[go: up one dir, main page]

WO2018142487A1 - Article having metallic surface, tone-treatment method therefor, and gas phase oxidation device - Google Patents

Article having metallic surface, tone-treatment method therefor, and gas phase oxidation device Download PDF

Info

Publication number
WO2018142487A1
WO2018142487A1 PCT/JP2017/003473 JP2017003473W WO2018142487A1 WO 2018142487 A1 WO2018142487 A1 WO 2018142487A1 JP 2017003473 W JP2017003473 W JP 2017003473W WO 2018142487 A1 WO2018142487 A1 WO 2018142487A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
gas
gas phase
phase oxidation
article
Prior art date
Application number
PCT/JP2017/003473
Other languages
French (fr)
Japanese (ja)
Inventor
優二 中村
俊孝 若林
郁恵 山口
尚子 小林
宮崎 邦夫
Original Assignee
Ykk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ykk株式会社 filed Critical Ykk株式会社
Priority to CN201780085078.XA priority Critical patent/CN110234782B/en
Priority to PCT/JP2017/003473 priority patent/WO2018142487A1/en
Priority to EP17895187.7A priority patent/EP3578681A4/en
Priority to TW106118490A priority patent/TWI666342B/en
Publication of WO2018142487A1 publication Critical patent/WO2018142487A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • AHUMAN NECESSITIES
    • A44HABERDASHERY; JEWELLERY
    • A44BBUTTONS, PINS, BUCKLES, SLIDE FASTENERS, OR THE LIKE
    • A44B19/00Slide fasteners
    • AHUMAN NECESSITIES
    • A44HABERDASHERY; JEWELLERY
    • A44BBUTTONS, PINS, BUCKLES, SLIDE FASTENERS, OR THE LIKE
    • A44B19/00Slide fasteners
    • A44B19/42Making by processes not fully provided for in one other class, e.g. B21D53/50, B21F45/18, B22D17/16, B29D5/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/02Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity of multiple-track type; of multiple-chamber type; Combinations of furnaces
    • F27B9/028Multi-chamber type furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/04Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity adapted for treating the charge in vacuum or special atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/28Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity for treating continuous lengths of work

Definitions

  • the present invention relates to an article having a metal surface, and more particularly to a metal fastener member.
  • the present invention also relates to a color tone processing method for an article having a metal surface, and more particularly to a color tone processing method for a metal fastener member.
  • the present invention relates to a gas phase oxidation apparatus for carrying out a color tone processing method for a long article having a metal surface.
  • metal fasteners that make up elements (engagement elements) with metals such as red brass, brass, white and aluminum, among which representatives are red, brass, and white.
  • metal fasteners using copper-zinc alloys are widely used because they can balance price, strength, hardness and workability.
  • fasteners are required not only to have excellent functionality but also to have a design that matches the design of the article. Therefore, it is required to provide a metal fastener member having a large number of colors so that it can be used for various article designs.
  • the method for color tone treatment of a metal surface includes a method of surface coating with an organic paint, a method of changing the color tone by changing the composition or plating a metal of a different composition on the surface, and There is a method of coloring the surface to a specific color by performing some chemical conversion treatment, and all of them are mainly performed by a color treatment by a wet treatment.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2014-205881
  • Patent Document 1 describes a treatment method in which the appearance of a surface is colored in a blue color by immersion in a chlorite-based chemical conversion treatment solution.
  • the copper-based metal is immersed in a chlorite-based chemical conversion treatment solution containing 0.5 to 250 g / L of chlorite and 1 to 625 g / L of an alkali metal hydroxide.
  • a characteristic blue color treatment method for copper-based metal surfaces is described.
  • the surface of the copper-zinc alloy can be colored blue.
  • an object of the present invention is to improve the fastness to friction after color tone treatment is performed on an article having a base material having at least a surface composed of a copper-zinc alloy.
  • Another object of the present invention is to provide an apparatus for color tone processing that can reduce the drainage load as compared with wet processing.
  • the present inventor observed the cross section near the surface of the copper-zinc alloy with an electron microscope after performing color tone treatment by chemical conversion treatment on the surface of the copper-zinc alloy, and the cross section was observed in various places. It was found that the porous structure had voids. It is presumed that the porous structure is caused by the following chemical reaction near the surface by the chemical conversion treatment: Zn + 2OH ⁇ + 2H 2 O ⁇ [Zn (OH) 4 ] 2 ⁇ , resulting in dezincification.
  • the present inventor has intensively studied the surface structure for improving the friction fastness in a copper-zinc alloy article having a changed color tone, and has adjusted the color tone to a dense oxide layer in which zinc is concentrated on the outermost surface. It was found that providing a function to change is effective in solving the problem.
  • the present invention includes a base material having at least a surface made of a copper alloy containing zinc, and an oxide layer adjacent to the surface of the base material.
  • the ratio A of the average zinc concentration to the average copper concentration in the range from the depth of 10 nm to the depth of 20 nm with reference to the oxide layer surface is higher than the ratio B of the average zinc concentration to the average copper concentration on the substrate surface. Is also a high article.
  • the average zinc concentration on the surface of the substrate is 5 to 50 at. %.
  • the ratio A / B of the ratio A to the ratio B is 2.0 or more.
  • the entire substrate is made of a copper alloy containing zinc.
  • the average zinc concentration in the range from a depth of 10 nm to a depth of 20 nm is 5 to 80 at. %.
  • the article is a slide fastener member.
  • the present invention is a slide fastener including the slide fastener member according to the present invention.
  • the present invention is a color tone treatment method for an article, comprising vapor-phase oxidation of an article having a substrate made of a copper alloy containing zinc at least on the surface in the presence of at least oxygen. .
  • the gas phase oxidation is performed in the presence of ammonia.
  • the color tone control by the gas phase oxidation is performed by adjusting the ammonia concentration, the oxygen concentration, the concentration of other reactive gases, the humidity in the reaction system, It is carried out by changing one or more selected from the group consisting of the temperature inside, the processing time, and the temperature of the article.
  • the article is a fastener member.
  • the gas phase oxidation is performed at an ambient temperature of 20 to 80 ° C.
  • the gas phase oxidation is performed under a negative pressure.
  • the substrate surface before performing the gas phase oxidation, is sequentially subjected to activation treatment and water washing.
  • a gas phase reaction chamber for performing gas phase oxidation having an inlet and an outlet, and a long member having at least a part of which at least a surface is made of metal enter from the inlet.
  • a transport mechanism for passing through a phase reaction chamber and continuously exiting from the outlet, a discharge port for supplying a gas-phase oxidizing gas into the gas-phase reaction chamber, and the gas-phase reaction chamber It is a gas phase oxidation apparatus for carrying out a color tone processing method provided with a suction port for discharging the gas inside the chamber.
  • a water seal unit for shutting off gas inside the gas phase reaction chamber is provided at either or both of the outlet side and the inlet side of the gas phase reaction chamber. is set up.
  • a water seal unit for shutting off gas inside the gas phase reaction chamber from the outside is installed only on the outlet side of the gas phase reaction chamber.
  • an air flow control mechanism is provided for controlling the vapor phase oxidation gas supplied into the vapor phase reaction chamber to flow from the inlet side to the outlet side.
  • the air flow control mechanism includes at least one discharge port for supplying a vapor phase oxidation gas installed in the vapor phase reaction chamber. , Including at least one suction port for discharging the gas in the chamber to the outside of the chamber, wherein all the suction ports of the at least one suction port are more than all the discharge ports of the at least one discharge port. Is also arranged on the exit side.
  • the transport mechanism may be configured such that one or both of a substantially vertical upward direction and a substantially vertical downward direction as a direction in which the article passes through the gas phase reaction chamber. It is configured to be included.
  • the gas phase reaction chamber includes a first chamber on the inlet side, a second chamber on the outlet side, and a first chamber and a second chamber.
  • a third chamber in between, and the transport mechanism is configured so that the article can sequentially pass through the first chamber, the third chamber, and the second chamber, and the article passes through the third chamber.
  • One or both of a substantially vertical upward direction and a substantially vertical downward direction are included as the direction to perform.
  • the third chamber is located above the third chamber upper portion and the third chamber upper portion at the same height as the first chamber and the second chamber.
  • a lower part of the third chamber is provided, and the transport mechanism is configured to allow the article to pass through the first chamber, the third chamber upper part, the third chamber lower part, and the second chamber.
  • At least one discharge port is provided in the lower portion of the third chamber, and at least one of the suction ports is provided in the second chamber.
  • the transport mechanism includes both a substantially vertical upward direction and a substantially vertical downward direction as directions in which the article passes through the third chamber. It is configured.
  • Friction fastness is an important characteristic especially when considering application to metal fastener members, and it is possible to impart color change to copper-zinc alloy fastener members without sacrificing friction fastness. Is of great commercial significance.
  • Zn remains in the vicinity of the surface, there is also an advantage that the color tone can be changed using Zn.
  • the elements involved in the color tone change are mainly Cu and O because dezincing near the surface.
  • the present invention since zinc remains on the surface, Cu and In addition to O, Zn can also participate in the color tone change, and various color tones can be obtained. For this reason, this invention is advantageous also in the point which enables various goods expansion
  • the vapor phase oxidation apparatus according to the present invention basically does not require the use of water in the reaction chamber.
  • FIG. 1 is a schematic front view showing a first embodiment of a vapor phase oxidation apparatus according to the present invention. It is a front schematic diagram which shows 2nd embodiment of the gaseous-phase oxidation apparatus which concerns on this invention. It is a front schematic diagram which shows 3rd embodiment of the vapor-phase oxidation apparatus which concerns on this invention. It is a front schematic diagram which shows the apparatus structural example of the color tone processing system which concerns on this invention.
  • an article according to the present invention has a base material having at least a surface made of a copper alloy containing zinc.
  • a copper alloy containing zinc copper-zinc alloys such as brass, red copper, and white and copper-zinc-nickel alloys are excellent in terms of strength, cost, and workability, and can be suitably used.
  • the copper alloy containing zinc contains 1 to 40% by mass, preferably 4 to 40% by mass of Zn, and is selected from Ni, Be, Mo, Al, Sn, Pb, Mn, Fe, P and S.
  • One or more elements may be contained in an amount of 0 to 10% by mass, and the composition may be composed of the balance copper and inevitable impurities.
  • the base material should just be comprised by the copper alloy in which the surface contains zinc at least, and the case where the inside is comprised by resin, ceramic, etc. by laminated structure is included.
  • the substrate may be composed of a copper alloy containing zinc as a whole including not only the surface but also the inside.
  • a metal fastener member can be used in a typical embodiment.
  • the metal fastener include a slide fastener and a snap fastener.
  • ball chains and the like can be cited.
  • the member for the slide fastener include, but are not limited to, an element (engagement element), a slider, a handle, an upper stopper, a lower stopper, and a release fitting.
  • the member for the snap fastener include a male element and a female element.
  • the metal fastener member may be in the final part shape to be attached to the fastener product as described above, or may be in the form of a wire, a plate, a tube, a rod or the like before being processed.
  • FIG. 1 schematically shows a cross-sectional structure of an embodiment of an article according to the present invention.
  • the article 10 has a base material 11 and an oxide layer 12 adjacent to the surface of the base material 11.
  • the ratio A of the average zinc concentration to the average copper concentration in the oxide layer 12 is higher than the ratio B of the average zinc concentration to the average copper concentration on the surface of the substrate 11. That is, zinc is concentrated in the oxide layer 12. This means that dezincification does not occur in the oxide layer 12, and it is possible to suppress the oxide layer 12 from exhibiting a porous structure.
  • the average zinc concentration and average copper concentration of the oxide layer 12 are analyzed by elemental analysis in the depth direction by Ar ion etching from the oxide layer surface by AES (Auger Electron Spectroscopy), and the total number of atoms of Cu, Zn and O is calculated. It is expressed by the average atomic concentration of Zn and the average atomic concentration of Cu in the range from a depth of 10 nm to a depth of 20 nm with reference to the oxide layer surface when 100%.
  • the depth when the composition analysis in the depth direction by AES refers to the depth when converted from the sputtering time using the etching rate of 8.0 nm / min of the SiO 2 standard material (the same applies to the following). is there.). Note that if there is no finishing layer 13 to be described later on the oxide layer 12, the oxide layer 12 becomes the outermost layer.
  • the ratio A / B of the ratio A in the oxide layer 12 to the ratio B on the surface of the substrate 11 is greater than 1.0, and the ratio is 1.5 or more. It can also be 2.0 or more, for example, 1.2 to 3.0.
  • the average zinc concentration in the range from a depth of 10 nm to a depth of 20 nm with reference to the surface of the oxide layer 12 is 5 at. % Or more, and in a more typical embodiment 10 at. % Or more.
  • the average zinc concentration in the range from a depth of 10 nm to a depth of 20 nm, based on the surface of the oxide layer 12, is 80 at. % Or less, and in a more typical embodiment 60 at. % Or less, and in an even more typical embodiment 40 at. % Or less, and in an even more typical embodiment, 30 at. % Or less.
  • the average zinc concentration of the oxide layer 12 is determined by analyzing the composition from the surface of the oxide layer in the depth direction by AES (Auger electron spectroscopy), and the total number of atoms of Cu, Zn and O is 100%. Expressed in concentration.
  • the average oxygen concentration in the range from a depth of 10 nm to a depth of 20 nm with reference to the surface of the oxide layer 12 is 20 at. % And in typical embodiments 20-60 at. %, And in a more typical embodiment 30-50 at. %.
  • the average oxygen concentration of the oxide layer 12 is determined by composition analysis in the depth direction from the surface of the oxide layer by AES (Auger electron spectroscopy), and the total number of Cu, Zn and O atoms is 100%. Expressed in concentration.
  • the boundary between the oxide layer and the substrate is analyzed by AES (Auger Electron Spectroscopy) in the depth direction from the oxide layer surface toward the substrate, and the total number of atoms of Cu, Zn, and O is calculated.
  • AES Alger Electron Spectroscopy
  • the atomic concentration of O is 5 at. Points to the first depth point to reach below%.
  • another layer finishing layer
  • the average zinc concentration on the substrate surface is 5 at. % Or more, preferably 10 at. % Or more is more preferable. In addition, the average zinc concentration on the substrate surface is 50 at. % Or less, preferably 40 at. % Or less is more preferable.
  • the average zinc concentration and average copper concentration on the substrate surface were analyzed in the depth direction from the substrate surface to a depth of 20 nm by AES (Auger Electron Spectroscopy), and the total number of Cu, Zn and O atoms was 100%. The average atomic concentration of Zn and the average atomic concentration of Cu from the surface of the substrate to the depth are expressed respectively.
  • the average zinc concentration in the whole substrate is 5 at. % Or more, preferably 10 at. % Or more is more preferable. Moreover, the average zinc concentration in the whole substrate is 50 at. % Or less, preferably 40 at. % Or less is more preferable.
  • the average zinc concentration in the entire substrate is expressed by the atomic concentration of Zn when the total number of Cu, Zn and O atoms in the entire substrate is 100%, and can be analyzed by a fluorescent X-ray analyzer.
  • FIG. 2 schematically shows a cross-sectional structure of another embodiment of the article according to the present invention.
  • the article 20 has a base material 11, an oxide layer 12 adjacent to the surface of the base material 11, and a finishing layer 13 adjacent to the surface of the oxide layer 12.
  • This embodiment is different from the embodiment of FIG. 1 in that a finishing layer 13 is formed on the oxide layer 12.
  • the finishing layer 13 include at least one or more surface treatment layers formed of one or more surface treatment agents such as a clear lacquer, a rust inhibitor, and a wax.
  • the surface-treated surface preparations may be used alone or in combination of two or more.
  • the finishing layer may be a single layer or a plurality of layers.
  • the average copper concentration and the average zinc concentration in the oxide layer 12 and the average copper concentration and the average zinc concentration on the surface of the base material 11 are measured up to the base material surface while etching the finishing layer in the depth direction. It can be measured by AES analysis. Further, when the finishing layer is thick, it can be measured by removing the finishing layer just before the oxide layer and similarly performing AES analysis in the depth direction.
  • the finishing layer can be removed with a release agent in some cases.
  • the release agent for example, the product can be released by immersing the article in the trade name “Esvac H-300” (manufactured by Sasaki Chemical) at room temperature overnight.
  • the immersion time of the release agent can be changed according to the thickness of the finishing layer.
  • the oxide layer is removed in addition to the finish layer, the boundary between the finish layer and the oxide layer disappears. Therefore, it is desirable to remove the finish layer so that a part of the finish layer remains.
  • the boundary between the finish layer and the oxide layer can be identified by changes in Cu and Zn concentrations. Cu and Zn are hardly detected in the finished layer, but much Cu and Zn are detected in the oxide layer. Therefore, in this specification, the depth point where the sum of the atomic concentrations of Cu and Zn when the AES analysis in the depth direction first reaches 1% or more is defined as the boundary between the finishing layer and the oxide layer.
  • the atomic concentration of Cu and Zn is represented by the ratio of the number of atoms of Cu and Zn to the total number of atoms of Cu, Zn and O.
  • the article according to the present invention can be manufactured, for example, by subjecting the surface of the base material to vapor phase oxidation.
