hace posible el trasvase de datos recogidos por la cámara hasta el ordenador se hace por cable del estándar USB mediante un circuito electrónico desarrollado al efecto. Este sistema presenta dos ventajas respecto del funcionamiento de la cámara del mando de la Wii descrito en el apartado de antecedentes y estado de la técnica, que son: 1) mejora de la frecuencia de muestreo, que en este sistema es configurable entre 100 Hz y 1000 Hz mientras que en el mando de la Wii es de 100 Hz, y 2) mejora en la comunicación mediante cable USB, pues la comunicación inalámbrica bluetooth que utiliza el mando de la Wii suele presentar dificultades de emparejamiento o sincronización entre el mando y el ordenador, que presenta variaciones y se complica según el sistema operativo que se utilice (Windows XP, Windows 7, Windows Vista, Windows 8, Windows 10, Mac OS, Linux, etc); mientras que
el sistema de comunicación por cable es de detección automática (plug and play), lo que simplifica su uso. The communication that makes possible the transfer of data collected by the camera to the computer is done by USB standard cable through an electronic circuit developed for this purpose. This system has two advantages over the operation of the Wii remote control camera described in the background and prior art section, which are: 1) improvement of the sampling frequency, which in this system is configurable between 100 Hz and 1000 Hz, while the Wii remote is 100 Hz, and 2) improves communication via USB cable, since the wireless bluetooth communication used by the Wii remote usually presents pairing or synchronization difficulties between the remote control and the computer, which has variations and is complicated according to the operating system used (Windows XP, Windows 7, Windows Vista, Windows 8, Windows 10, Mac OS, Linux, etc); while The cable communication system is automatic detection (plug and play), which simplifies its use.
Descripción de las figuras Description of the figures
FIG 1.- Vista general de las distintas partes del sistema opto-electrónico. FIG 1.- General view of the different parts of the opto-electronic system.
FIG 2.- Vista de la regleta de calibrado. FIG 2.- View of the calibration strip.
FIG 3.- Mini-linternas con diodo LED. a) mini-linterna alimentada con pila del 1.5 V y b) mini- linterna alimentada con pila botón. FIG 3.- Mini-flashlights with LED. a) mini-flashlight powered by 1.5V battery and b) mini-flashlight powered by button battery.
FIG 4.- a) Cámara de visión infrarroja con el sistema de iluminación de luz infrarroja y b) trozo de material reflectante. FIG 4.- a) Infrared vision camera with the infrared light lighting system and b) piece of reflective material.
FIG 5.- Dibujo de aplicación del sistema a un ejercicio de sentadillas. FIG 5.- Drawing of application of the system to a squat exercise.
FIG 6.- Ejemplo de representación gráfica de las variables desplazamiento y velocidad vs. tiempo como resultado de una repetición en un ejercicio de sentadillas. FIG 6.- Example of graphical representation of the displacement and velocity variables vs. time as a result of a repetition in a squat exercise.
FIG 7.- Dibujo de una vista aérea de la aplicación del sistema a una prueba de carrera de velocidad (sprint). FIG 7.- Drawing of an aerial view of the application of the system to a sprint race test.
FIG 8.- Dibujo de aplicación del sistema a la evaluación de la flexibilidad de una articulación. FIG 8.- Drawing of application of the system to the evaluation of the flexibility of a joint.
