WO2018147204A1 - 電荷輸送性ワニス - Google Patents
電荷輸送性ワニス Download PDFInfo
- Publication number
- WO2018147204A1 WO2018147204A1 PCT/JP2018/003722 JP2018003722W WO2018147204A1 WO 2018147204 A1 WO2018147204 A1 WO 2018147204A1 JP 2018003722 W JP2018003722 W JP 2018003722W WO 2018147204 A1 WO2018147204 A1 WO 2018147204A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- carbon atoms
- charge transporting
- bis
- represented
- Prior art date
Links
- 0 CC1=C*C(N(c2ccccc2)c2ccc(C)cc2)=C1 Chemical compound CC1=C*C(N(c2ccccc2)c2ccc(C)cc2)=C1 0.000 description 5
- CZZYITDELCSZES-UHFFFAOYSA-N C(c1ccccc1)c1ccccc1 Chemical compound C(c1ccccc1)c1ccccc1 CZZYITDELCSZES-UHFFFAOYSA-N 0.000 description 2
- YAKPCVYGLLVBQA-UHFFFAOYSA-N C(C1C=CC=CC1)c1ccccc1 Chemical compound C(C1C=CC=CC1)c1ccccc1 YAKPCVYGLLVBQA-UHFFFAOYSA-N 0.000 description 1
- IQMBJURKPZZQLM-UHFFFAOYSA-N CC1CC=CC(Cc2ccccc2)C1 Chemical compound CC1CC=CC(Cc2ccccc2)C1 IQMBJURKPZZQLM-UHFFFAOYSA-N 0.000 description 1
- YWKKLBATUCJUHI-UHFFFAOYSA-N Cc(cc1)ccc1N(c1ccccc1)c1ccc(C)cc1 Chemical compound Cc(cc1)ccc1N(c1ccccc1)c1ccc(C)cc1 YWKKLBATUCJUHI-UHFFFAOYSA-N 0.000 description 1
- IVSZLXZYQVIEFR-UHFFFAOYSA-N Cc1cc(C)ccc1 Chemical compound Cc1cc(C)ccc1 IVSZLXZYQVIEFR-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/321—Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
- H10K85/322—Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C381/00—Compounds containing carbon and sulfur and having functional groups not covered by groups C07C301/00 - C07C337/00
- C07C381/12—Sulfonium compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/56—Ring systems containing three or more rings
- C07D209/80—[b, c]- or [b, d]-condensed
- C07D209/82—Carbazoles; Hydrogenated carbazoles
- C07D209/88—Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D333/00—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
- C07D333/50—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
- C07D333/76—Dibenzothiophenes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D335/00—Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom
- C07D335/02—Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F5/00—Compounds containing elements of Groups 3 or 13 of the Periodic Table
- C07F5/02—Boron compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F5/00—Compounds containing elements of Groups 3 or 13 of the Periodic Table
- C07F5/02—Boron compounds
- C07F5/025—Boronic and borinic acid compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F5/00—Compounds containing elements of Groups 3 or 13 of the Periodic Table
- C07F5/02—Boron compounds
- C07F5/027—Organoboranes and organoborohydrides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/24—Electrically-conducting paints
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/10—Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
- H10K85/636—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/15—Hole transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/17—Carrier injection layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
Definitions
- the present invention relates to a charge transporting varnish.
- organic electroluminescence element In an organic electroluminescence (hereinafter referred to as organic EL) element, a charge transporting thin film made of an organic compound is used as a light emitting layer or a charge injection layer.
- the hole injection layer is responsible for charge transfer between the anode and the hole transport layer or the light emitting layer, and plays an important function to achieve low voltage driving and high luminance of the organic EL element.
- the method of forming the hole injection layer is roughly divided into a dry process typified by vapor deposition and a wet process typified by spin coating. Compared with these processes, the wet process is flatter in a larger area. A highly efficient thin film can be produced efficiently.
- a hole injection layer that can be formed by a wet process is desired.
- the present inventors are applicable to various wet processes and have a charge transport property that provides a thin film that can realize excellent EL element characteristics when applied to a hole injection layer of an organic EL element.
- Compounds having good solubility in materials and organic solvents used therefor have been developed (see, for example, Patent Documents 1 to 4).
- Patent Documents 1 to 4 there is a constant demand for improvements in wet process materials for hole injection layers, and in particular, there is a need for wet process materials that provide thin films with excellent charge transport properties.
- the present invention has been made in view of the above circumstances, and provides a charge-transporting varnish that provides a charge-transporting thin film excellent in charge-transporting property, flatness and uniformity with good reproducibility, and a compound serving as a material for the charge-transporting varnish
- the purpose is to provide.
- the present inventors have obtained a charge transport property, flatness from a varnish obtained by dissolving a charge transport material and a predetermined onium borate salt in an organic solvent.
- the inventors have found that a charge transporting thin film having excellent uniformity can be obtained with good reproducibility, and that an organic EL device having excellent luminance characteristics can be obtained by using the thin film as a hole injection layer. It was.
- the present invention A charge transport material, an onium borate salt, and an organic solvent
- the onium borate salt is an onium borate salt consisting of a monovalent or divalent anion represented by the formula (a1) and a counter cation represented by the formulas (c1) to (c5) (however, an electrically neutral salt)
- a charge transporting varnish characterized by containing (Wherein Ar independently represents an aryl group which may have a substituent or a heteroaryl group which may have a substituent, L represents an alkylene group, —NH—, an oxygen atom, Represents a sulfur atom or —CN + —) 2.
- Ar is an aryl group having one or more electron-withdrawing substituents; 3.
- a method for producing a charge transporting thin film comprising applying the charge transporting varnish of any one of 1 to 7 on a substrate and evaporating the solvent; 11.
- Ar independently represents an aryl group which may have a substituent or a heteroaryl group which may have a substituent
- L represents an alkylene group, —NH—, an oxygen atom, Represents a sulfur atom or —CN + —
- Ar is an aryl group having one or more electron-withdrawing substituents, 13.
- the charge transporting varnish of the present invention By using the charge transporting varnish of the present invention, a charge transporting thin film excellent in charge transporting property, flatness and uniformity can be obtained.
- the charge transporting thin film having such characteristics can be suitably used as a thin film for electronic devices including organic EL elements.
- an organic EL element with a low driving voltage can be obtained.
- the charge transporting varnish of the present invention can produce a thin film with excellent charge transportability with good reproducibility even when using various wet processes that can be formed into a large area, such as a spin coating method and a slit coating method, It can sufficiently cope with recent progress in the field of organic EL elements.
- the thin film obtained from the charge transportable varnish of this invention is excellent in charge transportability, it can also be expected to be used as an anode buffer layer, an antistatic film or the like of an organic thin film solar cell.
- the charge transporting varnish according to the present invention includes a charge transporting substance, an onium borate salt, and an organic solvent, and the onium borate salt includes a monovalent or divalent anion represented by the formula (a1) and a formula ( It includes an onium borate salt (which is an electrically neutral salt) composed of counter cations represented by c1) to (c5).
- the charge transportability is synonymous with conductivity, and is also synonymous with hole transportability.
- the charge transporting varnish of the present invention may itself have charge transporting properties, or the solid film obtained using the varnish may have charge transporting properties.
- each Ar independently represents an aryl group which may have a substituent or a heteroaryl group which may have a substituent
- L represents an alkylene group, —NH—, oxygen Represents an atom, a sulfur atom or —CN + —;
- aryl group examples include aryl groups having 6 to 20 carbon atoms. Specific examples thereof include phenyl group, tolyl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group. Group, 4-phenanthryl group, 9-phenanthryl group and the like, and phenyl group, tolyl group and naphthyl group are preferable.
- substituents examples include a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, and an alkynyl group having 2 to 20 carbon atoms.
- halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom is preferable.
- the alkyl group having 1 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, Isobutyl, s-butyl, t-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n- Examples include dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecyl group, n-eicosanyl group, etc
- alkenyl group having 2 to 20 carbon atoms include ethenyl group, n-1-propenyl group, n-2-propenyl group, 1-methylethenyl group, n-1-butenyl group, n-2-butenyl group, n-3-butenyl group, 2-methyl-1-propenyl group, 2-methyl-2-propenyl group, 1-ethylethenyl group, 1-methyl-1-propenyl group, 1-methyl-2-propenyl group, n- Examples thereof include a 1-pentenyl group, an n-1-decenyl group, and an n-1-eicosenyl group.
- alkynyl group having 2 to 20 carbon atoms examples include ethynyl group, n-1-propynyl group, n-2-propynyl group, n-1-butynyl group, n-2-butynyl group, and n-3-butynyl.
- the aryl group preferably has one or more electron-withdrawing groups among the above-described substituents.
- the electron withdrawing group include a halogen atom, a nitro group, a cyano group, and the like.
- a halogen atom is preferable, and a fluorine atom is particularly preferable.
- the heteroaryl group is preferably a heteroaryl group having 2 to 20 carbon atoms. Specific examples thereof include 2-thienyl group, 3-thienyl group, 2-furanyl group, 3-furanyl group, 2-oxazolyl group, 4-oxazolyl group, 5-oxazolyl group, 3-isoxazolyl group, 4-isoxazolyl group.
- Oxygen-containing heteroaryl groups such as 5-isoxazolyl group, sulfur-containing heteroaryl groups such as 2-thiazolyl group, 4-thiazolyl group, 5-thiazolyl group, 3-isothiazolyl group, 4-isothiazolyl group, 5-isothiazolyl group, 2-imidazolyl group, 4-imidazolyl group, 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, 2-pyrazyl group, 3-pyrazyl group, 5-pyrazyl group, 6-pyrazyl group, 2-pyrimidyl group, 4-pyrimidyl group, 5-pyrimidyl group, 6-pyrimidyl group, 3-pyridazyl group, 4-pyridazyl group, 5-pyridazyl group, -Pyridazyl group, 1,2,3-triazin-4-yl group, 1,2,3-triazin-5-yl group, 1,2,4-triazin-3-yl group, 1,
- Examples of the substituent of the heteroaryl group include the same substituents as those exemplified for the aryl group.
- L represents an alkylene group, —NH—, an oxygen atom, a sulfur atom or —CN + —, preferably —CN + —.
- the alkylene group may be linear, branched or cyclic, and examples thereof include an alkylene group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms. Specific examples thereof include a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a trimethylene group, a propylene group, a tetramethylene group, a pentamethylene group, and a hexamethylene group.
- Examples of the anion of the above formula (a1) that can be suitably used in the present invention include those represented by the formula (a2), but are not limited thereto.
- examples of the counter cation include those represented by the formulas (c1) to (c5).
- the onium borate salts may be used singly or in combination of two or more. Moreover, you may use together other well-known onium borate salts as needed.
- the onium borate salt can be synthesized with reference to known methods described in, for example, JP-A-2005-314682.
- the onium borate salt may be previously dissolved in an organic solvent in order to facilitate dissolution in the charge transporting varnish.
- organic solvents include carbonates such as propylene carbonate, ethylene carbonate, 1,2-butylene carbonate, dimethyl carbonate, and diethyl carbonate; ketones such as acetone, methyl ethyl ketone, cyclohexanone, methyl isoamyl ketone, and 2-heptanone; ethylene Glycol, ethylene glycol monoacetate, diethylene glycol, diethylene glycol monoacetate, propylene glycol, propylene glycol monoacetate, dipropylene glycol, monomethyl ether, monoethyl ether, monopropyl ether, monobutyl ether or monophenyl ether of dipropylene glycol monoacetate, etc.
- cyclic ethers such as dioxane Class: ethyl formate, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, butyl acetate, methyl pyruvate, methyl acetoacetate, ethyl acetoacetate, ethyl pyruvate, ethyl ethoxyacetate, methyl methoxypropionate, ethyl ethoxypropionate, Methyl 2-hydroxypropionate, ethyl 2-hydroxypropionate, ethyl 2-hydroxy-2-methylpropionate, methyl 2-hydroxy-3-methylbutanoate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate Esters such as toluene; xylene, 3-phenoxytoluene, 4-methoxytoluene, methyl benzoate, cyclohexane Class: ethy
- the charge transporting substance used in the present invention is not particularly limited and can be appropriately selected from those conventionally known in the field of organic EL and the like. Specific examples include oligoaniline derivatives, N, N′-diarylbenzidine derivatives, arylamine derivatives such as N, N, N ′, N′-tetraarylbenzidine derivatives, oligothiophene derivatives, thienothiophene derivatives, thienobenzothiophenes.
- Examples include various hole transport materials such as thiophene derivatives such as derivatives and pyrrole derivatives such as oligopyrrole, among which arylamine derivatives and thiophene derivatives are preferable, arylamine derivatives are more preferable, and formula (1) or (2 An aniline derivative represented by
- the molecular weight of the charge transporting substance is not particularly limited, but is preferably 200 to 9,000 from the viewpoint of preparing a uniform varnish that gives a thin film with high flatness, and has a high solvent resistance. Is more preferably 300 or more, more preferably 400 or more, and more preferably 8,000 or less, and 7,000 or less from the viewpoint of preparing a uniform varnish that gives a highly flat thin film with good reproducibility. Is more preferably 6,000 or less, and most preferably 5,000 or less.
- the charge transporting material preferably has no molecular weight distribution (dispersity is 1) (that is, preferably has a single molecular weight). ).
- R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, or an alkyl group having 1 to 20 carbon atoms which may be substituted with a halogen atom, Represents an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a heteroaryl group having 2 to 20 carbon atoms, and specific examples thereof include the above formula (c1 And the same groups as described in the above.
- R 1 and R 2 are each a hydrogen atom, a fluorine atom, a cyano group, an alkyl group having 1 to 20 carbon atoms which may be substituted with a halogen atom, or a carbon atom having 6 to 20 carbon atoms which may be substituted with a halogen atom.
- a heteroaryl group having 2 to 20 carbon atoms which may be substituted with a halogen atom, preferably a hydrogen atom, a fluorine atom, a cyano group or an alkyl having 1 to 10 carbon atoms which may be substituted with a halogen atom
- a phenyl group which may be substituted with a group or a halogen atom is more preferable, a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group is more preferable, and a hydrogen atom is most preferable.
- Ph 1 in the above formulas (1) and (2) represents a group represented by the formula (P1).
- R 3 to R 6 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, or an alkyl group having 1 to 20 carbon atoms which may be substituted with a halogen atom, or 2 carbon atoms
- a hydrogen atom, a fluorine atom, a cyano group, an alkyl group having 1 to 20 carbon atoms which may be substituted with a halogen atom, or a carbon atom having 6 to 6 carbon atoms which may be substituted with a halogen atom 20 aryl groups and heteroaryl groups having 2 to 20 carbon atoms which may be substituted with a halogen atom are preferred, and those having 1 to 10 carbon atoms which may be substituted with a hydrogen atom, a fluorine atom, a cyano group or a halogen atom
- An alkyl group and a phenyl group which may be substituted with a halogen atom are more preferable, a hydrogen atom, a fluorine atom, a methyl group and a trifluoromethyl group are more preferable, and a hydrogen atom is most preferable.
- Ar 1 in the above formula (1) independently of each other represents a group represented by any one of the formulas (B1) to (B11).
- R 7 to R 27 , R 30 to R 51 and R 53 to R 154 may each independently be substituted with a hydrogen atom, a halogen atom, a nitro group, a cyano group, or a halogen atom.
- R 28 and R 29 independently of each other represent an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms which may be substituted with Z 1
- R 52 represents hydrogen atom may be substituted with Z 4, alkyl group having 1 to 20 carbon atoms, which may be substituted with alkenyl or alkynyl group having 2 to 20 carbon atoms having 2 to 20 carbon atoms, or Z 1,, carbon atoms 6-20 aryl groups or Represents a heteroaryl group having 2 to 20 carbon atoms
- Z 1 is a halogen atom, a nitro group, a cyano group, or an alkyl group having 1 to 20 carbon atoms which may be substituted with Z 2
- Z 2 is an aryl group or carbon atom having 6 to 20 carbon atoms which may be substituted with a halogen
- Alkyl group Represents an alkenyl group having 2 to 20 carbon atoms or an alkynyl group having 2 to 20 carbon atoms, and these halogen atoms, alkyl groups having 1 to 20 carbon atoms, alkenyl groups having 2 to 20 carbon atoms, and alkynyl groups having 2 to 20 carbon atoms
- Specific examples of the aryl group having 6 to 20 carbon atoms and the heteroaryl group having 2 to 20 carbon atoms include the same groups as those described in the above formula (a1).