  • Vapor phase oxidation is advantageous in that it can remarkably reduce the environmental load caused by harmful substances and wastewater treatment costs, and the oxidation reaction conditions can be easily changed.
  • specific embodiments of the gas phase oxidation will be described in detail.
  • Vapor phase oxidation can be performed on a single member of the base material, or can be performed on the base material bonded to other parts.
  • gas phase oxidation is applied to a fastener stringer in which a row of slide fastener elements is attached to a fastener tape or a fastener chain in which a pair of fastener stringer element rows are engaged with each other. Can be implemented.
  • Pretreatment is preferably performed before vapor phase oxidation of the surface of the substrate. This is because the effect of improving the reactivity and uniformity of gas phase oxidation can be obtained depending on the kind of pretreatment.
  • Specific examples of the pretreatment method include metal activation treatment. By performing the metal activation treatment, the reaction efficiency during the gas phase oxidation can be improved.
  • Examples of the wet method include a method in which an acidic or alkaline aqueous solution is brought into contact with the surface of the base material for treatment.
  • acidic aqueous solutions include aqueous solutions of inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, chromic acid, and phosphoric acid, and aqueous solutions of organic acids such as acetic acid and dibasic acids (oxalic acid, malonic acid, succinic acid, and aspartic acid).
  • Examples of the alkaline aqueous solution include ammonia water, NaOH aqueous solution, sodium carbonate, sodium silicate, etc.
  • hydrochloric acid is preferable for acidity and NaOH aqueous solution is preferable for alkalinity from the viewpoint of removal of the oxide film after treatment.
  • the method of bringing the acidic or alkaline aqueous solution into contact with the surface of the substrate is not limited, but immersion of the substrate in the aqueous solution, spraying, dropping, coating, roll coating of the aqueous solution on the substrate, and For example, a sink.
  • the dry method include plasma treatment (eg, O 2 plasma treatment), UV ozone method, marcomizing method, halogen-based gas treatment, and the like. In either case of wet type or dry type, it is desirable to carry out water washing from the removal of residual components after the metal activation treatment.
  • degreasing and water washing treatment Before performing the pretreatment described above, it is preferable to further perform degreasing and water washing treatment on the base material in order to enhance the effect of the pretreatment.
  • Any known degreasing method may be employed as the degreasing method, and examples thereof include a method in which the degreasing agent is brought into contact with the surface of the substrate by dipping, wiping, brushing, spraying, or the like. In soaking, rocking or ultrasonic waves may be added to enhance the degreasing effect.
  • conventional surface treatments such as chemical polishing treatment, plating treatment, physical polishing treatment, and preliminary degreasing treatment may be performed before the degreasing and water washing treatment.
  • the method for vapor phase oxidation is not particularly limited as long as it can form a predetermined oxide layer on the surface of the substrate.
  • Various methods can be considered for the gas phase oxidation method. For example, when copper and zinc are oxidized in the presence of oxygen, the following chemical reaction proceeds to change into copper oxide and zinc oxide. By changing the conditions of the gas phase oxidation, the oxidation state of Cu and Zn on the surface of the base material changes, whereby various color tones can be adjusted.
  • the rate of the oxidation reaction is low under low temperature conditions, it is preferable to promote oxidation.
  • the heating temperature may be increased to promote oxidation, but when the base material is combined with another material having low heat resistance, for example, when the base material is a slide fastener element, When phase oxidation is performed, there is a restriction that it is necessary to perform the heat treatment at a temperature lower than the heat resistant temperature of a synthetic fiber fastener tape or the like. For this reason, in order to promote the oxidation reaction even under low temperature conditions, it is preferable to add ammonia (NH 3 ) as an oxidation accelerator.
  • NH 3 ammonia
  • the gas phase oxidation is carried out in the presence of oxygen and ammonia.
  • the method for supplying oxygen is not particularly limited, and examples thereof include a method of supplying in the form of air, oxygen gas, mixed gas of oxygen gas and inert gas (nitrogen, rare gas, etc.). The method of supplying in the form of is preferable.
  • Ammonia is a cheap and universal gas that can be obtained all over the world.
  • Ammonia can be converted to nitrogen (N 2 ) and hydrogen (H 2 ) by thermal decomposition (NH 3 ⁇ 1 / 2N 2 + 3 / 2H 2 ).
  • H 2 ⁇ H 2 O clean exhaust gas can be discharged.
  • the ammonia-containing water that can be produced by washing the article after vapor phase oxidation can be neutralized and converted to ammonium sulfate (fertilizer raw material).
  • ammonia is a substance that is highly economical and has a low environmental impact.
  • Vapor phase oxidation can be performed at 0 to 100 ° C., for example, and can be performed at room temperature. For this reason, although it can implement without special cooling cost and heating cost, it is preferable to heat a little for acceleration of reaction. For this reason, the gas phase reaction is preferably performed at an atmospheric temperature of 20 ° C. or higher, and more preferably performed at an atmospheric temperature of 30 ° C. or higher.
  • gas phase oxidation can be performed under atmospheric pressure and does not need to be performed under reduced pressure or under pressure.
  • metal for example, Cu and Zn
  • the color tone changes due to the formation of metal oxides and hydroxides. For example, Cu 2 O is reddish brown, CuO is black, and Cu (OH) 2 is blue.
  • the color tone can be controlled by changing the color tone. By simply changing these parameters, multicolorization can be easily realized while using the same equipment.
  • the Zn-elution reaction Zn + 2OH ⁇ + 2H 2 O ⁇ [Zn (OH) 4 ] 2 + + H 2
  • the oxidation reaction of Cu and Zn are carried out at the same time, and the oxide film has a porous structure due to the Zn removal reaction (ionization tendency: Cu ⁇ Zn).
  • oxides and / or hydroxides not only oxides and / or hydroxides but also one or more compounds such as metal carbonates, sulfides and sulfates may be generated on the surface of the fastener member.
  • metal carbonates In the case of copper, carbonates are yellow, green, and blue, sulfides are black, and sulfates are blue.
  • the method of generating various metal compounds on the surface of the fastener member include a method of adding a reactive substance that generates a desired metal compound during pretreatment or gas phase oxidation.
  • a gas to be supplied for gas phase oxidation gas is wetted by using a gas after bubbling in water or an aqueous solution in which a desired compound that can be colored in a target color is dissolved. Therefore, the color tone can be changed.
  • Halogen gas Cl 2 , Br 2, etc.
  • carbon dioxide CO 2
  • hydrogen peroxide etc.
  • the color tone can also be adjusted by using an aqueous solution of a desired compound that can be colored to the target color during the metal activation treatment.
  • aqueous solutions include aqueous solutions of inorganic acids such as hydrochloric acid, sulfuric acid, peroxodisulfuric acid, nitric acid, chromic acid and phosphoric acid, and organic acids such as acetic acid and dibasic acids (oxalic acid, malonic acid, succinic acid, aspartic acid, etc.).
  • examples include aqueous solutions, carbonates, sulfates, peroxodisulfates, aqueous solutions of salts such as sulfides, and hydrogen peroxide.
  • the unreacted components eg, ammonia
  • one or more surface treatments such as rust prevention treatment, clear lacquer coating, and waxing can be performed as necessary.
  • the surface treatment can be performed by immersion in each surface treatment liquid, spraying of the surface treatment liquid, dropping, coating, roll coating, and pouring.
  • an oxide layer adjacent to the surface of the base material is obtained by subjecting an article having a base material, at least the surface of which is made of a copper alloy containing zinc, to gas phase oxidation in the presence of oxygen.
  • a method for color-treating an article comprising forming an oxide layer in which the ratio A of the average zinc concentration to the average copper concentration in the oxide layer is higher than the ratio B of the average zinc concentration to the average copper concentration on the substrate surface Is provided.
  • the manufacturing method of a fastener including using the color tone processing method mentioned above is provided.
  • a slide fastener and a snap fastener can be produced by a conventional means using the fastener member subjected to the color tone processing according to the present invention.
  • the color tone processing according to the present invention is performed in a state where the fastener chain is assembled, and then a slider, a pull handle, an upper stopper, a lower stopper, and an open / close fit by conventional means.
  • a slide fastener is completed by appropriately attaching parts such as an insert.
  • a metal fastener member is an element
  • a slide fastener component fastener chain
  • fastener stringer in which a row of elements is attached to one side edge of a long fastener tape.
  • ball chain in which metal balls are connected, a wire-like metal fastener member, or a metal wire member.
  • a slide fastener assembly in which parts such as a slider, an upper stopper, and a lower stopper are attached to the fastener chain is also included.
  • the apparatus introduces the metal fastener member into the reaction chamber maintained at atmospheric pressure or negative pressure while continuously conveying the metal fastener member in the longitudinal direction, performs vapor phase oxidation of the member surface in the reaction chamber, and then the member It is possible to implement a color tone processing method for a long member including at least a part of which at least a surface is made of a metal, including discharging from the outlet of the reaction chamber.
  • FIG. 5 schematically shows a front view of the vapor phase oxidation apparatus 110 according to the first embodiment.
  • the gas phase oxidation apparatus 110 includes an upstream water seal unit 116, a gas phase reaction chamber 115 having an inlet 115in and an outlet 115out, a gas phase oxidation gas supply system 114, a downstream water seal unit 116, a transport mechanism 122, and a gas.
  • a suction device 113 and an ammonia gas decomposition device 112 are provided, and the operation of these devices can be controlled by the control device 118. Corrosion resistance can be ensured by using stainless steel, particularly austenitic stainless steel, for the portion in contact with the gas phase oxidizing gas.
  • the fastener chain 120 continuously passes through the gas phase reaction chamber 115 inside the gas phase oxidation apparatus 110 in the direction of the arrow by the transport mechanism 122.
  • the transport mechanism 122 includes a plurality of guide rollers 122a, and the fastener chain 120 passes through the gas phase reaction chamber 115 while being guided by the plurality of guide rollers 122a.
  • one or more guide rollers may be connected to a drive source such as a motor and the drive roller itself may be a drive source for the fastener chain 120.
  • the drive source 122b may be provided outside the gas phase oxidation apparatus 110 and the fastener chain 120 may be conveyed by a pulling system from the outside.
  • the gas-phase oxidation gas supply system 114 in the first embodiment includes a gas storage unit 114a, a gas pipe 114b, and a gas discharge port 114c.
  • the gas-phase oxidizing gas stored in the gas storage unit 114a passes through the gas pipe 114b and is supplied from the gas discharge port 114c into the gas-phase reaction chamber 115.
  • a plurality of gas storage units may be provided.
  • a gas storage unit 114d is provided, and the gas-phase oxidizing gas from the gas storage unit 114d passes from the gas storage unit 114a while passing through the gas pipe 114b.
  • Premixed with gas for gas phase oxidation can be stored from the gas storage unit 114a and air can be stored from the gas storage unit 114d.
  • the air may be compressed air from a compressor instead of the gas storage unit.
  • gas discharge port 114c There may be one gas discharge port 114c, but a plurality of gas discharge ports 114c may be provided in order to increase reaction efficiency. Further, in order to improve the uniformity of the color tone between the front and back of the fastener chain 120, the gas discharge ports 114c are preferably installed on both sides of the fastener chain 120. Of course, when it is desired to change the color tone between the front and back of the fastener chain 120, the gas discharge port 114c can be provided only on one surface side of the fastener chain 120. In the first embodiment, a plurality of gas discharge ports 114 c are alternately arranged in both the upper surface side and the lower surface side of the fastener chain 120 in the gas phase reaction chamber 115 along the conveying direction of the fastener chain 120.
  • the fastener chain 120 While passing through the gas phase reaction chamber 115, the fastener chain 120 is subjected to a color tone process based on an oxidation reaction in the presence of a gas phase oxidizing gas.
  • the gas in the gas phase reaction chamber 115 is sucked from a suction port 121 installed in the vicinity of the outlet by a gas suction device 113 such as a blower, discharged through the pipe 123 to the outside of the gas phase reaction chamber 115, and an ammonia gas decomposing device.
  • a gas suction device 113 such as a blower
  • the method for decomposing ammonia gas is not particularly limited, and examples thereof include a catalytic decomposition method, a combustion method, a gas decomposition method, and a wet scrubber method.
  • the ammonia gas decomposing apparatus is preferably provided as necessary, but is not necessarily essential in the present invention.
  • the gas phase reaction chamber 115 can be maintained at a negative pressure. It can. Thereby, it is possible to prevent the gas in the gas phase reaction chamber 115 from leaking to the outside.
  • a water seal unit 116 is provided on the inlet 115in side (upstream side) and / or the outlet 115out side (downstream side) of the gas phase reaction chamber 115 in order to stably perform a gas phase treatment in an atmosphere having a more constant concentration. It is preferable to install.
  • the water seal unit 116 may be installed only on one of the inlet 115in side and the outlet 115out side, but is preferably installed at least on the outlet side, and installed on both sides. More preferably.
  • the fastener chain 120 is wetted, so that color unevenness is likely to occur during color tone processing by gas phase oxidation.
  • the gas phase reaction chamber 115 is maintained at a negative pressure, air enters the gas phase reaction chamber 115. For this reason, it is also possible to supply air without going through the gas pipe 114b, and it is also possible to supply air together with the air from the gas pipe 114b.
  • the water seal units 116 are installed on both the inlet 115in side and the outlet side, but during normal operation, only the outlet 115out side is sealed and the inlet 115in side is sealed. Not.
  • the vapor phase oxidation apparatus 110 preferably includes an air flow control mechanism that controls the gas phase oxidation gas supplied into the gas phase reaction chamber 115 to flow from the inlet 115in side to the outlet 115out side. Having such an airflow control mechanism is that the water seal unit 116 on the outlet 115out side is used for water sealing, while the water seal unit 116 is not installed on the inlet 115in side. This is particularly effective from the viewpoint of preventing gas leakage when not used for water sealing.
  • the third embodiment to be described later is applicable, but the water seal unit 116 on the inlet 115in side is used for water sealing, and the water sealing unit 116 is not installed on the outlet 115out side or even if it is installed. When not used, it is preferable to control the gas-phase oxidizing gas supplied into the gas-phase reaction chamber 115 to flow from the outlet 115out side to the inlet 115in side.
  • the airflow control mechanism includes at least one discharge port 114c for supplying gas for oxidizing gas phase installed in the gas phase reaction chamber 115, At least one suction port 121 for discharging the gas in the chamber 115 to the outside of the chamber 115 is provided.
  • the suction port closest to the outlet side among the at least one suction port 121 is arranged on the outlet 115out side with respect to any of the at least one discharge port 114c, so that the gas supplied into the gas phase reaction chamber 115 is supplied.
  • the phase oxidizing gas flows from the inlet 115in side to the outlet 115out side.
  • all of the at least one suction port 121 is disposed on the outlet 115out side with respect to any of the at least one discharge port 114c. Then, by making the total gas suction amount from at least one suction port 121 larger than the total gas discharge amount from at least one discharge port 114c, the inside of the gas phase reaction chamber 115 becomes negative pressure and gas leakage is prevented. Can be prevented.
  • an NH 3 sensor (not shown) may be installed on the outside air side of the vapor phase oxidation apparatus 110. When NH 3 flows out, an NH 3 sensor (not shown) senses it, and the supply of NH 3 can be stopped by a command from the control device 118.
  • control device 118 can control the flow rate of the gas-phase oxidizing gas supplied from the gas-phase oxidizing gas storage units 114a and 114d through the discharge port 114c into the gas-phase reaction chamber 115.
  • the gas concentration in the chamber 115 can be controlled.
  • the gas-phase oxidizer 110 can be installed in a constant temperature and humidity control box, so that air whose temperature and humidity are controlled can be introduced into the gas-phase oxidizer 110.
  • the temperature in the gas phase reaction chamber 115 can be controlled by a heating unit (not shown).
  • the fastener chain 120 passes through a water seal unit (upstream) 116 (not sealed during normal operation, but sealed only in an emergency) while being transferred by the transport mechanism 122.
  • a water seal unit (upstream) 116 (not sealed during normal operation, but sealed only in an emergency) while being transferred by the transport mechanism 122.
  • the gas-phase oxidizing gas supplied into the gas-phase reaction chamber 115 reacts with the copper alloy constituting the element surface of the fastener chain 120 that has been appropriately pretreated, and changes its color tone by the reaction mechanism described above. .
  • the fastener chain 120 is discharged from the vapor phase oxidation apparatus 110 through the water seal unit (downstream) 116 while being transferred by the transport mechanism 122. Since the unreacted gas adhering to the fastener chain 120 passes through the water seal unit (downstream) 116 and is immersed in water, it is washed away.
  • FIG. 6 schematically shows a front view of the vapor phase oxidation apparatus 210 according to the second embodiment.
  • the reference numerals in FIG. 6 have the same meaning as the reference numerals described in the first embodiment unless otherwise specified, and thus the description thereof is omitted.
  • the vapor phase oxidation apparatus 210 according to the second embodiment is an embodiment effective in reducing the installation area. This embodiment can be said to be particularly advantageous when the installation space in the plane direction is small.
  • illustration is abbreviate
  • the gas phase reaction chamber 115 includes a first chamber 115a on the inlet side, a second chamber 115b on the outlet side, and a third chamber 115c between the first chamber 115a and the second chamber 115b.
