[go: up one dir, main page]

WO2018166443A1 - 电燃料储能系统及方法 - Google Patents

电燃料储能系统及方法 Download PDF

Info

Publication number
WO2018166443A1
WO2018166443A1 PCT/CN2018/078827 CN2018078827W WO2018166443A1 WO 2018166443 A1 WO2018166443 A1 WO 2018166443A1 CN 2018078827 W CN2018078827 W CN 2018078827W WO 2018166443 A1 WO2018166443 A1 WO 2018166443A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric fuel
electric
energy
storage system
fuel
Prior art date
Application number
PCT/CN2018/078827
Other languages
English (en)
French (fr)
Inventor
赵天寿
Original Assignee
香港科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 香港科技大学 filed Critical 香港科技大学
Priority to US16/482,158 priority Critical patent/US11050079B2/en
Priority to CN201880005164.XA priority patent/CN110168790B/zh
Publication of WO2018166443A1 publication Critical patent/WO2018166443A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04216Reactant storage and supply, e.g. means for feeding, pipes characterised by the choice for a specific material, e.g. carbon, hydride, absorbent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0656Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to the field of energy storage technologies, and in particular, to an electric fuel energy storage system and method.
  • solid-state batteries In terms of energy storage, solid-state batteries have been widely used in small-scale energy storage, but they are affected by current technology levels (such as poor scalability, high cost, short life, fast dynamic power compensation and stable voltage fluctuations, and cannot suppress dynamic oscillations). And the constraints of smoothing renewable energy output, etc.), it is still difficult to achieve application in large-scale energy storage.
  • flow batteries As an emerging alternative to solid-state batteries, flow batteries have the advantages of independent power and capacity adjustment, easy scale, high energy efficiency, no geographical restrictions, long life, and are suitable for large energy storage systems. However, the current cost has not yet reached the standard for scaled applications.
  • the present invention provides an electric fuel storage system including an electric fuel, an electric fuel charger, and an electric fuel cell, wherein
  • the electric fuel is an electrically active, refillable liquid fuel selected from the group consisting of redox couples Fe 2+ /Fe 3+ , V 2+ /V 3+ or Mn 2+ /Mn 3 + inorganic electric fuel; organic electric fuel containing alloxazine, nitroxyl radical, hydrazine or methylbipyridine-ferrocene; containing lithium sulfide, lithium titanate, lithium nickel manganese oxide, zinc oxide or polymer Polymer nanofluidic fuel;
  • the electric fuel charger is for charging the electric fuel, which is independently present with the electric fuel cell and includes an anode, a cathode, and a charger diaphragm, the anode, the cathode, and the charger diaphragm and the Electric fuel matching;
  • the electric fuel cell containing the electric fuel to achieve a discharge process of the electric fuel includes a positive electrode, a negative electrode, and a battery separator, the positive electrode, the negative electrode, and the battery separator and the battery
  • the electric fuel matches.
  • the electric fuel charger and components (such as electrodes, diaphragms) in the electric fuel cell should be in material and design with respective optimal performance requirements. match.
  • the electric fuel may include V 2+ /V 3+ or V 2+ /V 3+ and air
  • the electric fuel charger may include a graphite felt, a PBI film, and a ceria catalyst
  • the electric fuel cell may include carbon paper, a Nafion membrane, and a platinum catalyst.
  • the electric fuel may comprise a methylbipyridine-ferrocene composite
  • the electric fuel charger may comprise a graphite felt and an anionic membrane
  • the electric fuel cell may comprise carbon paper and porous Diaphragm.
  • the electric fuel may be a nanofluidic electric fuel having a zinc oxide-containing sulfur core shell structure
  • the electric fuel charger may include conductive carbon black, a porous separator, and carbon paper
  • the battery may include nano carbon powder, a porous separator, and an electrospun carbon matrix.
  • the electric fuel storage system described herein can also include an energy source for providing electrical energy to the electric fuel charger, wherein the energy source can be solar or wind energy.
  • the electric fuel storage system described herein can also include an electrical user for accepting electrical energy provided by the electric fuel cell, the electrical user can be a grid or an off-net user.
  • the upper limit of the operating temperature of the electric fuel storage system described herein is 70 °C. In another embodiment, the electric fuel storage system described herein has a maximum power density of 800 mW/cm 2 .
  • the present invention provides an electric fuel energy storage method comprising using the electric fuel energy storage system of the first aspect.
  • the electric fuel storage method of the present invention may further include: a charging process of the electric fuel: converting electrical energy into chemical energy storage of the electric fuel by an electric fuel charger; and discharging the electric fuel Process: The chemical energy is converted into electrical energy by an electric fuel cell; wherein the electric fuel is an electroactive substance that can be repeatedly charged and discharged and stably existed before and after charging and discharging.
  • the electric fuel storage system provided by the present invention is different from the conventional solid state battery and the flow battery.
