WO2018163252A1 - 半導体記憶システム - Google Patents
半導体記憶システム Download PDFInfo
- Publication number
- WO2018163252A1 WO2018163252A1 PCT/JP2017/008821 JP2017008821W WO2018163252A1 WO 2018163252 A1 WO2018163252 A1 WO 2018163252A1 JP 2017008821 W JP2017008821 W JP 2017008821W WO 2018163252 A1 WO2018163252 A1 WO 2018163252A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- command
- transfer
- semiconductor memory
- memory device
- word line
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims description 169
- 230000015654 memory Effects 0.000 claims abstract description 351
- 210000000352 storage cell Anatomy 0.000 claims abstract description 26
- 210000004027 cell Anatomy 0.000 claims description 82
- 230000004913 activation Effects 0.000 claims description 64
- 238000000034 method Methods 0.000 claims description 53
- 230000003213 activating effect Effects 0.000 claims description 48
- 238000003491 array Methods 0.000 claims description 18
- 230000004044 response Effects 0.000 claims description 3
- 230000008569 process Effects 0.000 description 42
- 238000010586 diagram Methods 0.000 description 20
- 230000003321 amplification Effects 0.000 description 5
- 238000003199 nucleic acid amplification method Methods 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- 239000000872 buffer Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/401—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
- G11C11/4063—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
- G11C11/407—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
- G11C11/409—Read-write [R-W] circuits
- G11C11/4093—Input/output [I/O] data interface arrangements, e.g. data buffers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/14—Handling requests for interconnection or transfer
- G06F13/16—Handling requests for interconnection or transfer for access to memory bus
- G06F13/1668—Details of memory controller
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/06—Addressing a physical block of locations, e.g. base addressing, module addressing, memory dedication
- G06F12/0646—Configuration or reconfiguration
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/401—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
- G11C11/4063—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
- G11C11/407—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
- G11C11/4072—Circuits for initialization, powering up or down, clearing memory or presetting
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/401—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
- G11C11/4063—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
- G11C11/407—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
- G11C11/408—Address circuits
- G11C11/4085—Word line control circuits, e.g. word line drivers, - boosters, - pull-up, - pull-down, - precharge
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/401—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
- G11C11/4063—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
- G11C11/407—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
- G11C11/408—Address circuits
- G11C11/4087—Address decoders, e.g. bit - or word line decoders; Multiple line decoders
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/401—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
- G11C11/4063—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
- G11C11/407—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
- G11C11/409—Read-write [R-W] circuits
- G11C11/4091—Sense or sense/refresh amplifiers, or associated sense circuitry, e.g. for coupled bit-line precharging, equalising or isolating
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/401—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
- G11C11/4063—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
- G11C11/407—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
- G11C11/409—Read-write [R-W] circuits
- G11C11/4096—Input/output [I/O] data management or control circuits, e.g. reading or writing circuits, I/O drivers or bit-line switches
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/10—Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
- G11C7/1006—Data managing, e.g. manipulating data before writing or reading out, data bus switches or control circuits therefor
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/10—Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
- G11C7/1078—Data input circuits, e.g. write amplifiers, data input buffers, data input registers, data input level conversion circuits
- G11C7/109—Control signal input circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C8/00—Arrangements for selecting an address in a digital store
- G11C8/12—Group selection circuits, e.g. for memory block selection, chip selection, array selection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2212/00—Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
- G06F2212/10—Providing a specific technical effect
- G06F2212/1008—Correctness of operation, e.g. memory ordering
Definitions
- the present invention relates to a DDRx-SDRAM or LPDDRx-SDRAM semiconductor memory device and control device, and further to a semiconductor memory system including these.
- the present invention also relates to a control method for such a semiconductor memory device.
- DDRx-SDRAM indicates DDR-SDRAM (Double Data Rate Synchronous Dynamic Random-Access Memory), DDR2-SDRAM, DDR3-SDRAM, DDR4-SDRAM, and their derived standards and successor standards.
- LPDDRx-SDRAM indicates LPDDR-SDRAM (Low Power DDR-SDRAM), LPDDR2-SDRAM, LPDDR3-SDRAM, LPDDR4-SDRAM, and their derived standards and successor standards.
- a memory system including a memory such as a DRAM and a memory controller is used as an external primary storage device for a processor such as a computer.
- Patent Document 1 data read from a memory for data transfer or copying is stored in a local memory built in a memory controller without being sent on the system bus. Is disclosed. Thereby, the system bus is not occupied for data transfer or copying, and the amount of information communicated via the system bus is reduced.
- Patent Documents 2 to 6 there is a data transfer method utilizing the characteristics of DRAM.
- a DRAM a plurality of memory cells are arranged along a plurality of bit lines and a plurality of word lines orthogonal to each other. A charge representing data is stored in the capacitor of each memory cell.
- the word line corresponding to the input address is asserted, and the charge of the memory cell is taken out to the precharged bit line. At this time, a slight potential difference is generated between the complementary bit line pairs.
- the sense amplifier connected to the bit line pair amplifies the potential difference to the power supply potential or the ground potential.
- Patent Documents 2 to 6 disclose an operation of asserting another word line connected to the same bit line pair while the data amplified by the sense amplifier is held in the bit line pair. As a result, a large amount of data can be copied from a memory cell at one address to a memory cell at another address without going outside the DRAM.
- Non-Patent Document 1 by adding a special command, data can be transferred between banks without going outside the DRAM.
- interfaces of memory systems such as DDR3-SDRAM and DDR4-SDRAM have very high operating frequencies.
- the memory package pin layout, memory controller, DDR PHY, wiring on the printed circuit board, etc. General-purpose parts can no longer be used, which may lead to a rise in development costs.
- An object of the present invention is a semiconductor memory device and control device having an interface compliant with the JEDEC standard of DDRx-SDRAM or LPDDRx-SDRAM, and transfers or copies data without occupying an external bus of the semiconductor memory device
- Another object of the present invention is to provide a semiconductor memory device and a control device which can be used, and a semiconductor memory system including them.
- Another object of the present invention is to provide a control method for such a semiconductor memory device.
- a control device for a semiconductor memory device having an interface compliant with JEDEC (Joint Electron Device Engineering Council) standard of DDRx-SDRAM or LPDDRx-SDRAM includes a plurality of banks connected to each other by an internal data bus, and each one of the plurality of banks is separated from each other by at least one sense amplifier row including a plurality of sense amplifiers.
- a plurality of subarrays each one of the plurality of subarrays including a plurality of storage cells arranged along a plurality of bit lines and a plurality of word lines orthogonal to each other;
- the control device includes: a read / write control circuit that controls reading of data from the semiconductor memory device and writing of data to the semiconductor memory device; and a transfer control circuit that controls transfer of data inside the semiconductor memory device.
- the transfer control circuit is not defined in the JEDEC standard by transmitting a first signal value not used in the JEDEC standard to the semiconductor memory device via at least one signal line of the interface.
- An additional transfer command which is a transfer command for writing data read from a transfer source memory cell to a transfer destination memory cell without going through the outside of the semiconductor memory device, is set to be usable.
- the transfer control circuit transmits the first signal value to the semiconductor memory device via the bank address signal line of the interface.
- the transfer command includes a word line activation command for activating one word line without activating the sense amplifier.
- the transfer control circuit invalidates the JEDEC standard ZQ calibration command and sets the bit value assigned to the ZQ calibration command to be usable as the bit value of the word line activation command.
- the transfer command includes a sense amplifier activation command for activating a sense amplifier of one subarray without activating a word line.
- the transfer control circuit transmits the JEDEC standard mode register set command to the semiconductor memory device
- the transfer control circuit transmits a second signal value to the semiconductor memory device via the signal line of the bank address of the interface.
- the bit value assigned to the mode register set command is set to be usable as the bit value of the sense amplifier activation command.
- the transfer command further includes a transfer read command and a transfer write command for writing data read from the storage cell of the transfer source subarray to the storage cell of the transfer destination subarray without passing through the outside of the semiconductor memory device.
- the transfer control circuit includes: Disable the burst chop and auto precharge of the JEDEC standard read command and write command, When transmitting the JEDEC standard read command and write command to the semiconductor memory device, a third signal value is transmitted to the semiconductor memory device via at least one signal line of a plurality of signal lines of the column address of the interface. , The bit values assigned to the JEDEC standard read command and write command are set to be usable as the bit values of the transfer read command and the transfer write command, respectively.
- the transfer control circuit transfers data within one subarray of the plurality of subarrays in one bank of the plurality of banks
- the JEDEC standard activation command for activating one word line and a sense amplifier of a sub-array including the one word line and a row address of a word line including a transfer source memory cell are transmitted to the semiconductor memory device.
- the JEDEC standard precharge command is transmitted to the semiconductor memory device.
- the transfer command includes a word line activation command for activating one word line without activating the sense amplifier, and a sense amplifier activation for activating a sense amplifier of one subarray without activating the word line.
- a command When the transfer control circuit transfers data between different subarrays in one bank of the plurality of banks, The JEDEC standard activation command for activating one word line and a sense amplifier of a sub-array including the one word line and a row address of a word line including a transfer source memory cell are transmitted to the semiconductor memory device.
- the transfer control circuit when transferring data between different sub-arrays in different banks of the plurality of banks,
- the JEDEC standard activation command for activating one word line and a sense amplifier of a sub-array including the one word line and a row address of a word line including a transfer source memory cell are transmitted to the semiconductor memory device.
- Transmitting the activation command and a row address of a word line including a transfer destination storage cell to the semiconductor storage device Transmitting the transfer read command and the column address to the semiconductor memory device; Sending the transfer write command and column address to the semiconductor memory device;
- the JEDEC standard precharge command is transmitted to the semiconductor memory device.
- the transfer control circuit receives subarray information indicating a range of row addresses included in each subarray in each bank from the semiconductor memory device via at least one signal line of the interface.
- the transfer control circuit receives the subarray information from the multipurpose register of the semiconductor memory device using the JEDEC standard mode register read command.
- the subarray information is: The number of row addresses included in one period of one or a plurality of subarrays periodically arranged in each one of the plurality of banks; And the number of row addresses from the beginning of the cycle to the beginning of each subarray included in the cycle.
- the transfer control circuit includes: A transfer source address register for storing a transfer source bank address and row address received from a processor connected to the control circuit; A transfer destination address register for storing a transfer destination bank address and row address received from the processor; A transfer page number register for storing the number of pages of data to be transferred received from the processor; A subarray information register for storing the subarray information received from the semiconductor memory device; Whether to transfer data within the same subarray based on the information stored in the transfer source address register, the transfer destination address register, the transfer page number register, and the subarray information register, and in the same bank And an address comparison circuit for determining whether to transfer data internally.
- the transfer control circuit includes a transfer start trigger register that stores a transfer start trigger received from a processor connected to the control circuit, The control device further includes a selector for connecting one of the read / write control circuit and the transfer control circuit to the semiconductor memory device according to the presence or absence of the transfer start trigger stored in the transfer start trigger register.
- the semiconductor memory device further includes at least one register connected to the internal data bus, The transfer control circuit transfers data via the register when transferring data between different sub-arrays in different banks of the plurality of banks.
- the semiconductor memory device further includes at least one register and an arithmetic circuit connected to the internal data bus, The transfer control circuit performs an operation on the data read from one of the plurality of banks by the operation circuit, and writes the calculated data to one of the plurality of banks.
- the operation circuit transmits an operation code of the arithmetic circuit to the semiconductor memory device via an address signal line in the interface. To do.
- a semiconductor memory device having an interface compliant with JEDEC (Joint Electron Device Engineering Council) standard of DDRx-SDRAM or LPDDRx-SDRAM,
- the semiconductor memory device An internal data bus; A plurality of banks connected to each other by the internal data bus; Each one of the plurality of banks includes a plurality of subarrays separated from each other by at least one sense amplifier row including a plurality of sense amplifiers, and each one of the plurality of subarrays includes A plurality of memory cells arranged along a plurality of orthogonal bit lines and a plurality of word lines;
- the semiconductor memory device A data input / output circuit connected to the control device via the interface, connected to the plurality of banks via the internal data bus, and transmitting and receiving data between the control device and the plurality of banks;
- a command input circuit connected to the control device via the interface and receiving a command for controlling the plurality of banks from the control device;
- the command input circuit includes: An additional transfer command not defined in the JED
- the command input circuit receives the JEDEC standard mode register set command from the control device
- the command input circuit receives the first signal value from the control device via the bank address signal line of the interface.
- the transfer command includes a word line activation command for activating one word line without activating the sense amplifier.
- the command input circuit invalidates the JEDEC standard ZQ calibration command and sets the bit value assigned to the ZQ calibration command to be usable as the bit value of the word line activation command.
- the transfer command includes a sense amplifier activation command for activating a sense amplifier of one subarray without activating a word line.
- the command input circuit receives the JEDEC standard mode register set command from the control device
- the command input circuit receives a second signal value from the control device via the signal line of the bank address of the interface.
- the bit value assigned to the mode register set command is set to be usable as the bit value of the sense amplifier activation command.
- the transfer command further includes a transfer read command and a transfer write command for writing data read from the storage cell of the transfer source subarray to the storage cell of the transfer destination subarray without passing through the outside of the semiconductor memory device.
- the command input circuit includes: Disable the burst chop and auto precharge of the JEDEC standard read command and write command, When receiving the JEDEC standard read command and write command from the control device, a third signal value is received from the control device via at least one signal line of the plurality of signal lines of the column address of the interface. As a result, the bit values assigned to the JEDEC standard read command and write command are set to be usable as the bit values of the transfer read command and the transfer write command, respectively.
- the command input circuit includes: The control device receives the JEDEC standard activation command for activating one word line and a sense amplifier of a sub-array including the one word line, and a row address of a word line including a transfer source memory cell. , Receiving the word line activation command and the row address of the word line including the storage cell of the transfer destination from the control device; Receiving the JEDEC standard precharge command from the controller; As a result, data is transferred inside one subarray of the plurality of subarrays in one bank of the plurality of banks.
- the transfer command includes a word line activation command for activating one word line without activating the sense amplifier, and a sense amplifier activation for activating a sense amplifier of one subarray without activating the word line.
- a command, The command input circuit includes: The control device receives the JEDEC standard activation command for activating one word line and a sense amplifier of a sub-array including the one word line, and a row address of a word line including a transfer source memory cell.
- the command input circuit includes: The control device receives the JEDEC standard activation command for activating one word line and a sense amplifier of a sub-array including the one word line, and a row address of a word line including a transfer source memory cell.
- the command input circuit transmits subarray information indicating a range of row addresses included in each subarray in each bank to the control device via at least one signal line of the interface.
- the command input circuit transmits the subarray information stored in the multipurpose register of the semiconductor memory device to the control device in response to the JEDEC standard mode register read command.
- the subarray information is: The number of row addresses included in one period of one or a plurality of subarrays periodically arranged in each one of the plurality of banks; And the number of row addresses from the beginning of the cycle to the beginning of each subarray included in the cycle.
- the semiconductor memory device further includes at least one register connected to the internal data bus, The command input circuit transfers data via the register when transferring data between different sub-arrays in different banks of the plurality of banks.
- the semiconductor memory device further includes at least one register and an arithmetic circuit connected to the internal data bus, The command input circuit performs an operation on the data read from one of the plurality of banks by the arithmetic circuit, and writes the calculated data into one of the plurality of banks.
- the arithmetic circuit receives the JEDEC standard mode register set command from the control device, the arithmetic circuit receives the operation code of the arithmetic circuit from the control device via the signal line of the interface address.
- a control method for a semiconductor memory device having an interface compliant with JEDEC (Joint Electron Device Engineering Council) standard of DDRx-SDRAM or LPDDRx-SDRAM includes a plurality of banks connected to each other by an internal data bus, and each one of the plurality of banks is separated from each other by at least one sense amplifier row including a plurality of sense amplifiers.
- a plurality of subarrays each one of the plurality of subarrays including a plurality of storage cells arranged along a plurality of bit lines and a plurality of word lines orthogonal to each other;
- the first signal value that is not used in the JEDEC standard is transmitted to the semiconductor memory device via the signal line of at least one of the interfaces.
- a semiconductor memory device and a control device having an interface conforming to the DDRx-SDRAM or LPDDRx-SDRAM JEDEC standard, and transferring or copying data without occupying an external bus of the semiconductor memory device.
- a semiconductor memory device and a control device that can be used, and a semiconductor memory system including them can be provided.
- a control method for such a semiconductor memory device can also be provided.
- FIG. 1 is a block diagram showing a processing device including a memory system according to Embodiment 1.
- FIG. FIG. 2 is a block diagram illustrating a configuration of a memory controller 3 in FIG. 1. It is a block diagram which shows the structure of the memory 5 of FIG.
- FIG. 7 is a schematic diagram showing a configuration of one of banks 31-0 to 31-7 in FIG. 3;
- FIG. 5 is a circuit diagram showing a configuration of a subarray 41-1 in FIG. 6 is a table showing a first example of subarray information transmitted from the memory 5 to the memory controller 3 in FIG. 1.
- 6 is a table showing a second example of subarray information transmitted from the memory 5 to the memory controller 3 in FIG. 1.
- FIG. 9 is a subroutine showing a first transfer process in FIG. 8.
- FIG. It is the schematic which shows operation
- FIG. 9 is a subroutine showing a second transfer process of FIG. 8.
- FIG. It is the schematic which shows operation
- FIG. 9 is a timing chart showing an operation of the memory 5 when executing the second transfer process of FIG. 8.
- FIG. 9 is a subroutine showing a third transfer process of FIG. 8.
- FIG. It is the schematic which shows operation
- FIG. 9 is a timing chart showing an operation of the memory 5 when executing the third transfer process of FIG. 8.
- FIG. 6 is a block diagram illustrating a configuration of a memory 5A of a memory system according to Embodiment 2.
- FIG. It is a block diagram which shows the structure of the memory 5B of the memory system which concerns on Embodiment 3.
- FIG. 19 is a table showing operations corresponding to a write command and a read command transmitted from the memory controller 3 in the memory 5B of FIG.
- It is a block diagram which shows the structure of the arithmetic circuit 83 of FIG.
- It is a figure which shows the bit of the address transmitted with the mode register set command from the memory controller 3 in the memory 5B of FIG.
- FIG. FIG. 1 is a block diagram illustrating a processing apparatus including a memory system according to the first embodiment.
- the processing apparatus in FIG. 1 includes a processor 1, a processor bus 2, a memory controller 3, a memory bus 4, and a memory 5.
- the processor 1 is connected to the memory controller 3 via the processor bus 2.
- the memory controller 3 is connected to the memory 5 via the memory bus 4.
- the memory 5 includes a plurality of banks each including a plurality of subarrays.
- the memory 5 has an interface compliant with the DDR3-SDRAM JEDEC (Joint Electron Device Engineering Engineering) standard.
- the memory controller 3 and the memory 5 communicate with each other using a signal group conforming to the JEDEC standard via the memory bus 4.
- the memory bus 4 includes signal lines of a clock bus, a command bus, an address bus, and a data bus.
- the memory controller 3 and the memory 5 operate as a memory system for the processor.
- the DDR3-SDRAM memory 5 is an example of a semiconductor memory device.
- the memory controller 3 is an example of a control device for a semiconductor memory device.
- a memory system including the memory controller 3 and the memory 5 is an example of a semiconductor storage system.
- FIG. 2 is a block diagram showing a configuration of the memory controller 3 of FIG.
- the memory controller 3 includes a read / write control circuit 11, a transfer control circuit 12, a selector 13, and a DDR physical layer circuit (DDR PHY) 14.
- DDR PHY DDR physical layer circuit
- the read / write control circuit 11 controls reading of data from the memory 5 and writing of data to the memory 5 in accordance with the normal JEDEC standard.
- the transfer control circuit 12 controls data transfer inside the memory 5.
- the selector 13 connects one of the read / write control circuit 11 and the transfer control circuit 12 to the memory 5 via the DDR physical layer circuit 14 under the control of the transfer control circuit 12.
- the memory controller 3 and the memory 5 operate in a normal mode for reading data from the memory 5 and / or writing data to the memory 5.
- the transfer control circuit 12 When the transfer control circuit 12 is connected to the memory 5, the memory controller 3 and the memory 5 operate in a transfer mode in which data is transferred inside the memory 5 without going through the outside of the memory 5.
- the transfer control circuit 12 includes a transfer source address register 21, a transfer destination address register 22, a transfer page number register 23, a subarray information register 24, an address comparison circuit 25, a transfer start trigger register 26, and a command generation circuit 27.
- the transfer source address register 21 stores the transfer source bank address and row address received from the processor 1.
- the transfer destination address register 22 stores the transfer destination bank address and row address received from the processor 1.
- the transfer page number register 23 stores the number of pages of data to be transferred received from the processor 1. These registers 21 to 23 are preset by the processor 1 before starting data transfer.
- the sub-array information register 24 stores sub-array information (described later) indicating the arrangement of the plurality of banks and the plurality of sub-arrays received from the memory 5 in advance.
- the address comparison circuit 25 transfers data within the same subarray based on the information stored in the transfer source address register 21, the transfer destination address register 22, the transfer page number register 23, and the subarray information register 24 And whether to transfer data within the same bank.
