WO2018159644A1 - NANOPARTICULES DE SOLUTION SOLIDE DE Pd-Ru, LEUR PROCÉDÉ DE PRODUCTION ET CATALYSEUR ASSOCIÉ, PROCÉDÉ DE RÉGULATION DE LA STRUCTURE CRISTALLINE DE NANOPARTICULES DE SOLUTION SOLIDE DE Pt-Ru, NANOPARTICULES DE SOLUTION SOLIDE Au-Ru, ET LEUR PROCÉDÉ DE FABRICATION - Google Patents
NANOPARTICULES DE SOLUTION SOLIDE DE Pd-Ru, LEUR PROCÉDÉ DE PRODUCTION ET CATALYSEUR ASSOCIÉ, PROCÉDÉ DE RÉGULATION DE LA STRUCTURE CRISTALLINE DE NANOPARTICULES DE SOLUTION SOLIDE DE Pt-Ru, NANOPARTICULES DE SOLUTION SOLIDE Au-Ru, ET LEUR PROCÉDÉ DE FABRICATION Download PDFInfo
- Publication number
- WO2018159644A1 WO2018159644A1 PCT/JP2018/007370 JP2018007370W WO2018159644A1 WO 2018159644 A1 WO2018159644 A1 WO 2018159644A1 JP 2018007370 W JP2018007370 W JP 2018007370W WO 2018159644 A1 WO2018159644 A1 WO 2018159644A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solid solution
- catalyst
- hcp
- nanoparticles
- reaction
- Prior art date
Links
- 239000006104 solid solution Substances 0.000 title claims abstract description 180
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 166
- 239000013078 crystal Substances 0.000 title claims abstract description 40
- 238000000034 method Methods 0.000 title claims abstract description 13
- 239000003054 catalyst Substances 0.000 title claims description 91
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 229910002848 Pt–Ru Inorganic materials 0.000 title abstract 3
- OYJSZRRJQJAOFK-UHFFFAOYSA-N palladium ruthenium Chemical compound [Ru].[Pd] OYJSZRRJQJAOFK-UHFFFAOYSA-N 0.000 title abstract 2
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 39
- 229910052707 ruthenium Inorganic materials 0.000 claims abstract description 25
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 13
- 238000010438 heat treatment Methods 0.000 claims abstract description 11
- 229910052737 gold Inorganic materials 0.000 claims abstract description 9
- 150000001875 compounds Chemical class 0.000 claims description 85
- 238000006243 chemical reaction Methods 0.000 claims description 54
- 238000006722 reduction reaction Methods 0.000 claims description 51
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 48
- 239000007809 chemical reaction catalyst Substances 0.000 claims description 47
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims description 45
- 239000000243 solution Substances 0.000 claims description 37
- 239000001257 hydrogen Substances 0.000 claims description 36
- 229910052739 hydrogen Inorganic materials 0.000 claims description 36
- 229910002849 PtRu Inorganic materials 0.000 claims description 30
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 29
- 239000007788 liquid Substances 0.000 claims description 28
- 238000007254 oxidation reaction Methods 0.000 claims description 28
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 24
- 239000001301 oxygen Substances 0.000 claims description 24
- 229910052760 oxygen Inorganic materials 0.000 claims description 24
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 23
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 19
- 239000012298 atmosphere Substances 0.000 claims description 17
- 238000005868 electrolysis reaction Methods 0.000 claims description 12
- 239000007789 gas Substances 0.000 claims description 11
- 238000000746 purification Methods 0.000 claims description 11
- 239000000446 fuel Substances 0.000 claims description 9
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 claims description 8
- 238000006356 dehydrogenation reaction Methods 0.000 claims description 7
- 150000002431 hydrogen Chemical class 0.000 claims description 7
- 238000005984 hydrogenation reaction Methods 0.000 claims description 7
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 74
- 239000010931 gold Substances 0.000 description 42
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 32
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 24
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 21
- 229910052799 carbon Inorganic materials 0.000 description 19
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 18
- 229910052751 metal Inorganic materials 0.000 description 18
- 239000002184 metal Substances 0.000 description 18
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 16
- 230000003197 catalytic effect Effects 0.000 description 16
- -1 tungsten nitride Chemical class 0.000 description 16
- 238000003917 TEM image Methods 0.000 description 15
- 238000002441 X-ray diffraction Methods 0.000 description 15
- 230000000694 effects Effects 0.000 description 15
- 239000003223 protective agent Substances 0.000 description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 14
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 14
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 14
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 14
- 239000002245 particle Substances 0.000 description 13
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 12
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 12
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 11
- 229910045601 alloy Inorganic materials 0.000 description 11
- 239000000956 alloy Substances 0.000 description 11
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 11
- 230000007423 decrease Effects 0.000 description 10
- 239000007864 aqueous solution Substances 0.000 description 9
- 238000005119 centrifugation Methods 0.000 description 9
- 238000000634 powder X-ray diffraction Methods 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 8
- 239000002244 precipitate Substances 0.000 description 8
- 239000002202 Polyethylene glycol Substances 0.000 description 7
- 238000003991 Rietveld refinement Methods 0.000 description 7
- 239000001569 carbon dioxide Substances 0.000 description 7
- 229910002092 carbon dioxide Inorganic materials 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 229920001223 polyethylene glycol Polymers 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 6
- 229930195733 hydrocarbon Natural products 0.000 description 6
- 150000002430 hydrocarbons Chemical class 0.000 description 6
- 150000001247 metal acetylides Chemical class 0.000 description 6
- 150000004767 nitrides Chemical class 0.000 description 6
- 230000035484 reaction time Effects 0.000 description 6
- VEJOYRPGKZZTJW-FDGPNNRMSA-N (z)-4-hydroxypent-3-en-2-one;platinum Chemical compound [Pt].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O VEJOYRPGKZZTJW-FDGPNNRMSA-N 0.000 description 5
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 5
- 238000002362 energy-dispersive X-ray chemical map Methods 0.000 description 5
- 239000010419 fine particle Substances 0.000 description 5
- 150000002334 glycols Chemical class 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 5
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 4
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 description 4
- WKBPZYKAUNRMKP-UHFFFAOYSA-N 1-[2-(2,4-dichlorophenyl)pentyl]1,2,4-triazole Chemical compound C=1C=C(Cl)C=C(Cl)C=1C(CCC)CN1C=NC=N1 WKBPZYKAUNRMKP-UHFFFAOYSA-N 0.000 description 4
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 4
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 4
- 239000005642 Oleic acid Substances 0.000 description 4
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 235000011187 glycerol Nutrition 0.000 description 4
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000000691 measurement method Methods 0.000 description 4
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- INZDTEICWPZYJM-UHFFFAOYSA-N 1-(chloromethyl)-4-[4-(chloromethyl)phenyl]benzene Chemical compound C1=CC(CCl)=CC=C1C1=CC=C(CCl)C=C1 INZDTEICWPZYJM-UHFFFAOYSA-N 0.000 description 3
- QIJNJJZPYXGIQM-UHFFFAOYSA-N 1lambda4,2lambda4-dimolybdacyclopropa-1,2,3-triene Chemical compound [Mo]=C=[Mo] QIJNJJZPYXGIQM-UHFFFAOYSA-N 0.000 description 3
- 229910052580 B4C Inorganic materials 0.000 description 3
- 229910052582 BN Inorganic materials 0.000 description 3
