WO2018159256A1 - Takeoff and landing device, takeoff and landing system, and unmanned delivery system - Google Patents
Takeoff and landing device, takeoff and landing system, and unmanned delivery system Download PDFInfo
- Publication number
- WO2018159256A1 WO2018159256A1 PCT/JP2018/004444 JP2018004444W WO2018159256A1 WO 2018159256 A1 WO2018159256 A1 WO 2018159256A1 JP 2018004444 W JP2018004444 W JP 2018004444W WO 2018159256 A1 WO2018159256 A1 WO 2018159256A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- weight
- unit
- take
- unmanned aircraft
- landing
- Prior art date
Links
- 238000001514 detection method Methods 0.000 claims description 59
- 230000002265 prevention Effects 0.000 claims description 21
- 230000005540 biological transmission Effects 0.000 claims description 17
- 238000004891 communication Methods 0.000 abstract description 35
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical group C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 description 15
- 238000010586 diagram Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 7
- 230000014509 gene expression Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/0055—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements
- G05D1/0066—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots with safety arrangements for limitation of acceleration or stress
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D1/00—Dropping, ejecting, releasing or receiving articles, liquids, or the like, in flight
- B64D1/22—Taking-up articles from earth's surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D45/00—Aircraft indicators or protectors not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64F—GROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
- B64F1/00—Ground or aircraft-carrier-deck installations
- B64F1/32—Ground or aircraft-carrier-deck installations for handling freight
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U10/00—Type of UAV
- B64U10/10—Rotorcrafts
- B64U10/13—Flying platforms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U20/00—Constructional aspects of UAVs
- B64U20/60—UAVs characterised by the material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U70/00—Launching, take-off or landing arrangements
- B64U70/90—Launching from or landing on platforms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G1/00—Storing articles, individually or in orderly arrangement, in warehouses or magazines
- B65G1/02—Storage devices
- B65G1/04—Storage devices mechanical
- B65G1/137—Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/10—Simultaneous control of position or course in three dimensions
- G05D1/101—Simultaneous control of position or course in three dimensions specially adapted for aircraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2101/00—UAVs specially adapted for particular uses or applications
- B64U2101/60—UAVs specially adapted for particular uses or applications for transporting passengers; for transporting goods other than weapons
- B64U2101/64—UAVs specially adapted for particular uses or applications for transporting passengers; for transporting goods other than weapons for parcel delivery or retrieval
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2201/00—UAVs characterised by their flight controls
- B64U2201/10—UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U50/00—Propulsion; Power supply
- B64U50/30—Supply or distribution of electrical power
Definitions
- One aspect of the present invention relates to a take-off and landing device, a take-off and landing system, and an unmanned delivery system.
- Patent Documents 1 and 2 disclose systems that deliver articles using unmanned aerial vehicles.
- Unmanned aerial vehicles are more susceptible to wind and other disturbances if the weight of the delivered goods (loading weight) is greater than the weight of the unmanned aircraft. If an unmanned aerial vehicle is subjected to such disturbance, the intended control cannot be performed, which may hinder safe flight. For this reason, when delivering goods using an unmanned aerial vehicle, not only will a law prohibiting flying in a state where the loaded weight exceeds a predetermined value (hereinafter referred to as “overloading”), A mechanism to comply with the law is required.
- overloading a law prohibiting flying in a state where the loaded weight exceeds a predetermined value
- an object of one aspect of the present invention is to provide a take-off and landing device, a take-off and landing system, and an unmanned delivery system that can prevent an unmanned aircraft from flying in an overloaded state.
- a take-off and landing device for an unmanned aerial vehicle is a take-off and landing device in which an unmanned aircraft for delivering an article is taken off and landing, and a first state in which the unmanned aircraft is prevented from taking off from its own device.
- a take-off prevention unit that can be switched to a second state that is not blocked, a weight acquisition unit that acquires the weight of an article delivered by an unmanned aerial vehicle, and the weight and overload of the article acquired by the weight acquisition unit
- a first control unit that switches the state of the takeoff prevention unit to the first state or the second state based on the reference value for determining whether or not.
- the control unit acquires the weight of an article loaded on the unmanned aircraft to be taken off from the take-off and landing device, and when it is determined that the weight is overloaded, the take-off prevention is performed.
- the unit is controlled to be in the first state, and the unmanned aircraft is prevented from taking off. Thereby, since the unmanned aircraft in the overload state cannot take off from the take-off and landing device, the unmanned aircraft can be prevented from flying in the overload state.
- the take-off prevention unit is a fixing device that fixes the unmanned aircraft to the own device, and the fixing device includes a first state that fixes the unmanned aircraft to the own device, and the self-device. It may be possible to switch to the second state in which the unmanned aircraft is not fixed to the apparatus.
- this unmanned aircraft take-off and landing device a fixing device that prevents the unmanned aircraft from taking off by fixing the unmanned aircraft to the own device is adopted as the take-off prevention unit. That is, in this take-off and landing device, even if the unmanned aircraft is about to take off, the unmanned aircraft cannot be taken off because it is physically fixed to the take-off and landing device. Thereby, take-off of the unmanned aircraft in an overloaded state can be prevented with a simple structure.
- the take-off prevention unit is a transmission unit that transmits a control signal that causes the unmanned aircraft to perform a flight operation, and the transmission unit is a first state that prohibits transmission of the control signal. And a second state in which transmission of the control signal is permitted.
- a transmission unit that prevents the unmanned aircraft from taking off by not transmitting a control signal for causing the unmanned aircraft to fly is adopted as a take-off prevention unit. That is, in this take-off and landing device, since the control signal for taking off the unmanned aircraft is not transmitted, the unmanned aircraft does not take off. Thereby, take-off of the unmanned aircraft in an overloaded state can be prevented with a simple configuration.
- the unmanned aircraft take-off and landing device further includes a first weight detection unit that measures the weight of an article to be delivered, and the weight acquisition unit acquires the weight of the article from the first weight detection unit. Good.
- the weight of the unmanned aircraft loaded with the article is measured, and the weight of the article is calculated by subtracting the weight of the unmanned airplane stored in advance. Since the weight of the article is measured by a first weight detection unit such as a load cell, it is possible to more accurately determine the overloading state than when estimating the weight of the article.
- a weight detection unit having a wider weight measurement range than the weight detection unit (second weight detection unit) mounted on the unmanned aerial vehicle can be employed. That is, even heavier weights can be measured.
- a take-off and landing device for an unmanned aerial vehicle includes a remaining amount acquisition unit that acquires a remaining amount of an energy source of a power source mounted on the unmanned aircraft, a weight of an article loaded on the unmanned aircraft, and a remaining amount
- a cruising information storage unit that stores cruising information that is a relationship with a cruising distance or cruising time of an unmanned aircraft, a delivery destination information acquisition unit that acquires a delivery distance or delivery time from the current position to the delivery destination of the article, The first control unit, the weight of the article acquired by the weight acquisition unit, the remaining amount acquired from the remaining amount acquisition unit, the delivery distance or delivery time acquired from the delivery destination information acquisition unit, Based on the cruising information, it is determined whether the unmanned aircraft can navigate to the delivery destination, and if it is determined that navigation is not possible, the state in the take-off prevention unit is switched to the first state, and if it is determined that navigation is possible, the take-off prevention unit State to second state Toggles may be.
- This unmanned aerial vehicle take-off and landing device determines not only overloading but also whether or not the unmanned aircraft can navigate to the delivery destination, and permits the unmanned aircraft to take off based on the determination. Thereby, an unmanned aerial vehicle can be navigated more safely.
- An unmanned aerial vehicle takeoff and landing system has a second weight detection unit that measures the weight of an article to be delivered, and delivers the article by flying based on a control signal that controls the flight of the own device.
- the unmanned aerial vehicle and the take-off and landing device described above may be included, and the weight acquisition unit may acquire the weight of the article from the second weight detection unit.
- the unmanned aircraft includes a receiving unit that receives a control signal for controlling flight of the own device, a weight detected by the second weight detecting unit, and a predetermined reference value. And a second control unit that determines whether or not an overloaded state is reached when an article to be delivered is loaded, and the second control unit receives when it is determined that the overloaded state is reached The operation may be prohibited based on the control signal received by the unit.
- the second control unit prevents the unmanned aircraft from taking off by controlling itself so as not to take off in the case of overloading. Thereby, cost can be suppressed compared with providing a fixing device or a transmission part. In addition, when the fixing device is used in combination, it is possible to prevent the unmanned aircraft in an overloaded state from taking off more reliably.
- An unmanned aerial vehicle takeoff and landing system includes a notification unit that notifies a target product that is a product to be picked from a group of products stored in a product shelf, and a reception unit that receives presence or absence of picking of the target product And a weight estimation unit that estimates the total weight of the target product based on the target product received by the reception unit, and the take-off and landing device, the weight acquisition unit from the weight estimation unit to the article You may get the weight of.
- This unmanned aerial vehicle takeoff and landing system estimates the weight of articles loaded on the unmanned aerial vehicle based on the presence or absence of picking in the picking process. By storing the weight of each article in advance, the total weight of the article can be estimated as soon as picking is completed. Thereby, since the weight of the goods loaded on the unmanned aerial vehicle can be estimated easily, a system capable of preventing the unloaded unmanned aircraft from taking off can be constructed at low cost.
- An unmanned aircraft take-off and landing system includes an order receiving unit that receives an order for a product via a network, a product information storage unit that stores product information in which the product and the weight of the product are associated, and product information
- a weight estimation unit that estimates the total weight of the product based on the order received in the order reception unit, and the take-off and landing device, and the weight acquisition unit includes the weight estimation unit.
- the weight of the article may be obtained from
- This unmanned aerial vehicle takeoff and landing system estimates the weight of an article loaded on the unmanned aerial vehicle based on information on products received via the network. By storing the weight of each product in advance, the total weight of the product can be estimated as soon as the ordered product is determined, that is, as soon as the product to be delivered is determined. Thereby, since the weight of the goods loaded on the unmanned aerial vehicle can be estimated easily, a system capable of preventing the unloaded unmanned aircraft from taking off can be constructed at low cost.
- An unmanned delivery system is an unmanned delivery system including an unmanned aircraft that delivers an article and a control device that controls the unmanned airplane, and a weight acquisition unit that obtains the weight of the article; A third control unit that determines whether or not an overloaded state is reached when an article to be delivered is loaded based on the weight acquired by the weight acquisition unit and a predetermined reference value; The unit selectively switches between a delivery mode in which the operation mode of the unmanned aerial vehicle can take off and land and a prohibit mode incapable of taking off and landing based on the determination result of whether or not the vehicle is overloaded.
- the third control unit prevents take-off of the unmanned aircraft by controlling to a prohibit mode incapable of taking off and landing in the case of overloading. Thereby, since the unmanned aircraft in the overload state cannot take off, the unmanned aircraft can be prevented from flying in the overload state.
- the weight acquisition unit and the third control unit may be mounted on an unmanned aircraft.
- a remaining amount acquisition unit that acquires the remaining amount of the energy source of the power source mounted on the unmanned aircraft, the weight of the article loaded on the unmanned aircraft, the remaining amount
- a cruising information storage unit that stores cruising information that is a relationship with a cruising distance or cruising time of the unmanned aircraft, and a delivery destination information acquisition unit that obtains a delivery distance or delivery time from the current position to the delivery destination of the article.
- the third control unit includes the weight of the article acquired by the weight acquisition unit, the remaining amount acquired from the remaining amount acquisition unit, the delivery distance or delivery time acquired from the delivery destination information acquisition unit, and the cruising information Based on the above, it is determined whether or not the unmanned aircraft can navigate to the delivery destination. If it is determined that navigation is not possible, the operation mode may be switched to the prohibit mode, and if it is determined that navigation is possible, the operation mode may be switched to the delivery mode. .
- FIG. 1 is a configuration diagram of a take-off and landing system according to the first embodiment.
- FIG. 2 is a functional block diagram of the take-off and landing system according to the first embodiment.
- FIG. 3 is a configuration diagram of the take-off and landing system according to the second embodiment.
- FIG. 4 is a functional block diagram of the take-off and landing system according to the second embodiment.
- FIG. 5 is a functional block diagram of the take-off and landing system according to the third embodiment.
- FIG. 6 is a configuration diagram of the take-off and landing system according to the fourth embodiment.
- FIG. 7 is a functional block diagram of the takeoff and landing system according to the fourth embodiment.
- FIG. 8 is a configuration diagram of a take-off and landing system according to the fifth embodiment.
- FIG. 9 is a functional block diagram of the take-off and landing system according to the fifth embodiment.
- FIG. 10 is a functional block diagram of the unmanned delivery system according to the sixth embodiment.
- the take-off and landing device 5 is a device that is disposed at a place where an unmanned aerial vehicle (UAV: Unmanned Aerial Vehicle) 3 that delivers a package (article) B is taken off and landing.
- UAV Unmanned Aerial Vehicle
- the unmanned aerial vehicle 3 will be described.
- the unmanned aircraft 3 is an aircraft that can fly unmanned by remote control or automatic control (flight program) based on a control signal transmitted from the transmitter 4.
- An example of the transmitter 4 is a controller that controls the unmanned aerial vehicle 3 or an antenna that transmits a flight program.
- the antenna may transmit a signal for starting the flight program.
- the unmanned aerial vehicle 3 mainly includes a frame 31, a motor 32, a propeller 33, a communication unit (reception unit) 34, a battery 35, and a flight control unit 37.
- the frame 31 supports a motor 32, a propeller 33, a communication unit 34, a battery 35, and a flight control unit 37.
- Examples of the material forming the frame 31 include nylon and carbon.
- the motor 32 is a drive source of the propeller 33 and is provided for each propeller 33.
- the communication unit 34 receives a control signal transmitted from the transmitter 4 that controls the flight of the own device.
- the battery 35 supplies power to various parts that require power, such as the motor 32, the communication unit 34, and the flight control unit 37.
- An example of the battery 35 is a lithium polymer battery.
- the flight control unit 37 controls the number of rotations of each propeller 33 (the number of rotations of the motor 32) and also controls the relationship between the number of rotations of the plurality of propellers 33. Various controls such as turning left, moving forward, moving backward, and hovering are executed.
- the take-off and landing device 5 includes, for example, a main body 51 that is installed indoors or outdoors and is fixed to the ground, a landing portion 52 having a flat surface on which the unmanned aircraft 3 can take off and landing, and a weight.
- a detection unit (first weight detection unit) 53, a fixing device (takeoff prevention unit) 55, and a control unit 60 are provided.
- the fixing device 55 is a device that is provided in the landing portion 52 and fixes the frame 31 of the unmanned aircraft 3 to the landing portion 52 to prevent the unmanned aircraft 3 from taking off.
- the fixing device 55 releases the unmanned aircraft 3 from the first state in which the unmanned aircraft 3 is prevented from taking off by fixing the unmanned aircraft 3 to the landing portion 52 and the unmanned aircraft 3 is fixed to the landing portion 52. It is possible to switch to an allowable second state. Switching between the first state and the second state in the fixing device 55 is executed by the control unit 60.
- the fixing device 55 may set the state of fixing the unmanned aerial vehicle 3 landing on the landing portion 52 as a default (normal state).
- the weight detection unit 53 is disposed below the landing unit 52 and detects the weight of the unmanned aircraft 3 that has landed on the landing unit 52.
- a device using a load cell can be used for the weight detection unit 53.
- the weight acquired by the weight detection unit 53 is output to the control unit 60.
- the control unit 60 mainly includes an unillustrated CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), for example, an auxiliary storage device such as an SSD (solid state drive), Have
- the control unit 60 executes various control processes for taking off the unmanned aircraft 3.
- the control unit 60 includes a weight acquisition unit 60 ⁇ / b> A as a conceptual part that executes various control processes for taking off the unmanned aircraft 3, a take-off control unit (first control unit) 60 ⁇ / b> B, Have.
- Such a conceptual part is configured by, for example, a program stored in the ROM being loaded onto the RAM and executed by the CPU.
- the weight acquisition unit 60A acquires the weight of the luggage B delivered by the unmanned aerial vehicle 3.
- the weight acquisition unit 60A calculates the weight of the load B loaded on the unmanned aerial vehicle 3 based on the weight of the unmanned aircraft 3 stored in advance and the weight detected by the weight detection unit 53.
- the weight acquisition unit 60A outputs the calculated weight of the load B to the take-off control unit 60B.
- the take-off control unit 60B determines that the unmanned aerial vehicle 3 is in an overloaded state based on the weight of the load B calculated by the weight acquisition unit 60A and a reference value for determining whether or not the vehicle is overloaded. It is determined whether or not there is.
- the takeoff control unit 60B switches the state of the fixing device 55 to the first state or the second state based on whether or not the unmanned aerial vehicle 3 that loads the load B is in an overloaded state. Specifically, the takeoff control unit 60B controls the fixing device 55 so as to maintain the unmanned aircraft 3 fixed (or fix the unmanned aircraft 3 to the landing unit 52) when it is determined that the vehicle is overloaded. When it is determined that the vehicle is not overloaded, the fixing device 55 is controlled so as to release the fixation of the unmanned aircraft 3 (or maintain the fixed release state of the unmanned aircraft 3).
- the control unit 60 acquires the weight of the load B loaded on the unmanned aircraft 3 that is about to take off from the take-off and landing device 5 and determines that the weight is overloaded from the weight.
- the fixing device 55 is controlled so as to fix the unmanned aircraft 3 to the landing portion 52, thereby preventing the unmanned aircraft 3 from taking off.