- the transfer start trigger register 26 stores a transfer start trigger received from the processor 1.
- the selector 13 connects one of the read / write control circuit and the transfer control circuit 12 to the memory 5 according to the presence or absence of the transfer start trigger stored in the transfer start trigger register 26.
- the command generation circuit 27 issues a command for controlling the data transfer in the memory 5 when the transfer start trigger is stored in the transfer start trigger register 26.
- the command generation circuit 27 transfers data between different subarrays of the same bank when transferring data within the same subarray of the same bank, and transfers data between different subarrays of different banks. Depending on the case, the sequence of commands to be issued is automatically determined.
- FIG. 3 is a block diagram showing a configuration of the memory 5 of FIG.
- the memory 5 includes banks 31-0 to 31-7, an internal data bus 32, a data input / output circuit 33, a command input circuit 34, and a multipurpose register (MPR) 35.
- the banks 31-0 to 31-7 are connected to each other by an internal data bus 32.
- the banks 31-0 to 31-7 are collectively referred to as “bank 31”.
- the data input / output circuit 33 is connected to the memory controller 3 via the data bus of the memory bus 4, connected to the plurality of banks 31 via the internal data bus 32, and between the memory controller 3 and the plurality of banks 31. Send and receive data.
- the command input circuit 34 is connected to the memory controller 3 via the command bus of the memory bus 4 and receives commands for controlling the plurality of banks 31 from the memory controller 3.
- the MPR 35 is a register compliant with the JEDEC standard that can be read from the memory controller 3 via the data bus of the memory bus 4.
- FIG. 4 is a schematic diagram showing the configuration of one of the banks 31-0 to 31-7 in FIG.
- subarray 4 includes a plurality of subarrays 41-1 to 41-3 separated from each other by sense amplifier arrays 42-1 to 42-4.
- the subarrays 41-1 to 41-3 are collectively referred to as “subarray 41”
- the sense amplifier arrays 42-1 to 42-4 are collectively referred to as “sense amplifier array 42”.
- FIG. 5 is a circuit diagram showing the configuration of the subarray 41-1 in FIG.
- the sub-array 41-1 includes a plurality of memory cells 61 arranged along a plurality of bit lines 63a and 63b and a plurality of word lines 64 which are orthogonal to each other.
- Each of the sense amplifier arrays 42-1 and 42-2 includes a plurality of sense amplifiers 42A.
- Each memory cell 61 is a capacitive element that stores electric charge. One end of each memory cell 61 is connected to the cell plate 65, and the other end of each memory cell 61 is connected to the bit lines 63 a and 63 b via the switching element 62.
- the cell plate 65 is connected to a voltage source having a cell plate potential that is a ground potential or another potential.
- the bit line 63a is connected to one of the plurality of sense amplifiers 42A in the sense amplifier row 42-2, and the bit line 63b is connected to one of the plurality of sense amplifiers 42A in the sense amplifier row 42-1.
- Each switching element 62 is a transistor, for example. Each switching element 62 connects or disconnects each memory cell 61 arranged along each word line 64 to each bit line 63a, 63b, depending on whether the word line 64 is active or inactive. In other words, each switching element 62 selects a plurality of memory cells 61 arranged along one word line 64.
- the memory cell 61 is an example of a memory cell of a semiconductor memory device.
- the other subarrays 41-2 and 41-3 are also configured similarly to the subarray 41-1 in FIG.
- row decoders 43-1 to 43-3 further includes, as peripheral circuits, row decoders 43-1 to 43-3, column decoder 44, data control circuit 45, latch circuit 46, OR operation circuits 47 and 53 to 56, row address register 48, A row predecoder 49, a column address register 50, a subarray selection signal register 51, and a subarray selection signal register 52 are provided.
- the row predecoder 49 and the row decoders 43-1 to 43-3 decode the row address of each of the subarrays 41-1 to 41-3 stored in the row address register 48, and each of the subarrays 41-1 to 41-3 is decoded. Activate the word line.
- the column decoder 44 decodes the column address stored in the column address register 50, and selects one of the plurality of sense amplifiers 42A of each sense amplifier row 42 via a plurality of column selection lines (not shown). select.
- the data control circuit 45 temporarily stores the data read from the sense amplifier 42A selected by the column selection line in the latch circuit 46 via an input / output line (not shown).
- the data control circuit 45 also writes the data stored in the latch circuit 46 to the sense amplifier 42A selected by the column selection line via the input / output line.
- Subarray selection signal registers 51 and 52 store signals for selecting one of subarrays 41-1 to 41-3.
- the data control circuit 45 may include a circuit such as an amplifier that amplifies data read from the sense amplifier 42A and the latch circuit 46, for example.
- the subarray information indicates the range of row addresses included in each subarray 41 in each bank 31.
- the subarray information includes the number of row addresses included in one period of one or a plurality of subarrays 41 periodically arranged in one bank 31, and the beginning of the period to the beginning of each subarray 41 included in the period.
- the subarray information indicates from which row address to which row address the memory cells 61 share the same bit lines 63a and 63b and the same sense amplifier 42A.
- Such memory cells 61 and word lines 64 are referred to as “belonging to the same subarray”.
- the transfer control circuit 12 of the memory controller 3 receives the subarray information from the memory 5 via at least one signal line of the data bus of the memory bus 4.
- the subarray information is stored in the MPR 35 of the memory 5.
- the transfer control circuit 12 receives subarray information from the MPR 35 of the memory 5 using a JEDEC standard mode register read command.
- each bank 31 of a 1 Gb DDR3-SDRAM having 8 banks 31 is divided into 8 subarrays and 12 subarrays. Will be described.
- the first burst “0” is one of a plurality of subarrays periodically arranged in one bank 31.
- the number of row addresses included in one cycle is shown.
- the second and subsequent bursts “1”, “2”,... Respectively indicate the number of row addresses from the beginning of the cycle to the beginning of each subarray included in the cycle.
- FIG. 6 is a table showing a first example of subarray information transmitted from the memory 5 of FIG. 1 to the memory controller 3.
- each divided subarray includes the same number of row addresses, and the rows included in one period of the periodically arranged subarrays.
- the number of addresses is equal to the number of row addresses included in one subarray.
- the number of row addresses included in the sub-array period is 0x0400 in hexadecimal notation (1024 decimal). Therefore, as shown in FIG. 6, the first burst output via the 16-bit data line DQ [15: 0] is 0x0400.
- the second burst indicates the number of row addresses from the beginning of the cycle to the beginning of each subarray included in the cycle, it is naturally 0x0000 in hexadecimal notation (0 in decimal). All bursts after the third time are 0x0000 in hexadecimal notation.
- one bank 31 including 8192 word lines is divided into sub-arrays having an integer power of 2, only the first burst has a non-zero value, and the second and subsequent bursts have a zero value. Become.
- FIG. 7 is a table showing a second example of subarray information transmitted from the memory 5 of FIG. 1 to the memory controller 3.
- Dividing one bank 31 including 8192 word lines into 12 subarrays is a little more complicated than dividing it into 8 subarrays.
- the 2048 word lines obtained by dividing the 8192 word lines into four equal parts are further divided into three sub-arrays of 688 + 672 + 688.
- the number of row addresses included in the sub-array period is 0x0800 in hexadecimal notation (2048 decimal). Therefore, as shown in FIG. 7, the first burst is 0x0800.
- the second burst indicates the number of row addresses from the beginning of the cycle to the beginning of the first subarray included in the cycle, and is therefore 0x0000 (decimal number 0). Since the third burst indicates the number of row addresses from the beginning of the cycle to the beginning of the second sub-array included in the cycle, it becomes 0x02B0 (decimal number 688).
- the fourth burst indicates the number of row addresses from the beginning of the cycle to the beginning of the third sub-array included in the cycle, and thus becomes 0x0550 (1360 in decimal). Since “2048” is added to the number of row addresses from the head of the bank 31 to the head of the fourth and subsequent sub-arrays, the bursts after the fifth time are all 0x0000.
- the memory 5 can transmit the subarray information to the memory controller 3 using the MPR 35.
- the transfer control circuit 12 of the memory controller 3 stores the subarray information in the subarray information register 24 when receiving the subarray information from the memory 5.
- the transfer control circuit 12 When the processor 1 instructs the transfer control circuit 12 of the memory controller 3 to transfer data inside the memory 5, the transfer control circuit 12 does not comply with the JEDEC standard via at least one signal line of the command bus of the memory bus 4. The first signal value to be used is transmitted to the memory 5.
- the command input circuit 34 of the memory 5 receives the first signal value from the memory controller.
- the transfer control circuit 12 and the command input circuit 34 are additional transfer commands not defined by the JEDEC standard, and the data read from the memory cell 61 that is the transfer source of the memory 5 is passed through the outside of the memory 5. Without setting, the transfer command for writing to the memory cell 61 of the transfer destination of the memory 5 is set to be usable.
- the transfer command includes a word line activation (WLA) command that activates one word line 64 without activating the sense amplifier 42A, and one subarray 41 without activating the word line 64.
- a sense amplifier activation command (Sense-Amplifier Activation: SAA) for activating the sense amplifier 42A.
- the transfer command further includes a transfer read command and a transfer write command for writing the data read from the memory cell 61 of the transfer source subarray 41 to the memory cell 61 of the transfer destination subarray 41 without passing through the outside of the memory 5.
- the transfer control circuit 12 of the memory controller 3 transmits a JEDEC standard MRS command to the memory 5
- the transfer control circuit 12 of the memory controller 3 receives the first address via the signal line of the bank address BA [2: 0] of the command bus of the memory bus 4.
- the signal value is transmitted to the memory 5.
- the transfer control circuit 12 and the command input circuit 34 set the transfer command to be usable as follows.
- the transfer control circuit 12 and the command input circuit 34 invalidate the JEDEC standard ZQ calibration command and set the bit value assigned to the ZQ calibration command to be usable as the bit value of the WLA command.
- the transfer control circuit 12 of the memory controller 3 transmits a JEDEC standard MRS command to the memory 5
- the second signal value is stored in the memory 5 via the bank address signal line in the command bus of the memory bus 4.
- the command input circuit 34 of the memory 5 receives the second signal value from the memory controller 3.
- the transfer control circuit 12 and the command input circuit 34 set the bit value assigned to the MRS command to be usable as the bit value of the SAA command.
- the transfer control circuit 12 and the command input circuit 34 invalidate the burst chop and auto precharge of the JEDEC standard read command and write command. Further, when the transfer control circuit 12 of the memory controller 3 transmits a JEDEC standard read command and write command to the memory 5, at least one signal of a plurality of signal lines of the address bus (column address) of the memory bus 4 is used. The third signal value is transmitted to the memory 5 via the line. The command input circuit 34 of the memory 5 receives the third signal value from the memory controller 3. As a result, the transfer control circuit 12 and the command input circuit 34 set the bit values assigned to the JEDEC standard read command and write command to be usable as the bit values of the transfer read command and the transfer write command, respectively.
- the third signal value is represented by, for example, upper bits A [12:10] of the column address of the read command and the write command. These bits A [12:10] are used as identification codes (address keys) indicating that the functions of the transfer read command and the transfer write command are different from those of the normal DDR3-SDRAM (described later).
- the transfer control circuit 12 and the command input circuit 34 transfer data in the memory 5 according to the WLA command, the SAA command, the transfer read command, and the transfer write command.
- the WLA command is input to the bank of FIG. 4 together with the row address.
- the word line 64 corresponding to the row address input simultaneously with the WLA command is activated.
- operations relating to selection of the sub-array 41 such as equalization of the sense amplifier 42A and the bit lines 63a and 63b are not executed. Therefore, the WLA command is used when data already amplified by the sense amplifier 42A is written to the memory cell 61 connected to the transfer destination word line 64.
- the lower bits A [2: 0] represent the address of the bank 31 including the subarray 41 to be activated.
- the predetermined number of bits from the most significant bit of the address represents an address necessary for selecting a subarray.
- the sense amplifier 42A of the subarray 41 specified by the address input together with the SAA command is activated. However, in this operation, the sense amplifier 42A is not connected to an input / output line passing through the bank 31.
- the word line 64 is not activated. Therefore, according to the SAA command, when data is transferred between different subarrays of one bank, the data is stored in the sense amplifier 42A in advance, and finally the WLA command is issued to transfer the data to the destination memory. Store in cell 61.
- FIG. 8 is a flowchart showing data transfer processing executed by the transfer control circuit 12 of FIG.
- step S1 of FIG. 8 the transfer control circuit 12 determines whether or not a transfer start trigger is input from the processor 1 to the transfer start trigger register 26. If YES, the process proceeds to step S2. If NO, step S1 is performed. repeat.
- step S2 the transfer control circuit 12 determines whether the transfer destination address is in the same bank and the same subarray as the transfer source address. If the transfer destination address is in the same bank and the same subarray, the process proceeds to step S3. If they are in the same bank and different sub-arrays, the process proceeds to step S4, and if they are in different banks and different sub-arrays, the process proceeds to step S5.
- step S3 the transfer control circuit 12 executes a first transfer process.
- step S4 the transfer control circuit 12 executes a second transfer process.
- step S5 the transfer control circuit 12 executes a third transfer process.
- FIG. 9 is a subroutine showing the first transfer process of FIG.
- the first transfer process is a process for transferring data inside one subarray 41 in one bank 31.
- the transfer control circuit 12 activates a JEDEC standard activation (ACT) command for activating one word line 64 and the sense amplifier 42A of the sub-array 41 including one word line 64, and a transfer source
- ACT JEDEC standard activation
- the transfer control circuit 12 waits for a time period required for amplification and restoration by the sense amplifier 42A.
- step S ⁇ b> 14 the transfer control circuit 12 transmits the WLA command and the row address of the word line 64 including the transfer destination memory cell 61 to the memory 5.
- the word line 64 asserted by the ACT command is automatically negated, and the data read from the transfer source memory cell 61 is amplified and held in the sense amplifier 42A.
- the data held in the sense amplifier 42A is stored in the memory cell 61 connected to the word line 64 activated by the WLA command.
- step S ⁇ b> 15 the transfer control circuit 12 waits for a time period required for restoration by the transfer destination memory cell 61.
- step S16 the transfer control circuit 12 issues a JEDEC standard precharge (PCG) command, thereby completing the data transfer.
- PCG JEDEC standard precharge
- the memory controller 3 and the memory 5 return from the transfer mode to the normal mode.
- FIG. 10 is a schematic diagram showing the operation of the memory 5 when the first transfer process of FIG. 8 is executed.
- the bank 31-0 includes memory cells 61-1 and 61-2 and sense amplifiers 42A-1 and 42A-2 included in the same subarray, and an input / output line 66-1 of the bank 31-0.
- the data is transferred from the transfer source memory cell 61-1 to the transfer destination memory cell 61-2 without going through the internal data bus 32.
- FIG. 11 is a subroutine showing the second transfer process of FIG.
- the second transfer process is a process for transferring data between different subarrays 41 in one bank 31.
- the memory controller 3 and the memory 5 transition from the normal mode to the transfer mode.
- step S22 the transfer control circuit 12 transmits the JEDEC standard ACT command and the row address of the word line 64 including the memory cell 61 of the transfer source to the memory 5.
- step S23 the transfer control circuit 12 stands by for a time period required for amplification and restoration by the sense amplifier 42A.
- step S 24 the transfer control circuit 12 transmits the SAA command and the address of the sense amplifier 42 A of the sub-array 41 including the word line 64 including the transfer destination memory cell 61 to the memory 5.
- the SAA command the sense amplifier 42A of the subarray 41 including the word line 64 including the transfer destination memory cell 61 is activated.
- step S25 the transfer control circuit 12 stands by for a time period required for amplification by the sense amplifier 42A.
- step S26 the transfer control circuit 12 sets the lower bits A [9: 0] of the column address to the lower limit value.
- steps S27 and S28 the JEDEC standard read command and write command are used as a transfer read command and a transfer write command, respectively, as described above.
- step S29 the transfer control circuit 12 determines whether or not the lower bits A [9: 0] of the column address have reached the upper limit value. If YES, the process proceeds to step S31. If NO, the process proceeds to step S30. move on. In step S30, the transfer control circuit 12 increments the lower bits A [9: 0] of the column address. Thereafter, reading and writing to the same column address are repeated while incrementing the column address.
- the operation of the memory 5 when receiving the read command and the write command (that is, the transfer read command and the transfer write command) in the second transfer process is the operation (normal operation) of the memory of the conventional DDR-SDRAM. Different.
- FIG. 12 is a schematic diagram showing the operation of the memory 5 when the second transfer process of FIG. 8 is executed.
- the bank 31-0 includes memory cells 61-1 and 61-2 and sense amplifiers 42A-1 and 42A-2 included in different subarrays, and an input / output line 66-1 of the bank 31-0.
- the data read from the transfer source memory cell 61 is passed to the data control circuit 45 via a pair of input / output lines 66-1 passing through the bank, and the internal data bus 32.
- the data is stored in the latch circuit 46 from the data control circuit 45 without going through. This is aimed at low power consumption and low latency.
- the data control circuit 45 does not fetch the data from the internal data bus 32 to the latch circuit 46, and the data stored in the latch circuit 46 during the above-described read operation is stored in the bank 31-1.
- the pair of input / output lines 66-1 is electrically connected to the column selection transistor of the sense amplifier 42A activated by the SAA command.
- the data output to the pair of input / output lines 66-1 by the data control circuit 45 is written to the activated sense amplifier 42A. These reading and writing are repeated, and data is transferred between different subarrays 41 in one bank 31-0.
- FIG. 13 is a timing chart showing the operation of the memory 5 when the second transfer process of FIG. 8 is executed.
- FIG. 13 shows a sequence of a read command and a write command when data is transferred between different subarrays 41 in one bank 31. Since it is not necessary to output data to the outside of the memory 5 and to input data from the outside of the memory 5, neither a read operation nor a write operation requires a large latency cycle. For this reason, the interval between the read command and the write command can be shortened within an allowable range with respect to the internal operation timing of the memory 5.
- FIG. 14 is a subroutine showing the third transfer process of FIG.
- the third transfer process is a process for transferring data between different subarrays 41 in different banks 31 of the plurality of banks 31.
- the memory controller 3 and the memory 5 transition from the normal mode to the transfer mode.
- step S42 the transfer control circuit 12 transmits the JEDEC standard ACT command and the row address of the word line 64 including the memory cell 61 of the transfer source to the memory 5.
- step S43 the transfer control circuit 12 stands by for a time period required for amplification and restoration by the sense amplifier 42A.
- step S 44 the transfer control circuit 12 transmits the JEDEC standard ACT command and the row address of the word line 64 including the transfer destination memory cell 61 to the memory 5.
- step S45 the transfer control circuit 12 stands by for a time period required for amplification and restoration by the sense amplifier 42A.
- step S46 the transfer control circuit 12 sets the lower bits A [9: 0] of the column address to the lower limit value.
- steps S47 and S48 the JEDEC standard read command and write command are used as a transfer read command and a transfer write command, respectively, as described above.
- step S49 the transfer control circuit 12 determines whether or not the lower bits A [9: 0] of the column address have reached the upper limit value. If YES, the process proceeds to step S51. If NO, the process proceeds to step S50. move on. In step S50, the transfer control circuit 12 increments the lower bits A [9: 0] of the column address. Thereafter, reading and writing to the same column address are repeated while incrementing the column address.
- step S51 the transfer control circuit 12 waits for a time period required for restoration by the transfer destination memory cell 61.
- the operation of the memory 5 when receiving the read command and the write command (that is, the transfer read command and the transfer write command) in the third transfer process is the operation (normal operation) of the memory of the conventional DDR-SDRAM. Different.
- FIG. 15 is a schematic diagram showing the operation of the memory 5 when the third transfer process of FIG. 8 is executed.
- the bank 31-0 includes memory cells 61-1 and sense amplifiers 42A-1 and 42A-2 included in a certain subarray, and an input / output line 66-1 of the bank 31-0.
- the bank 31-5 includes memory cells 61-2 and sense amplifiers 42A-3 and 42A-4 included in a certain subarray, and an input / output line 66-2 of the bank 31-5.
- the data read from the memory cell 61-1 of the transfer source bank 31-0 and stored in the sense amplifier 42A-2 is a pair of input / output lines 66- passing through the bank. 1 is passed to the data control circuit 45 of the bank 31-0 via the 1 and output to the internal data bus 32 from the data control circuit 45 of the bank 31-0.
- the data control circuit 45 of the transfer destination bank 31-5 stores the data output to the internal data bus 32 in the above read operation, not the data input from the outside of the memory 5. The data is taken into the latch circuit 46 of 31-5.
- the data control circuit 45 in the bank 31-5 reads the data stored in the latch circuit 46 and outputs it to the pair of input / output lines 66-2 in the bank 31-5, and sends the data to the sense amplifier 42A-4 as the transfer destination. Write. These reading and writing are repeated, and data is transferred between different sub-arrays 41 in different banks 31-0 and 31-5.