Lista de referencias Reference List
1. Cámara de visión infrarroja. 1. Infrared vision camera.
2. Caja envolvente. 2. Wrapping box.
3. Objetivo. 3. Objective
4. Circuito electrónico. 4. Electronic circuit.
5. Cable de comunicación. 5. Communication cable.
6. Conector USB. 6. USB connector.
7. LED. 7. LED.
8. Soporte. 8. Support.
9. Regleta rígida para calibrado. 9. Rigid strip for calibration.
10. Foco de luz infrarroja. 10. Infrared light focus.
11. Placa de circuito impreso de la fuente de luz infrarroja. 11. Printed circuit board of the infrared light source.
12. Trozo de lámina de material reflectante 12. Piece of reflective sheet
Descripción de un modo de realización preferente de la invención
El funcionamiento del sistema opto-electrónico para el seguimiento de trayectorias se ilustra en la FIG 1 , donde se aprecia la cámara de visión infrarroja 1 alojada en una caja 2 y con su objetivo 3 orientado al exterior. La cámara puede localizar de uno hasta cuatro focos de emisión de luz infrarroja que se encuentren en su campo de visión. En el interior de la caja también se aloja un circuito electrónico 4 que controla el funcionamiento de la cámara, realizando varias funciones: alimenta de corriente eléctrica con regulación de voltaje a la cámara, inicia y detiene el funcionamiento de la cámara, recoge los datos entregados por la cámara adaptando sus niveles de voltaje, y los envía según el protocolo de comunicación serie al ordenador, con una frecuencia de 100 Hz a 1000 Hz a través de un cable de comunicación 5 con conector del tipo USB 6. Description of a preferred embodiment of the invention The operation of the opto-electronic system for tracking trajectories is illustrated in FIG 1, where the infrared vision camera 1 housed in a box 2 and with its objective 3 oriented towards the outside can be seen. The camera can locate from one to four sources of infrared light emission that are in your field of vision. Inside the box there is also an electronic circuit 4 that controls the operation of the camera, performing several functions: it supplies power to the camera with voltage regulation, starts and stops the camera operation, collects the data delivered by the camera adapting its voltage levels, and sends them according to the serial communication protocol to the computer, with a frequency of 100 Hz to 1000 Hz through a communication cable 5 with USB 6 type connector.
La cámara está apoyada en un soporte 8 que la mantiene con una determinada orientación y en una posición fija en el espacio. El ordenador recoge los datos por un puerto COM virtual (VCP) asignado a dicha conexión USB, donde un programa informático registra y procesa los datos de dichas coordenadas y tiempos y presenta mediante tablas y gráficos las variables físicas de interés: posición, distancia recorrida, velocidad instantánea, velocidad máxima, velocidad media, ángulo entre segmentos definidos por pares de focos, velocidad angular, aceleración lineal y angular, etc. Esto permite caracterizar cualitativa y cuantitativamente el movimiento de los focos emisores de luz infrarroja. The camera is supported on a support 8 that keeps it in a certain orientation and in a fixed position in the space. The computer collects the data through a virtual COM port (VCP) assigned to said USB connection, where a computer program records and processes the data of said coordinates and times and presents through physical tables and graphs the physical variables of interest: position, distance traveled, instantaneous velocity, maximum velocity, average velocity, angle between segments defined by pairs of foci, angular velocity, linear and angular acceleration, etc. This allows qualitative and quantitative characterization of the movement of the infrared light emitting foci.
Cuando la cámara localiza un foco de luz infrarroja, un procesador gráfico embebido en ella determina el centro geométrico de dicho foco y le asigna las coordenadas de posición (Xi, Yi) respecto del campo rectangular de 1.024x768 pixeles que representa su rango de visión. La información de esas coordenadas se envían al ordenador a través del cable USB, pero el programa debe traducir esa información de pixeles a unidades de longitud. Por ello se ha previsto un sistema de calibración que debe realizarse previo a la realización de las series de medidas. Como puede observarse en la FIG 2, se dispone de una regleta rígida 9, cerca de cuyos extremos se fijan dos focos 10 de luz infrarroja a una distancia exacta entre ellos (1.000 mm, por ejemplo). En el proceso de calibrado, el programa informático registra las coordenadas (en pixeles) de las posiciones de los dos focos de la regleta capturadas por la cámara y asocia la distancia entre esas coordenadas con la distancia real en milímetros (1.000 mm) que hay entre los focos. Esa correspondencia directamente proporcional permite obtener la transformación matemática de cada dato en pixeles a unidades de longitud (milímetros), pudiendo a partir de ello obtener las posiciones y los desplazamientos de los focos en milímetros.
