[go: up one dir, main page]

WO2018155290A1 - Optical type component sensor - Google Patents

Optical type component sensor Download PDF

Info

Publication number
WO2018155290A1
WO2018155290A1 PCT/JP2018/005162 JP2018005162W WO2018155290A1 WO 2018155290 A1 WO2018155290 A1 WO 2018155290A1 JP 2018005162 W JP2018005162 W JP 2018005162W WO 2018155290 A1 WO2018155290 A1 WO 2018155290A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light receiving
detection
receiving element
reflected
Prior art date
Application number
PCT/JP2018/005162
Other languages
French (fr)
Japanese (ja)
Inventor
弘貴 松浪
渡部 祥文
徹 馬場
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201880011371.6A priority Critical patent/CN110291380A/en
Priority to JP2019501257A priority patent/JPWO2018155290A1/en
Publication of WO2018155290A1 publication Critical patent/WO2018155290A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3554Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content

Definitions

  • the present invention relates to an optical component sensor.
  • a photoelectric sensor capable of determining a detection object located at a long distance is known (see, for example, Patent Document 1).
  • the reflection type photoelectric sensor described in Patent Document 1 includes a light projecting unit that emits two light beams having different wavelengths to a detection object, a reflector that reflects one of the two light beams, a detection object or a reflection object. And a light receiving unit for receiving the light reflected by the plate. According to the reflection type photoelectric sensor, the presence or absence of a detected object can be known by processing the light reception signal output from the light reception unit.
  • the light emitting unit includes two light emitting elements whose optical axes coincide with each other, and the two light emitting elements are arranged such that their emission faces are in opposite directions. There is. The light emitted from one of the two light emitting elements is reflected by the reflection plate and emitted to the outside through the light projection lens. The light emitting element is disposed in the reflection direction of the reflecting plate, and the light reflected by the reflecting plate is blocked by the light emitting element, and light energy emitted to the outside is reduced. This reduces the detection accuracy of the component object.
  • an object of this invention is to provide the optical component sensor which can increase the light radiate
  • An optical component sensor emits light toward a light source that emits emitted light including an absorption wavelength of a predetermined component, a housing that houses the light source, and an object located outside the housing.
  • a light source that emits emitted light including an absorption wavelength of a predetermined component
  • a housing that houses the light source, and an object located outside the housing.
  • the first wavelength band among the light condensed by the light receiving lens and the light of the second wavelength band is reflected.
  • a second filter that transmits the light of the second wavelength band among the light collected by the light receiving lens, and the detection light received in the housing and transmitted through the first filter;
  • a second light receiving element which is accommodated in the housing, receives the reference light transmitted through the second filter, and converts the received reference light into a second electric signal.
  • the light emitted to the outside is increased and the reflected light is stably acquired.
  • FIG. 1 is a schematic configuration view showing a configuration of the optical component sensor according to the embodiment.
  • FIG. 2 is a block diagram showing a functional configuration of the optical component sensor according to the embodiment.
  • FIG. 3 is a diagram showing an absorption spectrum of water and water vapor.
  • FIG. 4 is a schematic configuration view showing a configuration of a light projecting optical module according to the embodiment.
  • FIG. 5 is a schematic configuration view showing a configuration of Modification Example 1 of the optical component sensor according to the embodiment.
  • FIG. 6 is a schematic configuration view showing a configuration of Modification 2 of the light receiving optical system module according to the embodiment.
  • each drawing is a schematic view, and is not necessarily illustrated exactly. Therefore, for example, the scale and the like do not necessarily match in each figure. Further, in each of the drawings, substantially the same configuration is given the same reference numeral, and overlapping description will be omitted or simplified.
  • the optical component sensor 1 irradiates one object (emission light LR1) onto the object 2 and receives the reflection light LR2 (reflection detection light LR21 and reflection reference light LR22) from the object 2, thereby the object It is a non-contact type optical component sensor which detects the component contained in 2.
  • the optical component sensor 1 detects moisture contained in the object 2 located at a position separated by the space 3.
  • the object 2 is, for example, clothing if not particularly limited.
  • objects 2 other than clothing bedding, such as a sheet and a pillow cover, may be mentioned.
  • the optical component sensor 1 by attaching the optical component sensor 1 to a clothes dryer or the like, the degree of dryness of clothes can be confirmed. As a result, it is possible to suppress the occurrence of pain and the like of clothes due to excessive drying.
  • the space 3 is a space (free space) between the optical component sensor 1 and the object 2 and contains moisture (water vapor).
  • the space 3 is an external space of the case 10 of the optical component sensor 1.
  • the optical component sensor 1 includes a housing 10, a light projecting optical module 20, and a light receiving optical module 30.
  • the projection optical module 20 has a light source 21 and a projection lens 22.
  • the light receiving optical module 30 has a light receiving lens 31, a detection band pass filter 32a, a reference band pass filter 32b, a detection light receiving element 33a, and a reference light receiving element 33b.
  • the optical component sensor 1 includes a control circuit 40 and a signal processing circuit 50.
  • the housing 10 is a housing that accommodates the light source 21. As shown in FIG. 1, the light receiving lens 31, the detection band pass filter 32a, the reference band pass filter 32b, the detection light receiving element 33a, and the reference light receiving element 33b are further housed in the housing 10 There is.
  • the housing 10 is formed of a light shielding material. Thereby, it can suppress that external light injects in the housing
  • the housing 10 has a light shielding property with respect to light received by the light receiving element for detection 33a and the light receiving element for reference 33b. More specifically, the housing 10 has a light shielding property with respect to the reflected light LR2 (the reflected detection light LR21 and the reflected reference light LR22), and is formed of, for example, a resin material or a metal material.
  • an opening is provided in the outer wall of the housing 10, and the light projection lens 22 and the light receiving lens 31 are attached to the opening.
  • the light projecting optical module 20 is an optical system that emits light for detecting a component, and includes a light source 21 and a light projecting lens 22.
  • the light source 21 is an example of a light source that emits the emitted light LR1 including the absorption wavelength of the component to be detected. Specifically, the light source 21 targets the light including the first wavelength band in which the absorption by water is larger than the predetermined value and the light including the second wavelength band in which the absorption by water is the predetermined value or less It emits toward the thing 2.
  • the light source 21 is, for example, an LED (Light Emitting Diode) light source that emits continuous light having a peak wavelength on the second wavelength band side including a first wavelength band forming detection light and a second wavelength band forming reference light. is there.
  • the light source 21 is an LED light source made of a compound semiconductor.
  • FIG. 3 is a diagram showing an absorption spectrum of water and water vapor. As shown in FIG. 3, the moisture has absorption peaks at wavelengths of about 1450 nm and about 1900 nm. Water vapor has an absorption peak at a wavelength slightly lower than the absorption peak of water, specifically at a wavelength of about 1350 nm to about 1400 nm and about 1800 nm to about 1900 nm.
  • a wavelength band where the light absorbance of water is high is selected as the first wavelength band that forms detection light
  • a wavelength band where the absorbance of water is smaller than the first wavelength band is selected as the second wavelength band that makes reference light. select. Then, the average wavelength of the second wavelength band is made longer than the average wavelength of the first wavelength body.
  • the absorbance of water vapor has a peak (first peak P1) at a wavelength of about 1350 nm to 1400 nm and a peak (second peak P2) at a wavelength of about 1800 nm to 1900 nm.
  • first peak P1 when used as a reference, the center wavelength of the first wavelength band is 1450 nm, the center wavelength of the second wavelength band is between the first peak P1 and the second peak P2, The absorbance is set to a wavelength smaller than a predetermined value.
  • the central wavelength of the second wavelength band may be within 1.2 times the central wavelength of the first wavelength band.
  • the central wavelength of the second wavelength band is within 1450 nm ⁇ 1.2 ⁇ 1740 nm.
  • the central wavelength of the second wavelength band is 1700 nm.
  • the object 2 since the light source 21 irradiates the light including the first wavelength band and the second wavelength band continuously, the object 2 includes the detection light including the first wavelength band where the absorption by water is large; The reference light including the second wavelength band in which the absorption by water is smaller than the first wavelength band and the absorption by water vapor is scarce is irradiated.
  • the light source 21 is disposed in the housing so as to face the light projection lens 22 on the optical axis of the light source 21.
  • the light projection lens 22 is an example of a light projection unit that emits the emitted light LR ⁇ b> 1 emitted by the light source 21 toward the object 2.
  • the light projection lens 22 is fixed to the housing 10, for example, so that the focal point is located on the optical axis of the light source 21.
  • the light projection lens 22 is made of a transparent synthetic resin such as acrylic, and is molded in a substantially inverted truncated cone shape which is a shape in which the width diameter is gradually expanded in the emission direction.
  • a light source 21 is disposed at the end of the light emitting lens 22 in the negative X-axis direction.
  • the light projection lens 22 condenses the emitted light LR1 from the light source 21 and irradiates it in front of the light projection lens 22 as a bundle of light of a constant intensity.
  • the peripheral wall 221 of the light projection lens 22 is molded in a curved shape which is slightly expanded outward from the end in the X-axis negative direction of the light projection lens 22 to the front surface 222.
  • a front surface 222 which is an exit surface of the light projection lens 22 is formed as a flat portion.
  • a recess 223 is formed at the end of the light emitting lens 22 in the negative X-axis direction so as to surround the light source 21.
  • the recess 223 has a convex bottom surface 223 a on the light source 21 side and a side peripheral surface 223 b formed so as to surround the bottom surface 223 a.
  • the side peripheral surface 223 b is molded in a tapered shape in which the hole diameter is gradually narrowed from the end of the light emitting lens 22 in the negative direction of the X axis toward the front. Thereby, the recessed part 223 becomes a tapered substantially cylindrical shape.
  • the hole diameter, height, and taper of the recess 223 are appropriately designed according to the dimensions of the light source 21 and the dimensions of the refractive index and the outer shape according to the material of the light projection lens 22.
  • the light traveling toward the side peripheral surface 223 b of the recess 223 is incident on the side peripheral surface 223 b at the light projection lens 22 at a total reflection angle or less according to the refractive index of the light projection lens 22.
  • the light entering the light projection lens 22 from the side peripheral surface 223 b is totally reflected at a total reflection angle or more with respect to the peripheral wall 221 of the light projection lens 22, passes through the light projection lens 22 and travels from the front surface 222 to the object 2 It is irradiated.
  • the emitted light LR1 emitted from the light projection lens 22 is irradiated with the object 2 as substantially parallel light.
  • the bottom surface 223 a of the concave portion 223 has a convex shape, so that the light passing through the bottom surface 223 a of the concave portion 223 is converged to some extent on the convex surface and irradiated from the front surface 222.
  • a large amount of light that is, intensity
  • the detection target area RA1 where it is desired to detect the amount of water in the object 2
  • the light reception sensitivity can be increased.
  • the front surface 222 of the light projection lens 22 is a flat portion, only the outer peripheral portion may be a flat portion, and the central portion may be a convex lens shape.
  • the light converged on the bottom surface 223a of the concave portion 223 is also converged on the front surface 222 and is irradiated to the object 2, so that a larger amount of light can be irradiated to the detection target area RA1 and the light receiving sensitivity is increased. be able to.
  • the light receiving optical module 30 is an optical system that measures part of the light emitted from the light source 21 and reflected by the object 2 to measure the water content. It is.
  • the light receiving optical module 30 includes a light receiving lens 31, a detection band pass filter 32a, a reference band pass filter 32b, a detection light receiving element 33a, and a reference light receiving element 33b.
  • the light receiving lens 31 is an example of a light receiving lens for condensing the reflected light LR2 (the reflected detection light LR21 and the reflected reference light LR22) reflected by the object 2 on the light receiving element 33a for detection and the light receiving element 33b for reference. .
  • the light receiving lens 31 is, for example, a condensing lens.
  • the light receiving lens 31 is disposed on the optical axis of the light receiving element 33a for detection, and is fixed to the housing 10 so that the focal point is at a position farther than the light receiving surface of the light receiving element 33a for detection.
  • the light receiving lens 31 is a resin-made convex lens in the present embodiment, but is not limited to this.
  • the detection band pass filter 32a transmits the reflected detection light LR21 out of the reflected light LR2 collected by the light receiving lens 31, makes it incident on the light receiving element 33a for detection, and reflects light in wavelength bands other than the reflected detection light LR21. It is an example of a 1st filter.
  • the detection band pass filter 32a is provided between the light receiving lens 31 and the detection light receiving element 33a, and is located on the optical axis of the reflected detection light LR21. It is disposed to be inclined with respect to the lens 31. At this time, as long as the reflected reference light LR22 can be reflected by the detection band pass filter 32a and incident on the reference light receiving element 33b, the inclination direction or angle of the detection band pass filter 32a does not matter.
  • the detection band pass filter 32a transmits light which is the peak wavelength of the reflected detection light LR21 and reflects light in a peak wavelength band other than the reflected detection light LR21.
  • the detection band pass filter 32a is configured to be able to reflect light by being provided by laminating dielectric films different in refractive index formed of, for example, SiO 2 or the like.
  • Band pass filter for reference The reference band pass filter 32b is an example of a second filter provided on the optical path of the reflected reference light LR22 incident on the reference light receiving element 33b.
  • the reference band pass filter 32b is provided between the detection band pass filter 32a and the reference light receiving element 33b, with respect to the optical axis of the reflected reference light LR22. It is arranged substantially vertically.
  • the installation angle of the reference band pass filter 32b is set so that the peak wavelength band to be the reflected reference light LR22 of the light reflected by the detection band pass filter 32a can be transmitted. Design change is possible as long as it is disposed.
  • the reference band pass filter 32b transmits only the reflected reference light LR22, and absorbs or reflects the reflected detection light LR21. Therefore, the reflection detection light LR21 is absorbed or reflected by the reference band pass filter 32b and hardly reaches the reference light receiving element 33b.
  • the detection light receiving element 33a is an example of a first light receiving element that receives the reflection detection light LR21 transmitted through the detection band pass filter 32a among the reflection light LR2 which is at least a part of the light reflected by the object 2 is there.
  • the light receiving element for detection 33a photoelectrically converts the received reflected detection light LR21 to generate a detection signal which is an electrical signal according to the amount (ie, intensity) of the received reflected detection light.
  • the generated detection signal is output to the signal processing circuit 50.
  • the light receiving element for detection 33a have a light receiving sensitivity sufficiently strong with respect to the peak wavelength of the reflected detection light LR21. Therefore, the light receiving element for detection 33a can receive the reflected detection light LR21 and can generate an electrical signal (detection signal) according to the amount of received light.
  • the detection light receiving element 33 a is accommodated in the housing 10.
  • the light receiving element 33a for detection is disposed on the optical axis of the light receiving lens 31, and on the optical axis, as shown in FIG. That is, when the distance d 1 between the light receiving lens 31 and the light receiving element for detection 33 a and the focal distance f 1 of the light receiving lens 31 are provided, they are arranged so as to satisfy 0 ⁇ d 1 ⁇ f 1 .
  • an area RA2 for taking in the reflected light LR2 (the reflected detection light LR21 and the reflected reference light LR22) as diffused light having a predetermined radius of curvature without being focused on the surface of the light receiving lens 31 is formed.