  • the transport mechanism 122 is configured so that the article can sequentially pass through the first chamber 115a, the third chamber 115c, and the second chamber 115b, and the direction in which the fastener chain 120 passes through the third chamber 115c is vertical.
  • the guide roller 122a can be included so as to include one or both of the upward direction and the downward vertical direction.
  • the fastener chain 120 is transported by a drive source 122b installed outside the downstream side of the vapor phase oxidation apparatus 210.
  • a vertical upward direction and / or a vertical downward direction exist as directions in which the fastener chain 120 is transported, so that the horizontal direction is reached.
  • the transport distance is shortened, which makes it possible to reduce the installation area of the vapor phase oxidation apparatus 210.
  • the third chamber 115c includes a third chamber upper portion 115c1 that is the same height as the first chamber 115a and the second chamber 115b, and a third chamber lower portion 115c2 that is below the third chamber upper portion.
  • the transport mechanism 122 is configured such that the fastener chain 120 can pass through the first chamber 115a, the third chamber upper portion 115c1, the third chamber lower portion 115c2, and the second chamber 115b.
  • the fastener chain 120 passes through the first chamber in the horizontal direction and then enters the third chamber 115c.
  • the fastener chain 120 reciprocates the third chamber upper portion 115c1 and the third chamber lower portion 115c2 in the third chamber 115c a plurality of times while moving in the vertical direction (in the second embodiment, the number of reciprocations is two times), and then the second chamber. 115b, and then passes through the water seal unit 116 on the outlet side and is discharged from the vapor phase oxidizer 210.
  • the installation area of the vapor phase oxidation apparatus 210 can be reduced as the ratio of the conveyance distance in the vertical direction in the third chamber 115c is increased.
  • the total transport distance d1 in the vertical direction of the fastener chain 120 in the third chamber 115c is the total transport distance d2 in the horizontal direction in the first chamber 115a and the second chamber 115b. Longer, more preferably d1 / d ⁇ 2, more preferably d1 / d2 ⁇ 3, and even more preferably d1 / d2 ⁇ 4.
  • d1 / d2 There is no particular upper limit for d1 / d2, but it is normal that d1 / d2 ⁇ 20, and typically d1 / d2 ⁇ 10.
  • the guide roller 122 installed in the third chamber lower part 115c2 can be a dancer roller. By moving the dancer roller up and down, it can be used as means for adjusting the tension on the conveyed fastener chain 120. It is also possible to adjust the distance that the fastener chain 120 passes through the gas phase reaction chamber 115 by changing the vertical installation location of the dancer roller according to the type of the fastener chain 120. As a result, the processing time can be changed without changing the conveying speed of the fastener chain 120, and there is also an advantage that it is easy to give a change in the color shade.
  • At least one gas-phase oxidizing gas discharge port 114c is provided in the third chamber lower portion 115c2, and the gas phase is located at a position lower than the lowest point through which the fastener chain 120 passes in the third chamber lower portion 115c2. More preferably, at least one oxidizing gas outlet 114c is provided. Thereby, the uniformity of the concentration of the gas for gas phase oxidation in the third chamber lower portion 115c2 can be improved.
  • the concentration of the gas-phase oxidizing gas in the third chamber 115c tends to be higher than that of the first chamber 115a and the second chamber 115b. Since the third chamber 115c is disposed between the first chamber 115a and the second chamber 115b, the risk of the gas-phase oxidation gas leaking outside the device is reduced, and the safety of the gas-phase oxidation device 210 is reduced. It is increasing.
  • the water seal unit 116 is installed only on the outlet side. Therefore, from the viewpoint of preventing gas leakage, the vapor phase oxidation apparatus 210 preferably includes at least one suction port 121 in the second chamber 115b on the outlet side, and the suction port 121 is provided only in the second chamber 115b. More preferably.
  • the gas-phase oxidation gas flowing into the third chamber lower portion 115c2 moves to the third chamber upper portion 115c1, and at least a part of the gas is used for the oxidation reaction of the fastener chain and passes through the second chamber 115b. And discharged from the suction port 121.
  • the second embodiment when ammonia is used as the gas phase reaction gas, for example, ammonia is lighter than air, so it tends to move upward, and a concentration distribution may occur in the reaction chamber 115. For this reason, there is a possibility that color tone uniformity is impaired in the vertical direction of the fastener chain 120.
  • the second embodiment since the fastener chain 120 is transported in the vertical direction (vertical direction) in the third chamber lower portion 115c2, the concentration distribution of the gas phase reaction gas is generated in the vertical direction. Even so, the influence on the color uniformity of the fastener chain 120 in the vertical direction is suppressed. Therefore, the second embodiment is also advantageous in that the color tone uniformity on the front and back of the fastener chain 120 can be enhanced.
  • FIG. 7 schematically shows a front view of the vapor phase oxidation apparatus 310 according to the third embodiment.
  • the reference numerals in FIG. 7 have the same meaning as the reference numerals described in the first embodiment, and thus the description thereof is omitted.
  • the third embodiment differs from the first embodiment in that in the third embodiment, the water seal unit 116 on the outlet side is not used for water sealing during normal operation, and only the water seal unit 116 on the inlet side is used for water sealing. It is a point to be done.
  • the fastener chain 120 gets wet immediately before being subjected to gas phase oxidation, the fastener chain 120 after the color tone treatment is likely to have uneven color. However, when the uneven color is allowed or a design with uneven color is desired. This is a preferred embodiment.
  • the gas phase oxidation apparatus 310 supplies the gas phase oxidation gas supplied into the gas phase reaction chamber 115. It is preferable to provide an airflow control mechanism that controls the air flow from the outlet side to the inlet side.
  • the provision of such an airflow control mechanism means that the water seal unit 116 on the inlet side is used for water sealing, while the water seal unit 116 on the outlet side is not installed or is installed. It is effective from the viewpoint of preventing gas leakage when not used for water sealing.
  • the airflow control mechanism includes at least one discharge port 114c for supplying a gas-phase oxidizing gas installed in the gas-phase reaction chamber 115; At least one suction port 121 for discharging the gas in the chamber 115 to the outside of the chamber 115 is provided.
  • the suction port closest to the inlet 115in among the at least one suction port 121 is disposed in the inlet 115in side of any of the at least one discharge port 114c, and thus is supplied into the gas phase reaction chamber 115.
  • the gas-phase oxidizing gas flows from the outlet 115out side to the inlet 115in side.
  • all of the at least one suction port 121 is disposed closer to the inlet 115in than any of the at least one discharge port 114c. Then, by making the total gas suction amount from at least one suction port 121 larger than the total gas discharge amount from at least one discharge port 114c, the inside of the gas phase reaction chamber 115 becomes negative pressure and gas leakage is prevented. Can be prevented.
  • the gas in the gas phase reaction chamber 115 is sucked out of the gas phase reaction chamber 115 by being sucked out by the gas suction device 113 such as a blower from the suction port 121 installed in the vicinity of the inlet 115in of the gas phase reaction chamber 115. To be discharged.
  • the gas suction device 113 such as a blower from the suction port 121 installed in the vicinity of the inlet 115in of the gas phase reaction chamber 115.
  • FIG. 8 shows a configuration example of the color tone processing system 30 for continuously performing the pretreatment, the gas phase oxidation, and the rust prevention treatment described so far.
  • the color tone treatment system 30 includes a degreasing device 31, a water washing device 32, a gas phase oxidation device 34, a water washing device 35, a rust prevention treatment device 36, a drying device 37, a surface treatment device 38, and a drying device 39 arranged in this order.
  • a long slide fastener part 41 such as a chain is subjected to a predetermined process by sequentially passing through these apparatuses while being conveyed in a reel-to-reel manner in the direction of the arrow, and a color tone process is performed.
  • the surface treatment device 38 can perform surface treatment such as clear lacquer coating and waxing.
  • Test Example 1 A metal fastener chain having a length of 200 to 250 mm after degreasing and washing was prepared.
  • the element row of the metal fastener chain is made of a copper zinc alloy (Cu: 85 mass% (85.4 at.%), Zn: 15 mass% (14.6 at.%)).
  • the said composition is a value when an unavoidable impurity is not considered, and an unavoidable impurity may be included in the composition of an element.
  • the element array is formed by pressing a Y-shaped bar after annealing into an element shape in a reducing atmosphere, and is crimped and fixed to a fastener tape.
  • the fastener chain is set in a gas phase reaction tubular furnace batch processing apparatus ( ⁇ 75 mm quartz tube (0.6 L capacity)), and gas phase oxidation is performed using a mixed gas of air and ammonia gas under the reaction conditions shown in Table 1. It was. After the gas phase oxidation, it was washed with 2 L of water, then immersed in an aqueous benzotriazole solution for 1 minute for antirust treatment, and then washed with water and dried naturally. Neither clear lacquering nor waxing was performed.
  • Test Example 2 A metal fastener chain having a length of 200 to 250 mm after degreasing and washing was prepared.
  • the element row of the metal fastener chain is made of a copper zinc alloy (Cu: 65 mass% (65.7 at.%), Zn: 35 mass% (34.3 at.%)).
  • the element row is formed by pressing a Y-shaped bar after annealing in an oxidizing atmosphere into an element shape, and is fastened and fixed to a fastener tape.
  • the fastener chain is set in a gas phase reaction tubular furnace batch processing apparatus ( ⁇ 75 mm quartz tube (0.6 L capacity)), and gas phase oxidation is performed using a mixed gas of air and ammonia gas under the reaction conditions shown in Table 1. It was.
  • the same antirust treatment as in Test Example 1 was performed on the fastener chain after the gas phase oxidation. Neither clear lacquering nor waxing was performed.
  • Test Example 3 A metal fastener chain having a length of 200 to 250 mm after degreasing and washing was prepared.
  • the element row of the metal fastener chain is made of a copper zinc alloy (Cu: 60% by mass (60.7 at.%), Zn: 40% by mass (39.3 at.%)).
  • the element row is formed by pressing a Y-shaped bar after annealing in an oxidizing atmosphere into an element shape, and is fastened and fixed to a fastener tape.
  • the fastener chain is set in a gas phase reaction tubular furnace batch processing apparatus ( ⁇ 75 mm quartz tube (0.6 L capacity)), and gas phase oxidation is performed using a mixed gas of air and ammonia gas under the reaction conditions shown in Table 1. It was.
  • the same antirust treatment as in Test Example 1 was performed on the fastener chain after the gas phase oxidation. Neither clear lacquering nor waxing was performed.
  • Test Example 4 The same fastener chain as in Test Example 1 was colored by chemical conversion treatment using a liquid phase instead of vapor phase oxidation. Specifically, the chemical conversion treatment was performed by immersing the fastener chain after the degreasing water washing in the chemical conversion treatment liquid. After the chemical conversion treatment, the same rust prevention treatment as in Test Example 1 was performed. Neither clear lacquering nor waxing was performed.
  • Test Example 5 The same fastener chain as in Test Example 2 was colored by chemical conversion treatment using a liquid phase instead of vapor phase oxidation. Specifically, the chemical conversion treatment was performed by immersing the fastener chain after the degreasing water washing in the chemical conversion treatment liquid. After the chemical conversion treatment, the same rust prevention treatment as in Test Example 1 was performed. Neither clear lacquering nor waxing was performed.
  • Test Example 6 The same fastener chain as in Test Example 3 was colored by chemical conversion treatment using a liquid phase instead of vapor phase oxidation. Specifically, the chemical conversion treatment was performed by immersing the fastener chain after the degreasing water washing in the chemical conversion treatment liquid. After the chemical conversion treatment, the same rust prevention treatment as in Test Example 1 was performed. Neither clear lacquering nor waxing was performed.
  • the obtained color tone changes depending on the processing time and the concentration of the gas or liquid to be processed, but changes from yellow to reddish brown to brown to dark brown depending on the time and concentration.
  • the estimated oxide film composition at that time is oxidized copper such as Cu 2 O and CuO.
  • Table 1 shows the results of the performance evaluation of the mechanical properties of the samples of the metal fastener chains of Test Examples 1 to 6.
  • “English class L” refers to a test (reciprocation durability test) according to the method of JIS S 3015: 2007. All samples gave a rating of “500 clears”. “500 times clear” means that there is no problem if the slider functions as a slide fastener even after the slider has been reciprocated 500 times with the fastener chain attached to the fastener chain. means.
  • the etching rate is a value obtained by dividing 100 nm by the time when the intensity of O of the SiO 2 standard material (100 nm thermal oxide film on the Si substrate) becomes half.
  • the atomic concentrations of Cu, Zn, and O were calculated with relative sensitivity coefficients of Cu: 1, Zn: 1, and O: 1.
  • the average Zn concentration, the average Cu concentration and the average O concentration in the oxide layer use the average of each measured value at a depth of 10 to 20 nm from the surface of the oxide layer, and the average Zn concentration and the average Cu concentration on the substrate surface are O Concentration 5 at.
  • the average of measured values from the boundary between the oxide layer and the base material (base material surface) of 20% or less to a depth of 20 nm was used.
  • depth profiles of Test Examples 3 and 6 are shown in FIGS.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

The present invention improves rubbing fastness after a tone treatment has been performed on an article having a base material where at least the surface is composed of copper-zinc alloy. The present invention also provides a tone-treatment device that makes it possible to keep the amount of water used lower than with a wet treatment. Provided is an article having a base material 11 where at least the surface is composed of a copper alloy containing zinc, and an oxide layer 12 adjacent to the base material 11 surface, a ratio A of the mean zinc concentration to the mean copper concentration in a range of the depth of 10 to 20 nm with reference to the oxide layer 12 surface being higher than a ratio B of the mean zinc concentration to the mean copper concentration in the base material 11 surface. Also provided is a gas phase oxidation device for carrying out a tone-treatment method, the gas phase oxidation device being provided with: a gas phase reaction chamber 115 having an entrance and an exit and carrying out gas phase oxidation; and a conveyance mechanism 122 with which an elongated member, at least a part of which is provided with a portion where at least the surface is composed of metal, enters from the entrance, passes through the inside of the gas phase reaction chamber 115, and continuously comes out from the exit.

Description

金属表面を有する物品、その色調処理方法及び気相酸化装置Article having metal surface, color tone processing method thereof, and vapor phase oxidation apparatus
 本発明は金属表面を有する物品に関し、とりわけ金属製ファスナー部材に関する。また、本発明は金属表面を有する物品の色調処理方法に関し、とりわけ金属製ファスナー部材の色調処理方法に関する。更に、本発明は金属表面を有する長尺な物品の色調処理方法を実施するための気相酸化装置に関する。 The present invention relates to an article having a metal surface, and more particularly to a metal fastener member. The present invention also relates to a color tone processing method for an article having a metal surface, and more particularly to a color tone processing method for a metal fastener member. Furthermore, the present invention relates to a gas phase oxidation apparatus for carrying out a color tone processing method for a long article having a metal surface.
 ファスナーの中には、丹銅、黄銅、洋白及びアルミなどの金属でエレメント(係合素子)を構成する金属ファスナーと呼ばれる種類の製品があり、中でも丹銅、黄銅、及び洋白に代表される銅-亜鉛合金を使用した金属製ファスナーは、価格、強度、硬度及び加工性をバランスよく兼備可能であるため多用されている。衣服や服飾品を取り扱うファッション分野においては、優れた機能性をもつのみならず物品のデザインに適合した意匠性もファスナーに要求される。そのため、金属ファスナーにおいても、様々な物品のデザインに対応できるように多数の色調をもつ金属製ファスナー部材を提供することが求められている。 Among fasteners, there are products called metal fasteners that make up elements (engagement elements) with metals such as red brass, brass, white and aluminum, among which representatives are red, brass, and white. Metal fasteners using copper-zinc alloys are widely used because they can balance price, strength, hardness and workability. In the fashion field that handles clothing and clothing, fasteners are required not only to have excellent functionality but also to have a design that matches the design of the article. Therefore, it is required to provide a metal fastener member having a large number of colors so that it can be used for various article designs.
 従来、金属表面の色調処理方法には、有機系塗料等により表面コーティングする方法、組成を変化させたり表面に異なる組成の金属をめっきしたりすることで色調を変化させる方法、及び、金属表面に何らかの化成処理を施すことにより表面を特定の色に着色する方法などがあるが、いずれも湿式処理によって色調処理を行うものが主流であった。 Conventionally, the method for color tone treatment of a metal surface includes a method of surface coating with an organic paint, a method of changing the color tone by changing the composition or plating a metal of a different composition on the surface, and There is a method of coloring the surface to a specific color by performing some chemical conversion treatment, and all of them are mainly performed by a color treatment by a wet treatment.
 例えば、特開2014-205871号公報(特許文献1)では、亜塩素酸塩系化成処理液中で浸漬処理することにより、表面の外観を青色の色調に着色させる処理方法が記載されている。具体的には、亜塩素酸塩類を0.5~250g/L、アルカリ金属の水酸化物を1~625g/L含有する亜塩素酸塩系化成処理液に銅系金属を浸漬処理することを特徴とする銅系金属表面の青色着色処理方法が記載されている。実施例においては、黄銅製のボタントップパーツ部材に対して銅めっきした後に、化成処理を実施したことが記載されている。 For example, Japanese Patent Application Laid-Open No. 2014-205881 (Patent Document 1) describes a treatment method in which the appearance of a surface is colored in a blue color by immersion in a chlorite-based chemical conversion treatment solution. Specifically, the copper-based metal is immersed in a chlorite-based chemical conversion treatment solution containing 0.5 to 250 g / L of chlorite and 1 to 625 g / L of an alkali metal hydroxide. A characteristic blue color treatment method for copper-based metal surfaces is described. In the Examples, it is described that a chemical conversion treatment was performed after copper plating was applied to a button top part member made of brass.