- R 7 to R 27 , R 30 to R 51 and R 53 to R 154 are each substituted with a hydrogen atom, a fluorine atom, a cyano group, a diphenylamino group which may be substituted with a halogen atom, or a halogen atom.
- Preferred are an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms which may be substituted with a halogen atom, and a heteroaryl group having 2 to 20 carbon atoms which may be substituted with a halogen atom.
- a hydrogen atom, a fluorine atom, a cyano group, an alkyl group having 1 to 10 carbon atoms which may be substituted with a halogen atom, or a phenyl group which may be substituted with a halogen atom is more preferable. And a trifluoromethyl group is more preferable, and a hydrogen atom is most preferable.
- R 28 and R 29 are preferably an aryl group having 6 to 14 carbon atoms which may be substituted with Z 1 , or a heteroaryl group having 2 to 14 carbon atoms which may be substituted with Z 1.
- an aryl group which may having 6 to 14 carbon atoms optionally substituted with 1 a phenyl group which may be substituted with Z 1, which may be substituted with Z 1 1-naphthyl group, substituted with Z 1
- An optionally substituted 2-naphthyl group is even more preferred.
- an aryl group of Z 1 is carbon atoms 6 also be ⁇ 20 substituted with a heteroaryl group which have 2-20 carbon atoms substituted with Z 1, with Z 4 alkyl group substituted-1 carbon atoms which may be 20, more preferably a hydrogen atom, Z 1 substituted by optionally 6 carbon atoms which may be ⁇ 14 aryl group, Z 1 carbon atoms which may be substituted with 2 A heteroaryl group having ⁇ 14, an alkyl group having 1 to 10 carbon atoms which may be substituted with Z 4 , more preferably a hydrogen atom, an aryl group having 6 to 14 carbon atoms which may be substituted with Z 1 , Z even more preferably an alkyl group having a nitrogen-containing heteroaryl group, Z 4 carbon atoms which may be substituted with 1 to 10 also 1-2 carbon atoms 14 substituted with 1, hydrogen atom is substituted with Z 1 Optionally substituted with a phenyl group, Z 1 Good
- Ar 4 independently represents an aryl group having 6 to 20 carbon atoms which may be substituted with an arylamino group having 6 to 20 dicarbon atoms.
- Specific examples of the aryl group having 6 to 20 carbon atoms and the arylamino group having 6 to 20 carbon atoms include the same groups as those described in formula (c1).
- Ar 4 includes phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4- Phenanthryl group, 9-phenanthryl group, p- (diphenylamino) phenyl group, p- (1-naphthylphenylamino) phenyl group, p- (di (1-naphthyl) amino) phenyl group, p- (1-naphthyl-) A 2-naphthylamino) phenyl group and a p- (di (2-naphthyl) amino) phenyl group are preferred, and a p- (diphenylamino) phenyl group is more preferred.
- R 52 represents the same meaning as described above.
- Ar 2 in the formula (1) independently represents a group represented by any one of the formulas (A1) to (A18).
- R 155 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or an alkynyl group having 2 to 20 carbon atoms, which may be substituted with Z 4 , Or an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms which may be substituted with Z 1 , and R 156 and R 157 are each independently substituted with Z 1 And an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms, DPA represents a diphenylamino group, and Ar 4 , Z 1 and Z 4 represent the same meaning as described above.
- halogen atoms alkyl groups having 1 to 20 carbon atoms, alkenyl groups having 2 to 20 carbon atoms, alkynyl groups having 2 to 20 carbon atoms, aryl groups having 6 to 20 carbon atoms, and heteroaryl groups having 2 to 20 carbon atoms
- alkyl groups having 1 to 20 carbon atoms alkenyl groups having 2 to 20 carbon atoms, alkynyl groups having 2 to 20 carbon atoms, aryl groups having 6 to 20 carbon atoms, and heteroaryl groups having 2 to 20 carbon atoms
- Specific examples thereof include the same groups as those described in the above formula (c1).
- an aryl group of Z 1 is carbon atoms 6 also be ⁇ 20 substituted with a heteroaryl group which have 2-20 carbon atoms substituted with Z 1, with Z 4 alkyl group substituted-1 carbon atoms which may be 20, more preferably a hydrogen atom, Z 1 substituted by optionally 6 carbon atoms which may be ⁇ 14 aryl group, Z 1 carbon atoms which may be substituted with 2 A heteroaryl group having ⁇ 14, an alkyl group having 1 to 10 carbon atoms which may be substituted with Z 4 , more preferably a hydrogen atom, an aryl group having 6 to 14 carbon atoms which may be substituted with Z 1 , Z even more preferably an alkyl group having a nitrogen-containing heteroaryl group, Z 4 carbon atoms which may be substituted with 1 to 10 also 1-2 carbon atoms 14 substituted with 1, hydrogen atom is substituted with Z 1 which may be a phenyl group, optionally substituted with a phenyl group, optionally substituted
- R 156 and R 157 are preferably an aryl group having 6 to 14 carbon atoms which may be substituted with Z 1 , or a heteroaryl group having 2 to 14 carbon atoms which may be substituted with Z 1. More preferably an aryl group which may having 6 to 14 carbon atoms optionally substituted with 1, a phenyl group which may be substituted with Z 1, which may be substituted with Z 1 1-naphthyl group, substituted with Z 1 An optionally substituted 2-naphthyl group is even more preferred.
- the aniline derivative represented by the formula (1-1) is more preferably the aniline derivative represented by the formula (1).
- the aniline derivative represented by the formula (1-1) is preferable.
- Ph 1 and k represent the same meaning as described above, and Ar 5 represents a group represented by any of formulas (D1) to (D13). A group represented by any one of D1 ′) to (D13 ′) is preferred. Specific examples of Ar 5 include the same groups as those described above as specific examples of groups suitable as Ar 1 .
- the aniline derivative represented by formula (1) is preferably an aniline derivative represented by formula (1-2).
- Ar 6 represents a group represented by any one of formulas (E1) to (E14).
- R 52 represents the same meaning as described above.
- Ar 3 in the above formula (2) represents a group represented by any one of the formulas (C1) to (C8), and in particular, a group represented by any one of (C1 ′) to (C8 ′) is preferable. .
- k represents an integer of 1 to 10, and is preferably 1 to 5, more preferably 1 to 3, more preferably 1 or 2, from the viewpoint of increasing the solubility of the compound in an organic solvent.
- 1 is optimal.
- 1 represents 1 or 2.
- Z 1 represents a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 10 carbon atoms which may be substituted with Z 2
- Z is an alkenyl group having 2 to 10 carbon atoms which may have, alkynyl group which 2 carbon atoms which may be ⁇ 10 substituted with Z 2 preferably substituted by 2
- halogen atom, nitro group, cyano group, substituted with Z 2 is 1 carbon atoms which may be 1-3 alkyl group
- Z 4 is preferably a halogen atom, a nitro group, a cyano group, or an aryl group having 6 to 14 carbon atoms which may be substituted with Z 5.
- An atom, a nitro group, a cyano group, or an aryl group having 6 to 10 carbon atoms which may be substituted with Z 5 is more preferable, and a fluorine atom or an aryl group having 6 to 10 carbon atoms which may be substituted with Z 5 is Even more preferred are a fluorine atom and a phenyl group optionally substituted with Z 5 .
- Z 2 is preferably a halogen atom, a nitro group, a cyano group, or an aryl group having 6 to 14 carbon atoms which may be substituted with Z 3.
- Even more preferred are a fluorine atom and a phenyl group optionally substituted with Z 3 .
- Z 5 is a halogen atom, a nitro group, a cyano group, an alkyl group which 1 carbon atoms which may be ⁇ 10 substituted by Z 3, with Z 3
- Z 3 is preferably a halogen atom, more preferably a fluorine atom.
- Z 1 is a halogen atom, a nitro group, a cyano group, or an alkyl having 1 to 3 carbon atoms that may be substituted with Z 2.
- group an alkenyl group of Z 2 ⁇ 2 carbon atoms which may be substituted with 1-3, an alkynyl group having 2 to 3 carbon atoms are preferable optionally substituted by Z 2, a halogen atom, optionally substituted by Z 2
- More preferred are alkyl groups having 1 to 3 carbon atoms, and even more preferred are a fluorine atom and a methyl group optionally substituted with Z 2 .
- Z 4 represents a halogen atom, a nitro group, a cyano group, or an aryl group having 6 to 10 carbon atoms that may be substituted with Z 5.
- a halogen atom more preferably an aryl group which may having 6 to 10 carbon atoms optionally substituted by Z 5, a fluorine atom, a phenyl group optionally substituted by Z 5 is more preferable.
- Z 2 represents a halogen atom, a nitro group, a cyano group, or an aryl group having 6 to 10 carbon atoms which may be substituted with Z 3. preferably, a halogen atom, more preferably an aryl group which may having 6 to 10 carbon atoms substituted with Z 3, fluorine atoms, the phenyl group which may be substituted with Z 3 more preferred.
- Z 5 is a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 3 carbon atoms that may be substituted with Z 3 , Z 3-substituted 2 carbon atoms which may be 1-3 alkenyl group is preferably an alkynyl group which may having 2 or 3 carbon atoms optionally substituted by Z 3, halogen atom, optionally substituted by Z 3 An alkyl group having 1 to 3 carbon atoms is more preferable, and a fluorine atom and a methyl group which may be substituted with Z 3 are even more preferable.
- Z 3 is preferably a halogen atom, more preferably a fluorine atom.
- R 52 and R 155 include the following groups, but are not limited thereto.
- Carbon number of the said alkyl group, alkenyl group, and alkynyl group becomes like this.
- it is 10 or less, More preferably, it is 6 or less, More preferably, it is 4 or less.
- carbon number of the said aryl group and heteroaryl group becomes like this.
- it is 14 or less, More preferably, it is 10 or less, More preferably, it is 6 or less.
- the aniline derivative represented by the above formula (1) can be produced by reacting an amine compound represented by the formula (3) and an aryl compound represented by the formula (4) in the presence of a catalyst.
- X represents a halogen atom or a pseudohalogen group
- Ar 1 , Ar 2 , Ph 1 and k have the same meaning as described above.
- the aniline derivative represented by formula (1-1) can be produced by reacting an amine compound represented by formula (5) with an aryl compound represented by formula (6) in the presence of a catalyst. .
- the aniline derivative represented by the formula (1-2) can be produced by reacting bis (4-aminophenyl) amine with an aryl compound represented by the formula (7) in the presence of a catalyst.
- the aniline derivative represented by the above formula (2) can be produced by reacting the amine compound represented by the formula (8) and the aryl compound represented by the formula (9) in the presence of a catalyst.
- Pseudohalogen groups include (fluoro) alkylsulfonyloxy groups such as methanesulfonyloxy group, trifluoromethanesulfonyloxy group, and nonafluorobutanesulfonyloxy group; aromatic sulfonyloxy groups such as benzenesulfonyloxy group and toluenesulfonyloxy group Is mentioned.
- the charge ratio with respect to the compound can be equal to or greater than the equivalent amount of the aryl compound relative to the amount of all NH groups in the amine compound or bis (4-aminophenyl) amine, but is preferably about 1 to 1.2 equivalents. is there.
- Examples of the catalyst used in the above reaction include copper catalysts such as copper chloride, copper bromide, copper iodide; Pd (PPh 3 ) 4 (tetrakis (triphenylphosphine) palladium), Pd (PPh 3 ) 2 Cl 2 (bis (triphenylphosphine) dichloropalladium), Pd (dba) 2 (bis (dibenzylideneacetone) palladium), Pd 2 (dba) 3 (tris (dibenzylideneacetone) dipalladium), Pd (Pt Examples thereof include palladium catalysts such as —Bu 3 ) 2 (bis (tri (t-butylphosphine)) palladium) and Pd (OAc) 2 (palladium acetate).
- copper catalysts such as copper chloride, copper bromide, copper iodide
- Pd (PPh 3 ) 4 tetrakis (triphenylphosphine) palladium
- These catalysts may be used alone or in combination of two or more. These catalysts may be used together with a known appropriate ligand.
- ligands include triphenylphosphine, tri-o-tolylphosphine, diphenylmethylphosphine, phenyldimethylphosphine, trimethylphosphine, triethylphosphine, tributylphosphine, tri-tert-butylphosphine.
- the amount of the catalyst used can be about 0.2 mol with respect to 1 mol of the aryl compound represented by the formula (4), (6), (7) or (9), but about 0.15 mol is preferable. It is. When a ligand is used, the amount used can be 0.1 to 5 equivalents relative to the metal complex to be used, but 1 to 2 equivalents is preferred.
- the above reactions are carried out in a solvent.
- a solvent the type is not particularly limited as long as it does not adversely affect the reaction.
- Specific examples include aliphatic hydrocarbons (pentane, n-hexane, n-octane, n-decane, decalin, etc.), halogenated aliphatic hydrocarbons (chloroform, dichloromethane, dichloroethane, carbon tetrachloride, etc.), aromatic Group hydrocarbons (benzene, nitrobenzene, toluene, o-xylene, m-xylene, p-xylene, mesitylene, etc.), halogenated aromatic hydrocarbons (chlorobenzene, bromobenzene, o-dichlorobenzene, m-dichlorobenzene, p-dichlorobenzene, etc
- the reaction temperature may be appropriately set within the range from the melting point to the boiling point of the solvent to be used, but is preferably about 0 to 200 ° C, more preferably 20 to 150 ° C.
- the desired aniline derivative can be obtained by post-treatment according to a conventional method.
- the amine compound represented by the formula (3 ′) that can be used as a raw material is an amine compound represented by the formula (10) and the formula (11). Can be efficiently produced by reacting in the presence of a catalyst.
- the above-described method for producing an amine compound represented by the formula (3 ′) is a reaction in which an amine compound represented by the formula (10) and an aryl compound represented by the formula (11) are coupled.
- the preparation of the amine compound represented by the formula (10) and the aryl compound represented by the formula (11) is preferably about 2 to 2.4 aryl compounds with respect to the amine compound 1 in terms of the substance amount ratio. is there.
- the conditions regarding the catalyst, ligand, solvent, reaction temperature, etc. in the coupling reaction are the same as the above-described conditions described for the method for producing the aniline derivative represented by the formula (1).
- Ar 1 is a group represented by Formula (B4) or a group represented by Formula (B10) in which R 52 is a hydrogen atom, or Ar 2 is represented by Formula (B).
- R 52 is a hydrogen atom
- Ar 2 is represented by Formula (B).
- aryl compounds having a known protecting group on the amino group may be used.
- R 1a and R 2a each independently represent a hydrogen atom, an alkyl group having 1 to 40 carbon atoms, a fluoroalkyl group having 1 to 40 carbon atoms, an alkoxy group having 1 to 40 carbon atoms, or 1 carbon atom.
- a fluoroalkoxy group of ⁇ 40, an aryloxy group of 6 to 20 carbon atoms, —O— [Z—O] p —R e , or R 1a and R 2a taken together are —O—Z— Z is a hydrocarbylene group having 1 to 40 carbon atoms that may be substituted with Y (wherein Y is a halogen atom, an alkyl group having 1 to 10 carbon atoms, or 1 to 10 is an alkoxyalkyl group, and the alkyl group or the alkoxyalkyl group may be substituted at any position with a sulfonic acid group), p is 1 or more, Re is a hydrogen atom, C1-C40 alkyl group, C1-C40 fluoro It is a loalkyl group or an aryl group having 6 to 20 carbon atoms.)
- R 1a and R 2a are each independently a hydrogen atom, a fluoroalkyl group having 1 to 40 carbon atoms, —O [C (R a R b ) —C (R c R d ) —O] p — R e or —OR f is preferred.
- R a to R d each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 40 carbon atoms, a fluoroalkyl group having 1 to 40 carbon atoms, or an aryl group having 6 to 20 carbon atoms. Re is the same as described above.
- p is preferably 1, 2 or 3.
- R f is preferably an alkyl group having 1 to 40 carbon atoms, a fluoroalkyl group having 1 to 40 carbon atoms, or an aryl group having 6 to 20 carbon atoms.
- alkyl group having 1 to 40 carbon atoms examples include a behenyl group, triacontyl group, and tetracontyl group in addition to the alkyl group having 1 to 20 carbon atoms exemplified above.