  • the radius of curvature of the diffused light increases, the area RA2 for taking in the reflected light LR2 (the reflected detection light LR21 and the reflected reference light LR22) becomes wider, and the capturing ratio of the reflected light LR2 (the reflected detection light LR21 and the reflected reference light LR22) increases. Become. That is, the light receiving range can be widened.
  • the object 2 be irradiated such that the area for taking in the reflected light LR2 (the reflected detection light LR21 and the reflected reference light LR22) overlaps with at least a part of the detection target area RA1.
  • the light receiving element for detection 33a is, for example, a photodiode, but is not limited to this.
  • the light receiving element for detection 33a may be a phototransistor or an image sensor.
  • the detection light receiving element 33a and the reference light receiving element 33b may use different areas of one image sensor.
  • the reference light receiving element 33b is a reflected light LR22 reflected by the detection band pass filter 32a and transmitted through the reference band pass filter 32b among the reflected light LR2 which is at least a part of the light reflected by the object 2. It is an example of the 2nd light receiving element which light-receives.
  • the reference light receiving element 33 b photoelectrically converts the received reflected reference light LR ⁇ b> 22 to generate a reference signal which is an electrical signal corresponding to the amount of received light of the reflected reference light LR ⁇ b> 22.
  • the generated reference signal is output to the signal processing circuit 50.
  • the reflected reference light LR22 is light in which the outgoing light LR1 is reflected by the object 2.
  • the peak wavelength of the reflected reference light LR22 is measured as about 1570 nm in the present embodiment.
  • the reference light receiving element 33 b is accommodated in the housing 10.
  • the reference light receiving element 33 b is disposed substantially parallel to the optical axis of the light receiving lens 31.
  • the reference light receiving element 33b is disposed on the optical axis of the reflected reference light LR22 so that the focal position of the received light is closer to the reference band pass filter 32b than the light receiving surface. That is, when the distance d 2 between the light receiving lens 31 and the reference light receiving element 33 b and the focal distance f 2 of the light receiving lens 31 are provided, they are arranged so as to satisfy 0 ⁇ d 2 ⁇ f 2 .
  • the reference light receiving element 33b is, for example, a photodiode, but is not limited to this.
  • the reference light receiving element 33b may be a phototransistor or an image sensor.
  • the control circuit 40 controls the emitted light LR1 of the light source 21. Specifically, the control circuit 40 can independently control light emission and extinguishment of the light source 21.
  • the control circuit 40 causes the light source 21 to emit light. Specifically, the control circuit 40 causes the light source 21 to emit light with a pulse waveform. For example, the control circuit 40 outputs a pulse signal of a predetermined frequency (for example, 1 kHz) to the light source 21. For example, the on-duty ratio of the light source 21 is a pulse signal of 50% or less.
  • a predetermined frequency for example, 1 kHz
  • control circuit 40 may be housed in the housing 10 or may be attached to the outer surface of the housing 10.
  • control circuit 40 may have a communication function such as wireless communication, and may transmit a pulse signal for control to the light source 21.
  • the control circuit 40 includes, for example, a drive circuit and a microcontroller.
  • the control circuit 40 has a non-volatile memory in which a control program of a light source is stored, a volatile memory which is a temporary storage area for executing a program, an input / output port, a processor for executing the program, and the like.
  • the signal processing circuit 50 is a target based on the detection signal corresponding to the reflection detection light LR21 output from the detection light receiving element 33a and the reference signal corresponding to the reflection reference light LR22 output from the reference light receiving element 33b.
  • the component which the thing 2 contains is calculated.
  • the signal processing circuit 50 detects the amount of water contained in the object 2 based on the ratio (energy ratio) of the voltage level of the detection signal to the voltage level of the reference signal. A specific method of detecting (calculating) the amount of water will be described later.
  • the signal processing circuit 50 may be housed in the housing 10 or may be attached to the outer surface of the housing 10. Alternatively, the signal processing circuit 50 may have a communication function such as wireless communication, and may receive output signals from the detection light receiving element 33a and the reference light receiving element 33b.
  • the signal processing circuit 50 is, for example, a microcontroller.
  • the signal processing circuit 50 has a non-volatile memory in which a signal processing program is stored, a volatile memory which is a temporary storage area for executing a program, an input / output port, a processor for executing the program, and the like.
  • the signal processing circuit 50 detects the amount of components contained in the object 2 by comparing the light energy Pd of the reflected detection light LR21 with the light energy Pr of the reflected reference light LR22.
  • the light energy Pd corresponds to the intensity of the detection signal output from the detection light receiving element 33a
  • the light energy Pr corresponds to the intensity of the reference signal output from the reference light receiving element 33b.
  • the light energy Pd of the reflected detection light LR21 incident on the detection light receiving element 33a is represented by the following (formula 1).
  • Pd0 is the light energy of the emitted light LR1 emitted by the light source 21.
  • Gd is a coupling efficiency (condensing ratio) of the emitted light LR1 emitted from the light source 21 to the light receiving element 33a for detection. Specifically, Gd corresponds to the ratio of the part of the emitted light LR1 to be a part of the component diffused and reflected by the object 2 (that is, the reflection detection light LR21).
  • Rd is the reflectance of the emitted light LR1 by the object 2.
  • Td is the transmittance of the reflection detection light LR21 by the detection band pass filter 32a.
  • Ivd is a light receiving sensitivity to the reflection detection light LR21 of the light receiving element 33a for detection.
  • Aa is an absorptivity of emission light LR1 and reflection detection light LR21 by a component (moisture) contained in the object 2, and is expressed by the following (formula 2).
  • is a predetermined absorption coefficient, and specifically, the absorption coefficient of the outgoing light LR1 and the reflection detection light LR21 by the component (moisture).
  • C is the volume concentration of the component (water) contained in the object 2.
  • D is a contribution thickness that is twice the thickness of the component that contributes to the absorption of the outgoing light LR1 and the reflected detection light LR21.
  • C is contained in the component of the object 2 when light is incident on the object 2 and is reflected internally and emitted from the object 2 Corresponding to the volume concentration.
  • D corresponds to an optical path length until the light is reflected inside and emitted from the object 2.
  • the object 2 is a reticulated solid such as a fiber or a porous solid such as a sponge, it is assumed that light is reflected on the surface of the solid.
  • C is the concentration of water contained in the liquid phase covering the solid.
  • D is a contribution thickness converted as an average thickness of a liquid phase covering a solid.
  • ⁇ ⁇ C ⁇ D corresponds to the amount of component (water content) contained in the object 2.
  • the absorptance by water Aad is obtained from the difference between the absorption of the detection light of the first wavelength band by the component (water) contained in the object 2 and the absorption of the reference light of the second wavelength band.
  • reflection reference light LR22 is not substantially absorbed by the component contained in the target object 2
  • the light corresponded to the absorptance Aa by water so that it may be understood compared with (Formula 1) Is not included in (Equation 3).
  • Pr0 is light energy of the emitted light LR1 emitted by the light source 21.
  • Gr is the coupling efficiency (condensing ratio) of the emitted light LR1 emitted by the light source 21 to the reference light receiving element 33b. Specifically, Gr corresponds to the proportion of the part of the emitted light LR1 that is to be a part of the component diffused and reflected by the object 2 (that is, the reflected reference light LR22).
  • Rr is the reflectance of the emitted light LR1 by the object 2.
  • Tr is the transmittance of the reflected reference light LR22 by the reference band pass filter 32b.
  • Ivr is the light reception sensitivity of the reference light receiving element 33b to the reflected reference light LR22.
  • the coupling efficiency Gd and the coupling efficiency Gr become substantially equal. Further, since the peak wavelength is also relatively close, the reflectance Rd and the reflectance Rr become substantially equal.
  • the light energy Pd0 and Pr0 are each predetermined as an initial output of the light source 21. Further, the transmittance Td of the reflection detection light LR21 and the transmittance Tr of the reflection reference light LR22 are respectively determined in advance by the transmission characteristics of the detection band pass filter 32a and the reference band pass filter 32b. The light reception sensitivity Ivd of the reflection detection light LR21 and the light reception sensitivity Ivr of the reflection reference light LR22 are respectively determined in advance by the light reception characteristics of the detection light receiving element 33a and the reference light receiving element 33b. Therefore, Z shown in (Expression 5) can be regarded as a constant.
  • the signal processing circuit 50 calculates the light energy Pd of the reflected detection light LR21 based on the detection signal, and calculates the light energy Pr of the reflected reference light LR22 based on the reference signal. Specifically, the signal level (voltage level) of the detection signal corresponds to the light energy Pd, and the signal level (voltage level) of the reference signal corresponds to the light energy Pr.
  • the signal processing circuit 50 can calculate the absorptivity Aa of the water contained in the object 2 based on (Expression 5). Thereby, the signal processing circuit 50 can calculate the water content based on (Expression 2).
  • the optical component sensor 1 includes the light source 21 emitting the emitted light LR1 including the absorption wavelength of the predetermined component, the housing 10 accommodating the light source 21, and the outside of the housing 10 Of the light collected by the light-receiving lens 31 and the light-emitting unit (light-projecting lens 22) that emits light toward the object 2 located on the light-receiving lens 31 that collects the light reflected by the object 2;
  • the first filter (the detection band pass filter 32a) that transmits the light of the first wavelength band and reflects the light of the second wavelength band, and the light of the second wavelength band of the light collected by the light receiving lens 31
  • a second filter which transmits light, and a first light receiving element which is received in the housing 10 and receives the detection light transmitted through the first filter and converts it into a first electric signal (light reception for detection Element 33a) and the housing 10, Receiving the reference light transmitted through the filter, it includes
  • the amount of reflected light to be received can be increased and the variation in the amount of reflected light can be reduced compared to the case where two light receiving optical modules are used, and stable light reception can be achieved. it can. Furthermore, the concern of the wavelength change due to the deterioration of the light receiving lens can be suppressed, and the component can be detected with high accuracy.
  • the component is preferably water.
  • the water contained in the object 2 can be detected with high accuracy.
  • the optical component sensor 1 may be configured to further include the half mirror 34 in the housing 10.
  • parts that are the same as those in the above embodiment may be given the same reference numerals and descriptions thereof may be omitted.
  • the half mirror 34 is provided between the light receiving lens 31 and the light receiving element for detection 33 a, and is located on the optical axis of the reflected detection light LR 21. And arranged in an inclined manner.
  • the detection band pass filter 32a is disposed on the optical axis of the reflected light LR2 and the reflected detection light LR21 so as to be substantially perpendicular to the optical axis.
  • the half mirror 34 emits the reflection detection light LR21 and the reflection reference light LR22 by transmitting and reflecting the reflection light LR2 reflected by the object 2. Specifically, the half mirror 34 transmits part of the incident reflected light LR2 as it is (without substantially changing the traveling direction), and specularly reflects the remaining light.
  • the half mirror 34 reflects and transmits incident light approximately 1: 1, for example. That is, the half mirror 34 emits and reflects 50% of the reflection detection light LR21 and 50% of the reflection reference light LR22 of the light flux of the incident reflection light LR2. Thereafter, of the light transmitted through the half mirror 34, only the reflection detection light LR21 is transmitted through the detection band pass filter 32a, and is guided to the detection light receiving element 33a. Further, among the light reflected by the half mirror 34, only the reflected reference light LR22 passes through the reference band pass filter 32b and is guided to the reference light receiving element 33b to measure the component.
  • the half mirror 34 is, for example, a translucent plate having a reflective thin film such as a metal thin film or a dielectric multilayer film formed on its surface.
  • plate material it forms, for example using glass materials, such as transparent soda glass, or transparent resin materials, such as an acryl (PMMA) and a polycarbonate (PC).
  • the metal thin film is a thin film formed so as to be light transmissive and light reflective using a metal material such as aluminum.
  • the reflected light LR2 can be focused on the detection light receiving element 33a and the reference light receiving element 33b in equal amounts, so that the components can be detected with high accuracy.
  • the optical component sensor 1 may have condensing lenses 35a and 35b between the respective light receiving elements and the band pass filter.
  • the light transmitted through the detection band pass filter 32a and the reference band pass filter 32b is collected by the condensing lenses 35a and 35b, respectively, and is received by the detection light receiving element 33a and the reference light receiving element 33b.
  • the detection light receiving element 33a and the reference light receiving element 33b are respectively held by the holding portions 36a and 36b.
  • Condenser lenses 35a and 35b having a convex shape toward the band pass filter are disposed on the surfaces of the holding portions 36a and 36b on the detection band pass filter 32a side and the reference band pass filter 32b side.
  • the light transmitted through the detection band pass filter 32a and the reference band pass filter 32b enters the condensing lenses 35a and 35b, and is condensed again by the condensing lenses 35a and 35b.
  • the incident surface of light is expanded by the condenser lenses 35a and 35b, and the amount of light that can be collected is increased, so measurement can be performed with a larger amount of light.
  • the central wavelength of the light transmitted through or reflected by the band pass filter and the half mirror 34 configured of the dielectric multilayer film is likely to change depending on the incident angle, it is difficult to perform high-accuracy measurement.
  • the condensing lenses 35a and 35b and further condensing the light in the condensing lenses 35a and 35b it is possible to efficiently receive only a desired wavelength band.
  • the condenser lenses 35a and 35b are formed of, for example, a transparent resin material. Further, the holding portions 36a and 36b are also formed of the same transparent resin material as the condensing lenses 35a and 35b, so that the optical paths of the light incident on the condensing lenses 35a and 35b are guided to the respective light receiving elements without refraction. It is eaten.
  • optical component sensor 1 which concerns on this invention was demonstrated based on said embodiment and its modification, this invention is not limited to said embodiment and modification.
  • the light projection lens 22 is not limited to this, and may be a flat surface or a concave curved surface. If the curvature in the horizontal direction is changed more than in the vertical direction, the change in the horizontal direction can be dealt with more largely. Therefore, when it is desired to make the horizontal viewing angle of the screen larger than the vertical viewing angle, Especially effective.
  • first light receiving element and the second light receiving element are respectively the light receiving element for detection and the light receiving element for reference
  • the arrangement of the light receiving element for detection and the light receiving element for reference may be reversed. At this time, the arrangement of the band pass filters can be replaced accordingly.
  • the optical component sensor 1 detects moisture as a component contained in the object 2, but the present invention is not limited to this.
  • the optical component sensor 1 may detect alcohol or oil.
  • the optical component sensor 1 may irradiate the object 2 with detection light including an absorption wavelength of alcohol to be detected and reference light not including an absorption wavelength of alcohol.
  • first modification and the second modification may be combined into one embodiment in the above embodiment.
  • the present invention can be realized by arbitrarily combining components and functions in each embodiment without departing from the scope of the present invention or embodiments obtained by applying various modifications that those skilled in the art may think to each embodiment.
  • the form is also included in the present invention.
  • Reference Signs List 1 optical component sensor 2 object 10 housing 20 light emitting optical module 21 light source 22 light emitting lens (light emitting unit) 30 light receiving optical module 31 light receiving lens 32a detection band pass filter (first filter) 32b Bandpass filter for reference (second filter) 33a Light receiving element for detection (first light receiving element) 33b Reference light receiving element (second light receiving element) 34 half mirror 40 control circuit 50 signal processing circuit