  • the electric fuel charger in the energy storage system works independently with the electric fuel cell, so that the storage and release of the electric energy can be simultaneously realized.
  • Flexible capacity and power regulation which can meet the scale of grid-connected power generation, and also has advantages for off-grid power supply.
  • the electric fuel system provided by the present invention can realize simultaneous storage of electric energy and release of electric energy at different positions.
  • the electric fuel of the present invention can be stored and transported like gasoline.
  • the energy density of the electric fuel storage system proposed by the invention can be as high as 150-300 Wh/L, the system efficiency can be as high as 80% or more (the current advanced hydrogen storage system efficiency is about 50%), and the system cost will reach the US energy source. The designated 250$/kWh target.
  • the electric fuel storage system provided by the present invention is different from the conventional battery which performs oxidation and reduction reactions simultaneously on the same electrode surface.
  • the charging and discharging processes are independently performed, and the design is more flexible. Optimization of electrochemical reaction kinetics is easier to achieve.
  • the instability of the lead catalyst in the redox process of chromium limits the development of this low-cost flow battery technology.
  • the lead catalyst is only used in the electrode of the reduction reaction, and the electrode which generates the oxidation reaction uses ruthenium as a catalyst, thereby simultaneously improving the two reactions. With kinetic properties, energy efficiency can reach unprecedented levels.
  • the electric fuel energy storage system provided by the invention can effectively suppress the occurrence of electrode side reactions.
  • most of the electrode materials which can effectively suppress side reactions cannot be simultaneously used for the dual function mode of charging and discharging, and cannot be stably existed when the current direction is reversed.
  • the electric fuel charger and the electric fuel cell are independently existed, and the electrode capable of effectively suppressing the side reaction can be separately designed and prepared.
  • the new concept, method and system for electric fuel storage provided by the present invention are easier to manage heat and quality.
  • the safety problem of hydrogen storage and transportation in lithium ion batteries and hydrogen fuel cell systems has always been one of the main factors restricting its development.
  • liquid electric fuel as an energy carrier has excellent properties.
  • the heat transfer performance, and stored in the external liquid storage tank, can be used immediately or in a stable manner for long-term storage. When needed, it is a safe and reliable choice for fixed and mobile power supply systems.
  • the electric fuel cell has great potential to become the power device of the electric vehicle, and its cruising range is longer, and the charging process is similar to the refueling process, which is convenient and fast, and can realize continuous power supply efficiently and stably.
  • the birth of a new concept of electric fuel storage is a leap in the field of energy storage, and a revolutionary technological breakthrough that enables the scale-up of renewable energy.
  • FIG. 1 is a schematic diagram of an electric fuel storage system according to an embodiment.
  • 1- solar photovoltaic or wind power system 2-electric fuel charger; 3-electric fuel storage tank; 4-electric fuel storage tank; 5-electric fuel cell; 6-off-grid user; 7-electric fuel vehicle; 8- grid; S1-electric fuel; S2-electric fuel.
  • FIG. 2 is a flow chart of a vanadium electric fuel preparation scheme 1 according to an embodiment.
  • FIG. 3 is a flow diagram of a vanadium electric fuel preparation scheme 2, in accordance with an embodiment.
  • Figure 5 is a graph of power density for an inorganic electric fuel system, in accordance with an embodiment.
  • FIG 6 is an absorbance map of an inorganic electric fuel system in accordance with an embodiment.
  • Figure 7 is a voltage diagram of an organic electric fuel system in accordance with an embodiment.
  • Figure 8 is a hydrogen nuclear magnetic spectrum of an organic electric fuel system in accordance with an embodiment.
  • FIG. 9 is a voltage-to-specific capacitance diagram of a nanofluidic electric fuel system, in accordance with an embodiment.
  • Fig. 10 is a transmission electron micrograph of the core-shell structure of zinc oxide and sulfur shown in Fig. 9.
  • the electric fuel energy storage system (shown in FIG. 1) of the present invention has the following processes: the discharged electric fuel (S2) is stored in the electric fuel storage tank (4), and the electric fuel is charged when the solar energy or wind energy resources are sufficient. An electrochemical reaction occurs in the device (2) to complete the charging, and the solar photovoltaic or wind power generation system (1) provides the electrical energy required for charging.
  • the charged electric fuel (S1) is stored in the electric fuel storage tank (3), and an electrochemical reaction is injected into the electric fuel cell (5) when necessary, and the electric energy is released to realize the conversion of chemical energy to electric energy.
  • the electric energy generated by the electric fuel cell (5) can supply off-grid users, remote mountainous areas, communication base stations and other off-grid systems (6), and can also directly input electric energy into the public power grid through the grid-connected inverter (8).