Los focos que se fijan en el cuerpo en movimiento y de los cuales la cámara ha de seguir y registrar su trayectoria, han de emitir luz infrarroja y al mismo tiempo deben ser ligeros de peso para que interfieran lo menos posible en el movimiento que se quiere registrar. Por su tamaño, pueden seleccionarse diodos emisores de luz (LED), que al ser alimentados eléctricamente con el voltaje adecuado emiten luz infrarroja de la longitud de onda (940 nm) a la que es sensible la cámara que utilizamos, de esta forma la cámara verá únicamente focos que emitan dicha luz. En la FIG 3 se muestra dos ejemplos de mini-linternas con LED 7 alimentadas, a) con pila botón y b) con pila de 1.5 V. Otra forma de conseguir focos que emitan luz infrarroja es utilizando elementos que actúan por reflexión. En lugar de las mini-linternas se fijará al cuerpo del cual se quiere registrar su movimiento, un trozo de lámina de material reflectante 12, que al ser iluminado por una fuente de luz infrarroja situada en una posición próxima al objetivo de la cámara, reflejará la luz en la dirección desde donde la recibe, de forma que dicho trozo de material reflectante será "visto" por la cámara como un foco de luz infrarroja. El tamaño de dicho trozo de material reflectante puede oscilar entre 5 cm2 y 30 cm2 de superficie, dependiendo de la distancia que lo separe del objetivo de la cámara. En la FIG 4 se muestra una fuente de luz infrarroja a modo de anillo de LEDs montados sobre una placa de circuito impreso 11 , situada en torno al objetivo de la cámara. Los LEDs de esta fuente de luz infrarroja son alimentados eléctricamente por el ordenador a través del cable USB. En dicha figura también se muestra un trozo de lámina de material reflectante. When the camera locates an infrared light bulb, a graphic processor embedded in it determines the geometric center of that focus and assigns it the position coordinates (Xi, Yi) with respect to the rectangular field of 1,024x768 pixels representing its viewing range. The information of these coordinates is sent to the computer through the USB cable, but the program must translate that information from pixels to units of length. Therefore, a calibration system is planned, which must be carried out prior to the measurement series. As can be seen in FIG 2, there is a rigid strip 9, near whose ends two infrared light bulbs 10 are fixed at an exact distance between them (1,000 mm, for example). In the calibration process, the computer program records the coordinates (in pixels) of the positions of the two bulbs of the strip captured by the camera and associates the distance between those coordinates with the actual distance in millimeters (1,000 mm) between the lights. This directly proportional correspondence allows to obtain the mathematical transformation of each data in pixels to units of length (millimeters), being able to obtain the positions and displacements of the focus in millimeters. The spotlights that are fixed on the body in motion and of which the camera has to follow and record its trajectory, must emit infrared light and at the same time must be light in weight so that they interfere as little as possible in the movement that is wanted to register. Due to their size, light emitting diodes (LEDs) can be selected, which, when electrically powered with the appropriate voltage, emit infrared light of the wavelength (940 nm) to which the camera we use is sensitive, in this way the camera You will only see spotlights that emit such light. FIG 3 shows two examples of mini-flashlights with LED 7 powered, a) with a button cell and b) with a 1.5V battery. Another way to achieve spotlights that emit infrared light is by using elements that act by reflection. Instead of the mini-flashlights, a piece of sheet of reflective material 12 will be attached to the body of which its movement is to be recorded, which, when illuminated by an infrared light source located in a position close to the camera lens, will reflect the light in the direction from which it receives it, so that said piece of reflective material will be "seen" by the camera as a focus of infrared light. The size of said piece of reflective material can range between 5 cm 2 and 30 cm 2 of surface, depending on the distance that separates it from the camera lens. In FIG 4, an infrared light source is shown as a ring of LEDs mounted on a printed circuit board 11, located around the camera lens. The LEDs of this infrared light source are electrically powered by the computer through the USB cable. In this figure a piece of sheet of reflective material is also shown.
Estos dos tipos de focos de luz infrarroja, alternativamente, podrán ser utilizados también para ser fijados en los extremos de la regleta de calibrado. These two types of infrared light bulbs, alternatively, can also be used to be fixed at the ends of the calibration strip.
Este sistema puede aplicarse en distintas situaciones donde se quiera caracterizar la dinámica de ciertos ejercicios de entrenamiento. Comparado con otros sistemas descritos en el apartado de antecedentes y estado de la técnica, este sistema es muy preciso en la evaluación de ejercicios de fuerza como sentadillas, press de banca, dominadas, saltos verticales sin carga "squat jump" (SJ) y salto con contra-movimiento (CMJ), y estos mismos saltos con cargas. This system can be applied in different situations where you want to characterize the dynamics of certain training exercises. Compared to other systems described in the background and prior art section, this system is very precise in the evaluation of strength exercises such as squats, bench presses, dominated, vertical jumps without squat jump (SJ) and jump with counter-movement (CMJ), and these same jumps with loads.
En la FIG 5 puede verse una representación de la aplicación del sistema opto-electrónico para la evaluación de un ejercicio de sentadillas.