特開2014-205871号公報JP 2014-205881 A
 特許文献1に記載されるような化成処理を行えば、銅-亜鉛合金の表面を青色に着色することは可能である。しかしながら、本発明者の検討結果によれば、上記化成処理を銅-亜鉛合金製物品に対して行うと、摩擦堅牢度が低下するという問題が生じることを見出した。摩擦堅牢度を犠牲することなく、銅-亜鉛合金製物品を種々の色調に調整できることが銅-亜鉛合金製物品の幅広いラインナップを提供する上で望ましい。 If the chemical conversion treatment described in Patent Document 1 is performed, the surface of the copper-zinc alloy can be colored blue. However, according to the examination results of the present inventors, it has been found that when the above chemical conversion treatment is performed on an article made of a copper-zinc alloy, there arises a problem that the friction fastness is lowered. In order to provide a wide lineup of copper-zinc alloy articles, it is desirable to be able to adjust the copper-zinc alloy articles to various colors without sacrificing friction fastness.
 そこで、本発明は少なくとも表面が銅-亜鉛合金で構成されている基材を有する物品に対して色調処理を実施した後の摩擦堅牢度を改善することを課題の一つとする。 Therefore, an object of the present invention is to improve the fastness to friction after color tone treatment is performed on an article having a base material having at least a surface composed of a copper-zinc alloy.
 また、湿式処理によって色調処理を行う場合、化学薬品を大量に使用することから排水処理の負荷が増える、水資源の乏しい地域では実施することが困難である、薬品により色調処理装置の部品が腐食しやすい、といった各種問題がある。 In addition, when performing color tone processing by wet processing, the chemical treatment uses a large amount of chemicals, which increases the load of wastewater treatment, and is difficult to implement in areas where water resources are scarce. There are various problems such as being easy to do.
 そこで、本発明は湿式処理に比べて排水負荷を軽減することのできる色調処理のための装置を提供することを別の課題の一つとする。 Therefore, another object of the present invention is to provide an apparatus for color tone processing that can reduce the drainage load as compared with wet processing.
 本発明者は、銅-亜鉛合金表面に対して特許文献1に記載の方法で化成処理により色調処理後、銅-亜鉛合金の表面付近の断面を電子顕微鏡で観察したところ、当該断面は所々に空隙の見られるポーラス構造となっていることが分かった。ポーラス構造は、化成処理により表面付近で以下の化学反応:Zn+2OH-+2H2O→[Zn(OH)42-が起き、これによって脱亜鉛した結果によると推定される。 The present inventor observed the cross section near the surface of the copper-zinc alloy with an electron microscope after performing color tone treatment by chemical conversion treatment on the surface of the copper-zinc alloy, and the cross section was observed in various places. It was found that the porous structure had voids. It is presumed that the porous structure is caused by the following chemical reaction near the surface by the chemical conversion treatment: Zn + 2OH + 2H 2 O → [Zn (OH) 4 ] 2− , resulting in dezincification.
 本発明者は上記推論に基づき、色調が変化した銅-亜鉛合金製物品において摩擦堅牢度を改善するための表面構造について鋭意検討し、亜鉛が最表面に濃化した緻密な酸化層に色調を変化させる機能をもたせることが課題解決に有効であることを見出した。 Based on the above inference, the present inventor has intensively studied the surface structure for improving the friction fastness in a copper-zinc alloy article having a changed color tone, and has adjusted the color tone to a dense oxide layer in which zinc is concentrated on the outermost surface. It was found that providing a function to change is effective in solving the problem.
 本発明は上記の知見を基礎として完成されたものであり、一側面において、少なくとも表面が亜鉛を含有する銅合金で構成されている基材と、該基材表面に隣接する酸化層とを有し、該酸化層表面を基準にして、10nmの深さから20nmの深さまでの範囲における平均銅濃度に対する平均亜鉛濃度の比Aが該基材表面における平均銅濃度に対する平均亜鉛濃度の比Bよりも高い物品である。 The present invention has been completed on the basis of the above findings. In one aspect, the present invention includes a base material having at least a surface made of a copper alloy containing zinc, and an oxide layer adjacent to the surface of the base material. The ratio A of the average zinc concentration to the average copper concentration in the range from the depth of 10 nm to the depth of 20 nm with reference to the oxide layer surface is higher than the ratio B of the average zinc concentration to the average copper concentration on the substrate surface. Is also a high article.
 本発明に係る物品の一実施形態においては、前記基材表面の平均亜鉛濃度が5~50at.%である。 In an embodiment of the article according to the present invention, the average zinc concentration on the surface of the substrate is 5 to 50 at. %.
 本発明に係る物品の別の一実施形態においては、前記比Bに対する前記比Aの比A/Bが2.0以上である。 In another embodiment of the article according to the present invention, the ratio A / B of the ratio A to the ratio B is 2.0 or more.
 本発明に係る物品の更に別の一実施形態においては、基材全体が亜鉛を含有する銅合金で構成されている。 In yet another embodiment of the article according to the present invention, the entire substrate is made of a copper alloy containing zinc.
 本発明に係る物品の更に別の一実施形態においては、前記酸化層表面を基準にして、10nmの深さから20nmの深さまでの範囲における平均亜鉛濃度が5~80at.%である。 In yet another embodiment of the article according to the present invention, the average zinc concentration in the range from a depth of 10 nm to a depth of 20 nm is 5 to 80 at. %.
 本発明に係る物品の更に別の一実施形態においては、物品がスライドファスナー部材である。 In yet another embodiment of the article according to the present invention, the article is a slide fastener member.
 本発明は別の一側面において、本発明に係るスライドファスナー部材を備えたスライドファスナーである。 In another aspect, the present invention is a slide fastener including the slide fastener member according to the present invention.
 本発明は更に別の一側面において、少なくとも表面が亜鉛を含有する銅合金で構成されている基材を有する物品を少なくとも酸素の存在下で気相酸化することを含む物品の色調処理方法である。 In yet another aspect, the present invention is a color tone treatment method for an article, comprising vapor-phase oxidation of an article having a substrate made of a copper alloy containing zinc at least on the surface in the presence of at least oxygen. .
 本発明に係る色調処理方法の一実施形態においては、基材表面に隣接した酸化層であって、該酸化層表面を基準にして、10nmの深さから20nmの深さまでの範囲における平均銅濃度に対する平均亜鉛濃度の比Aが該基材表面における平均銅濃度に対する平均亜鉛濃度の比Bよりも高い酸化層を気相酸化によって形成することを含む。 In one embodiment of the color tone processing method according to the present invention, an average copper concentration in the range from a depth of 10 nm to a depth of 20 nm, which is an oxide layer adjacent to the surface of the base material. Forming an oxide layer by vapor phase oxidation in which the ratio A of the average zinc concentration to the A is higher than the ratio B of the average zinc concentration to the average copper concentration on the substrate surface.
 本発明に係る色調処理方法の別の一実施形態においては、気相酸化をアンモニアの存在下で実施する。 In another embodiment of the color tone processing method according to the present invention, the gas phase oxidation is performed in the presence of ammonia.
 本発明に係る色調処理方法の更に別の一実施形態においては、前記気相酸化による色調制御を、アンモニアの濃度、酸素の濃度、その他の反応性ガスの濃度、反応系内の湿度、反応系内の温度、処理時間、物品の温度よりなる群から選択される一種以上を変化させることにより行う。 In yet another embodiment of the color tone processing method according to the present invention, the color tone control by the gas phase oxidation is performed by adjusting the ammonia concentration, the oxygen concentration, the concentration of other reactive gases, the humidity in the reaction system, It is carried out by changing one or more selected from the group consisting of the temperature inside, the processing time, and the temperature of the article.
 本発明に係る色調処理方法の更に別の一実施形態においては、物品がファスナー部材である。 In yet another embodiment of the color tone processing method according to the present invention, the article is a fastener member.
 本発明に係る色調処理方法の更に別の一実施形態においては、前記気相酸化を20~80℃の雰囲気温度で実施する。 In yet another embodiment of the color tone processing method according to the present invention, the gas phase oxidation is performed at an ambient temperature of 20 to 80 ° C.
 本発明に係る色調処理方法の更に別の一実施形態においては、前記気相酸化を負圧下で実施する。 In yet another embodiment of the color tone processing method according to the present invention, the gas phase oxidation is performed under a negative pressure.
 本発明に係る色調処理方法の更に別の一実施形態においては、前記気相酸化を実施する前に、基材表面に対して活性化処理及び水洗を順に実施することを含む。 In yet another embodiment of the color tone processing method according to the present invention, before performing the gas phase oxidation, the substrate surface is sequentially subjected to activation treatment and water washing.
 本発明に係る色調処理方法の更に別の一実施形態においては、前記気相酸化を実施する前に、基材表面に対して脱脂及び水洗を順に実施することを含む。 In yet another embodiment of the color tone processing method according to the present invention, before the vapor phase oxidation is performed, degreasing and water washing are sequentially performed on the substrate surface.
 本発明に係る色調処理方法の更に別の一実施形態においては、前記気相酸化により形成された酸化層表面に、クリア塗装、防錆処理及びワックス掛けよりなる群から選択される少なくとも一以上の表面処理を実施することを含む。 In still another embodiment of the color tone processing method according to the present invention, at least one or more selected from the group consisting of clear coating, rust prevention treatment and waxing on the surface of the oxide layer formed by the gas phase oxidation. Performing a surface treatment.
 本発明は更に別の一側面において、入口及び出口を有する気相酸化を行うための気相反応チャンバー、少なくとも表面が金属からなる部分を少なくとも一部に備える長尺な部材が当該入口から入り気相反応チャンバー内を通過して当該出口から連続的に出るようにするための搬送機構、前記気相反応チャンバー内に気相酸化用ガスを供給するための吐出口、及び、前記気相反応チャンバー内の気体を当該チャンバー外に排出するための吸引口を備えた色調処理方法を実施するための気相酸化装置である。 According to still another aspect of the present invention, a gas phase reaction chamber for performing gas phase oxidation having an inlet and an outlet, and a long member having at least a part of which at least a surface is made of metal enter from the inlet. A transport mechanism for passing through a phase reaction chamber and continuously exiting from the outlet, a discharge port for supplying a gas-phase oxidizing gas into the gas-phase reaction chamber, and the gas-phase reaction chamber It is a gas phase oxidation apparatus for carrying out a color tone processing method provided with a suction port for discharging the gas inside the chamber.
 本発明に係る気相酸化装置の一実施形態においては、前記気相反応チャンバーの出口側及び入口側の何れか一方又は両方に、気相反応チャンバー内部のガスを遮断するための水シールユニットが設置されている。 In one embodiment of the gas phase oxidation apparatus according to the present invention, a water seal unit for shutting off gas inside the gas phase reaction chamber is provided at either or both of the outlet side and the inlet side of the gas phase reaction chamber. is set up.
 本発明に係る気相酸化装置の別の一実施形態においては、前記気相反応チャンバーの出口側のみに気相反応チャンバー内部のガスを外部と遮断するための水シールユニットが設置されている。 In another embodiment of the gas phase oxidation apparatus according to the present invention, a water seal unit for shutting off gas inside the gas phase reaction chamber from the outside is installed only on the outlet side of the gas phase reaction chamber.
 本発明に係る気相酸化装置の更に別の一実施形態においては、前記気相反応チャンバー内に供給された気相酸化用ガスが入口側から出口側に流れるように制御する気流制御機構を備える。 In yet another embodiment of the vapor phase oxidation apparatus according to the present invention, an air flow control mechanism is provided for controlling the vapor phase oxidation gas supplied into the vapor phase reaction chamber to flow from the inlet side to the outlet side. .
 本発明に係る気相酸化装置の更に別の一実施形態においては、前記気流制御機構は、前記気相反応チャンバー内に設置された気相酸化用ガスを供給するための少なくとも一つの吐出口と、当該チャンバー内のガスを当該チャンバー外に排出するための少なくとも一つの吸引口を備え、前記少なくとも一つの吸引口のうちすべての吸引口が、前記少なくとも一つの吐出口のうちすべての吐出口よりも出口側に配置される。 In still another embodiment of the vapor phase oxidation apparatus according to the present invention, the air flow control mechanism includes at least one discharge port for supplying a vapor phase oxidation gas installed in the vapor phase reaction chamber. , Including at least one suction port for discharging the gas in the chamber to the outside of the chamber, wherein all the suction ports of the at least one suction port are more than all the discharge ports of the at least one discharge port. Is also arranged on the exit side.
 本発明に係る気相酸化装置の更に別の一実施形態においては、前記搬送機構は、前記物品が気相反応チャンバー内を通過する方向として略鉛直上方向及び略鉛直下方向の一方又は両方が含まれるように構成されている。 In still another embodiment of the vapor phase oxidation apparatus according to the present invention, the transport mechanism may be configured such that one or both of a substantially vertical upward direction and a substantially vertical downward direction as a direction in which the article passes through the gas phase reaction chamber. It is configured to be included.
 本発明に係る気相酸化装置の更に別の一実施形態においては、前記気相反応チャンバーは入口側にある第1チャンバー、出口側にある第2チャンバー、及び、第1チャンバーと第2チャンバーの間にある第3チャンバーを備え、前記搬送機構は、前記物品が第1チャンバー、第3チャンバー及び第2チャンバー内を順次通過できるように構成されていると共に、前記物品が第3チャンバー内を通過する方向として略鉛直上方向及び略鉛直下方向の一方又は両方が含まれるように構成されている。 In yet another embodiment of the gas phase oxidation apparatus according to the present invention, the gas phase reaction chamber includes a first chamber on the inlet side, a second chamber on the outlet side, and a first chamber and a second chamber. A third chamber in between, and the transport mechanism is configured so that the article can sequentially pass through the first chamber, the third chamber, and the second chamber, and the article passes through the third chamber. One or both of a substantially vertical upward direction and a substantially vertical downward direction are included as the direction to perform.
 本発明に係る気相酸化装置の更に別の一実施形態においては、第3チャンバーは、第1チャンバー及び第2チャンバーと同一高さにある第3チャンバー上部と第3チャンバー上部よりも下側にある第3チャンバー下部を備え、前記搬送機構は、前記物品が第1チャンバー、第3チャンバー上部、第3チャンバー下部及び第2チャンバーを通過できるように構成されている。 In yet another embodiment of the vapor phase oxidation apparatus according to the present invention, the third chamber is located above the third chamber upper portion and the third chamber upper portion at the same height as the first chamber and the second chamber. A lower part of the third chamber is provided, and the transport mechanism is configured to allow the article to pass through the first chamber, the third chamber upper part, the third chamber lower part, and the second chamber.
 本発明に係る気相酸化装置の更に別の一実施形態においては、第3チャンバー下部に前記吐出口を少なくとも一つ備え、第2チャンバーに前記吸引口の少なくとも一つを備える。 In yet another embodiment of the vapor phase oxidation apparatus according to the present invention, at least one discharge port is provided in the lower portion of the third chamber, and at least one of the suction ports is provided in the second chamber.
 本発明に係る気相酸化装置の更に別の一実施形態においては、前記搬送機構は、前記物品が第3チャンバー内を通過する方向として略鉛直上方向及び略鉛直下方向の両方が含まれるように構成されている。 In still another embodiment of the vapor phase oxidation apparatus according to the present invention, the transport mechanism includes both a substantially vertical upward direction and a substantially vertical downward direction as directions in which the article passes through the third chamber. It is configured.
 本発明によれば、色調を変化させた表面が銅-亜鉛合金製の物品において摩擦堅牢度を改善することが可能となる。摩擦堅牢度は特に金属製ファスナー部材への適用を考える上では重要な特性であり、摩擦堅牢度を犠牲にすることなく銅-亜鉛合金製ファスナー部材に対して色調変化を付与可能であるというのは商業上意義が大きい。また、本発明によれば、酸化層を構成する酸化物の種類及びその比率を変えることで、銅-亜鉛合金を表面に有する物品を様々な色調に容易に変化させることが可能となる。また、本発明に係る物品においては表面近傍にZnが残存していることから、Znを利用して色調変化させることができるという利点も得られる。すなわち、従来の化成処理では表面近傍において脱亜鉛してしまうために色調変化に関与する元素がCu及びOが主体となっていたが、本発明によれば亜鉛が表面に残存するため、Cu及びOに加えてZnも色調変化に関与することができ、多彩な色調を得ることが可能となる。このため本発明は多彩な商品展開を可能とする点でも有利である。また、本発明に係る気相酸化装置は基本的に反応チャンバー内で水を使用する必要がない。 According to the present invention, it is possible to improve the friction fastness in an article made of a copper-zinc alloy whose surface has a changed color tone. Friction fastness is an important characteristic especially when considering application to metal fastener members, and it is possible to impart color change to copper-zinc alloy fastener members without sacrificing friction fastness. Is of great commercial significance. In addition, according to the present invention, it is possible to easily change an article having a copper-zinc alloy on the surface in various colors by changing the kind and ratio of the oxide constituting the oxide layer. Moreover, in the article according to the present invention, since Zn remains in the vicinity of the surface, there is also an advantage that the color tone can be changed using Zn. That is, in the conventional chemical conversion treatment, the elements involved in the color tone change are mainly Cu and O because dezincing near the surface. According to the present invention, since zinc remains on the surface, Cu and In addition to O, Zn can also participate in the color tone change, and various color tones can be obtained. For this reason, this invention is advantageous also in the point which enables various goods expansion | deployment. Moreover, the vapor phase oxidation apparatus according to the present invention basically does not require the use of water in the reaction chamber.