- the fluoroalkyl group having 1 to 40 carbon atoms is not particularly limited as long as it is a linear or branched alkyl group in which at least one hydrogen atom on a carbon atom is substituted with a fluorine atom.
- difluoromethyl Group trifluoromethyl group, perfluoropropenyl group, 1H, 1H, 2H, 2H-perfluorooctyl group, perfluoroethyl group, —CH 2 CF 3 and the like.
- the alkyl group therein may be linear, branched or cyclic, and examples thereof include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, Examples thereof include, but are not limited to, an n-butoxy group, an isobutoxy group, and a tert-butoxy group.
- the fluoroalkoxy group having 1 to 40 carbon atoms is not particularly limited as long as it is an alkoxy group in which at least one hydrogen atom on a carbon atom is substituted with a fluorine atom, and examples thereof include a fluoromethoxy group, a difluoromethoxy group, Fluoromethoxy group, 1-fluoroethoxy group, 2-fluoroethoxy group, 1,2-difluoroethoxy group, 1,1-difluoroethoxy group, 2,2-difluoroethoxy group, 1,1,2-trifluoroethoxy group 1,2,2-trifluoroethoxy group, 2,2,2-trifluoroethoxy group, 1,1,2,2-tetrafluoroethoxy group, 1,2,2,2-tetrafluoroethoxy group, 1 , 1,2,2,2-pentafluoroethoxy group, 1-fluoropropoxy group, 2-fluoropropoxy group, 3-fluoropropoxy group, 1,1-diflu
- the hydrocarbylene group is a divalent hydrocarbon group formed by removing two hydrogen atoms from a hydrocarbon.
- the hydrocarbylene group may be linear, branched or cyclic and may be saturated or unsaturated.
- Examples of the hydrocarbylene group having 1 to 40 carbon atoms include methylene group, ethylene group, 1-phenylethylene group, propylene group, trimethylene group, butylene group, 1,2-phenylene group, 1,3-phenylene group, Examples thereof include, but are not limited to, 1,4-phenylene group and 2,6-naphthylene group.
- Examples of the aryl group having 6 to 20 carbon atoms are the same as those exemplified above.
- aryloxy group having 6 to 20 carbon atoms examples include, but are not limited to, a phenoxy group, an anthracenoxy group, a naphthoxy group, a phenanthrenoxy group, and a fluorenoxy group.
- the alkoxyalkyl group having 1 to 10 carbon atoms may be linear, branched or cyclic, and specific examples thereof include methoxyethyl group, ethoxyethyl group, methoxypropyl group, ethoxypropyl group, methoxybutyl Group, ethoxybutyl group and the like, and an alkoxyalkyl group having 1 to 6 carbon atoms is preferable.
- R 1a is a hydrogen atom and R 2a is other than a hydrogen atom.
- the repeating unit is derived from a 3-substituted thiophene.
- Polythiophene may be a regiorandom type or a regioregular type compound. Due to its asymmetric structure, the polymerization of 3-substituted thiophene produces a mixture of polythiophene structures containing three possible regiochemical bonds between repeating units. The three orientations available when two thiophene rings are combined are the 2,2 ', 2,5', and 5,5 'couplings. 2,2 '(ie head-to-head) coupling and 5,5' (ie tail-to-tail) coupling are referred to as regiorandom coupling. In contrast, 2,5 '(ie head-to-tail) coupling is referred to as regioregular coupling.
- the degree of regioregularity can be, for example, about 0-100%, or about 25-99.9%, or about 50-98%.
- the regioregularity can be determined by standard methods known to those skilled in the art, such as using NMR spectroscopy.
- the polythiophene is preferably a regioregular type.
- the regioregularity of the polythiophene is preferably at least about 85%, more preferably at least about 95%, and even more preferably at least about 98%.
- the degree of regioregularity is preferably at least about 70%, more preferably at least about 80%.
- the regioregular polythiophene has a regioregularity of at least about 90%, and typically has a regioregularity of at least about 98%.
- 3-Substituted thiophene monomers are commercially available or can be prepared by methods known to those skilled in the art. Synthesis, doping, and polymer characterization involving regioregular polythiophenes with pendant groups are described, for example, in McCullough et al. US Pat. No. 6,602,974 and McCullough et al. US Pat. No. 6,166,172. It is described in.
- the repeating unit is derived from 3,4-disubstituted thiophene.
- R 1a and R 2a are independently of each other —O [C (R a R b ) —C (R c R d ) —O] p. -R e or OR f .
- R 1a and R 2a are both —O [C (R a R b ) —C (R c R d ) —O] p —R e .
- R 1a and R 2a may be the same or different.
- R a to R d are preferably a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a fluoroalkyl group having 1 to 8 carbon atoms, or a phenyl group, and R e is an alkyl group having 1 to 8 carbon atoms.
- R e is an alkyl group having 1 to 8 carbon atoms.
- a fluoroalkyl group having 1 to 8 carbon atoms, or a phenyl group is preferable.
- R 1a and R 2a are each —O [CH 2 —CH 2 —O] p —R e or —O [CH (CH 3 ) —CH. 2 —O] p —R e is preferred.
- R e is more preferably a methyl group, a propyl group, or a butyl group.
- R 1a and R 2a together form —O—Z—O—
- Preferred examples of the polythiophene include those containing one or more repeating units represented by the following formulas (I-1) to (I-5).
- the repeating unit represented by the above formula (I-1) is derived from a monomer having a structure represented by the following formula 3- (2- (2-methoxyethoxy) ethoxy) thiophene (hereinafter, 3-MEET). . (Hereinafter referred to as poly (3-MEET).)
- the repeating unit represented by the above formula (I-2) has a structure represented by 3,4-bis (2- (2-butoxyethoxy) ethoxy) thiophene (hereinafter, 3,4-diBEET) represented by the following formula: Derived from monomers having.
- the repeating unit represented by the above formula (I-3) is represented by 3,4-bis ((1-propoxypropan-2-yl) oxy) thiophene (hereinafter, 3,4-diPPT) represented by the following formula: Derived from a monomer having a structure.
- the repeating unit represented by the above formula (I-4) is derived from a monomer having a structure represented by 3,4-ethylenedioxythiophene of the following formula.
- the repeating unit represented by the above formula (I-5) is derived from a monomer having a structure represented by the following formula.
- 3,4-disubstituted thiophene monomers are either commercially available or can be prepared by methods known to those skilled in the art.
- a 3,4-disubstituted thiophene monomer has a 3,4-dibromothiophene of the formula: HO— [Z—O] p —R e or HOR f where Z, R e , R f and p are , Which represents the same meaning as described above)), and can be produced by reacting with a metal salt, preferably a sodium salt of the compound represented by
- the polymerization of the 3,4-disubstituted thiophene monomer involves first brominating the 2- and 5-positions of the 3,4-disubstituted thiophene monomer to produce the corresponding 2,5-dibromo derivative of the 3,4-disubstituted thiophene monomer. Implemented by forming.
- the polymer can then be obtained by GRIM (Grignard metathesis) polymerization of a 2,5-dibromo derivative of 3,4-disubstituted thiophene in the presence of a nickel catalyst. Such a method is described, for example, in US Pat. No. 8,865,025.
- Another known method for polymerizing thiophene monomers includes, as an oxidizing agent, for example, a metal-free organic oxidizing agent such as 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) And oxidative polymerization using transition metal halides such as iron (III) chloride, molybdenum (V) chloride and ruthenium (III) chloride.
- a metal-free organic oxidizing agent such as 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)
- transition metal halides such as iron (III) chloride, molybdenum (V) chloride and ruthenium (III) chloride.
- a compound of formula HO— [ZO] p —R e or HOR f that can be converted to a metal salt, preferably a sodium salt, and used to produce 3,4-disubstituted thiophene monomers Examples of trifluoroethanol, ethylene glycol monohexyl ether (hexyl cellosolve), propylene glycol monobutyl ether (Dowanol PnB), diethylene glycol monoethyl ether (ethyl carbitol), dipropylene glycol n-butyl ether (Dowanol DPnB), diethylene glycol mono Phenyl ether (phenyl carbitol), ethylene glycol monobutyl ether (butyl cellosolve), diethylene glycol monobutyl ether (butyl carbitol), dipropylene glycol monomethyl ether (Dowanol DPM) Diisobutyl carbinol, 2-ethylhexyl alcohol,
- the polythiophene having a repeating unit represented by the above formula (I) can be further modified after polymerization.
- a polythiophene having one or more repeating units derived from a 3-substituted thiophene monomer can have a hydrogen atom substituted by a substituent such as a sulfonic acid group (—SO 3 H) by sulfonation. You may have the above site
- the term “sulfonated” means that the polythiophene contains one or more sulfonic acid groups (—SO 3 H) (the polythiophene is also referred to as “sulfonated polythiophene”). ).
- the sulfur atom of the —SO 3 H group is directly bonded to the basic skeleton of the polythiophene polymer and not to the side group.
- the side group is a monovalent group that does not reduce the length of the polymer chain even if it is theoretically or actually removed from the polymer.
- the sulfonated polythiophene polymer and / or copolymer can be prepared using any method known to those skilled in the art.
- a method of sulfonation by reacting a polythiophene after polymerization with a sulfonation reagent such as fuming sulfuric acid, acetyl sulfate, pyridine SO 3 and the like can be mentioned.
- a sulfonation reagent such as fuming sulfuric acid, acetyl sulfate, pyridine SO 3 and the like
- polymerizing by the well-known method can be mentioned using the monomer sulfonated previously using the sulfonation reagent.
- the sulfonic acid group is a corresponding salt in the presence of a basic compound such as an alkali metal hydroxide, ammonia and an alkylamine (eg, mono-, di- and trialkylamines such as triethylamine).
- sulfonated in reference to a polythiophene polymer refers to a polythiophene having one or more —SO 3 M groups (where M is an alkali metal ion (eg, Na + , Li + , K + , Rb + , Cs + and the like), ammonium (NH 4 + ), mono-, di-, and trialkylammonium (such as triethylammonium)).
- M is an alkali metal ion (eg, Na + , Li + , K + , Rb + , Cs + and the like), ammonium (NH 4 + ), mono-, di-, and trialkylammonium (such as triethylammonium)).
- Sulfonated conjugated polymers and sulfonated conjugated polymers are described in US Pat. No. 8,017,241 to Seshadri et al.
- the sulfonated polythiophene is described in International Publication No. 2008/073149 and International Publication No. 2016/171935.
- sulfonated polythiophene examples include polythiophene containing a repeating unit represented by the following formula (Is).
- R 1b and R 2b each independently represent a hydrogen atom, an alkyl group having 1 to 40 carbon atoms, a fluoroalkyl group having 1 to 40 carbon atoms, an alkoxy group having 1 to 40 carbon atoms, or 1 carbon atom.
- R 1b and R 2b each independently represent a hydrogen atom, a fluoroalkyl group having 1 to 40 carbon atoms, —O [C (R a R b ) —C (R c R d ) —O] p -R e , -OR f , or -SO 3 M is preferred.
- R a to R d each independently represent a hydrogen atom, an alkyl group having 1 to 40 carbon atoms, a fluoroalkyl group having 1 to 40 carbon atoms, or an aryl group having 6 to 20 carbon atoms. Re is the same as described above.
- R f is preferably an alkyl group having 1 to 40 carbon atoms, a fluoroalkyl group having 1 to 40 carbon atoms, or an aryl group having 6 to 20 carbon atoms.
- a preferred embodiment of the sulfonated polythiophene includes an embodiment in which R 1b is —SO 3 M and R 2b is other than —SO 3 M.
- R 1b is —SO 3 M
- R 2b is —O [C (R a R b ) —C (R c R d ) —O].
- An embodiment in which p 1 -R e or OR f is mentioned.
- R 1b is —SO 3 M
- R 2b is —O [C (R a R b ) —C (R c R d ) —O. ]
- R 1b is —SO 3 M
- R 2b is —O—CH 2 CH 2 —O—CH 2 CH 2 —O—CH 3 .
- a certain aspect is mentioned.
- Examples of the hydrocarbylene group having 1 to 40 and the aryl group having 6 to 20 carbon atoms are the same as those exemplified above.
- the sulfonated polythiophene represented by the above formula (Is) can be obtained by sulfonating a polythiophene containing a repeating unit represented by the following formula (II).
- R 1c and R 2c are independently of each other a hydrogen atom, an alkyl group having 1 to 40 carbon atoms, a fluoroalkyl group having 1 to 40 carbon atoms, an alkoxy group having 1 to 40 carbon atoms, or 1 carbon atom.
- Examples of the 1 to 40 hydrocarbylene group and the aryl group having 6 to 20 carbon atoms are the same as those exemplified above.
- R 1c and R 2c each independently represent a hydrogen atom, a fluoroalkyl group having 1 to 40 carbon atoms, —O [C (R a R b ) —C (R c R d ) —O] p -R e and -OR f are preferred.
- R a to R d each independently represent a hydrogen atom, an alkyl group having 1 to 40 carbon atoms, a fluoroalkyl group having 1 to 40 carbon atoms, or an aryl group having 6 to 20 carbon atoms.
- Re is the same as described above.
- p is preferably 1, 2 or 3.
- R f is preferably an alkyl group having 1 to 40 carbon atoms, a fluoroalkyl group having 1 to 40 carbon atoms, or an aryl group having 6 to 20 carbon atoms.
- R 1c is a hydrogen atom and R 2c is other than a hydrogen atom.
- the repeating unit is derived from a 3-substituted thiophene.
- the sulfonated polythiophene is obtained from a regiorandom type or a regioregular type polythiophene. Due to its asymmetric structure, the polymerization of 3-substituted thiophene produces a mixture of polythiophene structures containing three possible regiochemical bonds between repeating units. The three orientations available when two thiophene rings are combined are the 2,2 ', 2,5', and 5,5 'couplings. 2,2 '(ie head-to-head) coupling and 5,5' (ie tail-to-tail) coupling are referred to as regiorandom coupling.
- 2,5 '(ie head-to-tail) coupling is referred to as regioregular coupling.
- the degree of regioregularity can be, for example, about 0-100%, or about 25-99.9%, or about 50-98%.
- the regioregularity can be determined by standard methods known to those skilled in the art, such as using NMR spectroscopy.
- 3-Substituted thiophene monomers are commercially available or can be prepared by methods known to those skilled in the art. Synthesis, doping, and polymer characterization involving regioregular polythiophenes with pendant groups are described, for example, in McCullough et al. US Pat. No. 6,602,974 and McCullough et al. US Pat. No. 6,166,172. Provided to. Sulfonated conjugated polymers and sulfonated conjugated polymers (including sulfonated polythiophenes) are described in US Pat. No. 8,017,241 to Seshadri et al.
- R 1b is a hydrogen atom
- R 2b is —O [C (R a R b ) —C (R c R d ) —O] p —R e
- OR f An embodiment is preferred, and an embodiment in which R 1b is a hydrogen atom and R 2b is —O [C (R a R b ) —C (R c R d ) —O] p —R e is more preferred.
- R a to R d are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a fluoroalkyl group having 1 to 8 carbon atoms, or a phenyl group
- R e and R f are independently A hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a fluoroalkyl group having 1 to 8 carbon atoms, or a phenyl group is preferable.
- R 2b is preferably —O [CH 2 —CH 2 —O] p —R e or —OR f .
- Examples of the compound represented by: —O [C (R a R b ) —C (R c R d ) —O] p —R e or HOR f are trifluoroethanol, ethylene glycol monohexyl ether (hexyl cellosolve) ), Propylene glycol monobutyl ether (Dowanol PnB), diethylene glycol monoethyl ether (ethyl carbitol), dipropylene glycol n-butyl ether (Dowanol DPnB), diethylene glycol monophenyl ether (phenyl carbitol), ethylene glycol monobutyl ether (butyl cellosolve),
- the R e is preferably a hydrogen atom, a methyl group, a propyl group, or a butyl group, and the R f is preferably —CH 2 CF 3 .
- the sulfonated polythiophene can be obtained by sulfonated polythiophene containing repeating units represented by the above formulas (I-1) to (I-5).
- Each polythiophene polymer described above may be a homopolymer or a copolymer (including statistical, random, gradient, and block copolymers).
- block copolymers include, for example, AB diblock copolymers, ABAA triblock copolymers, and (AB) n -multiblock copolymers.
- Polythiophenes contain repeating units derived from other types of monomers (eg, thienothiophene, selenophene, pyrrole, furan, tellurophene, aniline, arylamines, and arylenes (eg, phenylene, phenylene vinylene, fluorene, etc.)). May be included.