- the unmanned aircraft 3 delivering the package B is required to take off from a specific take-off and landing device, for example, by law, the unmanned aircraft 3 in an overloaded state is as shown in this embodiment.
- the take-off and landing device 5 cannot take off. That is, the unmanned aircraft 3 can be prevented from flying in an overloaded state.
- a fixing device 55 that prevents the unmanned aircraft 3 from taking off by fixing the unmanned aircraft 3 to the landing portion 52 is employed as the take-off prevention portion. That is, in this take-off and landing device 5, even if the unmanned aircraft 3 tries to take off, the unmanned aircraft 3 is physically fixed to the take-off and landing device 5 and cannot take off. Thereby, take-off of the unmanned aircraft 3 in an overloaded state can be prevented with a simple structure.
- the weight detection unit 53 of the take-off and landing device 5 is a device that uses a load cell or the like that detects the weight of the unmanned aircraft 3 that has landed on the landing unit 52.
- the weight of the load B is directly measured by the weight detection unit 53, so that the overloading state can be determined more accurately.
- a heavy weight can be accurately measured.
- the unmanned aerial vehicle 3 described above is a weight detection unit 36 (second weight detection unit) that detects the weight of the load B loaded on the unmanned aircraft 3 in the unmanned aircraft 3 used in the first embodiment (see FIG. 1). ) May be provided.
- An example of the weight detection unit 36 is a load cell.
- the control unit 60 in the take-off and landing device 5 acquires the weight of the load B from the weight detection unit 36 and determines whether or not it is in an overloaded state. May be.
- the weight acquisition unit 60A acquires the weight of the load B acquired by the weight detection unit 36 by providing the take-off / landing device 5 with the communication unit 57 (see FIG. 3) that can communicate with the unmanned aircraft 3. can do.
- the weight applied to the unmanned aircraft 3 can be more accurately acquired. This makes it possible to more accurately determine the overloaded state.
- control unit 60 has both values of the weight of the load B acquired by the weight detection unit 36 and the weight of the load B acquired by the weight detection unit 53 (for example, an average value of both values or a larger value).
- the overloaded state may be determined based on the other value.
- the takeoff and landing device 5A includes a communication unit (transmission unit) 57 instead of removing the fixing device 55 from the configuration of the takeoff and landing device 5 of the first embodiment.
- the communication unit 57 transmits to the unmanned aircraft 3 an activation signal that activates the flight program or a program stored in advance in the unmanned aircraft 3 (hereinafter, both are referred to as “control signals”).
- control signals both are referred to as “control signals”.
- control signals are abbreviate
- the take-off control unit 60B permits the transmission of the control signal and the first state in which the communication unit 57 prohibits the transmission of the signal based on whether or not the unmanned aerial vehicle 3 carrying the load B is in an overloaded state. It is possible to switch to the second state. Specifically, when it is determined that the takeoff control unit 60B is in an overloading state, the takeoff control unit 60B prohibits transmission of a control signal from the communication unit 57, and when it is determined that it is not in an overloading state. The control signal is permitted to be transmitted from the communication unit 57.
- the control unit 60 acquires the weight of the load B loaded on the unmanned aircraft 3 that is about to take off from the take-off and landing device 5 and determines that the weight is overloaded from the weight. In such a case, control is performed so as to prohibit the transmission of the control signal from the communication unit 57, thereby preventing the unmanned aircraft 3 from taking off. That is, unless a control signal is transmitted from the communication unit 57, the communication unit 34 mounted on the unmanned aircraft 3 does not receive the control signal, and the flight control unit 37 does not execute control related to the flight.
- the communication unit 34 mounted on the unmanned aircraft 3 receives the control signal, and the flight control unit 37 executes control related to the flight.
- the unmanned aircraft 3 delivering the package B is required to take off from a specific take-off and landing device, for example, by law, the unmanned aircraft 3 in an overloaded state is as shown in this embodiment.
- the take-off and landing device 5 cannot take off. That is, the unmanned aircraft 3 can be prevented from flying in an overloaded state.
- the communication unit 57 is employed as a take-off prevention unit that prevents the unmanned aircraft 3 from taking off by not transmitting a control signal that causes the unmanned aircraft 3 to perform a flight operation. That is, in this take-off and landing device 5A, since the control signal for taking off the unmanned aircraft 3 is not transmitted, the unmanned aircraft 3 does not take off. Thereby, take-off of the unmanned aircraft 3 in an overloaded state can be prevented with a simple configuration.
- the unmanned aerial vehicle 3 may include the weight detection unit 36.
- the control unit 60 in the take-off and landing device 5 determines whether or not it is overloaded based on the weight of the load B acquired by the weight detection unit 36. May be.
- the takeoff and landing device 5B includes the communication unit 57 described in the second embodiment in addition to the configuration of the takeoff and landing device 5 of the first embodiment.
- the communication unit 57 transmits a control signal to the unmanned aircraft 3.
- description is abbreviate
- the take-off control unit 60B controls the fixing device 55 so as to keep the unmanned aircraft 3 fixed (or fix the unmanned aircraft 3 to the landing unit 52) and the communication unit 57.
- the fixing device 55 is configured to release the fixation of the unmanned aircraft 3 (or maintain the fixed release state in the unmanned aircraft 3). And a control signal is permitted to be transmitted from the communication unit 57.
- the unmanned aircraft 3 can be prevented from flying in an overloaded state, similarly to the first embodiment and the second embodiment.
- the fixing device 55 that prevents the unmanned aircraft 3 from taking off by fixing the unmanned aircraft 3 to the landing portion 52, the fixing device 55 that prevents the unmanned aircraft 3 from taking off, and the control signal that causes the unmanned aircraft 3 to perform a flight operation are not transmitted.
- Both the communication unit 57 that prevents the unmanned aircraft 3 from taking off are employed as the takeoff prevention unit. Accordingly, even if one of the fixing device 55 and the communication unit 57 is erroneously controlled by the control unit 60, the unmanned aircraft 3 can be prevented from flying in an overloaded state if the other is correctly controlled. .
- the unmanned aerial vehicle 3 may include the weight detection unit 36.
- the control unit 60 in the take-off and landing device 5 determines whether or not it is overloaded based on the weight of the load B acquired by the weight detection unit 36. May be.
- the takeoff and landing system 101 includes an unmanned aerial vehicle 3 described in the first embodiment, a takeoff and landing device 5 ⁇ / b> C configured by removing the weight detection unit 53 from the takeoff and landing device 5 ⁇ / b> A of the second embodiment, A server (order reception system) 70.
- description is abbreviate
- the order reception server 70 is communicably connected to the control unit 60 via a network.
- the order receiving server 70 includes a CPU, a ROM, and a RAM (not shown).
- the order receiving server 70 includes an order receiving unit 71 as a conceptual part that executes various control processes for receiving product orders via a network, a product information storage unit 72, A weight estimation unit 73.
- Such a conceptual part is configured by, for example, a program stored in the ROM being loaded onto the RAM and executed by the CPU.
- the order receiving unit 71 receives an order for a product from a terminal device 77 that can be connected via the network N.
- the terminal device 77 include a personal computer and a smartphone.
- the merchandise information storage unit 72 stores merchandise information in which merchandise is associated with the weight of the merchandise.
- Examples of the product information storage unit 72 include, for example, an HDD (hard disk drive) and an SSD (solid state drive).
- the weight estimation unit 73 estimates the total weight of the product based on the product information and the product for which the order has been received by the order reception unit.
- the package B delivered by the unmanned aerial vehicle 3 is received by the order receiving unit 71 and associated with the weight estimated by the weight estimating unit 73.
- the weight acquisition unit 60A acquires the weight of the luggage B delivered by the unmanned aerial vehicle 3 from the weight estimation unit 73.
- the weight acquisition unit 60A outputs the calculated weight of the load B to the take-off control unit 60B.
- the takeoff control unit 60B determines that the unmanned aircraft 3 is in an overloaded state based on the weight of the load B estimated by the weight estimating unit 73 and a reference value for determining whether or not the vehicle is overloaded. It is determined whether or not there is.
- the take-off control unit 60B prohibits transmission of a control signal from the communication unit 57 when it is determined that the vehicle is overloaded, and controls from the communication unit 57 when it is determined that the vehicle is not overloaded. Allows the signal to be transmitted. That is, unless a control signal is transmitted from the communication unit 57, the communication unit 34 mounted on the unmanned aircraft 3 does not receive the control signal, and the flight control unit 37 does not execute control related to the flight. On the other hand, if a control signal is transmitted from the communication unit 57, the communication unit 34 mounted on the unmanned aircraft 3 receives the control signal, and the flight control unit 37 executes control related to the flight.
- the takeoff and landing system 101 it is possible to prevent the unmanned aircraft 3 from flying in an overloaded state, as in the first, second and third embodiments. Further, in the take-off and landing system 101, the cost can be suppressed as compared with the configuration in which the weight detection unit 36 is provided in each unmanned aircraft 3 or the weight detection unit 53 is provided in the take-off and landing device 5.
- the unmanned aerial vehicle 3 of the fourth embodiment may include the weight detection unit 36. Further, the weight detection unit 53 may be provided in the take-off and landing device 5C. In these cases, the unmanned aircraft 3 is overloaded in consideration of the weight of the load B acquired by at least one of the weight detection unit 36 and the weight detection unit 53 in addition to the weight of the load B acquired by the weight estimation unit 73. It may be determined whether or not this is the state.
- the takeoff and landing system 201 includes an unmanned aerial vehicle 3 described in the first embodiment, a takeoff and landing device 5C configured by removing the weight detection unit 53 from the takeoff and landing device 5A of the second embodiment, and a picking device. 80.
- description is abbreviate
- the picking device 80 is a device that supports picking work, and displays the product name, quantity, and the like to be picked for the worker on the display unit 83 and the like, and manages whether or not the picking work is actually picked by the worker. It is.
- the picking device 80 is communicably connected to the control unit 60 via a network. As shown in FIG. 9, the picking device 80 includes a display unit 83 and a control unit 81.
- the control unit 81 includes a CPU, a ROM, and a RAM (not shown).
- the control unit 81 includes a notification unit 81A, a reception unit 81B, and a weight estimation unit 81C as conceptual portions that execute various control processes for supporting picking.
- Such a conceptual part is configured by, for example, a program stored in the ROM being loaded onto the RAM and executed by the CPU.
- the notification unit 81A notifies the product information (product name, quantity, etc.) regarding the product to be picked from the product group accommodated in the product shelf.
- the notification unit 81A notifies the worker by displaying the product information on the display unit 83.
- the receiving unit 81B receives the presence / absence of picking of the target product.
- the accepting unit 81B includes, for example, a scanner, and accepts that picking is completed by scanning a picked product with the scanner.
- the weight estimation unit 81C estimates the total weight of the target product based on the target product received by the reception unit 81B.
- the weight estimation unit 81C sends the estimated total weight of the target product to the control unit 60 of the take-off and landing device 5C.
- the display unit 83 is, for example, a liquid crystal display or a touch panel display, and product information (product name, quantity, etc.) is displayed under the control of the notification unit 81A.
- the product picked by the picking device 80 is received by the control unit 81 as a package B delivered by the unmanned aerial vehicle 3, and is associated with the weight estimated by the weight estimation unit 81C.
- the weight acquisition unit 60A acquires the weight of the luggage B delivered by the unmanned aerial vehicle 3 from the weight estimation unit 81C.
- the weight acquisition unit 60A outputs the acquired weight of the load B to the take-off control unit 60B.
- the takeoff control unit 60B determines that the unmanned aerial vehicle 3 is in an overloaded state based on the weight of the load B estimated by the weight estimating unit 81C and a reference value for determining whether or not the vehicle is overloaded. It is determined whether or not there is.
- the take-off control unit 60B prohibits transmission of a control signal from the communication unit 57 when it is determined that the vehicle is overloaded, and controls from the communication unit 57 when it is determined that the vehicle is not overloaded. Allows the signal to be transmitted.
- the takeoff and landing system 201 it is possible to prevent the unmanned aircraft 3 from flying in an overloaded state, as in the first, second, third and fourth embodiments. Further, in the take-off and landing system 201, the cost can be suppressed as compared with the configuration in which the weight detection unit 36 is provided in each unmanned aircraft 3 or the weight detection unit 53 is provided in the take-off and landing device 5.
- the unmanned aerial vehicle 3 of the fifth embodiment may include the weight detection unit 36. Further, the weight detection unit 53 may be provided in the take-off and landing device 5C. In these cases, the unmanned aircraft 3 is overloaded in consideration of the weight of the load B acquired by at least one of the weight detection unit 36 and the weight detection unit 53 in addition to the weight of the load B acquired by the weight estimation unit 81C. It may be determined whether or not this is the state.
- the unmanned delivery system 301 includes an unmanned aircraft 303 and a control device.
- the unmanned aircraft 303 delivers the package B from a predetermined position (for example, a delivery center) to the residence of the orderer.
- the unmanned aircraft 303 includes a weight detector 36 that detects the weight of the load B loaded on the unmanned aircraft 3 in addition to the configuration of the unmanned aircraft 3 described in the first embodiment.
- An example of the weight detection unit 36 is a load cell.
- the control device in the sixth embodiment is a flight control unit 337 mounted on the unmanned aerial vehicle 303, and controls the flight of the unmanned aircraft 303.
- the flight control unit 337 executes not only the flight control in the unmanned aircraft 303, but also the switching of the operation mode based on the presence or absence of an overload state as described later.
- the flight control unit 337 includes an unillustrated CPU, ROM, and RAM.
- the flight control unit 337 executes various control processes for taking off the unmanned aircraft 303.
- the flight control unit 337 includes a weight acquisition unit 337A and a take-off control unit 337B as conceptual parts that execute various control processes for taking off the unmanned aircraft 303.
- Such a conceptual part is configured by, for example, a program stored in the ROM being loaded onto the RAM and executed by the CPU.
- the weight acquisition unit 337A acquires the weight of the luggage B delivered by the unmanned aircraft 303.
- the weight acquisition unit 337A acquires the weight of the luggage B from the weight detection unit 36.
- the weight acquisition unit 337A outputs the acquired weight of the luggage B to the take-off control unit 337B.
- the take-off control unit (second control unit / third control unit) 337B becomes overloaded when the package B to be delivered is loaded based on the weight acquired by the weight acquisition unit 337A and a predetermined reference value. It is determined whether or not.
- the take-off control unit 337B selectively switches the operation mode of the unmanned aircraft 303 between a delivery mode in which the unmanned aircraft 303 can take off and land and a prohibit mode in which the take-off and landing cannot be performed, based on the determination result of whether or not the vehicle is overloaded.
- the take-off control unit 337B prevents the unmanned aircraft 303 from taking off by controlling to a prohibition mode incapable of taking off and landing in an overloaded state.
- the unmanned aircraft 303 in an overloaded state cannot take off, so that the unmanned aircraft 303 can be prevented from flying in an overloaded state.
- the determination of whether or not the takeoff control unit 337B is in an overloaded state may be performed at the timing when the load B is loaded, or may be performed at the timing when the unmanned aircraft 3A is about to fly.
- the example in which the weight acquisition unit 337A and the takeoff control unit 337B are mounted on the unmanned aircraft 303 has been described.
- the distribution center or the first to fifth embodiments described above has been described. You may arrange
- the weight acquisition part 337A gave and demonstrated the example which acquires the weight of the load B from the weight detection part 36 mounted in the unmanned aircraft 303, for example, it is arrange
- the weight of the package B may be acquired from the weight detection unit 53, or the weight of the package B may be acquired from the weight estimation unit 73 of the order reception server 70 as in the fourth embodiment.
- the weight of the load B may be acquired from the weight estimation unit 81C of the picking device 80 as in the fifth embodiment.
- the takeoff control units 60B and 337B of the first to sixth embodiments described above are based on a simple comparison between the reference value for determining overloading and the weight value of the load B acquired by the weight detection units 36 and 53.
- the present invention is not limited to this. For example, it may be determined whether or not the vehicle is overloaded based on a comparison between a reference value changed according to weather information (wind speed, weather), flight route, type of baggage, and the like and a weight value of the baggage B. .
- the unmanned aerial vehicle 3,303 or the take-off and landing system 101, 201 is connected to the power source mounted on the unmanned aerial vehicle 3,303 as shown in FIGS. 2, 4, 5, 7, 9, 10, for example.
- the remaining amount acquisition unit 91 for acquiring the remaining amount of the energy source, the weight of the load B loaded on the unmanned aircraft 3,303, the remaining amount of the energy source, and the cruising distance or cruising time of the unmanned aircraft 3,303 A cruising information storage unit 92 that stores cruising information as a relationship, and a delivery destination information acquisition unit 93 that acquires a delivery distance or delivery time from the current position to the delivery destination of the package B are further provided.
- the remaining amount acquisition unit 91 can acquire the remaining amount from known means such as a detection device or a sensor that detects the amount of electric power stored in the battery 35 or the remaining amount of fuel stored in the fuel tank.
- the take-off control units 60B and 337B acquire the weight of the load B acquired by the weight acquisition units 60A and 337A, the remaining amount of the energy source acquired from the remaining amount acquisition unit 91, and the delivery destination information acquisition unit 93. Based on the delivered delivery distance or delivery time and the cruising information, it may be determined whether or not the unmanned aircraft 3,303 can navigate to the delivery destination.