本発明に係る物品の断面構造の一例を模式的に示した図である。It is the figure which showed typically an example of the cross-section of the article | item concerning this invention. 本発明に係る物品の断面構造の別の一例を模式的に示した図である。It is the figure which showed typically another example of the cross-section of the article | item concerning this invention. 試験例3のエレメント表面に対してAES分析を行ったときの、O、Cu及びZnの原子濃度のデプスプロファイルを示すグラフである。10 is a graph showing a depth profile of atomic concentrations of O, Cu, and Zn when AES analysis is performed on the element surface of Test Example 3. FIG. 試験例6のエレメント表面に対してAES分析を行ったときの、O、Cu及びZnの原子濃度のデプスプロファイルを示すグラフである。10 is a graph showing a depth profile of atomic concentrations of O, Cu, and Zn when AES analysis is performed on the element surface of Test Example 6. FIG. 本発明に係る気相酸化装置の第一実施形態を示す正面模式図である。1 is a schematic front view showing a first embodiment of a vapor phase oxidation apparatus according to the present invention. 本発明に係る気相酸化装置の第二実施形態を示す正面模式図である。It is a front schematic diagram which shows 2nd embodiment of the gaseous-phase oxidation apparatus which concerns on this invention. 本発明に係る気相酸化装置の第三実施形態を示す正面模式図である。It is a front schematic diagram which shows 3rd embodiment of the vapor-phase oxidation apparatus which concerns on this invention. 本発明に係る色調処理システムの装置構成例を示す正面模式図である。It is a front schematic diagram which shows the apparatus structural example of the color tone processing system which concerns on this invention.
<1.物品>
 本発明に係る物品は一実施形態において、少なくとも表面が亜鉛を含有する銅合金で構成されている基材を有する。亜鉛を含有する銅合金としては、黄銅、丹銅及び洋白などの銅-亜鉛合金や銅-亜鉛-ニッケル合金が強度、コスト及び加工性の観点で優れており好適に使用可能である。例えば、亜鉛を含有する銅合金はZnを1~40質量%、好ましくは4~40質量%含有し、Ni、Be、Mo、Al、Sn、Pb、Mn、Fe、P及びSから選択される一種以上を0~10質量%含有し、残部銅及び不可避的不純物からなる組成とすることができる。基材は少なくとも表面が亜鉛を含有する銅合金で構成されていればよく、積層構造によって内部が樹脂やセラミック等で構成されている場合を含む。もちろん基材は表面のみならず内部も含めて全体が亜鉛を含有する銅合金で構成されてもよい。
<1. Article>
In one embodiment, an article according to the present invention has a base material having at least a surface made of a copper alloy containing zinc. As the copper alloy containing zinc, copper-zinc alloys such as brass, red copper, and white and copper-zinc-nickel alloys are excellent in terms of strength, cost, and workability, and can be suitably used. For example, the copper alloy containing zinc contains 1 to 40% by mass, preferably 4 to 40% by mass of Zn, and is selected from Ni, Be, Mo, Al, Sn, Pb, Mn, Fe, P and S. One or more elements may be contained in an amount of 0 to 10% by mass, and the composition may be composed of the balance copper and inevitable impurities. The base material should just be comprised by the copper alloy in which the surface contains zinc at least, and the case where the inside is comprised by resin, ceramic, etc. by laminated structure is included. Of course, the substrate may be composed of a copper alloy containing zinc as a whole including not only the surface but also the inside.
 本発明に係る物品の用途及び種類に特に制限はないが、典型的な実施形態においては金属製ファスナー部材とすることができる。金属製ファスナーとしては、例えばスライドファスナー及びスナップファスナーなどが挙げられる。また金属ファスナー以外の分野としては、ボールチェーンなどが挙げられる。スライドファスナー用の部材としては、限定的ではないが、エレメント(係合素子)、スライダー、引手、上止め、下止め及び開離嵌挿具が挙げられる。スナップファスナー用の部材としては、雄側エレメント及び雌側エレメントが挙げられる。金属製ファスナー部材は、上記のようにファスナー製品に取り付けられる最終的な部品形状であってもよく、形状加工前のワイヤ、板、管、棒等の形態であってもよい。 Although there are no particular restrictions on the use and type of the article according to the present invention, a metal fastener member can be used in a typical embodiment. Examples of the metal fastener include a slide fastener and a snap fastener. Further, as a field other than metal fasteners, ball chains and the like can be cited. Examples of the member for the slide fastener include, but are not limited to, an element (engagement element), a slider, a handle, an upper stopper, a lower stopper, and a release fitting. Examples of the member for the snap fastener include a male element and a female element. The metal fastener member may be in the final part shape to be attached to the fastener product as described above, or may be in the form of a wire, a plate, a tube, a rod or the like before being processed.
 図1には、本発明に係る物品の一実施形態について、断面構造を模式的に示している。物品10は基材11と、該基材11の表面に隣接する酸化層12を有する。本実施形態においては、酸化層12における平均銅濃度に対する平均亜鉛濃度の比Aが基材11の表面における平均銅濃度に対する平均亜鉛濃度の比Bよりも高い。つまり、酸化層12において亜鉛が濃化している。このことは酸化層12において脱亜鉛が生じていないことを意味し、これにより酸化層12がポーラス構造を呈するのを抑制可能である。酸化層12の平均亜鉛濃度及び平均銅濃度はAES(オージェ電子分光法)により、酸化層表面からArイオンエッチングにより深さ方向に元素組成分析を行い、Cu、Zn及びOの原子数の合計を100%としたときの、酸化層表面を基準にして10nmの深さから20nmの深さまでの範囲のZnの平均原子濃度及びCuの平均原子濃度でそれぞれ表現される。本発明において、AESによる深さ方向の組成分析したときの深さは、SiO2標準物質のエッチング速度8.0nm/minを用いてスパッタ時間から換算したときの深さを指す(以下も同様である。)。なお、酸化層12の上に後述する仕上げ層13がなければ酸化層12が最表層となる。 FIG. 1 schematically shows a cross-sectional structure of an embodiment of an article according to the present invention. The article 10 has a base material 11 and an oxide layer 12 adjacent to the surface of the base material 11. In the present embodiment, the ratio A of the average zinc concentration to the average copper concentration in the oxide layer 12 is higher than the ratio B of the average zinc concentration to the average copper concentration on the surface of the substrate 11. That is, zinc is concentrated in the oxide layer 12. This means that dezincification does not occur in the oxide layer 12, and it is possible to suppress the oxide layer 12 from exhibiting a porous structure. The average zinc concentration and average copper concentration of the oxide layer 12 are analyzed by elemental analysis in the depth direction by Ar ion etching from the oxide layer surface by AES (Auger Electron Spectroscopy), and the total number of atoms of Cu, Zn and O is calculated. It is expressed by the average atomic concentration of Zn and the average atomic concentration of Cu in the range from a depth of 10 nm to a depth of 20 nm with reference to the oxide layer surface when 100%. In the present invention, the depth when the composition analysis in the depth direction by AES refers to the depth when converted from the sputtering time using the etching rate of 8.0 nm / min of the SiO 2 standard material (the same applies to the following). is there.). Note that if there is no finishing layer 13 to be described later on the oxide layer 12, the oxide layer 12 becomes the outermost layer.
 本発明に係る物品の好ましい実施形態においては、基材11の表面における前記比Bに対する酸化層12における前記比Aの比A/Bが1.0より大きく、当該比は1.5以上とすることもでき、2.0以上とすることもでき、例えば1.2~3.0とすることができる。 In a preferred embodiment of the article according to the present invention, the ratio A / B of the ratio A in the oxide layer 12 to the ratio B on the surface of the substrate 11 is greater than 1.0, and the ratio is 1.5 or more. It can also be 2.0 or more, for example, 1.2 to 3.0.
 本発明に係る物品の一実施形態においては、酸化層12の表面を基準にして、10nmの深さから20nmの深さまでの範囲における平均亜鉛濃度は5at.%以上であり、より典型的な実施形態では10at.%以上である。本発明に係る物品の一実施形態においては、酸化層12の表面を基準にして、10nmの深さから20nmの深さまでの範囲における平均亜鉛濃度は80at.%以下であり、より典型的な実施形態では60at.%以下であり、更により典型的な実施形態では40at.%以下であり、更により典型的な実施形態では30at.%以下である。酸化層12の平均亜鉛濃度は酸化層表面からAES(オージェ電子分光法)により深さ方向に組成分析し、Cu、Zn及びOの原子数の合計を100%としたときの、Znの平均原子濃度で表される。 In one embodiment of the article according to the present invention, the average zinc concentration in the range from a depth of 10 nm to a depth of 20 nm with reference to the surface of the oxide layer 12 is 5 at. % Or more, and in a more typical embodiment 10 at. % Or more. In one embodiment of the article according to the present invention, the average zinc concentration in the range from a depth of 10 nm to a depth of 20 nm, based on the surface of the oxide layer 12, is 80 at. % Or less, and in a more typical embodiment 60 at. % Or less, and in an even more typical embodiment 40 at. % Or less, and in an even more typical embodiment, 30 at. % Or less. The average zinc concentration of the oxide layer 12 is determined by analyzing the composition from the surface of the oxide layer in the depth direction by AES (Auger electron spectroscopy), and the total number of atoms of Cu, Zn and O is 100%. Expressed in concentration.
 本発明に係る物品の一実施形態においては、酸化層12の表面を基準にして、10nmの深さから20nmの深さまでの範囲における平均酸素濃度は20at.%以上であり、典型的な実施形態では20~60at.%であり、より典型的な実施形態では30~50at.%である。酸化層12の平均酸素濃度は酸化層表面からAES(オージェ電子分光法)により深さ方向に組成分析し、Cu、Zn及びOの原子数の合計を100%としたときの、Oの平均原子濃度で表される。 In one embodiment of the article according to the present invention, the average oxygen concentration in the range from a depth of 10 nm to a depth of 20 nm with reference to the surface of the oxide layer 12 is 20 at. % And in typical embodiments 20-60 at. %, And in a more typical embodiment 30-50 at. %. The average oxygen concentration of the oxide layer 12 is determined by composition analysis in the depth direction from the surface of the oxide layer by AES (Auger electron spectroscopy), and the total number of Cu, Zn and O atoms is 100%. Expressed in concentration.
 本発明において、酸化層と基材の境界は、AES(オージェ電子分光法)により、酸化層表面から基材に向かって深さ方向に組成分析し、Cu、Zn及びOの原子数の合計を100%としたときに、Oの原子濃度が5at.%以下に最初に到達する深さ地点を指す。なお、酸化層の上に更に別の層(仕上げ層)が形成される場合があり、その場合の酸化層表面(別の層と酸化層の境界)の定義は後述する。 In the present invention, the boundary between the oxide layer and the substrate is analyzed by AES (Auger Electron Spectroscopy) in the depth direction from the oxide layer surface toward the substrate, and the total number of atoms of Cu, Zn, and O is calculated. When the atomic concentration of O is 5 at. Points to the first depth point to reach below%. In addition, another layer (finishing layer) may be formed on the oxide layer, and the definition of the surface of the oxide layer (between another layer and the oxide layer) in that case will be described later.
 基材表面における平均亜鉛濃度は強度を高めるという理由により、5at.%以上であることが好ましく、10at.%以上であることがより好ましい。また、基材表面における平均亜鉛濃度は加工性を高めるという理由により、50at.%以下であることが好ましく、40at.%以下であることがより好ましい。基材表面における平均亜鉛濃度及び平均銅濃度は、AES(オージェ電子分光法)により基材表面から20nmの深さまで深さ方向に組成分析し、Cu、Zn及びOの原子数の合計を100%としたときの、基材表面から当該深さまでのZnの平均原子濃度及びCuの平均原子濃度でそれぞれ表現される。 The average zinc concentration on the substrate surface is 5 at. % Or more, preferably 10 at. % Or more is more preferable. In addition, the average zinc concentration on the substrate surface is 50 at. % Or less, preferably 40 at. % Or less is more preferable. The average zinc concentration and average copper concentration on the substrate surface were analyzed in the depth direction from the substrate surface to a depth of 20 nm by AES (Auger Electron Spectroscopy), and the total number of Cu, Zn and O atoms was 100%. The average atomic concentration of Zn and the average atomic concentration of Cu from the surface of the substrate to the depth are expressed respectively.
 基材全体が亜鉛を含有する銅合金で構成されている場合も、基材全体における平均亜鉛濃度は強度を高めるという理由により、5at.%以上であることが好ましく、10at.%以上であることがより好ましい。また、基材全体における平均亜鉛濃度は加工性を高めるという理由により、50at.%以下であることが好ましく、40at.%以下であることがより好ましい。基材全体における平均亜鉛濃度は、基材全体におけるCu、Zn及びOの原子数の合計を100%としたときのZnの原子濃度で表現され、蛍光X線分析装置により分析可能である。 Even when the whole substrate is made of a copper alloy containing zinc, the average zinc concentration in the whole substrate is 5 at. % Or more, preferably 10 at. % Or more is more preferable. Moreover, the average zinc concentration in the whole substrate is 50 at. % Or less, preferably 40 at. % Or less is more preferable. The average zinc concentration in the entire substrate is expressed by the atomic concentration of Zn when the total number of Cu, Zn and O atoms in the entire substrate is 100%, and can be analyzed by a fluorescent X-ray analyzer.
 図2には、本発明に係る物品の別の一実施形態について、断面構造を模式的に示している。物品20は基材11と、該基材11の表面に隣接する酸化層12と、該酸化層12の表面に隣接する仕上げ層13を有する。本実施形態が図1の実施形態と異なるのは、酸化層12の上に仕上げ層13が形成されている点である。仕上げ層13としてはクリアラッカー、防錆剤及びワックスなどの1種又は2種以上の表面処理剤によって形成される少なくとも一層以上の表面処理層が挙げられる。表面処理面剤は単独で使用してもよいし、二種以上を混合して使用してもよい。また、仕上げ層は一層でもよいし、複数層で形成してもよい。 FIG. 2 schematically shows a cross-sectional structure of another embodiment of the article according to the present invention. The article 20 has a base material 11, an oxide layer 12 adjacent to the surface of the base material 11, and a finishing layer 13 adjacent to the surface of the oxide layer 12. This embodiment is different from the embodiment of FIG. 1 in that a finishing layer 13 is formed on the oxide layer 12. Examples of the finishing layer 13 include at least one or more surface treatment layers formed of one or more surface treatment agents such as a clear lacquer, a rust inhibitor, and a wax. The surface-treated surface preparations may be used alone or in combination of two or more. The finishing layer may be a single layer or a plurality of layers.
 クリアラッカー塗装用の薬品としては、特に制限されないが、例えば、アクリル樹脂、ポリエステル樹脂、アルキド樹脂、ウレタン樹脂、エポキシ樹脂などから選択される1種又は2種以上の樹脂成分と、ブロックポリイソシアネート、メラミン樹脂、尿素樹脂などから選択される1種又は2種以上の架橋剤と、その他の添加剤とを、有機溶剤又は水に溶解又は分散させて調製したものが挙げられる。防錆処理用の薬品としては、特に制限されないが、例えばベンゾトリアゾール系、リン酸エステル系、及びイミダゾール系が挙げられる。ワックス用の薬品としては、特に限定されないが、通常はパラフィンを主成分とすることができ、必要に応じて慣用のワックス成分を添加可能である。 Although it does not restrict | limit especially as a chemical | medical agent for clear lacquer coating, For example, 1 type, or 2 or more types of resin components selected from an acrylic resin, a polyester resin, an alkyd resin, a urethane resin, an epoxy resin, etc., block polyisocyanate, Examples thereof include one prepared by dissolving or dispersing one or two or more kinds of crosslinking agents selected from melamine resin, urea resin and the like and other additives in an organic solvent or water. Although it does not restrict | limit especially as a chemical | medical agent for a rust prevention process, For example, a benzotriazole type | system | group, a phosphate ester type | system | group, and an imidazole type | system | group are mentioned. Although it does not specifically limit as a chemical | medical agent for wax, Usually, a paraffin can be made into a main component and a conventional wax component can be added as needed.