- the content of the repeating unit represented by the formula (I) or (Is) in the polythiophene is preferably more than 50% by mass, more preferably more than 80% by mass, more preferably 90% by mass with respect to the total weight of the repeating units. % Is even more preferred, and more than 95% by weight is most preferred.
- the formed polymer may contain repeating units derived from impurities.
- the term “homopolymer” means a polymer containing a repeating unit derived from one type of monomer, but may contain a repeating unit derived from an impurity.
- the polythiophene is preferably a homopolymer in which all repeating units are basically repeating units represented by the formula (I) or (Is).
- the number average molecular weight of the polythiophene polymer is preferably about 1,000 to 1,000,000 g / mol, more preferably about 5,000 to 100,000 g / mol, and more preferably about 10,000 to about 50,000 g / mol. Even more preferred.
- the number average molecular weight can be determined by methods known to those skilled in the art such as gel permeation chromatography.
- the polythiophene may be used after being treated with a reducing agent.
- the chemical structure may be an oxidized structure called “quinoid structure”.
- quinoid structure is used for the term “benzenoid structure”.
- a double bond in the aromatic ring is moved out of the ring (its As a result, the aromatic ring disappears), which means a structure in which two exocyclic double bonds conjugated with other double bonds remaining in the ring are formed.
- R 1a and R 2a are as defined in formula (I) above.
- This quinoid structure is referred to as a “polaron structure” or “bipolaron structure” that is generated by a process in which the polythiophene represented by the above formula (I) undergoes an oxidation reaction with a dopant, a so-called doping reaction, and imparts charge transportability to the polythiophene. It forms part of the structure.
- polaron structure or “bipolaron structure” that is generated by a process in which the polythiophene represented by the above formula (I) undergoes an oxidation reaction with a dopant, a so-called doping reaction, and imparts charge transportability to the polythiophene. It forms part of the structure.
- These structures are known.
- it is essential to introduce a “polaron structure” and / or a “bipolaron structure”.
- a charge transporting thin film formed from a charge transporting varnish is baked. Sometimes this is achieved by intentionally initiating the above doping reaction.
- the polythiophene prior to causing the doping reaction contains a quinoid structure because the polythiophene is equivalent to the doping reaction in the production process (especially in the case of the sulfonated polythiophene, the sulfonation step therein). This is probably because an unintended oxidation reaction occurred.
- the amount of quinoid structure introduced into polythiophene by the unintended oxidation reaction described above depends on each polythiophene. It is thought that it fluctuates according to the difference in manufacturing conditions. Therefore, when the polythiophene is subjected to a reduction treatment using a reducing agent, even if the quinoid structure is excessively introduced into the polythiophene, the reduction reduces the quinoid structure and improves the dispersibility of the polythiophene in an organic solvent. It is possible to stably produce a good charge transporting varnish that gives a charge transporting thin film having excellent properties.
- the reducing agent used in the reduction treatment reduces the quinoid structure to convert it into a non-oxidized structure, that is, the benzenoid structure (for example, in the polythiophene represented by the above formula (I), the above formula (I As long as the quinoid structure represented by ') can be converted into the structure represented by the above formula (I)), there is no particular limitation.
- ammonia water, hydrazine or the like is preferably used.
- the amount of the reducing agent is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 2 parts by mass with respect to 100 parts by mass of the polythiophene to be treated.
- this treatment can be performed by simply contacting polythiophene with a reducing agent in the presence or absence of a suitable solvent.
- a suitable solvent usually, the dispersibility of polythiophene in an organic solvent is sufficiently improved by reduction treatment under relatively mild conditions such as stirring polythiophene in 28% ammonia water (for example, overnight at room temperature).
- the sulfonated polythiophene may be subjected to a reduction treatment after being converted into a corresponding ammonium salt, for example, a trialkylammonium salt (sulfonated polythiopheneamine adduct).
- the polythiophene that was not dissolved in the reaction system at the start of the treatment may be dissolved at the completion of the treatment.
- an organic solvent incompatible with polythiophene in the case of sulfonated polythiophene, acetone, isopropyl alcohol, etc. is added to the reaction system to cause precipitation of polythiophene, followed by filtration, etc. Polythiophene can be recovered.
- the ratio of the onium borate salt to the charge transporting substance can be set to about 0.1 to 10 in terms of the substance amount (molar ratio).
- a highly soluble solvent capable of satisfactorily dissolving the charge transporting substance and the onium borate salt can be used.
- highly soluble solvents include cyclohexanone, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, diethylene glycol monomethyl ether, 3 -Organic solvents such as, but not limited to, phenoxytoluene, 4-methoxytoluene, toluene, anisole, cyclohexylbenzene, methyl benzoate, tetralin, and isophorone. These solvents can be used alone or in combination of two or more, and the amount used can be 5 to 100% by mass with respect to the total solvent used in the varnish.
- the varnish has a viscosity of 10 to 200 mPa ⁇ s, particularly 35 to 150 mPa ⁇ s at 25 ° C., and a boiling point of 50 to 300 ° C., particularly 150 to 250 ° C. at normal pressure (atmospheric pressure).
- a viscosity 10 to 200 mPa ⁇ s, particularly 35 to 150 mPa ⁇ s at 25 ° C., and a boiling point of 50 to 300 ° C., particularly 150 to 250 ° C. at normal pressure (atmospheric pressure).
- the high viscosity organic solvent examples include cyclohexanol, ethylene glycol, ethylene glycol diglycidyl ether, 1,3-octylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol, 1,3-butanediol, Examples include, but are not limited to, 2,3-butanediol, 1,4-butanediol, propylene glycol, hexylene glycol, and the like. These solvents may be used alone or in combination of two or more.
- the addition ratio of the high-viscosity organic solvent to the entire solvent used in the varnish of the present invention is preferably within a range where no solid precipitates, and the addition ratio is preferably 5 to 90% by mass as long as no solid precipitates.
- solvents are used in an amount of 1 to 90% by mass, preferably It is also possible to mix at a ratio of 1 to 50% by mass.
- solvents include propylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, dipropylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, and diethylene glycol.
- Examples include, but are not limited to, monoethyl ether, diacetone alcohol, ⁇ -butyrolactone, ethyl lactate, and n-hexyl acetate. These solvents can be used alone or in combination of two or more.
- the viscosity of the varnish of the present invention is appropriately set according to the thickness of the thin film to be produced and the solid content concentration, but is usually 1 to 50 mPa ⁇ s at 25 ° C., and its surface tension is usually 20 to 50 mN / m.
- the solid content concentration of the charge transporting varnish is appropriately set in consideration of the viscosity and surface tension of the varnish, the thickness of the thin film to be produced, etc., but is usually 0.1 to 10.0 mass. In consideration of improving the coatability of the varnish, it is preferably about 0.5 to 5.0% by mass, more preferably about 1.0 to 3.0% by mass.
- the method for preparing the varnish is not particularly limited.
- the onium borate salt is first dissolved in a solvent, and a charge transporting substance is sequentially added thereto, or the onium borate salt and the charge transporting property are added.
- a method of dissolving a mixture with a substance in a solvent can be mentioned.
- when there are a plurality of organic solvents for example, in a solvent that dissolves the onium borate salt and the charge transporting substance well, first, these may be dissolved, and another solvent may be added thereto.
- the onium borate salt and the charge transporting substance may be dissolved in the mixed solvent sequentially or simultaneously.
- the charge transporting varnish is prepared by dissolving the onium borate salt, the charge transporting compound, etc. in an organic solvent, and then using a sub-micron order filter, etc. It is desirable to filter.
- the charge transporting thin film of the present invention can be formed on a substrate by applying the above-described charge transporting varnish on the substrate and baking it.
- the coating method of the varnish is not particularly limited, and examples thereof include a dipping method, a spin coating method, a transfer printing method, a roll coating method, a brush coating, an ink jet method, a spray method, and a slit coating method. Accordingly, it is preferable to adjust the viscosity and surface tension of the varnish.
- the firing atmosphere is not particularly limited, and a thin film having a uniform film formation surface and a high charge transport property not only in the air atmosphere but also in an inert gas such as nitrogen or in a vacuum. Although it can be obtained, depending on the type of the charge transporting compound or the like, a thin film having higher charge transportability may be obtained with good reproducibility by firing the varnish in an air atmosphere.
- the firing temperature is appropriately set within a range of about 100 to 260 ° C. in consideration of the intended use of the obtained thin film, the degree of charge transportability imparted to the obtained thin film, the type and boiling point of the solvent, and the like.
- the obtained thin film is used as a hole injection layer of an organic EL device, it is preferably about 140 to 250 ° C., more preferably about 145 to 240 ° C.
- a temperature change of two or more steps may be applied for the purpose of developing a higher uniform film forming property or causing the reaction to proceed on the substrate. What is necessary is just to perform using suitable apparatuses, such as oven.
- the film thickness of the charge transporting thin film is not particularly limited, but is preferably 5 to 200 nm when used as a hole injection layer, a hole transport layer or a hole injection transport layer of an organic EL device.
- a method of changing the film thickness there are methods such as changing the solid content concentration in the varnish and changing the amount of the solution on the substrate during coating.
- the organic EL device of the present invention has a pair of electrodes, and has the above-described charge transporting thin film of the present invention between these electrodes.
- Typical examples of the organic EL element include (a) to (f) below, but are not limited thereto.
- an electron blocking layer or the like can be provided between the light emitting layer and the anode, and a hole (hole) blocking layer or the like can be provided between the light emitting layer and the cathode.
- the hole injection layer, the hole transport layer, or the hole injection transport layer may have a function as an electron block layer or the like, and the electron injection layer, the electron transport layer, or the electron injection transport layer is a hole.
- Anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (b) Anode / hole injection layer / hole transport layer / light emission layer / electron injection transport layer / Cathode (c) anode / hole injection transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (d) anode / hole injection transport layer / light emitting layer / electron injection transport layer / cathode (e) anode / positive Hole injection layer / hole transport layer / light emitting layer / cathode (f) anode / hole injection transport layer / light emitting layer / cathode
- “Hole injection layer”, “hole transport layer” and “hole injection transport layer” are layers formed between a light emitting layer and an anode, and transport holes from the anode to the light emitting layer.
- a hole injection transport layer In the case where only one layer of a hole transporting material is provided between the light emitting layer and the anode, it is a “hole injection transport layer”, and between the light emitting layer and the anode,
- the layer close to the anode is a “hole injection layer”, and the other layers are “hole transport layers”.
- the hole injection (transport) layer a thin film that is excellent not only in accepting holes from the anode but also injecting holes into the hole transport (light emitting) layer is used.
- Electrode injection layer “Electron injection layer”, “electron transport layer” and “electron injection transport layer” are layers formed between a light emitting layer and a cathode, and have a function of transporting electrons from the cathode to the light emitting layer.
- the layer of the electron transporting material is disposed between the light emitting layer and the cathode.
- the layer close to the cathode is an “electron injection layer” and the other layers are “electron transport layers”.
- the “light emitting layer” is an organic layer having a light emitting function, and includes a host material and a dopant material when a doping system is employed.
- the host material mainly has a function of encouraging recombination of electrons and holes and confining excitons in the light emitting layer, and the dopant material efficiently emits excitons obtained by recombination. It has a function.
- the host material mainly has a function of confining excitons generated by the dopant in the light emitting layer.
- the charge transporting thin film of the present invention can be suitably used as a hole injection layer, a hole transport layer, and a hole injection transport layer in an organic EL device, and can be more suitably used as a hole injection layer.
- Examples of materials used and methods for producing an organic EL device using the charge transporting varnish of the present invention include the following, but are not limited thereto.
- the electrode substrate to be used is preferably cleaned in advance by liquid cleaning with a detergent, alcohol, pure water or the like.
- the anode substrate is subjected to surface treatment such as UV ozone treatment or oxygen-plasma treatment immediately before use. It is preferable.
- the surface treatment may not be performed.
- the example of the manufacturing method of the organic EL element which has a positive hole injection layer which consists of a thin film obtained from the charge transportable varnish of this invention is as follows.
- the charge transporting varnish of the present invention is applied onto the anode substrate and baked to produce a hole injection layer on the electrode.
- a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode are provided in this order.
- the hole transport layer, the light-emitting layer, the electron transport layer, and the electron injection layer may be formed by either a vapor deposition method or a coating method (wet process) depending on the characteristics of the material used.
- anode material examples include transparent electrodes typified by indium tin oxide (ITO) and indium zinc oxide (IZO), metal anodes typified by aluminum, alloys thereof, and the like. What performed the chemical conversion process is preferable. Polythiophene derivatives and polyaniline derivatives having high charge transporting properties can also be used. Other metals constituting the metal anode include scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, yttrium, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, cadmium.
- Materials for forming the hole transport layer include (triphenylamine) dimer derivative, [(triphenylamine) dimer] spirodimer, N, N′-bis (naphthalen-1-yl) -N, N′-bis (Phenyl) -benzidine ( ⁇ -NPD), N, N′-bis (naphthalen-2-yl) -N, N′-bis (phenyl) -benzidine, N, N′-bis (3-methylphenyl)- N, N′-bis (phenyl) -benzidine, N, N′-bis (3-methylphenyl) -N, N′-bis (phenyl) -9,9-spirobifluorene, N, N′-bis ( Naphthalen-1-yl) -N, N′-bis (phenyl) -9,9-spirobifluorene, N, N′-bis (3-methylphenyl) -N, N′-bis (phenyl) -9,9-spir
- Materials for forming the light emitting layer include tris (8-quinolinolato) aluminum (III) (Alq 3 ), bis (8-quinolinolato) zinc (II) (Znq 2 ), bis (2-methyl-8-quinolinolato)- 4- (p-phenylphenolate) aluminum (III) (BAlq), 4,4′-bis (2,2-diphenylvinyl) biphenyl, 9,10-di (naphthalen-2-yl) anthracene, 2-t -Butyl-9,10-di (naphthalen-2-yl) anthracene, 2,7-bis [9,9-di (4-methylphenyl) -fluoren-2-yl] -9,9-di (4- Methylphenyl) fluorene, 2-methyl-9,10-bis (naphthalen-2-yl) anthracene, 2- (9,9-spirobifluoren-2-yl) -9,9-spir
- luminescent dopants examples include 3- (2-benzothiazolyl) -7- (diethylamino) coumarin, 2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H, 5H, 11H-10-.
- Materials for forming the electron transport layer include 8-hydroxyquinolinolate-lithium, 2,2 ′, 2 ′′-(1,3,5-benztolyl) -tris (1-phenyl-1-H-benzimidazole) ), 2- (4-biphenyl) 5- (4-t-butylphenyl) -1,3,4-oxadiazole, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, 4, 7-diphenyl-1,10-phenanthroline, bis (2-methyl-8-quinolinolate) -4- (phenylphenolato) aluminum, 1,3-bis [2- (2,2′-bipyridin-6-yl) -1,3,4-oxadiazo-5-yl] benzene, 6,6′-bis [5- (biphenyl-4-yl) -1,3,4-oxadiazo-2-yl] -2,2′- Bipyridine, 3- (4-bipyridine Phen
- Materials for forming the electron injection layer include lithium oxide (Li 2 O), magnesium oxide (MgO), alumina (Al 2 O 3 ), lithium fluoride (LiF), sodium fluoride (NaF), magnesium fluoride ( MgF 2 ), cesium fluoride (CsF), strontium fluoride (SrF 2 ), molybdenum trioxide (MoO 3 ), aluminum, Li (acac), lithium acetate, lithium benzoate and the like.
- Examples of the cathode material include aluminum, magnesium-silver alloy, aluminum-lithium alloy, lithium, sodium, potassium, cesium and the like.
- the other example of the preparation methods of the organic EL element which has a positive hole injection layer which consists of a thin film obtained from the charge transport varnish of this invention is as follows.
- a hole transport layer hereinafter referred to as a hole transporting polymer layer
- a light emitting layer hereinafter referred to as a “light emitting layer”.
- the organic EL device having a charge transporting thin film formed by the charge transporting varnish of the present invention can be produced by sequentially forming the light emitting polymer layer.
- the charge transporting varnish of the present invention is applied on the anode substrate to prepare a hole injection layer by the above method, and a hole transporting polymer layer and a light emitting polymer layer are sequentially formed thereon. Then, a cathode electrode is vapor-deposited to obtain an organic EL element.