- FIG. 16 is a timing chart showing the operation of the memory 5 when the third transfer process of FIG. 8 is executed.
- FIG. 16 shows a sequence of a read command and a write command when data is transferred between different subarrays 41 in different banks 31.
- FIG. 13 since it is not necessary to output data to the outside of the memory 5 and to input data from the outside of the memory 5, neither a read operation nor a write operation requires a large latency cycle. For this reason, the interval between the read command and the write command can be shortened within an allowable range with respect to the internal operation timing of the memory 5.
- the memory 5 and the memory controller 3 have an interface conforming to the DDR3-SDRAM JEDEC standard, and do not occupy the memory bus 4 and the processor bus 2 outside the memory 5. Data can be transferred or copied.
- the memory system of the first embodiment when a large amount of data is transferred, copied, or initialized in units of pages (memory cell data connected to one word line), data in the memory 5 is stored. Transfer does not depend on the address of the transfer source and the address of the transfer destination, and uses the signal group of the interface conforming to the JEDEC standard, and does not occupy the memory bus 4 and the processor bus 2 and can be performed in a short time and with low power. Can be realized.
- Embodiment 2 As a further embodiment, a case will be described in which data is transferred via a register connected to an internal data bus when data is transferred between different banks.
- FIG. 17 is a block diagram showing a configuration of the memory 5A of the memory system according to the second embodiment.
- the memory 5A further includes tristate buffers 71 and 73 and a register 72 connected to the internal data bus 32 in addition to the components of the memory 5 of FIG.
- the transfer control circuit 12 of the memory controller 3 is instructed by the processor 1 to transfer data between different sub-arrays 41 in different banks 31 of the plurality of banks 31, the data is transferred via the register 72. Forward.
- the operation of the memory 5A when receiving the read command and the write command (that is, the transfer read command and the transfer write command) is different from the operation (normal operation) of the memory of the conventional DDR-SDRAM. .
- the data read from the memory cell 61-1 of the transfer source bank 31-0 and stored in the sense amplifier 42A-2 is a pair of input / output lines 66- passing through the bank. 1 is passed to the data control circuit 45 of the bank 31-0 via the 1 and output to the internal data bus 32 from the data control circuit 45 of the bank 31-0.
- the data output to the internal data bus 32 is stored in a register 72 connected to the internal data bus 32.
- the same effect as the third transfer process of the first embodiment can be obtained, and data for a predetermined page can be consumed in a short time and with low consumption without transferring data via the memory bus 4 and the processor bus 2. It is possible to transfer with electric power.
- the memory system according to the second embodiment may include a plurality of registers connected to the internal data bus 32 of the memory 5A.
- FIG. 3 As an embodiment in which the second embodiment is further developed, an arithmetic circuit and / or another register may be provided before the register connected to the internal data bus 32 as shown in FIG.
- FIG. 18 is a block diagram illustrating a configuration of the memory 5B of the memory system according to the third embodiment.
- the memory 5 further includes tristate buffers 81 and 86 connected to the internal data bus 32, registers 82, 84 and 85, and an arithmetic circuit 83.
- the transfer control circuit 12 of the memory controller 3 performs an operation on the data read from one of the plurality of banks 31 by the operation circuit 83, and the calculated data is transferred to one of the plurality of banks 31. Write.
- the arithmetic circuit When the arithmetic circuit transmits the JEDEC standard MRS command to the memory 5B, it transmits the operation code of the arithmetic operation by the arithmetic circuit 83 to the memory 5B via the address signal line in the command bus of the memory bus 4.
- FIG. 19 is a table showing operations according to the write command and the read command transmitted from the memory controller 3 in the memory 5B of FIG.
- the upper bits (address keys) of the column address of the write command and the read command data transfer between the memory controller 3 (memory bus 4), banks 31-0 to 31-7, register 84, etc. is distinguished. It can operate appropriately according to the transfer source and the transfer destination.
- FIG. 20 is a block diagram showing a configuration of the arithmetic circuit 83 of FIG.
- the arithmetic circuit 83 includes a logic circuit 91, an adder 92, and selectors 93 and 94.
- the logic circuit 91 includes selectors 101, 102, 107, 108, 109, exclusive OR operation circuits 103, 106, an OR operation circuit 104, and an AND operation circuit 105.
- the operations of the adder 92, the selectors 94, 101, 102, 108, 109, and the exclusive OR operation circuit 103 vary depending on, for example, the address bits transmitted from the memory controller 3 together with the MRS command.
- FIG. 21 is a diagram showing address bits transmitted together with the MRS command from the memory controller 3 in the memory 5B of FIG.
- the bank address BA [2: 0] HHH
- the address A [12: 0] of FIG. 21 from the memory controller 3 it is designated by each bit of the address A [12: 0].
- the input signal is input to the arithmetic circuit 83.
- calculation results obtained by performing various calculations on the data read from a certain address in the memory 5B by the calculation circuit 83 of the memory 5B are stored in the same address in the memory 5B or It is possible to transfer to a different address.
- the memory 5B can be initialized and operated in a short time and with low power.
- a memory and a memory controller having an interface conforming to the DDRx-SDRAM or LPDDRx-SDRAM JEDEC standard, which can transfer or copy data without occupying an external bus of the memory And a memory controller, and a memory system including them can be provided.
- the present invention is particularly applicable to a memory system that is required to smoothly transfer a large amount of data inside the memory.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Databases & Information Systems (AREA)
- Dram (AREA)
- Memory System (AREA)
Abstract
メモリコントローラ(3)は、メモリ(5)からのデータの読み出し及びメモリ(5)へのデータの書き込みを制御する読み書き制御回路(11)と、メモリ(5)の内部におけるデータの転送を制御する転送制御回路(12)とを備える。転送制御回路(12)は、メモリバス(4)の信号線を介してJEDEC標準で不使用の第1の信号値をメモリ(5)に送信することにより、JEDEC標準で規定されていない追加の転送コマンドであって、転送元の記憶セル(61)から読み出したデータをメモリ(5)の外部を経由することなく転送先の記憶セル(61)に書き込む転送コマンドを使用可能に設定する。
Description
本発明は、DDRx-SDRAM又はLPDDRx-SDRAMの半導体記憶装置及び制御装置に関し、さらに、これらを含む半導体記憶システムに関する。本発明はまた、そのような半導体記憶装置のための制御方法に関する。
本明細書において、DDRx-SDRAMは、DDR-SDRAM(Double Data Rate Synchronous Dynamic Random-Access Memory)、DDR2-SDRAM、DDR3-SDRAM、DDR4-SDRAM、及びそれらの派生規格及び後継規格を示す。また、本明細書において、LPDDRx-SDRAMは、LPDDR-SDRAM(Low Power DDR-SDRAM)、LPDDR2-SDRAM、LPDDR3-SDRAM、LPDDR4-SDRAM、及びそれらの派生規格及び後継規格を示す。
コンピュータなどのプロセッサのための外付けの一次記憶装置として、DRAMなどのメモリと、メモリコントローラを含むメモリシステムが用いられる。
従来、外付けのメモリのあるアドレスに格納されたデータを同じメモリ内の別のアドレスに転送する場合、メモリコントローラによりメモリからデータを連続的に読み出してプロセッサのチップ内にいったん格納し、その後、再びメモリコントローラによりプロセッサからデータを読み出してメモリの宛先のアドレスに連続的に書き込んでいる。このような動作では、データに対する演算及び処理を全く行わないにもかかわらず、プロセッサ及びメモリの間のインターフェースがデータによって無駄に占有され、大量の帯域、電力、及び時間が必要となってしまう。
近年、IoT(Internet of Things)及びビッグデータといった大量のデータを取り扱うアプリケーションが普及しつつある。このようなアプリケーションでは、大量のデータをメモリのあるアドレスから別のアドレスに転送又はコピーする処理、ある特定のデータを初期化する処理、などが頻発するので、プロセッサ及びメモリの間のインターフェースが無駄に占有されると、システム性能及びエネルギー効率が大幅に悪化する可能性がある。
このような問題に対して、特許文献1では、データの転送又はコピーのためにメモリから読み出されたデータを、システムバス上に送ることなく、メモリコントローラに内蔵されたローカルメモリに格納することを開示している。これにより、データの転送又はコピーのためにシステムバスが占有されず、システムバスを介して通信される情報の量が低減される。
また、特許文献2~6に示すように、DRAMの特性を生かしたデータ転送の方法がある。DRAMでは、複数のメモリセルが、互いに直交する複数のビット線及び複数のワード線に沿って配列されている。各メモリセルのキャパシタには、データを表す電荷が格納されている。ACTコマンドを用いてロウアクセスすることにより、入力されたアドレスに対応するワード線がアサートされ、メモリセルの電荷はプリチャージされていたビット線に取り出される。このとき、相補のビット線対にわずかな電位差を生じる。ビット線対に接続されるセンスアンプは、その電位差を電源電位又は接地電位まで増幅する。通常のDRAMであれば、その後、読み出しコマンド又は書き込みコマンドでカラムアクセスすることにより、入力されたアドレスに対応するカラム選択線がアサートされて、データの読み出し又は書き込みが行われる。ただし、特許文献2~6は、センスアンプにより増幅されたデータがビット線対に保持された状態で、同じビット線対に接続される別のワード線をアサートする動作を開示している。これにより、DRAMの外部を経由することなく、大量のデータを、あるアドレスのメモリセルから別のアドレスのメモリセルにコピーすることが可能となる。
さらに、非特許文献1では、特殊コマンドを追加することで、DRAMの外部を経由することなくバンク間でデータを転送することができる。
V. Seshadri et al. "RowClone: Fast and Energy-efficient In-DRAM Bulk Data Copy and Initialization", MICRO-46 Proceedings of the 46th Annual IEEE/ACM International Symposium on Microarchitecture, pp. 185-197, December 7, 2013.
しかしながら、広く普及しているJEDEC(Joint Electron Device Engineering Council)標準に準拠したインターフェースを有するメモリを使用する場合、データの転送又はコピーのためには、いったんメモリの外部のバスを経由することが必要であり、大きな電力及び時間を消費することとなる。
さらに、近年、DDR3-SDRAM及びDDR4-SDRAMなどのメモリシステムのインターフェースは非常に高速の動作周波数を有している。上記のような特殊な動作を行うにあたり、JEDEC標準として規定されたインターフェースの信号群から逸脱する場合には、メモリのパッケージのピン配置、メモリコントローラ、及びDDR PHY、プリント配線基板上の配線などにおいて汎用の部品を使用できなくなり、開発費の高騰をまねく恐れがある。
本発明の目的は、DDRx-SDRAM又はLPDDRx-SDRAMのJEDEC標準に準拠したインターフェースを有する半導体記憶装置及び制御装置であって、半導体記憶装置の外部のバスを占有せずにデータを転送又はコピーすることができる半導体記憶装置及び制御装置、さらに、これらを含む半導体記憶システムを提供することにある。本発明の目的はまた、そのような半導体記憶装置のための制御方法を提供することにある。
本発明の第1の態様に係る制御装置によれば、
DDRx-SDRAM又はLPDDRx-SDRAMのJEDEC(Joint Electron Device Engineering Council)標準に準拠したインターフェースを有する半導体記憶装置のための制御装置であって、
前記半導体記憶装置は、内部データバスによって互いに接続された複数のバンクを備え、前記複数のバンクのうちの各1つのバンクは、複数のセンスアンプからなる少なくとも1つのセンスアンプ列によって互いに分離された複数のサブアレイを含み、前記複数のサブアレイのうちの各1つのサブアレイは、互いに直交する複数のビット線及び複数のワード線に沿って配列された複数の記憶セルを含み、
前記制御装置は、前記半導体記憶装置からのデータの読み出し及び前記半導体記憶装置へのデータの書き込みを制御する読み書き制御回路と、前記半導体記憶装置の内部におけるデータの転送を制御する転送制御回路とを備え、
前記転送制御回路は、前記インターフェースのうちの少なくとも1つの信号線を介して前記JEDEC標準で不使用の第1の信号値を前記半導体記憶装置に送信することにより、前記JEDEC標準で規定されていない追加の転送コマンドであって、転送元の記憶セルから読み出したデータを前記半導体記憶装置の外部を経由することなく転送先の記憶セルに書き込む転送コマンドを使用可能に設定する。
DDRx-SDRAM又はLPDDRx-SDRAMのJEDEC(Joint Electron Device Engineering Council)標準に準拠したインターフェースを有する半導体記憶装置のための制御装置であって、
前記半導体記憶装置は、内部データバスによって互いに接続された複数のバンクを備え、前記複数のバンクのうちの各1つのバンクは、複数のセンスアンプからなる少なくとも1つのセンスアンプ列によって互いに分離された複数のサブアレイを含み、前記複数のサブアレイのうちの各1つのサブアレイは、互いに直交する複数のビット線及び複数のワード線に沿って配列された複数の記憶セルを含み、
前記制御装置は、前記半導体記憶装置からのデータの読み出し及び前記半導体記憶装置へのデータの書き込みを制御する読み書き制御回路と、前記半導体記憶装置の内部におけるデータの転送を制御する転送制御回路とを備え、
前記転送制御回路は、前記インターフェースのうちの少なくとも1つの信号線を介して前記JEDEC標準で不使用の第1の信号値を前記半導体記憶装置に送信することにより、前記JEDEC標準で規定されていない追加の転送コマンドであって、転送元の記憶セルから読み出したデータを前記半導体記憶装置の外部を経由することなく転送先の記憶セルに書き込む転送コマンドを使用可能に設定する。
本発明の第2の態様に係る制御装置によれば、第1の態様に係る制御装置において、
