[go: up one dir, main page]

WO2018166481A1 - 一种闭环吸入麻醉控制系统 - Google Patents

一种闭环吸入麻醉控制系统 Download PDF

Info

Publication number
WO2018166481A1
WO2018166481A1 PCT/CN2018/079045 CN2018079045W WO2018166481A1 WO 2018166481 A1 WO2018166481 A1 WO 2018166481A1 CN 2018079045 W CN2018079045 W CN 2018079045W WO 2018166481 A1 WO2018166481 A1 WO 2018166481A1
Authority
WO
WIPO (PCT)
Prior art keywords
anesthetic
anesthesia
loop
closed
control system
Prior art date
Application number
PCT/CN2018/079045
Other languages
English (en)
French (fr)
Inventor
李洪
Original Assignee
重庆奥基医药科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆奥基医药科技有限公司 filed Critical 重庆奥基医药科技有限公司
Publication of WO2018166481A1 publication Critical patent/WO2018166481A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
    • A61M16/01Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes specially adapted for anaesthetising
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/14Preparation of respiratory gases or vapours by mixing different fluids, one of them being in a liquid phase
    • A61M16/18Vaporising devices for anaesthetic preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/40Respiratory characteristics
    • A61M2230/43Composition of exhalation
    • A61M2230/437Composition of exhalation the anaesthetic agent concentration