- the hole transporting polymer layer and the light emitting polymer layer can be formed by adding a solvent to a hole transporting polymer material or a light emitting polymer material, or a material obtained by adding a dopant substance to the hole transporting polymer material. And a method of forming a film by uniformly dispersing and coating the film on a hole injection layer or a hole transporting polymer layer and then firing the respective layers.
- Examples of the light-emitting polymer material include polyfluorene derivatives such as poly (9,9-dialkylfluorene) (PDAF), poly (2-methoxy-5- (2′-ethylhexoxy) -1,4-phenylenevinylene) (MEH). And polyphenylene vinylene derivatives such as -PPV), polythiophene derivatives such as poly (3-alkylthiophene) (PAT), and polyvinylcarbazole (PVCz).
- polyfluorene derivatives such as poly (9,9-dialkylfluorene) (PDAF), poly (2-methoxy-5- (2′-ethylhexoxy) -1,4-phenylenevinylene) (MEH).
- polyphenylene vinylene derivatives such as -PPV
- polythiophene derivatives such as poly (3-alkylthiophene) (PAT)
- PVCz polyvinylcarbazole
- Examples of the solvent include toluene, xylene, chloroform, and the like.
- Examples of the dissolution or uniform dispersion method include methods such as stirring, heating and stirring, and ultrasonic dispersion.
- the application method is not particularly limited, and examples thereof include an inkjet method, a spray method, a dipping method, a spin coating method, a transfer printing method, a roll coating method, and a brush coating method.
- the application is preferably performed under an inert gas such as nitrogen or argon.
- Examples of the firing method include a method of heating in an oven or a hot plate under an inert gas or in a vacuum.
- the example of the manufacturing method of the EL element which has a positive hole transport layer which consists of a thin film obtained from the charge transportable varnish of this invention is as follows.
- a hole injection layer is formed on the anode substrate.
- the charge transporting varnish of the present invention is applied and baked by the above-described method to produce a hole transporting layer.
- a light emitting layer, an electron transport layer, an electron injection layer, and a cathode are provided in this order. Examples of the formation method and specific examples of the light emitting layer, the electron transport layer, and the electron injection layer are the same as described above.
- the hole injection layer may be formed by either a vapor deposition method or a coating method (wet process) depending on the characteristics of the material used.
- Materials for forming the hole injection layer include copper phthalocyanine, titanium oxide phthalocyanine, platinum phthalocyanine, pyrazino [2,3-f] [1,10] phenanthroline-2,3-dicarbonitrile, N, N, N ′.
- N′-tetrakis (4-methoxyphenyl) benzidine 2,7-bis [N, N-bis (4-methoxy-phenyl) amino] -9,9-spirobifluorene, 2,2′-bis [N , N-bis (4-methoxy-phenyl) amino] -9,9-spirobifluorene, N, N′-diphenyl-N, N′-di [4- (N, N-ditolylamino) phenyl] benzidine, N , N′-diphenyl-N, N′-di [4- (N, N-diphenylamino) phenyl] benzidine, N 4 , N 4 ′ -(biphenyl-4,4′-diyl) bis (N 4 , N 4 ', N 4' - birds E sulfonyl-biphenyl-4,4'-diamine) N 1, N 1 '- ( biphenyl
- 2010/058777 International Publication No. 2010/058776, International Publication No. 2013/042623, International Publication No. Examples include the charge transport materials described in 2013/129249, International Publication No. 2014/115865, International Publication No. 2014/12917, International Publication No. 2014/141998, and International Publication No. 2014/132934.
- Examples of the anode material, the light emitting layer, the light emitting dopant, the material for forming the electron transport layer and the electron block layer, and the cathode material include the same materials as described above.
- the example of the manufacturing method of the organic EL element which has a positive hole injection transport layer which consists of a thin film obtained from the charge transportable varnish of this invention is as follows.
- a hole injection transport layer is formed on the anode substrate, and a light emitting layer, an electron transport layer, an electron injection layer, and a cathode are provided in this order on the hole injection transport layer.
- Examples of the formation method and specific examples of the light emitting layer, the electron transport layer, and the electron injection layer are the same as described above.
- Examples of the anode material, the light emitting layer, the light emitting dopant, the material for forming the electron transport layer and the electron block layer, and the cathode material include the same materials as described above.
- a hole block layer, an electron block layer, or the like may be provided between the electrode and any of the above layers as necessary.
- a hole block layer, an electron block layer, or the like may be provided between the electrode and any of the above layers as necessary.
- tris (phenylpyrazole) iridium etc. are mentioned as a material which forms an electronic block layer.
- the materials constituting the anode and the cathode and the layer formed between them are different depending on whether a device having a bottom emission structure or a top emission structure is manufactured.
- a transparent anode is used on the substrate side, and light is extracted from the substrate side
- a reflective anode made of metal is used in the opposite direction to the substrate. Because light is extracted from a certain transparent electrode (cathode) side, for example, regarding the anode material, a transparent anode such as ITO is used when manufacturing a device with a bottom emission structure, and Al is used when manufacturing a device with a top emission structure.
- a reflective anode such as / Nd is used.
- the organic EL device of the present invention may be sealed together with a water catching agent or the like according to a standard method in order to prevent deterioration of characteristics.
- the filtrate was concentrated at 50 ° C. under normal pressure, then dried under reduced pressure at 40 ° C. for 18 hours, and 13.4 g of a formula (P The target product represented by -2) was obtained.
- the obtained target product (P-2) was identified by 1 H-NMR.
- Example 1-2 S-poly (3-MEET) (sulfonated poly (3-MEET)), a charge transport material synthesized according to the method described in Example 1 of US Pat. No. 8,017,241 00 g was dissolved in 28% ammonia water (manufactured by Junsei Chemical Co., Ltd.) 100 mL and stirred at room temperature overnight. The reaction solution was reprecipitated with 1,500 mL of acetone, and the precipitate was collected by filtration. The obtained precipitate was dissolved again in 20 mL of water and 7.59 g of triethylamine (manufactured by Tokyo Chemical Industry Co., Ltd.), and stirred at 60 ° C. for 1 hour.
- 3-MEET sulfonated poly (3-MEET)
- the reaction solution was cooled and then reprecipitated with a mixed solvent of 1,000 mL of isopropyl alcohol and 500 mL of acetone, and the precipitate was collected by filtration.
- the resulting precipitate was vacuum-dried at 0 mmHg and 50 ° C. for 1 hour to obtain 1.30 g of S-poly (3-MEET) -A treated with aqueous ammonia.
- 0.125 g of the obtained S-poly (3-MEET) -A was mixed with 2.28 g of ethylene glycol (manufactured by Kanto Chemical Co., Inc.), 2.28 g of diethylene glycol (manufactured by Kanto Chemical Co., Ltd.), and butylamine (Tokyo Chemical Industry).
- trimethoxy (3,3,3-trifluoropropyl) silane and 0.041 g of trimethoxyphenylsilane were added to the obtained solution by stirring at room temperature, and a syringe filter with a pore size of 0.2 ⁇ m was added. Filtration gave a charge transporting varnish.
- Example 2-1 Fabrication and characteristic evaluation of organic EL device
- the varnish obtained in Example 1-1 was applied to an ITO substrate using a spin coater and then dried at 80 ° C. for 1 minute in an air atmosphere.
- the dried ITO substrate was inserted into a glove box and baked at 230 ° C. for 30 minutes in a nitrogen atmosphere to form a 50 nm thin film on the ITO substrate.
- As the ITO substrate a glass substrate of 25 mm ⁇ 25 mm ⁇ 0.7 t in which indium tin oxide (ITO) is patterned on the surface with a film thickness of 150 nm is used, and an O 2 plasma cleaning apparatus (150 W, 30 seconds) before use. To remove impurities on the surface.
- ITO indium tin oxide
- ⁇ -NPD N, N′-di (1-naphthyl) -N, N′-diphenyl
- a vapor deposition apparatus degree of vacuum 1.0 ⁇ 10 ⁇ 5 Pa
- Benzidine was deposited to a thickness of 30 nm at 0.2 nm / second.
- an electron block material HTEB-01 manufactured by Kanto Chemical Co., Inc. was deposited to a thickness of 10 nm.
- a light emitting layer host material NS60 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. and a light emitting layer dopant material Ir (PPy) 3 were co-evaporated.
- the deposition rate was controlled so that the concentration of Ir (PPy) 3 was 6%, and the layers were laminated to 40 nm.
- thin films of Alq 3 , lithium fluoride and aluminum were sequentially laminated to obtain an organic EL element.
- the deposition rates were 0.2 nm / second for Alq 3 and aluminum, 0.02 nm / second for lithium fluoride, and the film thicknesses were 20 nm, 0.5 nm, and 80 nm, respectively.
- the characteristic was evaluated. Sealing was performed according to the following procedure.
- the organic EL element is placed between the sealing substrates, and the sealing substrate is adhesive (MORESCO Co., Ltd., Mores Moisture Cut WB90US (P)) Was pasted together.
- a water catching agent manufactured by Dynic Co., Ltd., HD-071010W-40 was placed in the sealing substrate together with the organic EL element.
- the bonded sealing substrate was irradiated with UV light (wavelength: 365 nm, irradiation amount: 6,000 mJ / cm 2 ), and then annealed at 80 ° C. for 1 hour to cure the adhesive.
- Example 2-2 Aside from using the varnish obtained in Example 1-2 instead of the varnish obtained in Example 1-1 and applying it to the ITO substrate using a spin coater, followed by drying for 15 minutes in a vacuum dryer. In the same manner as in Example 2-1, each layer was formed to produce an organic EL element.
- Table 19 shows drive voltage, current density, current efficiency, light emission efficiency, and external light emission quantum yield (EQE) when the device was made to emit light at 10,000 cd / m 2 .
- Table 20 shows the half life of the element luminance (initial luminance of 10,000 cd / m 2 ).
- the EL device provided with the charge transporting thin film of the present invention was suitably driven.
- the life characteristics were excellent.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Manufacturing & Machinery (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electroluminescent Light Sources (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Paints Or Removers (AREA)
- Polyurethanes Or Polyureas (AREA)
- Optics & Photonics (AREA)
Abstract
Description
正孔注入層の形成方法は、蒸着法に代表されるドライプロセスと、スピンコート法に代表されるウェットプロセスとに大別され、これら各プロセスを比べると、ウェットプロセスの方が大面積に平坦性の高い薄膜を効率的に製造できる。それゆえ、有機ELディスプレイの大面積化が進められている現在、ウェットプロセスで形成可能な正孔注入層が望まれている。