- the take-off control units 60B and 337B switch the state in the take-off prevention unit (at least one of the fixing device 55 and the communication unit 57) to the non-navigable state (prohibition mode) if it is determined that navigation is not possible, and the above if it is determined that navigation is possible.
- the state in the take-off prevention unit is switched to a navigable state (delivery mode).
- Examples of cruising information include table information and relational expressions obtained from experiments and the like. That is, if the takeoff control units 60B and 337B acquire the weight of the load B and the remaining amount of the energy source from the weight acquisition units 60A and 337A and the remaining amount acquisition unit 91, respectively, based on the table information and the relational expression. The cruising distance or cruising time of the unmanned aircraft 3,303 can be directly derived. Then, the takeoff control units 60B and 337B compare the cruising distance or cruising time derived in this way with the delivery distance or delivery time acquired from the delivery destination information acquisition unit 93, and send the package B to the delivery destination. It is determined whether or not conveyance is possible.
- the cruising information storage unit 92 may store a relational expression or table information that, for example, when a 100 g load B is loaded and transported, the cruising time is shortened by 1 minute compared to the reference cruising time.
- This relational expression may be a linear relation
- the table information may be a two-dimensional table obtained from an experiment or the like.
- the takeoff control units 60B and 337B can indirectly derive the time that can be continued when the load B is not loaded from the remaining amount of the energy source. For example, the take-off control units 60B and 337B determine that 60 minutes of cruising is possible when the load B is not loaded.
- the takeoff control units 60B and 337B determine that the cruising time is shortened by 5 minutes compared to the reference cruising time when acquiring that the weight of the load B related to transportation is, for example, 500 g. Accordingly, the takeoff control units 60B and 337B correct the actual cruising time to 55 minutes by correcting the initial cruising time of 60 minutes.
- the takeoff control units 60B and 337B may determine whether the package B can be transported to the delivery destination based on the corrected cruising time and the delivery time acquired from the delivery destination information acquisition unit 93.
- Reception part, 81C ... Weight Estimator 101, 201 ... Takeoff / landing system 301 ... Unmanned delivery system B ... Luggage (article) 337 ... Flight controller 337A ... Weight acquisition unit 337B ... Takeoff controller (second controller / third controller) ).
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Remote Sensing (AREA)
- Mechanical Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Warehouses Or Storage Devices (AREA)
- Forklifts And Lifting Vehicles (AREA)
- Traffic Control Systems (AREA)
Abstract
A takeoff and landing device (5) is provided with: a fixed device (55) or a communication unit (57) that can switch between a first state in which an unmanned aircraft (3) is prevented from taking off from a host device, and a second state in which the unmanned aircraft (3) is not prevented from taking off; a weight acquisition unit (337A, 60A) that acquires the weight of an article delivered by the unmanned aircraft (3); and a takeoff control unit (337B) or a takeoff control unit (60B) that switches the state of the fixed device (55) or the communication unit (57) to the first state or the second state on the basis of a reference value for determining whether the weight of the article acquired by the weight acquisition unit (337A, 60A) constitutes an overload.
Description
本発明の一側面は、離着陸装置、離着陸システム及び無人配送システムに関する。
One aspect of the present invention relates to a take-off and landing device, a take-off and landing system, and an unmanned delivery system.
遠隔操作によって操縦したり、プログラムよって自律飛行したりする無人航空機(いわゆるドローン)が知られている。近年、このような無人航空機を様々な分野で活用することが提案されている。例えば、特許文献1及び2には、無人航空機を活用して物品を配送するシステムが開示されている。
An unmanned aerial vehicle (so-called drone) that is controlled by remote operation or autonomously flying by a program is known. In recent years, it has been proposed to use such unmanned aerial vehicles in various fields. For example, Patent Documents 1 and 2 disclose systems that deliver articles using unmanned aerial vehicles.
無人航空機は、配送する物品の重量(積載重量)が無人航空機の重量に対して大きくなれば風等の外乱の影響を受けやすくなる。無人航空機がこのような外乱を受けると、意図するような制御ができなくなり、安全飛行に支障をきたすおそれがある。このため、無人航空機を活用して物品を配送する場合には、積載重量が所定値以上の状態(以下「過積載」と称する。)での飛行を禁止する法律を整備するだけではなく、当該法律を遵守させる仕組みが必要となる。
Unmanned aerial vehicles are more susceptible to wind and other disturbances if the weight of the delivered goods (loading weight) is greater than the weight of the unmanned aircraft. If an unmanned aerial vehicle is subjected to such disturbance, the intended control cannot be performed, which may hinder safe flight. For this reason, when delivering goods using an unmanned aerial vehicle, not only will a law prohibiting flying in a state where the loaded weight exceeds a predetermined value (hereinafter referred to as “overloading”), A mechanism to comply with the law is required.
そこで、本発明の一側面は、無人航空機が過積載の状態で飛行することを防止できる離着陸装置、離着陸システム及び無人配送システムを提供することを目的とする。
Accordingly, an object of one aspect of the present invention is to provide a take-off and landing device, a take-off and landing system, and an unmanned delivery system that can prevent an unmanned aircraft from flying in an overloaded state.
本発明の一側面に係る無人航空機の離着陸装置は、物品を配送する無人航空機の離着陸が行われる離着陸装置であって、自装置から無人航空機が離陸することを阻止する状態である第一状態と、阻止しない状態である第二状態とに切り替え可能な離陸阻止部と、無人航空機が配送する物品の重量を取得する重量取得部と、重量取得部により取得された物品の重量と過積載であるか否かを判定する基準値とに基づいて、離陸阻止部における状態を第一状態又は第二状態に切り替える第一制御部と、を備える。
A take-off and landing device for an unmanned aerial vehicle according to one aspect of the present invention is a take-off and landing device in which an unmanned aircraft for delivering an article is taken off and landing, and a first state in which the unmanned aircraft is prevented from taking off from its own device. A take-off prevention unit that can be switched to a second state that is not blocked, a weight acquisition unit that acquires the weight of an article delivered by an unmanned aerial vehicle, and the weight and overload of the article acquired by the weight acquisition unit And a first control unit that switches the state of the takeoff prevention unit to the first state or the second state based on the reference value for determining whether or not.
この無人航空機の離着陸装置では、制御部は、離着陸装置から離陸しようとする無人航空機に積載される物品の重量を取得して、当該重量から過積載の状態となると判定した場合には、離陸阻止部を第一状態となるように制御して、無人航空機の離陸を阻止する。これにより、過積載の状態の無人航空機は、離着陸装置から離陸することができなくなるので、無人航空機が過積載の状態で飛行することを防止できる。
In this unmanned aerial vehicle take-off and landing device, the control unit acquires the weight of an article loaded on the unmanned aircraft to be taken off from the take-off and landing device, and when it is determined that the weight is overloaded, the take-off prevention is performed. The unit is controlled to be in the first state, and the unmanned aircraft is prevented from taking off. Thereby, since the unmanned aircraft in the overload state cannot take off from the take-off and landing device, the unmanned aircraft can be prevented from flying in the overload state.
本発明の一側面に係る無人航空機の離着陸装置では、離陸阻止部は、自装置に無人航空機を固定する固定装置であり、固定装置は、自装置に無人航空機を固定する第一状態と、自装置への無人航空機の固定が解除された第二状態とに切り替え可能であってもよい。
In the unmanned aircraft take-off and landing device according to one aspect of the present invention, the take-off prevention unit is a fixing device that fixes the unmanned aircraft to the own device, and the fixing device includes a first state that fixes the unmanned aircraft to the own device, and the self-device. It may be possible to switch to the second state in which the unmanned aircraft is not fixed to the apparatus.
この無人航空機の離着陸装置では、自装置に無人航空機を固定することにより、無人航空機が離陸することを阻止する固定装置を離陸阻止部として採用する。すなわち、この離着陸装置では、無人航空機が離陸しようとしても、無人航空機は離着陸装置に物理的に固定されているので、離陸することができない。これにより、簡易な構造によって、過積載の状態の無人航空機の離陸を阻止することができる。
In this unmanned aircraft take-off and landing device, a fixing device that prevents the unmanned aircraft from taking off by fixing the unmanned aircraft to the own device is adopted as the take-off prevention unit. That is, in this take-off and landing device, even if the unmanned aircraft is about to take off, the unmanned aircraft cannot be taken off because it is physically fixed to the take-off and landing device. Thereby, take-off of the unmanned aircraft in an overloaded state can be prevented with a simple structure.
本発明の一側面に係る無人航空機の離着陸装置では、離陸阻止部は、無人航空機に飛行動作をさせる制御信号を送信する送信部であり、送信部は、制御信号の送信を禁止する第一状態と、制御信号の送信を許可する第二状態とに切り替え可能であってもよい。
In the unmanned aircraft take-off and landing device according to one aspect of the present invention, the take-off prevention unit is a transmission unit that transmits a control signal that causes the unmanned aircraft to perform a flight operation, and the transmission unit is a first state that prohibits transmission of the control signal. And a second state in which transmission of the control signal is permitted.
この無人航空機の離着陸装置では、無人航空機に飛行動作をさせる制御信号を送信しないことにより、無人航空機が離陸することを阻止する送信部を離陸阻止部として採用する。すなわち、この離着陸装置では、無人航空機を離陸させようとする制御信号が送信されないので、無人航空機が離陸することがない。これにより、簡易な構成によって、過積載の状態の無人航空機の離陸を阻止することができる。
In this unmanned aerial vehicle take-off and landing device, a transmission unit that prevents the unmanned aircraft from taking off by not transmitting a control signal for causing the unmanned aircraft to fly is adopted as a take-off prevention unit. That is, in this take-off and landing device, since the control signal for taking off the unmanned aircraft is not transmitted, the unmanned aircraft does not take off. Thereby, take-off of the unmanned aircraft in an overloaded state can be prevented with a simple configuration.
本発明の一側面に係る無人航空機の離着陸装置は、配送する物品の重量を計測する第一重量検知部を更に備え、重量取得部は、第一重量検知部から物品の重量を取得してもよい。
The unmanned aircraft take-off and landing device according to one aspect of the present invention further includes a first weight detection unit that measures the weight of an article to be delivered, and the weight acquisition unit acquires the weight of the article from the first weight detection unit. Good.
この無人航空機の離着陸装置では、例えば、物品が積載された状態の無人航空機の重量を計測し、あらかじめ記憶された無人航空機の重量を減算することにより、物品の重量を算出する。物品の重量は、ロードセル等の第一重量検知部により計測されるので、物品の重量を推定する場合と比べ過積載の状態をより正確に判定することができる。また、無人航空機に搭載される重量検知部(第二重量検知部)と比べ、重量の計測範囲が広い重量検知部を採用することができる。すなわち、より重たい重量まで計測することができる。
In this unmanned aerial vehicle take-off and landing device, for example, the weight of the unmanned aircraft loaded with the article is measured, and the weight of the article is calculated by subtracting the weight of the unmanned airplane stored in advance. Since the weight of the article is measured by a first weight detection unit such as a load cell, it is possible to more accurately determine the overloading state than when estimating the weight of the article. In addition, a weight detection unit having a wider weight measurement range than the weight detection unit (second weight detection unit) mounted on the unmanned aerial vehicle can be employed. That is, even heavier weights can be measured.
本発明の一側面に係る無人航空機の離着陸装置は、無人航空機に搭載された動力源のエネルギー源の残量を取得する残量取得部と、無人航空機に積載される物品の重量と、残量と、無人航空機の航続距離又は航続時間との関係である航続情報を記憶する航続情報記憶部と、現在位置から物品の配送先までの配送距離又は配送時間を取得する配送先情報取得部と、を更に備え、第一制御部は、重量取得部によって取得される物品の重量と、残量取得部から取得される残量と、配送先情報取得部から取得された配送距離又は配送時間と、航続情報とに基づいて、無人航空機が配送先まで航行可能か否かを判定し、航行不能と判定すれば離陸阻止部における状態を第一状態に切り替え、航行可能と判定すれば離陸阻止部における状態を第二状態に切り替えてもよい。
A take-off and landing device for an unmanned aerial vehicle according to one aspect of the present invention includes a remaining amount acquisition unit that acquires a remaining amount of an energy source of a power source mounted on the unmanned aircraft, a weight of an article loaded on the unmanned aircraft, and a remaining amount A cruising information storage unit that stores cruising information that is a relationship with a cruising distance or cruising time of an unmanned aircraft, a delivery destination information acquisition unit that acquires a delivery distance or delivery time from the current position to the delivery destination of the article, The first control unit, the weight of the article acquired by the weight acquisition unit, the remaining amount acquired from the remaining amount acquisition unit, the delivery distance or delivery time acquired from the delivery destination information acquisition unit, Based on the cruising information, it is determined whether the unmanned aircraft can navigate to the delivery destination, and if it is determined that navigation is not possible, the state in the take-off prevention unit is switched to the first state, and if it is determined that navigation is possible, the take-off prevention unit State to second state Toggles may be.
この無人航空機の離着陸装置では、過積載だけでなく、無人航空機が配送先まで航行できるか否かも考慮して判定し、当該判定に基づいて無人航空機の離陸の許可がなされる。これにより、より安全に無人航空機を航行させることができる。
This unmanned aerial vehicle take-off and landing device determines not only overloading but also whether or not the unmanned aircraft can navigate to the delivery destination, and permits the unmanned aircraft to take off based on the determination. Thereby, an unmanned aerial vehicle can be navigated more safely.
本発明の一側面に係る無人航空機の離着陸システムは、配送する物品の重量を計測する第二重量検知部を有し、自装置の飛行を制御する制御信号に基づいて飛行することにより物品を配送する無人航空機と、上記の離着陸装置と、を備え、重量取得部は、第二重量検知部から物品の重量を取得してもよい。
An unmanned aerial vehicle takeoff and landing system according to one aspect of the present invention has a second weight detection unit that measures the weight of an article to be delivered, and delivers the article by flying based on a control signal that controls the flight of the own device. The unmanned aerial vehicle and the take-off and landing device described above may be included, and the weight acquisition unit may acquire the weight of the article from the second weight detection unit.
この無人航空機の離着陸システムでは、無人航空機に搭載された第二重量検知部から物品の重量を直接取得するので、無人航空機にかかる重量をより正確に取得することができる。これにより、過積載の状態をより正確に判定することが可能になる。
In this unmanned aerial vehicle take-off and landing system, since the weight of the article is directly acquired from the second weight detection unit mounted on the unmanned aircraft, the weight applied to the unmanned aircraft can be acquired more accurately. This makes it possible to more accurately determine the overloaded state.
本発明の一側面に係る無人航空機の離着陸システムでは、無人航空機は、自装置の飛行を制御する制御信号を受信する受信部と、第二重量検知部によって検知した重量と所定の基準値とに基づいて、配送する物品を積載したときに過積載の状態になるか否かを判定する第二制御部と、を有し、第二制御部は、過積載の状態になると判定した場合、受信部において受信した制御信号に基づいて動作することを禁止してもよい。
In the take-off and landing system for an unmanned aircraft according to one aspect of the present invention, the unmanned aircraft includes a receiving unit that receives a control signal for controlling flight of the own device, a weight detected by the second weight detecting unit, and a predetermined reference value. And a second control unit that determines whether or not an overloaded state is reached when an article to be delivered is loaded, and the second control unit receives when it is determined that the overloaded state is reached The operation may be prohibited based on the control signal received by the unit.
この無人航空機の離着陸システムでは、第二制御部は、過積載の状態の場合には、離陸しないように自身を制御することにより、無人航空機の離陸を阻止する。これにより、固定装置又は送信部等を設けることと比べコストを抑制することができる。また、固定装置を併用した場合には、より確実に過積載の状態の無人航空機が離陸することを防止できる。
In this unmanned aircraft take-off and landing system, the second control unit prevents the unmanned aircraft from taking off by controlling itself so as not to take off in the case of overloading. Thereby, cost can be suppressed compared with providing a fixing device or a transmission part. In addition, when the fixing device is used in combination, it is possible to prevent the unmanned aircraft in an overloaded state from taking off more reliably.
本発明の一側面に係る無人航空機の離着陸システムは、商品棚に収容された商品群の中からピッキングすべき商品である対象商品を報知する報知部と、対象商品のピッキングの有無を受け付ける受付部と、受付部において受け付けた対象商品に基づいて対象商品の総重量を推定する重量推定部と、を有するピッキング装置と、上記の離着陸装置と、を備え、重量取得部は、重量推定部から物品の重量を取得してもよい。
An unmanned aerial vehicle takeoff and landing system according to one aspect of the present invention includes a notification unit that notifies a target product that is a product to be picked from a group of products stored in a product shelf, and a reception unit that receives presence or absence of picking of the target product And a weight estimation unit that estimates the total weight of the target product based on the target product received by the reception unit, and the take-off and landing device, the weight acquisition unit from the weight estimation unit to the article You may get the weight of.
この無人航空機の離着陸システムでは、ピッキング過程におけるピッキングの有無に基づいて無人航空機に積載される物品の重量を推定する。物品の重量は、あらかじめ商品ごとの重量を記憶しておくことで、ピッキングが終了次第、その総重量を推定することができる。これにより、簡易に無人航空機に積載される商品の重量を推定できるので、過積載の状態の無人航空機が離陸することを防止できるシステムを安価に構築することができる。
This unmanned aerial vehicle takeoff and landing system estimates the weight of articles loaded on the unmanned aerial vehicle based on the presence or absence of picking in the picking process. By storing the weight of each article in advance, the total weight of the article can be estimated as soon as picking is completed. Thereby, since the weight of the goods loaded on the unmanned aerial vehicle can be estimated easily, a system capable of preventing the unloaded unmanned aircraft from taking off can be constructed at low cost.