前記転送制御回路は、前記JEDEC標準のモードレジスタセットコマンドを前記半導体記憶装置に送信するとき、前記インターフェースのバンクアドレスの信号線を介して前記第1の信号値を前記半導体記憶装置に送信する。
前記転送制御回路は、前記JEDEC標準のモードレジスタセットコマンドを前記半導体記憶装置に送信するとき、前記インターフェースのバンクアドレスの信号線を介して前記第1の信号値を前記半導体記憶装置に送信する。
本発明の第3の態様に係る制御装置によれば、第1又は第2の態様に係る制御装置において、
前記転送コマンドは、センスアンプを活性化せずに1つのワード線を活性化するワード線活性化コマンドを含む。
前記転送コマンドは、センスアンプを活性化せずに1つのワード線を活性化するワード線活性化コマンドを含む。
本発明の第4の態様に係る制御装置によれば、第3の態様に係る制御装置において、
前記転送制御回路は、前記JEDEC標準のZQキャリブレーションコマンドを無効化し、前記ZQキャリブレーションコマンドに割り当てられたビット値を前記ワード線活性化コマンドのビット値として使用可能に設定する。
前記転送制御回路は、前記JEDEC標準のZQキャリブレーションコマンドを無効化し、前記ZQキャリブレーションコマンドに割り当てられたビット値を前記ワード線活性化コマンドのビット値として使用可能に設定する。
本発明の第5の態様に係る制御装置によれば、第1又は第2の態様に係る制御装置において、
前記転送コマンドは、ワード線を活性化せずに1つのサブアレイのセンスアンプを活性化するセンスアンプ活性化コマンドを含む。
前記転送コマンドは、ワード線を活性化せずに1つのサブアレイのセンスアンプを活性化するセンスアンプ活性化コマンドを含む。
本発明の第6の態様に係る制御装置によれば、第5の態様に係る制御装置において、
前記転送制御回路は、前記JEDEC標準のモードレジスタセットコマンドを前記半導体記憶装置に送信するとき、前記インターフェースのバンクアドレスの信号線を介して第2の信号値を前記半導体記憶装置に送信することにより、前記モードレジスタセットコマンドに割り当てられたビット値を前記センスアンプ活性化コマンドのビット値として使用可能に設定する。
前記転送制御回路は、前記JEDEC標準のモードレジスタセットコマンドを前記半導体記憶装置に送信するとき、前記インターフェースのバンクアドレスの信号線を介して第2の信号値を前記半導体記憶装置に送信することにより、前記モードレジスタセットコマンドに割り当てられたビット値を前記センスアンプ活性化コマンドのビット値として使用可能に設定する。
本発明の第7の態様に係る制御装置によれば、第1又は第2の態様に係る制御装置において、
前記転送コマンドは、転送元のサブアレイの記憶セルから読み出したデータを前記半導体記憶装置の外部を経由することなく転送先のサブアレイの記憶セルに書き込む転送読み出しコマンド及び転送書き込みコマンドをさらに含む。
前記転送コマンドは、転送元のサブアレイの記憶セルから読み出したデータを前記半導体記憶装置の外部を経由することなく転送先のサブアレイの記憶セルに書き込む転送読み出しコマンド及び転送書き込みコマンドをさらに含む。
本発明の第8の態様に係る制御装置によれば、第7の態様に係る制御装置において、
前記転送制御回路は、
前記JEDEC標準の読み出しコマンド及び書き込みコマンドのバーストチョップ及びオートプリチャージを無効化し、
前記JEDEC標準の読み出しコマンド及び書き込みコマンドを前記半導体記憶装置に送信するとき、前記インターフェースのカラムアドレスの複数の信号線のうちの少なくとも1つの信号線を介して第3の信号値を前記半導体記憶装置に送信することにより、前記JEDEC標準の読み出しコマンド及び書き込みコマンドに割り当てられたビット値を前記転送読み出しコマンド及び前記転送書き込みコマンドのビット値として使用可能にそれぞれ設定する。
前記転送制御回路は、
前記JEDEC標準の読み出しコマンド及び書き込みコマンドのバーストチョップ及びオートプリチャージを無効化し、
前記JEDEC標準の読み出しコマンド及び書き込みコマンドを前記半導体記憶装置に送信するとき、前記インターフェースのカラムアドレスの複数の信号線のうちの少なくとも1つの信号線を介して第3の信号値を前記半導体記憶装置に送信することにより、前記JEDEC標準の読み出しコマンド及び書き込みコマンドに割り当てられたビット値を前記転送読み出しコマンド及び前記転送書き込みコマンドのビット値として使用可能にそれぞれ設定する。
本発明の第9の態様に係る制御装置によれば、第3又は第4の態様に係る制御装置において、
前記転送制御回路は、前記複数のバンクのうちの1つのバンクにおける前記複数のサブアレイのうちの1つのサブアレイの内部においてデータを転送するとき、
1つのワード線と前記1つのワード線を含むサブアレイのセンスアンプとを活性化する前記JEDEC標準の活性化コマンドと、転送元の記憶セルを含むワード線のロウアドレスとを前記半導体記憶装置に送信し、
前記ワード線活性化コマンドと、転送先の記憶セルを含むワード線のロウアドレスとを前記半導体記憶装置に送信し、
前記JEDEC標準のプリチャージコマンドを前記半導体記憶装置に送信する。
前記転送制御回路は、前記複数のバンクのうちの1つのバンクにおける前記複数のサブアレイのうちの1つのサブアレイの内部においてデータを転送するとき、
1つのワード線と前記1つのワード線を含むサブアレイのセンスアンプとを活性化する前記JEDEC標準の活性化コマンドと、転送元の記憶セルを含むワード線のロウアドレスとを前記半導体記憶装置に送信し、
前記ワード線活性化コマンドと、転送先の記憶セルを含むワード線のロウアドレスとを前記半導体記憶装置に送信し、
前記JEDEC標準のプリチャージコマンドを前記半導体記憶装置に送信する。
本発明の第10の態様に係る制御装置によれば、第7又は第8の態様に係る制御装置において、
前記転送コマンドは、センスアンプを活性化せずに1つのワード線を活性化するワード線活性化コマンドと、ワード線を活性化せずに1つのサブアレイのセンスアンプを活性化するセンスアンプ活性化コマンドとをさらに含み、
前記転送制御回路は、前記複数のバンクのうちの1つのバンクにおける互いに異なるサブアレイの間でデータを転送するとき、
1つのワード線と前記1つのワード線を含むサブアレイのセンスアンプとを活性化する前記JEDEC標準の活性化コマンドと、転送元の記憶セルを含むワード線のロウアドレスとを前記半導体記憶装置に送信し、
前記センスアンプ活性化コマンドと、転送先の記憶セルを含むワード線を含むサブアレイのセンスアンプのロウアドレスとを前記半導体記憶装置に送信し、
前記転送読み出しコマンドと、カラムアドレスとを前記半導体記憶装置に送信し、
前記転送書き込みコマンドと、カラムアドレスとを前記半導体記憶装置に送信し、
前記ワード線活性化コマンドと、前記転送先の記憶セルを含むワード線のロウアドレスとを前記半導体記憶装置に送信し、
前記JEDEC標準のプリチャージコマンドを前記半導体記憶装置に送信する。
前記転送コマンドは、センスアンプを活性化せずに1つのワード線を活性化するワード線活性化コマンドと、ワード線を活性化せずに1つのサブアレイのセンスアンプを活性化するセンスアンプ活性化コマンドとをさらに含み、
前記転送制御回路は、前記複数のバンクのうちの1つのバンクにおける互いに異なるサブアレイの間でデータを転送するとき、
1つのワード線と前記1つのワード線を含むサブアレイのセンスアンプとを活性化する前記JEDEC標準の活性化コマンドと、転送元の記憶セルを含むワード線のロウアドレスとを前記半導体記憶装置に送信し、
前記センスアンプ活性化コマンドと、転送先の記憶セルを含むワード線を含むサブアレイのセンスアンプのロウアドレスとを前記半導体記憶装置に送信し、
前記転送読み出しコマンドと、カラムアドレスとを前記半導体記憶装置に送信し、
前記転送書き込みコマンドと、カラムアドレスとを前記半導体記憶装置に送信し、
前記ワード線活性化コマンドと、前記転送先の記憶セルを含むワード線のロウアドレスとを前記半導体記憶装置に送信し、
前記JEDEC標準のプリチャージコマンドを前記半導体記憶装置に送信する。
本発明の第11の態様に係る制御装置によれば、第7又は第8の態様に係る制御装置において、
前記転送制御回路は、前記複数のバンクのうちの互いに異なるバンクにおける互いに異なるサブアレイの間でデータを転送するとき、
1つのワード線と前記1つのワード線を含むサブアレイのセンスアンプとを活性化する前記JEDEC標準の活性化コマンドと、転送元の記憶セルを含むワード線のロウアドレスとを前記半導体記憶装置に送信し、
前記活性化コマンドと、転送先の記憶セルを含むワード線のロウアドレスとを前記半導体記憶装置に送信し、
前記転送読み出しコマンドと、カラムアドレスとを前記半導体記憶装置に送信し、
前記転送書き込みコマンドと、カラムアドレスとを前記半導体記憶装置に送信し、
前記JEDEC標準のプリチャージコマンドを前記半導体記憶装置に送信する。
前記転送制御回路は、前記複数のバンクのうちの互いに異なるバンクにおける互いに異なるサブアレイの間でデータを転送するとき、
1つのワード線と前記1つのワード線を含むサブアレイのセンスアンプとを活性化する前記JEDEC標準の活性化コマンドと、転送元の記憶セルを含むワード線のロウアドレスとを前記半導体記憶装置に送信し、
前記活性化コマンドと、転送先の記憶セルを含むワード線のロウアドレスとを前記半導体記憶装置に送信し、
前記転送読み出しコマンドと、カラムアドレスとを前記半導体記憶装置に送信し、
前記転送書き込みコマンドと、カラムアドレスとを前記半導体記憶装置に送信し、
前記JEDEC標準のプリチャージコマンドを前記半導体記憶装置に送信する。
本発明の第12の態様に係る制御装置によれば、第1~第11のうちの1つの態様に係る制御装置において、
前記転送制御回路は、前記各バンクにおける前記各サブアレイにそれぞれ含まれるロウアドレスの範囲を示すサブアレイ情報を、前記インターフェースのうちの少なくとも1つの信号線を介して前記半導体記憶装置から受信する。
前記転送制御回路は、前記各バンクにおける前記各サブアレイにそれぞれ含まれるロウアドレスの範囲を示すサブアレイ情報を、前記インターフェースのうちの少なくとも1つの信号線を介して前記半導体記憶装置から受信する。
本発明の第13の態様に係る制御装置によれば、第12の態様に係る制御装置において、
前記転送制御回路は、前記JEDEC標準のモードレジスタリードコマンドを用いて、前記半導体記憶装置のマルチパーパスレジスタから前記サブアレイ情報を受信する。
前記転送制御回路は、前記JEDEC標準のモードレジスタリードコマンドを用いて、前記半導体記憶装置のマルチパーパスレジスタから前記サブアレイ情報を受信する。
本発明の第14の態様に係る制御装置によれば、第12又は第13の態様に係る制御装置において、
前記サブアレイ情報は、
前記複数のバンクのうちの各1つのバンクにおいて周期的に配列された1つ又は複数のサブアレイの1つの周期に含まれるロウアドレスの個数と、
前記周期の先頭から当該周期に含まれる各サブアレイの先頭までのロウアドレスの個数とを含む。
前記サブアレイ情報は、
前記複数のバンクのうちの各1つのバンクにおいて周期的に配列された1つ又は複数のサブアレイの1つの周期に含まれるロウアドレスの個数と、
前記周期の先頭から当該周期に含まれる各サブアレイの先頭までのロウアドレスの個数とを含む。
本発明の第15の態様に係る制御装置によれば、第12~第14のうちの1つの態様に係る制御装置において、
前記転送制御回路は、
前記制御回路に接続されたプロセッサから受信した転送元のバンクアドレス及びロウアドレスを格納する転送元アドレスレジスタと、
前記プロセッサから受信した転送先のバンクアドレス及びロウアドレスを格納する転送先アドレスレジスタと、
前記プロセッサから受信した転送するデータのページ数を格納する転送ページ数レジスタと、
前記半導体記憶装置から受信した前記サブアレイ情報を格納するサブアレイ情報レジスタと、
前記転送元アドレスレジスタ、前記転送先アドレスレジスタ、前記転送ページ数レジスタ、及び前記サブアレイ情報レジスタに格納された情報に基づいて、同じサブアレイの内部においてデータを転送するか否か、及び、同じバンクの内部においてデータを転送するか否かを判断するアドレス比較回路とを備える。
前記転送制御回路は、
前記制御回路に接続されたプロセッサから受信した転送元のバンクアドレス及びロウアドレスを格納する転送元アドレスレジスタと、
前記プロセッサから受信した転送先のバンクアドレス及びロウアドレスを格納する転送先アドレスレジスタと、
前記プロセッサから受信した転送するデータのページ数を格納する転送ページ数レジスタと、
前記半導体記憶装置から受信した前記サブアレイ情報を格納するサブアレイ情報レジスタと、
前記転送元アドレスレジスタ、前記転送先アドレスレジスタ、前記転送ページ数レジスタ、及び前記サブアレイ情報レジスタに格納された情報に基づいて、同じサブアレイの内部においてデータを転送するか否か、及び、同じバンクの内部においてデータを転送するか否かを判断するアドレス比較回路とを備える。
本発明の第16の態様に係る制御装置によれば、第1~第15のうちの1つの態様に係る制御装置において、
前記転送制御回路は、前記制御回路に接続されたプロセッサから受信した転送開始トリガを格納する転送開始トリガレジスタを備え、
前記制御装置は、前記転送開始トリガレジスタに格納された前記転送開始トリガの有無に従って、前記読み書き制御回路及び前記転送制御回路のうちの一方を前記半導体記憶装置に接続するセレクタをさらに備える。
前記転送制御回路は、前記制御回路に接続されたプロセッサから受信した転送開始トリガを格納する転送開始トリガレジスタを備え、
前記制御装置は、前記転送開始トリガレジスタに格納された前記転送開始トリガの有無に従って、前記読み書き制御回路及び前記転送制御回路のうちの一方を前記半導体記憶装置に接続するセレクタをさらに備える。
本発明の第17の態様に係る制御装置によれば、第1~第16のうちの1つの態様に係る制御装置において、
前記半導体記憶装置は、前記内部データバスに接続された少なくとも1つのレジスタをさらに備え、
前記転送制御回路は、前記複数のバンクのうちの互いに異なるバンクにおける互いに異なるサブアレイの間でデータを転送するとき、前記レジスタを介してデータを転送する。
前記半導体記憶装置は、前記内部データバスに接続された少なくとも1つのレジスタをさらに備え、
前記転送制御回路は、前記複数のバンクのうちの互いに異なるバンクにおける互いに異なるサブアレイの間でデータを転送するとき、前記レジスタを介してデータを転送する。
本発明の第18の態様に係る制御装置によれば、第1~第16のうちの1つの態様に係る制御装置において、
前記半導体記憶装置は、前記内部データバスに接続された少なくとも1つのレジスタ及び演算回路をさらに備え、
前記転送制御回路は、前記複数のバンクのうちの1つから読み出したデータに対して前記演算回路により演算を実行し、演算後のデータを前記複数のバンクのうちの1つに書き込む。
前記半導体記憶装置は、前記内部データバスに接続された少なくとも1つのレジスタ及び演算回路をさらに備え、
前記転送制御回路は、前記複数のバンクのうちの1つから読み出したデータに対して前記演算回路により演算を実行し、演算後のデータを前記複数のバンクのうちの1つに書き込む。
本発明の第19の態様に係る制御装置によれば、第18の態様に係る制御装置において、
前記演算回路は、前記JEDEC標準のモードレジスタセットコマンドを前記半導体記憶装置に送信するとき、前記インターフェースのうちのアドレスの信号線を介して、前記演算回路による演算のオペコードを前記半導体記憶装置に送信する。
前記演算回路は、前記JEDEC標準のモードレジスタセットコマンドを前記半導体記憶装置に送信するとき、前記インターフェースのうちのアドレスの信号線を介して、前記演算回路による演算のオペコードを前記半導体記憶装置に送信する。
本発明の第20の態様に係る半導体記憶装置によれば、
DDRx-SDRAM又はLPDDRx-SDRAMのJEDEC(Joint Electron Device Engineering Council)標準に準拠したインターフェースを有する半導体記憶装置であって、
前記半導体記憶装置は、
内部データバスと、
前記内部データバスによって互いに接続された複数のバンクとを備え、
前記複数のバンクのうちの各1つのバンクは、複数のセンスアンプからなる少なくとも1つのセンスアンプ列によって互いに分離された複数のサブアレイを含み、前記複数のサブアレイのうちの各1つのサブアレイは、互いに直交する複数のビット線及び複数のワード線に沿って配列された複数の記憶セルを含み、
前記半導体記憶装置は、
前記インターフェースを介して制御装置に接続され、前記内部データバスを介して前記複数のバンクに接続され、前記制御装置と前記複数のバンクとの間でデータを送受信するデータ入出力回路と、
前記インターフェースを介して前記制御装置に接続され、前記制御装置から前記複数のバンクを制御するコマンドを受信するコマンド入力回路とを備え、
前記コマンド入力回路は、
前記インターフェースのうちの少なくとも1つの信号線を介して前記JEDEC標準で不使用の第1の信号値を前記制御装置から受信することにより、前記JEDEC標準で規定されていない追加の転送コマンドであって、転送元の記憶セルから読み出したデータを前記半導体記憶装置の外部を経由することなく転送先の記憶セルに書き込む転送コマンドを使用可能に設定する。
DDRx-SDRAM又はLPDDRx-SDRAMのJEDEC(Joint Electron Device Engineering Council)標準に準拠したインターフェースを有する半導体記憶装置であって、
前記半導体記憶装置は、
内部データバスと、
前記内部データバスによって互いに接続された複数のバンクとを備え、
前記複数のバンクのうちの各1つのバンクは、複数のセンスアンプからなる少なくとも1つのセンスアンプ列によって互いに分離された複数のサブアレイを含み、前記複数のサブアレイのうちの各1つのサブアレイは、互いに直交する複数のビット線及び複数のワード線に沿って配列された複数の記憶セルを含み、
前記半導体記憶装置は、
前記インターフェースを介して制御装置に接続され、前記内部データバスを介して前記複数のバンクに接続され、前記制御装置と前記複数のバンクとの間でデータを送受信するデータ入出力回路と、
前記インターフェースを介して前記制御装置に接続され、前記制御装置から前記複数のバンクを制御するコマンドを受信するコマンド入力回路とを備え、
前記コマンド入力回路は、
前記インターフェースのうちの少なくとも1つの信号線を介して前記JEDEC標準で不使用の第1の信号値を前記制御装置から受信することにより、前記JEDEC標準で規定されていない追加の転送コマンドであって、転送元の記憶セルから読み出したデータを前記半導体記憶装置の外部を経由することなく転送先の記憶セルに書き込む転送コマンドを使用可能に設定する。
本発明の第21の態様に係る半導体記憶装置によれば、第20の態様に係る半導体記憶装置において、
前記コマンド入力回路は、前記JEDEC標準のモードレジスタセットコマンドを前記制御装置から受信するとき、前記インターフェースのバンクアドレスの信号線を介して前記第1の信号値を前記制御装置から受信する。
前記コマンド入力回路は、前記JEDEC標準のモードレジスタセットコマンドを前記制御装置から受信するとき、前記インターフェースのバンクアドレスの信号線を介して前記第1の信号値を前記制御装置から受信する。
本発明の第22の態様に係る半導体記憶装置によれば、第20又は第21の態様に係る半導体記憶装置において、
前記転送コマンドは、センスアンプを活性化せずに1つのワード線を活性化するワード線活性化コマンドを含む。
前記転送コマンドは、センスアンプを活性化せずに1つのワード線を活性化するワード線活性化コマンドを含む。
本発明の第23の態様に係る半導体記憶装置によれば、第22の態様に係る半導体記憶装置において、
前記コマンド入力回路は、前記JEDEC標準のZQキャリブレーションコマンドを無効化し、前記ZQキャリブレーションコマンドに割り当てられたビット値を前記ワード線活性化コマンドのビット値として使用可能に設定する。
前記コマンド入力回路は、前記JEDEC標準のZQキャリブレーションコマンドを無効化し、前記ZQキャリブレーションコマンドに割り当てられたビット値を前記ワード線活性化コマンドのビット値として使用可能に設定する。
本発明の第24の態様に係る半導体記憶装置によれば、第20又は第21の態様に係る半導体記憶装置において、
前記転送コマンドは、ワード線を活性化せずに1つのサブアレイのセンスアンプを活性化するセンスアンプ活性化コマンドを含む。
前記転送コマンドは、ワード線を活性化せずに1つのサブアレイのセンスアンプを活性化するセンスアンプ活性化コマンドを含む。
本発明の第25の態様に係る半導体記憶装置によれば、第24の態様に係る半導体記憶装置において、
前記コマンド入力回路は、前記JEDEC標準のモードレジスタセットコマンドを前記制御装置から受信するとき、前記インターフェースのバンクアドレスの信号線を介して第2の信号値を前記制御装置から受信することにより、前記モードレジスタセットコマンドに割り当てられたビット値を前記センスアンプ活性化コマンドのビット値として使用可能に設定する。
前記コマンド入力回路は、前記JEDEC標準のモードレジスタセットコマンドを前記制御装置から受信するとき、前記インターフェースのバンクアドレスの信号線を介して第2の信号値を前記制御装置から受信することにより、前記モードレジスタセットコマンドに割り当てられたビット値を前記センスアンプ活性化コマンドのビット値として使用可能に設定する。
本発明の第26の態様に係る半導体記憶装置によれば、第20又は第21の態様に係る半導体記憶装置において、
前記転送コマンドは、転送元のサブアレイの記憶セルから読み出したデータを前記半導体記憶装置の外部を経由することなく転送先のサブアレイの記憶セルに書き込む転送読み出しコマンド及び転送書き込みコマンドをさらに含む。
前記転送コマンドは、転送元のサブアレイの記憶セルから読み出したデータを前記半導体記憶装置の外部を経由することなく転送先のサブアレイの記憶セルに書き込む転送読み出しコマンド及び転送書き込みコマンドをさらに含む。
本発明の第27の態様に係る半導体記憶装置によれば、第26の態様に係る半導体記憶装置において、
前記コマンド入力回路は、
前記JEDEC標準の読み出しコマンド及び書き込みコマンドのバーストチョップ及びオートプリチャージを無効化し、
前記JEDEC標準の読み出しコマンド及び書き込みコマンドを前記制御装置から受信するとき、前記インターフェースのカラムアドレスの複数の信号線のうちの少なくとも1つの信号線を介して第3の信号値を前記制御装置から受信することにより、前記JEDEC標準の読み出しコマンド及び書き込みコマンドに割り当てられたビット値を前記転送読み出しコマンド及び前記転送書き込みコマンドのビット値として使用可能にそれぞれ設定する。
前記コマンド入力回路は、
前記JEDEC標準の読み出しコマンド及び書き込みコマンドのバーストチョップ及びオートプリチャージを無効化し、
前記JEDEC標準の読み出しコマンド及び書き込みコマンドを前記制御装置から受信するとき、前記インターフェースのカラムアドレスの複数の信号線のうちの少なくとも1つの信号線を介して第3の信号値を前記制御装置から受信することにより、前記JEDEC標準の読み出しコマンド及び書き込みコマンドに割り当てられたビット値を前記転送読み出しコマンド及び前記転送書き込みコマンドのビット値として使用可能にそれぞれ設定する。
本発明の第28の態様に係る半導体記憶装置によれば、第22又は第23の態様に係る半導体記憶装置において、
前記コマンド入力回路は、
1つのワード線と前記1つのワード線を含むサブアレイのセンスアンプとを活性化する前記JEDEC標準の活性化コマンドと、転送元の記憶セルを含むワード線のロウアドレスとを前記制御装置から受信し、
前記ワード線活性化コマンドと、転送先の記憶セルを含むワード線のロウアドレスとを前記制御装置から受信し、
前記JEDEC標準のプリチャージコマンドを前記制御装置から受信し、