Definitions

  • the invention relates to the field of medical anesthesia control, in particular to a closed loop inhalation anesthesia control system.
  • the closed-loop control system is an automatic control system that consists of a signal positive path and a feedback path to form a closed loop, also known as a feedback control system.
  • a feedback control system In order to realize closed-loop control, the output quantity must be measured, and the measured result is fed back to the input end to subtract the input quantity to obtain a deviation, and then the deviation directly produces a direct control to eliminate the deviation, and the whole system forms a closed loop.
  • the closed-loop anesthesia control system is an automatic control technology. After inputting a certain amount of anesthetic to the patient, the patient analyzes various physiological indicators and pharmacodynamic information of the patient, thereby calculating the dose and rate of administration, and feeding back to the automatic giving The medicine system achieves the ideal medication purpose and minimizes the medication error.
  • Infusion system refers to a vein that meets the requirements of clinical anesthesia by adjusting the concentration of the target by adjusting the target concentration based on pharmacokinetics and pharmacodynamics.
  • the infusion system is administered.
  • TCI does not address individual differences in pharmacokinetics and efficacy.
  • the closed-loop anesthesia control system is a natural extension of TCI. With the help of computer technology and reliable pharmacological effects, the system automatically reaches and maintains preset targets through TCI and intraoperative physiology and pharmacology monitoring, thus helping anesthesiologists to give the best.
  • the dose is to prevent overdose or deficiency.
  • Closed-loop control of intravenous anesthesia has the advantage of maintaining the stability of the target, solving individual differences in pharmacokinetic efficacy, reducing the amount of anesthesia, thereby maintaining hemodynamic stability, preventing intraoperative awareness, facilitating recovery of anesthesia, and ultimately reducing anesthesia. Doctor workload.
  • the utility model with the application number of 201020152817.8 discloses a closed-loop muscle relaxation injection device, which comprises a muscle relaxation monitoring unit, a syringe pump unit and a microprocessor; and the patient's myoelectric feedback action is obtained through the muscle relaxation monitoring piezoelectric sensor, and the muscle is obtained by operation.
  • the loose monitoring data TOF value is used as the basis of the feedback data.
  • the microprocessor combines the built-in muscle relaxant administration method to control the stepping motor to push the syringe to set the speed.
  • 201210591264.X discloses a closed-loop intelligent anesthesia control system, which comprises a monitoring screen, a vital sign collecting end, a workstation end and an anesthetic injection device; the vital sign collecting end collects the vital sign sensing information of the patient, and The obtained sensing information is transmitted to the workstation end; the workstation end processes the sensing information transmitted from the vital sign collecting end to obtain the type of anesthetic drug required by the patient, the amount of the injected drug and the injection speed, and passes the anesthetic injection device. The patient is injected with an anesthetic; the monitor screen shows the patient's anesthesia status.
  • 201310122118.7 discloses an anesthetic target-controlled infusion pump controller based on BIS feedback, comprising a control module, a BIS setting module, a brushless motor, a power amplifier, an electroencephalogram electrode, and a fuzzy PID solving unit, according to each The patient's different physique settings were adapted to the BIS value baseline, and the anesthetic dose was adjusted in real time through the BIS feedback loop.
  • the application No. 201310693705.1 discloses an anesthesia depth monitoring device, including an EEG signal acquisition electrode, a Fourier transform module, a cortical activity calculation module, a subcortical activity calculation module, a balanced anesthesia depth calculation module, and a comprehensive evaluation of the invention.
  • the activity of cortical and subcortical brain waves in anesthetized patients improves the accuracy of anesthesia depth monitoring.
  • the invention with application number 201510194123.8 discloses an intelligent anesthesia system, including an intelligent control end, a vital sign detection end, an anesthetic injection end, an indoor environmental monitoring end, an electronic medical information end, a ventilator, a monitoring display screen, and is intended to be quantitatively given. Medicine, the purpose of real-time feedback on the patient's physical condition.
  • EEG electroencephalogram
  • BIOS biennial index
  • PSI patient status index
  • entropy index monitoring auditory evoked potential monitoring
  • Narcotrend anesthesia awareness is used clinically.
  • BIS mainly reflects the excitatory or inhibitory state of the cerebral cortex.
  • the size of BIS is highly correlated with sedation, consciousness, and memory.
  • BIS is a good indicator of sedatives in depth of anesthesia but is not sensitive to monitoring analgesic components. Studies have shown that the sedation depth of BIS and inhaled anesthetics is better than intravenous anesthetics.
  • the Patient Status Index (PSI) diagnoses EEG waveforms in real time by collecting information on 4 EEGs and provides quantified values. The significance of PSI and BIS readings is shown in Table 1. At present, PSI is a clinically new method for monitoring sedation depth.
  • PSI is an effective monitoring anesthesia.
  • the method of depth. PSI is more stable than BIS in clinical monitoring.
  • the anesthesia-conscious depth monitor Narcotrend automatically analyzes and grades the electroencephalogram under anesthesia/sedation to show the anesthesia/sedation depth.
  • the appropriate anesthesia depth D to E phase is equivalent to a BIS value of 40-64 in general anesthesia.
  • the AEP index can reflect the cortical excitatory or inhibitory state, can be used to monitor the sedative components of anesthesia; can reflect the electrical activity under the cortex, and thus can monitor the changes in pain and body motion caused by noxious stimulation to some extent.
  • Entropy index monitoring is based on the entropy algorithm to obtain and process the original EEG and frontal EMG signals.
  • the response entropy (RE) and state entropy (SE) are measured separately.
  • the former is from the prefrontal EMG and EEG analysis.
  • the latter mainly comes from the EEG, which reflects the degree of excitability of the frontal muscles and the degree of inhibition of the cerebral cortex during the recovery phase.
  • Both RE and SE are maintained at high levels indicating that the patient is awake, both maintain a low level and the hemodynamic parameters are stable, suggesting that the patient is at an appropriate level of anesthesia; RE is elevated and SE is maintained at a relatively low level, suggesting The patient may have a collective activity or the patient may feel pain, RE increases, and SE remains at a relatively high level, suggesting that the patient may be awake.
  • Inhalation anesthesia refers to an anesthetic method in which anesthetic is inhaled through the respiratory tract, causing central nervous system depression, causing temporary loss of consciousness of the patient without causing pain in the body.
  • the depth of anesthesia is related to the partial pressure of the drug in the brain tissue.