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910002601 GaN Inorganic materials 0.000 description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 3
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 3
- 229910039444 MoC Inorganic materials 0.000 description 3
- 101150003085 Pdcl gene Proteins 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 229910021607 Silver chloride Inorganic materials 0.000 description 3
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 3
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 3
- 229910026551 ZrC Inorganic materials 0.000 description 3
- OTCHGXYCWNXDOA-UHFFFAOYSA-N [C].[Zr] Chemical compound [C].[Zr] OTCHGXYCWNXDOA-UHFFFAOYSA-N 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- CAVCGVPGBKGDTG-UHFFFAOYSA-N alumanylidynemethyl(alumanylidynemethylalumanylidenemethylidene)alumane Chemical compound [Al]#C[Al]=C=[Al]C#[Al] CAVCGVPGBKGDTG-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- NWAIGJYBQQYSPW-UHFFFAOYSA-N azanylidyneindigane Chemical compound [In]#N NWAIGJYBQQYSPW-UHFFFAOYSA-N 0.000 description 3
- GPBUGPUPKAGMDK-UHFFFAOYSA-N azanylidynemolybdenum Chemical compound [Mo]#N GPBUGPUPKAGMDK-UHFFFAOYSA-N 0.000 description 3
- CFJRGWXELQQLSA-UHFFFAOYSA-N azanylidyneniobium Chemical compound [Nb]#N CFJRGWXELQQLSA-UHFFFAOYSA-N 0.000 description 3
- SKKMWRVAJNPLFY-UHFFFAOYSA-N azanylidynevanadium Chemical compound [V]#N SKKMWRVAJNPLFY-UHFFFAOYSA-N 0.000 description 3
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 239000002041 carbon nanotube Substances 0.000 description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 description 3
- 150000001735 carboxylic acids Chemical class 0.000 description 3
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 3
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 3
- GTKRFUAGOKINCA-UHFFFAOYSA-M chlorosilver;silver Chemical compound [Ag].[Ag]Cl GTKRFUAGOKINCA-UHFFFAOYSA-M 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- UNASZPQZIFZUSI-UHFFFAOYSA-N methylidyneniobium Chemical compound [Nb]#C UNASZPQZIFZUSI-UHFFFAOYSA-N 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 239000010955 niobium Substances 0.000 description 3
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 3
- 231100000572 poisoning Toxicity 0.000 description 3
- 230000000607 poisoning effect Effects 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- GTCKPGDAPXUISX-UHFFFAOYSA-N ruthenium(3+);trinitrate Chemical compound [Ru+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O GTCKPGDAPXUISX-UHFFFAOYSA-N 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 3
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 3
- ZVWKZXLXHLZXLS-UHFFFAOYSA-N zirconium nitride Chemical compound [Zr]#N ZVWKZXLXHLZXLS-UHFFFAOYSA-N 0.000 description 3
- HFDVRLIODXPAHB-UHFFFAOYSA-N 1-tetradecene Chemical compound CCCCCCCCCCCCC=C HFDVRLIODXPAHB-UHFFFAOYSA-N 0.000 description 2
- LCZVSXRMYJUNFX-UHFFFAOYSA-N 2-[2-(2-hydroxypropoxy)propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)CO LCZVSXRMYJUNFX-UHFFFAOYSA-N 0.000 description 2
- 229910003771 Gold(I) chloride Inorganic materials 0.000 description 2
- 150000001242 acetic acid derivatives Chemical class 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- FDWREHZXQUYJFJ-UHFFFAOYSA-M gold monochloride Chemical compound [Cl-].[Au+] FDWREHZXQUYJFJ-UHFFFAOYSA-M 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 150000005846 sugar alcohols Polymers 0.000 description 2
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1 -dodecene Natural products CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 1
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- 102100034013 Gamma-glutamyl phosphate reductase Human genes 0.000 description 1
- 101001133924 Homo sapiens Gamma-glutamyl phosphate reductase Proteins 0.000 description 1
- 229910010084 LiAlH4 Inorganic materials 0.000 description 1
- 239000012448 Lithium borohydride Substances 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- 229910000929 Ru alloy Inorganic materials 0.000 description 1
- UWHCKJMYHZGTIT-UHFFFAOYSA-N Tetraethylene glycol, Natural products OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 1
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 1
- CUJRVFIICFDLGR-UHFFFAOYSA-N acetylacetonate Chemical compound CC(=O)[CH-]C(C)=O CUJRVFIICFDLGR-UHFFFAOYSA-N 0.000 description 1
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 1
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000779 annular dark-field scanning transmission electron microscopy Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 150000003842 bromide salts Chemical class 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- 229940075557 diethylene glycol monoethyl ether Drugs 0.000 description 1
- 229940105990 diglycerin Drugs 0.000 description 1
- GPLRAVKSCUXZTP-UHFFFAOYSA-N diglycerol Chemical compound OCC(O)COCC(O)CO GPLRAVKSCUXZTP-UHFFFAOYSA-N 0.000 description 1
- 229940069096 dodecene Drugs 0.000 description 1
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- OTCKNHQTLOBDDD-UHFFFAOYSA-K gold(3+);triacetate Chemical compound [Au+3].CC([O-])=O.CC([O-])=O.CC([O-])=O OTCKNHQTLOBDDD-UHFFFAOYSA-K 0.000 description 1
- 239000011874 heated mixture Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000012625 in-situ measurement Methods 0.000 description 1
- 150000004694 iodide salts Chemical class 0.000 description 1
- 229960004488 linolenic acid Drugs 0.000 description 1
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 description 1
- 239000012280 lithium aluminium hydride Substances 0.000 description 1
- RPZHFKHTXCZXQV-UHFFFAOYSA-N mercury(i) oxide Chemical compound O1[Hg][Hg]1 RPZHFKHTXCZXQV-UHFFFAOYSA-N 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- CCCMONHAUSKTEQ-UHFFFAOYSA-N octadecene Natural products CCCCCCCCCCCCCCCCC=C CCCMONHAUSKTEQ-UHFFFAOYSA-N 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 description 1
- 229920003196 poly(1,3-dioxolane) Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 238000001144 powder X-ray diffraction data Methods 0.000 description 1
- 239000011814 protection agent Substances 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 235000003441 saturated fatty acids Nutrition 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
- 229940095068 tetradecene Drugs 0.000 description 1
- 238000002525 ultrasonication Methods 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/46—Ruthenium, rhodium, osmium or iridium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/16—Reducing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C5/00—Alloys based on noble metals
- C22C5/02—Alloys based on gold
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C5/00—Alloys based on noble metals
- C22C5/04—Alloys based on a platinum group metal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a PdRu solid solution nanoparticle, its production method and catalyst, a method for controlling the crystal structure of the PtRu solid solution nanoparticle, and AuRu solid solution nanoparticle and its production method.
- Palladium (Pd) is one of the rare metals, and its fine particles are industrially used for various reactions such as automobile exhaust gas purification catalysts (three-way catalysts) and electrode catalysts for household fuel cell energy farms. It is used as. However, the palladium fine particles used as these catalysts are poisoned by CO (carbon monoxide) produced in the course of various chemical reactions, and it is difficult to use them at high output for a long time. Therefore, techniques for suppressing such deterioration due to poisoning have been actively studied. On the other hand, ruthenium (Ru), one of the platinum group, has a catalytic activity to oxidize CO to CO 2 (carbon dioxide), and therefore has durability against CO poisoning.
- Ru ruthenium
- ruthenium is actually used as an alloy with platinum or the like in order to suppress CO poisoning on the electrode of the fuel cell.
- palladium and ruthenium are separated and cannot be mixed (solid solution) at the atomic level in an equilibrium state.