  • the fuel cell (5) can also be used as a power unit for an electric vehicle (7). After the electrical energy is released, the electric fuel (S2) is returned to the electric fuel storage tank (4) for storage to complete the cycle.
  • the electric fuel storage system herein is an inorganic electric fuel system, wherein the electric fuel includes V 2+ /V 3+ and air, and the electric fuel charger includes a graphite felt, a PBI film, and a ceria catalyst for use.
  • the oxygen evolution reaction (OER), and the electric fuel cell include a carbon paper, a Nafion 212 membrane, and a platinum catalyst for the oxygen reduction reaction (ORR).
  • the electric fuel storage system of the present invention is a vanadium electric fuel-air energy storage system, which uses vanadium electric fuel as an energy carrier, and the core part is an electric fuel charger and an electric fuel cell. Specifically, it includes the preparation of vanadium electric fuel, the assembly of vanadium electric fuel cells, and the performance evaluation of vanadium electric fuel-air energy storage systems.
  • V 2+ divalent vanadium ions
  • main components are V 2+ , SO 4 2- , Cl - and H + , with the consumption of V 2+
  • V 3+ , V 2+ and V 3+ concentrations up to 5M two preparation methods for electric fuel.
  • clean renewable wind power and photoelectric energy are used as energy sources to convert them into Vanadium electric fuel.
  • the cathode side inexpensive porous graphite is used as an electrode, and V 3+ is reduced to a desired V 2+ .
  • the hydrophilic porous titanium electrode On the anode side (oxygen evolution side), the hydrophilic porous titanium electrode carries a catalyst having OER activity, and water is oxidatively decomposed to generate oxygen and protons.
  • the specific reaction process is as follows:
  • an acidic electrolytic solution containing divalent vanadium ions (V 2+ ) was used as a negative electrode active material, and a vanadium electric fuel cell was prepared and assembled using oxygen from air as a positive electrode active material.
  • the temperature adaptation range is wider.
  • VO 2 + in the electrolyte may undergo thermal precipitation, and in this system, the temperature rise may further increase V 3+ /V 2+ .
  • the solubility of the ions and the reaction rate, the upper limit of the operating temperature of the system can be as high as 70 ° C.
  • the charging and discharging units are independent of each other. Independent optimization of each step for the different needs of the reaction process helps the system to operate efficiently, stably and reliably.
  • the electric fuel storage system of the present invention is an organic electric fuel system, wherein the electric fuel is a methylbipyridine-ferrocene complex (C 24 H 22 F 12 FeN 2 P 2 , and the structural formula is as shown in FIG. 8 Shown), the electric fuel charger includes graphite felt and A201 anion membrane, and the electric fuel cell includes carbon paper and Celgard 2400 porous membrane.
  • the electric fuel is a methylbipyridine-ferrocene complex (C 24 H 22 F 12 FeN 2 P 2 , and the structural formula is as shown in FIG. 8 Shown)
  • the electric fuel charger includes graphite felt and A201 anion membrane
  • the electric fuel cell includes carbon paper and Celgard 2400 porous membrane.
  • the above-described organic electric fuel system is employed, except for the composition of the electric fuel, the electric fuel charger, and the electric fuel cell, the same as the above inorganic electric fuel system.
  • the energy density of the system is comparable to that of a hydrogen fuel cell, but there is no danger in storage and transportation.
  • the organic electric fuel system is low in cost and low in price, and is suitable for a static energy storage system.
  • the electric fuel storage system herein is a nanofluidic electric fuel system, wherein the electric fuel is a nanofluidic electric fuel having a core-shell structure of zinc oxide and sulfur, and the electric fuel charger includes conductive carbon black, Celgard The 2400 porous membrane and carbon paper, as well as the electric fuel cell, include XC-72 nanocarbon powder, Celgard 2500 porous membrane, and electrospun carbon substrate.
  • the above-described nanofluidic electric fuel system is employed, except for the composition of the electric fuel, the electric fuel charger, and the electric fuel cell, the same as the above inorganic electric fuel system.
  • a zinc oxide-containing sulfur structure (having a particle diameter of 300 to 500 nm and a structure as shown in FIG. 9) is used, since the hollow nano zinc oxide particles have a large specific surface area, a small density, and adsorption to sulfides.
  • the performance is good, and a carbon composite with high concentrated sulfur impregnation can be formed, and the electric fuel as the cathode electrolyte can have a specific capacity of up to 294 Ah/L.
  • the present invention provides an electric fuel system integrating production capacity, energy storage and energy use, and is effective for solving the problems of unstable solar power, wind power supply, discontinuity, difficulty in grid connection, and low actual utilization level. Solutions. Breaking through the bottleneck due to the current immature energy storage technology and high cost, renewable energy can not achieve scale utilization, and has broad engineering application prospects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Fuel Cell (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