 仕上げ層が存在する場合、酸化層12における平均銅濃度及び平均亜鉛濃度、並びに、基材11の表面における平均銅濃度及び平均亜鉛濃度は、仕上げ層を深さ方向にエッチングしながら基材表面までAES分析することで測定することができる。また、仕上げ層が厚い場合は、仕上げ層を酸化層の手前まで除去した後に同様に深さ方向にAES分析することで測定することができる。 When the finishing layer is present, the average copper concentration and the average zinc concentration in the oxide layer 12 and the average copper concentration and the average zinc concentration on the surface of the base material 11 are measured up to the base material surface while etching the finishing layer in the depth direction. It can be measured by AES analysis. Further, when the finishing layer is thick, it can be measured by removing the finishing layer just before the oxide layer and similarly performing AES analysis in the depth direction.
 仕上げ層は場合によっては、剥離剤によって除去することができる。剥離剤としては例えば商品名「エスバックH-300」(佐々木化学薬品製)に物品を常温にて一晩程度浸漬させることで剥離できる。なお、仕上げ層の厚さにともない剥離剤の浸漬時間は変更可能である。但し、仕上げ層に加えて酸化層まで除去すると、仕上げ層と酸化層の境界が消失するため、仕上げ層が一部残る程度に仕上げ層を除去するのが望ましい。 The finishing layer can be removed with a release agent in some cases. As the release agent, for example, the product can be released by immersing the article in the trade name “Esvac H-300” (manufactured by Sasaki Chemical) at room temperature overnight. In addition, the immersion time of the release agent can be changed according to the thickness of the finishing layer. However, if the oxide layer is removed in addition to the finish layer, the boundary between the finish layer and the oxide layer disappears. Therefore, it is desirable to remove the finish layer so that a part of the finish layer remains.
 仕上げ層と酸化層の境界はCu及びZn濃度の変化で識別可能である。仕上げ層中にはCu及びZnはほとんど検出されないが、酸化層中にはCu及びZnが多く検出される。そこで、本明細書においては、深さ方向にAES分析したときのCu及びZnの原子濃度の合計が1%以上に最初に到達する深さ地点を仕上げ層と酸化層の境界と定義する。Cu及びZnの原子濃度はCu、Zn及びOの合計原子数に対するCu及びZnのそれぞれの原子数の比率で表される。 The boundary between the finish layer and the oxide layer can be identified by changes in Cu and Zn concentrations. Cu and Zn are hardly detected in the finished layer, but much Cu and Zn are detected in the oxide layer. Therefore, in this specification, the depth point where the sum of the atomic concentrations of Cu and Zn when the AES analysis in the depth direction first reaches 1% or more is defined as the boundary between the finishing layer and the oxide layer. The atomic concentration of Cu and Zn is represented by the ratio of the number of atoms of Cu and Zn to the total number of atoms of Cu, Zn and O.
<2.物品の製造方法>
 本発明に係る物品は例えば上記基材表面を気相酸化することで製造可能である。気相酸化は有害物質による環境負荷や排水処理コストの問題を著しく軽減し、更に酸化反応条件が容易に変更可能であるため、単一設備で多色化が可能である点で有利である。以下、気相酸化の具体的実施態様について詳述する。気相酸化は基材の単独部材に実施することもでき、基材が他の部品に結合した状態のものに対して実施することもできる。例えば、基材がスライドファスナーのエレメントの場合、スライドファスナーのエレメントの列がファスナーテープに取着したファスナーストリンガーや、一対のファスナーストリンガーのエレメントの列同士を噛み合わせたファスナーチェーンに対して気相酸化を実施することができる。
<2. Manufacturing method of article>
The article according to the present invention can be manufactured, for example, by subjecting the surface of the base material to vapor phase oxidation. Vapor phase oxidation is advantageous in that it can remarkably reduce the environmental load caused by harmful substances and wastewater treatment costs, and the oxidation reaction conditions can be easily changed. Hereinafter, specific embodiments of the gas phase oxidation will be described in detail. Vapor phase oxidation can be performed on a single member of the base material, or can be performed on the base material bonded to other parts. For example, when the base material is a slide fastener element, gas phase oxidation is applied to a fastener stringer in which a row of slide fastener elements is attached to a fastener tape or a fastener chain in which a pair of fastener stringer element rows are engaged with each other. Can be implemented.
(2-1 前処理)
 基材の表面を気相酸化する前に、前処理を行うことが好ましい。前処理の種類に応じて、気相酸化の反応性向上や均一性向上といった効果が得られるからである。具体的な前処理の方法としては、例えば金属活性化処理が挙げられる。金属活性化処理を行うことで気相酸化時の反応効率が向上させることが可能である。
(2-1 Pretreatment)
Pretreatment is preferably performed before vapor phase oxidation of the surface of the substrate. This is because the effect of improving the reactivity and uniformity of gas phase oxidation can be obtained depending on the kind of pretreatment. Specific examples of the pretreatment method include metal activation treatment. By performing the metal activation treatment, the reaction efficiency during the gas phase oxidation can be improved.
 金属活性化処理の方法としては、湿式及び乾式の両方がある。
 湿式法としては、酸性又はアルカリ性の水溶液を基材の表面に接触させて処理する方法が挙げられる。酸性の水溶液としては、塩酸、硫酸、硝酸、クロム酸、燐酸等の無機酸の水溶液や、酢酸、二塩基酸(シュウ酸、マロン酸、コハク酸、アスパラギン酸等の有機酸の水溶液が挙げられる。アルカリ性の水溶液としては、アンモニア水、NaOH水溶液、炭酸ソーダ、ケイ酸ソーダ等が挙げられる。これらの中でも、処理後の酸化被膜等の除去性の面から酸性では塩酸、アルカリ性ではNaOH水溶液が好ましい。酸性又はアルカリ性の水溶液を基材の表面に接触させる方法としては、限定的ではないが、当該水溶液中への基材の浸漬、基材への当該水溶液の噴霧、滴下、塗布、ロールコート及び流し掛けなどが挙げられる。
 乾式法としては、例えばプラズマ処理(例:O2プラズマ処理)、UVオゾン法、マルコマイジング法、ハロゲン系ガス処理等が挙げられる。
 湿式及び乾式の何れの場合であっても、金属活性化処理の後には、残留成分の除去から水洗を行うことが望ましい。
There are both wet and dry methods for the metal activation treatment.
Examples of the wet method include a method in which an acidic or alkaline aqueous solution is brought into contact with the surface of the base material for treatment. Examples of acidic aqueous solutions include aqueous solutions of inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, chromic acid, and phosphoric acid, and aqueous solutions of organic acids such as acetic acid and dibasic acids (oxalic acid, malonic acid, succinic acid, and aspartic acid). Examples of the alkaline aqueous solution include ammonia water, NaOH aqueous solution, sodium carbonate, sodium silicate, etc. Among these, hydrochloric acid is preferable for acidity and NaOH aqueous solution is preferable for alkalinity from the viewpoint of removal of the oxide film after treatment. The method of bringing the acidic or alkaline aqueous solution into contact with the surface of the substrate is not limited, but immersion of the substrate in the aqueous solution, spraying, dropping, coating, roll coating of the aqueous solution on the substrate, and For example, a sink.
Examples of the dry method include plasma treatment (eg, O 2 plasma treatment), UV ozone method, marcomizing method, halogen-based gas treatment, and the like.
In either case of wet type or dry type, it is desirable to carry out water washing from the removal of residual components after the metal activation treatment.
 上述した前処理を行う前に、前処理の効果を高めるために基材に対して脱脂及び水洗処理を更に行うことが好ましい。脱脂方法は公知の任意の方法を採用すればよいが、脱脂剤を基材の表面に、浸漬、拭き取り、ブラッシング、噴霧等により接触させる方法が挙げられる。浸漬の際には脱脂効果を高めるために揺動や超音波を加えてもよい。更に、脱脂及び水洗処理前には化学研磨処理、鍍金処理、物理研磨処理、予備脱脂処理等の慣用の表面処理を実施してもよい。 Before performing the pretreatment described above, it is preferable to further perform degreasing and water washing treatment on the base material in order to enhance the effect of the pretreatment. Any known degreasing method may be employed as the degreasing method, and examples thereof include a method in which the degreasing agent is brought into contact with the surface of the substrate by dipping, wiping, brushing, spraying, or the like. In soaking, rocking or ultrasonic waves may be added to enhance the degreasing effect. Furthermore, conventional surface treatments such as chemical polishing treatment, plating treatment, physical polishing treatment, and preliminary degreasing treatment may be performed before the degreasing and water washing treatment.
(2-2 気相酸化)
 気相酸化の方法としては、基材の表面に所定の酸化層を形成することのできる方法であれば特に制限はない。気相酸化の方法には各種の方法が考えられる。例えば、銅及び亜鉛を酸素の存在下で酸化する場合、以下のような化学反応が進行して酸化銅及び酸化亜鉛に変化し得る。気相酸化の条件を変化させることで基材表面のCu及びZnの酸化状態が変化し、これにより種々の色調を調整することが可能である。
 ・Cu+1/2O2→Cu2O(1価)→CuO(2価)
 ・Zn+1/2O2→ZnO(2価)
 しかしながら、低温条件下では酸化反応の速度は遅いため、酸化を促進することが好ましい。酸化を促進するために加熱温度を上げてもよいが、基材が耐熱性の低い他の材質と組み合わせられているとき、例えば基材がスライドファスナーのエレメントであるときにファスナーチェーンの状態で気相酸化するときには、合成繊維製のファスナーテープ等の耐熱温度以下で実施する必要があるなど制約がある。このため、低温条件下でも酸化反応を促進するために、アンモニア(NH3)を酸化促進剤として添加することが好ましい。
(2-2 Gas phase oxidation)
The method for vapor phase oxidation is not particularly limited as long as it can form a predetermined oxide layer on the surface of the substrate. Various methods can be considered for the gas phase oxidation method. For example, when copper and zinc are oxidized in the presence of oxygen, the following chemical reaction proceeds to change into copper oxide and zinc oxide. By changing the conditions of the gas phase oxidation, the oxidation state of Cu and Zn on the surface of the base material changes, whereby various color tones can be adjusted.
・ Cu + 1 / 2O 2 → Cu 2 O (monovalent) → CuO (divalent)
・ Zn + 1 / 2O 2 → ZnO (divalent)
However, since the rate of the oxidation reaction is low under low temperature conditions, it is preferable to promote oxidation. The heating temperature may be increased to promote oxidation, but when the base material is combined with another material having low heat resistance, for example, when the base material is a slide fastener element, When phase oxidation is performed, there is a restriction that it is necessary to perform the heat treatment at a temperature lower than the heat resistant temperature of a synthetic fiber fastener tape or the like. For this reason, in order to promote the oxidation reaction even under low temperature conditions, it is preferable to add ammonia (NH 3 ) as an oxidation accelerator.
 従って、本発明に係る基材の色調処理方法の好ましい実施形態においては、前記気相酸化を酸素及びアンモニアの存在下で実施する。酸素の供給方法としては、特に制限はないが、例えば空気、酸素ガス、酸素ガスと不活性ガス(窒素や希ガスなど)の混合ガスの形態で供給する方法が挙げられ、コストの理由により空気の形態で供給する方法が好ましい。 Therefore, in a preferred embodiment of the color tone treatment method for a substrate according to the present invention, the gas phase oxidation is carried out in the presence of oxygen and ammonia. The method for supplying oxygen is not particularly limited, and examples thereof include a method of supplying in the form of air, oxygen gas, mixed gas of oxygen gas and inert gas (nitrogen, rare gas, etc.). The method of supplying in the form of is preferable.
 アンモニアは安価で世界各国で入手可能な汎用ガスで、アンモニアは加熱分解(NH3→1/2N2+3/2H2)により窒素(N2)及び水素(H2)に変換可能であり、水素は更に水に変換可能である(H2→H2O)。このため、クリーンな排ガスを排出することができる。また、気相酸化後に物品を水洗することで生じ得るアンモニア含有水は中和して硫安(肥料原料)に変換可能である。このように、アンモニアは経済性が高く、環境負荷も少ない物質である。 Ammonia is a cheap and universal gas that can be obtained all over the world. Ammonia can be converted to nitrogen (N 2 ) and hydrogen (H 2 ) by thermal decomposition (NH 3 → 1 / 2N 2 + 3 / 2H 2 ). Can be further converted to water (H 2 → H 2 O). For this reason, clean exhaust gas can be discharged. Further, the ammonia-containing water that can be produced by washing the article after vapor phase oxidation can be neutralized and converted to ammonium sulfate (fertilizer raw material). As described above, ammonia is a substance that is highly economical and has a low environmental impact.
 気相酸化は例えば0~100℃で実施することができ、室温でも実施可能である。このため、特段の冷却コストや加熱コストをかけずに実施することができるが、反応促進のために若干加熱することが好ましい。そのため、気相反応は20℃以上の雰囲気温度で実施することが好ましく、30℃以上の雰囲気温度で実施することがより好ましい。 Vapor phase oxidation can be performed at 0 to 100 ° C., for example, and can be performed at room temperature. For this reason, although it can implement without special cooling cost and heating cost, it is preferable to heat a little for acceleration of reaction. For this reason, the gas phase reaction is preferably performed at an atmospheric temperature of 20 ° C. or higher, and more preferably performed at an atmospheric temperature of 30 ° C. or higher.
 また、気相酸化は大気圧下で実施可能であり、減圧下や加圧下で実施する必要はない。しかし、安全性の観点から反応室内を負圧にしてアンモニア等の内部ガスの漏洩を防ぐことが好ましい。このため、気相酸化は減圧化下(大気圧から少し負圧)で実施することが好ましい。 In addition, gas phase oxidation can be performed under atmospheric pressure and does not need to be performed under reduced pressure or under pressure. However, from the viewpoint of safety, it is preferable to prevent leakage of internal gas such as ammonia by making the reaction chamber have a negative pressure. For this reason, it is preferable to carry out the gas phase oxidation under reduced pressure (from atmospheric pressure to slightly negative pressure).
 理論によって本発明が限定されることを意図するものではないが、基材の表面に適度に水分(H2O)が存在する(湿潤状態)と、NH3はNH4 +にイオン化し、NH4 +がファスナー部材の表面の金属(例えば、Cu及びZn)に結合して酸化反応が促進すると推察される。Cuの酸化を例にとると以下のような反応が速やかに進行することにより酸化が促進されると考えられる。色調は、金属の酸化物や水酸化物の生成により変化する。例えば、Cu2Oは赤褐色、CuOは黒色、Cu(OH)2は青色を呈する。
 ・NH3+H2O→NH4 ++OH-
 ・Cu+1/2O2+4NH3+H2O→[Cu(NH342++2OH-
 ・Cu2++2OH-→Cu(OH)2
 ・Cu(OH)2+O2→Cu2O→CuO+H2
 更に、アンモニアリッチの条件では下式の反応が進み、青みを帯びる。
 ・Cu(OH)2+4NH3→[Cu(NH34](OH)2
 更に、強過酸化剤の過酸化水素が存在すると下記酸化反応が迅速に進行し色調安定化を図ることができる。
 ・Cu+H22+4NH3→[Cu(NH342++2OH-
Although not intending that the invention be limited by theory, moderately water (H 2 O) present on the surface of the substrate and (wet state), NH 3 is ionized to NH 4 +, NH It is presumed that 4 + binds to the metal (for example, Cu and Zn) on the surface of the fastener member to promote the oxidation reaction. Taking the oxidation of Cu as an example, it is considered that the following reaction proceeds promptly to promote the oxidation. The color tone changes due to the formation of metal oxides and hydroxides. For example, Cu 2 O is reddish brown, CuO is black, and Cu (OH) 2 is blue.
・ NH 3 + H 2 O → NH 4 + + OH
Cu + 1 / 2O 2 + 4NH 3 + H 2 O → [Cu (NH 3 ) 4 ] 2 ++ 2OH
Cu 2+ + 2OH → Cu (OH) 2
Cu (OH) 2 + O 2 → Cu 2 O → CuO + H 2 O
Further, under the ammonia rich condition, the reaction of the following formula proceeds and becomes bluish.
Cu (OH) 2 + 4NH 3 → [Cu (NH 3 ) 4 ] (OH) 2
Further, when hydrogen peroxide, which is a strong peroxide, is present, the following oxidation reaction proceeds rapidly, and the color tone can be stabilized.
Cu + H 2 O 2 + 4NH 3 → [Cu (NH 3 ) 4 ] 2+ + 2OH
 上記反応においては、Cuより酸素との親和性の良いZnの酸化物(標準生成自由エネルギーΔG CuO(-14)>Cu2O(-35)>ZnO(-76)が最表層に形成されると推測される。このため、銅-亜鉛合金が基材の表面を形成しているときに気相酸化を実施すると、最表層における亜鉛比率(Zn/Cu)が母材である銅-亜鉛合金の組成よりも高くなる傾向にある。理論によって本発明が限定されることを意図するものではないが、この反応メカニズムにより、酸化層においてZnが濃化することで緻密な酸化層が形成されると考えられる。 In the above reaction, an oxide of Zn (standard generation free energy ΔG CuO (−14)> Cu 2 O (−35)> ZnO (−76)) having a better affinity for oxygen than Cu is formed in the outermost layer. Therefore, when vapor phase oxidation is performed while the copper-zinc alloy forms the surface of the base material, the copper-zinc alloy whose zinc ratio (Zn / Cu) in the outermost layer is the base material Although it is not intended that the present invention be limited by theory, this reaction mechanism forms a dense oxide layer by enriching Zn in the oxide layer. it is conceivable that.