  • inhalation anesthesia is easy to control and safe and effective.
  • Inhaled anesthetics commonly used in clinical practice are: anesthetic ether, enflurane, halothane, methoxyflurane, sevoflurane, desflurane.
  • the inhalation anesthetic represented by sevoflurane has the following advantages: 1. It is light in respiratory depression and can perform surface and limb surgery, such as prostate resection and uterine conization, while retaining spontaneous breathing.
  • the minimum effective alveolar concentration refers to the concentration of inhaled anesthetic in 50% of humans (or animals) that do not undergo body motion when subjected to noxious stimulation at one atmosphere.
  • the significance of MAC in the monitoring of clinical anesthesia depth is achieved by monitoring the concentration of inhaled anesthetic in the end-expiratory anesthetic.
  • concentration of exhaled gas anesthetic is in the process of increasing the concentration of inhaled anesthetic in the alveoli, saturation or gradual low price.
  • the metering-response curve of the inhaled anesthetic can compensate for the defect that the MAC does not reflect the intensity of the stimulus. Therefore, research on closed-loop inhalation anesthesia control system and development of corresponding equipment has a very broad prospect.
  • a closed-loop inhalation anesthesia control system comprising: a ventilation device, a gas recovery device, a breathing circuit, a gas pipeline, an anesthetic vaporization device, an anesthesia depth monitoring device An anesthetic automatic delivery device, a central control device, a communication line, a drug delivery conduit and an inhalation anesthetic, the central control device being connected to the anesthesia depth monitoring device and the anesthetic automatic delivery device through a communication line, the ventilation device, the anesthetic vaporization device
  • the gas recovery device is connected to the breathing circuit through a gas pipeline
  • the automatic anesthetic delivery device is connected to the anesthetic vaporization device through the drug delivery conduit.
  • Aeration is provided prior to anesthesia to provide oxygen or fresh air to the breathing circuit at a certain flow rate and pressure.
  • the target value of the anesthesia depth is input to the central control device, and the patient's basic physiological parameters such as height, weight, blood pressure, breathing pattern, respiratory rate, and tidal volume are calculated by the central control device, and the administration schedule includes inhalation.
  • the central control device transmits the dosing plan signal to the anesthetic automatic conveying device via the communication line, and the anesthetic automatic conveying device delivers the inhaled anesthetic to the anesthetic vaporization device, and the inhaled anesthetic is vaporized in the anesthetic vaporization device, and then passes through the breathing circuit. Delivery to the patient for anesthesia. The gas exhaled by the patient enters the gas recovery device through the breathing circuit.
  • the anesthesia depth monitoring device collects and processes the vital signs information of the patient in real time, such as brain waves, entropy index or auditory evoked potential, and feeds the processed vital signs information to the central control device via the communication line.
  • the central control device determines the depth of anesthesia according to the real-time vital signs information of the patient, continuously adjusts the dosage regimen, and controls the automatic delivery device for automatic administration of the anesthetic drug delivery device; or the anesthesia depth monitoring device is connected to the breathing circuit through the gas pipeline to collect the exhalation in real time.
  • the information of the concentration of the anesthetic is fed back to the central control device via the communication line.
  • the central control device determines the depth of the anesthesia according to the concentration information of the anesthetic in the real-time exhaled gas of the patient, continuously adjusts the dosage plan, and controls the automatic delivery device of the anesthetic. Automatic administration. This results in a closed loop inhalation anesthesia for automatic administration.
  • inhaled anesthetics have a boiling point of less than 60 ° C and are liquid at room temperature.
  • the anesthetic vaporizer can be quickly converted from a liquid to a gaseous state by means of jet, ultrasonic, heated or mixed vaporization.
  • the central control device comprises a CPU, a storage device, an I/O device, a display screen and a workstation, wherein the CPU, the storage device, the I/O device, the display screen are hardware, the workstation is software, and the central control device can manually input and slave
  • the information fed back by the anesthesia depth monitoring device is subjected to calculation processing, and an operation command is generated and transmitted to the automatic anesthetic delivery device.
  • the display can display the basic physiological parameters and the target value of the anesthesia depth. It can also display the patient's breathing parameters, physiological parameters, anesthesia depth information, and the operating status information of the automatic delivery device and the anesthetic vaporization device.
  • the closed loop inhalation anesthesia control system further includes a respiratory parameter monitoring device coupled to the breathing circuit through a gas delivery conduit and coupled to the central control device via a communication line.
  • the respiratory parameter monitoring device can collect respiratory parameters such as expiratory tidal volume, peak airway pressure, flow rate and respiratory rate in real time and transmit it to the central control device.
  • the central control device is further connected to the ventilation device, the gas recovery device and the anesthetic vaporization device via a communication line, and the operation command may be input to the central control device, or the operation command may be calculated by the central control device and transmitted to the ventilation device. , gas recovery devices and anesthetic vaporization devices to control the mode of operation of these devices.
  • the anesthetic is selected from the group consisting of anesthetic ether, enflurane, halothane, methoxyflurane, sevoflurane, and desflurane.
  • the representative drug of inhaled anesthetic, sevoflurane has a boiling point of 58 ° C, has good analgesic and muscle relaxant effects, does not cause allergies, and has the outstanding advantage of being light in respiratory depression and capable of producing anesthesia while retaining spontaneous breathing.
  • Its MAC is 0.66% in the mixed gas of oxygen and nitrous oxide, and 1.7% in pure oxygen.
  • the blood concentration has a good correlation with the monitoring index of anesthesia depth. The depth of anesthesia can be expected, suitable for closed loop. Inhalation anesthesia.
  • the invention has the beneficial effects that: compared with the prior art, the invention can achieve the following effects: 1. Intelligent and automatic closed-loop administration of the inhaled anesthetic; 2. Avoiding insufficient medication or overdose, solving the patient's anesthesia Individual differences in the metabolism of drugs and long-term medication can cause adverse reactions, enhance the safety of anesthesia; 3, reduce the workload of anesthesiologists, reduce human error.
  • FIG 1 and 2 are schematic views of the structure of the present invention.