このような事情に鑑み、本発明者らは、各種ウェットプロセスに適用可能であるとともに、有機EL素子の正孔注入層に適用した場合に優れたEL素子特性を実現できる薄膜を与える電荷輸送性材料や、それに用いる有機溶媒に対する溶解性の良好な化合物を開発してきている(例えば特許文献1~4参照)。
しかし、正孔注入層用のウェットプロセス材料に関しては常に改善が求められており、特に、電荷輸送性に優れた薄膜を与えるウェットプロセス材料が求められている。
1. 電荷輸送性物質と、オニウムボレート塩と、有機溶媒とを含み、
上記オニウムボレート塩が、式(a1)で表される1価または2価のアニオンと式(c1)~(c5)で表される対カチオンからなるオニウムボレート塩(ただし、電気的中性な塩である)を含むことを特徴とする電荷輸送性ワニス、
3. 上記電子吸引性置換基が、ハロゲン原子である2の電荷輸送性ワニス、
4. 上記アニオンが、式(a2)で表される1~3のいずれかの電荷輸送性ワニス、
7. 上記電荷輸送性物質が、アニリン誘導体である6の電荷輸送性ワニス、
8. 1~7のいずれかの電荷輸送性ワニスから得られる電荷輸送性薄膜、
9. 8の電荷輸送性薄膜を有する有機エレクトロルミネッセンス素子、
10. 1~7のいずれかの電荷輸送性ワニスを基材上に塗布し、溶媒を蒸発させることを特徴とする電荷輸送性薄膜の製造方法、
11. 有機エレクトロルミネッセンス素子における正孔注入層、正孔輸送層および正孔注入輸送層のいずれかに含有されるオニウムボレート塩であって、式(a1)で表される1価または2価のアニオンと式(c1)~(c5)で表される対カチオンからなるオニウムボレート塩(ただし、電気的中性な塩である)、
13. 上記電子吸引性置換基が、ハロゲン原子である12のオニウムボレート塩、
14. 上記アニオンが、式(a2)で表される11~13のいずれかのオニウムボレート塩、
また、このような特性を有する電荷輸送性薄膜は、有機EL素子をはじめとした電子デバイス用薄膜として好適に用いることができる。特に、この薄膜を有機EL素子の正孔注入層に適用することで、低駆動電圧の有機EL素子を得ることができる。
さらに、本発明の電荷輸送性ワニスは、スピンコート法やスリットコート法等、大面積に成膜可能な各種ウェットプロセスを用いた場合でも電荷輸送性に優れた薄膜を再現性よく製造できるため、近年の有機EL素子の分野における進展にも十分対応できる。
そして、本発明の電荷輸送性ワニスから得られる薄膜は、電荷輸送性に優れることから、有機薄膜太陽電池の陽極バッファ層、帯電防止膜等として使用されることも期待できる。
本発明に係る電荷輸送性ワニスは、電荷輸送性物質と、オニウムボレート塩と、有機溶媒とを含み、オニウムボレート塩が、式(a1)で表される1価または2価のアニオンと式(c1)~(c5)で表される対カチオンからなるオニウムボレート塩(ただし、電気的中性な塩である)を含むものである。
なお、電荷輸送性とは、導電性と同義であり、正孔輸送性とも同義である。また、本発明の電荷輸送性ワニスは、それ自体に電荷輸送性があるものでもよく、ワニスを使用して得られる固体膜に電荷輸送性があるものでもよい。
また、必要に応じて公知のその他のオニウムボレート塩を併用してもよい。
なお、上記オニウムボレート塩は、例えば、特開2005-314682号公報等に記載された公知の方法を参考に合成することができる。
このような有機溶媒としては、プロピレンカーボネート、エチレンカーボネート、1,2-ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート等のカーボネート類;アセトン、メチルエチルケトン、シクロヘキサノン、メチルイソアミルケトン、2-ヘプタノン等のケトン類;エチレングリコール、エチレングリコールモノアセテート、ジエチレングリコール、ジエチレングリコールモノアセテート、プロピレングリコール、プロピレングリコールモノアセテート、ジプロピレングリコール、ジプロピレングリコールモノアセテートのモノメチルエーテル、モノエチルエーテル、モノプロピルエーテル、モノブチルエーテルまたはモノフェニルエーテル等の多価アルコールおよびその誘導体類;ジオキサン等の環式エーテル類;蟻酸エチル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、ピルビン酸メチル、アセト酢酸メチル、アセト酢酸エチル、ピルビン酸エチル、エトキシ酢酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチル、2-ヒドロキシプロピオン酸メチル、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート等のエステル類;トルエン、キシレン、3-フェノキシトルエン、4-メトキシトルエン、安息香酸メチル、シクロヘキシルベンゼン、テトラリン、イソホロン等の芳香族炭化水素類等が挙げられ、これらは単独で用いても、2種以上組み合わせて用いてもよい。
有機溶媒を使用する場合、その使用割合は、上記オニウムボレート塩100質量部に対して、15~1,000質量部が好ましく、30~500質量部がより好ましい。
その具体例としては、オリゴアニリン誘導体、N,N'-ジアリールベンジジン誘導体、N,N,N',N'-テトラアリールベンジジン誘導体等のアリールアミン誘導体、オリゴチオフェン誘導体、チエノチオフェン誘導体、チエノベンゾチオフェン誘導体等のチオフェン誘導体、オリゴピロール等のピロール誘導体等の各種正孔輸送性物質が挙げられるが、中でも、アリールアミン誘導体、チオフェン誘導体が好ましく、アリールアミン誘導体がより好ましく、式(1)または(2)で示されるアニリン誘導体がより一層好ましい。
なお、薄膜化した場合に電荷輸送性物質が分離することを防ぐ観点から、電荷輸送性物質は分子量分布のない(分散度が1)ことが好ましい(すなわち、単一の分子量であることが好ましい)。
特に、R3~R6としては、水素原子、フッ素原子、シアノ基、ハロゲン原子で置換されていてもよい炭素数1~20のアルキル基、ハロゲン原子で置換されていてもよい炭素数6~20のアリール基、ハロゲン原子で置換されていてもよい炭素数2~20のヘテロアリール基が好ましく、水素原子、フッ素原子、シアノ基、ハロゲン原子で置換されていてもよい炭素数1~10のアルキル基、ハロゲン原子で置換されていてもよいフェニル基がより好ましく、水素原子、フッ素原子、メチル基、トリフルオロメチル基がより一層好ましく、水素原子が最適である。
また、R28およびR29としては、Z1で置換されていてもよい炭素数6~14のアリール基、Z1で置換されていてもよい炭素数2~14のヘテロアリール基が好ましく、Z1で置換されていてもよい炭素数6~14のアリール基がより好ましく、Z1で置換されていてもよいフェニル基、Z1で置換されていてもよい1-ナフチル基、Z1で置換されていてもよい2-ナフチル基がより一層好ましい。
そして、R52としては、水素原子、Z1で置換されていてもよい炭素数6~20のアリール基、Z1で置換されていてもよい炭素数2~20のヘテロアリール基、Z4で置換されていてもよい炭素数1~20のアルキル基が好ましく、水素原子、Z1で置換されていてもよい炭素数6~14のアリール基、Z1で置換されていてもよい炭素数2~14のヘテロアリール基、Z4で置換されていてもよい炭素数1~10のアルキル基がより好ましく、水素原子、Z1で置換されていてもよい炭素数6~14のアリール基、Z1で置換されていてもよい炭素数2~14の含窒素ヘテロアリール基、Z4で置換されていてもよい炭素数1~10のアルキル基がより一層好ましく、水素原子、Z1で置換されていてもよいフェニル基、Z1で置換されていてもよい1-ナフチル基、Z1で置換されていてもよい2-ナフチル基、Z1で置換されていてもよい2-ピリジル基、Z1で置換されていてもよい3-ピリジル基、Z1で置換されていてもよい4-ピリジル基、Z4で置換されていてもよいメチル基がさらに好ましい。
炭素数6~20のアリール基、ジ炭素数6~20のアリールアミノ基の具体例としては、式(c1)で説明した基と同様のものが挙げられる。
Ar4としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、p-(ジフェニルアミノ)フェニル基、p-(1-ナフチルフェニルアミノ)フェニル基、p-(ジ(1-ナフチル)アミノ)フェニル基、p-(1-ナフチル-2-ナフチルアミノ)フェニル基、p-(ジ(2-ナフチル)アミノ)フェニル基が好ましく、p-(ジフェニルアミノ)フェニル基がより好ましい。
また、R156およびR157としては、Z1で置換されていてもよい炭素数6~14のアリール基、Z1で置換されていてもよい炭素数2~14のヘテロアリール基が好ましく、Z1で置換されていてもよい炭素数6~14のアリール基がより好ましく、Z1で置換されていてもよいフェニル基、Z1で置換されていてもよい1-ナフチル基、Z1で置換されていてもよい2-ナフチル基がより一層好ましい。
また、後述するように原料化合物として比較的安価なビス(4-アミノフェニル)アミンを用いて比較的簡便に合成できるとともに、有機溶媒に対する溶解性に優れていることからも、式(1)で表されるアニリン誘導体は、式(1-1)で表されるアニリン誘導体が好ましい。
なお、Ar5の具体例としては、Ar1として好適な基の具体例として上述したものと同様のものが挙げられる。
上記式(2)におけるlは、1または2を表す。
また、上記アリール基およびヘテロアリール基の炭素数は、好ましくは14以下であり、より好ましくは10以下であり、より一層好ましくは6以下である。
擬ハロゲン基としては、メタンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基、ノナフルオロブタンスルホニルオキシ基等の(フルオロ)アルキルスルホニルオキシ基;ベンゼンスルホニルオキシ基、トルエンスルホニルオキシ基等の芳香族スルホニルオキシ基等が挙げられる。
このような配位子としては、トリフェニルフォスフィン、トリ-o-トリルフォスフィン、ジフェニルメチルフォスフィン、フェニルジメチルフォスフィン、トリメチルフォスフィン、トリエチルフォスフィン、トリブチルフォスフィン、トリ-tert-ブチルフォスフィン、ジ-t-ブチル(フェニル)フォスフィン、ジ-tert-ブチル(4-ジメチルアミノフェニル)フォスフィン、1,2-ビス(ジフェニルフォスフィノ)エタン、1,3-ビス(ジフェニルフォスフィノ)プロパン、1,4-ビス(ジフェニルフォスフィノ)ブタン、1,1'-ビス(ジフェニルフォスフィノ)フェロセン等の3級フォスフィン、トリメチルフォスファイト、トリエチルフォスファイト、トリフェニルフォスファイト等の3級フォスファイト等が挙げられる。
また、配位子を用いる場合、その使用量は、使用する金属錯体に対し0.1~5当量とすることができるが、1~2当量が好適である。
反応終了後は、常法にしたがって後処理をし、目的とするアニリン誘導体を得ることができる。
その他、当該カップリング反応における触媒、配位子、溶媒、反応温度等に関する諸条件は、式(1)で表されるアニリン誘導体の製造方法について説明した上記条件と同じである。
典型的には、-SO3H基の硫黄原子は、ポリチオフェンポリマーの基本骨格に直接結合しており、側基には結合していない。本発明において、側基は、理論的にまたは実際にポリマーから脱離されても、ポリマー鎖の長さを縮めない一価基である。スルホン化ポリチオフェンポリマーおよび/またはコポリマーは、当業者に公知の任意の方法を用いて製造することができる。例えば、重合後のポリチオフェンに、発煙硫酸、硫酸アセチル、ピリジンSO3等のようなスルホン化試薬を反応させることによりスルホン化する方法を挙げることができる。また、スルホン化試薬を用いて予めスルホン化したモノマーを用いて、公知の方法により重合する方法を挙げることができる。なお、上記スルホン酸基は、塩基性化合物、例えば、アルカリ金属水酸化物、アンモニアおよびアルキルアミン(例えば、モノ-、ジ-およびトリアルキルアミン、例えば、トリエチルアミン等)の存在下で、対応する塩または付加体の形成をもたらし得る。よって、ポリチオフェンポリマーに関連する「スルホン化」という用語は、このポリチオフェンが、1個以上の-SO3M基(ここで、Mは、アルカリ金属イオン(例えば、Na+、Li+、K+、Rb+、Cs+等)、アンモニウム(NH4 +)、モノ-、ジ-、およびトリアルキルアンモニウム(トリエチルアンモニウム等)であってよい)を含んでもよいという意味を含む。
また、スルホン化ポリチオフェンについては、国際公開第2008/073149号および国際公開第2016/171935号に記載されている。
式中、R1bおよびR2bは、互いに独立して、水素原子、炭素数1~40のフルオロアルキル基、-O[C(RaRb)-C(RcRd)-O]p-Re、-ORf、または-SO3Mが好ましい。Ra~Rdは、互いに独立して、水素原子、炭素数1~40のアルキル基、炭素数1~40のフルオロアルキル基、または炭素数6~20のアリール基を表す。Reは、上記と同様である。pは、1、2、または3が好ましい。Rfは、炭素数1~40のアルキル基、炭素数1~40のフルオロアルキル基、または炭素数6~20のアリール基が好ましい。
上記スルホン化ポリチオフェンの好ましい態様としては、例えば、R1bが、-SO3Mであり、R2bが、-SO3M以外である態様が挙げられる。
上記スルホン化ポリチオフェンの別の好ましい態様としては、例えば、R1bが、-SO3Mであり、R2bが、-O[C(RaRb)-C(RcRd)-O]p-ReまたはORfである態様が挙げられる。
上記スルホン化ポリチオフェンの更に別の好ましい態様としては、例えば、R1bが、-SO3Mであり、R2bが、-O[C(RaRb)-C(RcRd)-O]p-Reである態様が挙げられる。
上記スルホン化ポリチオフェンの更に別の好ましい態様としては、例えば、R1bが、-SO3Mであり、R2bが、-O-CH2CH2-O-CH2CH2-O-CH3である態様が挙げられる。
ポリチオフェンでは、それらを構成する繰り返し単位の一部において、その化学構造が「キノイド構造」と呼ばれる酸化型の構造となっている場合がある。用語「キノイド構造」は、用語「ベンゼノイド構造」に対して用いられるもので、芳香環を含む構造である後者に対し、前者は、その芳香環内の二重結合が環外に移動し(その結果、芳香環は消失する)、環内に残る他の二重結合と共役する2つの環外二重結合が形成された構造を意味する。当業者にとって、これらの両構造の関係は、ベンゾキノンとヒドロキノンの構造の関係から容易に理解できるものである。種々の共役ポリマーの繰り返し単位についてのキノイド構造は、当業者にとって周知である。一例として、上記式(I)で表されるポリチオフェンの繰り返し単位に対応するキノイド構造を、下記式(I’)に示す。
そこで、上記ポリチオフェンを、還元剤を用いる還元処理に付すと、ポリチオフェンにキノイド構造が過剰に導入されていても、還元によりキノイド構造が減少し、ポリチオフェンの有機溶媒に対する分散性が向上するため、均質性に優れた電荷輸送性薄膜を与える良好な電荷輸送性ワニスを、安定的に製造することが可能になる。
スルホン化ポリチオフェンの場合、必要であれば、スルホン化ポリチオフェンを対応するアンモニウム塩、例えばトリアルキルアンモニウム塩(スルホン化ポリチオフェンアミン付加体)に変換した後に、還元処理に付してもよい。
このような高溶解性溶媒としては、例えば、シクロヘキサノン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン、ジエチレングリコールモノメチルエーテル、3-フェノキシトルエン、4-メトキシトルエン、トルエン、アニソール、シクロヘキシルベンゼン、安息香酸メチル、テトラリン、イソホロン等の有機溶媒が挙げられるが、これらに限定されるものではない。これらの溶媒は1種単独で、または2種以上混合して用いることができ、その使用量は、ワニスに使用する溶媒全体に対して5~100質量%とすることができる。
高粘度有機溶媒としては、例えば、シクロヘキサノール、エチレングリコール、エチレングリコールジグリシジルエーテル、1,3-オクチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール、1,3-ブタンジオール、2,3-ブタンジオール、1,4-ブタンジオール、プロピレングリコール、へキシレングリコール等が挙げられるが、これらに限定されるものではない。これらの溶媒は単独で用いてもよく、2種以上混合して用いてもよい。
本発明のワニスに用いられる溶媒全体に対する高粘度有機溶媒の添加割合は、固体が析出しない範囲内であることが好ましく、固体が析出しない限りにおいて、添加割合は、5~90質量%が好ましい。
このような溶媒としては、例えば、プロピレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテル、ジアセトンアルコール、γ-ブチロラクトン、エチルラクテート、n-ヘキシルアセテート等が挙げられるが、これらに限定されるものではない。これらの溶媒は1種単独で、または2種以上混合して用いることができる。
また、電荷輸送性ワニスの固形分濃度は、ワニスの粘度および表面張力等や、作製する薄膜の厚み等を勘案して適宜設定されるものではあるが、通常、0.1~10.0質量%程度であり、ワニスの塗布性を向上させることを考慮すると、好ましくは0.5~5.0質量%程度、より好ましくは1.0~3.0質量%程度である。
また、有機溶媒が複数ある場合は、例えば、上記オニウムボレート塩と電荷輸送性物質をよく溶解する溶媒に、まずこれらを溶解させ、そこへその他の溶媒を加えてもよく、複数の有機溶媒の混合溶媒に、上記オニウムボレート塩、電荷輸送性物質を順次、あるいはこれらを同時に溶解させてもよい。
ワニスの塗布方法としては、特に限定されるものではなく、ディップ法、スピンコート法、転写印刷法、ロールコート法、刷毛塗り、インクジェット法、スプレー法、スリットコート法等が挙げられ、塗布方法に応じてワニスの粘度および表面張力を調節することが好ましい。
なお、焼成の際、より高い均一成膜性を発現させたり、基材上で反応を進行させたりする目的で、2段階以上の温度変化をつけてもよく、加熱は、例えば、ホットプレートやオーブン等、適当な機器を用いて行えばよい。
有機EL素子の代表的な構成としては、以下(a)~(f)が挙げられるが、これらに限定されるわけではない。なお、下記構成において、必要に応じて、発光層と陽極の間に電子ブロック層等を、発光層と陰極の間にホール(正孔)ブロック層等を設けることもできる。また、正孔注入層、正孔輸送層あるいは正孔注入輸送層が電子ブロック層等としての機能を兼ね備えていてもよく、電子注入層、電子輸送層あるいは電子注入輸送層がホール(正孔)ブロック層等としての機能を兼ね備えていてもよい。
(a)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(b)陽極/正孔注入層/正孔輸送層/発光層/電子注入輸送層/陰極
(c)陽極/正孔注入輸送層/発光層/電子輸送層/電子注入層/陰極
(d)陽極/正孔注入輸送層/発光層/電子注入輸送層/陰極
(e)陽極/正孔注入層/正孔輸送層/発光層/陰極
(f)陽極/正孔注入輸送層/発光層/陰極
「電子注入層」、「電子輸送層」および「電子注入輸送層」とは、発光層と陰極との間に形成される層であって、電子を陰極から発光層へ輸送する機能を有するものであり、発光層と陰極の間に、電子輸送性材料の層が1層のみ設けられる場合、それが「電子注入輸送層」であり、発光層と陰極の間に、電子輸送性材料の層が2層以上設けられる場合、陰極に近い層が「電子注入層」であり、それ以外の層が「電子輸送層」である。
「発光層」とは、発光機能を有する有機層であって、ドーピングシステムを採用する場合、ホスト材料とドーパント材料を含んでいる。このとき、ホスト材料は、主に電子と正孔の再結合を促し、励起子を発光層内に閉じ込める機能を有し、ドーパント材料は、再結合で得られた励起子を効率的に発光させる機能を有する。燐光素子の場合、ホスト材料は主にドーパントで生成された励起子を発光層内に閉じ込める機能を有する。
使用する電極基板は、洗剤、アルコール、純水等による液体洗浄を予め行って浄化しておくことが好ましく、例えば、陽極基板では使用直前にUVオゾン処理、酸素-プラズマ処理等の表面処理を行うことが好ましい。ただし陽極材料が有機物を主成分とする場合、表面処理を行わなくともよい。
上記の方法により、陽極基板上に本発明の電荷輸送性ワニスを塗布して焼成し、電極上に正孔注入層を作製する。
この正孔注入層の上に、正孔輸送層、発光層、電子輸送層、電子注入層、陰極をこの順で設ける。正孔輸送層、発光層、電子輸送層および電子注入層は、用いる材料の特性等に応じて、蒸着法、塗布法(ウェットプロセス)のいずれかで形成すればよい。
陽極材料としては、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)に代表される透明電極や、アルミニウムに代表される金属やこれらの合金等から構成される金属陽極が挙げられ、平坦化処理を行ったものが好ましい。高電荷輸送性を有するポリチオフェン誘導体やポリアニリン誘導体を用いることもできる。
なお、金属陽極を構成するその他の金属としては、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、イットリウム、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、カドミウム、インジウム、スカンジウム、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ハフニウム、タリウム、タングステン、レニウム、オスミウム、イリジウム、プラチナ、金、チタン、鉛、ビスマスやこれらの合金等が挙げられるが、これらに限定されるわけではない。
陰極材料としては、アルミニウム、マグネシウム-銀合金、アルミニウム-リチウム合金、リチウム、ナトリウム、カリウム、セシウム等が挙げられる。
上記EL素子作製において、正孔輸送層、発光層、電子輸送層、電子注入層の真空蒸着操作を行う代わりに、正孔輸送層(以下、正孔輸送性高分子層)、発光層(以下、発光性高分子層)を順次形成することによって本発明の電荷輸送性ワニスによって形成される電荷輸送性薄膜を有する有機EL素子を作製することができる。
具体的には、陽極基板上に本発明の電荷輸送性ワニスを塗布して上記の方法により正孔注入層を作製し、その上に正孔輸送性高分子層、発光性高分子層を順次形成し、さらに陰極電極を蒸着して有機EL素子とする。
正孔輸送性高分子層および発光性高分子層の形成法としては、正孔輸送性高分子材料もしくは発光性高分子材料、またはこれらにドーパント物質を加えた材料に溶媒を加えて溶解するか、均一に分散し、正孔注入層または正孔輸送性高分子層の上に塗布した後、それぞれ焼成することで成膜する方法が挙げられる。
塗布方法としては、特に限定されるものではなく、インクジェット法、スプレー法、ディップ法、スピンコート法、転写印刷法、ロールコート法、刷毛塗り等が挙げられる。なお、塗布は、窒素、アルゴン等の不活性ガス下で行うことが好ましい。
焼成する方法としては、不活性ガス下または真空中、オーブンまたはホットプレートで加熱する方法が挙げられる。
陽極基板上に正孔注入層を形成する。その層の上に、上記の方法により本発明の電荷輸送性ワニスを塗布して焼成し、正孔輸送層を作製する。
この正孔輸送層の上に、発光層、電子輸送層、電子注入層、陰極をこの順で設ける。発光層、電子輸送層および電子注入層の形成方法および具体例は上述と同様のものが挙げられる。また、正孔注入層は、用いる材料の特性等に応じて、蒸着法、塗布法(ウェットプロセス)のいずれかで形成すればよい。
陽極基板上に正孔注入輸送層を形成し、この正孔注入輸送層の上に、発光層、電子輸送層、電子注入層、陰極をこの順で設ける。発光層、電子輸送層および電子注入層の形成方法および具体例は上述と同様のものが挙げられる。
通常、ボトムエミッション構造の素子では、基板側に透明陽極が用いられ、基板側から光が取り出されるのに対し、トップエミッション構造の素子では、金属からなる反射陽極が用いられ、基板と反対方向にある透明電極(陰極)側から光が取り出されることから、例えば陽極材料について言えば、ボトムエミッション構造の素子を製造する際はITO等の透明陽極を、トップエミッション構造の素子を製造する際はAl/Nd等の反射陽極を、それぞれ用いる。
(1)1H,19F-NMR:JEOL(株)製 核磁気共鳴装置 AL-300
(2)基板洗浄:長州産業(株)製 基板洗浄装置(減圧プラズマ方式)
(3)ワニスの塗布:ミカサ(株)製 スピンコーターMS-A100
(4)膜厚測定:(株)小坂研究所製 微細形状測定機サーフコーダET-4000
(5)膜の表面観察:レーザーテック社製 共焦点レーザー顕微鏡 リアルタイム走査型レーザー顕微鏡 1LM21D
(6)EL素子の作製:長州産業(株)製 多機能蒸着装置システムC-E2L1G1-N
(7)EL素子の輝度等の測定:(株)イーエッチシー製 多チャンネルIVL測定装置
(8)EL素子の寿命測定(輝度半減期測定):(株)イーエッチシー製 有機EL輝度寿命評価システムPEL-105S
(9)LDI-MS:Bruker 社製AutoFlex
LDI-MS m/Z found:1050.12([M]-calcd:
1049.97).