本発明の一側面に係る無人航空機の離着陸システムは、ネットワークを介して商品の注文を受け付ける注文受付部と、商品と商品の重量とを関連付けた商品情報を記憶する商品情報記憶部と、商品情報と注文受付部において注文を受け付けた商品とに基づいて商品の総重量を推定する重量推定部と、を有する注文受付システムと、上記の離着陸装置と、を備え、重量取得部は、重量推定部から物品の重量を取得してもよい。
An unmanned aircraft take-off and landing system according to one aspect of the present invention includes an order receiving unit that receives an order for a product via a network, a product information storage unit that stores product information in which the product and the weight of the product are associated, and product information A weight estimation unit that estimates the total weight of the product based on the order received in the order reception unit, and the take-off and landing device, and the weight acquisition unit includes the weight estimation unit. The weight of the article may be obtained from
この無人航空機の離着陸システムでは、ネットワークを介して受け付ける商品の情報に基づいて無人航空機に積載される物品の重量を推定する。物品の重量は、あらかじめ商品ごとの重量を記憶しておくことで、注文の商品が確定次第、すなわち、配送する商品が確定次第、その総重量を推定することができる。これにより、簡易に無人航空機に積載される商品の重量を推定できるので、過積載の状態の無人航空機が離陸することを防止できるシステムを安価に構築することができる。
This unmanned aerial vehicle takeoff and landing system estimates the weight of an article loaded on the unmanned aerial vehicle based on information on products received via the network. By storing the weight of each product in advance, the total weight of the product can be estimated as soon as the ordered product is determined, that is, as soon as the product to be delivered is determined. Thereby, since the weight of the goods loaded on the unmanned aerial vehicle can be estimated easily, a system capable of preventing the unloaded unmanned aircraft from taking off can be constructed at low cost.
本発明の一側面に係る無人配送システムは、物品を配送する無人航空機と、当該無人航空機を制御する制御装置と、を備える無人配送システムであって、物品の重量を取得する重量取得部と、重量取得部によって取得した重量と所定の基準値とに基づいて、配送する物品を積載したときに過積載の状態になるか否かを判定する第三制御部と、を有し、第三制御部は、過積載の状態になるか否かの判定結果に基づき、無人航空機における動作モードを離着陸可能な配送モードと、離着陸不可能な禁止モードとを選択的に切り替える。
An unmanned delivery system according to one aspect of the present invention is an unmanned delivery system including an unmanned aircraft that delivers an article and a control device that controls the unmanned airplane, and a weight acquisition unit that obtains the weight of the article; A third control unit that determines whether or not an overloaded state is reached when an article to be delivered is loaded based on the weight acquired by the weight acquisition unit and a predetermined reference value; The unit selectively switches between a delivery mode in which the operation mode of the unmanned aerial vehicle can take off and land and a prohibit mode incapable of taking off and landing based on the determination result of whether or not the vehicle is overloaded.
この無人配送システムでは、第三制御部は、過積載の状態の場合には、離着陸不可能な禁止モードに制御することにより、無人航空機の離陸を阻止する。これにより、過積載の状態の無人航空機は、離陸することができなくなるので、無人航空機が過積載の状態で飛行することを防止できる。
In this unmanned delivery system, the third control unit prevents take-off of the unmanned aircraft by controlling to a prohibit mode incapable of taking off and landing in the case of overloading. Thereby, since the unmanned aircraft in the overload state cannot take off, the unmanned aircraft can be prevented from flying in the overload state.
本発明の一側面に係る無人配送システムでは、重量取得部及び第三制御部は、無人航空機に搭載されてもよい。
In the unmanned delivery system according to one aspect of the present invention, the weight acquisition unit and the third control unit may be mounted on an unmanned aircraft.
本発明の一側面に係る無人配送システムでは、無人航空機に搭載された動力源のエネルギー源の残量を取得する残量取得部と、無人航空機に積載される物品の重量と、残量と、無人航空機の航続距離又は航続時間との関係である航続情報を記憶する航続情報記憶部と、現在位置から物品の配送先までの配送距離又は配送時間を取得する配送先情報取得部と、を更に備え、第三制御部は、重量取得部によって取得される物品の重量と、残量取得部から取得される残量と、配送先情報取得部から取得された配送距離又は配送時間と、航続情報とに基づいて、無人航空機が配送先まで航行可能か否かを判定し、航行不能と判定すれば動作モードを禁止モードに切り替え、航行可能と判定すれば動作モードを配送モードに切り替えてもよい。
In the unmanned delivery system according to one aspect of the present invention, a remaining amount acquisition unit that acquires the remaining amount of the energy source of the power source mounted on the unmanned aircraft, the weight of the article loaded on the unmanned aircraft, the remaining amount, A cruising information storage unit that stores cruising information that is a relationship with a cruising distance or cruising time of the unmanned aircraft, and a delivery destination information acquisition unit that obtains a delivery distance or delivery time from the current position to the delivery destination of the article. The third control unit includes the weight of the article acquired by the weight acquisition unit, the remaining amount acquired from the remaining amount acquisition unit, the delivery distance or delivery time acquired from the delivery destination information acquisition unit, and the cruising information Based on the above, it is determined whether or not the unmanned aircraft can navigate to the delivery destination. If it is determined that navigation is not possible, the operation mode may be switched to the prohibit mode, and if it is determined that navigation is possible, the operation mode may be switched to the delivery mode. .
この無人配送システムでは、過積載だけでなく、無人航空機が配送先まで航行できるか否かを判定し、当該判定に基づいて無人航空機の離陸の許可がなされる。これにより、より安全に無人航空機を航行させることができる。
In this unmanned delivery system, not only overloading but also whether or not an unmanned aircraft can navigate to a delivery destination is determined, and the unmanned aircraft is permitted to take off based on the judgment. Thereby, an unmanned aerial vehicle can be navigated more safely.
本発明の一側面によれば、無人航空機が過積載の状態で飛行できないようにすることができる。
According to one aspect of the present invention, it is possible to prevent an unmanned aircraft from flying in an overloaded state.
以下、図面を参照して一実施形態について説明する。図面の説明において、同一要素には同一符号を付し、重複する説明を省略する。
Hereinafter, an embodiment will be described with reference to the drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.
[第一実施形態]
第一実施形態に係る離着陸装置5について説明する。離着陸装置5は、荷物(物品)Bを配送する無人航空機(UAV:Unmanned Aerial Vehicle)3の離着陸が行われる箇所に配置される装置である。まず、無人航空機3について説明する。 [First embodiment]
The take-off andlanding device 5 according to the first embodiment will be described. The take-off and landing device 5 is a device that is disposed at a place where an unmanned aerial vehicle (UAV: Unmanned Aerial Vehicle) 3 that delivers a package (article) B is taken off and landing. First, the unmanned aerial vehicle 3 will be described.
第一実施形態に係る離着陸装置5について説明する。離着陸装置5は、荷物(物品)Bを配送する無人航空機(UAV:Unmanned Aerial Vehicle)3の離着陸が行われる箇所に配置される装置である。まず、無人航空機3について説明する。 [First embodiment]
The take-off and
無人航空機3は、送信機4から送信される制御信号に基づいて、遠隔操作又は自動制御(飛行プログラム)によって無人で飛行可能な航空機である。送信機4の例は、無人航空機3を操縦するコントローラ又は飛行プログラムを送信するアンテナである。無人航空機3が飛行プログラムを予め記憶している場合、アンテナは、当該飛行プログラムを起動するための信号を送信してもよい。図1に示されるように、無人航空機3は、主に、フレーム31と、モータ32と、プロペラ33と、通信部(受信部)34と、バッテリー35と、飛行制御部37と、を備える。
The unmanned aircraft 3 is an aircraft that can fly unmanned by remote control or automatic control (flight program) based on a control signal transmitted from the transmitter 4. An example of the transmitter 4 is a controller that controls the unmanned aerial vehicle 3 or an antenna that transmits a flight program. When the unmanned aircraft 3 stores a flight program in advance, the antenna may transmit a signal for starting the flight program. As shown in FIG. 1, the unmanned aerial vehicle 3 mainly includes a frame 31, a motor 32, a propeller 33, a communication unit (reception unit) 34, a battery 35, and a flight control unit 37.
フレーム31は、モータ32と、プロペラ33と、通信部34と、バッテリー35と、飛行制御部37と、を支持する。フレーム31を形成する材料の例は、ナイロン及びカーボンが含まれる。モータ32は、プロペラ33の駆動源であり、プロペラ33ごとに設けられる。通信部34は、送信機4から送信される自装置の飛行を制御する制御信号を受信する。
The frame 31 supports a motor 32, a propeller 33, a communication unit 34, a battery 35, and a flight control unit 37. Examples of the material forming the frame 31 include nylon and carbon. The motor 32 is a drive source of the propeller 33 and is provided for each propeller 33. The communication unit 34 receives a control signal transmitted from the transmitter 4 that controls the flight of the own device.
バッテリー35は、モータ32、通信部34及び飛行制御部37等、電力を必要とする各種部位に電力を供給する。バッテリー35の例は、リチウムポリマーバッテリーである。飛行制御部37は、例えば、各プロペラ33の回転数(モータ32の回転数)を制御すると共に、複数のプロペラ33同士の回転数の関係を制御して、自装置の上昇、下降、右・左旋回、前進、後進、及びホバリング等の各種制御を実行する。
The battery 35 supplies power to various parts that require power, such as the motor 32, the communication unit 34, and the flight control unit 37. An example of the battery 35 is a lithium polymer battery. For example, the flight control unit 37 controls the number of rotations of each propeller 33 (the number of rotations of the motor 32) and also controls the relationship between the number of rotations of the plurality of propellers 33. Various controls such as turning left, moving forward, moving backward, and hovering are executed.
次に、離着陸装置5について説明する。図1に示されるように、離着陸装置5は、例えば、屋内又は屋外に設置され、地面に固定される本体部51と、無人航空機3が離着陸可能な平坦な面を有する着地部52と、重量検知部(第一重量検知部)53と、固定装置(離陸阻止部)55と、制御部60と、を備える。
Next, the take-off and landing device 5 will be described. As shown in FIG. 1, the take-off and landing device 5 includes, for example, a main body 51 that is installed indoors or outdoors and is fixed to the ground, a landing portion 52 having a flat surface on which the unmanned aircraft 3 can take off and landing, and a weight. A detection unit (first weight detection unit) 53, a fixing device (takeoff prevention unit) 55, and a control unit 60 are provided.
固定装置55は、着地部52に設けられており、無人航空機3のフレーム31を着地部52に固定して、無人航空機3の離陸を阻止する装置である。固定装置55は、着地部52へ無人航空機3を固定することにより無人航空機3の離陸を阻止する第一状態と、着地部52への無人航空機3の固定が解除され、無人航空機3の離陸を許容する第二状態とに切り替え可能である。固定装置55における第一状態及び第二状態の切り替えは、制御部60によって実行される。なお、固定装置55は、着地部52に着地している無人航空機3を固定する状態をデフォルト(通常状態)としてもよい。
The fixing device 55 is a device that is provided in the landing portion 52 and fixes the frame 31 of the unmanned aircraft 3 to the landing portion 52 to prevent the unmanned aircraft 3 from taking off. The fixing device 55 releases the unmanned aircraft 3 from the first state in which the unmanned aircraft 3 is prevented from taking off by fixing the unmanned aircraft 3 to the landing portion 52 and the unmanned aircraft 3 is fixed to the landing portion 52. It is possible to switch to an allowable second state. Switching between the first state and the second state in the fixing device 55 is executed by the control unit 60. Note that the fixing device 55 may set the state of fixing the unmanned aerial vehicle 3 landing on the landing portion 52 as a default (normal state).
重量検知部53は、着地部52の下方に配置されており、着地部52に着地した状態の無人航空機3の重量を検知する。重量検知部53は、例えば、ロードセルを用いた装置を用いることができる。重量検知部53によって取得された重量は、制御部60に出力される。
The weight detection unit 53 is disposed below the landing unit 52 and detects the weight of the unmanned aircraft 3 that has landed on the landing unit 52. For the weight detection unit 53, for example, a device using a load cell can be used. The weight acquired by the weight detection unit 53 is output to the control unit 60.
制御部60は、主に、図略のCPU(Central Processing Unit)と、ROM(Read Only Memory)と、RAM(Random Access Memory)と、例えば、SSD(solid state drive)等の補助記憶装置と、を有する。制御部60は、無人航空機3を離陸させるための各種制御処理を実行する。図2に示されるように、制御部60は、無人航空機3を離陸させるための各種制御処理を実行する概念的な部分としての重量取得部60Aと、離陸制御部(第一制御部)60Bと、を有する。このような概念的な部分は、例えばROMに格納されているプログラムがRAM上にロードされてCPUで実行されることにより構成される。
The control unit 60 mainly includes an unillustrated CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), for example, an auxiliary storage device such as an SSD (solid state drive), Have The control unit 60 executes various control processes for taking off the unmanned aircraft 3. As shown in FIG. 2, the control unit 60 includes a weight acquisition unit 60 </ b> A as a conceptual part that executes various control processes for taking off the unmanned aircraft 3, a take-off control unit (first control unit) 60 </ b> B, Have. Such a conceptual part is configured by, for example, a program stored in the ROM being loaded onto the RAM and executed by the CPU.
重量取得部60Aは、無人航空機3が配送する荷物Bの重量を取得する。重量取得部60Aは、予め記憶された無人航空機3の重量と、重量検知部53が検知する重量とに基づいて、無人航空機3に積載された荷物Bの重量を算出する。重量取得部60Aは、算出した荷物Bの重量を離陸制御部60Bに出力する。
The weight acquisition unit 60A acquires the weight of the luggage B delivered by the unmanned aerial vehicle 3. The weight acquisition unit 60A calculates the weight of the load B loaded on the unmanned aerial vehicle 3 based on the weight of the unmanned aircraft 3 stored in advance and the weight detected by the weight detection unit 53. The weight acquisition unit 60A outputs the calculated weight of the load B to the take-off control unit 60B.
離陸制御部60Bは、重量取得部60Aにより算出された荷物Bの重量と、予め記憶された過積載であるか否かを判定する基準値とに基づいて、無人航空機3が過積載の状態であるか否かを判定する。離陸制御部60Bは、荷物Bを積載する無人航空機3が過積載の状態であるか否かに基づいて、固定装置55における状態を第一状態又は第二状態に切り替える。具体的には、離陸制御部60Bは、過積載の状態であると判定した場合には無人航空機3の固定を維持(又は無人航空機3を着地部52に固定)するように固定装置55を制御し、過積載の状態ではないと判定した場合には無人航空機3の固定を解除(又は無人航空機3における固定の解除状態を維持)するように固定装置55を制御する。
The take-off control unit 60B determines that the unmanned aerial vehicle 3 is in an overloaded state based on the weight of the load B calculated by the weight acquisition unit 60A and a reference value for determining whether or not the vehicle is overloaded. It is determined whether or not there is. The takeoff control unit 60B switches the state of the fixing device 55 to the first state or the second state based on whether or not the unmanned aerial vehicle 3 that loads the load B is in an overloaded state. Specifically, the takeoff control unit 60B controls the fixing device 55 so as to maintain the unmanned aircraft 3 fixed (or fix the unmanned aircraft 3 to the landing unit 52) when it is determined that the vehicle is overloaded. When it is determined that the vehicle is not overloaded, the fixing device 55 is controlled so as to release the fixation of the unmanned aircraft 3 (or maintain the fixed release state of the unmanned aircraft 3).
上記第一実施形態の離着陸装置5では、制御部60は、離着陸装置5から離陸しようとする無人航空機3に積載される荷物Bの重量を取得して、当該重量から過積載の状態となると判定した場合には、無人航空機3を着地部52に固定するように固定装置55を制御して、無人航空機3の離陸を阻止する。これにより、荷物Bを配送する無人航空機3が、例えば法律等で、特定の離着陸装置から離陸しなければならないことが義務付けられた場合、過積載の状態の無人航空機3は、本実施形態のような離着陸装置5から離陸することができなくなる。すなわち、無人航空機3が過積載の状態で飛行することを防止できる。
In the take-off and landing device 5 of the first embodiment, the control unit 60 acquires the weight of the load B loaded on the unmanned aircraft 3 that is about to take off from the take-off and landing device 5 and determines that the weight is overloaded from the weight. In this case, the fixing device 55 is controlled so as to fix the unmanned aircraft 3 to the landing portion 52, thereby preventing the unmanned aircraft 3 from taking off. As a result, when the unmanned aircraft 3 delivering the package B is required to take off from a specific take-off and landing device, for example, by law, the unmanned aircraft 3 in an overloaded state is as shown in this embodiment. The take-off and landing device 5 cannot take off. That is, the unmanned aircraft 3 can be prevented from flying in an overloaded state.
上記離着陸装置5では、図1に示されるように、着地部52に無人航空機3を固定することにより、無人航空機3が離陸することを阻止する固定装置55を離陸阻止部として採用する。すなわち、この離着陸装置5では、無人航空機3が離陸しようとしても、無人航空機3は離着陸装置5に物理的に固定されているので離陸することができない。これにより、簡易な構造によって、過積載の状態の無人航空機3の離陸を阻止することができる。
In the take-off and landing device 5, as shown in FIG. 1, a fixing device 55 that prevents the unmanned aircraft 3 from taking off by fixing the unmanned aircraft 3 to the landing portion 52 is employed as the take-off prevention portion. That is, in this take-off and landing device 5, even if the unmanned aircraft 3 tries to take off, the unmanned aircraft 3 is physically fixed to the take-off and landing device 5 and cannot take off. Thereby, take-off of the unmanned aircraft 3 in an overloaded state can be prevented with a simple structure.