これにより、前記複数のバンクのうちの1つのバンクにおける前記複数のサブアレイのうちの1つのサブアレイの内部においてデータを転送する。
前記コマンド入力回路は、
1つのワード線と前記1つのワード線を含むサブアレイのセンスアンプとを活性化する前記JEDEC標準の活性化コマンドと、転送元の記憶セルを含むワード線のロウアドレスとを前記制御装置から受信し、
前記ワード線活性化コマンドと、転送先の記憶セルを含むワード線のロウアドレスとを前記制御装置から受信し、
前記JEDEC標準のプリチャージコマンドを前記制御装置から受信し、
これにより、前記複数のバンクのうちの1つのバンクにおける前記複数のサブアレイのうちの1つのサブアレイの内部においてデータを転送する。
本発明の第29の態様に係る半導体記憶装置によれば、第26又は第27の態様に係る半導体記憶装置において、
前記転送コマンドは、センスアンプを活性化せずに1つのワード線を活性化するワード線活性化コマンドと、ワード線を活性化せずに1つのサブアレイのセンスアンプを活性化するセンスアンプ活性化コマンドとをさらに含み、
前記コマンド入力回路は、
1つのワード線と前記1つのワード線を含むサブアレイのセンスアンプとを活性化する前記JEDEC標準の活性化コマンドと、転送元の記憶セルを含むワード線のロウアドレスとを前記制御装置から受信し、
前記センスアンプ活性化コマンドと、転送先の記憶セルを含むワード線を含むサブアレイのセンスアンプのロウアドレスとを前記制御装置から受信し、
前記転送読み出しコマンドと、カラムアドレスとを前記制御装置から受信し、
前記転送書き込みコマンドと、カラムアドレスとを前記制御装置から受信し、
前記ワード線活性化コマンドと、前記転送先の記憶セルを含むワード線のロウアドレスとを前記制御装置から受信し、
前記JEDEC標準のプリチャージコマンドを前記制御装置から受信し、
これにより、前記複数のバンクのうちの1つのバンクにおける互いに異なるサブアレイの間でデータを転送する。
前記転送コマンドは、センスアンプを活性化せずに1つのワード線を活性化するワード線活性化コマンドと、ワード線を活性化せずに1つのサブアレイのセンスアンプを活性化するセンスアンプ活性化コマンドとをさらに含み、
前記コマンド入力回路は、
1つのワード線と前記1つのワード線を含むサブアレイのセンスアンプとを活性化する前記JEDEC標準の活性化コマンドと、転送元の記憶セルを含むワード線のロウアドレスとを前記制御装置から受信し、
前記センスアンプ活性化コマンドと、転送先の記憶セルを含むワード線を含むサブアレイのセンスアンプのロウアドレスとを前記制御装置から受信し、
前記転送読み出しコマンドと、カラムアドレスとを前記制御装置から受信し、
前記転送書き込みコマンドと、カラムアドレスとを前記制御装置から受信し、
前記ワード線活性化コマンドと、前記転送先の記憶セルを含むワード線のロウアドレスとを前記制御装置から受信し、
前記JEDEC標準のプリチャージコマンドを前記制御装置から受信し、
これにより、前記複数のバンクのうちの1つのバンクにおける互いに異なるサブアレイの間でデータを転送する。
本発明の第30の態様に係る半導体記憶装置によれば、第26又は第27の態様に係る半導体記憶装置において、
前記コマンド入力回路は、
1つのワード線と前記1つのワード線を含むサブアレイのセンスアンプとを活性化する前記JEDEC標準の活性化コマンドと、転送元の記憶セルを含むワード線のロウアドレスとを前記制御装置から受信し、
前記活性化コマンドと、転送先の記憶セルを含むワード線のロウアドレスとを前記制御装置から受信し、
前記転送読み出しコマンドと、カラムアドレスとを前記制御装置から受信し、
前記転送書き込みコマンドと、カラムアドレスとを前記制御装置から受信し、
前記JEDEC標準のプリチャージコマンドを前記制御装置から受信し、
これにより、前記複数のバンクのうちの互いに異なるバンクにおける互いに異なるサブアレイの間でデータを転送する。
前記コマンド入力回路は、
1つのワード線と前記1つのワード線を含むサブアレイのセンスアンプとを活性化する前記JEDEC標準の活性化コマンドと、転送元の記憶セルを含むワード線のロウアドレスとを前記制御装置から受信し、
前記活性化コマンドと、転送先の記憶セルを含むワード線のロウアドレスとを前記制御装置から受信し、
前記転送読み出しコマンドと、カラムアドレスとを前記制御装置から受信し、
前記転送書き込みコマンドと、カラムアドレスとを前記制御装置から受信し、
前記JEDEC標準のプリチャージコマンドを前記制御装置から受信し、
これにより、前記複数のバンクのうちの互いに異なるバンクにおける互いに異なるサブアレイの間でデータを転送する。
本発明の第31の態様に係る半導体記憶装置によれば、第20~第30のうちの1つの態様に係る半導体記憶装置において、
前記コマンド入力回路は、前記各バンクにおける前記各サブアレイにそれぞれ含まれるロウアドレスの範囲を示すサブアレイ情報を、前記インターフェースのうちの少なくとも1つの信号線を介して前記制御装置に送信する。
前記コマンド入力回路は、前記各バンクにおける前記各サブアレイにそれぞれ含まれるロウアドレスの範囲を示すサブアレイ情報を、前記インターフェースのうちの少なくとも1つの信号線を介して前記制御装置に送信する。
本発明の第32の態様に係る半導体記憶装置によれば、第31の態様に係る半導体記憶装置において、
前記コマンド入力回路は、前記JEDEC標準のモードレジスタリードコマンドに応答して、前記半導体記憶装置のマルチパーパスレジスタに格納された前記サブアレイ情報を前記制御装置に送信する。
前記コマンド入力回路は、前記JEDEC標準のモードレジスタリードコマンドに応答して、前記半導体記憶装置のマルチパーパスレジスタに格納された前記サブアレイ情報を前記制御装置に送信する。
本発明の第33の態様に係る半導体記憶装置によれば、第31又は第32の態様に係る半導体記憶装置において、
前記サブアレイ情報は、
前記複数のバンクのうちの各1つのバンクにおいて周期的に配列された1つ又は複数のサブアレイの1つの周期に含まれるロウアドレスの個数と、
前記周期の先頭から当該周期に含まれる各サブアレイの先頭までのロウアドレスの個数とを含む。
前記サブアレイ情報は、
前記複数のバンクのうちの各1つのバンクにおいて周期的に配列された1つ又は複数のサブアレイの1つの周期に含まれるロウアドレスの個数と、
前記周期の先頭から当該周期に含まれる各サブアレイの先頭までのロウアドレスの個数とを含む。
本発明の第34の態様に係る半導体記憶装置によれば、第20~第33のうちの1つの態様に係る半導体記憶装置において、
前記半導体記憶装置は、前記内部データバスに接続された少なくとも1つのレジスタをさらに備え、
前記コマンド入力回路は、前記複数のバンクのうちの互いに異なるバンクにおける互いに異なるサブアレイの間でデータを転送するとき、前記レジスタを介してデータを転送する。
前記半導体記憶装置は、前記内部データバスに接続された少なくとも1つのレジスタをさらに備え、
前記コマンド入力回路は、前記複数のバンクのうちの互いに異なるバンクにおける互いに異なるサブアレイの間でデータを転送するとき、前記レジスタを介してデータを転送する。
本発明の第35の態様に係る半導体記憶装置によれば、第20~第33のうちの1つの態様に係る半導体記憶装置において、
前記半導体記憶装置は、前記内部データバスに接続された少なくとも1つのレジスタ及び演算回路をさらに備え、
前記コマンド入力回路は、前記複数のバンクのうちの1つから読み出したデータに対して前記演算回路により演算を実行し、演算後のデータを前記複数のバンクのうちの1つに書き込む。
前記半導体記憶装置は、前記内部データバスに接続された少なくとも1つのレジスタ及び演算回路をさらに備え、
前記コマンド入力回路は、前記複数のバンクのうちの1つから読み出したデータに対して前記演算回路により演算を実行し、演算後のデータを前記複数のバンクのうちの1つに書き込む。
本発明の第36の態様に係る半導体記憶装置によれば、第35の態様に係る半導体記憶装置において、
前記演算回路は、前記JEDEC標準のモードレジスタセットコマンドを前記制御装置から受信するとき、前記インターフェースのアドレスの信号線を介して、前記演算回路による演算のオペコードを前記制御装置から受信する。
前記演算回路は、前記JEDEC標準のモードレジスタセットコマンドを前記制御装置から受信するとき、前記インターフェースのアドレスの信号線を介して、前記演算回路による演算のオペコードを前記制御装置から受信する。
本発明の第37の態様に係る半導体記憶システムによれば、
第1~第19のうちの1つの態様に係る制御装置と、
第20~第36のうちの1つの態様に係る半導体記憶装置とを備える。
第1~第19のうちの1つの態様に係る制御装置と、
第20~第36のうちの1つの態様に係る半導体記憶装置とを備える。
本発明の第38の態様に係る半導体記憶装置のための制御方法によれば、
DDRx-SDRAM又はLPDDRx-SDRAMのJEDEC(Joint Electron Device Engineering Council)標準に準拠したインターフェースを有する半導体記憶装置のための制御方法であって、
前記半導体記憶装置は、内部データバスによって互いに接続された複数のバンクを備え、前記複数のバンクのうちの各1つのバンクは、複数のセンスアンプからなる少なくとも1つのセンスアンプ列によって互いに分離された複数のサブアレイを含み、前記複数のサブアレイのうちの各1つのサブアレイは、互いに直交する複数のビット線及び複数のワード線に沿って配列された複数の記憶セルを含み、
前記制御方法は、前記インターフェースのうちの少なくとも1つの信号線を介して前記JEDEC標準で不使用の第1の信号値を前記半導体記憶装置に送信することにより、前記JEDEC標準で規定されていない追加の転送コマンドであって、転送元の記憶セルから読み出したデータを前記半導体記憶装置の外部を経由することなく転送先の記憶セルに書き込む転送コマンドを使用可能に設定するステップを含む。
DDRx-SDRAM又はLPDDRx-SDRAMのJEDEC(Joint Electron Device Engineering Council)標準に準拠したインターフェースを有する半導体記憶装置のための制御方法であって、
前記半導体記憶装置は、内部データバスによって互いに接続された複数のバンクを備え、前記複数のバンクのうちの各1つのバンクは、複数のセンスアンプからなる少なくとも1つのセンスアンプ列によって互いに分離された複数のサブアレイを含み、前記複数のサブアレイのうちの各1つのサブアレイは、互いに直交する複数のビット線及び複数のワード線に沿って配列された複数の記憶セルを含み、
前記制御方法は、前記インターフェースのうちの少なくとも1つの信号線を介して前記JEDEC標準で不使用の第1の信号値を前記半導体記憶装置に送信することにより、前記JEDEC標準で規定されていない追加の転送コマンドであって、転送元の記憶セルから読み出したデータを前記半導体記憶装置の外部を経由することなく転送先の記憶セルに書き込む転送コマンドを使用可能に設定するステップを含む。
本発明によれば、DDRx-SDRAM又はLPDDRx-SDRAMのJEDEC標準に準拠したインターフェースを有する半導体記憶装置及び制御装置であって、半導体記憶装置の外部のバスを占有せずにデータを転送又はコピーすることができる半導体記憶装置及び制御装置、さらに、これらを含む半導体記憶システムを提供することができる。
本発明によればまた、そのような半導体記憶装置のための制御方法を提供することができる。
以下、本発明に係る実施形態について図面を参照して説明する。
実施形態1.
図1は、実施形態1に係るメモリシステムを含む処理装置を示すブロック図である。図1の処理装置は、プロセッサ1、プロセッサバス2、メモリコントローラ3、メモリバス4、及びメモリ5を備える。
図1は、実施形態1に係るメモリシステムを含む処理装置を示すブロック図である。図1の処理装置は、プロセッサ1、プロセッサバス2、メモリコントローラ3、メモリバス4、及びメモリ5を備える。
プロセッサ1は、プロセッサバス2を介してメモリコントローラ3と接続される。メモリコントローラ3は、メモリバス4を介して及びメモリ5と接続される。メモリ5は、後述するように、複数のサブアレイをそれぞれ含む複数のバンクを備える。メモリ5は、DDR3-SDRAMのJEDEC(Joint Electron Device Engineering Council)標準に準拠したインターフェースを有する。メモリコントローラ3及びメモリ5は、メモリバス4を介して、JEDEC標準に準拠した信号群を用いて互いに通信する。メモリバス4は、クロックバス、コマンドバス、アドレスバス、及びデータバスの各信号線を含む。メモリコントローラ3及びメモリ5は、プロセッサのためのメモリシステムとして動作する。
DDR3-SDRAMのメモリ5は半導体記憶装置の一例である。メモリコントローラ3は半導体記憶装置のための制御装置の一例である。メモリコントローラ3及びメモリ5を含むメモリシステムは半導体記憶システムの一例である。
図2は、図1のメモリコントローラ3の構成を示すブロック図である。メモリコントローラ3は、読み書き制御回路11、転送制御回路12、セレクタ13、及びDDR物理層回路(DDR PHY)14を備える。
読み書き制御回路11は、通常のJEDEC標準に準拠して、メモリ5からのデータの読み出し及びメモリ5へのデータの書き込みを制御する。
転送制御回路12は、メモリ5の内部におけるデータの転送を制御する。
セレクタ13は、転送制御回路12の制御下で、読み書き制御回路11及び転送制御回路12の一方をDDR物理層回路14を介してメモリ5に接続する。読み書き制御回路11がメモリ5に接続されているとき、メモリコントローラ3及びメモリ5は、メモリ5からのデータの読み出し及び/又はメモリ5へのデータの書き込みを行う通常モードで動作する。転送制御回路12がメモリ5に接続されているとき、メモリコントローラ3及びメモリ5は、メモリ5の外部を経由することなくメモリ5の内部においてデータを転送する転送モードで動作する。
転送制御回路12は、転送元アドレスレジスタ21、転送先アドレスレジスタ22、転送ページ数レジスタ23、サブアレイ情報レジスタ24、アドレス比較回路25、転送開始トリガレジスタ26、コマンド生成回路27を備える。
転送元アドレスレジスタ21は、プロセッサ1から受信した転送元のバンクアドレス及びロウアドレスを格納する。転送先アドレスレジスタ22は、プロセッサ1から受信した転送先のバンクアドレス及びロウアドレスを格納する。転送ページ数レジスタ23は、プロセッサ1から受信した転送するデータのページ数を格納する。これらのレジスタ21~23は、データの転送を開始する前に、プロセッサ1によって予め設定される。
サブアレイ情報レジスタ24は、予めメモリ5から受信された、メモリ5の複数のバンク及び複数のサブアレイの配置を示すサブアレイ情報(後述)を格納する。
アドレス比較回路25は、転送元アドレスレジスタ21、転送先アドレスレジスタ22、転送ページ数レジスタ23、及びサブアレイ情報レジスタ24に格納された情報に基づいて、同じサブアレイの内部においてデータを転送するか否か、及び、同じバンクの内部においてデータを転送するか否かを判断する。
転送開始トリガレジスタ26は、プロセッサ1から受信した転送開始トリガを格納する。前述のセレクタ13は、転送開始トリガレジスタ26に格納された転送開始トリガの有無に従って、読み書き制御回路及び転送制御回路12のうちの一方をメモリ5に接続する。
コマンド生成回路27は、転送開始トリガレジスタ26に転送開始トリガが格納されているとき、メモリ5の内部におけるデータの転送を制御するコマンドを発行する。コマンド生成回路27は、同じバンクの同じサブアレイの内部においてデータを転送する場合、同じバンクの互いに異なるサブアレイの間でデータを転送する場合、及び互いに異なるバンクの互いに異なるサブアレイの間でデータを転送する場合に応じて、発行するコマンドのシーケンスを自動的に決定する。
図3は、図1のメモリ5の構成を示すブロック図である。メモリ5は、バンク31-0~31-7、内部データバス32、データ入出力回路33、コマンド入力回路34、及びマルチパーパスレジスタ(MPR)35を備える。バンク31-0~31-7は、内部データバス32によって互いに接続される。本明細書では、バンク31-0~31-7を総称して「バンク31」とも表記する。データ入出力回路33は、メモリバス4のデータバスを介してメモリコントローラ3に接続され、内部データバス32を介して複数のバンク31に接続され、メモリコントローラ3と複数のバンク31との間でデータを送受信する。コマンド入力回路34は、メモリバス4のコマンドバスを介してメモリコントローラ3に接続され、メモリコントローラ3から複数のバンク31を制御するコマンドを受信する。MPR35は、メモリバス4のデータバスを介してメモリコントローラ3から読み出し可能である、JEDEC標準に準拠したレジスタである。
図4は、図3のバンク31-0~31-7のうちの1つの構成を示す概略図である。
図4のバンクは、センスアンプ列42-1~42-4によって互いに分離された複数のサブアレイ41-1~41-3を含む。本明細書では、サブアレイ41-1~41-3を総称して「サブアレイ41」とも表記し、センスアンプ列42-1~42-4を総称して「センスアンプ列42」とも表記する。
図5は、図4のサブアレイ41-1の構成を示す回路図である。サブアレイ41-1は、互いに直交する複数のビット線63a,63b及び複数のワード線64に沿って配列された複数のメモリセル61を含む。センスアンプ列42-1,42-2のそれぞれは、複数のセンスアンプ42Aからなる。各メモリセル61は電荷を蓄える容量素子である。各メモリセル61の一端は、セルプレート65にそれぞれ接続され、各メモリセル61の他端は、スイッチング素子62を介してビット線63a,63bに接続される。セルプレート65は、接地電位又は他の電位であるセルプレート電位の電圧源に接続される。ビット線63aはセンスアンプ列42-2の複数のセンスアンプ42Aのうちの1つに接続され、ビット線63bはセンスアンプ列42-1の複数のセンスアンプ42Aのうちの1つに接続される。各スイッチング素子62は例えばトランジスタである。各スイッチング素子62は、ワード線64の活性又は非活性の状態に応じて、各ワード線64に沿って配列された各メモリセル61を、各ビット線63a,63bにそれぞれ接続又は切断する。言い換えると、各スイッチング素子62は、1つのワード線64に沿って配列された複数のメモリセル61を選択する。
メモリセル61は半導体記憶装置の記憶セルの一例である。
他のサブアレイ41-2,41-3もまた、図5のサブアレイ41-1と同様に構成される。
図4のバンクはさらに、その周辺回路として、ロウデコーダ43-1~43-3、カラムデコーダ44、データ制御回路45、ラッチ回路46、論理和演算回路47,53~56、ロウアドレスレジスタ48、ロウプリデコーダ49、カラムアドレスレジスタ50、サブアレイ選択信号レジスタ51、及びサブアレイ選択信号レジスタ52を備える。ロウプリデコーダ49及びロウデコーダ43-1~43-3は、ロウアドレスレジスタ48に格納された各サブアレイ41-1~41-3のロウアドレスをデコードし、各サブアレイ41-1~41-3のワード線を活性化する。カラムデコーダ44は、カラムアドレスレジスタ50に格納されたカラムアドレスをデコードし、複数のカラム選択線(図示せず)を介して、各センスアンプ列42の複数のセンスアンプ42Aのうちの1つを選択する。データ制御回路45は、カラム選択線により選択されたセンスアンプ42Aから読み出したデータを、入出力線(図示せず)を介してラッチ回路46にいったん格納する。データ制御回路45はまた、ラッチ回路46に格納されたデータを、入出力線を介して、カラム選択線により選択されたセンスアンプ42Aに書き込む。サブアレイ選択信号レジスタ51,52は、サブアレイ41-1~41-3のうちの1つを選択する信号を格納する。データ制御回路45は、例えば、センスアンプ42A及びラッチ回路46から読み出したデータを増幅する増幅器などの回路を含んでもよい。
次に、メモリ5のサブアレイ情報をメモリ5からメモリコントローラ3に送信する方法について説明する。
サブアレイ情報は、各バンク31における各サブアレイ41にそれぞれ含まれるロウアドレスの範囲を示す。サブアレイ情報は、1つのバンク31において周期的に配列された1つ又は複数のサブアレイ41の1つの周期に含まれるロウアドレスの個数と、周期の先頭から当該周期に含まれる各サブアレイ41の先頭までのロウアドレスの個数とを含む。言い換えると、サブアレイ情報は、どのロウアドレスからどのロウアドレスまでのメモリセル61が、同じビット線63a,63b及び同じセンスアンプ42Aを共有しているかを示す。このようなメモリセル61及びワード線64を、「同一のサブアレイに属する」という。
メモリコントローラ3の転送制御回路12は、サブアレイ情報を、メモリバス4のデータバスのうちの少なくとも1つの信号線を介してメモリ5から受信する。サブアレイ情報は、例えば、メモリ5のMPR35に格納されている。この場合、転送制御回路12は、JEDEC標準のモードレジスタリードコマンドを用いて、メモリ5のMPR35からサブアレイ情報を受信する。DDR3-SDRAMの場合、JEDEC標準のモードレジスタセット(Mode Register Set:MRS)コマンドをメモリコントローラ3からメモリ5に送信するとき、3ビットのバンクアドレスBA[2:0]=LHH及びアドレスのビットA[2]=Hを設定することにより、MRSコマンドは、メモリ5のMPR35に格納されたデータを、メモリバス4のデータバスを介してメモリコントローラ3に読み出すモードレジスタリードコマンドになる。ここで、「H」はハイレベルのビット値を示し、「L」はローレベルのビット値を示す。現状のJEDEC標準では、アドレスのビット値A[1:0]=HHは予約済み(Reserved)であるが、これを利用して、図6又は図7を参照して以下に説明するように、MPR35に格納されたデータを出力する。
具体的に、図6及び図7を参照して、8個のバンク31を持つ1GbのDDR3-SDRAMの各バンク31が、8個のサブアレイに分割される場合と、12個のサブアレイに分割される場合とについて説明する。
図6及び図7の例では、1つのバンク31において、13ビットのロウアドレスA[12:0]により表される8192本のワード線が存在するものとする。また、図6及び図7の例では、メモリバス4のデータバスは、16ビットのデータ線DQ[15:0]を含むものとする。
16ビットのデータ線DQ[15:0]を介して8バーストにわたって出力されるデータのうち、先頭のバースト「0」は、1つのバンク31において周期的に配列された1つ又は複数のサブアレイの1つの周期に含まれるロウアドレスの個数を示す。2回目以降のバースト「1」、「2」、…は、周期の先頭から当該周期に含まれる各サブアレイの先頭までのロウアドレスの個数をそれぞれ示す。
図6は、図1のメモリ5からメモリコントローラ3へ送信されるサブアレイ情報の第1の例を示す表である。8192本のワード線を含む1つのバンク31を8個のサブアレイに分割する場合、分割された各サブアレイは同じ個数のロウアドレスを含み、周期的に配列されたサブアレイの1つの周期に含まれるロウアドレスの個数と、1つのサブアレイに含まれるロウアドレスの個数とは互いに等しい。サブアレイの周期に含まれるロウアドレスの個数は、16進数表記で0x0400(10進数で1024)となる。従って、図6に示す通り、16ビットのデータ線DQ[15:0]を介して出力される先頭のバーストは、0x0400となる。2回目のバーストは、周期の先頭から当該周期に含まれる各サブアレイの先頭までのロウアドレスの個数を示すので、当然ながら、16進数表記で0x0000(10進数で0)となる。3回目以降のバーストも全て、16進数表記で0x0000となる。8192本のワード線を含む1つのバンク31を2の整数乗の個数のサブアレイに分割する場合も同様に、先頭のバーストのみが非ゼロの値を有し、2回目以降のバーストはゼロ値になる。