  • the single solid line with arrows in Figures 1 and 2 is the communication line; the double solid line with arrows is the gas delivery line; and the dotted line with the arrow is the drug delivery line.
  • the closed-loop inhalation anesthesia control system shown in FIG. 1 includes a ventilation device, a gas recovery device, a breathing circuit, a gas pipeline, an anesthetic vaporization device, an anesthesia depth monitoring device, an anesthetic automatic delivery device, a central control device, a communication line,
  • the drug delivery pipeline, the respiratory parameter monitoring device and the inhaled anesthetic sevoflurane, the central control device is connected to the anesthesia depth monitoring device and the anesthetic automatic conveying device through a communication line
  • the ventilation device, the anesthetic vaporization device and the gas recovery device pass through the gas pipeline Connected to the breathing circuit, the anesthetic automatic delivery device is connected to the anesthetic vaporization device through a drug delivery conduit.
  • the anesthesia depth monitoring device is provided with means for collecting and processing bispectral index (BIS) information.
  • the anesthetic vaporization device uses a heated vaporization method.
  • the central control unit includes a CPU, storage devices, I/O devices, display screens, and workstations.
  • the display screen can display the input basic physiological parameters, breathing parameters and anesthesia depth target values, and can also display the patient's BIS value, the operating status information of the anesthetic automatic delivery device, and the patient's anesthesia depth information in real time.
  • the use flow of the present invention is:
  • anesthesia depth monitoring device Connects the anesthesia depth monitoring device to the patient's EEG signal acquisition site before anesthesia, set the ventilation device to supply oxygen to the breathing circuit at a certain flow rate and pressure, and input the target of anesthesia depth to the central control device through the I/O device.
  • the value, as well as the basic physiological parameters such as the patient's height, weight, breathing pattern (spontaneous or mechanical ventilation), respiratory rate and tidal volume, are calculated by the central control device, such as dose and rate.
  • the central control device transmits the dosing plan signal to the anesthetic automatic conveying device via the communication line, and the narcoal is transported to the anesthetic vaporization device by the automatic anesthetic delivery device, and the sevoflurane is heated and vaporized in the anesthetic vaporization device.
  • the breathing circuit is delivered to the patient for anesthesia.
  • the gas exhaled by the patient enters the gas recovery device through the breathing circuit.
  • the anesthesia depth monitoring device collects and processes the patient's BIS value in real time and feeds it back to the central control device via the communication line.
  • the central control device continuously adjusts the dosing schedule according to the real-time BIS value of the patient, and controls the automatic delivery device of the anesthetic to perform automatic administration to form a closed-loop inhalation anesthesia automatic drug delivery system.
  • the closed-loop inhalation anesthesia control system shown in Figure 2 includes a ventilation device, a gas recovery device, a breathing circuit, a gas pipeline, an anesthetic vaporization device, an anesthesia depth monitoring device, an anesthetic automatic delivery device, a central control device, a communication line,
  • the central control device is connected to the anesthesia depth monitoring device and the anesthetic automatic conveying device through a communication line
  • the ventilation device, the anesthetic vaporization device and the gas recovery device pass through the gas pipeline Connected to the breathing circuit, the automatic anesthetic delivery device is connected to the anesthetic vaporization device through the drug delivery conduit, and the respiratory parameter monitoring device is connected to the breathing circuit through the gas pipeline and connected to the central control device through the communication line.
  • the anesthesia depth monitoring device is provided with means for detecting the concentration of the anesthetic drug in the exhalation.
  • the central control unit is also connected to the venting device, the gas recovery device, and the anesthetic vaporization device via a communication line.
  • the anesthetic vaporization device adopts ultrasonic vaporization.
  • the central control unit includes a CPU, storage devices, I/O devices, display screens, and workstations.
  • the display can display the input basic physiological parameters, respiratory parameters and anesthesia depth target values, as well as real-time display of the patient's exhalation anesthetic concentration, patient anesthesia depth information, as well as anesthetic automatic delivery device, ventilation device, gas recovery device and Information on the operating status of the anesthetic vaporizer.
  • the use flow of the present invention is:
  • the ventilation device Before the anesthesia, the ventilation device is provided with oxygen at a certain flow rate and pressure to the breathing circuit, and the target value of the anesthesia depth is input to the central control device through the I/O device, and the height, weight, ventilation mode, tidal volume,
  • the basic physiological parameters such as respiratory rate are calculated by the central control device, such as the dose and rate of administration, the ultrasonic frequency and intensity of the anesthetic vaporization device, and the operational command information of the ventilation device and the working mode of the gas recovery device.
  • the central control device transmits the dosing plan signal and the operation instruction information of each device to the anesthetic automatic conveying device, the anesthetic vaporization device, the aeration device and the gas recovery device through the communication line, and the anesthetic automatic conveying device is anesthetized
  • the drug vaporization device delivers isoflurane, and the isoflurane is heated and vaporized in the anesthetic vaporization device, and then enters the respiratory circuit and is delivered to the patient for anesthesia.
  • the gas exhaled by the patient enters the gas recovery device through the breathing circuit.
  • the anesthesia depth monitoring device collects the isoflurane concentration in the exhaled gas of the patient in real time and feeds it back to the central control device;
  • the respiratory parameter monitoring device collects the patient's breathing such as expiratory tidal volume, peak airway pressure, flow rate and respiratory rate in real time. Parameters are passed to the central control unit.
  • the central control device synthesizes the isoflurane concentration and respiratory parameters in the exhaled gas of the patient, thereby continuously adjusting the dosing regimen, and controlling the automatic delivery device of the anesthetic, the aeration device, the gas recovery device, and the anesthetic vaporization device for automatic administration.
  • a closed loop inhalation anesthesia automatic drug delivery system is formed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Anesthesiology (AREA)
  • Emergency Medicine (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种闭环吸入麻醉控制系统,包括通气装置、气体回收装置、呼吸回路、输气管道,麻醉药汽化装置、麻醉深度监测装置、麻醉药自动输送装置、中央控制装置、通信线路、药物输送管道和吸入麻醉药,中央控制装置通过通信线路与麻醉深度监测装置和麻醉药自动输送装置连接,通气装置、麻醉药汽化装置和气体回收装置通过输气管道与呼吸回路连接,麻醉药自动输送装置通过药物输送管道与麻醉药汽化装置连接。该技术方案实现了吸入麻醉药的自动化闭环给药;避免用药不足或用药过量,增强了麻醉的安全性;减轻了麻醉师的工作负荷,降低了人为失误。