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

An optical type component sensor (1) according to the present invention is provided with: a light source (21) which generates outgoing light (LR1) including an absorption wavelength of a certain component; a casing (10) accommodating the light source (21); a light projecting unit (22) which emits light toward an object (2) located outside the casing (10); a light receiving lens (31) which condenses light reflected by the object 2; a first filter (32a) which transmits light in a first wavelength and reflects light in a second wavelength, from among the light condensed by the light receiving lens (31); a second filter (32b) which transmits light in the second wavelength reflected by the first filter (32a), from among the light condensed by the light receiving lens (31); a first light receiving element (33a) which is accommodated in the casing (10), receives detection light that has been transmitted through the first filter (32a), and converts the same into a first electrical signal; and a second light receiving element (33b) which is accommodated in the casing (10), receives reference light that has been additionally reflected by the first filter (32a) and has been transmitted through the second filter (32b), and converts the same into a second electrical signal.

Description

光学式成分センサOptical component sensor
 本発明は、光学式成分センサに関する。 The present invention relates to an optical component sensor.
 従来、遠距離にある検出物体を判別することができる光電センサが知られている(例えば、特許文献1参照)。特許文献1に記載された反射型光電センサは、波長の異なる2つの光を検出物体に照射する投光部と、2つの光のいずれか一方の光を反射する反射板と、検出物体又は反射板によって反射された光を受光する受光部とを備える。反射型光電センサによれば、受光部が出力する受光信号を処理することで、検出物体の有無などを知ることができる。 BACKGROUND Conventionally, a photoelectric sensor capable of determining a detection object located at a long distance is known (see, for example, Patent Document 1). The reflection type photoelectric sensor described in Patent Document 1 includes a light projecting unit that emits two light beams having different wavelengths to a detection object, a reflector that reflects one of the two light beams, a detection object or a reflection object. And a light receiving unit for receiving the light reflected by the plate. According to the reflection type photoelectric sensor, the presence or absence of a detected object can be known by processing the light reception signal output from the light reception unit.
特開平8-255533号公報JP-A-8-255533
 特許文献1に記載された反射型光電センサでは、投光部は光軸を一致させた2つの発光素子を備え、2つの発光素子は、互いの出射面が逆方向になるように配置されている。2つの発光素子の一方が出射した光は、反射板によって反射されて投光レンズを通って外部に出射される。反射板の反射方向に発光素子が配置されており、反射板によって反射された光は、発光素子によって遮られて、外部に出射される光エネルギーが減少する。これにより、成分の対象物の検知精度が低下する。 In the reflection type photoelectric sensor described in Patent Document 1, the light emitting unit includes two light emitting elements whose optical axes coincide with each other, and the two light emitting elements are arranged such that their emission faces are in opposite directions. There is. The light emitted from one of the two light emitting elements is reflected by the reflection plate and emitted to the outside through the light projection lens. The light emitting element is disposed in the reflection direction of the reflecting plate, and the light reflected by the reflecting plate is blocked by the light emitting element, and light energy emitted to the outside is reduced. This reduces the detection accuracy of the component object.
 そこで、本発明は、外部に出射する光を増加し、安定して反射光を取得することができる光学式成分センサを提供することを目的とする。 Then, an object of this invention is to provide the optical component sensor which can increase the light radiate | emitted outside outside and can acquire reflected light stably.
 本発明に係る光学式成分センサは、所定の成分による吸収波長を含む出射光を発する光源と、前記光源を収容する筐体と、前記筐体の外部に位置している対象物に向けて出射する投光部と、前記対象物によって反射された光を集光する受光レンズと、前記受光レンズが集光した光のうち第1波長帯の光を透過し、第2波長帯の光を反射する第1フィルタと、前記受光レンズが集光した光のうち前記第2波長帯の光を透過する第2フィルタと、前記筐体内に収容され、前記第1フィルタを透過した検知光を受光し、第1電気信号に変換する第1受光素子と、前記筐体内に収容され、前記第2フィルタを透過した参照光を受光し、第2電気信号に変換する第2受光素子と、を備える。 An optical component sensor according to the present invention emits light toward a light source that emits emitted light including an absorption wavelength of a predetermined component, a housing that houses the light source, and an object located outside the housing. Of the first wavelength band among the light condensed by the light receiving lens, and the light of the second wavelength band is reflected. A second filter that transmits the light of the second wavelength band among the light collected by the light receiving lens, and the detection light received in the housing and transmitted through the first filter; And a second light receiving element which is accommodated in the housing, receives the reference light transmitted through the second filter, and converts the received reference light into a second electric signal.
 本発明により、外部に出射する光を増加し、安定して反射光を取得する。 According to the present invention, the light emitted to the outside is increased and the reflected light is stably acquired.
図1は、実施の形態に係る光学式成分センサの構成を示す概略構成図である。FIG. 1 is a schematic configuration view showing a configuration of the optical component sensor according to the embodiment. 図2は、実施の形態に係る光学式成分センサの機能構成を示すブロック図である。FIG. 2 is a block diagram showing a functional configuration of the optical component sensor according to the embodiment. 図3は、水分と水蒸気との吸光スペクトルを示す図である。FIG. 3 is a diagram showing an absorption spectrum of water and water vapor. 図4は、実施の形態に係る投光光学モジュールの構成を示す概略構成図である。FIG. 4 is a schematic configuration view showing a configuration of a light projecting optical module according to the embodiment. 図5は、実施の形態に係る光学式成分センサの変形例1の構成を示す概略構成図である。FIG. 5 is a schematic configuration view showing a configuration of Modification Example 1 of the optical component sensor according to the embodiment. 図6は、実施の形態に係る受光光学系モジュールの変形例2の構成を示す概略構成図である。FIG. 6 is a schematic configuration view showing a configuration of Modification 2 of the light receiving optical system module according to the embodiment.
 以下では、本発明の実施の形態に係る光学式成分センサについて、図面を用いて詳細に説明する。なお、以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する趣旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Below, the optical component sensor which concerns on embodiment of this invention is demonstrated in detail using drawing. Each of the embodiments described below shows a preferable specific example of the present invention. Therefore, numerical values, shapes, materials, components, arrangements and connection forms of components, steps, order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. Therefore, among the components in the following embodiments, components that are not described in the independent claims indicating the highest concept of the present invention are described as optional components.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、例えば、各図において縮尺などは必ずしも一致しない。また、各図において、実質的に同一の構成については同一の符号を付しており、重複する説明は省略又は簡略化する。 Further, each drawing is a schematic view, and is not necessarily illustrated exactly. Therefore, for example, the scale and the like do not necessarily match in each figure. Further, in each of the drawings, substantially the same configuration is given the same reference numeral, and overlapping description will be omitted or simplified.
 (実施の形態)
 [概要]
 まず、実施の形態に係る光学式成分センサ1の概要について説明する。
Embodiment
[Overview]
First, an outline of the optical component sensor 1 according to the embodiment will be described.
 光学式成分センサ1は、1つの光(出射光LR1)を対象物2に照射して、対象物2による反射光LR2(反射検知光LR21および反射参照光LR22)を受光することで、対象物2に含まれる成分を検知する非接触式の光学式成分センサである。本実施の形態では、図1に示すように、光学式成分センサ1は、空間3を隔てて離れた位置に位置する対象物2に含まれる水分を検知する。 The optical component sensor 1 irradiates one object (emission light LR1) onto the object 2 and receives the reflection light LR2 (reflection detection light LR21 and reflection reference light LR22) from the object 2, thereby the object It is a non-contact type optical component sensor which detects the component contained in 2. In the present embodiment, as shown in FIG. 1, the optical component sensor 1 detects moisture contained in the object 2 located at a position separated by the space 3.
 対象物2は、特に限定されない場合、衣類などである。衣類以外の対象物2としては、シーツ、枕カバーなどの寝具が挙げられる。例えば、光学式成分センサ1を衣類乾燥機などに取り付けることで、衣類の乾燥具合を確認することができる。これにより、乾燥のし過ぎによる衣類の痛みの発生などを抑制することができる。 The object 2 is, for example, clothing if not particularly limited. As objects 2 other than clothing, bedding, such as a sheet and a pillow cover, may be mentioned. For example, by attaching the optical component sensor 1 to a clothes dryer or the like, the degree of dryness of clothes can be confirmed. As a result, it is possible to suppress the occurrence of pain and the like of clothes due to excessive drying.
 空間3は、光学式成分センサ1と対象物2との間の空間(自由空間)であり、湿気(水蒸気)を含んでいる。空間3は、光学式成分センサ1の筐体10の外部空間である。 The space 3 is a space (free space) between the optical component sensor 1 and the object 2 and contains moisture (water vapor). The space 3 is an external space of the case 10 of the optical component sensor 1.
 図1に示すように、光学式成分センサ1は、筐体10と、投光光学モジュール20と、受光光学モジュール30とを備える。投光光学モジュール20は、光源21及び投光レンズ22を有している。また、受光光学モジュール30は、受光レンズ31、検知用バンドパスフィルタ32a、参照用バンドパスフィルタ32b、検知用受光素子33aおよび参照用受光素子33bを有している。 As shown in FIG. 1, the optical component sensor 1 includes a housing 10, a light projecting optical module 20, and a light receiving optical module 30. The projection optical module 20 has a light source 21 and a projection lens 22. The light receiving optical module 30 has a light receiving lens 31, a detection band pass filter 32a, a reference band pass filter 32b, a detection light receiving element 33a, and a reference light receiving element 33b.
 なお、以下本明細書において、投光レンズ22を基準として、光源21が光を照射する方向(図のX軸正方向)を「前方」、反対方向(図のX軸負方向)を「後方」とする。 In the present specification, with reference to the light projection lens 22, the direction in which the light source 21 emits light (X-axis positive direction in the figure) is "forward" and the opposite direction (X-axis negative direction in the figure) is "rearward "
 また、図2に示すように、光学式成分センサ1は、制御回路40と、信号処理回路50とを備える。 Further, as shown in FIG. 2, the optical component sensor 1 includes a control circuit 40 and a signal processing circuit 50.
 以下では、光学式成分センサ1の各構成要素について詳細に説明する。 Below, each component of the optical component sensor 1 is demonstrated in detail.
 [筐体]
 筐体10は、光源21を収容する筐体である。図1に示すように、筐体10の内部には、さらに、受光レンズ31、検知用バンドパスフィルタ32a、参照用バンドパスフィルタ32b、検知用受光素子33aおよび参照用受光素子33bが収容されている。
[Case]
The housing 10 is a housing that accommodates the light source 21. As shown in FIG. 1, the light receiving lens 31, the detection band pass filter 32a, the reference band pass filter 32b, the detection light receiving element 33a, and the reference light receiving element 33b are further housed in the housing 10 There is.
 筐体10は、遮光性の材料から形成されている。これにより、外光が筐体10内に入射するのを抑制することができる。具体的には、筐体10は、検知用受光素子33a及び参照用受光素子33bが受光する光に対して遮光性を有する。より具体的には、筐体10は、反射光LR2(反射検知光LR21および反射参照光LR22)に対して遮光性を有し、例えば、樹脂材料又は金属材料から形成される。 The housing 10 is formed of a light shielding material. Thereby, it can suppress that external light injects in the housing | casing 10. As shown in FIG. Specifically, the housing 10 has a light shielding property with respect to light received by the light receiving element for detection 33a and the light receiving element for reference 33b. More specifically, the housing 10 has a light shielding property with respect to the reflected light LR2 (the reflected detection light LR21 and the reflected reference light LR22), and is formed of, for example, a resin material or a metal material.
 また、筐体10の外壁には、開口が設けられ、当該開口には投光レンズ22および受光レンズ31が取り付けられている。 Further, an opening is provided in the outer wall of the housing 10, and the light projection lens 22 and the light receiving lens 31 are attached to the opening.
 [投光光学モジュール]
 投光光学モジュール20は、成分を検知するための光を照射する光学系であり、光源21及び投光レンズ22を有している。
[Projector optical module]
The light projecting optical module 20 is an optical system that emits light for detecting a component, and includes a light source 21 and a light projecting lens 22.
 [光源]
 光源21は、検知対象となる成分による吸収波長を含む出射光LR1を発する光源の一例である。具体的には、光源21は、水による吸収が所定値よりも大きな第一波長帯を含む光と、水による吸収が所定値以下である第二波長帯を含む光とを出射光LR1として対象物2に向けて発する。
[light source]
The light source 21 is an example of a light source that emits the emitted light LR1 including the absorption wavelength of the component to be detected. Specifically, the light source 21 targets the light including the first wavelength band in which the absorption by water is larger than the predetermined value and the light including the second wavelength band in which the absorption by water is the predetermined value or less It emits toward the thing 2.
 光源21は、例えば、検知光をなす第一波長帯と参照光をなす第二波長帯とを含み、ピーク波長が第二波長帯側にある連続した光を発するLED(Light Emitting Diode)光源である。具体的には、光源21は、化合半導体からなるLED光源である。 The light source 21 is, for example, an LED (Light Emitting Diode) light source that emits continuous light having a peak wavelength on the second wavelength band side including a first wavelength band forming detection light and a second wavelength band forming reference light. is there. Specifically, the light source 21 is an LED light source made of a compound semiconductor.
 図3は、水分と水蒸気との吸光スペクトルを示す図である。図3に示すように、水分は、約1450nm及び約1900nmの波長に吸収ピークを有する。水蒸気は、水分の吸収ピークよりやや低い波長、具体的には約1350nm~1400nm及び約1800nm~1900nmの波長に吸収ピークを有する。 FIG. 3 is a diagram showing an absorption spectrum of water and water vapor. As shown in FIG. 3, the moisture has absorption peaks at wavelengths of about 1450 nm and about 1900 nm. Water vapor has an absorption peak at a wavelength slightly lower than the absorption peak of water, specifically at a wavelength of about 1350 nm to about 1400 nm and about 1800 nm to about 1900 nm.
 このため、検知光をなす第一波長帯としては、水の吸光度が高い波長帯を選択し、参照光をなす第二波長帯としては、第一波長帯よりも水の吸光度が小さい波長帯を選択する。そして、第二波長帯の平均波長は、第一波長体の平均波長よりも長くする。 For this reason, a wavelength band where the light absorbance of water is high is selected as the first wavelength band that forms detection light, and a wavelength band where the absorbance of water is smaller than the first wavelength band is selected as the second wavelength band that makes reference light. select. Then, the average wavelength of the second wavelength band is made longer than the average wavelength of the first wavelength body.