図7は、図1のメモリ5からメモリコントローラ3へ送信されるサブアレイ情報の第2の例を示す表である。8192本のワード線を含む1つのバンク31を12個のサブアレイに分割する場合は、8個に分割する場合よりも少し複雑になる。8192本のワード線を4等分した2048本のワード線をそれぞれ、688本+672本+688本という3個のサブアレイにさらに分割する。サブアレイの周期に含まれるロウアドレスの個数は、16進数表記で0x0800(10進数で2048)となる。従って、図7に示す通り、先頭のバーストは0x0800となる。2回目のバーストは、周期の先頭から当該周期に含まれる1つ目のサブアレイの先頭までのロウアドレスの個数を示すので、0x0000(10進数で0)になる。3回目のバーストは、周期の先頭から当該周期に含まれる2つ目のサブアレイの先頭までのロウアドレスの個数を示すので、0x02B0(10進数で688)になる。4回目のバーストは、周期の先頭から当該周期に含まれる3つ目のサブアレイの先頭までのロウアドレスの個数を示すので、0x0550(10進数で1360)になる。バンク31の先頭から4つ目以降のサブアレイの先頭までのロウアドレスの個数に「2048本」を加えての繰り返しとなるので、5回目以降のバーストは全て0x0000となる。
このように、メモリ5は、MPR35を用いて、サブアレイ情報をメモリコントローラ3に送信することができる。メモリコントローラ3の転送制御回路12は、メモリ5からサブアレイ情報を受信したとき、サブアレイ情報をサブアレイ情報レジスタ24に格納する。
次に、実施形態1に係るメモリシステムのメモリ5におけるデータの転送について説明する。
メモリコントローラ3の転送制御回路12は、メモリ5の内部においてデータを転送するようにプロセッサ1から指示されたとき、メモリバス4のコマンドバスのうちの少なくとも1つの信号線を介してJEDEC標準で不使用の第1の信号値をメモリ5に送信する。メモリ5のコマンド入力回路34は、第1の信号値をメモリコントローラから受信する。これにより、転送制御回路12及びコマンド入力回路34は、JEDEC標準で規定されていない追加の転送コマンドであって、メモリ5の転送元のメモリセル61から読み出したデータを、メモリ5の外部を経由することなく、メモリ5の転送先のメモリセル61に書き込むための転送コマンドを使用可能に設定する。
転送コマンドは、センスアンプ42Aを活性化せずに1つのワード線64を活性化するワード線活性化(Word-Line Assertion:WLA)コマンドと、ワード線64を活性化せずに1つのサブアレイ41のセンスアンプ42Aを活性化するセンスアンプ活性化コマンド(Sense-Amplifier Activation:SAA)とを含む。転送コマンドはさらに、転送元のサブアレイ41のメモリセル61から読み出したデータをメモリ5の外部を経由することなく転送先のサブアレイ41のメモリセル61に書き込む転送読み出しコマンド及び転送書き込みコマンドを含む。
メモリコントローラ3の転送制御回路12は、JEDEC標準のMRSコマンドをメモリ5に送信するとき、メモリバス4のコマンドバスのうちのバンクアドレスBA[2:0]の信号線を介して、第1の信号値をメモリ5に送信する。第1の信号値は、例えば、JEDEC標準では不使用であるMRSコマンドのバンクアドレスBA[2:0]=HHHに設定される。MRSコマンドをメモリ5に送信するとき、転送制御回路12はさらに、アドレスのビットA12=Hをメモリ5に送信する。転送制御回路12が、バンクアドレスBA[2:0]=HHH及びアドレスのビットA12=Hとともに、MRSコマンドをメモリ5に送信したとき、メモリコントローラ3及びメモリ5は、通常モードから転送モードに遷移する。
メモリコントローラ3及びメモリ5が転送モードに遷移したとき、転送制御回路12及びコマンド入力回路34は、以下のように、転送コマンドを使用可能に設定する。
転送制御回路12及びコマンド入力回路34は、JEDEC標準のZQキャリブレーションコマンドを無効化し、ZQキャリブレーションコマンドに割り当てられたビット値をWLAコマンドのビット値として使用可能に設定する。
さらに、メモリコントローラ3の転送制御回路12は、JEDEC標準のMRSコマンドをメモリ5に送信するとき、メモリバス4のコマンドバスのうちのバンクアドレスの信号線を介して第2の信号値をメモリ5に送信する。メモリ5のコマンド入力回路34は、第2の信号値をメモリコントローラ3から受信する。第2の信号値は、例えば、JEDEC標準では不使用であるMRSコマンドのバンクアドレスBA[2:0]=HHLに設定される。転送制御回路12は、バンクアドレスBA[2:0]=HHLと、あるサブアレイ41のセンスアンプ42Aのアドレスとともに、MRSコマンドをメモリ5に送信する。これにより、転送制御回路12及びコマンド入力回路34は、MRSコマンドに割り当てられたビット値をSAAコマンドのビット値として使用可能に設定する。
さらに、転送制御回路12及びコマンド入力回路34は、JEDEC標準の読み出しコマンド及び書き込みコマンドのバーストチョップ及びオートプリチャージを無効化する。さらに、メモリコントローラ3の転送制御回路12は、JEDEC標準の読み出しコマンド及び書き込みコマンドをメモリ5に送信するとき、メモリバス4のアドレスバス(カラムアドレス)の複数の信号線のうちの少なくとも1つの信号線を介して第3の信号値をメモリ5に送信する。メモリ5のコマンド入力回路34は、第3の信号値をメモリコントローラ3から受信する。これにより、転送制御回路12及びコマンド入力回路34は、JEDEC標準の読み出しコマンド及び書き込みコマンドに割り当てられたビット値を、転送読み出しコマンド及び転送書き込みコマンドのビット値として使用可能にそれぞれ設定する。第3の信号値は、例えば、読み出しコマンド及び書き込みコマンドのカラムアドレスの上位ビットA[12:10]によって表される。これらのビットA[12:10]は、転送読み出しコマンド及び転送書き込みコマンドの機能が通常のDDR3-SDRAMの場合とは異なることを示す識別符号(アドレスキー)として使用される(後述)。
転送制御回路12及びコマンド入力回路34は、WLAコマンド、SAAコマンド、転送読み出しコマンド、及び転送書き込みコマンドに従って、メモリ5の内部においてデータを転送する。
データの転送が完了したとき、メモリコントローラ3の転送制御回路12は、転送制御回路12は、MRSコマンド、バンクアドレスBA[2:0]=HHH、及びアドレスのビットA12=Lをメモリ5に送信する。これにより、メモリコントローラ3及びメモリ5は、転送モードから通常モードに戻る。
ここで、再び図4を参照して、WLAコマンド及びSAAコマンドを使用するときのメモリ5の動作を説明する。
WLAコマンドは、ロウアドレスとともに、図4のバンクに入力される。WLAコマンドが図4のバンクに入力されたとき、当該WLAコマンドと同時に入力されたロウアドレスに対応するワード線64が活性化される。このとき、センスアンプ42A及びビット線63a,63bのイコライズといった、サブアレイ41の選択に関する動作は実行されない。従って、WLAコマンドは、既にセンスアンプ42Aで増幅されたデータを、転送先のワード線64に接続されるメモリセル61に書き込む場合に使用される。
SAAコマンド(すなわち、MRSコマンド及びバンクアドレスBA[2:0]=HHL)とともに入力されるアドレスのうち、下位ビットA[2:0]は、活性化すべきサブアレイ41を含むバンク31のアドレスを表し、アドレスの最上位ビットから所定個数のビットは、サブアレイを選択するために必要なアドレスを表す。SAAコマンドとともに入力されるアドレスによって指定されるサブアレイ41のセンスアンプ42Aが活性化される。ただし、この動作では、センスアンプ42Aは、バンク31を通る入出力線には接続されない。SAAコマンドが図4のバンクに入力されたとき、ワード線64は活性化されない。従って、SAAコマンドによれば、1つのバンクの互いに異なるサブアレイの間でデータを転送するとき、そのデータを予めセンスアンプ42Aに格納し、最終的にWLAコマンドを発行してデータを転送先のメモリセル61に格納する。
図8は、図2の転送制御回路12によって実行されるデータ転送処理を示すフローチャートである。
図8のステップS1において、転送制御回路12は、プロセッサ1から転送開始トリガレジスタ26に転送開始トリガが入力されたか否かを判断し、YESのときはステップS2に進み、NOのときはステップS1を繰り返す。ステップS2において、転送制御回路12は、転送先のアドレスは転送元のアドレスと同じバンクかつ同じサブアレイ内にあるか否かを判断し、同じバンクかつ同じサブアレイ内にある場合にはステップS3に進み、同じバンクかつ互いに異なるサブアレイ内にある場合にはステップS4に進み、互いに異なるバンクかつ互いに異なるサブアレイ内にある場合にはステップS5に進む。ステップS3において、転送制御回路12は、第1の転送処理を実行する。ステップS4において、転送制御回路12は、第2の転送処理を実行する。ステップS5において、転送制御回路12は、第3の転送処理を実行する。
図9は、図8の第1の転送処理を示すサブルーチンである。第1の転送処理は、1つのバンク31における1つのサブアレイ41の内部においてデータを転送するときの処理である。
図9のステップS11において、転送制御回路12は、MRSコマンド、バンクアドレスBA[2:0]=HHH、及びアドレスのビットA12=Hをメモリ5に送信する。これにより、メモリコントローラ3及びメモリ5は、通常モードから転送モードに遷移する。ステップS12において、転送制御回路12は、1つのワード線64と1つのワード線64を含むサブアレイ41のセンスアンプ42Aとを活性化するJEDEC標準の活性化(Activate:ACT)コマンドと、転送元のメモリセル61を含むワード線64のロウアドレスとをメモリ5に送信する。ステップS13において、転送制御回路12は、センスアンプ42Aによる増幅及びリストアにかかる時間期間にわたって待機する。ステップS14において、転送制御回路12は、WLAコマンドと、転送先のメモリセル61を含むワード線64のロウアドレスとをメモリ5に送信する。このとき、ACTコマンドによりアサートされていたワード線64は自動的にネゲートされ、センスアンプ42Aには、転送元のメモリセル61から読み出されたデータが増幅されて保持されている。センスアンプ42Aに保持されたデータは、WLAコマンドで活性化されたワード線64に接続されるメモリセル61に格納される。ステップS15において、転送制御回路12は、転送先のメモリセル61によるリストアにかかる時間期間にわたって待機する。ステップS16において、転送制御回路12は、JEDEC標準のプリチャージ(Precharge:PCG)コマンドを発行し、これにより、データの転送が完了する。その後、転送制御回路12は、MRSコマンド、バンクアドレスBA[2:0]=HHH、及びアドレスのビットA12=Lをメモリ5に送信する。これにより、メモリコントローラ3及びメモリ5は、転送モードから通常モードに戻る。
図10は、図8の第1の転送処理を実行するときのメモリ5の動作を示す概略図である。バンク31-0は、同じサブアレイに含まれるメモリセル61-1,61-2及びセンスアンプ42A-1,42A-2と、バンク31-0の入出力線66-1とを備える。データは、内部データバス32を経由することなく、転送元のメモリセル61-1から転送先のメモリセル61-2に転送される。
図11は、図8の第2の転送処理を示すサブルーチンである。第2の転送処理は、1つのバンク31における互いに異なるサブアレイ41の間でデータを転送するときの処理である。
図11のステップS21において、転送制御回路12は、MRSコマンド、バンクアドレスBA[2:0]=HHH、及びアドレスのビットA12=Hをメモリ5に送信する。これにより、メモリコントローラ3及びメモリ5は、通常モードから転送モードに遷移する。
ステップS22において、転送制御回路12は、JEDEC標準のACTコマンドと、転送元のメモリセル61を含むワード線64のロウアドレスとをメモリ5に送信する。ステップS23において、転送制御回路12は、センスアンプ42Aによる増幅及びリストアにかかる時間期間にわたって待機する。ステップS24において、転送制御回路12は、SAAコマンドと、転送先のメモリセル61を含むワード線64を含むサブアレイ41のセンスアンプ42Aのアドレスとをメモリ5に送信する。SAAコマンドにより、転送先のメモリセル61を含むワード線64を含むサブアレイ41のセンスアンプ42Aが活性化される。ステップS25において、転送制御回路12は、センスアンプ42Aによる増幅にかかる時間期間にわたって待機する。
汎用のDDR3-SDRAMのロウデコーダの構成では、1つのバンクにおける複数のワード線を独立にアサートすることは非常に困難である。従って、本実施形態では、転送先のメモリセル61を含むワード線64を後にWLAコマンドを用いてアサートすることでメモリセル61へデータを格納する。
ステップS26において、転送制御回路12は、カラムアドレスの下位ビットA[9:0]を下限値に設定する。ステップS27において、転送制御回路12は、JEDEC標準の読み出しコマンド、カラムアドレスの上位ビットA[12:10]=LLH、及びカラムアドレスの下位ビットA[9:0]をメモリ5に送信する。ステップS28において、転送制御回路12は、JEDEC標準の書き込みコマンド、カラムアドレスの上位ビットA[12:10]=LLL、及びカラムアドレスの下位ビットA[9:0]をメモリ5に送信する。ステップS27及びS28において、JEDEC標準の読み出しコマンド及び書き込みコマンドは、前述のように、転送読み出しコマンド及び転送書き込みコマンドとしてそれぞれ使用される。ステップS29において、転送制御回路12は、カラムアドレスの下位ビットA[9:0]は上限値に達したか否かを判断し、YESのときはステップS31に進み、NOのときはステップS30に進む。ステップS30において、転送制御回路12は、カラムアドレスの下位ビットA[9:0]をインクリメントする。以降は、カラムアドレスをインクリメントしながら、同じカラムアドレスに対する読み出し及び書き込みを繰り返す。
全てのカラム選択線に相当するアドレスにアクセスした後、ステップS31において、転送制御回路12は、WLAコマンドと、転送先のメモリセル61を含むワード線64のロウアドレスとをメモリ5に送信する。ステップS32において、転送制御回路12は、転送先のメモリセル61によるリストアにかかる時間期間にわたって待機する。ステップS33において、転送制御回路12は、JEDEC標準のPCGコマンドを発行し、これにより、データの転送が完了する。その後、転送制御回路12は、MRSコマンド、バンクアドレスBA[2:0]=HHH、及びアドレスのビットA12=Lをメモリ5に送信する。これにより、メモリコントローラ3及びメモリ5は、転送モードから通常モードに戻る。
ただし、第2の転送処理において読み出しコマンド及び書き込みコマンド(すなわち、転送読み出しコマンド及び転送書き込みコマンド)を受信したときのメモリ5の動作は、従来のDDR-SDRAMのメモリの動作(通常動作)とは異なる。
図12は、図8の第2の転送処理を実行するときのメモリ5の動作を示す概略図である。バンク31-0は、異なるサブアレイに含まれるメモリセル61-1,61-2及びセンスアンプ42A-1,42A-2と、バンク31-0の入出力線66-1とを備える。第2の転送処理で使用される読み出しコマンドは、通常の読み出し動作と区別するためのアドレスキーとして、アドレスの上位ビットA[12:10]=LLHを用いる。これらのビットは、通常動作時はHLLである。この読み出しコマンドが入力されたとき、転送元のメモリセル61から読み出されたデータは、バンク内を通る一対の入出力線66-1を介してデータ制御回路45にわたされ、内部データバス32を経由することなく、データ制御回路45からラッチ回路46に格納される。これは低消費電力及び低レイテンシを目的としている。次に、第2の転送処理で使用される書き込みコマンドは、通常の書き込み動作と区別するためのアドレスキーとして、アドレス[12:10]=LLLを用いる。これらのビットも、通常動作時はHLLである。この書き込みコマンドが入力されたとき、データ制御回路45は、内部データバス32からラッチ回路46にデータを取り込むことなく、上述した読み出し動作時にラッチ回路46に格納したデータを、バンク31-1の内部の一対の入出力線66-1に出力する。また、この書き込みコマンドに応じて、一対の入出力線66-1は、SAAコマンドで活性化されたセンスアンプ42Aのカラム選択用トランジスタに電気的に接続される。データ制御回路45によって一対の入出力線66-1に出力されたデータは、活性化されたセンスアンプ42Aに書き込まれる。これらの読み出し及び書き込みを繰り返し、1つのバンク31-0における互いに異なるサブアレイ41の間でデータが転送される。
図13は、図8の第2の転送処理を実行するときのメモリ5の動作を示すタイミングチャートである。図13は、1つのバンク31における互いに異なるサブアレイ41の間でデータを転送するときの、読み出しコマンド及び書き込みコマンドのシーケンスを示す。データをメモリ5の外部へ出力すること及びデータをメモリ5の外部から入力することを必要としないので、読み出し動作及び書き込み動作とも、大きなレイテンシサイクルを必要としない。このため、メモリ5の内部動作のタイミングに関して許容できる範囲では、読み出しコマンド及び書き込みコマンドの間隔を短縮することができる。
図14は、図8の第3の転送処理を示すサブルーチンである。第3の転送処理は、複数のバンク31のうちの互いに異なるバンク31における互いに異なるサブアレイ41の間でデータを転送するときの処理である。
図14のステップS41において、転送制御回路12は、MRSコマンド、バンクアドレスBA[2:0]=HHH、及びアドレスのビットA12=Hをメモリ5に送信する。これにより、メモリコントローラ3及びメモリ5は、通常モードから転送モードに遷移する。
ステップS42において、転送制御回路12は、JEDEC標準のACTコマンドと、転送元のメモリセル61を含むワード線64のロウアドレスとをメモリ5に送信する。ステップS43において、転送制御回路12は、センスアンプ42Aによる増幅及びリストアにかかる時間期間にわたって待機する。ステップS44において、転送制御回路12は、JEDEC標準のACTコマンドと、転送先のメモリセル61を含むワード線64のロウアドレスとをメモリ5に送信する。ステップS45において、転送制御回路12は、センスアンプ42Aによる増幅及びリストアにかかる時間期間にわたって待機する。
ステップS46において、転送制御回路12は、カラムアドレスの下位ビットA[9:0]を下限値に設定する。ステップS47において、転送制御回路12は、JEDEC標準の読み出しコマンド、カラムアドレスの上位ビットA[12:10]=LHH、及びカラムアドレスの下位ビットA[9:0]をメモリ5に送信する。ステップS48において、転送制御回路12は、JEDEC標準の書き込みコマンド、カラムアドレスの上位ビットA[12:10]=LHL、及びカラムアドレスの下位ビットA[9:0]をメモリ5に送信する。ステップS47及びS48において、JEDEC標準の読み出しコマンド及び書き込みコマンドは、前述のように、転送読み出しコマンド及び転送書き込みコマンドとしてそれぞれ使用される。ステップS49において、転送制御回路12は、カラムアドレスの下位ビットA[9:0]は上限値に達したか否かを判断し、YESのときはステップS51に進み、NOのときはステップS50に進む。ステップS50において、転送制御回路12は、カラムアドレスの下位ビットA[9:0]をインクリメントする。以降は、カラムアドレスをインクリメントしながら、同じカラムアドレスに対する読み出し及び書き込みを繰り返す。
全てのカラム選択線に相当するアドレスにアクセスした後、ステップS51において、転送制御回路12は、転送先のメモリセル61によるリストアにかかる時間期間にわたって待機する。ステップS52において、転送制御回路12は、JEDEC標準のPCGコマンドを発行し、これにより、データの転送が完了する。その後、転送制御回路12は、MRSコマンド、バンクアドレスBA[2:0]=HHH、及びアドレスのビットA12=Lをメモリ5に送信する。これにより、メモリコントローラ3及びメモリ5は、転送モードから通常モードに戻る。
ただし、第3の転送処理において読み出しコマンド及び書き込みコマンド(すなわち、転送読み出しコマンド及び転送書き込みコマンド)を受信したときのメモリ5の動作は、従来のDDR-SDRAMのメモリの動作(通常動作)とは異なる。
図15は、図8の第3の転送処理を実行するときのメモリ5の動作を示す概略図である。バンク31-0は、あるサブアレイに含まれるメモリセル61-1及びセンスアンプ42A-1,42A-2と、バンク31-0の入出力線66-1とを備える。バンク31-5は、あるサブアレイに含まれるメモリセル61-2及びセンスアンプ42A-3,42A-4と、バンク31-5の入出力線66-2とを備える。第3の転送処理で使用される読み出しコマンドは、通常の読み出し動作と区別するためのアドレスキーとして、アドレス[12:10]=LHHを用いる。これらのビットは、通常動作時はHLLである。この読み出しコマンドが入力されたとき、転送元のバンク31-0のメモリセル61-1から読み出されてセンスアンプ42A-2に格納されたデータは、バンク内を通る一対の入出力線66-1を介してバンク31-0のデータ制御回路45にわたされ、バンク31-0のデータ制御回路45から内部データバス32に出力される。次に、第3の転送処理で使用される書き込みコマンドは、通常の書き込み動作と区別するためのアドレスキーとして、アドレス[12:10]=LHLを用いる。これらのビットもまた、通常動作時はHLLである。この書き込みコマンドが入力されたとき、転送先のバンク31-5のデータ制御回路45は、メモリ5の外部から入力されたデータではなく、上記読み出し動作で内部データバス32に出力されたデータをバンク31-5のラッチ回路46に取り込む。バンク31-5のデータ制御回路45は、ラッチ回路46に格納されたデータを読み出してバンク31-5の一対の入出力線66-2に出力し、転送先のセンスアンプ42A-4にデータを書き込む。これらの読み出し及び書き込みを繰り返し、互いに異なるバンク31-0,31-5における互いに異なるサブアレイ41の間でデータが転送される。
図16は、図8の第3の転送処理を実行するときのメモリ5の動作を示すタイミングチャートである。図16は、互いに異なるバンク31における互いに異なるサブアレイ41の間でデータを転送するときの、読み出しコマンド及び書き込みコマンドのシーケンスを示す。図13と同様に、データをメモリ5の外部へ出力すること及びデータをメモリ5の外部から入力することを必要としないので、読み出し動作及び書き込み動作とも、大きなレイテンシサイクルを必要としない。このため、メモリ5の内部動作のタイミングに関して許容できる範囲では、読み出しコマンド及び書き込みコマンドの間隔を短縮することができる。
図8~図16を参照して説明したように、データをメモリバス4及びプロセッサバス2を介して転送することなく、所定ページ分のデータを短時間かつ低消費電力で転送することが可能となる。
実施形態1に係るメモリシステムによれば、DDR3-SDRAMのJEDEC標準に準拠したインターフェースを有するメモリ5及びメモリコントローラ3であって、メモリ5の外部のメモリバス4及びプロセッサバス2を占有せずにデータを転送又はコピーすることができる。
実施形態1に係るメモリシステムよれば、ページ(一本のワード線に接続されるメモリセルデータ)を単位として大量のデータを転送、コピー、もしくは初期化する際に、メモリ5の内部でのデータ転送を、転送元のアドレス及び転送先のアドレスに依存せず、JEDEC標準に準拠したインターフェースの信号群を使用しつつ、メモリバス4及びプロセッサバス2を占有することなく、短時間かつ小電力で実現することができる。
実施形態2.