 上記の反応の際、アンモニアの濃度、酸素の濃度、その他の反応性ガスの濃度、反応系内の湿度、反応系内の温度、処理時間、物品の温度よりなる群から選択される一種以上を変化させることにより色調の制御を行うことができる。これらのパラメータを変更するだけで、同一の設備を使用しながら多色化が容易に実現可能となる。 In the above reaction, at least one selected from the group consisting of ammonia concentration, oxygen concentration, concentration of other reactive gases, humidity in the reaction system, temperature in the reaction system, treatment time, and article temperature. The color tone can be controlled by changing the color tone. By simply changing these parameters, multicolorization can be easily realized while using the same equipment.
 Cu-Zn合金表面に対して色調処理する場合、例えばアルカリを使用する従来の化成処理による着色では、Znが溶出する脱Zn反応(Zn+2OH-+2H2O→[Zn(OH)42-+H2)と、Cu及びZnの酸化反応とが同時に行われており、酸化膜は脱Zn反応(イオン化傾向:Cu<Zn)によるポーラス構造となるため色調のバラツキが大きく、摩擦堅牢度の性能低下になり得る。ところが、気相酸化によれば、気相反応で亜鉛は酸化されるだけであり(Zn+1/2O2→ZnO)、脱亜鉛しないためマクロなボイドは観察されず、化成処理よりも緻密な膜構造が得られるので、摩擦堅牢度を向上させることが可能である。 When the color tone treatment is performed on the Cu—Zn alloy surface, for example, in the coloring by the conventional chemical conversion treatment using an alkali, the Zn-elution reaction (Zn + 2OH + 2H 2 O → [Zn (OH) 4 ] 2 + + H 2 ) and the oxidation reaction of Cu and Zn are carried out at the same time, and the oxide film has a porous structure due to the Zn removal reaction (ionization tendency: Cu <Zn). Can be. However, according to the gas phase oxidation, zinc is only oxidized by the gas phase reaction (Zn + 1 / 2O 2 → ZnO), and since there is no dezincification, macro voids are not observed and the film structure is denser than the chemical conversion treatment. Thus, it is possible to improve the fastness to friction.
 更なる多色化を図るために、酸化物及び/又は水酸化物のみならず、金属の炭酸塩、硫化物、硫酸塩等の化合物の一種以上を更にファスナー部材表面に生成させてもよい。銅の場合、炭酸塩は黄・緑・青色、硫化物は黒色、硫酸塩は青色を呈色する。これら金属化合物の組成比及び表面反応の深さを変化させることでより多くの色調に変化させることが可能となる。各種金属化合物をファスナー部材表面に生成させる方法としては、前処理や気相酸化時に所望の金属化合物を生成させる反応物質を添加する方法が挙げられる。 In order to further increase the number of colors, not only oxides and / or hydroxides but also one or more compounds such as metal carbonates, sulfides and sulfates may be generated on the surface of the fastener member. In the case of copper, carbonates are yellow, green, and blue, sulfides are black, and sulfates are blue. By changing the composition ratio of these metal compounds and the depth of the surface reaction, it is possible to change to more colors. Examples of the method of generating various metal compounds on the surface of the fastener member include a method of adding a reactive substance that generates a desired metal compound during pretreatment or gas phase oxidation.
 例えば、気相酸化のために供給するガスとして、水中又は目的とする色に着色可能な所望の化合物を溶解させた水溶液中にバブリングにした後のガスを使用することで、ガスが湿気を帯びるため、色調を変化させることもできる。気相酸化時にハロゲンガス(Cl2、Br2等)、二酸化炭素(CO2)、過酸化水素等を添加することもできる。金属活性化処理時に、目的とする色に着色可能な所望の化合物の水溶液を使用することによっても色調を調整することもできる。水溶液としては、塩酸、硫酸、ペルオキソ二硫酸、硝酸、クロム酸、燐酸等の無機酸の水溶液や、酢酸、二塩基酸等(シュウ酸、マロン酸、コハク酸、アスパラギン酸等)の有機酸の水溶液、炭酸塩、硫酸塩、ペルオキソ二硫酸塩、硫化物等の塩の水溶液、過酸化水素水などが挙げられる。 For example, as a gas to be supplied for gas phase oxidation, gas is wetted by using a gas after bubbling in water or an aqueous solution in which a desired compound that can be colored in a target color is dissolved. Therefore, the color tone can be changed. Halogen gas (Cl 2 , Br 2, etc.), carbon dioxide (CO 2 ), hydrogen peroxide, etc. can be added during the gas phase oxidation. The color tone can also be adjusted by using an aqueous solution of a desired compound that can be colored to the target color during the metal activation treatment. Examples of aqueous solutions include aqueous solutions of inorganic acids such as hydrochloric acid, sulfuric acid, peroxodisulfuric acid, nitric acid, chromic acid and phosphoric acid, and organic acids such as acetic acid and dibasic acids (oxalic acid, malonic acid, succinic acid, aspartic acid, etc.). Examples include aqueous solutions, carbonates, sulfates, peroxodisulfates, aqueous solutions of salts such as sulfides, and hydrogen peroxide.
 気相酸化後は、基材の表面に付着している未反応成分(例:アンモニア)を水洗することが残留成分の除去の観点から好ましい。また、気相酸化後は、必要に応じて、防錆処理、クリアラッカー塗装、ワックス掛け等の表面処理を一種又は二種以上行うことができる。限定的ではないが、表面処理は各表面処理液への浸漬、表面処理液の噴霧、滴下、塗布、ロールコート及び流し掛けなどによって行うことが可能である。 After vapor phase oxidation, it is preferable from the viewpoint of removing residual components that the unreacted components (eg, ammonia) adhering to the surface of the substrate are washed with water. In addition, after the gas phase oxidation, one or more surface treatments such as rust prevention treatment, clear lacquer coating, and waxing can be performed as necessary. Although not limited, the surface treatment can be performed by immersion in each surface treatment liquid, spraying of the surface treatment liquid, dropping, coating, roll coating, and pouring.
 このように、本発明によれば、少なくとも表面が亜鉛を含有する銅合金で構成されている基材を有する物品を酸素の存在下で気相酸化することにより、基材表面に隣接した酸化層であって、該酸化層における平均銅濃度に対する平均亜鉛濃度の比Aが該基材表面における平均銅濃度に対する平均亜鉛濃度の比Bよりも高い酸化層を形成することを含む物品の色調処理方法が提供される。更に、本発明によれば、上述した色調処理方法を使用することを含むファスナーの製造方法が提供される。本発明に係る色調処理が施されたファスナー部材を用いてスライドファスナーやスナップファスナーを慣用の手段により作製することができる。例えば、ファスナー部材がスライドファスナー用のエレメントである場合、ファスナーチェーンまで組み立てた状態で本発明に係る色調処理を行った上で、慣用の手段によりスライダー、引手、上止め、下止め、開離嵌挿具等の部品を適宜取り付けることでスライドファスナーが完成する。 Thus, according to the present invention, an oxide layer adjacent to the surface of the base material is obtained by subjecting an article having a base material, at least the surface of which is made of a copper alloy containing zinc, to gas phase oxidation in the presence of oxygen. A method for color-treating an article comprising forming an oxide layer in which the ratio A of the average zinc concentration to the average copper concentration in the oxide layer is higher than the ratio B of the average zinc concentration to the average copper concentration on the substrate surface Is provided. Furthermore, according to this invention, the manufacturing method of a fastener including using the color tone processing method mentioned above is provided. A slide fastener and a snap fastener can be produced by a conventional means using the fastener member subjected to the color tone processing according to the present invention. For example, when the fastener member is an element for a slide fastener, the color tone processing according to the present invention is performed in a state where the fastener chain is assembled, and then a slider, a pull handle, an upper stopper, a lower stopper, and an open / close fit by conventional means. A slide fastener is completed by appropriately attaching parts such as an insert.
(2-3 気相酸化装置)
 次に、少なくとも表面が金属からなる部分を少なくとも一部に備える長尺な部材を処理対象として、処理対象を連続的に色調処理する際の好適な気相酸化装置の構成例について説明する。
 少なくとも一部分に金属を含む長尺な部材としては、金属製ファスナー部材がエレメントであり、長尺ファスナーテープの一側縁にエレメントの列が取着されたファスナーストリンガーを備えたスライドファスナー部品(ファスナーチェン)、又は、金属製のボールが連なったボールチェーン、又は、ワイヤ状の金属製ファスナー部材、又は金属製のワイヤー部材が挙げられる。更にはファスナーチェンにスライダーや上止め、下止め等の部品が取り付けられたスライドファスナー組立品も挙げられる。当該装置により、金属製ファスナー部材を長手方向に連続的に搬送しながら大気圧又は負圧に維持された反応室内に導入し、反応室内で当該部材表面の気相酸化を行い、その後、当該部材を反応室の出口から排出することを含む少なくとも表面が金属からなる部分を少なくとも一部に備える長尺な部材の色調処理方法が実施可能である。
(2-3 Gas phase oxidation equipment)
Next, a description will be given of a configuration example of a gas phase oxidation apparatus suitable for performing continuous color tone processing on a long object having at least a part of which the surface is made of metal as a processing target.
As a long member including at least a part of metal, a metal fastener member is an element, and a slide fastener component (fastener chain) including a fastener stringer in which a row of elements is attached to one side edge of a long fastener tape. ), Or a ball chain in which metal balls are connected, a wire-like metal fastener member, or a metal wire member. Furthermore, a slide fastener assembly in which parts such as a slider, an upper stopper, and a lower stopper are attached to the fastener chain is also included. The apparatus introduces the metal fastener member into the reaction chamber maintained at atmospheric pressure or negative pressure while continuously conveying the metal fastener member in the longitudinal direction, performs vapor phase oxidation of the member surface in the reaction chamber, and then the member It is possible to implement a color tone processing method for a long member including at least a part of which at least a surface is made of a metal, including discharging from the outlet of the reaction chamber.
<2-3-1 第一実施形態>
 本発明に係る色調処理に使用可能な気相酸化装置の構成例について説明する。なお、装置に関する具体例の説明においては、処理対象を長尺ファスナーテープの一側縁にエレメントの列が取着された一対のファスナーストリンガーが対向するエレメントの列同士で噛合することで得られたスライドファスナーチェーンを例として説明する。
<2-3-1 First Embodiment>
A configuration example of a gas phase oxidation apparatus that can be used for color tone processing according to the present invention will be described. In the description of the specific examples relating to the apparatus, the object to be treated was obtained by engaging a pair of fastener stringers in which a row of elements was attached to one side edge of a long fastener tape between opposing rows of elements. A slide fastener chain will be described as an example.
 図5には第一実施形態に係る気相酸化装置110の正面図が模式的に示されている。気相酸化装置110は、上流側の水シールユニット116、入口115in及び出口115outを有する気相反応チャンバー115、気相酸化用ガス供給系統114、下流側の水シールユニット116、搬送機構122、ガス吸引装置113、アンモニアガス分解装置112を備えており、これらの機器の動作を制御装置118で制御可能となっている。気相酸化用ガスと接触する箇所はステンレス、とりわけオーステナイト系ステンレスとすることにより耐食性を確保することができる。 FIG. 5 schematically shows a front view of the vapor phase oxidation apparatus 110 according to the first embodiment. The gas phase oxidation apparatus 110 includes an upstream water seal unit 116, a gas phase reaction chamber 115 having an inlet 115in and an outlet 115out, a gas phase oxidation gas supply system 114, a downstream water seal unit 116, a transport mechanism 122, and a gas. A suction device 113 and an ammonia gas decomposition device 112 are provided, and the operation of these devices can be controlled by the control device 118. Corrosion resistance can be ensured by using stainless steel, particularly austenitic stainless steel, for the portion in contact with the gas phase oxidizing gas.
 ファスナーチェーン120は、搬送機構122により気相酸化装置110の内部にある気相反応チャンバー115を矢印の方向に連続的に通過する。搬送機構122は複数のガイドローラー122aを備えており、ファスナーチェーン120は、複数のガイドローラー122aに案内されながら気相反応チャンバー115を通過する。複数のガイドローラー122aのうち、一つ以上のガイドローラーはモータ等の駆動源に連結されてそれ自体がファスナーチェーン120の駆動源となってもよい。また、気相酸化装置110の下流側外部に駆動源122bを設け、外部からの牽引方式でファスナーチェーン120を搬送してもよい。 The fastener chain 120 continuously passes through the gas phase reaction chamber 115 inside the gas phase oxidation apparatus 110 in the direction of the arrow by the transport mechanism 122. The transport mechanism 122 includes a plurality of guide rollers 122a, and the fastener chain 120 passes through the gas phase reaction chamber 115 while being guided by the plurality of guide rollers 122a. Of the plurality of guide rollers 122a, one or more guide rollers may be connected to a drive source such as a motor and the drive roller itself may be a drive source for the fastener chain 120. Further, the drive source 122b may be provided outside the gas phase oxidation apparatus 110 and the fastener chain 120 may be conveyed by a pulling system from the outside.
 第一実施形態における気相酸化用ガス供給系統114はガス貯蔵ユニット114a、ガス配管114b、及びガス吐出口114cを有する。ガス貯蔵ユニット114a内に貯蔵されている気相酸化用ガスは、ガス配管114bを通り、ガス吐出口114cから気相反応チャンバー115内へと供給される。気相反応用ガスが複数種類ある場合、ガス貯蔵ユニットを複数設けてもよい。第一実施形態においては、ガス貯蔵ユニット114aの他に、ガス貯蔵ユニット114dが設けられており、ガス貯蔵ユニット114dからの気相酸化用ガスはガス配管114bを通る間にガス貯蔵ユニット114aからの気相酸化用ガスと予め混合される。例示的には、ガス貯蔵ユニット114aからアンモニアを、ガス貯蔵ユニット114dから空気をそれぞれ貯蔵することができる。空気はガス貯蔵ユニットに代えてコンプレッサーからの圧縮空気を利用することもできる。 The gas-phase oxidation gas supply system 114 in the first embodiment includes a gas storage unit 114a, a gas pipe 114b, and a gas discharge port 114c. The gas-phase oxidizing gas stored in the gas storage unit 114a passes through the gas pipe 114b and is supplied from the gas discharge port 114c into the gas-phase reaction chamber 115. When there are a plurality of gas phase reaction gases, a plurality of gas storage units may be provided. In the first embodiment, in addition to the gas storage unit 114a, a gas storage unit 114d is provided, and the gas-phase oxidizing gas from the gas storage unit 114d passes from the gas storage unit 114a while passing through the gas pipe 114b. Premixed with gas for gas phase oxidation. Illustratively, ammonia can be stored from the gas storage unit 114a and air can be stored from the gas storage unit 114d. The air may be compressed air from a compressor instead of the gas storage unit.
 ガス吐出口114cは一つでもよいが反応効率を高めるために複数設けることもできる。また、ファスナーチェーン120の表裏間での色調の均一性を高めるために、ガス吐出口114cはファスナーチェーン120の両面側に設置することが好ましい。もちろん、ファスナーチェーン120の表裏間で色調に変化を与えたい場合にはファスナーチェーン120の一方の面側にのみガス吐出口114cを設置することも可能である。第一実施形態においては、ガス吐出口114cはファスナーチェーン120の搬送方向に沿って気相反応チャンバー115にファスナーチェーン120の上面側及び下面側の両方に交互に複数配列されている。 There may be one gas discharge port 114c, but a plurality of gas discharge ports 114c may be provided in order to increase reaction efficiency. Further, in order to improve the uniformity of the color tone between the front and back of the fastener chain 120, the gas discharge ports 114c are preferably installed on both sides of the fastener chain 120. Of course, when it is desired to change the color tone between the front and back of the fastener chain 120, the gas discharge port 114c can be provided only on one surface side of the fastener chain 120. In the first embodiment, a plurality of gas discharge ports 114 c are alternately arranged in both the upper surface side and the lower surface side of the fastener chain 120 in the gas phase reaction chamber 115 along the conveying direction of the fastener chain 120.
 ファスナーチェーン120は気相反応チャンバー115を通過中に気相酸化用ガスの存在下で酸化反応に基づく色調処理を受ける。気相反応チャンバー115内のガスは、ブロア等のガス吸引装置113によって出口付近に設置された吸引口121から吸引され、配管123を通って気相反応チャンバー115外に排出され、アンモニアガス分解装置112で未反応のアンモニアがH2OとN2に分解された後に装置110外に排出される。アンモニアガスの分解方式は特に制限はなく、触媒分解式、燃焼式、ガス分解式、湿式スクラバー式等が挙げられる。また、アンモニアガス分解装置は必要に応じて設けるのが好ましいが、本発明においては必ずしも必須のものではない。 While passing through the gas phase reaction chamber 115, the fastener chain 120 is subjected to a color tone process based on an oxidation reaction in the presence of a gas phase oxidizing gas. The gas in the gas phase reaction chamber 115 is sucked from a suction port 121 installed in the vicinity of the outlet by a gas suction device 113 such as a blower, discharged through the pipe 123 to the outside of the gas phase reaction chamber 115, and an ammonia gas decomposing device. At 112, unreacted ammonia is decomposed into H 2 O and N 2 and then discharged out of the apparatus 110. The method for decomposing ammonia gas is not particularly limited, and examples thereof include a catalytic decomposition method, a combustion method, a gas decomposition method, and a wet scrubber method. In addition, the ammonia gas decomposing apparatus is preferably provided as necessary, but is not necessarily essential in the present invention.