 図3では、水蒸気の吸光度は、約1350nm~1400nmの波長にピーク(第一ピークP1)があり、約1800nm~1900nmの波長にピーク(第二ピークP2)がある場合を図示している。例えば、第一ピークP1を基準とした場合には、第一波長帯の中心波長を1450nmとし、第二波長帯の中心波長を、第一ピークP1と第二ピークP2との間で、水蒸気の吸光度が所定値よりも小さい波長とする。具体的には、第二波長帯の中心波長は、第一波長帯の中心波長の1.2倍以内とすればよい。第二波長帯の中心波長は、1450nm×1.2≒1740nm以内とする。具体的には、第二波長帯の中心波長は、1700nmとする。 In FIG. 3, the absorbance of water vapor has a peak (first peak P1) at a wavelength of about 1350 nm to 1400 nm and a peak (second peak P2) at a wavelength of about 1800 nm to 1900 nm. For example, when the first peak P1 is used as a reference, the center wavelength of the first wavelength band is 1450 nm, the center wavelength of the second wavelength band is between the first peak P1 and the second peak P2, The absorbance is set to a wavelength smaller than a predetermined value. Specifically, the central wavelength of the second wavelength band may be within 1.2 times the central wavelength of the first wavelength band. The central wavelength of the second wavelength band is within 1450 nm × 1.2 ≒ 1740 nm. Specifically, the central wavelength of the second wavelength band is 1700 nm.
 このように、光源21が、第一波長帯と第二波長帯とを連続して含む光を照射するので、対象物2には、水による吸収が大きな第一波長帯を含む検知光と、水による吸収が第一波長帯よりも小さく、水蒸気による吸収もほとんどない第二波長帯を含む参照光が照射される。 As described above, since the light source 21 irradiates the light including the first wavelength band and the second wavelength band continuously, the object 2 includes the detection light including the first wavelength band where the absorption by water is large; The reference light including the second wavelength band in which the absorption by water is smaller than the first wavelength band and the absorption by water vapor is scarce is irradiated.
 光源21は、筐体内において、光源21の光軸上で投光レンズ22と向かい合うように配置されている。 The light source 21 is disposed in the housing so as to face the light projection lens 22 on the optical axis of the light source 21.
 [投光レンズ]
 投光レンズ22は、光源21が照射した出射光LR1を対象物2に向けて照射する投光部の一例である。
[Projector lens]
The light projection lens 22 is an example of a light projection unit that emits the emitted light LR <b> 1 emitted by the light source 21 toward the object 2.
 図1または図4に示すように、投光レンズ22は、例えば、焦点が光源21の光軸上に位置するように筐体10に固定されている。 As shown in FIG. 1 or 4, the light projection lens 22 is fixed to the housing 10, for example, so that the focal point is located on the optical axis of the light source 21.
 投光レンズ22は、アクリル等の透明な合成樹脂からなり、出射する方向に向かって徐々に幅径を拡大する形状である略逆円錐台状に成型されている。投光レンズ22におけるX軸負方向の端部には、光源21が配置されている。投光レンズ22は、光源21からの出射光LR1を集光して一定強度の光の束として投光レンズ22の前方に照射するものである。 The light projection lens 22 is made of a transparent synthetic resin such as acrylic, and is molded in a substantially inverted truncated cone shape which is a shape in which the width diameter is gradually expanded in the emission direction. A light source 21 is disposed at the end of the light emitting lens 22 in the negative X-axis direction. The light projection lens 22 condenses the emitted light LR1 from the light source 21 and irradiates it in front of the light projection lens 22 as a bundle of light of a constant intensity.
 投光レンズ22の周壁221は、投光レンズ22のX軸負方向の端部から前面222にかけて外側に少し膨らんだ曲面形状に成型されている。投光レンズ22の出射面となる前面222は、平面部として形成されている。投光レンズ22のX軸負方向の端部には、光源21を囲むように凹部223が形成される。凹部223は、光源21側に凸形状の底面223aと、底面223aを囲むように形成された側周面223bとを有する。側周面223bは、投光レンズ22のX軸負方向の端部から前方に向かって穴径を徐々に狭くするテーパー形状に成型されている。これにより凹部223は先細りの略円柱形状となる。 The peripheral wall 221 of the light projection lens 22 is molded in a curved shape which is slightly expanded outward from the end in the X-axis negative direction of the light projection lens 22 to the front surface 222. A front surface 222 which is an exit surface of the light projection lens 22 is formed as a flat portion. A recess 223 is formed at the end of the light emitting lens 22 in the negative X-axis direction so as to surround the light source 21. The recess 223 has a convex bottom surface 223 a on the light source 21 side and a side peripheral surface 223 b formed so as to surround the bottom surface 223 a. The side peripheral surface 223 b is molded in a tapered shape in which the hole diameter is gradually narrowed from the end of the light emitting lens 22 in the negative direction of the X axis toward the front. Thereby, the recessed part 223 becomes a tapered substantially cylindrical shape.
 なお、凹部223の穴径・高さ・テーパーは、光源21の寸法、投光レンズ22の材質に応じた屈折率や外形の寸法に応じて適宜設計されるものである。 The hole diameter, height, and taper of the recess 223 are appropriately designed according to the dimensions of the light source 21 and the dimensions of the refractive index and the outer shape according to the material of the light projection lens 22.
 光源21から出射された光のうち凹部223の底面223aに向かう光は、底面223aの凸曲面に入射して収束されて投光レンズ22内を直進し、投光レンズ22の前面222を通って対象物2に向かって照射される。 Of the light emitted from the light source 21, light traveling toward the bottom surface 223 a of the concave portion 223 is incident on the convex curved surface of the bottom surface 223 a and is converged to go straight inside the projection lens 22 and passes through the front surface 222 of the projection lens 22. It is irradiated towards the object 2.
 また、光源21から出射された光のうち凹部223の側周面223bに向かう光は、側周面223bに対し投光レンズ22の屈折率に応じた全反射角以下で投光レンズ22に入射する。側周面223bから投光レンズ22内に入射した光は、投光レンズ22の周壁221に対して全反射角以上で全反射され、投光レンズ22を通って前面222から対象物2に向かって照射される。このとき、投光レンズ22から出射された出射光LR1は、略平行光となって対象物2を照射される。 Further, among the light emitted from the light source 21, light traveling toward the side peripheral surface 223 b of the recess 223 is incident on the side peripheral surface 223 b at the light projection lens 22 at a total reflection angle or less according to the refractive index of the light projection lens 22. Do. The light entering the light projection lens 22 from the side peripheral surface 223 b is totally reflected at a total reflection angle or more with respect to the peripheral wall 221 of the light projection lens 22, passes through the light projection lens 22 and travels from the front surface 222 to the object 2 It is irradiated. At this time, the emitted light LR1 emitted from the light projection lens 22 is irradiated with the object 2 as substantially parallel light.
 投光レンズ22は、凹部223の底面223aを凸形状とすることにより、凹部223の底面223aを通る光はその凸形状面にてある程度収束して前面222から照射される。これにより、対象物2における水分量を検知したい検知対象領域RA1に多くの光量(すなわち、強度)を照射することができ、受光感度を上げることができる。 In the light projection lens 22, the bottom surface 223 a of the concave portion 223 has a convex shape, so that the light passing through the bottom surface 223 a of the concave portion 223 is converged to some extent on the convex surface and irradiated from the front surface 222. As a result, a large amount of light (that is, intensity) can be irradiated to the detection target area RA1 where it is desired to detect the amount of water in the object 2, and the light reception sensitivity can be increased.
 なお、投光レンズ22の前面222を平面部としたが、外周部分のみ平面部であり、中心部は凸レンズ形状であってもよい。これにより、凹部223の底面223aで収束した光が、前面222においても収束されて対象物2に照射されるので、より検知対象領域RA1に多くの光量を照射することができ、受光感度を上げることができる。 Although the front surface 222 of the light projection lens 22 is a flat portion, only the outer peripheral portion may be a flat portion, and the central portion may be a convex lens shape. Thereby, the light converged on the bottom surface 223a of the concave portion 223 is also converged on the front surface 222 and is irradiated to the object 2, so that a larger amount of light can be irradiated to the detection target area RA1 and the light receiving sensitivity is increased. be able to.
 [受光光学モジュール]
 図1及び図2に示すように、受光光学モジュール30は、光源21から出射された出射光LR1が対象物2で反射した光のうちの一部を受光して水分量の計測を行う光学系である。受光光学モジュール30は、受光レンズ31、検知用バンドパスフィルタ32a、参照用バンドパスフィルタ32b、検知用受光素子33aおよび参照用受光素子33bを備える。
[Receiver optical module]
As shown in FIGS. 1 and 2, the light receiving optical module 30 is an optical system that measures part of the light emitted from the light source 21 and reflected by the object 2 to measure the water content. It is. The light receiving optical module 30 includes a light receiving lens 31, a detection band pass filter 32a, a reference band pass filter 32b, a detection light receiving element 33a, and a reference light receiving element 33b.
 [受光レンズ]
 受光レンズ31は、対象物2によって反射された反射光LR2(反射検知光LR21および反射参照光LR22)を検知用受光素子33aおよび参照用受光素子33bに集光するための受光レンズの一例である。受光レンズ31は、例えば、集光レンズである。受光レンズ31は、検知用受光素子33aの光軸上に配置され、焦点が検知用受光素子33aの受光面よりも遠い位置となるように筐体10に固定されている。受光レンズ31は、本実施の形態では樹脂製の凸レンズであるが、これに限らない。
[Receiver lens]
The light receiving lens 31 is an example of a light receiving lens for condensing the reflected light LR2 (the reflected detection light LR21 and the reflected reference light LR22) reflected by the object 2 on the light receiving element 33a for detection and the light receiving element 33b for reference. . The light receiving lens 31 is, for example, a condensing lens. The light receiving lens 31 is disposed on the optical axis of the light receiving element 33a for detection, and is fixed to the housing 10 so that the focal point is at a position farther than the light receiving surface of the light receiving element 33a for detection. The light receiving lens 31 is a resin-made convex lens in the present embodiment, but is not limited to this.
 [検知用バンドパスフィルタ]
 検知用バンドパスフィルタ32aは、受光レンズ31が集光した反射光LR2のうち、反射検知光LR21を透過し検知用受光素子33aに入射させ、反射検知光LR21以外の波長帯の光を反射する第1フィルタの一例である。
Band pass filter for detection
The detection band pass filter 32a transmits the reflected detection light LR21 out of the reflected light LR2 collected by the light receiving lens 31, makes it incident on the light receiving element 33a for detection, and reflects light in wavelength bands other than the reflected detection light LR21. It is an example of a 1st filter.
 本実施の形態では、図1に示すように、検知用バンドパスフィルタ32aは、受光レンズ31と検知用受光素子33aとの間に設けられ、反射検知光LR21の光軸上に位置し、受光レンズ31に対して傾斜して配置される。このとき、反射参照光LR22が検知用バンドパスフィルタ32aを反射して参照用受光素子33bへ入射できるものであれば、検知用バンドパスフィルタ32aの傾斜の向きや角度は問わない。 In the present embodiment, as shown in FIG. 1, the detection band pass filter 32a is provided between the light receiving lens 31 and the detection light receiving element 33a, and is located on the optical axis of the reflected detection light LR21. It is disposed to be inclined with respect to the lens 31. At this time, as long as the reflected reference light LR22 can be reflected by the detection band pass filter 32a and incident on the reference light receiving element 33b, the inclination direction or angle of the detection band pass filter 32a does not matter.
 この配置により、検知用バンドパスフィルタ32aは、反射検知光LR21のピーク波長である光を透過し、反射検知光LR21以外のピーク波長帯の光を反射させる。 By this arrangement, the detection band pass filter 32a transmits light which is the peak wavelength of the reflected detection light LR21 and reflects light in a peak wavelength band other than the reflected detection light LR21.
 検知用バンドパスフィルタ32aは、例えばSiOなどによって形成される屈折率の異なる誘電体膜が積層して設けられることで反射できる構成とする。 The detection band pass filter 32a is configured to be able to reflect light by being provided by laminating dielectric films different in refractive index formed of, for example, SiO 2 or the like.
 [参照用バンドパスフィルタ]
 参照用バンドパスフィルタ32bは、参照用受光素子33bに入射する反射参照光LR22の光路上に設けられた第2フィルタの一例である。
Band pass filter for reference
The reference band pass filter 32b is an example of a second filter provided on the optical path of the reflected reference light LR22 incident on the reference light receiving element 33b.
 本実施の形態では、図1に示すように、参照用バンドパスフィルタ32bは、検知用バンドパスフィルタ32aと参照用受光素子33bとの間に設けられ、反射参照光LR22の光軸に対して略垂直に配置されている。 In the present embodiment, as shown in FIG. 1, the reference band pass filter 32b is provided between the detection band pass filter 32a and the reference light receiving element 33b, with respect to the optical axis of the reflected reference light LR22. It is arranged substantially vertically.
 なお、参照用バンドパスフィルタ32bの設置角度は、検知用バンドパスフィルタ32aにて反射される光のうち反射参照光LR22となるピーク波長帯が透過可能であるように参照用バンドパスフィルタ32bが配置されるものであれば、適宜設計変更可能である。 Note that the installation angle of the reference band pass filter 32b is set so that the peak wavelength band to be the reflected reference light LR22 of the light reflected by the detection band pass filter 32a can be transmitted. Design change is possible as long as it is disposed.
 参照用バンドパスフィルタ32bは、反射参照光LR22のみを透過し、かつ、反射検知光LR21を吸収または反射する。このため、反射検知光LR21は、参照用バンドパスフィルタ32bによって吸収または反射されて参照用受光素子33bにはほとんど到達しない。 The reference band pass filter 32b transmits only the reflected reference light LR22, and absorbs or reflects the reflected detection light LR21. Therefore, the reflection detection light LR21 is absorbed or reflected by the reference band pass filter 32b and hardly reaches the reference light receiving element 33b.
 [検知用受光素子]
 検知用受光素子33aは、対象物2によって反射された光の少なくとも一部である反射光LR2のうち、検知用バンドパスフィルタ32aを透過した反射検知光LR21を受光する第1受光素子の一例である。検知用受光素子33aは、受光した反射検知光LR21を光電変換することで、反射検知光の受光量(すなわち、強度)に応じた電気信号である検知信号を生成する。生成された検知信号は、信号処理回路50に出力される。
[Light receiving element for detection]
The detection light receiving element 33a is an example of a first light receiving element that receives the reflection detection light LR21 transmitted through the detection band pass filter 32a among the reflection light LR2 which is at least a part of the light reflected by the object 2 is there. The light receiving element for detection 33a photoelectrically converts the received reflected detection light LR21 to generate a detection signal which is an electrical signal according to the amount (ie, intensity) of the received reflected detection light. The generated detection signal is output to the signal processing circuit 50.
 検知用受光素子33aは、反射検知光LR21のピーク波長に対して十分に強い受光感度を有することが好ましい。したがって、検知用受光素子33aは、反射検知光LR21を受光し、受光量に応じた電気信号(検知信号)を生成することができる。 It is preferable that the light receiving element for detection 33a have a light receiving sensitivity sufficiently strong with respect to the peak wavelength of the reflected detection light LR21. Therefore, the light receiving element for detection 33a can receive the reflected detection light LR21 and can generate an electrical signal (detection signal) according to the amount of received light.
 検知用受光素子33aは、筐体10内に収容されている。検知用受光素子33aは、受光レンズ31の光軸上に配置され、光軸上において、図1に示すように、受光レンズ31の焦点位置よりも受光レンズ31側となるように配置される。すなわち、受光レンズ31と検知用受光素子33aとの距離d、受光レンズ31の焦点距離fとした場合、0<d<fを満たすようにそれぞれが配置される。 The detection light receiving element 33 a is accommodated in the housing 10. The light receiving element 33a for detection is disposed on the optical axis of the light receiving lens 31, and on the optical axis, as shown in FIG. That is, when the distance d 1 between the light receiving lens 31 and the light receiving element for detection 33 a and the focal distance f 1 of the light receiving lens 31 are provided, they are arranged so as to satisfy 0 <d 1 <f 1 .