更なる実施形態として、互いに異なるバンクの間でデータを転送するときに、内部データバスに接続されるレジスタを介して転送する場合について説明する。
更なる実施形態として、互いに異なるバンクの間でデータを転送するときに、内部データバスに接続されるレジスタを介して転送する場合について説明する。
図17は、実施形態2に係るメモリシステムのメモリ5Aの構成を示すブロック図である。メモリ5Aは、図3のメモリ5の各構成要素に加えて、内部データバス32に接続されたトライステートバッファ71,73及びレジスタ72をさらに備える。メモリコントローラ3の転送制御回路12は、複数のバンク31のうちの互いに異なるバンク31における互いに異なるサブアレイ41の間でデータを転送するようにプロセッサ1から指示されたとき、レジスタ72を介してデータを転送する。
メモリコントローラ3の転送制御回路12は、転送元のアドレス(バンク+ロウアドレス)、転送先のアドレス(バンク+ロウアドレス)、及びサブアレイ情報を照合し、転送元のバンクと転送先のバンクとが互いに異なると判断する。転送制御回路12は、上述したように、MRSコマンド、バンクアドレスBA[2:0]=HHH、及びアドレスのビットA12=Hをメモリ5Aに送信する。これにより、メモリコントローラ3及びメモリ5Aは、通常モードから転送モードに遷移する。次に、転送制御回路12は、ACTコマンド及び転送元のアドレスをメモリ5Aに送信し、さらに、所定の時間を空けて、ACTコマンド及び転送先のアドレスをメモリ5Aに送信する。以降は、カラムアドレスをインクリメントしながら、同じカラムアドレスに対する読み出し及び書き込みを繰り返す。全てのカラム選択線に相当するアドレスにアクセスした後、転送制御回路12は、転送先のメモリセル61によるリストアにかかる時間期間にわたって待機する。転送制御回路12は、JEDEC標準のPCGコマンドを発行し、これにより、データの転送が完了する。その後、転送制御回路12は、MRSコマンド、バンクアドレスBA[2:0]=HHH、及びアドレスのビットA12=Lをメモリ5Aに送信する。これにより、メモリコントローラ3及びメモリ5Aは、転送モードから通常モードに戻る。
ただし、実施形態2において、読み出しコマンド及び書き込みコマンド(すなわち、転送読み出しコマンド及び転送書き込みコマンド)を受信したときのメモリ5Aの動作は、従来のDDR-SDRAMのメモリの動作(通常動作)とは異なる。
実施形態2で使用される読み出しコマンドは、通常の読み出し動作と区別するためのアドレスキーとして、アドレス[12:10]=HHHを用いる。これらのビットは、通常動作時はHLLである。この読み出しコマンドが入力されたとき、転送元のバンク31-0のメモリセル61-1から読み出されてセンスアンプ42A-2に格納されたデータは、バンク内を通る一対の入出力線66-1を介してバンク31-0のデータ制御回路45にわたされ、バンク31-0のデータ制御回路45から内部データバス32に出力される。内部データバス32に出力されたデータは、内部データバス32に接続されたレジスタ72に格納される。次に、実施形態2で使用される書き込みコマンドは、通常の書き込み動作と区別するためのアドレスキーとして、アドレス[12:10]=HHLを用いる。これらのビットもまた、通常動作時はHLLである。この書き込みコマンドが入力されたとき、この書き込みコマンドが入力されたとき、転送先のバンク31-5のデータ制御回路45は、メモリ5Aの外部から入力されたデータではなく、レジスタ72に格納されたデータをバンク31-5のラッチ回路46に取り込む。バンク31-5のデータ制御回路45は、ラッチ回路46に格納されたデータを読み出してバンク31-5の一対の入出力線66-2に出力し、転送先のセンスアンプ42A-4にデータを書き込む。これらの読み出し及び書き込みを繰り返し、互いに異なるバンク31-0,31-5における互いに異なるサブアレイ41の間でデータが転送される。
実施形態2でも、実施形態1の第3の転送処理と同様の効果が得られ、データをメモリバス4及びプロセッサバス2を介して転送することなく、所定ページ分のデータを短時間かつ低消費電力で転送することが可能となる。
実施形態2に係るメモリシステムによれば、メモリ5Aの内部データバス32に接続された複数のレジスタを備えてもよい。
実施形態3.
実施形態2をさらに発展させた実施形態として、図18のように、内部データバス32に接続されるレジスタの前段に演算回路及び/又は別のレジスタを設けてもよい。
実施形態2をさらに発展させた実施形態として、図18のように、内部データバス32に接続されるレジスタの前段に演算回路及び/又は別のレジスタを設けてもよい。
図18は、実施形態3に係るメモリシステムのメモリ5Bの構成を示すブロック図である。メモリ5は、内部データバス32に接続されたトライステートバッファ81,86、レジスタ82,84,85、及び演算回路83をさらに備える。メモリコントローラ3の転送制御回路12は、複数のバンク31のうちの1つから読み出したデータに対して演算回路83により演算を実行し、演算後のデータを複数のバンク31のうちの1つに書き込む。
演算回路は、JEDEC標準のMRSコマンドをメモリ5Bに送信するとき、メモリバス4のコマンドバスのうちのアドレスの信号線を介して、演算回路83による演算のオペコードをメモリ5Bに送信する。
図19は、図18のメモリ5Bにおいてメモリコントローラ3から送信される書き込みコマンド及び読み出しコマンドに応じた動作を示す表である。書き込みコマンド及び読み出しコマンドのカラムアドレスの上位ビット(アドレスキー)を用いることにより、メモリコントローラ3(メモリバス4)、バンク31-0~31-7、レジスタ84などの間のデータの転送を区別し、転送元及び転送先に応じて適切に動作することができる。
図20は、図18の演算回路83の構成を示すブロック図である。演算回路83は、論理回路91、加算器92、セレクタ93,94を備える。論理回路91は、セレクタ101,102,107,108,109、排他的論理和演算回路103,106、論理和演算回路104、及び論理積演算回路105を備える。加算器92、セレクタ94,101,102,108,109、及び排他的論理和演算回路103の動作は、例えば、メモリコントローラ3からMRSコマンドとともに送信されるアドレスのビットに応じて変化する。
図21は、図18のメモリ5Bにおいてメモリコントローラ3からMRSコマンドとともに送信されるアドレスのビットを示す図である。メモリ5Bは、MRSコマンド、バンクアドレスBA[2:0]=HHH、及び図21のアドレスA[12:0]をメモリコントローラ3から受信したとき、アドレスA[12:0]の各ビットにより指定される信号を演算回路83に入力する。
実施形態3に係るメモリシステムによれば、メモリ5Bの内部のあるアドレスから読み出したデータに対してメモリ5Bの演算回路83により種々の演算を実施した演算結果を、メモリ5Bの内部の同じアドレス又は異なるアドレスに転送することが可能となる。
実施形態3に係るメモリシステムによれば、実施形態1及び2と同等の効果に加えて、短時間かつ小電力でメモリ5Bの初期化及び演算を行うことが可能となる。
変形例.
本明細書で説明した実施形態は、1GbのDDR3-SDRAMを使用し、1つのバンクを8個のサブアレイに分割した場合について、モードレジスタの設定、コマンドの体系及びシーケンスを詳細に記述しているが、DDRx-SDRAM及びLPDDRx-SDRAMの他のメモリ(例えば、DDR4-SDRAM、LPDDR4-SDRAMなど)を使用した場合にも適用可能である。JEDEC標準に準拠した信号群を用いながら、説明した実施形態とは異なるモードレジスタの設定、コマンドの体系及びシーケンス(例えば、「reserved for users」のコマンド及びアドレスを利用する等)を用いても、説明した実施形態と同様のメモリシステムを実現可能である。また、本明細書で説明した実施形態は、メモリ容量及び/又はサブアレイの分割個数が異なる場合においても同様に適用可能であることはいうまでもない。
本明細書で説明した実施形態は、1GbのDDR3-SDRAMを使用し、1つのバンクを8個のサブアレイに分割した場合について、モードレジスタの設定、コマンドの体系及びシーケンスを詳細に記述しているが、DDRx-SDRAM及びLPDDRx-SDRAMの他のメモリ(例えば、DDR4-SDRAM、LPDDR4-SDRAMなど)を使用した場合にも適用可能である。JEDEC標準に準拠した信号群を用いながら、説明した実施形態とは異なるモードレジスタの設定、コマンドの体系及びシーケンス(例えば、「reserved for users」のコマンド及びアドレスを利用する等)を用いても、説明した実施形態と同様のメモリシステムを実現可能である。また、本明細書で説明した実施形態は、メモリ容量及び/又はサブアレイの分割個数が異なる場合においても同様に適用可能であることはいうまでもない。
本発明によれば、DDRx-SDRAM又はLPDDRx-SDRAMのJEDEC標準に準拠したインターフェースを有するメモリ及びメモリコントローラであって、メモリの外部のバスを占有せずにデータを転送又はコピーすることができるメモリ及びメモリコントローラ、さらに、これらを含むメモリシステムを提供することができる。
本発明は、特に、メモリの内部において大量のデータを円滑に転送することが求められるメモリシステムに適用可能である。
1…プロセッサ、
2…プロセッサバス、
3…メモリコントローラ、
4…メモリバス、
5,5A,5B…メモリ、
11…読み書き制御回路、
12…転送制御回路、
13…セレクタ、
14…DDR物理層回路(DDR PHY)、
21…転送元アドレスレジスタ、
22…転送先アドレスレジスタ、
23…転送ページ数レジスタ、
24…サブアレイ情報レジスタ、
25…アドレス比較回路、
26…転送開始トリガレジスタ、
27…コマンド生成回路、
31-0~31-7…バンク、
32…内部データバス、
33…データ入出力回路、
34…コマンド入力回路、
35…マルチパーパスレジスタ(MPR)、
41-1~41-3…サブアレイ、
42-1~42-4…センスアンプ列、
42A…センスアンプ、
43-1~43-3…ロウデコーダ、
44…カラムデコーダ、
45…データ制御回路、
46…ラッチ回路、
47,53~56…論理和演算回路、
48…ロウアドレスレジスタ、
49…ロウプリデコーダ、
50…カラムアドレスレジスタ、
51…サブアレイ選択信号レジスタ、
52…サブアレイ選択信号レジスタ、
61,61-1,61-2…メモリセル、
62…スイッチング素子、
63,63a…ビット線、
64…ワード線、
65…セルプレート、
66-1,66-2…入出力線、
71,73…トライステートバッファ、
72…レジスタ、
81,86…トライステートバッファ、
82,84,85…レジスタ、
83…演算回路、
91…論理回路、
92…加算器、
93,94…セレクタ、
101,102,107,108,109…セレクタ、
103,106…排他的論理和演算回路、
104…論理和演算回路、
105…論理積演算回路。
2…プロセッサバス、
3…メモリコントローラ、
4…メモリバス、
5,5A,5B…メモリ、
11…読み書き制御回路、
12…転送制御回路、
13…セレクタ、
14…DDR物理層回路(DDR PHY)、
21…転送元アドレスレジスタ、
22…転送先アドレスレジスタ、
23…転送ページ数レジスタ、
24…サブアレイ情報レジスタ、
25…アドレス比較回路、
26…転送開始トリガレジスタ、
27…コマンド生成回路、
31-0~31-7…バンク、
32…内部データバス、
33…データ入出力回路、
34…コマンド入力回路、
35…マルチパーパスレジスタ(MPR)、
41-1~41-3…サブアレイ、
42-1~42-4…センスアンプ列、
42A…センスアンプ、
43-1~43-3…ロウデコーダ、
44…カラムデコーダ、
45…データ制御回路、
46…ラッチ回路、
47,53~56…論理和演算回路、
48…ロウアドレスレジスタ、
49…ロウプリデコーダ、
50…カラムアドレスレジスタ、
51…サブアレイ選択信号レジスタ、
52…サブアレイ選択信号レジスタ、
61,61-1,61-2…メモリセル、
62…スイッチング素子、
63,63a…ビット線、
64…ワード線、
65…セルプレート、
66-1,66-2…入出力線、
71,73…トライステートバッファ、
72…レジスタ、
81,86…トライステートバッファ、
82,84,85…レジスタ、
83…演算回路、
91…論理回路、
92…加算器、
93,94…セレクタ、
101,102,107,108,109…セレクタ、
103,106…排他的論理和演算回路、
104…論理和演算回路、
105…論理積演算回路。
Claims (38)
- DDRx-SDRAM又はLPDDRx-SDRAMのJEDEC(Joint Electron Device Engineering Council)標準に準拠したインターフェースを有する半導体記憶装置のための制御装置であって、
前記半導体記憶装置は、内部データバスによって互いに接続された複数のバンクを備え、前記複数のバンクのうちの各1つのバンクは、複数のセンスアンプからなる少なくとも1つのセンスアンプ列によって互いに分離された複数のサブアレイを含み、前記複数のサブアレイのうちの各1つのサブアレイは、互いに直交する複数のビット線及び複数のワード線に沿って配列された複数の記憶セルを含み、
前記制御装置は、前記半導体記憶装置からのデータの読み出し及び前記半導体記憶装置へのデータの書き込みを制御する読み書き制御回路と、前記半導体記憶装置の内部におけるデータの転送を制御する転送制御回路とを備え、
前記転送制御回路は、前記インターフェースのうちの少なくとも1つの信号線を介して前記JEDEC標準で不使用の第1の信号値を前記半導体記憶装置に送信することにより、前記JEDEC標準で規定されていない追加の転送コマンドであって、転送元の記憶セルから読み出したデータを前記半導体記憶装置の外部を経由することなく転送先の記憶セルに書き込む転送コマンドを使用可能に設定する、
制御装置。 - 前記転送制御回路は、前記JEDEC標準のモードレジスタセットコマンドを前記半導体記憶装置に送信するとき、前記インターフェースのバンクアドレスの信号線を介して前記第1の信号値を前記半導体記憶装置に送信する、
請求項1記載の制御装置。 - 前記転送コマンドは、センスアンプを活性化せずに1つのワード線を活性化するワード線活性化コマンドを含む、
請求項1又は2記載の制御装置。 - 前記転送制御回路は、前記JEDEC標準のZQキャリブレーションコマンドを無効化し、前記ZQキャリブレーションコマンドに割り当てられたビット値を前記ワード線活性化コマンドのビット値として使用可能に設定する、
請求項3記載の制御装置。 - 前記転送コマンドは、ワード線を活性化せずに1つのサブアレイのセンスアンプを活性化するセンスアンプ活性化コマンドを含む、
請求項1又は2記載の制御装置。 - 前記転送制御回路は、前記JEDEC標準のモードレジスタセットコマンドを前記半導体記憶装置に送信するとき、前記インターフェースのバンクアドレスの信号線を介して第2の信号値を前記半導体記憶装置に送信することにより、前記モードレジスタセットコマンドに割り当てられたビット値を前記センスアンプ活性化コマンドのビット値として使用可能に設定する、
請求項5記載の制御装置。 - 前記転送コマンドは、転送元のサブアレイの記憶セルから読み出したデータを前記半導体記憶装置の外部を経由することなく転送先のサブアレイの記憶セルに書き込む転送読み出しコマンド及び転送書き込みコマンドをさらに含む、
請求項1又は2記載の制御装置。 - 前記転送制御回路は、
前記JEDEC標準の読み出しコマンド及び書き込みコマンドのバーストチョップ及びオートプリチャージを無効化し、
前記JEDEC標準の読み出しコマンド及び書き込みコマンドを前記半導体記憶装置に送信するとき、前記インターフェースのカラムアドレスの複数の信号線のうちの少なくとも1つの信号線を介して第3の信号値を前記半導体記憶装置に送信することにより、前記JEDEC標準の読み出しコマンド及び書き込みコマンドに割り当てられたビット値を前記転送読み出しコマンド及び前記転送書き込みコマンドのビット値として使用可能にそれぞれ設定する、
請求項7記載の制御装置。 - 前記転送制御回路は、前記複数のバンクのうちの1つのバンクにおける前記複数のサブアレイのうちの1つのサブアレイの内部においてデータを転送するとき、
1つのワード線と前記1つのワード線を含むサブアレイのセンスアンプとを活性化する前記JEDEC標準の活性化コマンドと、転送元の記憶セルを含むワード線のロウアドレスとを前記半導体記憶装置に送信し、
前記ワード線活性化コマンドと、転送先の記憶セルを含むワード線のロウアドレスとを前記半導体記憶装置に送信し、
前記JEDEC標準のプリチャージコマンドを前記半導体記憶装置に送信する、
請求項3又は4記載の制御装置。 - 前記転送コマンドは、センスアンプを活性化せずに1つのワード線を活性化するワード線活性化コマンドと、ワード線を活性化せずに1つのサブアレイのセンスアンプを活性化するセンスアンプ活性化コマンドとをさらに含み、
前記転送制御回路は、前記複数のバンクのうちの1つのバンクにおける互いに異なるサブアレイの間でデータを転送するとき、
1つのワード線と前記1つのワード線を含むサブアレイのセンスアンプとを活性化する前記JEDEC標準の活性化コマンドと、転送元の記憶セルを含むワード線のロウアドレスとを前記半導体記憶装置に送信し、
前記センスアンプ活性化コマンドと、転送先の記憶セルを含むワード線を含むサブアレイのセンスアンプのロウアドレスとを前記半導体記憶装置に送信し、
前記転送読み出しコマンドと、カラムアドレスとを前記半導体記憶装置に送信し、
前記転送書き込みコマンドと、カラムアドレスとを前記半導体記憶装置に送信し、
前記ワード線活性化コマンドと、前記転送先の記憶セルを含むワード線のロウアドレスとを前記半導体記憶装置に送信し、
前記JEDEC標準のプリチャージコマンドを前記半導体記憶装置に送信する、
請求項7又は8記載の制御装置。 - 前記転送制御回路は、前記複数のバンクのうちの互いに異なるバンクにおける互いに異なるサブアレイの間でデータを転送するとき、
1つのワード線と前記1つのワード線を含むサブアレイのセンスアンプとを活性化する前記JEDEC標準の活性化コマンドと、転送元の記憶セルを含むワード線のロウアドレスとを前記半導体記憶装置に送信し、
前記活性化コマンドと、転送先の記憶セルを含むワード線のロウアドレスとを前記半導体記憶装置に送信し、
前記転送読み出しコマンドと、カラムアドレスとを前記半導体記憶装置に送信し、
前記転送書き込みコマンドと、カラムアドレスとを前記半導体記憶装置に送信し、
前記JEDEC標準のプリチャージコマンドを前記半導体記憶装置に送信する、
請求項7又は8記載の制御装置。 - 前記転送制御回路は、前記各バンクにおける前記各サブアレイにそれぞれ含まれるロウアドレスの範囲を示すサブアレイ情報を、前記インターフェースのうちの少なくとも1つの信号線を介して前記半導体記憶装置から受信する、
請求項1~11のうちの1つに記載の制御装置。 - 前記転送制御回路は、前記JEDEC標準のモードレジスタリードコマンドを用いて、前記半導体記憶装置のマルチパーパスレジスタから前記サブアレイ情報を受信する、
請求項12記載の制御装置。 - 前記サブアレイ情報は、
前記複数のバンクのうちの各1つのバンクにおいて周期的に配列された1つ又は複数のサブアレイの1つの周期に含まれるロウアドレスの個数と、
前記周期の先頭から当該周期に含まれる各サブアレイの先頭までのロウアドレスの個数とを含む、
請求項12又は13記載の制御装置。 - 前記転送制御回路は、
前記制御回路に接続されたプロセッサから受信した転送元のバンクアドレス及びロウアドレスを格納する転送元アドレスレジスタと、
前記プロセッサから受信した転送先のバンクアドレス及びロウアドレスを格納する転送先アドレスレジスタと、
前記プロセッサから受信した転送するデータのページ数を格納する転送ページ数レジスタと、
前記半導体記憶装置から受信した前記サブアレイ情報を格納するサブアレイ情報レジスタと、
前記転送元アドレスレジスタ、前記転送先アドレスレジスタ、前記転送ページ数レジスタ、及び前記サブアレイ情報レジスタに格納された情報に基づいて、同じサブアレイの内部においてデータを転送するか否か、及び、同じバンクの内部においてデータを転送するか否かを判断するアドレス比較回路とを備える、
請求項12~14のうちの1つに記載の制御装置。 - 前記転送制御回路は、前記制御回路に接続されたプロセッサから受信した転送開始トリガを格納する転送開始トリガレジスタを備え、
前記制御装置は、前記転送開始トリガレジスタに格納された前記転送開始トリガの有無に従って、前記読み書き制御回路及び前記転送制御回路のうちの一方を前記半導体記憶装置に接続するセレクタをさらに備える、
請求項1~15のうちの1つに記載の制御装置。 - 前記半導体記憶装置は、前記内部データバスに接続された少なくとも1つのレジスタをさらに備え、
前記転送制御回路は、前記複数のバンクのうちの互いに異なるバンクにおける互いに異なるサブアレイの間でデータを転送するとき、前記レジスタを介してデータを転送する、
請求項1~16のうちの1つに記載の制御装置。 - 前記半導体記憶装置は、前記内部データバスに接続された少なくとも1つのレジスタ及び演算回路をさらに備え、
前記転送制御回路は、前記複数のバンクのうちの1つから読み出したデータに対して前記演算回路により演算を実行し、演算後のデータを前記複数のバンクのうちの1つに書き込む、
請求項1~16のうちの1つに記載の制御装置。 - 前記演算回路は、前記JEDEC標準のモードレジスタセットコマンドを前記半導体記憶装置に送信するとき、前記インターフェースのうちのアドレスの信号線を介して、前記演算回路による演算のオペコードを前記半導体記憶装置に送信する、
請求項18記載の制御装置。 - DDRx-SDRAM又はLPDDRx-SDRAMのJEDEC(Joint Electron Device Engineering Council)標準に準拠したインターフェースを有する半導体記憶装置であって、
前記半導体記憶装置は、
内部データバスと、
前記内部データバスによって互いに接続された複数のバンクとを備え、
前記複数のバンクのうちの各1つのバンクは、複数のセンスアンプからなる少なくとも1つのセンスアンプ列によって互いに分離された複数のサブアレイを含み、前記複数のサブアレイのうちの各1つのサブアレイは、互いに直交する複数のビット線及び複数のワード線に沿って配列された複数の記憶セルを含み、
前記半導体記憶装置は、
前記インターフェースを介して制御装置に接続され、前記内部データバスを介して前記複数のバンクに接続され、前記制御装置と前記複数のバンクとの間でデータを送受信するデータ入出力回路と、
前記インターフェースを介して前記制御装置に接続され、前記制御装置から前記複数のバンクを制御するコマンドを受信するコマンド入力回路とを備え、
前記コマンド入力回路は、
前記インターフェースのうちの少なくとも1つの信号線を介して前記JEDEC標準で不使用の第1の信号値を前記制御装置から受信することにより、前記JEDEC標準で規定されていない追加の転送コマンドであって、転送元の記憶セルから読み出したデータを前記半導体記憶装置の外部を経由することなく転送先の記憶セルに書き込む転送コマンドを使用可能に設定する、
半導体記憶装置。 - 前記コマンド入力回路は、前記JEDEC標準のモードレジスタセットコマンドを前記制御装置から受信するとき、前記インターフェースのバンクアドレスの信号線を介して前記第1の信号値を前記制御装置から受信する、
請求項20記載の半導体記憶装置。 - 前記転送コマンドは、センスアンプを活性化せずに1つのワード線を活性化するワード線活性化コマンドを含む、
請求項20又は21記載の半導体記憶装置。 - 前記コマンド入力回路は、前記JEDEC標準のZQキャリブレーションコマンドを無効化し、前記ZQキャリブレーションコマンドに割り当てられたビット値を前記ワード線活性化コマンドのビット値として使用可能に設定する、
請求項22記載の半導体記憶装置。 - 前記転送コマンドは、ワード線を活性化せずに1つのサブアレイのセンスアンプを活性化するセンスアンプ活性化コマンドを含む、
請求項20又は21記載の半導体記憶装置。 - 前記コマンド入力回路は、前記JEDEC標準のモードレジスタセットコマンドを前記制御装置から受信するとき、前記インターフェースのバンクアドレスの信号線を介して第2の信号値を前記制御装置から受信することにより、前記モードレジスタセットコマンドに割り当てられたビット値を前記センスアンプ活性化コマンドのビット値として使用可能に設定する、
請求項24記載の半導体記憶装置。 - 前記転送コマンドは、転送元のサブアレイの記憶セルから読み出したデータを前記半導体記憶装置の外部を経由することなく転送先のサブアレイの記憶セルに書き込む転送読み出しコマンド及び転送書き込みコマンドをさらに含む、
請求項20又は21記載の半導体記憶装置。 - 前記コマンド入力回路は、
前記JEDEC標準の読み出しコマンド及び書き込みコマンドのバーストチョップ及びオートプリチャージを無効化し、
前記JEDEC標準の読み出しコマンド及び書き込みコマンドを前記制御装置から受信するとき、前記インターフェースのカラムアドレスの複数の信号線のうちの少なくとも1つの信号線を介して第3の信号値を前記制御装置から受信することにより、前記JEDEC標準の読み出しコマンド及び書き込みコマンドに割り当てられたビット値を前記転送読み出しコマンド及び前記転送書き込みコマンドのビット値として使用可能にそれぞれ設定する、