上記離着陸装置5の重量検知部53は、着地部52に着地した状態の無人航空機3の重量を検知するロードセル等を用いた装置である。この構成の離着陸装置5では、荷物Bの重量が、重量検知部53により直接計測されるので、過積載の状態をより正確に判定することができる。また、無人航空機3に搭載される重量検知部と比べ、重たい重量まで正確に計測することができる。
The weight detection unit 53 of the take-off and landing device 5 is a device that uses a load cell or the like that detects the weight of the unmanned aircraft 3 that has landed on the landing unit 52. In the take-off and landing device 5 having this configuration, the weight of the load B is directly measured by the weight detection unit 53, so that the overloading state can be determined more accurately. Moreover, compared with the weight detection part mounted in the unmanned aerial vehicle 3, a heavy weight can be accurately measured.
なお、上述した無人航空機3は、第一実施形態に用いられる無人航空機3では、無人航空機3に積載される荷物Bの重量を検知する重量検知部36(第二重量検知部)(図1参照)を備えてもよい。重量検知部36の例は、ロードセルである。無人航空機3に重量検知部36が備えられる場合には、離着陸装置5における制御部60は、重量検知部36から荷物Bの重量を取得して、過積載の状態であるか否かを判定してもよい。この場合、離着陸装置5に無人航空機3との間で通信可能な通信部57(図3参照)を設けることにより、重量取得部60Aは、重量検知部36に取得された荷物Bの重量を取得することができる。この構成では、無人航空機3に搭載された重量検知部36から荷物Bの重量を直接取得するので、無人航空機3にかかる重量をより正確に取得することができる。これにより、過積載の状態をより正確に判定することが可能になる。
The unmanned aerial vehicle 3 described above is a weight detection unit 36 (second weight detection unit) that detects the weight of the load B loaded on the unmanned aircraft 3 in the unmanned aircraft 3 used in the first embodiment (see FIG. 1). ) May be provided. An example of the weight detection unit 36 is a load cell. When the weight detection unit 36 is provided in the unmanned aircraft 3, the control unit 60 in the take-off and landing device 5 acquires the weight of the load B from the weight detection unit 36 and determines whether or not it is in an overloaded state. May be. In this case, the weight acquisition unit 60A acquires the weight of the load B acquired by the weight detection unit 36 by providing the take-off / landing device 5 with the communication unit 57 (see FIG. 3) that can communicate with the unmanned aircraft 3. can do. In this configuration, since the weight of the load B is directly acquired from the weight detection unit 36 mounted on the unmanned aerial vehicle 3, the weight applied to the unmanned aircraft 3 can be more accurately acquired. This makes it possible to more accurately determine the overloaded state.
また、制御部60は、重量検知部36により取得された荷物Bの重量と、重量検知部53により取得された荷物Bの重量との両方の値(例えば、両方の値の平均値、又は大きい方の値)に基づいて、過積載の状態を判定してもよい。
Further, the control unit 60 has both values of the weight of the load B acquired by the weight detection unit 36 and the weight of the load B acquired by the weight detection unit 53 (for example, an average value of both values or a larger value). The overloaded state may be determined based on the other value.
[第二実施形態]
次に、第二実施形態に係る離着陸装置5Aについて説明する。図3及び図4に示されるように、離着陸装置5Aは、第一実施形態の離着陸装置5の構成から固定装置55を取り除く代わりに通信部(送信部)57を備える。通信部57は、無人航空機3に飛行プログラム又は無人航空機3に予め記憶されたプログラムを起動させる起動信号(以下、両者を「制御信号」と称する。)を送信する。なお、第一実施形態と同様の構成の箇所については説明を省略する。 [Second Embodiment]
Next, the take-off andlanding device 5A according to the second embodiment will be described. As shown in FIGS. 3 and 4, the takeoff and landing device 5 </ b> A includes a communication unit (transmission unit) 57 instead of removing the fixing device 55 from the configuration of the takeoff and landing device 5 of the first embodiment. The communication unit 57 transmits to the unmanned aircraft 3 an activation signal that activates the flight program or a program stored in advance in the unmanned aircraft 3 (hereinafter, both are referred to as “control signals”). In addition, description is abbreviate | omitted about the location of the structure similar to 1st embodiment.
次に、第二実施形態に係る離着陸装置5Aについて説明する。図3及び図4に示されるように、離着陸装置5Aは、第一実施形態の離着陸装置5の構成から固定装置55を取り除く代わりに通信部(送信部)57を備える。通信部57は、無人航空機3に飛行プログラム又は無人航空機3に予め記憶されたプログラムを起動させる起動信号(以下、両者を「制御信号」と称する。)を送信する。なお、第一実施形態と同様の構成の箇所については説明を省略する。 [Second Embodiment]
Next, the take-off and
離陸制御部60Bは、荷物Bを積載する無人航空機3が過積載の状態であるか否かに基づいて、通信部57における上記信号の送信を禁止する第一状態と、制御信号の送信を許可する第二状態とに切り替え可能である。具体的には、離陸制御部60Bは、過積載の状態であると判定した場合には通信部57から制御信号が送信されることを禁止し、過積載の状態ではないと判定した場合には通信部57から制御信号が送信されることを許可する。
The take-off control unit 60B permits the transmission of the control signal and the first state in which the communication unit 57 prohibits the transmission of the signal based on whether or not the unmanned aerial vehicle 3 carrying the load B is in an overloaded state. It is possible to switch to the second state. Specifically, when it is determined that the takeoff control unit 60B is in an overloading state, the takeoff control unit 60B prohibits transmission of a control signal from the communication unit 57, and when it is determined that it is not in an overloading state. The control signal is permitted to be transmitted from the communication unit 57.
上記第二実施形態の離着陸装置5では、制御部60は、離着陸装置5から離陸しようとする無人航空機3に積載される荷物Bの重量を取得して、当該重量から過積載の状態となると判定した場合には、通信部57から制御信号が送信されることを禁止するように制御して、無人航空機3の離陸を阻止する。すなわち、通信部57から制御信号が送信されなければ、無人航空機3に搭載された通信部34が制御信号を受信することもなく、飛行制御部37が飛行に関する制御を実行することもない。一方、通信部57から制御信号が送信されれば、無人航空機3に搭載された通信部34が制御信号を受信し、飛行制御部37が飛行に関する制御を実行する。これにより、荷物Bを配送する無人航空機3が、例えば法律等で、特定の離着陸装置から離陸しなければならないことが義務付けられた場合、過積載の状態の無人航空機3は、本実施形態のような離着陸装置5から離陸することができなくなる。すなわち、無人航空機3が過積載の状態で飛行することを防止できる。
In the take-off and landing device 5 of the second embodiment, the control unit 60 acquires the weight of the load B loaded on the unmanned aircraft 3 that is about to take off from the take-off and landing device 5 and determines that the weight is overloaded from the weight. In such a case, control is performed so as to prohibit the transmission of the control signal from the communication unit 57, thereby preventing the unmanned aircraft 3 from taking off. That is, unless a control signal is transmitted from the communication unit 57, the communication unit 34 mounted on the unmanned aircraft 3 does not receive the control signal, and the flight control unit 37 does not execute control related to the flight. On the other hand, if a control signal is transmitted from the communication unit 57, the communication unit 34 mounted on the unmanned aircraft 3 receives the control signal, and the flight control unit 37 executes control related to the flight. As a result, when the unmanned aircraft 3 delivering the package B is required to take off from a specific take-off and landing device, for example, by law, the unmanned aircraft 3 in an overloaded state is as shown in this embodiment. The take-off and landing device 5 cannot take off. That is, the unmanned aircraft 3 can be prevented from flying in an overloaded state.
上記離着陸装置5Aでは、無人航空機3に飛行動作をさせる制御信号を送信しないことにより、無人航空機3が離陸することを阻止する離陸阻止部として通信部57を採用する。すなわち、この離着陸装置5Aでは、無人航空機3を離陸させようとする制御信号が送信されないので、無人航空機3が離陸することがない。これにより、簡易な構成によって、過積載の状態の無人航空機3の離陸を阻止することができる。
In the take-off and landing device 5A, the communication unit 57 is employed as a take-off prevention unit that prevents the unmanned aircraft 3 from taking off by not transmitting a control signal that causes the unmanned aircraft 3 to perform a flight operation. That is, in this take-off and landing device 5A, since the control signal for taking off the unmanned aircraft 3 is not transmitted, the unmanned aircraft 3 does not take off. Thereby, take-off of the unmanned aircraft 3 in an overloaded state can be prevented with a simple configuration.
なお、第二実施形態の無人航空機3においても、重量検知部36を備えてもよい。無人航空機3に重量検知部36が備えられる場合には、離着陸装置5における制御部60は、重量検知部36によって取得される荷物Bの重量に基づいて過積載の状態であるか否かを判定してもよい。
The unmanned aerial vehicle 3 according to the second embodiment may include the weight detection unit 36. When the weight detection unit 36 is provided in the unmanned aircraft 3, the control unit 60 in the take-off and landing device 5 determines whether or not it is overloaded based on the weight of the load B acquired by the weight detection unit 36. May be.
[第三実施形態]
次に、第三実施形態に係る離着陸装置5Bについて説明する。図5に示されるように、離着陸装置5Bは、第一実施形態の離着陸装置5の構成に加え、第二実施形態で説明した通信部57を備える。通信部57は、無人航空機3に制御信号を送信する。なお、第一実施形態及び第二実施形態と同様の構成の箇所については説明を省略する。 [Third embodiment]
Next, the take-off andlanding device 5B according to the third embodiment will be described. As shown in FIG. 5, the takeoff and landing device 5B includes the communication unit 57 described in the second embodiment in addition to the configuration of the takeoff and landing device 5 of the first embodiment. The communication unit 57 transmits a control signal to the unmanned aircraft 3. In addition, description is abbreviate | omitted about the location of the structure similar to 1st embodiment and 2nd embodiment.
次に、第三実施形態に係る離着陸装置5Bについて説明する。図5に示されるように、離着陸装置5Bは、第一実施形態の離着陸装置5の構成に加え、第二実施形態で説明した通信部57を備える。通信部57は、無人航空機3に制御信号を送信する。なお、第一実施形態及び第二実施形態と同様の構成の箇所については説明を省略する。 [Third embodiment]
Next, the take-off and
離陸制御部60Bは、過積載の状態であると判定した場合には無人航空機3の固定を維持(又は無人航空機3を着地部52に固定)するように固定装置55を制御すると共に通信部57から制御信号が送信されることを禁止し、過積載の状態ではないと判定した場合には無人航空機3の固定を解除(又は無人航空機3における固定の解除状態を維持)するように固定装置55を制御すると共に、通信部57から制御信号が送信されることを許可する。
When it is determined that the take-off control unit 60B is in an overloaded state, the take-off control unit 60B controls the fixing device 55 so as to keep the unmanned aircraft 3 fixed (or fix the unmanned aircraft 3 to the landing unit 52) and the communication unit 57. When the control signal is prohibited from being transmitted and it is determined that the vehicle is not in an overloaded state, the fixing device 55 is configured to release the fixation of the unmanned aircraft 3 (or maintain the fixed release state in the unmanned aircraft 3). And a control signal is permitted to be transmitted from the communication unit 57.
第三実施形態に係る離着陸装置5Bにおいても、上記第一実施形態及び第二実施形態と同様に、無人航空機3が過積載の状態で飛行することを防止できる。
Also in the takeoff and landing apparatus 5B according to the third embodiment, the unmanned aircraft 3 can be prevented from flying in an overloaded state, similarly to the first embodiment and the second embodiment.
更に、上記離着陸装置5Bでは、着地部52に無人航空機3を固定することにより無人航空機3が離陸することを阻止する固定装置55と、無人航空機3に飛行動作をさせる制御信号を送信しないことにより無人航空機3が離陸することを阻止する通信部57との両方を離陸阻止部として採用する。これにより、固定装置55及び通信部57の一方が制御部60によって間違った制御がなされたとしても、他方が正しく制御されておれば、無人航空機3が過積載の状態で飛行することを防止できる。
Further, in the take-off and landing device 5B, by fixing the unmanned aircraft 3 to the landing portion 52, the fixing device 55 that prevents the unmanned aircraft 3 from taking off, and the control signal that causes the unmanned aircraft 3 to perform a flight operation are not transmitted. Both the communication unit 57 that prevents the unmanned aircraft 3 from taking off are employed as the takeoff prevention unit. Accordingly, even if one of the fixing device 55 and the communication unit 57 is erroneously controlled by the control unit 60, the unmanned aircraft 3 can be prevented from flying in an overloaded state if the other is correctly controlled. .
なお、第三実施形態の無人航空機3においても、重量検知部36を備えてもよい。無人航空機3に重量検知部36が備えられる場合には、離着陸装置5における制御部60は、重量検知部36によって取得される荷物Bの重量に基づいて過積載の状態であるか否かを判定してもよい。
The unmanned aerial vehicle 3 according to the third embodiment may include the weight detection unit 36. When the weight detection unit 36 is provided in the unmanned aircraft 3, the control unit 60 in the take-off and landing device 5 determines whether or not it is overloaded based on the weight of the load B acquired by the weight detection unit 36. May be.
[第四実施形態]
次に、第四実施形態に係る離着陸システム101について説明する。図6に示されるように、離着陸システム101は、第一実施形態において説明した無人航空機3と、第二実施形態の離着陸装置5Aから重量検知部53を取り除いた構成の離着陸装置5Cと、注文受付サーバ(注文受付システム)70と、を備える。なお、第一、第二及び第三実施形態と同じ構成については説明を省略する。 [Fourth embodiment]
Next, the take-off andlanding system 101 according to the fourth embodiment will be described. As shown in FIG. 6, the takeoff and landing system 101 includes an unmanned aerial vehicle 3 described in the first embodiment, a takeoff and landing device 5 </ b> C configured by removing the weight detection unit 53 from the takeoff and landing device 5 </ b> A of the second embodiment, A server (order reception system) 70. In addition, description is abbreviate | omitted about the same structure as 1st, 2nd and 3rd embodiment.
次に、第四実施形態に係る離着陸システム101について説明する。図6に示されるように、離着陸システム101は、第一実施形態において説明した無人航空機3と、第二実施形態の離着陸装置5Aから重量検知部53を取り除いた構成の離着陸装置5Cと、注文受付サーバ(注文受付システム)70と、を備える。なお、第一、第二及び第三実施形態と同じ構成については説明を省略する。 [Fourth embodiment]
Next, the take-off and
注文受付サーバ70は、ネットワークを介して制御部60に通信可能に接続される。注文受付サーバ70は、図略のCPUと、ROMと、RAMと、を有する。図7に示されるように、注文受付サーバ70は、ネットワークを介して商品の注文を受け付けるための各種制御処理を実行する概念的な部分としての注文受付部71と、商品情報記憶部72と、重量推定部73と、を有する。このような概念的な部分は、例えばROMに格納されているプログラムがRAM上にロードされてCPUで実行されることにより構成される。
The order reception server 70 is communicably connected to the control unit 60 via a network. The order receiving server 70 includes a CPU, a ROM, and a RAM (not shown). As shown in FIG. 7, the order receiving server 70 includes an order receiving unit 71 as a conceptual part that executes various control processes for receiving product orders via a network, a product information storage unit 72, A weight estimation unit 73. Such a conceptual part is configured by, for example, a program stored in the ROM being loaded onto the RAM and executed by the CPU.
注文受付部71は、ネットワークNを介して接続可能な端末装置77から商品の注文を受け付ける。端末装置77の例には、パーソナルコンピュータ及びスマートフォンが含まれる。商品情報記憶部72は、商品と商品の重量とを関連付けた商品情報を記憶する。商品情報記憶部72の例には、例えば、HDD(hard disk drive)及びSSD(solid state drive)が含まれる。重量推定部73は、商品情報と注文受付部において注文を受け付けた商品とに基づいて商品の総重量を推定する。
The order receiving unit 71 receives an order for a product from a terminal device 77 that can be connected via the network N. Examples of the terminal device 77 include a personal computer and a smartphone. The merchandise information storage unit 72 stores merchandise information in which merchandise is associated with the weight of the merchandise. Examples of the product information storage unit 72 include, for example, an HDD (hard disk drive) and an SSD (solid state drive). The weight estimation unit 73 estimates the total weight of the product based on the product information and the product for which the order has been received by the order reception unit.
無人航空機3が配送する荷物Bは、注文受付部71によって受け付けられ、重量推定部73によって推定された重量と関連付けられる。重量取得部60Aは、無人航空機3が配送する荷物Bの重量を重量推定部73から取得する。重量取得部60Aは、算出した荷物Bの重量を離陸制御部60Bに出力する。
The package B delivered by the unmanned aerial vehicle 3 is received by the order receiving unit 71 and associated with the weight estimated by the weight estimating unit 73. The weight acquisition unit 60A acquires the weight of the luggage B delivered by the unmanned aerial vehicle 3 from the weight estimation unit 73. The weight acquisition unit 60A outputs the calculated weight of the load B to the take-off control unit 60B.