- Patent Document 1 discloses a binary alloy of Pd and Ru, but does not disclose a solid solution alloy containing gold.
- Patent Document 2 describes a solid solution of at least two kinds of Pt, Ir, Pd, Rh, Ru, Au, and Ag, but in the examples, only a solid solution of Ir and Pt is described. Other solid solutions are not manufactured.
- Patent Document 3 discloses a ruthenium fine particle group having a substantially face-centered cubic structure, but does not disclose information on the alloy.
- Patent Document 4 discloses fine particles of an alloy of platinum and ruthenium supported on carbon powder, but there is no description that the crystal structure is controlled by reaction conditions as in the present invention.
- Patent Documents 5 and 6 disclose PtRu alloys in Examples, but Ru has a core and platinum has a shell structure, and is not a solid solution alloy.
- the object of the present invention is to further improve the catalytic activity and durability in a solid solution of Pd and Ru.
- the present invention also aims to control the crystal structure in a PtRu solid solution.
- an object of the present invention is to provide an AuRu solid solution having a desired crystal structure and a method for producing the same.
- the present invention provides the following PdRu solid solution nanoparticles, a production method and catalyst thereof, a method for controlling the crystal structure of PtRu solid solution nanoparticles, and AuRu solid solution nanoparticles and a production method thereof.
- Item 1 PdRu solid solution nanoparticles represented by the formula Pd x Ru 1-x (0.1 ⁇ x ⁇ 0.8), wherein Pd and Ru are in solid solution at the atomic level, and the main structure is a hexagonal close-packed structure (hcp).
- Item 2. The nanoparticle according to Item 1, wherein 0.4 ⁇ x ⁇ 0.6.
- Item 3. Item 3.
- Item 5. A catalyst obtained by supporting the nanoparticles according to any one of Items 1 to 4 on a carrier.
- Item 6. Catalyst for hydrogenation reaction, catalyst for hydrogen oxidation reaction, catalyst for oxygen reduction reaction, catalyst for oxygen generation reaction (OER), catalyst for hydrogen generation reaction (HER), catalyst for nitrogen oxide (NOx) reduction reaction, carbon monoxide
- Item 7. Item 7.
- Item 8 Formula Pd x Ru characterized in that the PdRu solid solution nanoparticles of formula PdRu, whose face-centered cubic lattice structure (fcc) is the main structure, are heated in a hydrogen atmosphere to convert part or all of the fcc crystal structure into an hcp crystal structure A method for producing solid solution nanoparticles represented by 1-x (0.1 ⁇ x ⁇ 0.8), wherein Pd and Ru are in solid solution at the atomic level and the main structure is a hexagonal close-packed structure (hcp).
- Item 9 Formula Pd x Ru characterized in that the PdRu solid solution nanoparticles of formula PdRu, whose face-centered cubic lattice structure (fcc) is the main structure, are heated in a hydrogen atmosphere to convert part or all of the fcc crystal structure into an hcp crystal structure A method for producing solid solution nanoparticles represented by 1-x (0.1 ⁇
- fcc becomes the main structure, and is represented by the formula Pt y Ru 1-y (0.05 ⁇ y ⁇ 0.3)
- hcp hexagonal close-packed structure
- fcc face-centered cubic lattice
- Item 14 A method for producing AuRu solid solution nanoparticles whose main structure is a hexagonal close-packed structure (hcp), including a step of adding a solution containing an Au compound and a Ru compound to a heated solution containing CTAB (Cetyl trimethyl ammonium bromide) and a liquid reducing agent .
- CTAB Cetyl trimethyl ammonium bromide
- the nanoparticle according to item 11 or 12, which is supported on a carrier comprising a hydrogenation reaction catalyst, a hydrogen oxidation reaction catalyst, an oxygen reduction reaction catalyst, an oxygen generation reaction (OER) catalyst, a hydrogen generation reaction (HER).
- a hydrogenation reaction catalyst a hydrogen oxidation reaction catalyst, an oxygen reduction reaction catalyst, an oxygen generation reaction (OER) catalyst, a hydrogen generation reaction (HER).
- Catalyst nitrogen oxide (NOx) reduction reaction catalyst, carbon monoxide (CO) oxidation reaction catalyst, dehydrogenation reaction catalyst, VVOC or VOC oxidation reaction catalyst, exhaust gas purification catalyst, water electrolysis reaction catalyst or A catalyst which is a catalyst for a hydrogen fuel cell.
- Metal fine particles containing Pd and Ru are useful catalysts used in various reactions, and according to the present invention, a catalyst having high activity and durability that has never been achieved can be developed.
- the crystal structure of the catalyst containing Pt and Ru was almost determined by the composition, but according to the present invention, the ratio of hcp and fcc in the crystal structure can be freely controlled by controlling the production temperature of the PtRu solid solution nanoparticles. I can do it now.
- Au and Ru are alloy systems that do not inherently dissolve. According to the present invention, by producing an AuRu solid solution having a main structure of fcc or hcp, which did not exist conventionally, it becomes possible to create a crystal surface as a new electronic state and reaction field, and such an AuRu solid solution. Is considered to have a catalytic activity different from Au alone, Ru alone, and non-solid solution.
- the present invention relates to a PdRu solid solution nanoparticle having a main structure of hexagonal close-packed structure (hcp), a method for producing the same, a catalyst (first invention), a method for controlling the crystal structure of the PtRu solid solution nanoparticle (second invention),
- the present invention also relates to AuRu solid solution nanoparticles whose main structure is a hexagonal close-packed structure (hcp) or a face-centered cubic lattice structure (fcc), a method for producing the same, and a catalyst (third invention).
- the “main structure” of the solid solution nanoparticles is hcp or fcc, and the ratio of hcp or fcc is 50% or higher, preferably 55% or more when the total of hcp and fcc is 100% , 60% or more, 65% or more, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, or 100%.
- FIG. 17A shows XRD patterns of Ru NPs, hcp-AuR 3 , fcc-AuR 3 , and Au NPs
- FIG. 17C shows Topas (Bruker) for the XRD pattern of fcc-AuR 3.
- Rietveld analysis using AXS is calculated to be fcc (78.5%) and hcp (21.5%), demonstrating that fcc is the main structure.
- Result of Rietveld analysis using Topas (Bruker AXS, Inc.) for XRD patterns of hcp-Aur 3 is shown in FIG. 17 (d). Therefore, whether the main structure of the PdRu, PtRu or AuRu solid solution nanoparticles of the present invention is hcp or fcc can be confirmed by analysis of the XRD pattern.
- Pd has an fcc structure
- Ru has an hcp structure.
- the crystal structure of the solid solution composed of Pd and Ru is a mixture of fcc and hcp.
- the proportion of fcc increases as the proportion of Pd increases
- the proportion of hcp increases as the proportion of Ru increases.
- the PdRu solid solution nanoparticles are heated in a reducing hydrogen atmosphere, or heated in a vacuum or an inert gas atmosphere, the percentage of hcp increases, and if heating is continued, the crystal structure is converted to hcp at a rate of almost 100%. And the catalyst activity and durability improved as the hcp ratio increased.
- the heating of the PdRu solid solution nanoparticles can be performed at a temperature of preferably about 200 to 600 ° C., more preferably about 300 to 500 ° C.
- the reaction time is about 5 minutes to 12 hours, preferably about 10 minutes to 5 hours, more preferably about 20 minutes to 3 hours. The reaction time tends to be longer as the reaction temperature is lower.
- a hydrogen atmosphere is particularly preferable as the reaction atmosphere for increasing the crystal structure ratio of hcp.