En estos ejercicios, el foco de luz infrarroja se coloca sobre la barra de pesas que desplaza el deportista para registrar correctamente los movimientos. Los desplazamientos en estos ejercicios se producen en la dirección vertical, por ello interesa colocar la cámara girada 90° respecto de su eje longitudinal, de forma que la coordenada X de la cámara, que corresponde a un rango de visión mayor (1.024 pixeles), coincida con la dirección del movimiento, así se aprovecha mejor la capacidad de la cámara. A representation of the application of the opto-electronic system for the evaluation of a squat exercise can be seen in FIG 5. In these exercises, the infrared light bulb is placed on the weight bar that the athlete moves to correctly record the movements. The displacements in these exercises occur in the vertical direction, so it is interesting to place the camera rotated 90 ° with respect to its longitudinal axis, so that the X coordinate of the camera, which corresponds to a greater viewing range (1,024 pixels), match the direction of movement, so the camera's capacity is better utilized.
A partir de las posiciones y los tiempos medidos por el sistema, se determinan los recorridos en las fases de subida y bajada de los ejercicios, los tiempos de duración de esos recorridos, la velocidad instantánea, la velocidad máxima, la velocidad media, la velocidad media en la fase propulsiva, la aceleración instantánea, la fuerza instantánea, la fuerza media, la potencia instantánea, la potencia media y la potencia máxima en esas fases. En la FIG 6 se muestra un ejemplo de gráfica generada por el programa informático para las variables desplazamiento y velocidad vs. tiempo como resultado de un ejercicio de sentadillas. From the positions and the times measured by the system, the routes in the phases of up and down of the exercises, the duration times of those routes, the instantaneous speed, the maximum speed, the average speed, the speed are determined average in the propulsive phase, instantaneous acceleration, instantaneous force, average force, instantaneous power, average power and maximum power in those phases. An example of a graph generated by the computer program for the displacement and velocity variables is shown in FIG 6. time as a result of a squat exercise.
Otro ámbito donde se demuestra la utilidad de este sistema se encuentra en las pruebas de atletismo: carreras de velocidad, salto de longitud y triple salto. En estos ejercicios el sistema es muy útil para determinar la evolución de la velocidad en una carrera: fase de aceleración hasta alcanzar la velocidad máxima, la propia velocidad máxima, fase de mantenimiento de la velocidad máxima, velocidad de llegada y los tiempos que duran las fases de aceleración y mantenimiento de la velocidad. Dado que se puede determinar la posición del atleta cada 1 ms de tiempo y con una precisión del orden de 1 cm; este sistema proporciona una información sensiblemente más precisa que la que se obtiene con el método que utiliza barreras con fotocélulas colocadas cada 5 o 10 metros para detectar los tiempos de paso del paso del atleta. En la FIG 7 puede verse una representación de la aplicación del sistema opto-electrónico a la evaluación de una prueba de carrera de velocidad en pista, en vista aérea. El foco emisor de luz infrarroja se coloca en una parte del cuerpo (la cabeza, por ejemplo), de forma que la cámara pueda localizarlo y seguir su trayectoria. Another area where the usefulness of this system is demonstrated is in athletics tests: speed races, long jump and triple jump. In these exercises the system is very useful to determine the evolution of the speed in a race: acceleration phase until reaching the maximum speed, the maximum speed itself, maintenance phase of the maximum speed, arrival speed and the times that last Acceleration and speed maintenance phases. Since the position of the athlete can be determined every 1 ms of time and with an accuracy of the order of 1 cm; This system provides significantly more accurate information than that obtained with the method that uses barriers with photocells placed every 5 or 10 meters to detect the passage times of the athlete's passage. A representation of the application of the opto-electronic system to the evaluation of a track speed race test, in aerial view, can be seen in FIG 7. The infrared light source is placed on a part of the body (the head, for example), so that the camera can locate it and follow its path.
En el caso de la prueba de salto de longitud, se puede obtener la representación gráfica de una curva de la velocidad instantánea (cada 1 ms) en la pista de aceleración, la velocidad máxima, la velocidad de llegada a tabla, las velocidades vertical y horizontal en el punto de la batida y el ángulo de despegue del salto.