1H-NMR(300MHz、DMSO-D6):δ7.40~7.80(19H,m)
LDI-MS m/Z found:371.04([M]+calcd:
371.09).
LDI-MS m/Z found:1050.11([M]-calcd:
1049.97).
1H-NMR(300MHz、DMSO-D6):δ7.79(12H,m)、1.32(27H、s)
[実施例1-1]
国際公開第2015/050253号の製造例12に記載された方法に従って合成した下記式で示されるT-1 160mgと、合成例1で得られたP-3 149mgとの混合物に、3-フェノキシトルエン8gおよび4-メトキシトルエン2gを加えて、室温で超音波を照射しながら撹拌して溶解させ、得られた溶液を、孔径0.2μmのシリンジフィルターでろ過して電荷輸送性ワニスを得た。
米国特許第8,017,241号の実施例1に記載された方法に従って合成した電荷輸送性物質であるS-ポリ(3-MEET)(スルホン化されているポリ(3-MEET))2.00gを28%アンモニア水(純正化学(株)製)100mLに溶解させ、室温にて終夜撹拌させた。反応液は、アセトン1,500mLにて再沈殿し、析出物をろ過にて回収した。得られた析出物は、再度、水20mL及びトリエチルアミン(東京化成工業(株)製)7.59gにて溶解させ、60℃で1時間撹拌した。反応液を冷却後、イソプロピルアルコール1,000mL及びアセトン500mLの混合溶媒にて再沈殿し、析出物をろ過にて回収した。得られた析出物は、0mmHg、50℃で1時間真空乾燥し、アンモニア水で処理したS-ポリ(3-MEET)-A 1.30gを得た。
得られたS-ポリ(3-MEET)-A 0.125gを、エチレングリコール(関東化学(株)製)2.28g、ジエチレングリコール(関東化学(株)製)2.28g、及びブチルアミン(東京化成工業(株)製)0.20gに溶解させ、ホットスターラーを用い、80℃で1時間撹拌させた。次いで、トリエチレングリコールジメチルエーテル(東京化成工業(株)製)1.25gを加え、ホットスターラーを用い、400rpm、80℃で1時間撹拌させた。最後に、P-3を0.125g加え、ホットスターラーを用い、400rpm、40℃で10分間撹拌させ、得られた溶液を、孔径0.2μmのPPシリンジフィルターでろ過して4質量%の電荷輸送性ワニスを得た。
特許第5839203号の実施例4または実施例6~8に記載された方法に従って合成した下記式で示されるT-2 0.208gと、比較合成例1で得られたP-4 0.411gとの混合物に、1,3-ジメチル-2-イミダゾリジノン(DMI) 6.6gと、(2,3-BD) 8.0gと、ジプロピレングリコールモノメチルエーテル(DPM) 5.4gとを加えて、室温で撹拌して溶解させ、得られた溶液に、トリメトキシ(3,3,3-トリフルオロプロピル)シラン0.021g、トリメトキシフェニルシラン0.041gを加え、孔径0.2μmのシリンジフィルターでろ過して電荷輸送性ワニスを得た。
上記式で示されるT-1 158mgと、比較合成例2で得られたP-1 105mgとの混合物に、3-フェノキシトルエン4gおよび4-メトキシトルエン1gを加えて、室温で超音波を照射しながら撹拌して溶解させ、得られた溶液を、孔径0.2μmのシリンジフィルターでろ過して電荷輸送性ワニスを得た。
上記式で示されるT-1 134mgと、比較合成例3で得られたP-2 129mgとの混合物に、3-フェノキシトルエン4gおよび4-メトキシトルエン1gを加えて、室温で超音波を照射しながら撹拌して溶解させ、得られた溶液を、孔径0.2μmのシリンジフィルターでろ過して電荷輸送性ワニスを得た。
[実施例2-1]
実施例1-1で得られたワニスを、スピンコーターを用いてITO基板に塗布した後、大気雰囲気下、80℃で1分間乾燥した。次に、乾燥させたITO基板をグローブボックス内に挿入し、窒素雰囲気下、230℃で30分間焼成し、ITO基板上に50nmの薄膜を形成した。ITO基板としては、インジウム錫酸化物(ITO)が表面上に膜厚150nmでパターニングされた25mm×25mm×0.7tのガラス基板を用い、使用前にO2プラズマ洗浄装置(150W、30秒間)によって表面上の不純物を除去した。
次いで、薄膜を形成したITO基板に対し、蒸着装置(真空度1.0×10-5Pa)を用いてα-NPD(N,N’-ジ(1-ナフチル)-N,N’-ジフェニルベンジジン)を0.2nm/秒にて30nm成膜した。次に、関東化学(株)製の電子ブロック材料HTEB-01を10nm成膜した。次いで、新日鉄住金化学(株)製の発光層ホスト材料NS60と発光層ドーパント材料Ir(PPy)3を共蒸着した。共蒸着はIr(PPy)3の濃度が6%になるように蒸着レートをコントロールし、40nm積層させた。次いで、Alq3、フッ化リチウムおよびアルミニウムの薄膜を順次積層して有機EL素子を得た。この際、蒸着レートは、Alq3およびアルミニウムについては0.2nm/秒、フッ化リチウムについては0.02nm/秒の条件でそれぞれ行い、膜厚は、それぞれ20nm、0.5nmおよび80nmとした。
なお、空気中の酸素、水等の影響による特性劣化を防止するため、有機EL素子は封止基板により封止した後、その特性を評価した。封止は、以下の手順で行った。酸素濃度2ppm以下、露点-76℃以下の窒素雰囲気中で、有機EL素子を封止基板の間に収め、封止基板を接着剤((株)MORESCO製、モレスコモイスチャーカット WB90US(P))により貼り合わせた。この際、捕水剤(ダイニック(株)製,HD-071010W-40)を有機EL素子と共に封止基板内に収めた。貼り合わせた封止基板に対し、UV光を照射(波長:365nm、照射量:6,000mJ/cm2)した後、80℃で1時間、アニーリング処理して接着剤を硬化させた。
実施例1-1で得られたワニスの代わりに、実施例1-2で得られたワニスを用い、スピンコーターを用いてITO基板に塗布した後、真空乾燥機にて15分間乾燥したこと以外は、実施例2-1と同様の方法で各層を形成し、有機EL素子を作製した。
実施例1-1で得られたワニスの代わりに、比較例1-1~1-3で得られたワニスを用いたこと以外は、実施例2-1と同様の方法で各層を形成し、有機EL素子を作製した。
なお、比較例2-3については、比較例1-3で得られたワニスを用いて成膜することができず、素子を得ることができなかった。
Claims (15)
- 上記Arが、1または2以上の電子吸引性置換基を有するアリール基である請求項1記載の電荷輸送性ワニス。
- 上記電子吸引性置換基が、ハロゲン原子である請求項2記載の電荷輸送性ワニス。
- 上記電荷輸送性物質が、アニリン誘導体およびチオフェン誘導体から選ばれる少なくとも1種である請求項1~5のいずれか1項記載の電荷輸送性ワニス。
- 上記電荷輸送性物質が、アニリン誘導体である請求項6記載の電荷輸送性ワニス。
- 請求項1~7のいずれか1項記載の電荷輸送性ワニスから得られる電荷輸送性薄膜。
- 請求項8記載の電荷輸送性薄膜を有する有機エレクトロルミネッセンス素子。
- 請求項1~7のいずれか1項記載の電荷輸送性ワニスを基材上に塗布し、溶媒を蒸発させることを特徴とする電荷輸送性薄膜の製造方法。
- 上記Arが、1または2以上の電子吸引性置換基を有するアリール基である請求項11記載のオニウムボレート塩。
- 上記電子吸引性置換基が、ハロゲン原子である請求項12記載のオニウムボレート塩。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020197025745A KR102528211B1 (ko) | 2017-02-07 | 2018-02-05 | 전하 수송성 바니시 |
US16/483,986 US20200020860A1 (en) | 2017-02-07 | 2018-02-05 | Charge transporting varnish |
CN201880010570.5A CN110268541B (zh) | 2017-02-07 | 2018-02-05 | 电荷传输性清漆 |
EP18751071.4A EP3582279A4 (en) | 2017-02-07 | 2018-02-05 | CARGO TRANSPORTING PAINT |
JP2018567409A JP7266409B2 (ja) | 2017-02-07 | 2018-02-05 | 電荷輸送性ワニス |
JP2022111514A JP7359259B2 (ja) | 2017-02-07 | 2022-07-12 | 電荷輸送性ワニス |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017020436 | 2017-02-07 | ||
JP2017-020436 | 2017-02-07 | ||
JP2017-170729 | 2017-09-06 | ||
JP2017170729 | 2017-09-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018147204A1 true WO2018147204A1 (ja) | 2018-08-16 |
Family
ID=63107408
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/003722 WO2018147204A1 (ja) | 2017-02-07 | 2018-02-05 | 電荷輸送性ワニス |
Country Status (7)
Country | Link |
---|---|
US (1) | US20200020860A1 (ja) |
EP (1) | EP3582279A4 (ja) |
JP (2) | JP7266409B2 (ja) |
KR (1) | KR102528211B1 (ja) |
CN (1) | CN110268541B (ja) |
TW (1) | TWI821173B (ja) |
WO (1) | WO2018147204A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019049867A1 (ja) * | 2017-09-06 | 2019-03-14 | 日産化学株式会社 | インク組成物 |
WO2019098356A1 (ja) * | 2017-11-20 | 2019-05-23 | 日立化成株式会社 | 有機薄膜の製造方法、有機薄膜及びその利用 |
WO2020158410A1 (ja) * | 2019-01-31 | 2020-08-06 | 日産化学株式会社 | 電荷輸送性ワニス |
WO2020203407A1 (ja) * | 2019-03-29 | 2020-10-08 | 日産化学株式会社 | 電荷輸送性ワニス |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3583636B1 (en) | 2017-02-20 | 2023-05-24 | Novaled GmbH | Electronic semiconducting device, method for preparing the electronic semiconducting device and compound |
Citations (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5839203B2 (ja) | 1979-05-31 | 1983-08-29 | 株式会社神戸製鋼所 | 造滓剤およびその製造方法 |
US6166172A (en) | 1999-02-10 | 2000-12-26 | Carnegie Mellon University | Method of forming poly-(3-substituted) thiophenes |
US6602974B1 (en) | 2001-12-04 | 2003-08-05 | Carnegie Mellon University | Polythiophenes, block copolymers made therefrom, and methods of forming the same |
WO2004043117A1 (ja) | 2002-11-07 | 2004-05-21 | Nissan Chemical Industries,Ltd. | 電荷輸送性ワニス |
WO2004105446A1 (ja) | 2003-05-20 | 2004-12-02 | Nissan Chemical Industries, Ltd. | 電荷輸送性ワニス |
WO2005000832A1 (ja) | 2003-06-25 | 2005-01-06 | Nissan Chemical Industries, Ltd. | 1,4-ベンゾジオキサンスルホン酸化合物及び電子受容性物質としての利用 |
WO2005043962A1 (ja) | 2003-10-31 | 2005-05-12 | Nissan Chemical Industries, Ltd. | 1,4−ジチイン環を有する化合物を含む電荷輸送性有機材料 |
WO2005042621A1 (ja) | 2003-10-30 | 2005-05-12 | Nissan Chemical Industries, Ltd. | 電荷輸送性化合物、電荷輸送性材料、電荷輸送性ワニス、電荷輸送性薄膜及び有機エレクトロルミネッセンス素子 |
WO2005107335A1 (ja) | 2004-04-30 | 2005-11-10 | Nissan Chemical Industries, Ltd. | 良溶媒及び貧溶媒を含有するワニス |
JP2005314682A (ja) | 2004-03-31 | 2005-11-10 | Sumitomo Chemical Co Ltd | 高分子組成物 |
WO2006006459A1 (ja) | 2004-07-09 | 2006-01-19 | Nissan Chemical Industries, Ltd. | オリゴアニリン化合物の精製方法およびオリゴアニリン化合物 |
WO2006025342A1 (ja) | 2004-08-31 | 2006-03-09 | Nissan Chemical Industries, Ltd. | アリールスルホン酸化合物及び電子受容性物質としての利用 |
JP2006233162A (ja) | 2004-03-11 | 2006-09-07 | Mitsubishi Chemicals Corp | 電荷輸送膜用組成物及びイオン化合物、それを用いた電荷輸送膜及び有機電界発光素子、並びに、有機電界発光素子の製造方法及び電荷輸送膜の製造方法 |
WO2006137473A1 (ja) | 2005-06-24 | 2006-12-28 | Nissan Chemical Industries, Ltd. | 芳香族スルホン酸化合物の製造法 |
WO2007049631A1 (ja) | 2005-10-28 | 2007-05-03 | Nissan Chemical Industries, Ltd. | スプレー又はインクジェット塗布用電荷輸送性ワニス |
WO2007099808A1 (ja) | 2006-02-23 | 2007-09-07 | Nissan Chemical Industries, Ltd. | スルホン酸エステル化合物およびその利用 |
WO2008010474A1 (fr) | 2006-07-18 | 2008-01-24 | Nissan Chemical Industries, Ltd. | Vernis contenant des charges |
WO2008032617A1 (fr) | 2006-09-13 | 2008-03-20 | Nissan Chemical Industries, Ltd. | Composé d'oligoaniline et son utilisation |
WO2008032616A1 (en) | 2006-09-13 | 2008-03-20 | Nissan Chemical Industries, Ltd. | Oligoaniline compounds |
WO2008073149A2 (en) | 2006-07-21 | 2008-06-19 | Plextronics, Inc. | Sulfonation of conducting polymers and oled, photovoltaic, and esd devices |
WO2008129947A1 (ja) | 2007-04-12 | 2008-10-30 | Nissan Chemical Industries, Ltd. | オリゴアニリン化合物 |
WO2009096352A1 (ja) | 2008-01-29 | 2009-08-06 | Nissan Chemical Industries, Ltd. | アリールスルホン酸化合物および電子受容性物質としての利用 |
WO2010041701A1 (ja) | 2008-10-09 | 2010-04-15 | 日産化学工業株式会社 | 電荷輸送性ワニス |
WO2010058776A1 (ja) | 2008-11-19 | 2010-05-27 | 日産化学工業株式会社 | 電荷輸送性材料および電荷輸送性ワニス |
WO2010058777A1 (ja) | 2008-11-19 | 2010-05-27 | 日産化学工業株式会社 | 電荷輸送性材料および電荷輸送性ワニス |
JP2010171373A (ja) * | 2008-12-25 | 2010-08-05 | Sumitomo Chemical Co Ltd | 有機エレクトロルミネッセンス素子 |
JP2011026325A (ja) | 2004-03-11 | 2011-02-10 | Mitsubishi Chemicals Corp | 電荷輸送膜用組成物及びイオン化合物、それを用いた電荷輸送膜及び有機電界発光素子、並びに、有機電界発光素子の製造方法及び電荷輸送膜の製造方法 |
US20120030997A1 (en) * | 2010-02-02 | 2012-02-09 | Celanese International Corporation | Denatured fuel ethanol compositions for blending with gasoline or diesel fuel for use as motor fuels |
WO2013042623A1 (ja) | 2011-09-21 | 2013-03-28 | 日産化学工業株式会社 | 電荷輸送性ワニス |
WO2013129249A1 (ja) | 2012-03-02 | 2013-09-06 | 日産化学工業株式会社 | 電荷輸送性ワニス |
WO2014115865A1 (ja) | 2013-01-28 | 2014-07-31 | 日産化学工業株式会社 | 電荷輸送性ワニス |
WO2014132834A1 (ja) | 2013-02-26 | 2014-09-04 | 日産化学工業株式会社 | 電荷輸送性ワニス |
WO2014132917A1 (ja) | 2013-02-28 | 2014-09-04 | 日産化学工業株式会社 | 電荷輸送性ワニス |
WO2014141998A1 (ja) | 2013-03-11 | 2014-09-18 | 日産化学工業株式会社 | 電荷輸送性ワニス |
US8865025B2 (en) | 2008-04-11 | 2014-10-21 | Solvay Usa, Inc. | Doped conjugated polymers, devices, and methods of making devices |