一种电燃料储能系统及方法,所述电燃料储能系统包括:电燃料、电燃料充电器(2)、电燃料电池(5),其中,用于所述电燃料充电的组件和用于所述电燃料放电的组件在材料和设计方面不同,彼此独立存在;电燃料储能方法包括:通过电燃料充电器(2)将电能转化为电燃料的化学能存储的充电过程,以及通过电燃料电池(5)将化学能转化为电能的放电过程。

Description

电燃料储能系统及方法 技术领域
本发明涉及储能技术领域,特别是涉及一种电燃料储能系统及方法。
背景技术
能源短缺和气候变化是当前世界面临的主要问题之一,改变能源结构以增加可再生能源利用的比例是解决能源与环境问题的有效途径。太阳能和风能是储量无限,清洁的可再生能源之一。过去十余年间,太阳能光伏技术和风力发电技术进展显著,但是由于太阳能、风能本身能量密度低,间歇等固有缺陷,使其所发电力仍然是分散,不稳定、不连续的,也因此限制了它们的规模化应用。对此,开发离网和微网系统是有效的解决途径,而储能环节是确保太阳能、风能高效、稳定、持续供电的关键因素。将光电、风电等间歇的电能转化为化学能存储,待需要时重新转化为电能加以利用,实现电能的时空转换,是一种有效的解决途径。
在储能方面,固态电池在小规模储能中已得到广泛应用,但受当前技术水平(如可扩展性差,成本高、寿命短,不能快速实现动态功率补偿及稳定电压波动,无法抑制动态振荡及平滑可再生能源发电输出等)的制约,在大规模储能中实现应用还有一定的难度。液流电池作为固态电池的新兴替代产品,具有功率和容量调节各自独立的优势,易规模化,能量效率高,不受地域地理限制,寿命长,适用于大型储能系统。然而,目前成本还没有达到规模化应用的标准。
总之,现有成熟或新兴的储能技术都不能完全满足未来可再生能源发电对储能的要求,成为其规模化应用的瓶颈。因此,需要发展全新、易规模化、高效、低成本、寿命长、不受地域地理限制的新型储能技术,以实现可再生能源规模化应用的目标。
发明内容
在第一方面,本发明提供了一种电燃料储能系统,包括电燃料、电燃料充电器、电燃料电池,其中,
所述电燃料为具有电活性、可反复充放电的液体燃料,所述电燃料选自含有氧化还原电对Fe 2+/Fe 3+、V 2+/V 3+或Mn 2+/Mn 3+的无机电燃料;含有咯嗪、硝酰自由基、醌类或甲基联吡啶-二茂铁的有机电燃料;含有硫化锂、钛酸锂、锂镍锰氧化物、氧化锌或高分子聚合物的纳米流体电燃料;
所述电燃料充电器用于对所述电燃料进行充电,其与所述电燃料电池独立存在并且包括阳极、阴极以及充电器隔膜,所述阳极、所述阴极以及所述充电器隔膜与所述电燃料相匹配;
所述电燃料电池,其含有所述电燃料以实现所述电燃料的放电过程,并且所述燃料电池包括正极、负极以及电池隔膜,所述正极、所述负极以及所述电池隔膜与所述电燃料相匹配。
在一实施方案中,所述电燃料储能系统中,所述电燃料充电器与所述电燃料电池中的组件(如电极、隔膜)在材料与设计方面应与各自的最佳性能要求相匹配。举例而言,所述电燃料可以包括V 2+/V 3+或者V 2+/V 3+与空气,所述电燃料充电器可以包括石墨毡、PBI膜和二氧化铱催化剂,以及所述电燃料电池可以包括碳纸、Nafion膜和铂催化剂。在另一实施方案中,所述电燃料可以包括甲基联吡啶-二茂铁复合物,所述电燃料充电器可以包括石墨毡和阴离子膜,以及所述电燃料电池可以包括碳纸和多孔隔膜。在又一实施方案中,所述电燃料可以为具有氧化锌包硫核壳结构的纳米流体电燃料,所述电燃料充电器可以包括导电炭黑、多孔隔膜和碳纸,以及所述电燃料电池可以包括纳米碳粉、多孔隔膜和电纺碳基体。
在一实施方案中,本文所述的电燃料储能系统还可以包括用于向所述电燃料充电器提供电能的能量源,其中所述能量源可以为太阳能或风能。在另一实施方案中,本文所述的电燃料储能系统还可以包括用于接受所述电燃料电池提供的电能的电用户,所述电用户可以为电网或离网用户。
在一实施方案中,本文所述的电燃料储能系统的工作温度上限为 70℃。在另一实施方案中,本文所述的电燃料储能系统具有800mW/cm 2的最大功率密度。
根据第二方面,本发明提供了一种电燃料储能方法,包括使用第一方面所述的电燃料储能系统。
在一实施方案中,本发明所述的电燃料储能方法可以还包括:电燃料的充电过程:通过电燃料充电器将电能转化为所述电燃料的化学能存储;以及,电燃料的放电过程:通过电燃料电池将化学能转化为电能;其中,电燃料为可反复充放电且充电与放电前后均能稳定存在的电活性物质。
上述技术方案的有益效果如下:
1、本发明提供的电燃料储能系统,与常规固态电池和液流电池不同,该储能系统中的电燃料充电器与电燃料电池独立工作,因此可同时实现电能的存储与释放。容量和功率调节灵活,既能满足并网发电规模,对于离网供电也更具优势。同时,本发明提供的电燃料系统可以实现在不同位置同时进行存储电能和释放电能。另外,本发明的电燃料可以像汽油一样存储和运输,与当前锂离子电池电动汽车相比,独立供电的电燃料电池能够为电动汽车提供更长的续航里程,且电池“充电”过程即为“加油”过程(注入电燃料),可在数分钟内完成,成本仅为当前锂离子电池的一半甚至更低。