Algo similar puede determinarse en la prueba de triple salto, donde además se determina el ángulo de despegue de cada uno de los tres saltos. In the case of the long jump test, the graphical representation of a curve of the instantaneous velocity (every 1 ms) on the acceleration track, the maximum speed, the arrival speed to the table, the vertical speeds and horizontal at the point of the whisk and the takeoff angle of the jump. Something similar can be determined in the triple jump test, where the takeoff angle of each of the three jumps is also determined.
Durante los entrenamientos de los atletas en las pruebas de lanzamiento de artefactos: jabalina, disco, peso y martillo, es muy importante conocer las variables físicas: velocidad de salida y ángulo de salida del artefacto lanzado. Además, es conveniente expresar los resultados de forma cuantitativa (mediante valores numéricos) y de forma cualitativa (mediante gráficos). Durante la aplicación de programas de rehabilitación de personas que han sufrido lesiones físicas o que se recuperan de intervenciones quirúrgicas y en programas de mantenimiento de personas mayores, interesa hacer un seguimiento de la evolución de los sujetos, mediante pruebas de evaluación del grado de flexibilidad y rango de movimientos de ciertas articulaciones. En la actualidad, para medir los ángulos de flexión articular en los ejercicios propuestos en dichas pruebas, suele utilizarse un transportador de ángulos mecánico adaptado a estos casos. El sistema opto-electrónico objeto de la invención se aplica con resultados muy precisos en la medida de los ángulos de flexión de distintas articulaciones. Para ello hay que elegir convenientemente la colocación de los focos emisores de luz, de forma que cada dos focos determinen uno de los dos segmentos que van a definir la articulación que va a flexionarse. Conociendo las coordenadas de dichos cuatro puntos, se determinan las pendientes de los dos segmentos y mediante cálculos geométricos se determina el ángulo que forman éstos en cada instante. During the training of athletes in the artifact throwing tests: javelin, disc, weight and hammer, it is very important to know the physical variables: speed of exit and angle of departure of the device launched. In addition, it is convenient to express the results quantitatively (using numerical values) and qualitatively (through graphics). During the application of rehabilitation programs for people who have suffered physical injuries or recovering from surgical interventions and maintenance programs for the elderly, it is interesting to monitor the evolution of the subjects, through tests to assess the degree of flexibility and range of movements of certain joints. At present, to measure joint flexion angles in the exercises proposed in these tests, a mechanical angle conveyor adapted to these cases is usually used. The opto-electronic system object of the invention is applied with very precise results in the measurement of the flexion angles of different joints. For this, the placement of the light emitting bulbs should be conveniently chosen, so that each two bulbs determine one of the two segments that will define the joint to be flexed. Knowing the coordinates of these four points, the slopes of the two segments are determined and by geometric calculations the angle that they form at each moment is determined.
En la FIG 8 puede verse una representación de la aplicación del sistema opto-electrónico a una prueba de evaluación de la flexibilidad y rango de movimiento de una articulación; en el apartado a) se aprecia el método de medida con transportador de ángulos y en el apartado b) se aprecia los dos trozos de lámina reflectante que definen un segmento recto; el cambio que se produce en la pendiente de dicho segmento al realizar el ejercicio, permite determinar el ángulo de giro en dicha articulación con gran precisión, haciendo uso de cálculos trigonométricos.
A representation of the application of the opto-electronic system to an evaluation of the flexibility and range of motion of a joint can be seen in FIG 8; in section a) the measurement method with angle conveyor is appreciated and in section b) the two pieces of reflective sheet that define a straight segment can be seen; the change that occurs in the slope of said segment when performing the exercise, allows to determine the angle of rotation in said joint with great precision, using trigonometric calculations.