Description

一种闭环吸入麻醉控制系统 技术领域
本发明涉及医用麻醉控制领域,具体涉及一种闭环吸入麻醉控制系统。
背景技术
闭环控制(closed-loop control system)是由信号正向通路和反馈通路构成闭合回路的自动控制系统,又称反馈控制系统。为了实现闭环控制,必须对输出量进行测量,并将测量的结果反馈到输入端与输入量进行相减得到偏差,再由偏差产生直接控制作用去消除偏差,整个系统形成一个闭环。闭环麻醉控制系统是一种自动控制技术,先给患者输入一定量的麻醉药后,通过计算机分析患者的各种生理指标和药效信息,从而计算出给药剂量和速率,并反馈给自动给药系统,达到理想的用药目的,尽可能减少用药误差。
近二十多年闭环麻醉控制系统在理论研究、产品研发以及临床应用方面已取得了较多进展。1982年出现了靶控输注技术。1986年发展出脑电图反馈控制的麻醉技术,即“闭环TIVA”。1982年出现了CATIA系统(电脑辅助滴定的静脉麻醉),1985年出现了CACI系统(电脑辅助的连续输注麻醉)和TIAC系统(电脑控制的经静脉滴定麻醉),1992年则产生的靶控输注系统(TCI),是指以药代动力学和药效动力学为基础,按不同要求选择血药靶浓度,通过调整靶浓度来控制麻醉的深浅,从而满足临床麻醉需求的一种静脉给药输注系统。但是TCI没有解决药代和药效个体差异问题。闭环麻醉控制系统是对TCI的自然延伸,借助计算机技术和可靠药理学作用测定,通过TCI和术中生理学与药理学监测,系统自动达到和维持预设的靶目标,从而帮助麻醉医师给予最佳药量,防止给药过量或不足。闭环控制静脉麻醉的优势在于能够维持靶目标的稳定性,解决药代药效的个体差异,减少麻醉药用量,从而维持血流动力学稳定,预防术中知晓,利于麻醉恢复,最终减轻麻醉医生工作负荷。
申请号为201020152817.8的实用新型公开了一种闭环肌松注射装置,包括有肌松监测单元、注射泵单元和微处理器;通过肌松监测压电感应器获取病人肌电反馈动作,运算获得肌松监测数据TOF值作为反馈数据基础,微处理器结合内置的肌松剂给药方法,控制步进电机推动注射器以设置速度给药。申请号为201210591264.X的发明公开了一种闭环的智能麻醉控制系统,包括监控屏幕、生命体征采集端、工作站端和麻醉药剂注射装置;生命体征采集端采集病人的生命体征传感信息,并将获得的传感信息传输至工作站端;工作站端对生命体征采集端传送过来的传感信息进行处理,得出病人所需的麻醉药物种类、注射药剂量和注射速度,并通过麻醉药注射装置对病人进行麻醉药注射;监控屏幕显示病人的麻醉状态。申请号为201310122118.7的发明公开了一种基于BIS反馈的麻醉靶控输注泵控制器,包括控制模块、BIS设定模块、无刷电机、功率放大器、脑电电极、模糊PID求解单元,根据每个病人不同的体质设置相适应的BIS值基准,并通过BIS反馈环对麻醉药给药量进行实时调整。申请号为201310693705.1发明公开了一种麻醉深度监测装置,包括脑电信号采集电极、傅里叶变换模块,皮层活动性计算模块,皮层下活动性计算模块,平衡麻醉深度计算模块,该发明综合评价被麻醉者皮层和皮层下脑电波的活动性,提高了麻醉深度监测的准确性。申请号为201510194123.8的发明公开了一种智能麻醉系统,包括智能控制端、生命体征检测端、麻醉药剂注射端、室内环境监测端、电子医疗信息端、呼吸机、监控显示屏,拟达到定量给药,能实时反馈病人身体状况的目的。
闭环麻醉控制系统发展难点是寻找对麻醉深度监测的方法。目前已有以双频指数(Bispectrum,BIS)和患者状态指数(PSI)为代表的数种基于脑电 (Electroencephalogram,EEG)的麻醉深度监测,以及熵指数监测、听觉诱发电位监测和Narcotrend麻醉意识深度监测得到临床应用。
BIS主要反映大脑皮质的兴奋或抑制状态,BIS值的大小与镇静、意识、记忆高度相关。BIS能很好地监测麻醉深度中的镇静成分,但对镇痛成分监测不敏感。研究表明BIS与吸入麻醉药的镇静深度相关性较静脉麻醉药更好。患者状态指数(PSI)通过收集4道脑电图的信息,实时诊断脑电波形,并提供量化的值,PSI与BIS读数的意义如表1所示。目前PSI是临床上较新的镇静深度监测方法,根据异氟烷、地氟烷、七氟烷、丙泊酚、氧化亚氮/镇痛药麻醉下的PSI监测显示,PSI是有效的监测麻醉深度的方法。在临床监测中PSI较BIS更稳定。
表1 PSI与BIS读数的意义
Figure PCTCN2018079045-appb-000001
麻醉意识深度监测仪Narcotrend将麻醉/镇静下的脑电图进行自动分析并分级,从而显示麻醉/镇静深度,适宜的麻醉深度D~E阶段相当于全麻中BIS值40~64。听觉诱发电位(AEP):给予声音刺激,在头皮上所记录到由听觉神经通路所产生的电位。AEP指数能反映皮层兴奋或抑制状态,可用于监测麻醉的镇静成分;能反映皮层下的脑电活动,因而可以在一定程度上监测伤害性刺激引起的疼痛和体动等的变化。
熵指数监测是基于熵算法获得和处理原始脑电图和额肌肌电图信号的理论,分别测定反应熵(RE)和状态熵(SE),前者自前额肌电图与脑电图分析而得,后者主要来自脑电图,反映复苏阶段前额骨肌兴奋程度及大脑皮层的受 抑程度。RE、SE两者均维持在高水平值表示患者已经清醒,两者维持低水平值且血流动力学参数稳定,提示患者处于合适的麻醉水平;RE升高,SE维持在相对低水平,提示患者可能有集体活动或患者可能感觉到疼痛,RE升高,SE维持在相对高水平,提示患者可能在苏醒。
目前关于闭环麻醉控制系统的研究和应用主要集中在静脉注射给药方面,对于吸入麻醉则研究较少。吸入麻醉是指麻醉药经过呼吸道吸入,产生中枢神经系统抑制,使病人暂时意识丧失而致不感到周身疼痛的麻醉方法。其麻醉深浅与药物在脑组织中的分压有关,当麻醉药从体内排出或在体内代谢后,病人逐渐恢复清醒,且不留任何后遗症。吸入麻醉药具有良好的镇痛和麻醉作用,在体内代谢、分解少,大部分以原形从肺排出体外,因此吸入麻醉容易控制,比较安全和有效。临床上常使用的吸入麻醉药有:麻醉乙醚、恩氟烷、氟烷、甲氧氟烷、七氟烷、地氟烷。以七氟烷为代表的吸入麻醉药具有如下优势:1、对呼吸抑制轻,能在保留自主呼吸的情况下完成体表和四肢的手术,如前列腺电切术、子宫锥形切除术等,且能够防术中知晓;2、患者体内或呼气末麻醉药物浓度可以实时监测,而体内或呼出气体中的麻醉药物浓度与患者的麻醉深度有良好的相关性,这样就可以通过监测体内或呼气末的麻醉药物浓度来判断患者麻醉深度,从而合理调整给药剂量和给药速率。最低有效肺泡浓度(MAC)指在一个大气压下,使50%的人(或动物)在受到伤害性刺激时不发生体动的肺泡气中吸入麻醉药的浓度。MAC在临床麻醉深度监测中的意义是依靠监测呼气末吸入麻醉药的浓度实现的,无论在肺泡内吸入麻醉药浓度逐渐升高、饱和还是逐渐价低的过程中,呼出气体麻醉药浓度均可较好地反应肺泡吸入麻醉药的浓度,监测呼出气吸入麻醉药物浓度,并结合不同呼出气吸入麻醉药的MAC,可以间接反映麻醉深度,与麻醉深度相关的MAC浓度见表2,常用吸入麻醉药的MAC值如表3所示。吸入麻醉药的计量-反应曲线可以弥补MAC不能反映刺激强度的缺陷。所以研究闭环吸入麻醉控制系统及开发相应的设备具有非常广阔的前景。
表2 常用评估麻醉深度(满足不同刺激强度要求)的MAC值
Figure PCTCN2018079045-appb-000002
表3 常用吸入麻醉药的MAC值(30-60岁)
Figure PCTCN2018079045-appb-000003
发明内容
本发明的目的是提供一种闭环吸入麻醉控制系统。