2、本发明提供的电燃料储能系统,对电活性的电燃料材料的选择具有高度灵活性。适用于常规液流电池的氧化还原电对的材料通常不能同时满足对可逆性及其它性能(如功率密度,能量效率,电池电势,成本及稳定性)的要求。而本发明所提出的电燃料储能系统中,电燃料充电器与电燃料电池中的组件(如电极、隔膜)材料与设计不同,满足各自最佳性能的要求,消除了性能之间的冲突,在电燃料活性材料的选择方面具有更高的灵活性。电燃料可以存储间歇的电能(无论是来自太阳能电池还是来自风力涡轮机),而独立的电燃料电池可根据需要随时随地完成电力供应,既可满足离网用户的用电需求,还可实现并网发电。本发明所提出的电燃料储能系统的能量密度可高达150-300 Wh/L,系统效率可高达80%以上(当前先进的氢储能系统效率约为50%),系统成本将达到美国能源部指定的250$/kWh的目标。
3、本发明提供的电燃料储能系统,与在同一电极表面同时进行氧化和还原反应的常规电池不同,所提出的电燃料储能系统中,充电与放电过程独立进行,设计更为灵活,更易实现电化学反应动力学的最优化。以铁铬液流电池为例,因铅催化剂在铬的氧化还原过程中存在不稳定性,限制了这种低成本液流电池技术的发展。本发明所述的电燃料储能系统中,该问题得到了有效地解决,铅催化剂仅用于还原反应的电极中,发生氧化反应的电极则采用铋作为催化剂,从而可同时提高两种反应的动力学特性,能量效率可达到前所未有的水平。
4、本发明提供的电燃料储能系统,可有效抑制电极副反应的发生。常规电池系统中,多数可有效抑制副反应的电极材料不能同时用于充电和放电的双功能模式,当电流方向逆转时不能稳定存在。本发明所述电燃料储能系统中,电燃料充电器及电燃料电池独立存在,可分别设计并制备出能够有效抑制副反应的电极。
5、本发明提供的电燃料储能新概念、方法及系统,更易进行热量和质量管理。锂离子电池以及氢燃料电池系统中氢存储和运输的安全性问题始终是制约其发展的主要因素之一,而在本发明所述电燃料储能系统中,作为能量载体的液体电燃料具有优良的传热性能,且储存在外部的储液罐中,既可即产即用,也可长期稳定存储,待需要时利用,对于固定及移动式供电系统无疑都是安全可靠的选择。此外,电燃料电池极具潜力成为电动汽车的动力装置,其续航里程更长,且充电过程与加油过程类似,方便快捷,可高效而稳定地实现连续电力供应。电燃料储能新概念的诞生是储能领域的一次飞跃,是能够实现可再生能源规模化应用的革命性技术突破。
附图说明
图1为根据一实施方案的电燃料储能系统示意图,
其中:1-太阳能光伏或风力发电系统;2-电燃料充电器;3-电燃料储罐;4-电燃料储罐;5-电燃料电池;6-离网用户;7-电燃料汽车;8- 电网;S1-电燃料;S2-电燃料。
图2为根据一实施方案的钒电燃料制备方案1流程图。
图3为根据一实施方案的钒电燃料制备方案2流程图。
图4为根据一实施方案的电燃料电池。
图5为根据一实施方案的无机电燃料系统的功率密度曲线图。
图6为根据一实施方案的无机电燃料系统的吸光度图谱。
图7为根据一实施方案的有机电燃料系统的电压图。
图8为根据一实施方案的有机电燃料系统的氢核磁谱图。
图9为根据一实施方案的纳米流体电燃料系统的电压-比电容图示。
图10为图9所示的氧化锌与硫的核壳结构透射电镜图。
具体实施方式
为了便于理解本发明,下面将对本发明进行更全面的描述。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实例。相反地,提供这些实例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实例的目的,不是旨在限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本发明提供的电燃料储能新概念、方法及系统,提出具有电活性、可反复充放电的液体燃料(即,电燃料)。将太阳能光伏或风力发电装置产生的电能供应于电燃料充电器,完成电燃料的充电,将电能转化为电燃料化学能。充电完毕的电燃料注入电燃料电池中释放电能,供予用电单元。所述电燃料储能系统中,光电和风电转化为电燃料的化学能,有效避免了其间歇、不稳定、不能连续供应的缺陷,从而实现其长期存储与稳定供应。电燃料既可即产即用,也可长期稳定存储以利用,电燃料充电器与电燃料电池独立存在,且不受地域和地理限制,可分别在任何时刻、任意地点完成对电燃料的充电及放电。电燃料电 池供电稳定且灵活,所发电力既可并入电网,也可用于离网供电,同时电燃料电池极具潜力成为电动汽车的动力装置。利用本发明,能够实现可再生能源的规模化应用,具有良好的发展前景。