Claims
1. - Sistema opto-electrónico para el seguimiento de trayectorias de focos puntuales de luz infrarroja inscritas en un área plana, que comprende: 1. - Opto-electronic system for tracking trajectories of spotlights of infrared light inscribed in a flat area, comprising:
- una cámara de visión infrarroja (1) localizadora de 1 , 2, 3, o 4 focos de emisión de luz infrarroja que asigna las coordenadas cartesianas en dos dimensiones de sus centros geométricos dentro de un marco rectangular de referencia; - an infrared vision camera (1) locator of 1, 2, 3, or 4 infrared light emission foci that assigns the Cartesian coordinates in two dimensions of their geometric centers within a rectangular frame of reference;
- un soporte (8) que mantiene a la cámara en una posición fija en el espacio; - a support (8) that keeps the camera in a fixed position in space;
- un circuito electrónico (4) para la comunicación de dicha cámara con un ordenador; - an electronic circuit (4) for communicating said camera with a computer;
- un programa informático instalado en el ordenador que recibe la información del sistema electrónico, registra, procesa los datos de dichas coordenadas y presenta mediante tablas y gráficos las variables físicas; posición, distancia recorrida, velocidad instantánea, velocidad máxima, velocidad media, ángulo entre segmentos, velocidades angulares y aceleración lineal y angular, para caracterizar cualitativa y cuantitativamente el desplazamiento de los focos emisores de luz infrarroja. - a computer program installed on the computer that receives the information from the electronic system, registers, processes the data of said coordinates and presents the physical variables through tables and graphs; position, distance traveled, instantaneous speed, maximum speed, average speed, angle between segments, angular speeds and linear and angular acceleration, to qualitatively and quantitatively characterize the displacement of the infrared light emitting bulbs.
2. - Sistema opto-electrónico según la reivindicación 1 , donde el sistema electrónico recibe los datos de la cámara de luz infrarroja y los envía al ordenador a una frecuencia de muestreo configurable entre 100 Hz y 1000 Hz. 2. - Opto-electronic system according to claim 1, wherein the electronic system receives the data from the infrared light camera and sends it to the computer at a configurable sampling frequency between 100 Hz and 1000 Hz.
3. - Sistema opto-electrónico según las reivindicaciones anteriores, donde el sistema electrónico está conectado al ordenador por cable con protocolo USB a través de un puerto COM virtual (PCV). 3. - Opto-electronic system according to the preceding claims, wherein the electronic system is connected to the computer by cable with USB protocol through a virtual COM port (PCV).
4. - Sistema opto-electrónico según las reivindicaciones anteriores, donde se utiliza un sistema de calibración de la distancias constituido por una regleta rígida (9) con dos focos (10) emisores de luz infrarroja en sus extremos, situados a una distancia determinada conocida. 4. - Opto-electronic system according to the preceding claims, wherein a distance calibration system consisting of a rigid strip (9) with two spotlights (10) emitting infrared light at its ends, located at a known known distance is used .
5. - Sistema opto-electrónico según las reivindicaciones anteriores, donde los focos emisores de luz infrarroja que localiza la cámara y los de la regleta de calibrado son LEDs (7) infrarrojos alimentados por baterías. 5. - Opto-electronic system according to the preceding claims, wherein the infrared light emitting bulbs that locate the camera and those of the calibration strip are infrared LEDs (7) powered by batteries.
6. - Sistema opto-electrónico según las reivindicaciones 1 a 4, donde los focos emisores de luz infrarroja que localiza la cámara y los de la regleta de calibrado son unos trozos de lámina de material reflectante (12), a la vez que a la cámara de visión infrarroja se le acopla una placa de circuito impreso que contiene un conjunto de
diodos LED (7) dispuestos en torno al objetivo de la cámara y orientados de forma que emiten su luz hacia los trozos de lámina de material reflectante, estando los citados LEDs alimentados eléctricamente desde el ordenador a través del cable USB. 6. - Opto-electronic system according to claims 1 to 4, wherein the infrared light emitting bulbs located in the chamber and those of the calibration strip are pieces of sheet of reflective material (12), while at the same time infrared vision camera is attached to a printed circuit board that contains a set of LED diodes (7) arranged around the objective of the camera and oriented so that they emit their light towards the pieces of reflective material sheet, said LEDs being electrically powered from the computer via the USB cable.
7. - Sistema opto-electrónico según las reivindicaciones 1 , 2, 3, 4 y 6, donde el área de la lámina de material reflectante puede tener distinto tamaño, comprendido entre 1 cm2 y 30 cm2. 7. - Opto-electronic system according to claims 1, 2, 3, 4 and 6, wherein the area of the sheet of reflective material can have a different size, between 1 cm2 and 30 cm2.
8. - Sistema opto-electrónico según las reivindicaciones 1 , 2, 3, 4, 6 y 7, donde la forma del material reflectante puede ser circular, poligonal regular o poligonal irregular, de lados rectos o de lados curvos, o de contorno irregular. 8. - Opto-electronic system according to claims 1, 2, 3, 4, 6 and 7, wherein the shape of the reflective material can be circular, regular polygonal or irregular polygonal, straight sides or curved sides, or irregular contour .