 これにより、受光レンズ31の表面で焦点を結ばず、所定の曲率半径を持った拡散光として反射光LR2(反射検知光LR21および反射参照光LR22)を取り込む領域RA2が形成される。拡散光の曲率半径が大きくなるほど、反射光LR2(反射検知光LR21および反射参照光LR22)を取り込む領域RA2が広くなり、反射光LR2(反射検知光LR21および反射参照光LR22)の取り込み率が大きくなる。すなわち、受光範囲を広くすることができる。 As a result, an area RA2 for taking in the reflected light LR2 (the reflected detection light LR21 and the reflected reference light LR22) as diffused light having a predetermined radius of curvature without being focused on the surface of the light receiving lens 31 is formed. As the radius of curvature of the diffused light increases, the area RA2 for taking in the reflected light LR2 (the reflected detection light LR21 and the reflected reference light LR22) becomes wider, and the capturing ratio of the reflected light LR2 (the reflected detection light LR21 and the reflected reference light LR22) increases. Become. That is, the light receiving range can be widened.
 このとき、反射光LR2(反射検知光LR21および反射参照光LR22)を取り込む領域は、検知対象領域RA1の少なくとも一部と重なるように対象物2に照射されることが好ましい。 At this time, it is preferable that the object 2 be irradiated such that the area for taking in the reflected light LR2 (the reflected detection light LR21 and the reflected reference light LR22) overlaps with at least a part of the detection target area RA1.
 検知用受光素子33aは、例えば、フォトダイオードであるが、これに限定されない。例えば、検知用受光素子33aは、フォトトランジスタ、又は、イメージセンサでもよい。なお、検知用受光素子33aと参照用受光素子33bとは、1つのイメージセンサの異なる領域を利用してもよい。 The light receiving element for detection 33a is, for example, a photodiode, but is not limited to this. For example, the light receiving element for detection 33a may be a phototransistor or an image sensor. The detection light receiving element 33a and the reference light receiving element 33b may use different areas of one image sensor.
 [参照用受光素子]
 参照用受光素子33bは、対象物2によって反射された光の少なくとも一部である反射光LR2のうち、検知用バンドパスフィルタ32aで反射し、参照用バンドパスフィルタ32bを透過した反射参照光LR22を受光する第2受光素子の一例である。参照用受光素子33bは、受光した反射参照光LR22を光電変換することで、反射参照光LR22の受光量に応じた電気信号である参照信号を生成する。生成された参照信号は、信号処理回路50に出力される。
[Light receiving element for reference]
The reference light receiving element 33b is a reflected light LR22 reflected by the detection band pass filter 32a and transmitted through the reference band pass filter 32b among the reflected light LR2 which is at least a part of the light reflected by the object 2. It is an example of the 2nd light receiving element which light-receives. The reference light receiving element 33 b photoelectrically converts the received reflected reference light LR <b> 22 to generate a reference signal which is an electrical signal corresponding to the amount of received light of the reflected reference light LR <b> 22. The generated reference signal is output to the signal processing circuit 50.
 反射参照光LR22は、出射光LR1が対象物2によって反射された光である。反射参照光LR22のピーク波長は、本実施の形態において約1570nmとして計測する。 The reflected reference light LR22 is light in which the outgoing light LR1 is reflected by the object 2. The peak wavelength of the reflected reference light LR22 is measured as about 1570 nm in the present embodiment.
 参照用受光素子33bは、筐体10内に収容されている。参照用受光素子33bは、受光レンズ31の光軸に対して略平行に配置されている。参照用受光素子33bは、反射参照光LR22の光軸上において、受光する光の焦点位置が受光面よりも参照用バンドパスフィルタ32b側となるように配置される。すなわち、受光レンズ31と参照用受光素子33bとの距離d、受光レンズ31の焦点距離fとした場合、0<d<fを満たすようにそれぞれが配置される。 The reference light receiving element 33 b is accommodated in the housing 10. The reference light receiving element 33 b is disposed substantially parallel to the optical axis of the light receiving lens 31. The reference light receiving element 33b is disposed on the optical axis of the reflected reference light LR22 so that the focal position of the received light is closer to the reference band pass filter 32b than the light receiving surface. That is, when the distance d 2 between the light receiving lens 31 and the reference light receiving element 33 b and the focal distance f 2 of the light receiving lens 31 are provided, they are arranged so as to satisfy 0 <d 2 <f 2 .
 参照用受光素子33bは、例えば、フォトダイオードであるが、これに限定されない。例えば、参照用受光素子33bは、フォトトランジスタ、又は、イメージセンサでもよい。 The reference light receiving element 33b is, for example, a photodiode, but is not limited to this. For example, the reference light receiving element 33b may be a phototransistor or an image sensor.
 [制御回路]
 制御回路40は、光源21の出射光LR1を制御する。具体的には、制御回路40は、光源21の発光及び消灯を独立して制御することができる。
[Control circuit]
The control circuit 40 controls the emitted light LR1 of the light source 21. Specifically, the control circuit 40 can independently control light emission and extinguishment of the light source 21.
 例えば、制御回路40は、光源21を発光させる。具体的には、制御回路40は、光源21をパルス波形で発光させる。例えば、制御回路40は、所定の周波数(例えば、1kHz)のパルス信号を光源21に出力する。例えば、光源21のオンデューティ比が50%以下のパルス信号である。 For example, the control circuit 40 causes the light source 21 to emit light. Specifically, the control circuit 40 causes the light source 21 to emit light with a pulse waveform. For example, the control circuit 40 outputs a pulse signal of a predetermined frequency (for example, 1 kHz) to the light source 21. For example, the on-duty ratio of the light source 21 is a pulse signal of 50% or less.
 図1には示していないが、制御回路40は、筐体10に収容されていてもよく、又は、筐体10の外側面に取り付けられていてもよい。あるいは、制御回路40は、無線通信などの通信機能を有し、制御用のパルス信号を光源21に送信してもよい。 Although not shown in FIG. 1, the control circuit 40 may be housed in the housing 10 or may be attached to the outer surface of the housing 10. Alternatively, the control circuit 40 may have a communication function such as wireless communication, and may transmit a pulse signal for control to the light source 21.
 制御回路40は、例えば、駆動回路及びマイクロコントローラで構成される。制御回路40は、光源の制御プログラムが格納された不揮発性メモリ、プログラムを実行するための一時的な記憶領域である揮発性メモリ、入出力ポート、プログラムを実行するプロセッサなどを有する。 The control circuit 40 includes, for example, a drive circuit and a microcontroller. The control circuit 40 has a non-volatile memory in which a control program of a light source is stored, a volatile memory which is a temporary storage area for executing a program, an input / output port, a processor for executing the program, and the like.
 [信号処理回路]
 信号処理回路50は、検知用受光素子33aから出力された反射検知光LR21に対応する検知信号と、参照用受光素子33bから出力された反射参照光LR22に対応する参照信号とに基づいて、対象物2が含む成分を算出する。具体的には、信号処理回路50は、検知信号の電圧レベルと参照信号の電圧レベルとの比(エネルギー比)に基づいて、対象物2が含む水分量を検知する。具体的な水分量の検知(算出)方法については後で説明する。
[Signal processing circuit]
The signal processing circuit 50 is a target based on the detection signal corresponding to the reflection detection light LR21 output from the detection light receiving element 33a and the reference signal corresponding to the reflection reference light LR22 output from the reference light receiving element 33b. The component which the thing 2 contains is calculated. Specifically, the signal processing circuit 50 detects the amount of water contained in the object 2 based on the ratio (energy ratio) of the voltage level of the detection signal to the voltage level of the reference signal. A specific method of detecting (calculating) the amount of water will be described later.
 信号処理回路50は、筐体10に収容されていてもよく、又は、筐体10の外側面に取り付けられていてもよい。あるいは、信号処理回路50は、無線通信などの通信機能を有し、検知用受光素子33a及び参照用受光素子33bからの出力信号を受信してもよい。 The signal processing circuit 50 may be housed in the housing 10 or may be attached to the outer surface of the housing 10. Alternatively, the signal processing circuit 50 may have a communication function such as wireless communication, and may receive output signals from the detection light receiving element 33a and the reference light receiving element 33b.
 信号処理回路50は、例えば、マイクロコントローラである。信号処理回路50は、信号処理プログラムが格納された不揮発性メモリ、プログラムを実行するための一時的な記憶領域である揮発性メモリ、入出力ポート、プログラムを実行するプロセッサなどを有する。 The signal processing circuit 50 is, for example, a microcontroller. The signal processing circuit 50 has a non-volatile memory in which a signal processing program is stored, a volatile memory which is a temporary storage area for executing a program, an input / output port, a processor for executing the program, and the like.
 [信号処理(検知処理)]
 続いて、信号処理回路50による信号処理(成分の算出処理)について説明する。
[Signal processing (detection processing)]
Subsequently, signal processing (component calculation processing) by the signal processing circuit 50 will be described.
 本実施の形態では、信号処理回路50は、反射検知光LR21の光エネルギーPdと反射参照光LR22の光エネルギーPrとを比較することで、対象物2に含まれる成分量を検知する。なお、光エネルギーPdは、検知用受光素子33aから出力される検知信号の強度に対応し、光エネルギーPrは、参照用受光素子33bから出力される参照信号の強度に対応する。 In the present embodiment, the signal processing circuit 50 detects the amount of components contained in the object 2 by comparing the light energy Pd of the reflected detection light LR21 with the light energy Pr of the reflected reference light LR22. The light energy Pd corresponds to the intensity of the detection signal output from the detection light receiving element 33a, and the light energy Pr corresponds to the intensity of the reference signal output from the reference light receiving element 33b.
 検知用受光素子33aに入射する反射検知光LR21の光エネルギーPdは、次の(式1)で表される。 The light energy Pd of the reflected detection light LR21 incident on the detection light receiving element 33a is represented by the following (formula 1).
 (式1) Pd=Pd0×Gd×Rd×Td×Aa×Ivd (Formula 1) Pd = Pd0 × Gd × Rd × Td × Aa × Ivd
 ここで、Pd0は、光源21が発した出射光LR1の光エネルギーである。Gdは、光源21が発した出射光LR1の検知用受光素子33aに対する結合効率(集光率)である。具体的には、Gdは、出射光LR1のうち、対象物2で拡散反射される成分の一部(すなわち、反射検知光LR21)になる部分の割合に相当する。 Here, Pd0 is the light energy of the emitted light LR1 emitted by the light source 21. Gd is a coupling efficiency (condensing ratio) of the emitted light LR1 emitted from the light source 21 to the light receiving element 33a for detection. Specifically, Gd corresponds to the ratio of the part of the emitted light LR1 to be a part of the component diffused and reflected by the object 2 (that is, the reflection detection light LR21).
 Rdは、対象物2による出射光LR1の反射率である。Tdは、検知用バンドパスフィルタ32aによる反射検知光LR21の透過率である。Ivdは、検知用受光素子33aの反射検知光LR21に対する受光感度である。 Rd is the reflectance of the emitted light LR1 by the object 2. Td is the transmittance of the reflection detection light LR21 by the detection band pass filter 32a. Ivd is a light receiving sensitivity to the reflection detection light LR21 of the light receiving element 33a for detection.
 Aaは、対象物2に含まれる成分(水分)による出射光LR1及び反射検知光LR21の吸収率であり、次の(式2)で表される。 Aa is an absorptivity of emission light LR1 and reflection detection light LR21 by a component (moisture) contained in the object 2, and is expressed by the following (formula 2).
 (式2) Aad=10-α×C×D (Formula 2) Aad = 10- α × C × D
 ここで、αは、予め定められた吸光係数であり、具体的には、成分(水分)による出射光LR1及び反射検知光LR21の吸光係数である。Cは、対象物2に含まれる成分(水分)の体積濃度である。Dは、出射光LR1及び反射検知光LR21の吸収に寄与する成分の厚みの2倍である寄与厚みである。 Here, α is a predetermined absorption coefficient, and specifically, the absorption coefficient of the outgoing light LR1 and the reflection detection light LR21 by the component (moisture). C is the volume concentration of the component (water) contained in the object 2. D is a contribution thickness that is twice the thickness of the component that contributes to the absorption of the outgoing light LR1 and the reflected detection light LR21.
 より具体的には、水分が均質に分散した対象物2では、光が対象物2に入射し、内部で反射して対象物2から出射する場合において、Cは、対象物2の成分に含まれる体積濃度に相当する。また、Dは、内部で反射して対象物2から出射するまでの光路長に相当する。例えば、対象物2が繊維などの網目状の固形物、又は、スポンジなどの多孔性の固形物である場合、固形物の表面で光が反射されると仮定する。この場合、例えば、Cは、固形物を覆っている液相に含まれる水分の濃度である。また、Dは、固形物を覆っている液相の平均的な厚みとして換算される寄与厚みである。 More specifically, in the case of the object 2 in which the water is uniformly dispersed, C is contained in the component of the object 2 when light is incident on the object 2 and is reflected internally and emitted from the object 2 Corresponding to the volume concentration. Further, D corresponds to an optical path length until the light is reflected inside and emitted from the object 2. For example, when the object 2 is a reticulated solid such as a fiber or a porous solid such as a sponge, it is assumed that light is reflected on the surface of the solid. In this case, for example, C is the concentration of water contained in the liquid phase covering the solid. Moreover, D is a contribution thickness converted as an average thickness of a liquid phase covering a solid.
 したがって、α×C×Dは、対象物2に含まれる成分量(水分量)に相当する。 Therefore, α × C × D corresponds to the amount of component (water content) contained in the object 2.
 同様に、参照用受光素子33bに入射する反射参照光LR22の光エネルギーPrは、次の(式3)で表される。 Similarly, light energy Pr of the reflected reference light LR22 incident on the reference light receiving element 33b is expressed by the following (Expression 3).
 (式3) Pr=Pr0×Gr×Rr×Tr×Ivr (Expression 3) Pr = Pr0 × Gr × Rr × Tr × Ivr
 本実施の形態では、対象物2に含まれる成分(水分)による第一波長帯の検知光の吸収と、第二波長帯の参照光の吸収との差分から水分による吸収率Aadを求めている。なお、反射参照光LR22は、対象物2に含まれる成分によって実質的には吸収されないとみなすことができるので、(式1)と比較して分かるように、水分による吸収率Aaに相当する光は(式3)には含まれていない。 In the present embodiment, the absorptance by water Aad is obtained from the difference between the absorption of the detection light of the first wavelength band by the component (water) contained in the object 2 and the absorption of the reference light of the second wavelength band. . In addition, since it can be considered that reflection reference light LR22 is not substantially absorbed by the component contained in the target object 2, the light corresponded to the absorptance Aa by water so that it may be understood compared with (Formula 1) Is not included in (Equation 3).
 (式3)において、Pr0は、光源21が発した出射光LR1の光エネルギーである。Grは、光源21が発した出射光LR1の参照用受光素子33bに対する結合効率(集光率)である。具体的には、Grは、出射光LR1のうち、対象物2で拡散反射される成分の一部(すなわち、反射参照光LR22)になる部分の割合に相当する。 In (Expression 3), Pr0 is light energy of the emitted light LR1 emitted by the light source 21. Gr is the coupling efficiency (condensing ratio) of the emitted light LR1 emitted by the light source 21 to the reference light receiving element 33b. Specifically, Gr corresponds to the proportion of the part of the emitted light LR1 that is to be a part of the component diffused and reflected by the object 2 (that is, the reflected reference light LR22).
 Rrは、対象物2による出射光LR1の反射率である。Trは、参照用バンドパスフィルタ32bによる反射参照光LR22の透過率である。Ivrは、参照用受光素子33bの反射参照光LR22に対する受光感度である。 Rr is the reflectance of the emitted light LR1 by the object 2. Tr is the transmittance of the reflected reference light LR22 by the reference band pass filter 32b. Ivr is the light reception sensitivity of the reference light receiving element 33b to the reflected reference light LR22.
 本実施の形態では、検知用受光素子33aにおける出射光LR1と参照用受光素子33bにおける出射光LR1とは同一の光であるため、結合効率Gdと結合効率Grとは略等しくなる。また、ピーク波長も比較的に近いので、反射率Rdと反射率Rrとが略等しくなる。 In the present embodiment, since the emitted light LR1 in the light receiving element for detection 33a and the emitted light LR1 in the light receiving element for reference 33b are the same light, the coupling efficiency Gd and the coupling efficiency Gr become substantially equal. Further, since the peak wavelength is also relatively close, the reflectance Rd and the reflectance Rr become substantially equal.
 したがって、(式1)と(式3)との比を取ることにより、次の(式4)が導き出される。 Therefore, the following (formula 4) is derived by taking the ratio between (formula 1) and (formula 3).
 (式4) Pd/Pr=Z×Aad (Equation 4) Pd / Pr = Z × Aad
 ここで、Zは、定数項であり、(式5)で示される。 Here, Z is a constant term and is represented by (Equation 5).