本发明的电燃料储能系统(如图1所示),其流程为:放电完毕的电燃料(S2)存储于电燃料储罐(4)内,待太阳能或风能资源充足时注入电燃料充电器(2)中发生电化学反应,完成充电,太阳能光伏或风力发电系统(1)提供充电所需的电能。充电完毕的电燃料(S1)存储于电燃料储罐(3)内,待需要时注入电燃料电池(5)中发生电化学反应,释放电能,实现化学能到电能的转换。电燃料电池(5)产生的电能既可供应离网用户,偏远山区,通讯基站等离网系统(6),也可通过并网逆变器直接将电能输入公共电网(8),同时,电燃料电池(5)还可作为电动汽车(7)的动力装置。释放电能后,电燃料(S2)回至电燃料储罐(4)内存放,完成循环。
在一实例中,本文的电燃料储能系统为无机电燃料系统,其中,电燃料包括V 2+/V 3+和空气,电燃料充电器包括石墨毡、PBI膜和二氧化铱催化剂以用于析出氧气反应(OER),以及电燃料电池包括碳纸、Nafion 212膜和铂催化剂以用于氧气的还原反应(ORR)。
在进一步的实例中,本文的电燃料储能系统为钒电燃料-空气储能系统,该系统以钒电燃料为能量载体,核心部分为一个电燃料充电器及电燃料电池。具体包括钒电燃料的制备、钒电燃料电池的组装及钒电燃料-空气储能系统性能评估。
钒电燃料的制备方法:以含二价钒离子(V 2+)的酸性电解液(主要成分为V 2+,SO 4 2-,Cl -及H +,随着V 2+的消耗,会逐渐产生V 3+,V 2+与V 3+的浓度最高可达5M)作为电燃料的两种制备方法,在制备过程中,以清洁可再生的风电、光电作为能量源,将其转换为钒电燃料。
钒电燃料制备方案1:
如图2所示,在阴极侧,采用廉价的多孔石墨作为电极,V 3+被还原成需要的V 2+。在阳极侧(氧析出侧),亲水的多孔钛电极载上具有OER活性的催化剂,水被氧化分解产生氧气和质子。具体反应过程如下:
阴极侧:V 3++e -→V 2+
阳极侧:2H 2O-4e -→O 2↑+4H +
钒电燃料制备方案2:
由于电化学析氧容易腐蚀电极和双极板且产生较高过电势,造成电池性能衰减。将制备方案1改进后,提出了第2种多回路制备钒电燃料的方案,如图3所示。与之前的直接电解水不同,在阳极侧采用可逆性高的Ce 4+/Ce 3+氧化还原电对作为电子载体(阳极侧的铈罐中的主要成分:Ce 4+,SO 4 2-,Cl -,H +以及少量CH 3SO 3H,随着Ce 4+的消耗,会生成Ce 3+),在充电过程中,Ce 3+首先被电化学氧化成Ce 4+。被氧化的Ce 4+随后通过另一个回路,进入载有IrO 2的催化床,在IrO 2的催化作用下,Ce 4+与H 2O直接进行快速的化学反应生成O 2,H +以及Ce 3+,具体反应过程如下:
阴极侧:
Figure PCTCN2018078827-appb-000001
阳极侧:
Figure PCTCN2018078827-appb-000002
对此,钒电燃料电池的制备过程如下:
如图4所示,以含二价钒离子(V 2+)的酸性电解液作为负极活性物质,以来自空气中的氧气作为正极活性物质制备并组装钒电燃料电池。
在负极侧,以厚度100-400微米的碳布以及碳纸作为电极以降低内阻。电极纤维上开有5纳米的二级孔以提高电化学反应面积,并为V 2+转换成V 3+的电化学反应提供充足的活性位点。采用具有蛇形及叉指型流道的流场板作为集流体,可降低接触电阻并增强活性物质的传输。在正极侧,以疏水碳纸作为气体扩散层,在气体扩散层与膜之间设计为载有催化剂的高比表面积多孔层。具体反应过程如下:
负极侧:V 2+-e -→V 3+
正极侧:O 2↑+4H ++4e -→2H 2O
该钒空气电燃料电池的最大功率密度可高达800mW/cm 2,比之前文献报道的钒空电池的最大功率密度提高了35倍。同时,因充电和放电单元各自独立的结构特点,通过优化设计可使系统的能量效率(定义为放电过程电能与充电过程电能之比)高达80%。
在此实例中的钒电燃料储能系统技术优势如下:
(1)钒空气电燃料能量密度高。V 2+/V 3+在酸性电解液中的溶解度高达5M,其理论能量密度可达196Wh/L,是全钒电解液(32Wh/L)的6倍多,由此具有驱动车辆的潜能。
(2)系统成本低。该系统中,钒空气电燃料电池的活性物质一半来自于空气中的氧气,电燃料成本仅为全钒液流电池电解液的一半。管道,泵,储液罐等材料成本也较钒液流电池有大幅降低。同时,因避免了氧化性极强的VO 2 +作为活性物质,低成本的碳氢多孔膜可被考虑使用,可进一步降低电堆中的膜成本。
(3)温度适应范围更广。在传统的钒液流电池中,当温度高于40℃时,电解液中的VO 2 +会发生热析出现象,而在该系统中,温度的升高可进一步提升V 3+/V 2+离子的溶解度及反应速率,系统的工作温度上限可高达70℃。
(4)充电和放电单元各自独立。针对反应过程的不同需求对各个步骤进行独立优化设计,有助于系统高效、稳定、可靠地运行。
在另一实例中,本文的电燃料储能系统为有机电燃料系统,其中,电燃料为甲基联吡啶-二茂铁复合物(C 24H 22F 12FeN 2P 2,结构式如图8所示),电燃料充电器包括石墨毡和A201阴离子膜,以及电燃料电池包括碳纸和Celgard 2400多孔隔膜。