- the hydrogen concentration in the hydrogen atmosphere is about 5 to 100% by volume.
- PdRu solid solution nanoparticles are represented by the formula Pd x Ru 1-x (0.1 ⁇ x ⁇ 0.8).
- a preferable range of x is 0.12 ⁇ x ⁇ 0.75, more preferably 0.15 ⁇ x ⁇ 0.7, still more preferably 0.17 ⁇ x ⁇ 0.65, and particularly 0.2 ⁇ x ⁇ 0.6.
- the ratio of the hcp crystal structure in the PdRu solid solution nanoparticles is 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, 95% or more, or 100%.
- the average particle size of the PdRu solid solution nanoparticles of the present invention is about 1 to 20 nm, preferably about 1 to 15 nm, more preferably about 1 to 10 nm, and further preferably about 1 to 6 nm. A small average particle size is preferable because the catalyst performance is high.
- the average particle diameter of the solid solution nanoparticles can be confirmed by a micrograph such as TEM.
- the shape of the solid solution nanoparticles is not particularly limited, and may be any shape such as a spherical shape, an ellipsoidal shape, a rod shape, a column shape, or a flake shape.
- the PdRu solid solution nanoparticles of the present invention may be supported on a carrier.
- the carrier is not particularly limited, and specific examples include oxides, nitrides, carbides, simple carbon, simple metal, etc. Among them, oxides and simple carbon are preferable, and oxides are particularly preferable.
- Preferred carrier. Examples of oxides include oxides such as silica, alumina, ceria, titania, zirconia, and niobium, and composite oxides such as silica-alumina, titania-zirconia, ceria-zirconia, and strontium titanate.
- Examples of the simple carbon include activated carbon, carbon black, graphite, carbon nanotube, and activated carbon fiber.
- nitrides include boron nitride, silicon nitride, gallium nitride, indium nitride, aluminum nitride, zirconium nitride, vanadium nitride, tungsten nitride, molybdenum nitride, titanium nitride, and niobium nitride.
- carbides include silicon carbide, gallium carbide, indium carbide, aluminum carbide, zirconium carbide, vanadium carbide, tungsten carbide, molybdenum carbide, titanium carbide, niobium carbide, and boron carbide.
- the single metal include pure metals such as iron, copper, and aluminum, and alloys such as stainless steel.
- the PdRu solid solution nanoparticles of the present invention may be coated with a surface protective agent.
- the surface protecting agent include polymers such as polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG), amines such as oleylamine, and carboxylic acids such as oleic acid.
- PdRu solid solution nanoparticles of the present invention include hydrogenation reaction catalyst, hydrogen oxidation reaction catalyst, oxygen reduction reaction (ORR) catalyst, oxygen generation reaction (OER) catalyst, hydrogen generation reaction (HER) catalyst, nitrogen oxidation (NOx) reduction reaction catalyst, carbon monoxide (CO) oxidation reaction catalyst, dehydrogenation reaction catalyst, VVOC or VOC oxidation reaction catalyst, exhaust gas purification catalyst, water electrolysis reaction catalyst, hydrogen fuel cell catalyst It is excellent as a catalyst for oxidation reaction of hydrocarbons and is preferably used as an exhaust gas purification catalyst such as a catalyst for water electrolysis reaction and a three-way catalyst. In the case of a three-way catalyst, for example, NOx is reduced to nitrogen, CO is oxidized to carbon dioxide, and hydrocarbon (CH) is oxidized to water and carbon dioxide.
- ORR oxygen reduction reaction
- OER oxygen generation reaction
- HER hydrogen generation reaction
- NOx nitrogen oxidation
- CO carbon monoxide
- the PdRu solid solution nanoparticles before enriching the hcp structure of the present invention are known and can be produced according to conventional methods. For example, a mixed aqueous solution containing a Pd compound and a Ru compound and a liquid reducing agent are prepared, and a mixed aqueous solution containing a Pd compound and a Ru compound is added to the liquid reducing agent and heated (for example, about 150 to 250 ° C.) for 1 minute to 12 minutes. PdRu solid solution nanoparticles containing a large amount of the fcc structure can be obtained by reacting with stirring for about an hour, then allowing to cool, and centrifuging.
- the reaction between the liquid reducing agent, the Pd compound, and the Ru compound is performed in the presence of a carrier, PdRu solid solution nanoparticles supported on the carrier and containing a large amount of fcc structure can be obtained.
- the reduction reaction may be performed under pressure.
- Liquid reducing agents include lower alcohols such as methanol, ethanol and isopropanol, alkylene glycols such as ethylene glycol and propylene glycol, dialkylene glycols such as diethylene glycol and dipropylene glycol, and trialkylenes such as triethylene glycol and tripropylene glycol.
- alkylene glycols such as ethylene glycol and propylene glycol
- dialkylene glycols such as diethylene glycol and dipropylene glycol
- trialkylenes such as triethylene glycol and tripropylene glycol.
- polyhydric alcohols such as glycols and glycerin.
- Pd compound and Ru compound examples include the following: Pd: K 2 PdCl 4 , Na 2 PdCl 4 , K 2 PdBr 4 , Na 2 PdBr 4 , palladium nitrate, etc. Ru: ruthenium halides such as RuCl 3 and RuBr 3 and ruthenium nitrate.
- the raw PdRu solid solution nanoparticles containing a lot of fcc structure can convert fcc into hcp by heating in hydrogen atmosphere, inert atmosphere or vacuum.
- the reaction for converting fcc to hcp is preferably carried out in a hydrogen atmosphere.
- the reaction may be performed in an atmosphere containing hydrogen and an inert gas.
- the inert gas used in the inert atmosphere include nitrogen, argon, helium, and neon, and nitrogen or argon is preferable.
- the reaction pressure in a hydrogen atmosphere or an inert atmosphere is about 100 to 1000000 Pa, more preferably about 1000 to 1000000 Pa.
- the reaction temperature is preferably about 200 to 600 ° C, more preferably about 250 to 550 ° C, and further preferably about 300 to 500 ° C.
- the reaction time is about 5 minutes or more, preferably about 30 minutes to 3 hours.
- the present invention relates to a method for controlling the ratio of the hexagonal close-packed structure (hcp) and the face-centered cubic lattice (fcc) in the crystal structure of the PtRu solid solution nanoparticles.
- the ratio of hcp and fcc can be controlled by controlling the reaction temperature.
- PtRu solid solution nanoparticles in which the ratio of the hexagonal close-packed structure (hcp) and the face-centered cubic lattice (fcc) is controlled can be obtained by cooling after completion of the reaction and centrifuging.
- Pt compound and the Ru compound examples include the following: Pt: K 2 PtCl 4 , (NH 4 ) 2 K 2 PtCl 4 , (NH 4 ) 2 PtCl 6 , Na 2 PtCl 6 etc., bisacetylacetonatoplatinum (II), Ru: ruthenium halides such as RuCl 3 and RuBr 3 and ruthenium nitrate.
- the reduction temperatures of the Pt compound and the Ru compound are shown in the following table.
- the reaction temperature is preferably about 150 to 300 ° C, more preferably about 170 to 270 ° C, and further preferably about 200 to 250 ° C.
- the reaction time is about 5 minutes or more, preferably about 10 minutes to 2 hours.
- the reduction temperature of the Pt compound is 5 ° C. or more higher than the reduction temperature of the Ru compound, more preferably the reduction temperature of the Pt compound is 10 ° C. higher than the reduction temperature of the Ru compound, and more preferably Pt.
- the reduction temperature of the compound is 15 ° C. higher than the reduction temperature of the Ru compound.