 (式5) Z=(Pd0/Pr0)×(Td/Tr)×(Ivd/Ivr) (Eq. 5) Z = (Pd0 / Pr0) × (Td / Tr) × (Ivd / Ivr)
 光エネルギーPd0及びPr0はそれぞれ、光源21の初期出力として予め定められている。また、反射検知光LR21の透過率Td及び反射参照光LR22の透過率Trはそれぞれ、検知用バンドパスフィルタ32a及び参照用バンドパスフィルタ32bの透過特性により予め定められている。反射検知光LR21の受光感度Ivd及び反射参照光LR22の受光感度Ivrはそれぞれ、検知用受光素子33a及び参照用受光素子33bの受光特性により予め定められている。したがって、(式5)で示されるZは、定数とみなすことができる。 The light energy Pd0 and Pr0 are each predetermined as an initial output of the light source 21. Further, the transmittance Td of the reflection detection light LR21 and the transmittance Tr of the reflection reference light LR22 are respectively determined in advance by the transmission characteristics of the detection band pass filter 32a and the reference band pass filter 32b. The light reception sensitivity Ivd of the reflection detection light LR21 and the light reception sensitivity Ivr of the reflection reference light LR22 are respectively determined in advance by the light reception characteristics of the detection light receiving element 33a and the reference light receiving element 33b. Therefore, Z shown in (Expression 5) can be regarded as a constant.
 信号処理回路50は、検知信号に基づいて反射検知光LR21の光エネルギーPdを算出し、参照信号に基づいて反射参照光LR22の光エネルギーPrを算出する。具体的には、検知信号の信号レベル(電圧レベル)が光エネルギーPdに相当し、参照信号の信号レベル(電圧レベル)が光エネルギーPrに相当する。 The signal processing circuit 50 calculates the light energy Pd of the reflected detection light LR21 based on the detection signal, and calculates the light energy Pr of the reflected reference light LR22 based on the reference signal. Specifically, the signal level (voltage level) of the detection signal corresponds to the light energy Pd, and the signal level (voltage level) of the reference signal corresponds to the light energy Pr.
 したがって、信号処理回路50は、(式5)に基づいて、対象物2に含まれる水分の吸収率Aaを算出することができる。これにより、信号処理回路50は、(式2)に基づいて水分量を算出することができる。 Therefore, the signal processing circuit 50 can calculate the absorptivity Aa of the water contained in the object 2 based on (Expression 5). Thereby, the signal processing circuit 50 can calculate the water content based on (Expression 2).
 [まとめ]
 以上のように、本実施の形態に係る光学式成分センサ1は、所定の成分による吸収波長を含む出射光LR1を発する光源21と、光源21を収容する筐体10と、筐体10の外部に位置している対象物2に向けて出射する投光部(投光レンズ22)と、対象物2によって反射された光を集光する受光レンズ31と、受光レンズ31が集光した光のうち第1波長帯の光を透過し、第2波長帯の光を反射する第1フィルタ(検知用バンドパスフィルタ32a)と、受光レンズ31が集光した光のうち第2波長帯の光を透過する第2フィルタ(参照用バンドパスフィルタ32b)と、筐体10内に収容され、第1フィルタを透過した検知光を受光し、第1電気信号に変換する第1受光素子(検知用受光素子33a)と、筐体10内に収容され、第2フィルタを透過した参照光を受光し、第2電気信号に変換する第2受光素子(参照用受光素子33b)と、を備える。
[Summary]
As described above, the optical component sensor 1 according to the present embodiment includes the light source 21 emitting the emitted light LR1 including the absorption wavelength of the predetermined component, the housing 10 accommodating the light source 21, and the outside of the housing 10 Of the light collected by the light-receiving lens 31 and the light-emitting unit (light-projecting lens 22) that emits light toward the object 2 located on the light-receiving lens 31 that collects the light reflected by the object 2; Among them, the first filter (the detection band pass filter 32a) that transmits the light of the first wavelength band and reflects the light of the second wavelength band, and the light of the second wavelength band of the light collected by the light receiving lens 31 A second filter (reference band pass filter 32b) which transmits light, and a first light receiving element which is received in the housing 10 and receives the detection light transmitted through the first filter and converts it into a first electric signal (light reception for detection Element 33a) and the housing 10, Receiving the reference light transmitted through the filter, it includes a second light receiving element for converting the second electrical signal (see light receiving element 33b), the.
 これにより、2つの受光光学モジュールを用いる場合に比べて、受光する反射光の量を増加させることができ、また、反射光の量のばらつきを低減することができるので安定して受光することができる。さらに、受光レンズの劣化による波長変化の懸念を抑制することができ、成分を精度良く検知することができる。 As a result, the amount of reflected light to be received can be increased and the variation in the amount of reflected light can be reduced compared to the case where two light receiving optical modules are used, and stable light reception can be achieved. it can. Furthermore, the concern of the wavelength change due to the deterioration of the light receiving lens can be suppressed, and the component can be detected with high accuracy.
 また、成分は、水分であることが好ましい。 The component is preferably water.
 これにより、対象物2に含まれる水分を精度良く検出することができる。 Thus, the water contained in the object 2 can be detected with high accuracy.
 (変形例1)
 上記実施の形態において、光学式成分センサ1は、筐体10内において、ハーフミラー34をさらに有する構成であってもよい。なお、以降の説明において、上記実施の形態と同一の部分には、同一の符号を付してその説明を省略する場合がある。
(Modification 1)
In the above embodiment, the optical component sensor 1 may be configured to further include the half mirror 34 in the housing 10. In the following description, parts that are the same as those in the above embodiment may be given the same reference numerals and descriptions thereof may be omitted.
 具体的には、図5に示すように、ハーフミラー34は、受光レンズ31と検知用受光素子33aとの間に設けられ、反射検知光LR21の光軸上に位置し、受光レンズ31に対して傾斜して配置される。このとき、検知用バンドパスフィルタ32aは、反射光LR2および反射検知光LR21の光軸上に、光軸に対して略垂直となるように配置される。 Specifically, as shown in FIG. 5, the half mirror 34 is provided between the light receiving lens 31 and the light receiving element for detection 33 a, and is located on the optical axis of the reflected detection light LR 21. And arranged in an inclined manner. At this time, the detection band pass filter 32a is disposed on the optical axis of the reflected light LR2 and the reflected detection light LR21 so as to be substantially perpendicular to the optical axis.
 ハーフミラー34は、対象物2が反射した反射光LR2を透過および反射することで反射検知光LR21および反射参照光LR22を出射する。具体的には、ハーフミラー34は、入射する反射光LR2の一部をそのまま(進行方向を実質的に変えることなく)透過し、残りの光を鏡面反射させる。ハーフミラー34は、例えば、入射する光を略1:1で反射及び透過する。すなわち、ハーフミラー34は、入射する反射光LR2の光束の50%の反射検知光LR21と50%の反射参照光LR22とを出射および反射させる。その後、ハーフミラー34を透過した光のうち、反射検知光LR21のみ検知用バンドパスフィルタ32aを透過し、検知用受光素子33aへ導かれる。また、ハーフミラー34を反射した光のうち、反射参照光LR22のみ参照用バンドパスフィルタ32bを透過し、参照用受光素子33bへ導かれることにより成分の計測が行われる。 The half mirror 34 emits the reflection detection light LR21 and the reflection reference light LR22 by transmitting and reflecting the reflection light LR2 reflected by the object 2. Specifically, the half mirror 34 transmits part of the incident reflected light LR2 as it is (without substantially changing the traveling direction), and specularly reflects the remaining light. The half mirror 34 reflects and transmits incident light approximately 1: 1, for example. That is, the half mirror 34 emits and reflects 50% of the reflection detection light LR21 and 50% of the reflection reference light LR22 of the light flux of the incident reflection light LR2. Thereafter, of the light transmitted through the half mirror 34, only the reflection detection light LR21 is transmitted through the detection band pass filter 32a, and is guided to the detection light receiving element 33a. Further, among the light reflected by the half mirror 34, only the reflected reference light LR22 passes through the reference band pass filter 32b and is guided to the reference light receiving element 33b to measure the component.
 ハーフミラー34は、例えば、金属薄膜又は誘電体多層膜などの反射性の薄膜が表面に形成された透光性の板材である。透光性の板材としては、例えば、透明なソーダガラスなどのガラス材料、又は、アクリル(PMMA)、ポリカーボネート(PC)などの透明樹脂材料を用いて形成されている。金属薄膜は、アルミニウムなどの金属材料を用いて、光透過性及び光反射性を有する程度に薄く形成された薄膜である。 The half mirror 34 is, for example, a translucent plate having a reflective thin film such as a metal thin film or a dielectric multilayer film formed on its surface. As a translucent board | plate material, it forms, for example using glass materials, such as transparent soda glass, or transparent resin materials, such as an acryl (PMMA) and a polycarbonate (PC). The metal thin film is a thin film formed so as to be light transmissive and light reflective using a metal material such as aluminum.
 これにより、反射光LR2を等分量で検知用受光素子33aと参照用受光素子33bとに集光させることができるので、成分の検出を高精度に行うことができる。 As a result, the reflected light LR2 can be focused on the detection light receiving element 33a and the reference light receiving element 33b in equal amounts, so that the components can be detected with high accuracy.
 (変形例2)
 上記実施の形態において、光学式成分センサ1は、それぞれの受光素子とバンドパスフィルタとの間に集光レンズ35a、35bを有していてもよい。この場合、検知用バンドパスフィルタ32aおよび参照用バンドパスフィルタ32bを透過した光は、それぞれ集光レンズ35a、35bによって集光されて検知用受光素子33aおよび参照用受光素子33bで受光される。
(Modification 2)
In the above embodiment, the optical component sensor 1 may have condensing lenses 35a and 35b between the respective light receiving elements and the band pass filter. In this case, the light transmitted through the detection band pass filter 32a and the reference band pass filter 32b is collected by the condensing lenses 35a and 35b, respectively, and is received by the detection light receiving element 33a and the reference light receiving element 33b.
 具体的には、図6に示すように、検知用受光素子33aおよび参照用受光素子33bは、それぞれ保持部36a、36bに保持される。保持部36a、36bの検知用バンドパスフィルタ32a側および参照用バンドパスフィルタ32b側の面には、バンドパスフィルタ側に向かって凸形状となる集光レンズ35a、35bが配置される。検知用バンドパスフィルタ32aおよび参照用バンドパスフィルタ32bを透過した光は、集光レンズ35a、35bへ入射し、集光レンズ35a、35bにて再度集光される。 Specifically, as shown in FIG. 6, the detection light receiving element 33a and the reference light receiving element 33b are respectively held by the holding portions 36a and 36b. Condenser lenses 35a and 35b having a convex shape toward the band pass filter are disposed on the surfaces of the holding portions 36a and 36b on the detection band pass filter 32a side and the reference band pass filter 32b side. The light transmitted through the detection band pass filter 32a and the reference band pass filter 32b enters the condensing lenses 35a and 35b, and is condensed again by the condensing lenses 35a and 35b.
 従って、集光レンズ35a、35bによって光の入射面が拡大し、集光できる光の量が多くなるので、より多くの光量で計測することができる。 Therefore, the incident surface of light is expanded by the condenser lenses 35a and 35b, and the amount of light that can be collected is increased, so measurement can be performed with a larger amount of light.
 また、誘電体多層膜により構成されたバンドパスフィルタおよびハーフミラー34が透過または反射した光は、入射角に依存して中心波長が変化しやすいため、高精度な計測が難しい。上記のように、集光レンズ35a、35bを設け、集光レンズ35a、35bの内部でさらに集光されることで、所望の波長帯のみを効率的に受光させることが可能である。 In addition, since the central wavelength of the light transmitted through or reflected by the band pass filter and the half mirror 34 configured of the dielectric multilayer film is likely to change depending on the incident angle, it is difficult to perform high-accuracy measurement. As described above, by providing the condensing lenses 35a and 35b and further condensing the light in the condensing lenses 35a and 35b, it is possible to efficiently receive only a desired wavelength band.
 集光レンズ35a、35bは、例えば透明樹脂材料で形成される。また、保持部36a、36bも集光レンズ35a、35bと同様の透明樹脂材料で形成されることで、集光レンズ35a、35bを入射した光の光路が屈折することなくそれぞれの受光素子に導かれる。 The condenser lenses 35a and 35b are formed of, for example, a transparent resin material. Further, the holding portions 36a and 36b are also formed of the same transparent resin material as the condensing lenses 35a and 35b, so that the optical paths of the light incident on the condensing lenses 35a and 35b are guided to the respective light receiving elements without refraction. It is eaten.
 (その他)
 以上、本発明に係る光学式成分センサ1について、上記の実施の形態及びその変形例に基づいて説明したが、本発明は、上記の実施の形態及び変形例に限定されるものではない。
(Others)
As mentioned above, although the optical component sensor 1 which concerns on this invention was demonstrated based on said embodiment and its modification, this invention is not limited to said embodiment and modification.
 例えば、投光レンズ22は、光の入射する面を凸状曲面としたが、これに限るものではなく、平面状や凹状曲面であってもよい。水平方向の曲率を垂直方向よりも大きく変化させると、水平方向の変化により大きく対応できるので、画面の水平視野角を垂直視野角より大きくしたい場合、水平入射角が垂直入射角よりも大きい場合に特に有効となる。 For example, although the surface on which light is incident is a convex curved surface, the light projection lens 22 is not limited to this, and may be a flat surface or a concave curved surface. If the curvature in the horizontal direction is changed more than in the vertical direction, the change in the horizontal direction can be dealt with more largely. Therefore, when it is desired to make the horizontal viewing angle of the screen larger than the vertical viewing angle, Especially effective.
 また、第1受光素子および第2受光素子は、それぞれ検知用受光素子、参照用受光素子としたが、検知用受光素子および参照用受光素子の配置は逆であってもかまわない。このとき、それに応じてバンドパスフィルタの配置も入れ替えられるものである。 Further, although the first light receiving element and the second light receiving element are respectively the light receiving element for detection and the light receiving element for reference, the arrangement of the light receiving element for detection and the light receiving element for reference may be reversed. At this time, the arrangement of the band pass filters can be replaced accordingly.
 また、例えば、上記の実施の形態では、光学式成分センサ1は、対象物2に含まれる成分として水分を検知したが、これに限らない。例えば、光学式成分センサ1は、アルコール又は油分を検知してもよい。例えば、光学式成分センサ1は、検知対象となるアルコールによる吸収波長を含む検知光と、アルコールによる吸収波長を含まない参照光とを対象物2に照射すればよい。 Also, for example, in the above-described embodiment, the optical component sensor 1 detects moisture as a component contained in the object 2, but the present invention is not limited to this. For example, the optical component sensor 1 may detect alcohol or oil. For example, the optical component sensor 1 may irradiate the object 2 with detection light including an absorption wavelength of alcohol to be detected and reference light not including an absorption wavelength of alcohol.
 また、上記実施の形態に、変形例1及び変形例2が両方組み合わされて1つ形態として実施するものであってもよい。 Further, both the first modification and the second modification may be combined into one embodiment in the above embodiment.
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。 In addition, the present invention can be realized by arbitrarily combining components and functions in each embodiment without departing from the scope of the present invention or embodiments obtained by applying various modifications that those skilled in the art may think to each embodiment. The form is also included in the present invention.
1 光学式成分センサ
2 対象物
10 筐体
20 投光光学モジュール
21 光源
22 投光レンズ(投光部)
30 受光光学モジュール
31 受光レンズ
32a 検知用バンドパスフィルタ(第1フィルタ)
32b 参照用バンドパスフィルタ(第2フィルタ)
33a 検知用受光素子(第1受光素子)
33b 参照用受光素子(第2受光素子)
34 ハーフミラー
40 制御回路
50 信号処理回路
Reference Signs List 1 optical component sensor 2 object 10 housing 20 light emitting optical module 21 light source 22 light emitting lens (light emitting unit)
30 light receiving optical module 31 light receiving lens 32a detection band pass filter (first filter)
32b Bandpass filter for reference (second filter)
33a Light receiving element for detection (first light receiving element)
33b Reference light receiving element (second light receiving element)
34 half mirror 40 control circuit 50 signal processing circuit