請求項26記載の半導体記憶装置。 - 前記コマンド入力回路は、
1つのワード線と前記1つのワード線を含むサブアレイのセンスアンプとを活性化する前記JEDEC標準の活性化コマンドと、転送元の記憶セルを含むワード線のロウアドレスとを前記制御装置から受信し、
前記ワード線活性化コマンドと、転送先の記憶セルを含むワード線のロウアドレスとを前記制御装置から受信し、
前記JEDEC標準のプリチャージコマンドを前記制御装置から受信し、
これにより、前記複数のバンクのうちの1つのバンクにおける前記複数のサブアレイのうちの1つのサブアレイの内部においてデータを転送する、
請求項22又は23記載の半導体記憶装置。 - 前記転送コマンドは、センスアンプを活性化せずに1つのワード線を活性化するワード線活性化コマンドと、ワード線を活性化せずに1つのサブアレイのセンスアンプを活性化するセンスアンプ活性化コマンドとをさらに含み、
前記コマンド入力回路は、
1つのワード線と前記1つのワード線を含むサブアレイのセンスアンプとを活性化する前記JEDEC標準の活性化コマンドと、転送元の記憶セルを含むワード線のロウアドレスとを前記制御装置から受信し、
前記センスアンプ活性化コマンドと、転送先の記憶セルを含むワード線を含むサブアレイのセンスアンプのロウアドレスとを前記制御装置から受信し、
前記転送読み出しコマンドと、カラムアドレスとを前記制御装置から受信し、
前記転送書き込みコマンドと、カラムアドレスとを前記制御装置から受信し、
前記ワード線活性化コマンドと、前記転送先の記憶セルを含むワード線のロウアドレスとを前記制御装置から受信し、
前記JEDEC標準のプリチャージコマンドを前記制御装置から受信し、
これにより、前記複数のバンクのうちの1つのバンクにおける互いに異なるサブアレイの間でデータを転送する、
請求項26又は27記載の半導体記憶装置。 - 前記コマンド入力回路は、
1つのワード線と前記1つのワード線を含むサブアレイのセンスアンプとを活性化する前記JEDEC標準の活性化コマンドと、転送元の記憶セルを含むワード線のロウアドレスとを前記制御装置から受信し、
前記活性化コマンドと、転送先の記憶セルを含むワード線のロウアドレスとを前記制御装置から受信し、
前記転送読み出しコマンドと、カラムアドレスとを前記制御装置から受信し、
前記転送書き込みコマンドと、カラムアドレスとを前記制御装置から受信し、
前記JEDEC標準のプリチャージコマンドを前記制御装置から受信し、
これにより、前記複数のバンクのうちの互いに異なるバンクにおける互いに異なるサブアレイの間でデータを転送する、
請求項26又は27記載の半導体記憶装置。 - 前記コマンド入力回路は、前記各バンクにおける前記各サブアレイにそれぞれ含まれるロウアドレスの範囲を示すサブアレイ情報を、前記インターフェースのうちの少なくとも1つの信号線を介して前記制御装置に送信する、
請求項20~30のうちの1つに記載の半導体記憶装置。 - 前記コマンド入力回路は、前記JEDEC標準のモードレジスタリードコマンドに応答して、前記半導体記憶装置のマルチパーパスレジスタに格納された前記サブアレイ情報を前記制御装置に送信する、
請求項31記載の半導体記憶装置。 - 前記サブアレイ情報は、
前記複数のバンクのうちの各1つのバンクにおいて周期的に配列された1つ又は複数のサブアレイの1つの周期に含まれるロウアドレスの個数と、
前記周期の先頭から当該周期に含まれる各サブアレイの先頭までのロウアドレスの個数とを含む、
請求項31又は32記載の半導体記憶装置。 - 前記半導体記憶装置は、前記内部データバスに接続された少なくとも1つのレジスタをさらに備え、
前記コマンド入力回路は、前記複数のバンクのうちの互いに異なるバンクにおける互いに異なるサブアレイの間でデータを転送するとき、前記レジスタを介してデータを転送する、
請求項20~33のうちの1つに記載の半導体記憶装置。 - 前記半導体記憶装置は、前記内部データバスに接続された少なくとも1つのレジスタ及び演算回路をさらに備え、
前記コマンド入力回路は、前記複数のバンクのうちの1つから読み出したデータに対して前記演算回路により演算を実行し、演算後のデータを前記複数のバンクのうちの1つに書き込む、
請求項20~33のうちの1つに記載の半導体記憶装置。 - 前記演算回路は、前記JEDEC標準のモードレジスタセットコマンドを前記制御装置から受信するとき、前記インターフェースのアドレスの信号線を介して、前記演算回路による演算のオペコードを前記制御装置から受信する、
請求項35記載の半導体記憶装置。 - 請求項1~19のうちの1つに記載の制御装置と、
請求項20~36のうちの1つに記載の半導体記憶装置とを備える、
半導体記憶システム。 - DDRx-SDRAM又はLPDDRx-SDRAMのJEDEC(Joint Electron Device Engineering Council)標準に準拠したインターフェースを有する半導体記憶装置のための制御方法であって、
前記半導体記憶装置は、内部データバスによって互いに接続された複数のバンクを備え、前記複数のバンクのうちの各1つのバンクは、複数のセンスアンプからなる少なくとも1つのセンスアンプ列によって互いに分離された複数のサブアレイを含み、前記複数のサブアレイのうちの各1つのサブアレイは、互いに直交する複数のビット線及び複数のワード線に沿って配列された複数の記憶セルを含み、
前記制御方法は、前記インターフェースのうちの少なくとも1つの信号線を介して前記JEDEC標準で不使用の第1の信号値を前記半導体記憶装置に送信することにより、前記JEDEC標準で規定されていない追加の転送コマンドであって、転送元の記憶セルから読み出したデータを前記半導体記憶装置の外部を経由することなく転送先の記憶セルに書き込む転送コマンドを使用可能に設定するステップを含む、
制御方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019503843A JP6761104B2 (ja) | 2017-03-06 | 2017-03-06 | 半導体記憶システム |
US16/491,899 US10991418B2 (en) | 2017-03-06 | 2017-03-06 | Semiconductor memory device comprising an interface conforming to JEDEC standard and control device therefor |
PCT/JP2017/008821 WO2018163252A1 (ja) | 2017-03-06 | 2017-03-06 | 半導体記憶システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/008821 WO2018163252A1 (ja) | 2017-03-06 | 2017-03-06 | 半導体記憶システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018163252A1 true WO2018163252A1 (ja) | 2018-09-13 |
Family
ID=63449071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/008821 WO2018163252A1 (ja) | 2017-03-06 | 2017-03-06 | 半導体記憶システム |
Country Status (3)
Country | Link |
---|---|
US (1) | US10991418B2 (ja) |
JP (1) | JP6761104B2 (ja) |
WO (1) | WO2018163252A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022510492A (ja) * | 2018-12-21 | 2022-01-26 | マイクロン テクノロジー,インク. | メモリデバイスと関連付けられた読み取りブロードキャスト動作 |
JP7248842B1 (ja) | 2022-03-24 | 2023-03-29 | ウィンボンド エレクトロニクス コーポレーション | 半導体装置 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10387046B2 (en) | 2016-06-22 | 2019-08-20 | Micron Technology, Inc. | Bank to bank data transfer |
US10236038B2 (en) | 2017-05-15 | 2019-03-19 | Micron Technology, Inc. | Bank to bank data transfer |
WO2020240229A1 (en) * | 2019-05-31 | 2020-12-03 | Micron Technology, Inc. | Jtag based architecture allowing multi-core operation |
TWI825539B (zh) * | 2021-12-27 | 2023-12-11 | 瑞昱半導體股份有限公司 | 用於同步動態隨機存取記憶體之設定模組及其設定方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6284484A (ja) * | 1985-08-30 | 1987-04-17 | トムソン コンポーネンツ‐モステック コーポレーション | ランダムアクセスメモリにおける行間内部パラレルデ−タ転送方法 |
JPH0845269A (ja) * | 1994-07-27 | 1996-02-16 | Hitachi Ltd | 半導体記憶装置 |
JPH11353227A (ja) * | 1998-06-08 | 1999-12-24 | Hitachi Ltd | ブロックデータ転送方法 |
JP2000156078A (ja) * | 1998-11-16 | 2000-06-06 | Toshiba Microelectronics Corp | 半導体記憶装置 |
JP2002093159A (ja) * | 2000-09-08 | 2002-03-29 | Mitsubishi Electric Corp | 半導体記憶装置 |
JP2002175698A (ja) * | 2000-12-06 | 2002-06-21 | Mitsubishi Electric Corp | 半導体装置 |
JP2009163394A (ja) * | 2007-12-28 | 2009-07-23 | Panasonic Corp | メモリ管理装置およびメモリ管理方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001167591A (ja) * | 1999-12-08 | 2001-06-22 | Matsushita Electric Ind Co Ltd | 半導体記憶装置 |
US5732010A (en) * | 1992-09-22 | 1998-03-24 | Kabushiki Kaisha Toshiba | Dynamic random access memory device with the combined open/folded bit-line pair arrangement |
KR100234714B1 (ko) * | 1996-12-30 | 1999-12-15 | 김영환 | 페이지 카피 모드를 갖는 디램 |
JP4229674B2 (ja) * | 2002-10-11 | 2009-02-25 | Necエレクトロニクス株式会社 | 半導体記憶装置及びその制御方法 |
US20120239887A1 (en) * | 2011-03-16 | 2012-09-20 | Advanced Micro Devices, Inc. | Method and apparatus for memory control |
-
2017
- 2017-03-06 US US16/491,899 patent/US10991418B2/en active Active
- 2017-03-06 JP JP2019503843A patent/JP6761104B2/ja active Active
- 2017-03-06 WO PCT/JP2017/008821 patent/WO2018163252A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6284484A (ja) * | 1985-08-30 | 1987-04-17 | トムソン コンポーネンツ‐モステック コーポレーション | ランダムアクセスメモリにおける行間内部パラレルデ−タ転送方法 |
JPH0845269A (ja) * | 1994-07-27 | 1996-02-16 | Hitachi Ltd | 半導体記憶装置 |
JPH11353227A (ja) * | 1998-06-08 | 1999-12-24 | Hitachi Ltd | ブロックデータ転送方法 |
JP2000156078A (ja) * | 1998-11-16 | 2000-06-06 | Toshiba Microelectronics Corp | 半導体記憶装置 |
JP2002093159A (ja) * | 2000-09-08 | 2002-03-29 | Mitsubishi Electric Corp | 半導体記憶装置 |
JP2002175698A (ja) * | 2000-12-06 | 2002-06-21 | Mitsubishi Electric Corp | 半導体装置 |
JP2009163394A (ja) * | 2007-12-28 | 2009-07-23 | Panasonic Corp | メモリ管理装置およびメモリ管理方法 |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11656801B2 (en) | 2018-12-21 | 2023-05-23 | Micron Technology, Inc. | Systems and methods for data relocation using a signal development cache |
US11693599B2 (en) | 2018-12-21 | 2023-07-04 | Micron Technology, Inc. | Domain-based access in a memory device |
US11360704B2 (en) | 2018-12-21 | 2022-06-14 | Micron Technology, Inc. | Multiplexed signal development in a memory device |
US11372595B2 (en) | 2018-12-21 | 2022-06-28 | Micron Technology, Inc. | Read broadcast operations associated with a memory device |
EP3899942A4 (en) * | 2018-12-21 | 2022-10-12 | Micron Technology, Inc. | PLAYBACK BROADCASTING OPERATIONS ASSOCIATED WITH A MEMORY DEVICE |
JP7175398B2 (ja) | 2018-12-21 | 2022-11-18 | マイクロン テクノロジー,インク. | メモリデバイスと関連付けられた読み取りブロードキャスト動作 |
US11520529B2 (en) | 2018-12-21 | 2022-12-06 | Micron Technology, Inc. | Signal development caching in a memory device |
US12353762B2 (en) | 2018-12-21 | 2025-07-08 | Micron Technology, Inc. | Signal development caching in a memory device |
US11340833B2 (en) | 2018-12-21 | 2022-05-24 | Micron Technology, Inc. | Systems and methods for data relocation using a signal development cache |
JP2022510492A (ja) * | 2018-12-21 | 2022-01-26 | マイクロン テクノロジー,インク. | メモリデバイスと関連付けられた読み取りブロードキャスト動作 |
US11669278B2 (en) | 2018-12-21 | 2023-06-06 | Micron Technology, Inc. | Page policies for signal development caching in a memory device |
US11709634B2 (en) | 2018-12-21 | 2023-07-25 | Micron Technology, Inc. | Multiplexed signal development in a memory device |
US11726714B2 (en) | 2018-12-21 | 2023-08-15 | Micron Technology, Inc. | Content-addressable memory for signal development caching in a memory device |
US12189988B2 (en) | 2018-12-21 | 2025-01-07 | Micron Technology, Inc. | Write broadcast operations associated with a memory device |
US11934703B2 (en) | 2018-12-21 | 2024-03-19 | Micron Technology, Inc. | Read broadcast operations associated with a memory device |
US11989450B2 (en) | 2018-12-21 | 2024-05-21 | Micron Technology, Inc. | Signal development caching in a memory device |
JP2023141470A (ja) * | 2022-03-24 | 2023-10-05 | ウィンボンド エレクトロニクス コーポレーション | 半導体装置 |
JP7248842B1 (ja) | 2022-03-24 | 2023-03-29 | ウィンボンド エレクトロニクス コーポレーション | 半導体装置 |
Also Published As
Publication number | Publication date |
---|---|
US20200135261A1 (en) | 2020-04-30 |
JP6761104B2 (ja) | 2020-09-23 |
JPWO2018163252A1 (ja) | 2019-11-07 |
US10991418B2 (en) | 2021-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018163252A1 (ja) | 半導体記憶システム | |
US11144386B2 (en) | Memory controller storing data in approximate memory device based on priority-based ECC, non-transitory computer-readable medium storing program code, and electronic device comprising approximate memory device and memory controller | |
US6504785B1 (en) | Multiprocessor system with integrated memory | |
US7464241B2 (en) | Memory transaction burst operation and memory components supporting temporally multiplexed error correction coding | |
US8050134B2 (en) | Multi-column addressing mode memory system including an integrated circuit memory device | |
US8391088B2 (en) | Pseudo-open drain type output driver having de-emphasis function, semiconductor memory device, and control method thereof | |
US12099455B2 (en) | Memory device with internal processing interface | |
KR102722737B1 (ko) | 구성 가능한 메모리 어레이 뱅크 아키텍처를 위한 장치 및 방법 | |
US20200294558A1 (en) | Method of performing internal processing operations with pre-defined protocol interface of memory device | |
US6981100B2 (en) | Synchronous DRAM with selectable internal prefetch size | |
US12119049B2 (en) | Memory controller performing data training, system-on-chip including the memory controller, and operating method of the memory controller | |
JP7679405B2 (ja) | ニアメモリアドレス生成を伴うメモリアクセスコマンド | |
US7840744B2 (en) | Rank select operation between an XIO interface and a double data rate interface | |
US6256256B1 (en) | Dual port random access memories and systems using the same | |
JP2004536417A (ja) | 読出及び書込動作でバースト順序が異なるアドレッシングを行うメモリデバイス | |
US6256221B1 (en) | Arrays of two-transistor, one-capacitor dynamic random access memory cells with interdigitated bitlines | |
JP2003223785A (ja) | 高速で動作する半導体メモリ装置及びその使用方法及び設計方法 | |
US5963468A (en) | Low latency memories and systems using the same | |
US12094519B2 (en) | Data read/write method, device, and memory having the same | |
US20060020739A1 (en) | Burst counter controller and method in a memory device operable in a 2-bit prefetch mode | |
US20190096459A1 (en) | Memory devices for performing multiple write operations and operating methods thereof | |
US11328753B2 (en) | Methods of performing self-write operation and semiconductor devices used therefor | |
JP2007140750A (ja) | 直交変換回路 | |
CN117789785A (zh) | 存储器件及其操作方法 | |
JP2012221534A (ja) | 半導体記憶装置および半導体記憶装置のリフレッシュ方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17899709 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019503843 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17899709 Country of ref document: EP Kind code of ref document: A1 |