在进一步的实例中,采用上述有机电燃料系统,除电燃料、电燃料充电器和电燃料电池的组成之外,其余与上文的无机电燃料系统相同。在此有机电燃料系统中,系统的能量密度与氢燃料电池相当,但是不存在存储和运输方面的危险性。此有机电燃料系统成本低、价格低廉,适于静态储能系统。
在又一实例中,本文的电燃料储能系统为纳米流体电燃料系统,其中,电燃料为具有氧化锌与硫的核壳结构的纳米流体电燃料,电燃料充电器包括导电炭黑、Celgard 2400多孔隔膜和碳纸,以及电燃料电池包括XC-72纳米碳粉、Celgard 2500多孔隔膜和电纺碳基体。
在另一实例中,采用上述纳米流体电燃料系统,除电燃料、电燃料充电器和电燃料电池的组成之外,其余与上文的无机电燃料系统相同。在此纳米流体电燃料系统中,使用了氧化锌包硫结构(粒径为 300~500纳米,结构如图9所示),由于空心纳米氧化锌颗粒比表面积大,密度小,对硫化物吸附性能好,可形成具有高浓硫浸渍的碳复合物,作为阴极电解质的电燃料,比容量可高达294Ah/L。经过与合适的阴极电解质电燃料如锂二氧化锡纳米流体电燃料相匹配,系统的能量密度可以高于300Wh/L。该纳米流体电燃料系统具有更高的能量密度,能够大幅提高电动车的续航里程。
由此可见,本发明提供了一种集产能、储能、用能一体化的电燃料系统,针对太阳能、风能供电不稳定、不连续、并网难、实际利用水平低的问题,提出了有效解决途径。突破了因当前储能技术不成熟、成本高,可再生能源无法实现规模利用的瓶颈,具有广阔的工程应用前景。
以上所述实例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 电燃料储能系统,包括电燃料、电燃料充电器、电燃料电池,其中,
    所述电燃料为具有电活性、可反复充放电的液体燃料,所述电燃料选自含有氧化还原电对Fe 2+/Fe 3+、V 2+/V 3+或Mn 2+/Mn 3+的无机电燃料;含有咯嗪、硝酰自由基、醌类或甲基联吡啶-二茂铁的有机电燃料;含有硫化锂、钛酸锂、锂镍锰氧化物、氧化锌或高分子聚合物的纳米流体电燃料;
    所述电燃料充电器用于对所述电燃料进行充电,其与所述电燃料电池独立存在并且包括阳极、阴极以及充电器隔膜,所述阳极、所述阴极以及所述充电器隔膜与所述电燃料相匹配;
    所述电燃料电池,其含有所述电燃料以实现所述电燃料的放电过程,并且所述电燃料电池包括正极、负极以及电池隔膜,所述正极、所述负极以及所述电池隔膜与所述电燃料相匹配。
  2. 如权利要求1所述的电燃料储能系统,其中,所述电燃料包括V 2+/V 3+或者V 2+/V 3+与空气,所述电燃料充电器包括石墨毡、PBI膜和二氧化铱催化剂,以及所述电燃料电池包括碳纸、Nafion膜和铂催化剂。
  3. 如权利要求1所述的电燃料储能系统,其中,所述电燃料包括甲基联吡啶-二茂铁复合物,所述电燃料充电器包括石墨毡和阴离子膜,以及所述电燃料电池包括碳纸和多孔隔膜。
  4. 如权利要求1所述的电燃料储能系统,其中,所述电燃料为包括氧化锌与硫的核壳结构的纳米流体电燃料,所述电燃料充电器包括导电炭黑、多孔隔膜和碳纸,以及所述电燃料电池包括纳米碳粉、多孔隔膜和电纺碳基体。
  5. 如权利要求1所述的电燃料储能系统,还包括用于向所述电燃 料充电器提供电能的能量源,优选地,所述能量源为太阳能或风能。
  6. 如权利要求1所述的电燃料储能系统,还包括用于接受所述电燃料电池提供的电能的电用户,优选地,所述电用户为电网或离网用户。
  7. 如权利要求2所述的电燃料储能系统,其工作温度上限为70℃。
  8. 如权利要求2所述的电燃料储能系统,其具有800mW/cm 2的最大功率密度。
  9. 电燃料储能方法,包括使用权利要求1至8中任何一项所述的电燃料储能系统。
  10. 如权利要求9所述的电燃料储能方法,还包括:
    所述电燃料的充电过程:通过所述电燃料充电器将电能转化为所述电燃料的化学能存储;以及,
    所述电燃料的放电过程:通过所述电燃料电池将所述化学能转化为电能;
    其中,所述电燃料为可反复充放电且充电与放电前后均能稳定存在的电活性物质。
PCT/CN2018/078827 2017-03-14 2018-03-13 电燃料储能系统及方法 WO2018166443A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/482,158 US11050079B2 (en) 2017-03-14 2018-03-13 Electro-fuel energy storage system and method
CN201880005164.XA CN110168790B (zh) 2017-03-14 2018-03-13 电燃料储能系统及方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710150419.9 2017-03-14
CN201710150419.9A CN107039670B (zh) 2017-03-14 2017-03-14 电燃料储能新方法及系统