Claims (4)

  1.  所定の成分による吸収波長を含む出射光を発する光源と、
     前記光源を収容する筐体と、
     前記筐体の外部に位置している対象物に向けて出射する投光部と、
     前記対象物によって反射された光を集光する受光レンズと、
     前記受光レンズが集光した光のうち第1波長帯の光を透過し、第2波長帯の光を反射する第1フィルタと、
     前記受光レンズが集光した光のうち前記第2波長帯の光を透過する第2フィルタと、
     前記筐体内に収容され、前記第1フィルタを透過した検知光を受光し、第1電気信号に変換する第1受光素子と、
     前記筐体内に収容され、前記第2フィルタを透過した参照光を受光し、第2電気信号に変換する第2受光素子と、を備える
    光学式成分センサ。
    A light source emitting emitted light including an absorption wavelength by a predetermined component;
    A housing for accommodating the light source;
    A light projecting unit that emits toward a target located outside the housing;
    A light receiving lens for collecting light reflected by the object;
    A first filter that transmits light of a first wavelength band among the light collected by the light receiving lens and reflects light of a second wavelength band;
    A second filter for transmitting the light of the second wavelength band among the light collected by the light receiving lens;
    A first light receiving element housed in the housing, receiving the detection light transmitted through the first filter, and converting the detection light into a first electric signal;
    An optical component sensor comprising: a second light receiving element which is accommodated in the housing, receives the reference light transmitted through the second filter, and converts the reference light into a second electric signal.
  2.  ハーフミラーをさらに備え、
     前記受光レンズが集光した光は、前記ハーフミラーへ入射し、
     前記ハーフミラーを透過した光のうち前記第1波長帯の光は、前記第1フィルタを透過し第1受光素子へ受光され、
     前記ハーフミラーを反射した光のうち前記第2波長帯の光は、前記第2フィルタを透過して前記第2受光素子へ受光される
    請求項1に記載の光学式成分センサ。
    Further equipped with a half mirror,
    The light collected by the light receiving lens is incident on the half mirror,
    Of the light transmitted through the half mirror, light of the first wavelength band is transmitted through the first filter and received by the first light receiving element,
    2. The optical component sensor according to claim 1, wherein the light of the second wavelength band among the light reflected by the half mirror is transmitted through the second filter and received by the second light receiving element.
  3.  前記第1フィルタおよび前記第2フィルタを透過したそれぞれの光は、集光レンズにより集光されて前記第1受光素子および前記第2受光素子へ受光される
    請求項1または2に記載の光学式成分センサ。
    The optical system according to claim 1 or 2, wherein respective lights transmitted through the first filter and the second filter are condensed by a condenser lens and received by the first light receiving element and the second light receiving element. Component sensor.
  4.  前記成分は、水分である
    請求項1~3のいずれか1項に記載の光学式成分センサ。
    The optical component sensor according to any one of claims 1 to 3, wherein the component is moisture.
PCT/JP2018/005162 2017-02-27 2018-02-15 Optical type component sensor WO2018155290A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880011371.6A CN110291380A (en) 2017-02-27 2018-02-15 Optical profile type component sensor
JP2019501257A JPWO2018155290A1 (en) 2017-02-27 2018-02-15 Optical component sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-034299 2017-02-27
JP2017034299 2017-02-27