JP2014205624A (ja) | 2013-04-11 | 2014-10-30 | サンアプロ株式会社 | オニウムボレート塩系酸発生剤 |
WO2015050253A1 (ja) | 2013-10-04 | 2015-04-09 | 日産化学工業株式会社 | アニリン誘導体およびその利用 |
WO2016171935A1 (en) | 2015-04-22 | 2016-10-27 | Solvay Usa Inc. | Non-aqueous compositions suitable for use in organic electronics |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070020479A1 (en) * | 2003-05-12 | 2007-01-25 | Yasunori Uetani | Luminescent-polymer composition |
CN100516165C (zh) * | 2003-05-12 | 2009-07-22 | 住友化学株式会社 | 发光聚合物组合物 |
JP2006314682A (ja) * | 2005-05-16 | 2006-11-24 | Okumura Yu-Ki Co Ltd | 遊技機 |
JP5110282B2 (ja) * | 2005-06-03 | 2012-12-26 | 日産化学工業株式会社 | 電荷輸送性ポリマーを含有する電荷輸送性ワニス及びそれを用いた有機エレクトロルミネッセンス素子 |
JP5279254B2 (ja) * | 2007-12-18 | 2013-09-04 | キヤノン株式会社 | 有機発光素子及び表示装置 |
CN102146090B (zh) | 2010-02-09 | 2013-03-13 | 广东阿格蕾雅光电材料有限公司 | 芳环取代的双蒽类化合物发光材料 |
JP6428600B2 (ja) * | 2013-03-08 | 2018-11-28 | 日立化成株式会社 | イオン性化合物を含有する処理液、有機エレクトロニクス素子、及び有機エレクトロニクス素子の製造方法 |
CN106463632B (zh) | 2014-05-30 | 2019-03-08 | 日产化学工业株式会社 | 薄膜的平坦化方法、平坦化薄膜的形成方法以及薄膜形成用清漆 |
WO2016039360A1 (ja) | 2014-09-10 | 2016-03-17 | 日産化学工業株式会社 | 電荷輸送性ワニス |
JP6222268B2 (ja) * | 2016-04-05 | 2017-11-01 | 日立化成株式会社 | 電子受容性化合物及びその製造方法、該化合物を含む重合開始剤、有機エレクトロニクス材料、これらを用いた有機薄膜、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、並びに表示装置 |
-
2018
- 2018-02-05 WO PCT/JP2018/003722 patent/WO2018147204A1/ja unknown
- 2018-02-05 KR KR1020197025745A patent/KR102528211B1/ko active Active
- 2018-02-05 EP EP18751071.4A patent/EP3582279A4/en not_active Withdrawn
- 2018-02-05 CN CN201880010570.5A patent/CN110268541B/zh active Active
- 2018-02-05 US US16/483,986 patent/US20200020860A1/en not_active Abandoned
- 2018-02-05 JP JP2018567409A patent/JP7266409B2/ja active Active
- 2018-02-07 TW TW107104257A patent/TWI821173B/zh active
-
2022
- 2022-07-12 JP JP2022111514A patent/JP7359259B2/ja active Active
Patent Citations (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5839203B2 (ja) | 1979-05-31 | 1983-08-29 | 株式会社神戸製鋼所 | 造滓剤およびその製造方法 |
US6166172A (en) | 1999-02-10 | 2000-12-26 | Carnegie Mellon University | Method of forming poly-(3-substituted) thiophenes |
US6602974B1 (en) | 2001-12-04 | 2003-08-05 | Carnegie Mellon University | Polythiophenes, block copolymers made therefrom, and methods of forming the same |
WO2004043117A1 (ja) | 2002-11-07 | 2004-05-21 | Nissan Chemical Industries,Ltd. | 電荷輸送性ワニス |
WO2004105446A1 (ja) | 2003-05-20 | 2004-12-02 | Nissan Chemical Industries, Ltd. | 電荷輸送性ワニス |
WO2005000832A1 (ja) | 2003-06-25 | 2005-01-06 | Nissan Chemical Industries, Ltd. | 1,4-ベンゾジオキサンスルホン酸化合物及び電子受容性物質としての利用 |
WO2005042621A1 (ja) | 2003-10-30 | 2005-05-12 | Nissan Chemical Industries, Ltd. | 電荷輸送性化合物、電荷輸送性材料、電荷輸送性ワニス、電荷輸送性薄膜及び有機エレクトロルミネッセンス素子 |
WO2005043962A1 (ja) | 2003-10-31 | 2005-05-12 | Nissan Chemical Industries, Ltd. | 1,4−ジチイン環を有する化合物を含む電荷輸送性有機材料 |
JP2006233162A (ja) | 2004-03-11 | 2006-09-07 | Mitsubishi Chemicals Corp | 電荷輸送膜用組成物及びイオン化合物、それを用いた電荷輸送膜及び有機電界発光素子、並びに、有機電界発光素子の製造方法及び電荷輸送膜の製造方法 |
JP2011026325A (ja) | 2004-03-11 | 2011-02-10 | Mitsubishi Chemicals Corp | 電荷輸送膜用組成物及びイオン化合物、それを用いた電荷輸送膜及び有機電界発光素子、並びに、有機電界発光素子の製造方法及び電荷輸送膜の製造方法 |
JP2005314682A (ja) | 2004-03-31 | 2005-11-10 | Sumitomo Chemical Co Ltd | 高分子組成物 |
WO2005107335A1 (ja) | 2004-04-30 | 2005-11-10 | Nissan Chemical Industries, Ltd. | 良溶媒及び貧溶媒を含有するワニス |
WO2006006459A1 (ja) | 2004-07-09 | 2006-01-19 | Nissan Chemical Industries, Ltd. | オリゴアニリン化合物の精製方法およびオリゴアニリン化合物 |
WO2006025342A1 (ja) | 2004-08-31 | 2006-03-09 | Nissan Chemical Industries, Ltd. | アリールスルホン酸化合物及び電子受容性物質としての利用 |
WO2006137473A1 (ja) | 2005-06-24 | 2006-12-28 | Nissan Chemical Industries, Ltd. | 芳香族スルホン酸化合物の製造法 |
WO2007049631A1 (ja) | 2005-10-28 | 2007-05-03 | Nissan Chemical Industries, Ltd. | スプレー又はインクジェット塗布用電荷輸送性ワニス |
WO2007099808A1 (ja) | 2006-02-23 | 2007-09-07 | Nissan Chemical Industries, Ltd. | スルホン酸エステル化合物およびその利用 |
WO2008010474A1 (fr) | 2006-07-18 | 2008-01-24 | Nissan Chemical Industries, Ltd. | Vernis contenant des charges |
US8017241B2 (en) | 2006-07-21 | 2011-09-13 | Plextronics, Inc. | Sulfonation of conducting polymers and OLED, photovoltaic, and ESD devices |
WO2008073149A2 (en) | 2006-07-21 | 2008-06-19 | Plextronics, Inc. | Sulfonation of conducting polymers and oled, photovoltaic, and esd devices |
WO2008032616A1 (en) | 2006-09-13 | 2008-03-20 | Nissan Chemical Industries, Ltd. | Oligoaniline compounds |
WO2008032617A1 (fr) | 2006-09-13 | 2008-03-20 | Nissan Chemical Industries, Ltd. | Composé d'oligoaniline et son utilisation |
WO2008129947A1 (ja) | 2007-04-12 | 2008-10-30 | Nissan Chemical Industries, Ltd. | オリゴアニリン化合物 |
WO2009096352A1 (ja) | 2008-01-29 | 2009-08-06 | Nissan Chemical Industries, Ltd. | アリールスルホン酸化合物および電子受容性物質としての利用 |
US8865025B2 (en) | 2008-04-11 | 2014-10-21 | Solvay Usa, Inc. | Doped conjugated polymers, devices, and methods of making devices |
WO2010041701A1 (ja) | 2008-10-09 | 2010-04-15 | 日産化学工業株式会社 | 電荷輸送性ワニス |
WO2010058776A1 (ja) | 2008-11-19 | 2010-05-27 | 日産化学工業株式会社 | 電荷輸送性材料および電荷輸送性ワニス |
WO2010058777A1 (ja) | 2008-11-19 | 2010-05-27 | 日産化学工業株式会社 | 電荷輸送性材料および電荷輸送性ワニス |
JP2010171373A (ja) * | 2008-12-25 | 2010-08-05 | Sumitomo Chemical Co Ltd | 有機エレクトロルミネッセンス素子 |
US20120030997A1 (en) * | 2010-02-02 | 2012-02-09 | Celanese International Corporation | Denatured fuel ethanol compositions for blending with gasoline or diesel fuel for use as motor fuels |
WO2013042623A1 (ja) | 2011-09-21 | 2013-03-28 | 日産化学工業株式会社 | 電荷輸送性ワニス |
WO2013129249A1 (ja) | 2012-03-02 | 2013-09-06 | 日産化学工業株式会社 | 電荷輸送性ワニス |
WO2014115865A1 (ja) | 2013-01-28 | 2014-07-31 | 日産化学工業株式会社 | 電荷輸送性ワニス |
WO2014132834A1 (ja) | 2013-02-26 | 2014-09-04 | 日産化学工業株式会社 | 電荷輸送性ワニス |
WO2014132917A1 (ja) | 2013-02-28 | 2014-09-04 | 日産化学工業株式会社 | 電荷輸送性ワニス |
WO2014141998A1 (ja) | 2013-03-11 | 2014-09-18 | 日産化学工業株式会社 | 電荷輸送性ワニス |
JP2014205624A (ja) | 2013-04-11 | 2014-10-30 | サンアプロ株式会社 | オニウムボレート塩系酸発生剤 |
WO2015050253A1 (ja) | 2013-10-04 | 2015-04-09 | 日産化学工業株式会社 | アニリン誘導体およびその利用 |
WO2016171935A1 (en) | 2015-04-22 | 2016-10-27 | Solvay Usa Inc. | Non-aqueous compositions suitable for use in organic electronics |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2019049867A1 (ja) * | 2017-09-06 | 2020-10-15 | 日産化学株式会社 | インク組成物 |
JP7327580B2 (ja) | 2017-09-06 | 2023-08-16 | 日産化学株式会社 | インク組成物 |
JP2022130386A (ja) * | 2017-09-06 | 2022-09-06 | 日産化学株式会社 | インク組成物 |
JP7120242B2 (ja) | 2017-09-06 | 2022-08-17 | 日産化学株式会社 | インク組成物 |
WO2019049867A1 (ja) * | 2017-09-06 | 2019-03-14 | 日産化学株式会社 | インク組成物 |
JPWO2019098356A1 (ja) * | 2017-11-20 | 2020-11-26 | 昭和電工マテリアルズ株式会社 | 有機薄膜の製造方法、有機薄膜及びその利用 |
WO2019098356A1 (ja) * | 2017-11-20 | 2019-05-23 | 日立化成株式会社 | 有機薄膜の製造方法、有機薄膜及びその利用 |
JP7409088B2 (ja) | 2017-11-20 | 2024-01-09 | 株式会社レゾナック | 有機薄膜の製造方法、有機薄膜及びその利用 |
JPWO2020158410A1 (ja) * | 2019-01-31 | 2021-12-02 | 日産化学株式会社 | 電荷輸送性ワニス |
WO2020158410A1 (ja) * | 2019-01-31 | 2020-08-06 | 日産化学株式会社 | 電荷輸送性ワニス |
JP7586713B2 (ja) | 2019-01-31 | 2024-11-19 | 日産化学株式会社 | 電荷輸送性ワニス |
JPWO2020203407A1 (ja) * | 2019-03-29 | 2020-10-08 | ||
WO2020203407A1 (ja) * | 2019-03-29 | 2020-10-08 | 日産化学株式会社 | 電荷輸送性ワニス |
JP7497724B2 (ja) | 2019-03-29 | 2024-06-11 | 日産化学株式会社 | 電荷輸送性ワニス |
Also Published As
Publication number | Publication date |
---|---|
CN110268541B (zh) | 2022-08-09 |
KR102528211B1 (ko) | 2023-05-03 |
JP7266409B2 (ja) | 2023-04-28 |
JP2022169503A (ja) | 2022-11-09 |
JPWO2018147204A1 (ja) | 2019-11-21 |
EP3582279A1 (en) | 2019-12-18 |
KR20190116344A (ko) | 2019-10-14 |
EP3582279A4 (en) | 2020-12-30 |
TWI821173B (zh) | 2023-11-11 |
TW201840575A (zh) | 2018-11-16 |
CN110268541A (zh) | 2019-09-20 |
US20200020860A1 (en) | 2020-01-16 |
JP7359259B2 (ja) | 2023-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102392403B1 (ko) | 설폰산에스터 화합물 및 그 이용 | |
JP7359259B2 (ja) | 電荷輸送性ワニス | |
KR20160131102A (ko) | 아닐린 유도체 및 그 이용 | |
JP2019135774A (ja) | 正孔注入層形成用電荷輸送性ワニス | |
KR102372197B1 (ko) | 아릴아민 유도체와 그 이용 | |
TWI707856B (zh) | 電荷輸送性材料 | |
KR20160132440A (ko) | 아닐린 유도체 및 그 이용 | |
EP3101003A1 (en) | Aryl sulfonic acid compound and use thereof | |
KR20160008240A (ko) | 트라이페닐아민 유도체 및 그 이용 | |
TWI638869B (zh) | Charge transport coating | |
KR102586572B1 (ko) | 전하 수송성 재료 | |
JP7593312B2 (ja) | フルオレン誘導体及びその利用 | |
US10193075B2 (en) | Aniline derivative and use thereof | |
CN111836816B (zh) | 苯胺衍生物及其利用 | |
JP7163907B2 (ja) | 電荷輸送性ワニス | |
KR102270642B1 (ko) | 전하 수송성 바니시, 전하 수송성 박막 및 유기 일렉트로루미네센스 소자 | |
KR102219003B1 (ko) | 전하 수송성 바니시 | |
EP3056484A1 (en) | Arylsulfonic acid compound, use thereof, and method for producing arylsulfonic acid compound |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18751071 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018567409 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20197025745 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018751071 Country of ref document: EP Effective date: 20190909 |