本发明的目的是通过采用以下技术方案来实现的:一种闭环吸入麻醉控制系统,其特征在于,包括通气装置、气体回收装置、呼吸回路、输气管道,麻醉药汽化装置、麻醉深度监测装置、麻醉药自动输送装置、中央控制装置、通信线路、药物输送管道和吸入麻醉药,所述中央控制装置通过通信线路与麻醉深度监测装置和麻醉药自动输送装置连接,通气装置、麻醉药汽化装置和气体回收装置通过输气管道与呼吸回路连接,麻醉药自动输送装置通过药物输送管道与麻醉药汽化装置连接。
麻醉前设置通气装置,使其按一定的流速和气压向呼吸回路中提供氧气或新鲜空气。向中央控制装置输入麻醉深度的目标值,以及患者的基本生理参数,如身高、体重、血压、呼吸模式、呼吸频率和潮气量等,由中央控制装置计算出给药方案,给药方案包括吸入麻醉药的种类、剂量、给药速率等。中央控制装置将给药方案信号经过通信线路传递给麻醉药自动输送装置,由麻醉药自动输送装置向麻醉药汽化装置输送吸入麻醉药,吸入麻醉药在麻醉药汽化装置内汽化后,通过呼吸回路输送给患者进行麻醉。患者呼出的气体通过呼吸回路进入气体回收装置。
麻醉深度监测装置实时采集和处理患者的生命体征信息,如脑电波、熵指数或听觉诱发电位,将处理后的生命体征信息经过通信线路反馈到中央控制装置。中央控制装置根据患者的实时生命体征信息判断麻醉深度,不断调整给药方案,并控制麻醉药自动输送装置进行自动给药;或者麻醉深度监测装置通过输气管道与呼吸回路连接,实时采集呼气中麻醉药浓度信息,将该信息经过通信线路反馈到中央控制装置,中央控制装置根据患者实时的呼出气体中麻醉药浓度信息判断麻醉深度,不断调整给药方案,并控制麻醉药自动输送装置进行自动给药。这样就形成了闭环的吸入麻醉自动给药。
大多数吸入麻醉药沸点在60℃以内,常温下为液态,麻醉药汽化装置采用喷射、超声、加热或混合的汽化方式能够很快将其由液态转化为气态。
所述中央控制装置包括CPU、存储设备、I/O设备、显示屏和工作站,其中CPU、存储设备、I/O设备、显示屏为硬件,工作站为软件,中央控制装置可以将手动输入和从麻醉深度监测装置反馈过来的信息进行计算处理,生成操作指令并传递给麻醉药自动输送装置。显示屏可以显示输入的基本生理参数和麻醉深度目标值,也可以实时显示患者的呼吸参数、生理参数、麻醉深度信息,还有自动输送装置和麻醉药汽化装置的运行状态信息。
优选地所述闭环吸入麻醉控制系统还包括呼吸参数监测装置,所述呼吸参 数监测装置通过输气管道与呼吸回路连接,并通过通信线路与中央控制装置连接。呼吸参数监测装置可以实时采集患者诸如呼气潮气量、气道峰压、流速及呼吸频率等呼吸参数,并传递给中央控制装置。
优选地所述中央控制装置还通过通信线路与通气装置、气体回收装置和麻醉药汽化装置连接,可以向中央控制装置输入操作指令,或者由中央控制装置计算得出操作指令,并传递给通气装置、气体回收装置和麻醉药汽化装置,从而控制这些装置的工作模式。
所述麻醉药选自麻醉乙醚、恩氟烷、氟烷、甲氧氟烷、七氟烷和地氟烷。吸入麻醉药的代表药七氟烷,沸点为58℃,具有良好的镇痛和肌松作用,不会引起过敏,其突出的优点是对呼吸抑制轻,能在保留自主呼吸的情况下产生麻醉作用,其MAC在氧及氧化亚氮的混合气体中为0.66%,在纯氧中为1.7%,其血药浓度与麻醉深度监测指标有良好的相关性,麻醉深度可以预计,适合用于闭环吸入麻醉。
本发明的有益效果是:相对于现有技术,本发明能够达到以下效果:1、对吸入麻醉药实现了智能化、自动化闭环给药;2、避免用药不足或用药过量,解决了病人对麻醉药的代谢个体差异以及长时间用药会引起不良反应的问题,增强了麻醉的安全性;3、减轻了麻醉师的工作负荷,降低了人为失误。
附图说明
图1和图2是本发明的结构示意图。
图1和图2中带箭头的单实线为通信线路;带箭头的双实线为输气管道;带箭头的虚线为药物输送管道。
具体实施方式
下面结合附图与具体实施例对本发明作进一步说明:
实施例1
如图1所示的闭环吸入麻醉控制系统,包括通气装置、气体回收装置、呼 吸回路、输气管道,麻醉药汽化装置、麻醉深度监测装置、麻醉药自动输送装置、中央控制装置、通信线路、药物输送管道、呼吸参数监测装置和吸入麻醉药七氟烷,中央控制装置通过通信线路与麻醉深度监测装置和麻醉药自动输送装置连接,通气装置、麻醉药汽化装置和气体回收装置通过输气管道与呼吸回路连接,麻醉药自动输送装置通过药物输送管道与麻醉药汽化装置连接。麻醉深度监测装置设置有采集与处理脑电双频指数(BIS)信息的部件。麻醉药汽化装置采用加热的汽化方式。中央控制装置包括CPU、存储设备、I/O设备、显示屏和工作站。显示屏可以显示输入的基本生理参数、呼吸参数和麻醉深度目标值,也可以实时显示患者的BIS值、麻醉药自动输送装置等的运行状态信息和患者麻醉深度的信息。
本发明的使用流程为:
1)、麻醉前将麻醉深度监测装置连接到患者的脑电信号采集部位,设置通气装置按一定的流速和气压向呼吸回路中提供氧气,通过I/O设备向中央控制装置输入麻醉深度的目标值,以及患者的身高、体重、呼吸模式(自主呼吸或机械通气)、呼吸频率和潮气量等基本生理参数,由中央控制装置计算出给药方案,如剂量和速率等。
2)、中央控制装置将给药方案信号经过通信线路传递给麻醉药自动输送装置,由麻醉药自动输送装置向麻醉药汽化装置输送七氟烷,七氟烷在麻醉药汽化装置内被加热汽化后,进入呼吸回路输送给患者进行麻醉。患者呼出的气体经呼吸回路进入气体回收装置。
3)、麻醉深度监测装置实时采集和处理患者的BIS值,经过通信线路反馈到中央控制装置。中央控制装置根据患者的实时BIS值不断调整给药方案,并控制麻醉药自动输送装置进行自动给药,形成闭环的吸入麻醉自动给药系统。
实施例2
如图2所示的闭环吸入麻醉控制系统,包括通气装置、气体回收装置、呼吸回路、输气管道,麻醉药汽化装置、麻醉深度监测装置、麻醉药自动输送装置、中央控制装置、通信线路、药物输送管道、呼吸参数监测装置和吸入麻醉药异氟烷,中央控制装置通过通信线路与麻醉深度监测装置和麻醉药自动输送装置连接,通气装置、麻醉药汽化装置和气体回收装置通过输气管道与呼吸回路连接,麻醉药自动输送装置通过药物输送管道与麻醉药汽化装置连接,呼吸参数监测装置通过输气管道与呼吸回路连接,并通过通信线路与中央控制装置连接。麻醉深度监测装置设置有检测呼气中麻醉药物浓度的部件。中央控制装置还通过通信线路与通气装置、气体回收装置和麻醉药汽化装置连接。麻醉药汽化装置采用超声的汽化方式。中央控制装置包括CPU、存储设备、I/O设备、显示屏和工作站。显示屏可以显示输入的基本生理参数、呼吸参数和麻醉深度目标值,也可以实时显示患者的呼气中麻醉药物浓度、患者麻醉深度信息,以及麻醉药自动输送装置、通气装置、气体回收装置和麻醉药汽化装置的运行状态信息。本发明的使用流程为:
1)、麻醉前设置通气装置按一定的流速和气压向呼吸回路中提供氧气,通过I/O设备向中央控制装置输入麻醉深度的目标值,以及患者的身高、体重、通气模式、潮气量、呼吸频率等基本生理参数,由中央控制装置计算出给药剂量、速率、麻醉药汽化装置超声频率与强度,以及通气装置、气体回收装置的工作模式等操作指令信息。
2)、中央控制装置将给药方案信号和各设备的操作指令信息经过通信线路分别传递给麻醉药自动输送装置、麻醉药汽化装置、通气装置和气体回收装置,由麻醉药自动输送装置向麻醉药汽化装置输送异氟烷,异氟烷在麻醉药汽化装置内被加热汽化后,进入呼吸回路输送给患者进行麻醉。患者呼出的气体经呼吸回路进入气体回收装置。
3)、麻醉深度监测装置实时采集患者呼出气体中的异氟烷浓度,并反馈到 中央控制装置;呼吸参数监测装置实时采集患者诸如呼气潮气量、气道峰压、流速及呼吸频率等呼吸参数,并传递给中央控制装置。由中央控制装置综合患者呼出气体中的异氟烷浓度和呼吸参数,据此不断调整给药方案,并控制麻醉药自动输送装置、通气装置、气体回收装置和麻醉药汽化装置进行自动给药,形成闭环的吸入麻醉自动给药系统。