離陸制御部60Bは、重量推定部73により推定された荷物Bの重量と、予め記憶された過積載であるか否かを判定する基準値とに基づいて、無人航空機3が過積載の状態であるか否かを判定する。離陸制御部60Bは、過積載の状態であると判定した場合には通信部57から制御信号が送信されることを禁止し、過積載の状態ではないと判定した場合には通信部57から制御信号が送信されることを許可する。すなわち、通信部57から制御信号が送信されなければ、無人航空機3に搭載された通信部34が制御信号を受信することもなく、飛行制御部37が飛行に関する制御を実行することもない。一方、通信部57から制御信号が送信されれば、無人航空機3に搭載された通信部34が制御信号を受信し、飛行制御部37が飛行に関する制御を実行する。
The takeoff control unit 60B determines that the unmanned aircraft 3 is in an overloaded state based on the weight of the load B estimated by the weight estimating unit 73 and a reference value for determining whether or not the vehicle is overloaded. It is determined whether or not there is. The take-off control unit 60B prohibits transmission of a control signal from the communication unit 57 when it is determined that the vehicle is overloaded, and controls from the communication unit 57 when it is determined that the vehicle is not overloaded. Allows the signal to be transmitted. That is, unless a control signal is transmitted from the communication unit 57, the communication unit 34 mounted on the unmanned aircraft 3 does not receive the control signal, and the flight control unit 37 does not execute control related to the flight. On the other hand, if a control signal is transmitted from the communication unit 57, the communication unit 34 mounted on the unmanned aircraft 3 receives the control signal, and the flight control unit 37 executes control related to the flight.
第四実施形態に係る離着陸システム101においても、上記第一、第二及び第三実施形態と同様に、無人航空機3が過積載の状態で飛行することを防止できる。更に、上記離着陸システム101では、各無人航空機3に重量検知部36が設けられたり、離着陸装置5に重量検知部53が設けられたりする構成に比べコストを抑制することができる。
Also in the takeoff and landing system 101 according to the fourth embodiment, it is possible to prevent the unmanned aircraft 3 from flying in an overloaded state, as in the first, second and third embodiments. Further, in the take-off and landing system 101, the cost can be suppressed as compared with the configuration in which the weight detection unit 36 is provided in each unmanned aircraft 3 or the weight detection unit 53 is provided in the take-off and landing device 5.
なお、第四実施形態の無人航空機3においても、重量検知部36を備えてもよい。また、離着陸装置5Cには、重量検知部53が備えられてもよい。これらの場合、重量推定部73により取得される荷物Bの重量に加え、重量検知部36及び重量検知部53の少なくとも一方により取得される荷物Bの重量を考慮して、無人航空機3が過積載の状態であるか否かを判定してもよい。
It should be noted that the unmanned aerial vehicle 3 of the fourth embodiment may include the weight detection unit 36. Further, the weight detection unit 53 may be provided in the take-off and landing device 5C. In these cases, the unmanned aircraft 3 is overloaded in consideration of the weight of the load B acquired by at least one of the weight detection unit 36 and the weight detection unit 53 in addition to the weight of the load B acquired by the weight estimation unit 73. It may be determined whether or not this is the state.
[第五実施形態]
次に、第四実施形態に係る離着陸システム201について説明する。図8に示されるように、離着陸システム201は、第一実施形態において説明した無人航空機3と、第二実施形態の離着陸装置5Aから重量検知部53を取り除いた構成の離着陸装置5Cと、ピッキング装置80と、を備える。なお、第一、第二及び第三実施形態と同じ構成については説明を省略する。 [Fifth embodiment]
Next, the take-off andlanding system 201 according to the fourth embodiment will be described. As shown in FIG. 8, the takeoff and landing system 201 includes an unmanned aerial vehicle 3 described in the first embodiment, a takeoff and landing device 5C configured by removing the weight detection unit 53 from the takeoff and landing device 5A of the second embodiment, and a picking device. 80. In addition, description is abbreviate | omitted about the same structure as 1st, 2nd and 3rd embodiment.
次に、第四実施形態に係る離着陸システム201について説明する。図8に示されるように、離着陸システム201は、第一実施形態において説明した無人航空機3と、第二実施形態の離着陸装置5Aから重量検知部53を取り除いた構成の離着陸装置5Cと、ピッキング装置80と、を備える。なお、第一、第二及び第三実施形態と同じ構成については説明を省略する。 [Fifth embodiment]
Next, the take-off and
ピッキング装置80は、ピッキング作業を支援する装置であって、作業者に対しピッキングすべき商品名、数量等を表示部83等に表示させ、作業者によって実際にピッキングされたか否かを管理する装置である。ピッキング装置80は、ネットワークを介して制御部60に通信可能に接続される。図9に示されるように、ピッキング装置80は、表示部83と、制御部81と、を備える。
The picking device 80 is a device that supports picking work, and displays the product name, quantity, and the like to be picked for the worker on the display unit 83 and the like, and manages whether or not the picking work is actually picked by the worker. It is. The picking device 80 is communicably connected to the control unit 60 via a network. As shown in FIG. 9, the picking device 80 includes a display unit 83 and a control unit 81.
制御部81は、図略のCPUと、ROMと、RAMと、を有する。制御部81は、ピッキングを支援するための各種制御処理を実行する概念的な部分としての報知部81Aと、受付部81Bと、重量推定部81Cと、を有する。このような概念的な部分は、例えばROMに格納されているプログラムがRAM上にロードされてCPUで実行されることにより構成される。
The control unit 81 includes a CPU, a ROM, and a RAM (not shown). The control unit 81 includes a notification unit 81A, a reception unit 81B, and a weight estimation unit 81C as conceptual portions that execute various control processes for supporting picking. Such a conceptual part is configured by, for example, a program stored in the ROM being loaded onto the RAM and executed by the CPU.
報知部81Aは、商品棚に収容された商品群の中からピッキングすべき商品に関する商品情報(商品名及び数量等)を報知する。報知部81Aは、商品情報を表示部83に表示させることにより、作業者に報知する。受付部81Bは、対象商品のピッキングの有無を受け付ける。受付部81Bには、例えば、スキャナが含まれ、ピッキングした商品をスキャナでスキャニングすることによりピッキングが完了したことを受け付ける。重量推定部81Cは、受付部81Bにおいて受け付けた対象商品に基づいて対象商品の総重量を推定する。重量推定部81Cは、推定した対象商品の総重量を離着陸装置5Cの制御部60に送出する。
The notification unit 81A notifies the product information (product name, quantity, etc.) regarding the product to be picked from the product group accommodated in the product shelf. The notification unit 81A notifies the worker by displaying the product information on the display unit 83. The receiving unit 81B receives the presence / absence of picking of the target product. The accepting unit 81B includes, for example, a scanner, and accepts that picking is completed by scanning a picked product with the scanner. The weight estimation unit 81C estimates the total weight of the target product based on the target product received by the reception unit 81B. The weight estimation unit 81C sends the estimated total weight of the target product to the control unit 60 of the take-off and landing device 5C.
表示部83は、例えば、液晶ディスプレイ又はタッチパネルディスプレイであり、報知部81Aの制御によって商品情報(商品名及び数量等)が表示される。
The display unit 83 is, for example, a liquid crystal display or a touch panel display, and product information (product name, quantity, etc.) is displayed under the control of the notification unit 81A.
ピッキング装置80によってピッキングされた商品は、無人航空機3が配送する荷物Bとして制御部81によって受け付けられ、重量推定部81Cによって推定された重量と関連付けられる。重量取得部60Aは、無人航空機3が配送する荷物Bの重量を重量推定部81Cから取得する。重量取得部60Aは、取得した荷物Bの重量を離陸制御部60Bに出力する。
The product picked by the picking device 80 is received by the control unit 81 as a package B delivered by the unmanned aerial vehicle 3, and is associated with the weight estimated by the weight estimation unit 81C. The weight acquisition unit 60A acquires the weight of the luggage B delivered by the unmanned aerial vehicle 3 from the weight estimation unit 81C. The weight acquisition unit 60A outputs the acquired weight of the load B to the take-off control unit 60B.
離陸制御部60Bは、重量推定部81Cにより推定された荷物Bの重量と、予め記憶された過積載であるか否かを判定する基準値とに基づいて、無人航空機3が過積載の状態であるか否かを判定する。離陸制御部60Bは、過積載の状態であると判定した場合には通信部57から制御信号が送信されることを禁止し、過積載の状態ではないと判定した場合には通信部57から制御信号が送信されることを許可する。
The takeoff control unit 60B determines that the unmanned aerial vehicle 3 is in an overloaded state based on the weight of the load B estimated by the weight estimating unit 81C and a reference value for determining whether or not the vehicle is overloaded. It is determined whether or not there is. The take-off control unit 60B prohibits transmission of a control signal from the communication unit 57 when it is determined that the vehicle is overloaded, and controls from the communication unit 57 when it is determined that the vehicle is not overloaded. Allows the signal to be transmitted.
第五実施形態に係る離着陸システム201においても、上記第一、第二、第三及び第四実施形態と同様に、無人航空機3が過積載の状態で飛行することを防止できる。更に、上記離着陸システム201では、各無人航空機3に重量検知部36が設けられたり、離着陸装置5に重量検知部53が設けられたりする構成に比べコストを抑制することができる。
Also in the takeoff and landing system 201 according to the fifth embodiment, it is possible to prevent the unmanned aircraft 3 from flying in an overloaded state, as in the first, second, third and fourth embodiments. Further, in the take-off and landing system 201, the cost can be suppressed as compared with the configuration in which the weight detection unit 36 is provided in each unmanned aircraft 3 or the weight detection unit 53 is provided in the take-off and landing device 5.
なお、第五実施形態の無人航空機3においても、重量検知部36を備えてもよい。また、離着陸装置5Cには重量検知部53が備えられてもよい。これらの場合、重量推定部81Cにより取得される荷物Bの重量に加え、重量検知部36及び重量検知部53の少なくとも一方により取得される荷物Bの重量を考慮して、無人航空機3が過積載の状態であるか否かを判定してもよい。
Note that the unmanned aerial vehicle 3 of the fifth embodiment may include the weight detection unit 36. Further, the weight detection unit 53 may be provided in the take-off and landing device 5C. In these cases, the unmanned aircraft 3 is overloaded in consideration of the weight of the load B acquired by at least one of the weight detection unit 36 and the weight detection unit 53 in addition to the weight of the load B acquired by the weight estimation unit 81C. It may be determined whether or not this is the state.
[第六実施形態]
次に、図1及び図10を参照しながら、第六実施形態に係る無人配送システム301について説明する。図10に示されるように、無人配送システム301は、無人航空機303と、制御装置とから構成される。無人航空機303は、所定位置(例えば、配送センター)から注文主の住居まで荷物Bを配送する。無人航空機303は、第一実施形態において説明した無人航空機3の構成に加え、無人航空機3に積載される荷物Bの重量を検知する重量検知部36を備える。重量検知部36の例は、ロードセルである。第六実施形態における制御装置は、無人航空機303に搭載される飛行制御部337であり、無人航空機303における飛行を制御する。また、飛行制御部337は、無人航空機303における飛行の制御だけでなく、後述するような過積載状態の有無に基づく動作モードの切り替えも実行する。 [Sixth embodiment]
Next, anunmanned delivery system 301 according to the sixth embodiment will be described with reference to FIGS. 1 and 10. As shown in FIG. 10, the unmanned delivery system 301 includes an unmanned aircraft 303 and a control device. The unmanned aircraft 303 delivers the package B from a predetermined position (for example, a delivery center) to the residence of the orderer. The unmanned aircraft 303 includes a weight detector 36 that detects the weight of the load B loaded on the unmanned aircraft 3 in addition to the configuration of the unmanned aircraft 3 described in the first embodiment. An example of the weight detection unit 36 is a load cell. The control device in the sixth embodiment is a flight control unit 337 mounted on the unmanned aerial vehicle 303, and controls the flight of the unmanned aircraft 303. In addition, the flight control unit 337 executes not only the flight control in the unmanned aircraft 303, but also the switching of the operation mode based on the presence or absence of an overload state as described later.
次に、図1及び図10を参照しながら、第六実施形態に係る無人配送システム301について説明する。図10に示されるように、無人配送システム301は、無人航空機303と、制御装置とから構成される。無人航空機303は、所定位置(例えば、配送センター)から注文主の住居まで荷物Bを配送する。無人航空機303は、第一実施形態において説明した無人航空機3の構成に加え、無人航空機3に積載される荷物Bの重量を検知する重量検知部36を備える。重量検知部36の例は、ロードセルである。第六実施形態における制御装置は、無人航空機303に搭載される飛行制御部337であり、無人航空機303における飛行を制御する。また、飛行制御部337は、無人航空機303における飛行の制御だけでなく、後述するような過積載状態の有無に基づく動作モードの切り替えも実行する。 [Sixth embodiment]
Next, an
飛行制御部337は、図略のCPUと、ROMと、RAMと、を有する。飛行制御部337は、無人航空機303を離陸させるための各種制御処理を実行する。飛行制御部337は、無人航空機303を離陸させるための各種制御処理を実行する概念的な部分としての重量取得部337Aと、離陸制御部337Bと、を有する。このような概念的な部分は、例えばROMに格納されているプログラムがRAM上にロードされてCPUで実行されることにより構成される。
The flight control unit 337 includes an unillustrated CPU, ROM, and RAM. The flight control unit 337 executes various control processes for taking off the unmanned aircraft 303. The flight control unit 337 includes a weight acquisition unit 337A and a take-off control unit 337B as conceptual parts that execute various control processes for taking off the unmanned aircraft 303. Such a conceptual part is configured by, for example, a program stored in the ROM being loaded onto the RAM and executed by the CPU.
重量取得部337Aは、無人航空機303が配送する荷物Bの重量を取得する。重量取得部337Aは、重量検知部36から荷物Bの重量を取得する。重量取得部337Aは、取得した荷物Bの重量を離陸制御部337Bに出力する。
The weight acquisition unit 337A acquires the weight of the luggage B delivered by the unmanned aircraft 303. The weight acquisition unit 337A acquires the weight of the luggage B from the weight detection unit 36. The weight acquisition unit 337A outputs the acquired weight of the luggage B to the take-off control unit 337B.
離陸制御部(第二制御部・第三制御部)337Bは、重量取得部337Aによって取得した重量と所定の基準値とに基づいて、配送する荷物Bを積載したときに過積載の状態になるか否かを判定する。離陸制御部337Bは、過積載の状態になるか否かの判定結果に基づき、無人航空機303における動作モードを離着陸可能な配送モードと、離着陸不可能な禁止モードとを選択的に切り替える。
The take-off control unit (second control unit / third control unit) 337B becomes overloaded when the package B to be delivered is loaded based on the weight acquired by the weight acquisition unit 337A and a predetermined reference value. It is determined whether or not. The take-off control unit 337B selectively switches the operation mode of the unmanned aircraft 303 between a delivery mode in which the unmanned aircraft 303 can take off and land and a prohibit mode in which the take-off and landing cannot be performed, based on the determination result of whether or not the vehicle is overloaded.
第六実施形態の無人航空機303では、離陸制御部337Bは、過積載の状態の場合には、離着陸不可能な禁止モードに制御することにより、無人航空機303の離陸を阻止する。これにより、過積載の状態の無人航空機303は、離陸することができなくなるので、無人航空機303が過積載の状態で飛行することを防止できる。なお、離陸制御部337Bにおける過積載の状態の有無の判定は、荷物Bを積載したタイミングで実行してもよいし、無人航空機3Aが飛行しようとするタイミングで実行してもよい。
In the unmanned aerial vehicle 303 of the sixth embodiment, the take-off control unit 337B prevents the unmanned aircraft 303 from taking off by controlling to a prohibition mode incapable of taking off and landing in an overloaded state. As a result, the unmanned aircraft 303 in an overloaded state cannot take off, so that the unmanned aircraft 303 can be prevented from flying in an overloaded state. The determination of whether or not the takeoff control unit 337B is in an overloaded state may be performed at the timing when the load B is loaded, or may be performed at the timing when the unmanned aircraft 3A is about to fly.
なお、第六実施形態では、重量取得部337A及び離陸制御部337Bが無人航空機303に搭載される例を挙げて説明したが、例えば、配送センター、又は上記第一~第五実施形態において説明した離着陸装置5,5A,5B,5Cに配置されてもよい。また、重量取得部337Aは、無人航空機303に搭載された重量検知部36から荷物Bの重量を取得する例を挙げて説明したが、例えば、第一実施形態のように離着陸装置5に配置された重量検知部53から荷物Bの重量を取得してもよいし、第四実施形態のように注文受付サーバ70の重量推定部73から荷物Bの重量を取得してもよいし、また、第五実施形態のようにピッキング装置80の重量推定部81Cから荷物Bの重量を取得してもよい。
In the sixth embodiment, the example in which the weight acquisition unit 337A and the takeoff control unit 337B are mounted on the unmanned aircraft 303 has been described. However, for example, the distribution center or the first to fifth embodiments described above has been described. You may arrange | position to the take-off and landing apparatus 5, 5A, 5B, 5C. Moreover, although the weight acquisition part 337A gave and demonstrated the example which acquires the weight of the load B from the weight detection part 36 mounted in the unmanned aircraft 303, for example, it is arrange | positioned at the takeoff and landing apparatus 5 like 1st embodiment. The weight of the package B may be acquired from the weight detection unit 53, or the weight of the package B may be acquired from the weight estimation unit 73 of the order reception server 70 as in the fourth embodiment. The weight of the load B may be acquired from the weight estimation unit 81C of the picking device 80 as in the fifth embodiment.