- the second invention it is preferable to gradually add a solution containing a Pt compound and a Ru compound to the liquid reducing agent solution so that the heating temperature of the liquid reducing agent is maintained.
- the addition method include spraying, dropping, and liquid feeding by a pump.
- the heating temperature of the liquid reducing agent is almost equal to the reaction temperature.
- the reaction temperature (that is, the temperature of the reducing agent solution) is from the reduction temperature of the Pt compound to the above-mentioned reduction.
- the temperature is preferably + 15 ° C, more preferably the higher reduction temperature of the Pt compound and the Ru compound to the reduction temperature + 10 ° C, and still more preferably the higher reduction temperature of the Pt compound and the Ru compound to the reduction temperature. + 5 ° C.
- the reaction temperature is the same as or slightly higher than the reduction temperature of the Pt compound, but is sufficiently higher than the reduction temperature of the Ru compound, so the timing of the reduction of the Ru compound is a little earlier, resulting in an hcp rich crystal structure. Although the timing of the reduction of the Ru compound is a little earlier, since the reduction of the Pt compound also occurs at the same time, a solid solution can be obtained. A solid solution is not formed when the timing of the reduction of the Ru compound is much earlier. In order to obtain solid solution and hcp-rich PtRu solid solution nanoparticles, delicate temperature control is required.
- the reaction temperature (that is, the temperature of the reducing agent solution) is more preferable than the reduction temperature of the Pt compound. Is higher than 15 ° C, more preferably higher than 20 ° C, more preferably higher than 25 ° C. If the reaction temperature is sufficiently higher than the reduction temperature of the Pt compound, the timing of the reduction of the Pt compound will be a little earlier, resulting in an fcc rich crystal structure. If the reduction timing of the Pt compound is much earlier, no solid solution is formed. In order to obtain solid solution and hcp-rich PtRu solid solution nanoparticles, delicate temperature control is required.
- Preferred Pt compounds are Pt (acac) 2 and C 10 H 8 Cl 2 N 2 Pt, and a preferred Ru compound is RuCl 3 .
- Liquid reducing agents include lower alcohols such as methanol, ethanol and isopropanol, alkylene glycols such as ethylene glycol and propylene glycol, dialkylene glycols such as diethylene glycol and dipropylene glycol, and trialkylenes such as triethylene glycol and tripropylene glycol.
- alkylene glycols such as ethylene glycol and propylene glycol
- dialkylene glycols such as diethylene glycol and dipropylene glycol
- trialkylenes such as triethylene glycol and tripropylene glycol.
- polyhydric alcohols such as glycols and glycerin.
- the carrier is not particularly limited, but specific examples include oxides, nitrides, carbides, carbon, and simple metals, among which oxides and carbon are preferable.
- oxides include oxides such as silica, alumina, ceria, titania, zirconia, and niobium, and composite oxides such as silica-alumina, titania-zirconia, ceria-zirconia, and strontium titanate.
- Examples of carbon include activated carbon, carbon black, graphite, carbon nanotube, and activated carbon fiber.
- nitrides include boron nitride, silicon nitride, gallium nitride, indium nitride, aluminum nitride, zirconium nitride, vanadium nitride, tungsten nitride, molybdenum nitride, titanium nitride, and niobium nitride.
- carbides include silicon carbide, gallium carbide, indium carbide, aluminum carbide, zirconium carbide, vanadium carbide, tungsten carbide, molybdenum carbide, titanium carbide, niobium carbide, and boron carbide.
- the single metal include pure metals such as iron, copper, and aluminum, and alloys such as stainless steel.
- the PtRu solid solution nanoparticles of the present invention may be coated with a surface protective agent.
- the surface protecting agent include polymers such as polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG), amines such as oleylamine, and carboxylic acids such as oleic acid.
- the PtRu solid solution nanoparticles of the present invention include a methanol oxidation catalyst, a hydrogenation reaction catalyst, a hydrogen oxidation reaction catalyst, an oxygen reduction reaction (ORR) catalyst, an oxygen generation reaction (OER) catalyst, a hydrogen generation reaction (HER).
- NOx nitrogen oxide
- CO carbon monoxide
- the solid solution nanoparticles obtained by the third invention are represented by the formula Au z Ru 1-z (0.05 ⁇ z ⁇ 0.4), and Au and Ru are in solid solution at the atomic level, and the main structure is a hexagonal close-packed structure ( hRp) or AuRu solid solution nanoparticles with a face-centered cubic lattice structure (fcc).
- AuRu solid solution nanoparticles in which the ratio of Au and Ru is the same and the main structure of the crystal structure is hcp or fcc are obtained.
- Au and Ru solid solution nanoparticle means that Au and Ru exist uniformly in the nanoparticle, and the distribution of each metal atom is not biased.
- z is 0.05 ⁇ z ⁇ 0.4, preferably 0.1 ⁇ z ⁇ 0.35, more preferably 0.15 ⁇ z ⁇ 0.25.
- the average particle size of the AuRu solid solution nanoparticles of the present invention is about 1 to 100 nm, preferably about 1 to 50 nm, more preferably about 1 to 10 nm, and still more preferably about 1 to 6 nm. A small average particle size is preferable because the catalyst performance is high.
- the average particle diameter of the solid solution nanoparticles can be confirmed by a micrograph such as TEM.
- the shape of the solid solution nanoparticles is not particularly limited, and may be any shape such as a spherical shape, an ellipsoidal shape, a rod shape, a column shape, or a flake shape.
- the method for producing solid solution nanoparticles of the present invention comprises preparing a solvent solution of an Au compound and a Ru compound, a solvent solution of a reducing agent and a surface protecting agent, and then reducing the solvent solution of the Au compound and Ru compound to a reducing agent and a surface protecting agent (optional It can be obtained by adding to the solvent solution of component) little by little by spraying, dropping, liquid feeding by a pump or the like.
- the AuRu solid solution nanoparticles of the present invention are prepared, for example, by preparing a solvent solution containing a Au compound and a Ru compound and a liquid reducing agent, adding the solvent solution containing the Au compound and the Ru compound to the liquid reducing agent, and heating (for example, 150 to AuRu solid solution nanoparticles having a main structure of fcc can be obtained by reacting with stirring at about 300 ° C. for about 1 minute to 12 hours, followed by cooling and centrifugation.
- the reaction between the liquid reducing agent, the Au compound, and the Ru compound is performed in the presence of a carrier, AuRu solid solution nanoparticles supported on the carrier and containing a large amount of the fcc structure can be obtained.
- the concentration of CTAB in the reaction system is preferably about 1/10 to 100 times, more preferably about 1 to 30 times the metal salt concentration.
- solvent water, alcohol (methanol, ethanol, isopropanol, etc.), polyols (ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, glycerin, etc.), polyethers (polyethylene glycol, etc.), etc. can be used.
- One species can be used alone, or two or more species can be used in combination.
- solvent water, alcohol or hydrous alcohol is preferable.
- the reaction temperature is preferably about 150 to 300 ° C, more preferably about 170 to 270 ° C, and further preferably about 200 to 250 ° C.
- the reaction time is about 5 minutes or more, preferably about 10 minutes to 2 hours.
- the Au compound and the Ru compound are preferably water-soluble, and more preferably a salt.
- Preferred Au compounds and Ru compounds include sulfates, nitrates, acetates and other organic acid salts, carbonates, halides (fluorides, chlorides, bromides, iodides), halides, acetates, etc. Organic acid salts and nitrates can be preferably used.
- Au may be bivalent, trivalent, or tetravalent.