Claims (9)

  1. 一种闭环吸入麻醉控制系统,其特征在于,所述闭环吸入麻醉控制系统包括通气装置、气体回收装置、呼吸回路、输气管道,麻醉药汽化装置、麻醉深度监测装置、麻醉药自动输送装置、中央控制装置、通信线路、药物输送管道和吸入麻醉药,所述中央控制装置通过通信线路与麻醉深度监测装置和麻醉药自动输送装置连接,通气装置、麻醉药汽化装置和气体回收装置通过输气管道与呼吸回路连接,麻醉药自动输送装置通过药物输送管道与麻醉药汽化装置连接。
  2. 根据权利要求1所述的闭环吸入麻醉控制系统,其特征在于:所述麻醉深度监测装置设置有采集与分析脑电波、熵指数或听觉诱发电位信息的部件。
  3. 根据权利要求1所述的闭环吸入麻醉控制系统,其特征在于:所述麻醉深度监测装置设置有检测呼出气体中麻醉药物浓度的部件。
  4. 根据权利要求3所述的闭环吸入麻醉控制系统,其特征在于:所述麻醉深度监测装置通过输气管道与呼吸回路连接。
  5. 根据权利要求1所述的闭环吸入麻醉控制系统,其特征在于:所述麻醉药汽化装置采用喷射、超声或加热的汽化方式。
  6. 根据权利要求1所述的闭环吸入麻醉控制系统,其特征在于:所述中央控制装置包括CPU、存储设备、I/O设备、显示屏和工作站。
  7. 根据权利要求1所述的闭环吸入麻醉控制系统,其特征在于:还包括呼吸参数监测装置,所述呼吸参数监测装置通过输气管道与呼吸回路连接,并通过通信线路与中央控制装置连接。
  8. 根据权利要求1所述的闭环吸入麻醉控制系统,其特征在于:所述中央控制装置还通过通信线路与通气装置、气体回收装置和麻醉药汽化装置连接。
  9. 根据权利要求1所述的闭环吸入麻醉控制系统,其特征在于:所述吸入麻醉药为七氟烷、N 2O、氟烷恩、氟烷、异氟烷或地氟烷。
PCT/CN2018/079045 2017-03-15 2018-03-14 一种闭环吸入麻醉控制系统 WO2018166481A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710186910.7A CN106955403A (zh) 2017-03-15 2017-03-15 一种闭环吸入麻醉控制系统
CN201710186910.7 2017-03-15

Publications (1)

Publication Number Publication Date
WO2018166481A1 true WO2018166481A1 (zh) 2018-09-20

Family

ID=59470360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079045 WO2018166481A1 (zh) 2017-03-15 2018-03-14 一种闭环吸入麻醉控制系统

Country Status (2)

Country Link
CN (1) CN106955403A (zh)
WO (1) WO2018166481A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021081504A1 (en) * 2019-10-24 2021-04-29 The Trustees Of Columbia University In The City Of New York System, method, and computer-accessible medium for visualization and analysis of electroencephalogram oscillations in the alpha band