9. - Uso del sistema opto-electrónico según las reivindicaciones 1 a 8, para la medida y caracterización cualitativa (mediante gráficas) y cuantitativa (mediante valores numéricos) de las variables: recorridos de subida y de bajada, tiempos de subida y de bajada, velocidad instantánea, velocidad media, velocidad media en la fase propulsiva, velocidad máxima, fuerza instantánea, fuerza media, fuerza máxima, potencia instantánea, potencia media y potencia máxima, en los ejercicios físicos diseñados para el desarrollo de la fuerza: sentadillas, press de banca, saltos verticales, saltos con contra-movimiento, dominadas y remo. 9. - Use of the opto-electronic system according to claims 1 to 8, for the measurement and qualitative characterization (by means of graphs) and quantitative (by numerical values) of the variables: up and down routes, up and down times , instantaneous speed, average speed, average speed in the propulsive phase, maximum speed, instantaneous force, average force, maximum force, instantaneous power, average power and maximum power, in physical exercises designed for the development of strength: squats, press of banking, vertical jumps, jumps with counter-movement, dominated and rowing.
10. - Uso del sistema opto-electrónico según las reivindicaciones 1 a 8, para la medida y caracterización cuantitativa (mediante valores numéricos) y cualitativa (mediante gráficas) de las variables: velocidad instantánea en la fase de aceleración, velocidad máxima, tiempo en alcanzar la velocidad máxima, tiempo de mantenimiento de la velocidad máxima y velocidad de llegada en pruebas de carreras de velocidad de 60 metros y de 100 metros. 10. - Use of the opto-electronic system according to claims 1 to 8, for the measurement and quantitative characterization (by means of numerical values) and qualitative (by means of graphs) of the variables: instantaneous speed in the acceleration phase, maximum speed, time in Reach maximum speed, maximum speed maintenance time and arrival speed in 60-meter and 100-meter speed race tests.
1 1. - Uso del sistema opto-electrónico según las reivindicaciones 1 a 8, para la medida y caracterización cuantitativa (mediante valores numéricos) y cualitativa (mediante gráficas) de las variables: velocidad máxima en la carrera, velocidad de llegada a tabla, velocidad vertical y velocidad horizontal en el despegue y ángulo de despegue en las pruebas de salto de longitud y de triple salto. 1 1. - Use of the opto-electronic system according to claims 1 to 8, for the measurement and quantitative characterization (by means of numerical values) and qualitative (by means of graphs) of the variables: maximum speed in the race, speed of arrival at table, vertical speed and horizontal take-off speed and take-off angle in the long jump and triple jump tests.
12. - Uso del sistema opto-electrónico según las reivindicaciones 1 a 8, para la medida y caracterización cuantitativa (mediante valores numéricos) y cualitativa (mediante
gráficas) de las variables: velocidad de salida y ángulo de salida del artefacto en las pruebas atléticas de lanzamiento de artefactos: jabalina, peso, martillo y disco. 12. - Use of the opto-electronic system according to claims 1 to 8, for measurement and quantitative characterization (by numerical values) and qualitative (by graphs) of the variables: speed of exit and angle of exit of the device in the athletic tests of launch of devices: javelin, weight, hammer and disc.
13.- Uso del sistema opto-electrónico según las reivindicaciones 1 a 8, para la determinación de ángulos de flexión de las articulaciones durante pruebas de evaluación de la flexibilidad y rango de movimiento en programas de rehabilitación y fisioterapia.