- Ru may be monovalent, divalent, trivalent, or tetravalent.
- Au compounds and Ru compounds include the following: Au: HAuCl 4 , HAuBr 4 , K 2 AuCl 6 , Na 2 AuCl 6 , gold acetate, etc.
- Ru ruthenium halides such as RuCl 3 and RuBr 3 and ruthenium nitrate.
- the concentration of the Au compound and the Ru compound in the solvent solution is about 0.01 to 1000 mmol / L, preferably about 0.05 to 100 mmol / L, more preferably about 0.1 to 50 mmol / L. If the concentration of the Au compound and the Ru compound is too high, the uniformity may be lowered at the atomic level of Au and Ru.
- the reduction reaction may be performed under pressure.
- liquid reducing agents examples include lower alcohols such as methanol, ethanol, and isopropanol, glycols such as ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, and tetraethylene glycol, and polyglycerins such as glycerin, diglycerin, triglycerin, and decaglycerin.
- lower alcohols such as methanol, ethanol, and isopropanol
- glycols such as ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, and tetraethylene glycol
- polyglycerins such as glycerin, diglycerin, triglycerin, and decaglycerin.
- Ethylene glycol monomethyl ether Ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, alkylene glycol monoalkyl ethers such as diethylene glycol monoethyl ether, amines such as butylamine, dodecylamine, oleylamine, oleic acid, linoleic acid, linolenic acid, etc.
- Saturated fatty acids, unsaturated hydrocarbons such as dodecene, tetradecene, octadecene, N aBH4, LiBH4, NaCNBH3, LiAlH4, etc. can be used.
- polymers such as polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG), amines such as oleylamine, and carboxylic acids such as oleic acid can be used.
- PVP polyvinylpyrrolidone
- PEG polyethylene glycol
- amines such as oleylamine
- carboxylic acids such as oleic acid
- the carrier is not particularly limited, and specific examples include oxides, nitrides, carbides, simple carbon, simple metal, etc. Among them, oxides and simple carbon are preferable, and oxides Is a particularly preferred carrier.
- oxides include oxides such as silica, alumina, ceria, titania, zirconia, and niobium, and composite oxides such as silica-alumina, titania-zirconia, ceria-zirconia, and strontium titanate.
- Examples of the simple carbon include activated carbon, carbon black, graphite, carbon nanotube, and activated carbon fiber.
- nitrides include boron nitride, silicon nitride, gallium nitride, indium nitride, aluminum nitride, zirconium nitride, vanadium nitride, tungsten nitride, molybdenum nitride, titanium nitride, and niobium nitride.
- carbides include silicon carbide, gallium carbide, indium carbide, aluminum carbide, zirconium carbide, vanadium carbide, tungsten carbide, molybdenum carbide, titanium carbide, niobium carbide, and boron carbide.
- the single metal include pure metals such as iron, copper, and aluminum, and alloys such as stainless steel.
- the AuRu solid solution nanoparticles of the present invention include hydrogenation reaction catalysts, hydrogen oxidation reaction catalysts, oxygen reduction reaction (ORR) catalysts, oxygen generation reaction (OER) catalysts, hydrogen generation reaction (HER) catalysts, nitrogen oxidation. (NOx) reduction reaction catalyst, carbon monoxide (CO) oxidation reaction catalyst, dehydrogenation reaction catalyst, VVOC or VOC oxidation reaction catalyst, exhaust gas purification catalyst, water electrolysis reaction catalyst, hydrogen fuel cell catalyst It is excellent as a catalyst for oxidation reaction of hydrocarbons and is preferably used as an exhaust gas purification catalyst such as a catalyst for water electrolysis reaction and a three-way catalyst. In the case of a three-way catalyst, for example, NOx is reduced to nitrogen, CO is oxidized to carbon dioxide, and hydrocarbon (CH) is oxidized to water and carbon dioxide.
- NOx is reduced to nitrogen
- CO is oxidized to carbon dioxide
- CH hydrocarbon
- Example 1 Pd 0.4 Ru 0.6 solid solution nanoparticles (average particle size 13.2 nm) obtained in Reference Example 1 were heated at 573 K (300 ° C.) for 35 minutes, 41 minutes, 47 minutes or 53 minutes under a hydrogen atmosphere of 1 atm. went. The results are shown in FIG. 1 (53 minutes) and FIG. FIG. 1 shows the reaction in vacuum instead of the hydrogen atmosphere (Vac-treated), the Pd bulk, and the Pd 0.4 Ru 0.6 solid solution nanoparticles (As-synthesized) obtained in Reference Example 1.
- Example 2 The Pd 0.5 Ru 0.5 solid solution nanoparticles (average particle size 10.5 nm) obtained in Reference Example 2 were 373 K (100 ° C.), 473 K (200 ° C.), 573 K (300 ° C.), 623 K (350 K) under a hydrogen atmosphere of 1 atm. ) And 673 K (400 ° C.) for 5 minutes each to perform PXRD. The results are shown in FIG. Furthermore, a TEM image of Pd 0.5 Ru 0.5 solid solution nanoparticles (treated with 573K) was obtained (FIG. 7).
- Test example 1 A PdRu solid solution rotating ring disk electrode (PdRu / C: metal content 20 wt%) in which Pd 0.4 Ru 0.6 solid solution nanoparticles having a hcp structure of Example 1 (treated at 300 ° C. for 53 minutes) were supported on carbon particles was produced.
- the diameter of the rotating ring disk electrode (RDE) was 5 mm.
- Test example 2 Instead of the hcp Pd 0.4 Ru 0.6 solid solution nanoparticles (53 minutes at 300 ° C.) of Example 1 and using the hcp Pd 0.5 Ru 0.5 solid solution nanoparticles (400 ° C. treatment) of Example 2, the same procedure as in Test Example 1 was performed. The OER catalytic activity was measured. The results are shown in FIG.
- Test example 3 Using the hcp Pd 0.4 Ru 0.6 solid solution nanoparticles of Example 1 (treated at 300 ° C. for 53 minutes) and the fcc Pd 0.4 Ru 0.6 solid solution nanoparticles of Reference Example 1, an accelerated durability test (ADT) was conducted. A TEM image was obtained for the sample. The results are shown in FIG.
- FIG. 13 shows the XPS measurement results of the hcp Pd 0.4 Ru 0.6 solid solution nanoparticles of Example 1 (treated at 300 ° C. for 53 minutes) and the fcc Pd 0.4 Ru 0.6 solid solution nanoparticles of Reference Example 1.
- Examples 3 and 4 A mixture of 100 ml of triethylene glycol (TEG, reducing agent) and 1.0 mmol PVP (polyvinylpyrrolidone, protective agent) was heated and stirred at 220 ° C. (Example 3) or 250 ° C. (Example 4), and Pt ( Acac) 2 (0.04 mmol) and RuCl 3 (0.16 mmol) dissolved in 10 ml of ethanol were added dropwise, maintained at 220 ° C. or 250 ° C. for 1 hour, allowed to cool, and the resulting precipitate was separated by centrifugation. . XRD patterns and TEM images were obtained for the separated PtRu solid solution nanoparticles (Fig. 14). It was revealed that PtRu solid solution nanoparticles having an hcp structure were obtained in Example 3, and PtRu solid solution nanoparticles having an fcc structure were obtained in Example 4.