以上、本発明の一側面の一実施形態について説明したが、本発明の一側面は、上記実施形態に限定されない。
Although one embodiment of one aspect of the present invention has been described above, one aspect of the present invention is not limited to the above embodiment.
上記第一~第六実施形態の離陸制御部60B,337Bは、過積載を判定する基準値と重量検知部36,53によって取得された荷物Bの重量値との単純な比較に基づいて過積載であるか否かを判定する例を挙げて説明したが、これに限定されない。例えば、気象情報(風速、天候)、飛行経路、荷物の種類等に応じて変更された基準値と荷物Bの重量値との比較に基づいて過積載であるか否かを判定してもよい。
The takeoff control units 60B and 337B of the first to sixth embodiments described above are based on a simple comparison between the reference value for determining overloading and the weight value of the load B acquired by the weight detection units 36 and 53. However, the present invention is not limited to this. For example, it may be determined whether or not the vehicle is overloaded based on a comparison between a reference value changed according to weather information (wind speed, weather), flight route, type of baggage, and the like and a weight value of the baggage B. .
例えば、無人航空機3により荷物Bを配送する場合、過積載だけではなく、配送先まで航続可能か否かも判断してもよい。この場合には、無人航空機3,303又は離着陸システム101,201は、例えば、図2,4,5,7,9,10に示されるように、無人航空機3,303に搭載された動力源のエネルギー源の残量を取得する残量取得部91と、無人航空機3,303に積載される荷物Bの重量と、エネルギー源の残量と、無人航空機3,303の航続距離又は航続時間との関係である航続情報を記憶する航続情報記憶部92と、現在位置から荷物Bの配送先までの配送距離又は配送時間を取得する配送先情報取得部93と、を更に備える。
For example, when the package B is delivered by the unmanned aerial vehicle 3, it may be determined whether it is possible to continue to the delivery destination as well as overloading. In this case, the unmanned aerial vehicle 3,303 or the take-off and landing system 101, 201 is connected to the power source mounted on the unmanned aerial vehicle 3,303 as shown in FIGS. 2, 4, 5, 7, 9, 10, for example. The remaining amount acquisition unit 91 for acquiring the remaining amount of the energy source, the weight of the load B loaded on the unmanned aircraft 3,303, the remaining amount of the energy source, and the cruising distance or cruising time of the unmanned aircraft 3,303 A cruising information storage unit 92 that stores cruising information as a relationship, and a delivery destination information acquisition unit 93 that acquires a delivery distance or delivery time from the current position to the delivery destination of the package B are further provided.
動力源の例には、モータ及びエンジンが含まれ、エネルギー源の例には、電力及び燃料が含まれる。残量取得部91は、バッテリー35に蓄電された電力又は燃料タンクに蓄えられた燃料の残量を検知する検出装置又はセンサ等の公知の手段から、上記残量を取得することができる。
Examples of power sources include motors and engines, and examples of energy sources include power and fuel. The remaining amount acquisition unit 91 can acquire the remaining amount from known means such as a detection device or a sensor that detects the amount of electric power stored in the battery 35 or the remaining amount of fuel stored in the fuel tank.
そして、離陸制御部60B,337Bは、重量取得部60A,337Aによって取得される荷物Bの重量と、残量取得部91から取得されるエネルギー源の残量と、配送先情報取得部93から取得された配送距離又は配送時間と、航続情報とに基づいて、無人航空機3,303が配送先まで航行可能か否かを判定してもよい。離陸制御部60B,337Bは、航行不能と判定すれば離陸阻止部(固定装置55及び通信部57の少なくとも一方)における状態を航行不能な状態(禁止モード)に切り替え、航行可能と判定すれば上記離陸阻止部における状態を航行可能な状態(配送モード)に切り替える。
The take- off control units 60B and 337B acquire the weight of the load B acquired by the weight acquisition units 60A and 337A, the remaining amount of the energy source acquired from the remaining amount acquisition unit 91, and the delivery destination information acquisition unit 93. Based on the delivered delivery distance or delivery time and the cruising information, it may be determined whether or not the unmanned aircraft 3,303 can navigate to the delivery destination. The take- off control units 60B and 337B switch the state in the take-off prevention unit (at least one of the fixing device 55 and the communication unit 57) to the non-navigable state (prohibition mode) if it is determined that navigation is not possible, and the above if it is determined that navigation is possible The state in the take-off prevention unit is switched to a navigable state (delivery mode).
航続情報の例には、実験等から得られるテーブル情報及び関係式が含まれる。すなわち、離陸制御部60B,337Bは、重量取得部60A,337A、及び残量取得部91からそれぞれ荷物Bの重量、及びエネルギー源の残量を取得すれば、上記テーブル情報及び関係式に基づいて無人航空機3,303の航続距離又は航続時間を直接的に導出できる。そして、離陸制御部60B,337Bは、このように導出された航続距離又は航続時間と、配送先情報取得部93から取得される配送距離又は配送時間とを比較して、荷物Bを配送先まで搬送可能か否かを判定する。
Examples of cruising information include table information and relational expressions obtained from experiments and the like. That is, if the takeoff control units 60B and 337B acquire the weight of the load B and the remaining amount of the energy source from the weight acquisition units 60A and 337A and the remaining amount acquisition unit 91, respectively, based on the table information and the relational expression. The cruising distance or cruising time of the unmanned aircraft 3,303 can be directly derived. Then, the takeoff control units 60B and 337B compare the cruising distance or cruising time derived in this way with the delivery distance or delivery time acquired from the delivery destination information acquisition unit 93, and send the package B to the delivery destination. It is determined whether or not conveyance is possible.
また、航続情報記憶部92は、例えば、100gの荷物Bを積載して搬送する場合、基準航続時間と比べて航続時間が1分短くなるといった関係式又はテーブル情報を記憶してもよい。この関係式は線形的な関係でも構わないし、テーブル情報は、実験等から得られる二次元テーブルであってもよい。この場合、離陸制御部60B,337Bは、現時点におけるエネルギー源の残量から、荷物Bを積載しない場合に航続できる時間を間接的に導出できる。例えば、離陸制御部60B,337Bは、荷物Bを積載しない場合、60分の航続が可能と判定する。次に、離陸制御部60B,337Bは、搬送に係る荷物Bの重量が、例えば500gであることを取得すると、基準航続時間と比べて航続時間が5分短くなると判定する。よって、離陸制御部60B,337Bは、当初の航続時間である60分を補正して実際の航続時間を55分と補正する。離陸制御部60B,337Bは、補正後の航続時間と、配送先情報取得部93から取得された配送時間とに基づき、荷物Bを配送先まで搬送可能か否かを判定してもよい。
Further, the cruising information storage unit 92 may store a relational expression or table information that, for example, when a 100 g load B is loaded and transported, the cruising time is shortened by 1 minute compared to the reference cruising time. This relational expression may be a linear relation, and the table information may be a two-dimensional table obtained from an experiment or the like. In this case, the takeoff control units 60B and 337B can indirectly derive the time that can be continued when the load B is not loaded from the remaining amount of the energy source. For example, the take- off control units 60B and 337B determine that 60 minutes of cruising is possible when the load B is not loaded. Next, the takeoff control units 60B and 337B determine that the cruising time is shortened by 5 minutes compared to the reference cruising time when acquiring that the weight of the load B related to transportation is, for example, 500 g. Accordingly, the takeoff control units 60B and 337B correct the actual cruising time to 55 minutes by correcting the initial cruising time of 60 minutes. The takeoff control units 60B and 337B may determine whether the package B can be transported to the delivery destination based on the corrected cruising time and the delivery time acquired from the delivery destination information acquisition unit 93.
3,303…無人航空機、34…通信部、36…重量検知部(第二重量検知部)、37…飛行制御部、5,5A,5B,5C…離着陸装置、51…本体部、52…着地部、53…重量検知部(第一重量検知部)、55…固定装置、57…通信部(送信部)、60…制御部、60A…重量取得部、60B…離陸制御部(第一制御部)、70…注文受付サーバ、71…注文受付部、72…商品情報記憶部、73…重量推定部、80…ピッキング装置、81…制御部、81A…報知部、81B…受付部、81C…重量推定部、101,201…離着陸システム、301…無人配送システム、B…荷物(物品)、337…飛行制御部、337A…重量取得部、337B…離陸制御部(第二制御部・第三制御部)。
DESCRIPTION OF SYMBOLS 3,303 ... Unmanned aerial vehicle, 34 ... Communication part, 36 ... Weight detection part (2nd weight detection part), 37 ... Flight control part, 5, 5A, 5B, 5C ... Takeoff and landing apparatus, 51 ... Main-body part, 52 ... Landing , 53 ... Weight detector (first weight detector), 55 ... Fixing device, 57 ... Communication unit (transmitter), 60 ... Controller, 60A ... Weight acquisition unit, 60B ... Takeoff controller (first controller) ), 70 ... Order reception server, 71 ... Order reception part, 72 ... Product information storage part, 73 ... Weight estimation part, 80 ... Picking device, 81 ... Control part, 81A ... Notification part, 81B ... Reception part, 81C ... Weight Estimator 101, 201 ... Takeoff / landing system 301 ... Unmanned delivery system B ... Luggage (article) 337 ... Flight controller 337A ... Weight acquisition unit 337B ... Takeoff controller (second controller / third controller) ).
Claims (12)
- 物品を配送する無人航空機の離着陸が行われる離着陸装置であって、
自装置から前記無人航空機が離陸することを阻止する状態である第一状態と、阻止しない状態である第二状態とに切り替え可能な離陸阻止部と、
前記無人航空機が配送する前記物品の重量を取得する重量取得部と、
前記重量取得部により取得された前記物品の重量と過積載であるか否かを判定する基準値とに基づいて、前記離陸阻止部における状態を前記第一状態又は前記第二状態に切り替える第一制御部と、を備える、離着陸装置。 A take-off and landing device for taking off and landing of unmanned aerial vehicles that deliver goods,
A take-off prevention unit capable of switching between a first state in which the unmanned aircraft is prevented from taking off from its own device and a second state in which the unmanned aircraft is not blocked;
A weight acquisition unit for acquiring the weight of the article delivered by the unmanned aerial vehicle;
Based on the weight of the article acquired by the weight acquisition unit and a reference value for determining whether it is overloaded or not, a first state that switches the state in the take-off prevention unit to the first state or the second state A take-off and landing device comprising a control unit. - 前記離陸阻止部は、前記自装置に前記無人航空機を固定する固定装置であり、
前記固定装置は、前記自装置に前記無人航空機を固定する前記第一状態と、前記自装置への前記無人航空機の固定が解除された前記第二状態とに切り替え可能である、請求項1記載の離着陸装置。 The takeoff prevention unit is a fixing device that fixes the unmanned aircraft to the own device,
The said fixing device can be switched between the first state in which the unmanned aircraft is fixed to the own device and the second state in which the unmanned aircraft is released from being fixed to the own device. Take-off and landing equipment. - 前記離陸阻止部は、前記無人航空機に飛行動作をさせる制御信号を送信する送信部であり、
前記送信部は、前記制御信号の送信を禁止する前記第一状態と、前記制御信号の送信を許可する前記第二状態とに切り替え可能である、請求項1又は2記載の離着陸装置。 The takeoff prevention unit is a transmission unit that transmits a control signal that causes the unmanned aircraft to perform a flight operation,
The take-off and landing device according to claim 1 or 2, wherein the transmission unit is switchable between the first state in which transmission of the control signal is prohibited and the second state in which transmission of the control signal is permitted. - 配送する物品の重量を計測する第一重量検知部を更に備え、
前記重量取得部は、前記第一重量検知部から前記物品の重量を取得する、請求項1~3の何れか一項記載の離着陸装置。 A first weight detector for measuring the weight of the article to be delivered;
The take-off and landing device according to any one of claims 1 to 3, wherein the weight acquisition unit acquires the weight of the article from the first weight detection unit. - 前記無人航空機に搭載された動力源のエネルギー源の残量を取得する残量取得部と、
前記無人航空機に積載される物品の重量と、前記残量と、前記無人航空機の航続距離又は航続時間との関係である航続情報を記憶する航続情報記憶部と、
現在位置から前記物品の配送先までの配送距離又は配送時間を取得する配送先情報取得部と、を更に備え、
前記第一制御部は、前記重量取得部によって取得される前記物品の重量と、前記残量取得部から取得される前記残量と、前記配送先情報取得部から取得された前記配送距離又は前記配送時間と、前記航続情報とに基づいて、前記無人航空機が前記配送先まで航行可能か否かを判定し、航行不能と判定すれば前記離陸阻止部における状態を前記第一状態に切り替え、航行可能と判定すれば前記離陸阻止部における状態を前記第二状態に切り替える、請求項1~4の何れか一項記載の離着陸装置。 A remaining amount acquisition unit for acquiring a remaining amount of an energy source of a power source mounted on the unmanned aircraft;
A cruising information storage unit that stores cruising information that is a relationship between the weight of an article loaded on the unmanned aircraft, the remaining amount, and the cruising distance or cruising time of the unmanned aircraft;
A delivery destination information acquisition unit for acquiring a delivery distance or delivery time from the current position to the delivery destination of the article,
The first control unit includes the weight of the article acquired by the weight acquisition unit, the remaining amount acquired from the remaining amount acquisition unit, and the delivery distance acquired from the delivery destination information acquisition unit or the Based on the delivery time and the cruising information, it is determined whether or not the unmanned aircraft can navigate to the delivery destination, and if it is determined that navigation is not possible, the state in the take-off prevention unit is switched to the first state, and navigation is performed. The take-off and landing device according to any one of claims 1 to 4, wherein when it is determined that the state is possible, the state in the take-off prevention unit is switched to the second state. - 配送する物品の重量を計測する第二重量検知部を有し、自装置の飛行を制御する制御信号に基づいて飛行することにより前記物品を配送する無人航空機と、
請求項1~5の何れか一項記載の離着陸装置と、を備え、
前記重量取得部は、前記第二重量検知部から前記物品の重量を取得する、離着陸システム。 An unmanned aerial vehicle that has a second weight detection unit that measures the weight of an article to be delivered and delivers the article by flying based on a control signal that controls the flight of the own device;
A take-off and landing device according to any one of claims 1 to 5,
The weight acquisition unit is a take-off and landing system that acquires the weight of the article from the second weight detection unit. - 前記無人航空機は、
自装置の飛行を制御する制御信号を受信する受信部と、
前記第二重量検知部によって検知した重量と所定の基準値とに基づいて、配送する前記物品を積載したときに過積載の状態になるか否かを判定する第二制御部と、を有し、
前記第二制御部は、前記過積載の状態になると判定した場合、前記受信部において受信した前記制御信号に基づいて動作することを禁止する、請求項6記載の離着陸システム。 The unmanned aircraft
A receiving unit for receiving a control signal for controlling the flight of the own device;
A second control unit that determines, based on the weight detected by the second weight detection unit and a predetermined reference value, whether or not the article to be delivered is overloaded. ,
The takeoff and landing system according to claim 6, wherein, when it is determined that the second control unit is in an overloaded state, the second control unit prohibits operation based on the control signal received by the receiving unit. - 商品棚に収容された商品群の中からピッキングすべき商品である対象商品を報知する報知部と、前記対象商品のピッキングの有無を受け付ける受付部と、前記受付部において受け付けた前記対象商品に基づいて前記対象商品の総重量を推定する重量推定部と、を有するピッキング装置と、
請求項1~5の何れか一項記載の前記離着陸装置と、を備え、
前記重量取得部は、前記重量推定部から前記物品の重量を取得する、離着陸システム。 Based on the notification unit that notifies the target product that is a product to be picked from the product group accommodated in the product shelf, the reception unit that receives presence or absence of picking of the target product, and the target product received in the reception unit A weight estimating unit for estimating the total weight of the target product, and a picking device having
The take-off and landing device according to any one of claims 1 to 5,
The weight acquisition unit is a take-off and landing system that acquires the weight of the article from the weight estimation unit. - ネットワークを介して商品の注文を受け付ける注文受付部と、前記商品と前記商品の重量とを関連付けた商品情報を記憶する商品情報記憶部と、前記商品情報と前記注文受付部において注文を受け付けた商品とに基づいて商品の総重量を推定する重量推定部と、を有する注文受付システムと、
請求項1~5の何れか一項記載の前記離着陸装置と、を備え、
前記重量取得部は、前記重量推定部から前記物品の重量を取得する、離着陸システム。 An order receiving unit that receives an order for a product via a network, a product information storage unit that stores product information in which the product and the weight of the product are associated, and a product that has received an order in the product information and the order receiving unit A weight estimation unit that estimates the total weight of the product based on
The take-off and landing device according to any one of claims 1 to 5,
The weight acquisition unit is a take-off and landing system that acquires the weight of the article from the weight estimation unit. - 物品を配送する無人航空機と、当該無人航空機を制御する制御装置と、を備える無人配送システムであって、
前記物品の重量を取得する重量取得部と、
前記重量取得部によって取得した前記重量と所定の基準値とに基づいて、配送する前記物品を積載したときに過積載の状態になるか否かを判定する第三制御部と、を有し、
前記第三制御部は、前記過積載の状態になるか否かの判定結果に基づき、前記無人航空機における動作モードを離着陸可能な配送モードと、離着陸不可能な禁止モードとを選択的に切り替える、無人配送システム。 An unmanned delivery system comprising an unmanned aircraft for delivering an article and a control device for controlling the unmanned aircraft,
A weight acquisition unit for acquiring the weight of the article;
A third control unit that determines whether or not an overloading state occurs when the article to be delivered is loaded based on the weight acquired by the weight acquisition unit and a predetermined reference value;
The third control unit selectively switches between a delivery mode in which the operation mode in the unmanned aircraft can take off and landing and a prohibit mode in which the takeoff and landing cannot be performed, based on a determination result of whether or not the overloading state occurs. Unmanned delivery system. - 前記重量取得部及び前記第三制御部は、前記無人航空機に搭載されている、請求項10記載の無人配送システム。 The unmanned delivery system according to claim 10, wherein the weight acquisition unit and the third control unit are mounted on the unmanned aircraft.