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106955403A (zh) * 2017-03-15 2017-07-18 中国人民解放军第三军医大学第二附属医院 一种闭环吸入麻醉控制系统
WO2019127557A1 (zh) * 2017-12-29 2019-07-04 深圳迈瑞生物医疗电子股份有限公司 麻醉药物识别方法、麻醉脑电信号的处理方法和装置
CN110368559A (zh) * 2019-07-24 2019-10-25 泸州市中医医院(泸州市中西医结合医院、泸州市江阳区中医医院) 用于呼吸道的雾化麻醉系统
CN111281598B (zh) * 2020-03-05 2023-12-08 纳菲(深圳)制药科技有限公司 麻醉控制系统及方法
CN113230511A (zh) * 2021-05-25 2021-08-10 四川大学华西医院 一种靶控给药装置
CN113786542A (zh) * 2021-08-24 2021-12-14 陕西马克医疗科技有限公司 一种克服儿童麻醉恐惧的麻醉装置及方法
CN114129825B (zh) * 2021-11-12 2024-02-27 上海市第六人民医院 一种智能麻醉控制系统
CN116531628B (zh) * 2023-06-13 2023-12-29 大庆油田总医院 一种智能麻醉呼吸安全监控系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2885297Y (zh) * 2005-03-25 2007-04-04 郑方 全紧闭自动控制麻醉机
US20100241064A1 (en) * 2007-10-15 2010-09-23 The Secretary, Department Of Information Technology Automatic Anaesthesia Delivery System
CN203556030U (zh) * 2013-11-14 2014-04-23 柏安平 一种新型多功能麻醉机
CN203898880U (zh) * 2014-06-13 2014-10-29 李永胜 移动式麻醉机
CN105963843A (zh) * 2016-04-15 2016-09-28 杨建勇 一种智能麻醉蒸发装置
CN106955403A (zh) * 2017-03-15 2017-07-18 中国人民解放军第三军医大学第二附属医院 一种闭环吸入麻醉控制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2885297Y (zh) * 2005-03-25 2007-04-04 郑方 全紧闭自动控制麻醉机
US20100241064A1 (en) * 2007-10-15 2010-09-23 The Secretary, Department Of Information Technology Automatic Anaesthesia Delivery System
CN203556030U (zh) * 2013-11-14 2014-04-23 柏安平 一种新型多功能麻醉机
CN203898880U (zh) * 2014-06-13 2014-10-29 李永胜 移动式麻醉机
CN105963843A (zh) * 2016-04-15 2016-09-28 杨建勇 一种智能麻醉蒸发装置
CN106955403A (zh) * 2017-03-15 2017-07-18 中国人民解放军第三军医大学第二附属医院 一种闭环吸入麻醉控制系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021081504A1 (en) * 2019-10-24 2021-04-29 The Trustees Of Columbia University In The City Of New York System, method, and computer-accessible medium for visualization and analysis of electroencephalogram oscillations in the alpha band

Also Published As

Publication number Publication date
CN106955403A (zh) 2017-07-18

Similar Documents

Publication Publication Date Title
WO2018166481A1 (zh) 一种闭环吸入麻醉控制系统
JP4377226B2 (ja) 適切な臨床的発見法に従って意識のある患者の医療または手術手法に伴う苦痛または不安を緩和するためのシステム
AU750050B2 (en) Apparatus and method for providing a conscious patient relief from pain and anxiety associated with medical or surgical procedures
Gozalo-Marcilla et al. Comparison of the influence of two different constant-rate infusions (dexmedetomidine versus morphine) on anaesthetic requirements, cardiopulmonary function and recovery quality in isoflurane anaesthetized horses
US20100093800A1 (en) Apparatus, method and drug products for providing a conscious patient relief from pain and anxiety associated with medical or surgical procedures
JP2009540890A (ja) 麻酔投与を制御するためのシステム
JP2015512698A (ja) 麻酔または鎮痛鎮静を実行するための装置および麻酔または鎮痛鎮静を実行するための装置の操作方法
Joffe et al. Ventilation by mask before and after the administration of neuromuscular blockade: a pragmatic non-inferiority trial
AU2007201370B2 (en) Apparatus and method for providing a conscious patient relief from pain and anxiety associated with medical or surgical procedures
Ilkiw et al. Effect of variable-dose propofol alone and in combination with two fixed doses of ketamine for total intravenous anesthesia in cats
Bennett et al. Comparison of sevoflurane and isoflurane in dogs anaesthetised for clinical surgical or diagnostic procedures
Chang et al. Successful weaning from mechanical ventilation in the quadriplegia patient with C2 spinal cord injury undergoing C2-4 spine laminoplasty-A case report
CN205460293U (zh) 一种麻醉机
CN116236649A (zh) 一种吸入式麻醉的靶目标药物浓度估计方法及系统
Lynch et al. Tidal volume delivery during nasal intermittent positive pressure ventilation: infant cannula vs. nasal continuous positive airway pressure prongs
CN209204360U (zh) 一种呼吸科用呼吸给药面罩
Tan et al. Application of different infusion methods of propofol in intravenous anesthesia: a narrative review
Poletto et al. Experimental validation of a novel portable device integrating an oxygen concentrator and a ventilation module for patients with ALI/ARDS in low resource countries: a cross-over non-inferiority trial
Lima et al. Synergic Difficulties in an Anticipated Physiologically and Anatomically Difficult Airway in a Trauma Patient: A Case Report
Morimoto et al. Perseus A500 enables faster recovery from desflurane general anesthesia
CN108721753A (zh) 用于局部麻醉治疗的辅助诊疗设备及其操作方法
Saadi et al. The effects of noninvasive respiratory support on swallowing physiology, airway protection, and respiratory-swallow pattern in adults: A systematic review
Mazmanyan et al. ACUPUNCTURE AND HYPNOSIS
WO2024153670A1 (de) Inhalations-narkosevorrichtung zur verbesserten interaktiven narkose
CN114377253A (zh) 一种麻醉术中专用雾化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18767410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18767410

Country of ref document: EP

Kind code of ref document: A1