- TOG triethylene glycol
- PVP polyvinylpyrrolidone,
- Examples 5 and 6 A mixture of 100 ml of triethylene glycol (TEG, reducing agent) and 1.0 mmol PVP (polyvinylpyrrolidone, protective agent) was heated and stirred at 220 ° C. (Example 5) or 250 ° C. (Example 6), and Pt ( Acac) 2 (0.02 mmol) and RuCl 3 (0.18 mmol) dissolved in 10 ml of ethanol were added dropwise, maintained at 220 ° C. or 250 ° C. for 1 hour, allowed to cool, and the resulting precipitate was separated by centrifugation. . XRD patterns and TEM images were obtained for the separated PtRu solid solution nanoparticles (Fig. 15). It was revealed that PtRu solid solution nanoparticles having an hcp structure were obtained in Example 5, and PtRu solid solution nanoparticles having an fcc structure were obtained in Example 6.
- TOG triethylene glycol
- PVP polyvinylpyrrolidone,
- Comparative Example 1 A mixture of 100 ml of triethylene glycol (TEG, reducing agent) and 1.0 mmol PVP (polyvinylpyrrolidone, protective agent) is heated and stirred at 220 ° C., and H 2 PtCl 6 (0.04 mmol) and RuCl 3 (0.16 mmol) are added to this solution. Was added dropwise in 10 ml of ethanol, maintained at 220 ° C. for 1 hour, allowed to cool, and the resulting precipitate was separated by centrifugation. An XRD pattern and a TEM image were obtained for the separated PtRu solid solution nanoparticles (FIG. 16). In Comparative Example 1, it was revealed that PtRu solid solution nanoparticles with fcc structure were obtained.
- TOG triethylene glycol
- PVP polyvinylpyrrolidone, protective agent
- Example 7 HAuBr 4 (0.03 mmol) and RuCl 3 (0.07 mmol) were dissolved in 30 ml of diethylene glycol (DEG, reducing agent) (hereinafter referred to as “precursor solution”).
- DEG diethylene glycol
- Example 8 HAuBr 4 (0.03 mmol) and RuCl 3 (0.07 mmol) were dissolved in 10 ml of diethylene glycol (DEG, reducing agent) (hereinafter referred to as “precursor solution”).
- DEG diethylene glycol
- PVP 4 mmol
- the precursor solution was pumped at a rate of 1.5 ml / min while maintaining the temperature of this solution at 195 ° C. The temperature was further maintained at 195 ° C. for 10 minutes and cooled to room temperature.
- Au 0.3 Ru 0.7 solid solution nanoparticles were collected as a precipitate by centrifugation and dried under vacuum.
- Test example 4 [Manufacture of electrodes] Pd 0.4 Ru 0.6 solid solution nanoparticles or Pd 0.4 Ru 0.6 solid solution nanoparticles (53 min 300 ° C. treatment) were supported on carbon particles fcc or PdRu solid solution rotational ring hcp the hcp structure of the first embodiment of the fcc structure of Reference Example 1 A disk electrode (PdRu / C: metal content 20 wt%) was produced. The diameter of the rotating ring disk electrode (RDE) was 5 mm. The loading amount of Pd 0.4 Ru 0.6 solid solution nanoparticles on the electrode was 0.051 mg / cm 2 .
- the HER catalytic activity was measured in the same manner using Ru nanoparticles (Ru NPs) and Pd nanoparticles (Pd NPs) instead of PdRu solid solution nanoparticles.
- Ru NPs Ru nanoparticles
- Pd NPs Pd nanoparticles
- FIG. 21 fccPdRu has lower activity than Pd, whereas hcpPdRu shows higher activity than Pd.
- the current value I was measured when the potential E was swept at 5 mV / s.
- the OER catalytic activity was measured in the same manner using Au nanoparticles (Au NPs) and Ru nanoparticles (Ru NPs) instead of Au 0.3 Ru 0.7 solid solution nanoparticles.
- Au NPs Au nanoparticles
- Ru NPs Ru nanoparticles
- FIG. After about 1.5V, a decrease in activity accompanying the elution of the catalyst is observed for Ru. However, in the case of fcc solid solution, the activity gradually decreases after 1.6V, and the activity decreases with the number of measurements. On the other hand, no decrease in activity is observed in the hcp solid solution, and the activity is maintained even after 5000 measurements. Improvement of catalytic properties by controlling the crystal structure of Au 0.3 Ru 0.7 solid solution nanoparticles was observed.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Nanotechnology (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Composite Materials (AREA)
- General Chemical & Material Sciences (AREA)
- Thermal Sciences (AREA)
- Catalysts (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
La présente invention concerne les trois aspects suivants. Premièrement, l'invention concerne des nanoparticules de solution solide de Pd-Ru représentées par la formule Pd x Ru 1-x (0,1 ≤ x ≤ 0,8 ), dans laquelle Pd et Ru forment une solution solide au niveau atomique, et une structure hexagonale très compacte (hcp) constitue la structure principale de celles-ci. Deuxièmement, l'invention concerne un procédé de régulation de la structure cristalline d'un corps de solution solide Pt-Ru par régulation de la température de chauffe d'un agent réducteur destiné au corps de solution solide Pt-Ru. Troisièmement, l'invention concerne des nanoparticules de solution solide Au-Ru exprimées par la formule Au z Ru 1-z (0,05 ≤ z ≤ 0,4 ), dans laquelle Au et Ru forment une solution solide au niveau atomique, et une structure hexagonale très compacte (hcp) ou une structure cubique à faces centrées (fcc) constitue la structure principale de celles-ci.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019503039A JP7157456B2 (ja) | 2017-03-01 | 2018-02-27 | PdRu固溶体ナノ粒子、その製造方法及び触媒、PtRu固溶体ナノ粒子の結晶構造を制御する方法、並びにAuRu固溶体ナノ粒子及びその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017038497 | 2017-03-01 | ||
JP2017-038497 | 2017-03-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018159644A1 true WO2018159644A1 (fr) | 2018-09-07 |
Family
ID=63370411
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/007370 WO2018159644A1 (fr) | 2017-03-01 | 2018-02-27 | NANOPARTICULES DE SOLUTION SOLIDE DE Pd-Ru, LEUR PROCÉDÉ DE PRODUCTION ET CATALYSEUR ASSOCIÉ, PROCÉDÉ DE RÉGULATION DE LA STRUCTURE CRISTALLINE DE NANOPARTICULES DE SOLUTION SOLIDE DE Pt-Ru, NANOPARTICULES DE SOLUTION SOLIDE Au-Ru, ET LEUR PROCÉDÉ DE FABRICATION |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7157456B2 (fr) |