Publications (1)

Publication Number Publication Date
WO2018166443A1 true WO2018166443A1 (zh) 2018-09-20

Family

ID=59534414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078827 WO2018166443A1 (zh) 2017-03-14 2018-03-13 电燃料储能系统及方法

Country Status (3)

Country Link
US (1) US11050079B2 (zh)
CN (2) CN107039670B (zh)
WO (1) WO2018166443A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12085216B2 (en) 2022-02-17 2024-09-10 Arctic Cat Inc. Multi-use fuel filler tube

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107039670B (zh) 2017-03-14 2021-01-12 香港科技大学 电燃料储能新方法及系统
CN111003681B (zh) * 2019-12-27 2024-09-10 赫普能源环境科技有限公司 一种液体电燃料加注回收船及电力储存和运输方法
CN113119785A (zh) * 2019-12-30 2021-07-16 赫普能源环境科技有限公司 一种核电厂内设置液流电燃料充电站的系统和方法
CN113131594A (zh) * 2019-12-30 2021-07-16 赫普能源环境科技有限公司 一种水电厂内设置液流电燃料充电站的系统和方法
CN113131500A (zh) * 2019-12-30 2021-07-16 赫普能源环境科技有限公司 一种火电厂内设置液流电燃料充电站的系统和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006217698A (ja) * 2005-02-02 2006-08-17 Yukinobu Mori 発電システム及び2次電池
CN103000924A (zh) * 2011-09-16 2013-03-27 清华大学 一种有机相双液流电池
CN104362357A (zh) * 2014-10-30 2015-02-18 大连融科储能技术发展有限公司 应用于波浪能发电的液流电池储能系统
CN107039670A (zh) * 2017-03-14 2017-08-11 香港科技大学 电燃料储能新方法及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130011702A1 (en) * 2008-07-07 2013-01-10 Enervault Corporation Redox Flow Battery System with Divided Tank System
CN102694143A (zh) * 2012-06-06 2012-09-26 清华大学 一种空气/钒液流电池
CN104518221B (zh) * 2013-09-29 2017-05-17 中国科学院大连化学物理研究所 一种双功能负极及其作为全钒液流电池负极的应用
CN105322194A (zh) * 2014-07-30 2016-02-10 中国科学院大连化学物理研究所 一种多功能负极材料及其在全钒液流电池中的应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006217698A (ja) * 2005-02-02 2006-08-17 Yukinobu Mori 発電システム及び2次電池
CN103000924A (zh) * 2011-09-16 2013-03-27 清华大学 一种有机相双液流电池
CN104362357A (zh) * 2014-10-30 2015-02-18 大连融科储能技术发展有限公司 应用于波浪能发电的液流电池储能系统
CN107039670A (zh) * 2017-03-14 2017-08-11 香港科技大学 电燃料储能新方法及系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12085216B2 (en) 2022-02-17 2024-09-10 Arctic Cat Inc. Multi-use fuel filler tube

Also Published As

Publication number Publication date
CN107039670B (zh) 2021-01-12
CN110168790A (zh) 2019-08-23
US20210104768A1 (en) 2021-04-08
CN110168790B (zh) 2022-05-13
CN107039670A (zh) 2017-08-11
US11050079B2 (en) 2021-06-29

Similar Documents

Publication Publication Date Title
Wang et al. A review on unitized regenerative fuel cell technologies, part-A: Unitized regenerative proton exchange membrane fuel cells
Zhang et al. Progress and perspectives of flow battery technologies
CN110168790B (zh) 电燃料储能系统及方法
Zhang et al. Electrochemical technologies for energy storage and conversion, 2 volume set
Shen et al. Electrochemical energy: advanced materials and technologies
CN105529473B (zh) 储能液流电池用氧化石墨烯修饰的电极材料
KR101341088B1 (ko) 층상구조를 가지는 전해질 막과 그 제조 방법 및 그 전해질 막을 구비한 레독스 흐름 전지
CN110707337B (zh) 一种碳基非贵金属氧还原催化剂的制备方法及应用
WO2023082842A1 (zh) 一种碱性负极电解液及其组装的碱性锌铁液流电池
Jiang et al. Recent progress of electrode materials for zinc bromide flow battery
CN111416129A (zh) 一种酸碱非对称电解液锌-醌电池
CN106960961B (zh) 一种锌空气液流电池用空气电极结构及其制备方法
CN102694143A (zh) 一种空气/钒液流电池
CN102522569A (zh) 一种改性碳素多孔材料的方法
Li et al. A photothermal assisted zinc-air battery cathode based on pyroelectric and photocatalytic effect
CN108390110A (zh) 一种铅-锰二次电池
CN103779595A (zh) 质子交换燃料电池
Ma et al. Development of hydrogen energy storage industry and research progress of hydrogen production technology
CN118398853A (zh) 一种复合型燃料电池
CN100468837C (zh) 多硫化钠/溴储能电池的多孔碳基电极制备方法
WO2015160751A1 (en) Shared electrode hybrid battery-fuel cell system
Kunze et al. Fuel cell comparison to alternate technologies
Sadhasivam et al. Nanostructured bifunctional electrocatalyst support materials for unitized regenerative fuel cells
Yu et al. Research progress and application of regenerative fuel cells
CN108390083B (zh) 一种组合再生式燃料电池系统放电工作模式启动方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18766952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18766952

Country of ref document: EP

Kind code of ref document: A1