13. Use of the opto-electronic system according to claims 1 to 8, for the determination of flexion angles of the joints during tests evaluating flexibility and range of motion in rehabilitation and physiotherapy programs.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/ES2017/070151 WO2018167330A1 (en) | 2017-03-16 | 2017-03-16 | Optoelectronic system for tracking paths of movement in the evaluation of physical and sports performance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/ES2017/070151 WO2018167330A1 (en) | 2017-03-16 | 2017-03-16 | Optoelectronic system for tracking paths of movement in the evaluation of physical and sports performance |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018167330A1 true WO2018167330A1 (en) | 2018-09-20 |
Family
ID=63522839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2017/070151 WO2018167330A1 (en) | 2017-03-16 | 2017-03-16 | Optoelectronic system for tracking paths of movement in the evaluation of physical and sports performance |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018167330A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2776048A1 (en) * | 2019-01-28 | 2020-07-28 | Univ Murcia | Optical Dynamometer |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001070268A (en) * | 1999-09-08 | 2001-03-21 | Toriumu Kk | Method of imaging biological information |
US20090149256A1 (en) * | 2007-12-07 | 2009-06-11 | Kam Lim Lui | Joystick for Video Game Machine |
CN201470076U (en) * | 2009-05-27 | 2010-05-19 | 开达环球有限公司 | Wii game prop with optical signal wave reflector structure on remote controller seat |
-
2017
- 2017-03-16 WO PCT/ES2017/070151 patent/WO2018167330A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001070268A (en) * | 1999-09-08 | 2001-03-21 | Toriumu Kk | Method of imaging biological information |
US20090149256A1 (en) * | 2007-12-07 | 2009-06-11 | Kam Lim Lui | Joystick for Video Game Machine |
CN201470076U (en) * | 2009-05-27 | 2010-05-19 | 开达环球有限公司 | Wii game prop with optical signal wave reflector structure on remote controller seat |
Non-Patent Citations (3)
Title |
---|
ANROMERO: "Tecnologia Biomecanica. KINESCAN/IBV.Versión 4", INSTITUTO BIOMECANICA VALENCIA, 31 July 2012 (2012-07-31), XP055540316, Retrieved from the Internet <URL:https://gestion.ibv.org/gestoribv/index.php/productos/descargables/431-ibv-kinescan/file> * |
GUSTAVO RAMON SUAREZ: "Biomecanica deportiva y control del entrenamiento", BIOMECANICA DEPORTIVA, 31 December 2009 (2009-12-31), Universidad de Antioquia. Medellin, XP055540325, Retrieved from the Internet <URL:http://viref.udea.edu.co/contenido/publicaciones/expo2009/biomecanica_2009.pdf> * |
JOHNNY CHUNG LEE: "Hacking the Nintendo Wii Remote", PERVASIVE COMPUTING, 31 December 2008 (2008-12-31), XP055540301 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2776048A1 (en) * | 2019-01-28 | 2020-07-28 | Univ Murcia | Optical Dynamometer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2823974T3 (en) | System and procedure to aid in a movement exercise | |
ES2230831T3 (en) | METHOD AND SYSTEM FOR MEASURING PERFORMANCE DURING A PHYSICAL EXERCISE ACTIVITY. | |
AU2008202170B2 (en) | Improved Sports Sensor | |
ES2641232T3 (en) | Sports event monitoring | |
ES2716976T3 (en) | Prevention of falls | |
KR101834077B1 (en) | A postural balance training system | |
CN106178481B (en) | A kind of analytical equipment of billiard training, system and analysis method | |
US20160279470A1 (en) | Holistic ring-based exercise system and method | |
Saponara | Wearable biometric performance measurement system for combat sports | |
Pansiot et al. | WISDOM: wheelchair inertial sensors for displacement and orientation monitoring | |
ES2886906T3 (en) | Exercise management device using hula hoop having a device for measuring the direction of rotation and the amount of exercise | |
WO2016116071A1 (en) | Insole with integrated nano-pedometer, step detection and counting method using said insole, and shoe equipped with the fixed or removable insole | |
US8435130B2 (en) | Digital inertially responsive golf club head mounted device for instructing correct club face direction and swing speed | |
CN104523278A (en) | Multi-sensor based sports monitoring system | |
WO2018167330A1 (en) | Optoelectronic system for tracking paths of movement in the evaluation of physical and sports performance | |
AU2018377859B2 (en) | Methods and apparatus for measurement of positions and motion states of exercise equipment in three dimensions | |
ES2594805B1 (en) | Opto-electronic system for monitoring trajectories in the evaluation of physical and sports performance | |
US20150243185A1 (en) | Exercise Alignment Device | |
KR20100089152A (en) | Belt clip style golf swing motion tracking and evaluation device | |
US20170350977A1 (en) | Method and apparatus for detecting physical performance | |
EP2023816A1 (en) | Balance monitor | |
ES2944582T3 (en) | System to determine forces in the feet | |
US3545749A (en) | Reaction measuring method | |
ES2237280B1 (en) | SYSTEM OF DETECTION OF SUPPORTS VIA RADIO. | |
Kutílek et al. | Application of portable force platforms equipped with a device for measuring position and orientation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17900447 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17900447 Country of ref document: EP Kind code of ref document: A1 |