WO (1) | WO2018159644A1 (fr) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200094228A1 (en) * | 2018-09-20 | 2020-03-26 | Toyota Jidosha Kabushiki Kaisha | Cluster-supporting catalyst and method for producing it |
JP2020081918A (ja) * | 2018-11-16 | 2020-06-04 | フタムラ化学株式会社 | 金属担持活性炭及びその製法 |
CN113458409A (zh) * | 2021-06-17 | 2021-10-01 | 西南大学 | 一种室温合成纳米合金催化剂的方法 |
WO2022009871A1 (fr) * | 2020-07-06 | 2022-01-13 | 国立大学法人京都大学 | Alliage, agrégat de nanoparticules d'alliage, et catalyseur |
CN115165978A (zh) * | 2022-07-11 | 2022-10-11 | 吉林大学 | 一种基于双金属PdRu纳米颗粒修饰SnO2的高选择性三乙胺气体传感器及其制备方法 |
JP7547480B2 (ja) | 2019-12-30 | 2024-09-09 | ハー.ツェー.スタルク タングステン ゲゼルシャフト ミット ベシュレンクテル ハフツング | タングステン金属粉末の製造プロセス及びそれを実行するための装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006093317A1 (fr) * | 2005-03-02 | 2006-09-08 | Japan Science And Technology Agency | Nanoparticules de film ultramince de métal noble monocristallin formées en utilisant comme champ de réaction un film micelle adsorbé formé au niveau de l’interface solide/liquide et procédé de fabrication idoine |
JP2009510705A (ja) * | 2005-08-01 | 2009-03-12 | ブルックヘヴン サイエンス アソシエイツ | プラチナナノ粒子コア上に金の単原子層を含む電極触媒及びその使用 |
WO2010122811A1 (fr) * | 2009-04-24 | 2010-10-28 | 独立行政法人科学技術振興機構 | Particules fines d'alliage à l'état de solution solide et leur procédé de production |
JP2012211356A (ja) * | 2011-03-30 | 2012-11-01 | Tanaka Kikinzoku Kogyo Kk | Ru−Pd系スパッタリングターゲット及びその製造方法 |
WO2014045570A1 (fr) * | 2012-09-18 | 2014-03-27 | 独立行政法人科学技術振興機構 | Catalyseur utilisant des particules d'alliage de type solution solide de pd-ru |
JP2016108635A (ja) * | 2014-12-09 | 2016-06-20 | 国立大学法人京都大学 | 貴金属含有ナノ粒子及びその製造方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6541373B2 (ja) * | 2015-02-28 | 2019-07-10 | 株式会社ノリタケカンパニーリミテド | PdRu合金電極材料およびその製造方法 |
-
2018
- 2018-02-27 JP JP2019503039A patent/JP7157456B2/ja active Active
- 2018-02-27 WO PCT/JP2018/007370 patent/WO2018159644A1/fr active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006093317A1 (fr) * | 2005-03-02 | 2006-09-08 | Japan Science And Technology Agency | Nanoparticules de film ultramince de métal noble monocristallin formées en utilisant comme champ de réaction un film micelle adsorbé formé au niveau de l’interface solide/liquide et procédé de fabrication idoine |
JP2009510705A (ja) * | 2005-08-01 | 2009-03-12 | ブルックヘヴン サイエンス アソシエイツ | プラチナナノ粒子コア上に金の単原子層を含む電極触媒及びその使用 |
WO2010122811A1 (fr) * | 2009-04-24 | 2010-10-28 | 独立行政法人科学技術振興機構 | Particules fines d'alliage à l'état de solution solide et leur procédé de production |
JP2012211356A (ja) * | 2011-03-30 | 2012-11-01 | Tanaka Kikinzoku Kogyo Kk | Ru−Pd系スパッタリングターゲット及びその製造方法 |
WO2014045570A1 (fr) * | 2012-09-18 | 2014-03-27 | 独立行政法人科学技術振興機構 | Catalyseur utilisant des particules d'alliage de type solution solide de pd-ru |
JP2016108635A (ja) * | 2014-12-09 | 2016-06-20 | 国立大学法人京都大学 | 貴金属含有ナノ粒子及びその製造方法 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200094228A1 (en) * | 2018-09-20 | 2020-03-26 | Toyota Jidosha Kabushiki Kaisha | Cluster-supporting catalyst and method for producing it |
JP2020081918A (ja) * | 2018-11-16 | 2020-06-04 | フタムラ化学株式会社 | 金属担持活性炭及びその製法 |
JP7177667B2 (ja) | 2018-11-16 | 2022-11-24 | フタムラ化学株式会社 | 金属担持活性炭及びその製法 |
JP7547480B2 (ja) | 2019-12-30 | 2024-09-09 | ハー.ツェー.スタルク タングステン ゲゼルシャフト ミット ベシュレンクテル ハフツング | タングステン金属粉末の製造プロセス及びそれを実行するための装置 |
WO2022009871A1 (fr) * | 2020-07-06 | 2022-01-13 | 国立大学法人京都大学 | Alliage, agrégat de nanoparticules d'alliage, et catalyseur |
CN113458409A (zh) * | 2021-06-17 | 2021-10-01 | 西南大学 | 一种室温合成纳米合金催化剂的方法 |
CN115165978A (zh) * | 2022-07-11 | 2022-10-11 | 吉林大学 | 一种基于双金属PdRu纳米颗粒修饰SnO2的高选择性三乙胺气体传感器及其制备方法 |
CN115165978B (zh) * | 2022-07-11 | 2023-11-10 | 吉林大学 | 一种基于双金属PdRu纳米颗粒修饰SnO2的高选择性三乙胺气体传感器及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018159644A1 (ja) | 2020-03-26 |
JP7157456B2 (ja) | 2022-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7157456B2 (ja) | PdRu固溶体ナノ粒子、その製造方法及び触媒、PtRu固溶体ナノ粒子の結晶構造を制御する方法、並びにAuRu固溶体ナノ粒子及びその製造方法 | |
JP5105602B2 (ja) | 貴金属合金触媒の製造方法およびそれにより調製された触媒 | |
JP6352955B2 (ja) | 燃料電池用電極触媒、及び燃料電池用電極触媒の製造方法 | |
Ye et al. | Heterogeneous Au–Pt nanostructures with enhanced catalytic activity toward oxygen reduction | |
JPWO2009104500A1 (ja) | 触媒用担体、触媒およびその製造方法 | |
JP6086258B2 (ja) | 触媒およびこれを備える燃料電池 | |
US11814737B2 (en) | Process for producing alloy nanoparticles | |
CN103384933A (zh) | 作为燃料电池催化剂有用的伸展的二维金属纳米管和纳米线及含其的燃料电池 | |
Feng et al. | A universal approach to the synthesis of nanodendrites of noble metals | |
Afzali et al. | Design of PdxIr/g-C3N4 modified FTO to facilitate electricity generation and hydrogen evolution in alkaline media | |
CN107565143B (zh) | 燃料电池用电极催化剂及其制造方法以及燃料电池 | |
Pinheiro et al. | Pd-Pt nanoparticles combined with ceria nanorods for application in oxygen reduction reactions in alkaline direct ethanol fuel cell cathodes | |
JP6460975B2 (ja) | 燃料電池用電極触媒 | |
JP2009093864A (ja) | 燃料電池用電極触媒の製造方法 | |
JP7151984B2 (ja) | 固溶体ナノ粒子及びその製造方法並びに触媒 | |
JP7601853B2 (ja) | 担持された貴金属-金属合金複合体を調製するための方法、および得られる担持された貴金属-金属合金複合体 | |
RU2428769C1 (ru) | Способ приготовления биметаллического катализатора (варианты) и его применение для топливных элементов | |
RU2446009C1 (ru) | Способ приготовления платино-рутениевых электрокатализаторов | |
EP4418370A1 (fr) | Catalyseur d'électrode pour anode de pile à hydrogène | |
RU2815511C1 (ru) | Способ получения платиносодержащих электрокатализаторов в безорганических средах | |
KR101456196B1 (ko) | 표면에 금속나노결정이 증착된 금속복합체의 제조방법 및 이로부터 제조된 나노 금속복합체 | |
Reddy et al. | Synergistic enhancement of methanol electrooxidation activity in bimetallic Pt–Pd nanoparticles supported on reduced graphene oxide | |
JP2004121983A (ja) | 白金−ルテニウム合金担持触媒の製造方法 | |
CN116742028A (zh) | 一种一步法还原制备碳担载铂铜金合金材料的方法与电催化应用 | |
JP2008218078A (ja) | 燃料電池用電極触媒の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18761673 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019503039 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18761673 Country of ref document: EP Kind code of ref document: A1 |