Publications (1)

Publication Number Publication Date
WO2018155290A1 true WO2018155290A1 (en) 2018-08-30

Family

ID=63252591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005162 WO2018155290A1 (en) 2017-02-27 2018-02-15 Optical type component sensor

Country Status (3)

Country Link
JP (1) JPWO2018155290A1 (en)
CN (1) CN110291380A (en)
WO (1) WO2018155290A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6786039B2 (en) * 2017-03-03 2020-11-18 国立大学法人 熊本大学 Optical measurement system, optical cell and optical measurement method
CN110907365B (en) * 2019-12-18 2022-06-24 国网重庆市电力公司南岸供电分公司 Method for measuring micro-water content

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08230141A (en) * 1995-02-23 1996-09-10 Kurabo Ind Ltd Method for measuring dampening water amount in offset printing machine and method for controlling dampening water amount
JPH11500534A (en) * 1995-02-24 1999-01-12 インスティテュート ファー ヒェモ ウント ビオゼンゾリック ミュンスター エー.ファー. Method for checking the condition of a road surface, in particular a road surface of a traffic road, and an apparatus for implementing the method
US20100243900A1 (en) * 2009-03-30 2010-09-30 Honeywell Asca Inc. Spectroscopy having correction for broadband distortion for analyzing multi-component samples

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173134A (en) * 1985-01-29 1986-08-04 Bridgestone Corp Moisture content measuring instrument
AUPQ611200A0 (en) * 2000-03-09 2000-03-30 Commonwealth Scientific And Industrial Research Organisation Determination of change in thickness of dampening solution on offset printing rollers
JP3788174B2 (en) * 2000-03-09 2006-06-21 富士ゼロックス株式会社 Method and apparatus for adjusting optical measuring apparatus
JP2009210528A (en) * 2008-03-06 2009-09-17 Anritsu Corp Light transmitting/receiving device
EP2708913A1 (en) * 2012-09-18 2014-03-19 Sick Ag Opto-electronic sensor and object detection method
JP2014106116A (en) * 2012-11-28 2014-06-09 Shimadzu Corp Plastic determination device
JP2015052496A (en) * 2013-09-06 2015-03-19 株式会社リコー Light guide and object detector
US9322756B2 (en) * 2014-02-21 2016-04-26 Maxim Integrated Products, Inc. Nondispersive infrared micro-optics sensor for blood alcohol concentration measurements

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08230141A (en) * 1995-02-23 1996-09-10 Kurabo Ind Ltd Method for measuring dampening water amount in offset printing machine and method for controlling dampening water amount
JPH11500534A (en) * 1995-02-24 1999-01-12 インスティテュート ファー ヒェモ ウント ビオゼンゾリック ミュンスター エー.ファー. Method for checking the condition of a road surface, in particular a road surface of a traffic road, and an apparatus for implementing the method
US20100243900A1 (en) * 2009-03-30 2010-09-30 Honeywell Asca Inc. Spectroscopy having correction for broadband distortion for analyzing multi-component samples

Also Published As

Publication number Publication date
JPWO2018155290A1 (en) 2019-11-07
CN110291380A (en) 2019-09-27

Similar Documents

Publication Publication Date Title
CN111465828B (en) Spectrometer apparatus and system
CN111465829B (en) Spectrometer apparatus and system
JP7284114B2 (en) Confocal displacement meter
KR101088360B1 (en) Optical waveguide having a plurality of independent optical paths and NDR gas sensor using the same
JP5870270B2 (en) Detector
KR20190084993A (en) Method and system for multiple F-number lenses
WO2018155290A1 (en) Optical type component sensor
WO2020039084A1 (en) A measurement head for determining a position of at least one object
JP7336695B2 (en) optical device
KR101710534B1 (en) Optical system for sensors with optical method and sensors including the same optical system
US20130223832A1 (en) System and method for controlling scattered light in a reflective optical filter
CN214622308U (en) Refractometer and intelligent cup
US8582104B2 (en) Optical device for detection of an agent
JP6659363B2 (en) Fluorescence detector
US20130271756A1 (en) Sensor for Monitoring a Medium
CA2953026A1 (en) Nephelometric turbidimeter with axial illumination and circumferential photodetector
JP2018141641A (en) Optical component sensor
US20230236115A1 (en) Optical absorption spectrometer
JP2011237317A (en) Infrared analyzer
KR102133917B1 (en) A one-body type ridar
KR100899088B1 (en) Lens meter
JP3747763B2 (en) Photoelectric smoke detector
KR101891232B1 (en) Optical Head for Fluorescence Detection
KR20150136760A (en) Gas detecting sensor and method
WO2020255797A1 (en) Sensitivity adjustment plate and method for manufacturing sensor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18757807

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019501257

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18757807

Country of ref document: EP

Kind code of ref document: A1