- 前記無人航空機に搭載された動力源のエネルギー源の残量を取得する残量取得部と、
前記無人航空機に積載される物品の重量と、前記残量と、前記無人航空機の航続距離又は航続時間との関係である航続情報を記憶する航続情報記憶部と、
現在位置から前記物品の配送先までの配送距離又は配送時間を取得する配送先情報取得部と、を更に備え、
前記第三制御部は、前記重量取得部によって取得される前記物品の重量と、前記残量取得部から取得される前記残量と、前記配送先情報取得部から取得された前記配送距離又は前記配送時間と、前記航続情報とに基づいて、前記無人航空機が前記配送先まで航行可能か否かを判定し、航行不能と判定すれば前記動作モードを前記禁止モードに切り替え、航行可能と判定すれば前記動作モードを前記配送モードに切り替える、請求項10又は11記載の無人配送システム。 A remaining amount acquisition unit for acquiring a remaining amount of an energy source of a power source mounted on the unmanned aircraft;
A cruising information storage unit that stores cruising information that is a relationship between the weight of an article loaded on the unmanned aircraft, the remaining amount, and the cruising distance or cruising time of the unmanned aircraft;
A delivery destination information acquisition unit for acquiring a delivery distance or delivery time from the current position to the delivery destination of the article,
The third control unit includes the weight of the article acquired by the weight acquisition unit, the remaining amount acquired from the remaining amount acquisition unit, and the delivery distance acquired from the delivery destination information acquisition unit or the Based on the delivery time and the cruising information, it is determined whether or not the unmanned aircraft can navigate to the delivery destination. If it is determined that navigation is not possible, the operation mode is switched to the prohibit mode and it is determined that navigation is possible. The unattended delivery system according to claim 10 or 11, wherein the operation mode is switched to the delivery mode.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/489,120 US11713120B2 (en) | 2017-03-01 | 2018-02-08 | Takeoff and landing device, takeoff and landing system, and unmanned delivery system |
CN201880014794.3A CN110382354B (en) | 2017-03-01 | 2018-02-08 | Lifting device, lifting system and unmanned distribution system |
JP2019502841A JP6864393B2 (en) | 2017-03-01 | 2018-02-08 | Takeoff and landing equipment, takeoff and landing system and unmanned delivery system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017038710 | 2017-03-01 | ||
JP2017-038710 | 2017-03-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018159256A1 true WO2018159256A1 (en) | 2018-09-07 |
Family
ID=63370962
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/004444 WO2018159256A1 (en) | 2017-03-01 | 2018-02-08 | Takeoff and landing device, takeoff and landing system, and unmanned delivery system |
Country Status (4)
Country | Link |
---|---|
US (1) | US11713120B2 (en) |
JP (1) | JP6864393B2 (en) |
CN (1) | CN110382354B (en) |
WO (1) | WO2018159256A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021020573A (en) * | 2019-07-29 | 2021-02-18 | Ihi運搬機械株式会社 | State confirmation device and state confirmation method for unmanned aircraft |
JPWO2021124573A1 (en) * | 2019-12-20 | 2021-06-24 | ||
KR20210125738A (en) * | 2020-04-09 | 2021-10-19 | 한국전자통신연구원 | Method and system for identifying drones using an identification device mounted on a drone |
KR20210128188A (en) * | 2020-04-16 | 2021-10-26 | 한국전자통신연구원 | Method and system for identifying drone pilots |
CN114620243A (en) * | 2022-05-12 | 2022-06-14 | 四川腾盾科技有限公司 | Intelligent take-off and landing capturing system for aircraft |
KR20220124964A (en) * | 2021-03-04 | 2022-09-14 | 황의철 | Goods delivery system using drone and product delivery method using the same |
WO2024053327A1 (en) * | 2022-09-08 | 2024-03-14 | 株式会社石川エナジーリサーチ | Flying device and control method therefor |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10960988B2 (en) * | 2018-07-16 | 2021-03-30 | The Boeing Company | Delivery landing pads for unmanned aerial vehicles (UAVs) |
US11691761B2 (en) * | 2019-05-17 | 2023-07-04 | FlyFocus Sp. z.o.o. | Detachable power cable for unmanned aerial vehicle |
CN110667870B (en) * | 2019-10-12 | 2023-01-20 | 内蒙古工业大学 | Unmanned aerial vehicle is energy autonomous base station of independently taking off and land trading battery based on solar energy power supply |
JP7241103B2 (en) * | 2021-01-14 | 2023-03-16 | Kddi株式会社 | Information processing equipment |
CN113815859B (en) * | 2021-09-26 | 2023-12-05 | 广州极飞科技股份有限公司 | Unmanned equipment take-off control method, unmanned equipment take-off control device, unmanned equipment take-off control equipment and storage medium |
CN113975697A (en) * | 2021-10-25 | 2022-01-28 | 中航通飞华南飞机工业有限公司 | Fire-fighting aircraft water-drawing takeoff alarming method |
US20250083841A1 (en) * | 2023-09-11 | 2025-03-13 | Polaris Industries Inc. | Drone integration with vehicle |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001114407A (en) * | 1999-10-15 | 2001-04-24 | Kao Corp | Goods collection equipment |
US8511606B1 (en) * | 2009-12-09 | 2013-08-20 | The Boeing Company | Unmanned aerial vehicle base station |
US9387928B1 (en) * | 2014-12-18 | 2016-07-12 | Amazon Technologies, Inc. | Multi-use UAV docking station systems and methods |
US20160209839A1 (en) * | 2015-01-16 | 2016-07-21 | International Business Machines Corporation | Distributed, unmanned aerial vehicle package transport network |
JP2016135625A (en) * | 2015-01-23 | 2016-07-28 | みこらった株式会社 | Levitation movable carriage |
US20160244187A1 (en) * | 2015-02-25 | 2016-08-25 | Cisco Technology, Inc. | PRE-FLIGHT SELF TEST FOR UNMANNED AERIAL VEHICLES (UAVs) |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB665902A (en) * | 1948-07-08 | 1952-01-30 | Fairchild Engine & Airplane | Aircraft landing gear |
DE102006025620A1 (en) * | 2006-05-24 | 2007-11-29 | SSI Schäfer Noell GmbH Lager- und Systemtechnik | Shelf warehouse and order picking |
WO2013103403A2 (en) * | 2011-09-30 | 2013-07-11 | Aurora Flight Sciences Corporation | Hardware-based weight and range limitation system, apparatus and method |
US9629220B2 (en) * | 2013-08-05 | 2017-04-18 | Peter Panopoulos | Sensor-based controllable LED lighting system with repositionable components and method |
US10176447B2 (en) * | 2015-02-16 | 2019-01-08 | International Business Machines Corporation | Autonomous delivery of items |
JP6543952B2 (en) | 2015-02-19 | 2019-07-17 | 沖電気工業株式会社 | Transportation system |
JP2016153337A (en) | 2015-02-20 | 2016-08-25 | 矢継 正信 | Delivery system using drone |
EP3164775B1 (en) * | 2015-03-31 | 2023-03-22 | SZ DJI Technology Co., Ltd. | Open platform for flight restricted region |
EP3152089A4 (en) * | 2015-03-31 | 2017-08-02 | SZ DJI Technology Co., Ltd. | Systems and methods for geo-fencing device communications |
EP3254404A4 (en) * | 2015-03-31 | 2018-12-05 | SZ DJI Technology Co., Ltd. | Authentication systems and methods for generating flight regulations |
US10000284B1 (en) * | 2015-06-26 | 2018-06-19 | Amazon Technologies, Inc. | Collaborative unmanned aerial vehicle for an inventory system |
US10040550B2 (en) * | 2015-08-26 | 2018-08-07 | The Boeing Company | Procedure description language and operational rule file |
US10663529B1 (en) * | 2015-09-25 | 2020-05-26 | Amazon Technologies, Inc. | Automatic battery charging |
US10099561B1 (en) * | 2015-09-25 | 2018-10-16 | Amazon Technologies, Inc. | Airborne unmanned aerial vehicle charging |
CN108885120A (en) * | 2015-11-06 | 2018-11-23 | 沃尔玛阿波罗有限责任公司 | Target position product delivery system and method |
WO2017084031A1 (en) * | 2015-11-17 | 2017-05-26 | SZ DJI Technology Co., Ltd. | Systems and methods for managing flight-restriction regions |
CN105539843B (en) | 2015-12-03 | 2017-11-07 | 杨珊珊 | A kind of electronic unmanned plane and its endurance method of estimation |
JP6700397B2 (en) * | 2015-12-21 | 2020-05-27 | エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd | Method, apparatus, and non-transitory computer-readable medium for supporting flight restrictions |
US10295397B2 (en) * | 2015-12-28 | 2019-05-21 | C Kirk Nance | Method for validation aircraft take-off weight independent of measuring the aircraft weight |
GB2564315B (en) * | 2016-03-18 | 2021-09-29 | Walmart Apollo Llc | Unmanned aircraft systems and methods |
US20170275024A1 (en) * | 2016-03-28 | 2017-09-28 | Andrew Bennett | System and method for docking unmanned aerial vehicles (uavs) |
US20170293991A1 (en) * | 2016-04-08 | 2017-10-12 | Wal-Mart Stores, Inc. | Systems and methods for drone dispatch and operation |
US20170323257A1 (en) * | 2016-05-06 | 2017-11-09 | Elwha Llc | Systems and methods for adjusting a pick up schedule for an unmanned aerial vehicle |
CN109415122B (en) * | 2016-06-06 | 2022-07-05 | 福特全球技术公司 | Systems, methods and apparatus for automated vehicle and drone delivery |
US10207820B2 (en) * | 2016-07-05 | 2019-02-19 | Toyota Motor Engineering & Manufacturing North America, Inc. | Systems for transporting, deploying, and docking unmanned aerial vehicles mountable on a ground vehicle |
CN205801968U (en) * | 2016-07-12 | 2016-12-14 | 上海番安机电安装工程有限公司 | A kind of intelligent receiver for unmanned plane delivery |
WO2018014338A1 (en) * | 2016-07-22 | 2018-01-25 | SZ DJI Technology Co., Ltd. | Systems and methods for uav interactive video broadcasting |
CN205862591U (en) * | 2016-08-09 | 2017-01-04 | 安徽钰龙信息科技有限公司 | The control system of overload control is moved based on vehicle-mounted unmanned aerial vehicle |
WO2018058338A1 (en) * | 2016-09-27 | 2018-04-05 | SZ DJI Technology Co., Ltd. | Component and user management for uav systems |
US20180099765A1 (en) * | 2016-10-12 | 2018-04-12 | Justin Lee | Method and System for Moving Vehicles |
US10351239B2 (en) * | 2016-10-21 | 2019-07-16 | Drone Delivery Canada Corp. | Unmanned aerial vehicle delivery system |
US10717524B1 (en) * | 2016-12-20 | 2020-07-21 | Amazon Technologies, Inc. | Unmanned aerial vehicle configuration and deployment |
US20180244386A1 (en) * | 2017-02-13 | 2018-08-30 | Top Flight Technologies, Inc. | Weather sensing |
US11447245B2 (en) * | 2017-02-17 | 2022-09-20 | Ford Global Technologies, Llc | Drone-based goods transportation |
-
2018
- 2018-02-08 JP JP2019502841A patent/JP6864393B2/en active Active
- 2018-02-08 WO PCT/JP2018/004444 patent/WO2018159256A1/en active Application Filing
- 2018-02-08 CN CN201880014794.3A patent/CN110382354B/en active Active
- 2018-02-08 US US16/489,120 patent/US11713120B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001114407A (en) * | 1999-10-15 | 2001-04-24 | Kao Corp | Goods collection equipment |
US8511606B1 (en) * | 2009-12-09 | 2013-08-20 | The Boeing Company | Unmanned aerial vehicle base station |
US9387928B1 (en) * | 2014-12-18 | 2016-07-12 | Amazon Technologies, Inc. | Multi-use UAV docking station systems and methods |
US20160209839A1 (en) * | 2015-01-16 | 2016-07-21 | International Business Machines Corporation | Distributed, unmanned aerial vehicle package transport network |
JP2016135625A (en) * | 2015-01-23 | 2016-07-28 | みこらった株式会社 | Levitation movable carriage |
US20160244187A1 (en) * | 2015-02-25 | 2016-08-25 | Cisco Technology, Inc. | PRE-FLIGHT SELF TEST FOR UNMANNED AERIAL VEHICLES (UAVs) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021020573A (en) * | 2019-07-29 | 2021-02-18 | Ihi運搬機械株式会社 | State confirmation device and state confirmation method for unmanned aircraft |
JP7002501B2 (en) | 2019-07-29 | 2022-01-20 | Ihi運搬機械株式会社 | Unmanned aerial vehicle status check device and status check method |
JPWO2021124573A1 (en) * | 2019-12-20 | 2021-06-24 | ||
JP7466217B2 (en) | 2019-12-20 | 2024-04-12 | 株式会社エアロネクスト | Take-off and Landing System |
KR20210125738A (en) * | 2020-04-09 | 2021-10-19 | 한국전자통신연구원 | Method and system for identifying drones using an identification device mounted on a drone |
KR102704476B1 (en) * | 2020-04-09 | 2024-09-09 | 한국전자통신연구원 | Method and system for identifying drones using an identification device mounted on a drone |
KR20210128188A (en) * | 2020-04-16 | 2021-10-26 | 한국전자통신연구원 | Method and system for identifying drone pilots |
KR102652391B1 (en) | 2020-04-16 | 2024-03-29 | 한국전자통신연구원 | Method and system for identifying drone pilots |
KR20220124964A (en) * | 2021-03-04 | 2022-09-14 | 황의철 | Goods delivery system using drone and product delivery method using the same |
KR102569263B1 (en) * | 2021-03-04 | 2023-08-23 | 황의철 | Delivery system using drone and delivery method using the same |
CN114620243A (en) * | 2022-05-12 | 2022-06-14 | 四川腾盾科技有限公司 | Intelligent take-off and landing capturing system for aircraft |
WO2024053327A1 (en) * | 2022-09-08 | 2024-03-14 | 株式会社石川エナジーリサーチ | Flying device and control method therefor |
Also Published As
Publication number | Publication date |
---|---|
US20200062395A1 (en) | 2020-02-27 |
US11713120B2 (en) | 2023-08-01 |
CN110382354B (en) | 2022-12-16 |
JP6864393B2 (en) | 2021-04-28 |
JPWO2018159256A1 (en) | 2020-01-09 |
CN110382354A (en) | 2019-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018159256A1 (en) | Takeoff and landing device, takeoff and landing system, and unmanned delivery system | |
JP6796709B2 (en) | Systems and methods for monitoring the internal cargo contents of a cargo hangar using one or more internal monitoring drones | |
KR102712990B1 (en) | Method and apparatus for adjusting weights applied to individual unmanned aerial vehicle during shipment of delivery package by group of unmanned aerial vehicles | |
US20220024604A1 (en) | Self-leveling launch and recovery platform for aerial vehicle and method of maintaining a level platform during launch and recovery | |
KR101732357B1 (en) | System and method for controlling landing and takeoff of dron | |
EP1989513B1 (en) | Aircraft load management system for interior loads | |
US8386095B2 (en) | Performing corrective action on unmanned aerial vehicle using one axis of three-axis magnetometer | |
GB2594838A (en) | Self-propelled dolly, baggage handling system, baggage handling facility | |
US20190100307A1 (en) | Drone based delivery system | |
US12208919B2 (en) | System for monitoring a payload, aircraft and method | |
KR101571521B1 (en) | Weight balance device for eliminating disparities of UAV wing | |
US20180348765A1 (en) | Automatic returning method and system, and unmanned aerial vehicle | |
JP7262845B2 (en) | Integrated guidance and control system with high load capacity | |
EP3689743A1 (en) | Augmented weight sensing for aircraft cargo handling systems | |
WO2016130112A1 (en) | Methods and apparatus for persistent deployment of aerial vehicles | |
US20220194428A1 (en) | Systems and methods for calibrating sensors of autonomous vehicles | |
US10809743B1 (en) | System and method for recovery from wake vortex encounters | |
US10407170B2 (en) | Apparatus connecting rotary blade unmanned aerial vehicles | |
US20220234730A1 (en) | Fuselage for transporting medical cargo in an unmanned aerial vehicle | |
US20230236060A1 (en) | Systems and methods for measurement of a vehicle load | |
US11958574B2 (en) | Remote position management | |
JP7368840B2 (en) | Environmental information analysis method | |
US11873114B2 (en) | Airframe-mounted package launching system, package launching device and method of operation thereof | |
US20230063152A1 (en) | Apparatus and method for delivering a payload | |
JP2025018002A (en) | Transportation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18760762 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019502841 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18760762 Country of ref document: EP Kind code of ref document: A1 |