 吐出口114cからのガス吐出量よりも吸引口121からのガス吸引量が多くなるようにガス吸引装置113の吸引力を設定することにより、気相反応チャンバー115内は負圧に維持することができる。これにより、気相反応チャンバー115内のガスが外部に漏洩することを防止できる。しかしながら、より一定の濃度を持つ雰囲気化で安定的に気相処理するために前記気相反応チャンバー115の入口115in側(上流側)及び/又は出口115out側(下流側)に水シールユニット116を設置することが好ましい。気相処理槽内の機密性を考慮した場合、水シールユニット116は入口115in側及び出口115out側の一方のみに設置してもよいが、少なくとも出口側には設置することが好ましく、両側に設置することがより好ましい。ただし、入口115in側に水シールユニット116を設置するとファスナーチェーン120が濡れるため、気相酸化による色調処理時に色むらが出やすい。このため、色むらを防止する観点からは入口115in側には水シールユニット116を設置しないほうが好ましい。この場合、気相反応チャンバー115内が負圧に維持されていると、空気が気相反応チャンバー115に入り込むようになる。このため、空気はガス配管114bを介さずに供給することも可能であり、ガス配管114bからの空気と合わせて供給することも可能である。 By setting the suction force of the gas suction device 113 so that the gas suction amount from the suction port 121 is larger than the gas discharge amount from the discharge port 114c, the gas phase reaction chamber 115 can be maintained at a negative pressure. it can. Thereby, it is possible to prevent the gas in the gas phase reaction chamber 115 from leaking to the outside. However, a water seal unit 116 is provided on the inlet 115in side (upstream side) and / or the outlet 115out side (downstream side) of the gas phase reaction chamber 115 in order to stably perform a gas phase treatment in an atmosphere having a more constant concentration. It is preferable to install. In consideration of confidentiality in the gas phase treatment tank, the water seal unit 116 may be installed only on one of the inlet 115in side and the outlet 115out side, but is preferably installed at least on the outlet side, and installed on both sides. More preferably. However, when the water seal unit 116 is installed on the inlet 115in side, the fastener chain 120 is wetted, so that color unevenness is likely to occur during color tone processing by gas phase oxidation. For this reason, it is preferable not to install the water seal unit 116 on the inlet 115in side from the viewpoint of preventing uneven color. In this case, when the gas phase reaction chamber 115 is maintained at a negative pressure, air enters the gas phase reaction chamber 115. For this reason, it is also possible to supply air without going through the gas pipe 114b, and it is also possible to supply air together with the air from the gas pipe 114b.
 一方で、非常時には水封することができるほうが安全管理上、有利である。このため、第一実施形態においては水シールユニット116が入口115in側及び出口側の両側に設置されているが、通常運転時は出口115out側のみ水封されており、入口115in側は水封されていない。 On the other hand, it is advantageous in terms of safety management that it can be sealed in an emergency. For this reason, in the first embodiment, the water seal units 116 are installed on both the inlet 115in side and the outlet side, but during normal operation, only the outlet 115out side is sealed and the inlet 115in side is sealed. Not.
 気相酸化装置110は、気相反応チャンバー115内に供給された気相酸化用ガスが入口115in側から出口115out側に流れるように制御する気流制御機構を備えていることが好ましい。このような気流制御機構を備えていることは、出口115out側の水シールユニット116が水封に使用されている一方で、入口115in側に水シールユニット116が設置されていないか設置されていても水封に使用されていない場合にガス漏洩防止の観点から特に有効である。一方、後述する第三実施例が該当するが、入口115in側の水シールユニット116が水封に使用され、出口115out側に水シールユニット116が設置されていないか設置されていても水封に使用されていない場合は、気相反応チャンバー115内に供給された気相酸化用ガスが出口115out側から入口115in側に流れるように制御することが好ましい。 The vapor phase oxidation apparatus 110 preferably includes an air flow control mechanism that controls the gas phase oxidation gas supplied into the gas phase reaction chamber 115 to flow from the inlet 115in side to the outlet 115out side. Having such an airflow control mechanism is that the water seal unit 116 on the outlet 115out side is used for water sealing, while the water seal unit 116 is not installed on the inlet 115in side. This is particularly effective from the viewpoint of preventing gas leakage when not used for water sealing. On the other hand, the third embodiment to be described later is applicable, but the water seal unit 116 on the inlet 115in side is used for water sealing, and the water sealing unit 116 is not installed on the outlet 115out side or even if it is installed. When not used, it is preferable to control the gas-phase oxidizing gas supplied into the gas-phase reaction chamber 115 to flow from the outlet 115out side to the inlet 115in side.
 気流制御機構に特に制限はないが、第一実施形態においては、気流制御機構は、気相反応チャンバー115内に設置された気相酸化用ガスを供給するための少なくとも一つの吐出口114cと、当該チャンバー115内のガスを当該チャンバー115外に排出するための少なくとも一つの吸引口121を備える。そして、少なくとも一つの吸引口121のうち最も出口側に近い吸引口は、少なくとも一つの吐出口114cの何れよりも出口115out側に配置されることにより、気相反応チャンバー115内に供給された気相酸化用ガスは入口115in側から出口115out側に流れる。好ましい実施形態においては、少なくとも一つの吸引口121のすべてが、少なくとも一つの吐出口114cの何れよりも出口115out側に配置される。そして、少なくとも一つの吐出口114cからの合計ガス吐出量よりも、少なくとも一つの吸引口121からの合計ガス吸引量を大きくすることで、気相反応チャンバー115内が負圧になり、ガス漏洩を防止することができる。 Although there is no particular limitation on the airflow control mechanism, in the first embodiment, the airflow control mechanism includes at least one discharge port 114c for supplying gas for oxidizing gas phase installed in the gas phase reaction chamber 115, At least one suction port 121 for discharging the gas in the chamber 115 to the outside of the chamber 115 is provided. The suction port closest to the outlet side among the at least one suction port 121 is arranged on the outlet 115out side with respect to any of the at least one discharge port 114c, so that the gas supplied into the gas phase reaction chamber 115 is supplied. The phase oxidizing gas flows from the inlet 115in side to the outlet 115out side. In a preferred embodiment, all of the at least one suction port 121 is disposed on the outlet 115out side with respect to any of the at least one discharge port 114c. Then, by making the total gas suction amount from at least one suction port 121 larger than the total gas discharge amount from at least one discharge port 114c, the inside of the gas phase reaction chamber 115 becomes negative pressure and gas leakage is prevented. Can be prevented.
 水シールユニット116(出口)を通過してファスナーチェーン120が気相反応チャンバー115から排出されることで、気相反応チャンバー115内のガスを外部から遮断しながらファスナーチェーン120を排出可能となる。また、気相酸化装置110の外気側にはNH3センサー(図示せず)を設置してもよい。NH3が流出するとNH3センサー(図示せず)が感知し、制御装置118からの指令によりNH3の供給を停止することができる。 By passing the water seal unit 116 (exit) and the fastener chain 120 being discharged from the gas phase reaction chamber 115, the fastener chain 120 can be discharged while blocking the gas in the gas phase reaction chamber 115 from the outside. Further, an NH 3 sensor (not shown) may be installed on the outside air side of the vapor phase oxidation apparatus 110. When NH 3 flows out, an NH 3 sensor (not shown) senses it, and the supply of NH 3 can be stopped by a command from the control device 118.
 また、制御装置118は気相反応チャンバー115内に気相酸化用ガス貯蔵ユニット114a、114dから吐出口114cを通って供給される気相酸化用ガスの流量を制御することができ、気相反応チャンバー115内のガス濃度を制御可能である。気相酸化装置110は恒温調湿ボックス内に設置することができ、こうすることで温度及び湿度が制御された空気を気相酸化装置110に導入可能である。また、気相反応チャンバー115内の温度は加熱ユニット(図示せず)により制御可能である。 Further, the control device 118 can control the flow rate of the gas-phase oxidizing gas supplied from the gas-phase oxidizing gas storage units 114a and 114d through the discharge port 114c into the gas-phase reaction chamber 115. The gas concentration in the chamber 115 can be controlled. The gas-phase oxidizer 110 can be installed in a constant temperature and humidity control box, so that air whose temperature and humidity are controlled can be introduced into the gas-phase oxidizer 110. The temperature in the gas phase reaction chamber 115 can be controlled by a heating unit (not shown).
 ファスナーチェーン120は、搬送機構122により移送されながら、水シールユニット(上流)116(通常運転時は水封されておらず、非常時のみ水封される。)を通って気相反応チャンバー115内に入ると、気相反応チャンバー115内に供給された気相酸化用ガスが、適宜前処理を受けたファスナーチェーン120のエレメント表面を構成する銅合金と反応し、上述した反応機構によって色調変化する。その後、ファスナーチェーン120は、搬送機構122により移送されながら、水シールユニット(下流)116を通って、気相酸化装置110から排出される。ファスナーチェーン120に付着した未反応ガスは水シールユニット(下流)116を通る際に水中に浸漬されるので洗浄除去される。 The fastener chain 120 passes through a water seal unit (upstream) 116 (not sealed during normal operation, but sealed only in an emergency) while being transferred by the transport mechanism 122. When entering, the gas-phase oxidizing gas supplied into the gas-phase reaction chamber 115 reacts with the copper alloy constituting the element surface of the fastener chain 120 that has been appropriately pretreated, and changes its color tone by the reaction mechanism described above. . Thereafter, the fastener chain 120 is discharged from the vapor phase oxidation apparatus 110 through the water seal unit (downstream) 116 while being transferred by the transport mechanism 122. Since the unreacted gas adhering to the fastener chain 120 passes through the water seal unit (downstream) 116 and is immersed in water, it is washed away.
<2-3-2 第二実施形態>
 図6には第二実施形態に係る気相酸化装置210の正面図が模式的に示されている。図6中の参照符号は、特に断りがない限り、第一実施形態で説明した参照符号と同一の意味を有するため、説明を省略する。第二実施形態に係る気相酸化装置210は設置面積を小さくする際に有効な実施形態である。平面方向の設置スペースが小さい場合に特に有利な実施形態といえる。なお、第二実施形態においても制御装置は存在するが図示を省略してある。
<2-3-2 Second Embodiment>
FIG. 6 schematically shows a front view of the vapor phase oxidation apparatus 210 according to the second embodiment. The reference numerals in FIG. 6 have the same meaning as the reference numerals described in the first embodiment unless otherwise specified, and thus the description thereof is omitted. The vapor phase oxidation apparatus 210 according to the second embodiment is an embodiment effective in reducing the installation area. This embodiment can be said to be particularly advantageous when the installation space in the plane direction is small. In addition, although a control apparatus exists also in 2nd embodiment, illustration is abbreviate | omitted.
 第二実施形態において、気相反応チャンバー115は入口側にある第1チャンバー115a、出口側にある第2チャンバー115b、及び、第1チャンバー115aと第2チャンバー115bの間にある第3チャンバー115cを備える。搬送機構122は、前記物品が第1チャンバー115a、第3チャンバー115c及び第2チャンバー115b内を順次通過できるように構成されていると共に、ファスナーチェーン120が第3チャンバー115c内を通過する方向として鉛直上方向及び鉛直下方向の一方又は両方が含まれるようにガイドローラー122aを有することができる。なお、ファスナーチェーン120は気相酸化装置210の下流側外部に設置された駆動源122bにより搬送される。 In the second embodiment, the gas phase reaction chamber 115 includes a first chamber 115a on the inlet side, a second chamber 115b on the outlet side, and a third chamber 115c between the first chamber 115a and the second chamber 115b. Prepare. The transport mechanism 122 is configured so that the article can sequentially pass through the first chamber 115a, the third chamber 115c, and the second chamber 115b, and the direction in which the fastener chain 120 passes through the third chamber 115c is vertical. The guide roller 122a can be included so as to include one or both of the upward direction and the downward vertical direction. The fastener chain 120 is transported by a drive source 122b installed outside the downstream side of the vapor phase oxidation apparatus 210.
 気相反応チャンバー115を通過する際のファスナーチェーン120の搬送距離を同一条件とした場合、ファスナーチェーン120が搬送される方向として鉛直上方向及び/又は鉛直下方向が存在することで、水平方向へ搬送される距離が短くなり、これにより気相酸化装置210の設置面積を小さくすることが可能となる。 When the transport distance of the fastener chain 120 when passing through the gas phase reaction chamber 115 is set to the same condition, a vertical upward direction and / or a vertical downward direction exist as directions in which the fastener chain 120 is transported, so that the horizontal direction is reached. The transport distance is shortened, which makes it possible to reduce the installation area of the vapor phase oxidation apparatus 210.
 第二実施形態において、第3チャンバー115cは、第1チャンバー115a及び第2チャンバー115bと同一高さにある第3チャンバー上部115c1と第3チャンバー上部よりも下側にある第3チャンバー下部115c2を備え、前記搬送機構122は、ファスナーチェーン120が第1チャンバー115a、第3チャンバー上部115c1、第3チャンバー下部115c2及び第2チャンバー115bを通過できるように構成されている。 In the second embodiment, the third chamber 115c includes a third chamber upper portion 115c1 that is the same height as the first chamber 115a and the second chamber 115b, and a third chamber lower portion 115c2 that is below the third chamber upper portion. The transport mechanism 122 is configured such that the fastener chain 120 can pass through the first chamber 115a, the third chamber upper portion 115c1, the third chamber lower portion 115c2, and the second chamber 115b.
 第二実施形態において、ファスナーチェーン120は第1チャンバー内を水平方向に通過した後、第3チャンバー115cに入る。ファスナーチェーン120は第3チャンバー115c内で第3チャンバー上部115c1と第3チャンバー下部115c2を鉛直方向への移動を伴いながら複数回往復(第二実施形態においては往復回数2回)した後に第2チャンバー115bに入り、その後、出口側の水シールユニット116を通過して気相酸化装置210から排出される。 In the second embodiment, the fastener chain 120 passes through the first chamber in the horizontal direction and then enters the third chamber 115c. The fastener chain 120 reciprocates the third chamber upper portion 115c1 and the third chamber lower portion 115c2 in the third chamber 115c a plurality of times while moving in the vertical direction (in the second embodiment, the number of reciprocations is two times), and then the second chamber. 115b, and then passes through the water seal unit 116 on the outlet side and is discharged from the vapor phase oxidizer 210.
 第3チャンバー115c内での鉛直方向への搬送距離の割合を増やせば増やすほど気相酸化装置210の設置面積は小さくすることが可能である。省設置スペースの観点からは、第3チャンバー115c内でのファスナーチェーン120の鉛直方向への搬送距離の合計d1が第1チャンバー115a及び第2チャンバー115b内での水平方向への搬送距離の合計d2よりも長くなるようにすることが好ましく、d1/d≧2であることがより好ましく、d1/d2≧3であることがより好ましく、d1/d2≧4であることが更により好ましい。d1/d2の上限は特にないが、d1/d2≦20になるのが通常であり、d1/d2≦10になるのが典型的である。 The installation area of the vapor phase oxidation apparatus 210 can be reduced as the ratio of the conveyance distance in the vertical direction in the third chamber 115c is increased. From the viewpoint of saving installation space, the total transport distance d1 in the vertical direction of the fastener chain 120 in the third chamber 115c is the total transport distance d2 in the horizontal direction in the first chamber 115a and the second chamber 115b. Longer, more preferably d1 / d ≧ 2, more preferably d1 / d2 ≧ 3, and even more preferably d1 / d2 ≧ 4. There is no particular upper limit for d1 / d2, but it is normal that d1 / d2 ≦ 20, and typically d1 / d2 ≦ 10.
 第3チャンバー下部115c2に設置するガイドローラー122はダンサローラとすることが可能である。ダンサローラを上下動させることにより、搬送されるファスナーチェーン120に対する張力を調整する手段として活用できる。また、ファスナーチェーン120の種類に合わせてダンサローラの上下方向の設置箇所を変更することで、ファスナーチェーン120が気相反応チャンバー115内を通過する距離を調整することも可能である。これにより、ファスナーチェーン120の搬送速度を変化させることなく処理時間を変化させることができるようになり、色の濃淡に変化を付与しやすいという利点も得られる。 The guide roller 122 installed in the third chamber lower part 115c2 can be a dancer roller. By moving the dancer roller up and down, it can be used as means for adjusting the tension on the conveyed fastener chain 120. It is also possible to adjust the distance that the fastener chain 120 passes through the gas phase reaction chamber 115 by changing the vertical installation location of the dancer roller according to the type of the fastener chain 120. As a result, the processing time can be changed without changing the conveying speed of the fastener chain 120, and there is also an advantage that it is easy to give a change in the color shade.
 第3チャンバー下部115c2には気相酸化用ガスの吐出口114cが少なくとも一つ設置されていることが好ましく、第3チャンバー下部115c2でファスナーチェーン120が通過する最下点よりも低い位置に気相酸化用ガスの吐出口114cが少なくとも一つ設置されていることがより好ましい。これにより、第3チャンバー下部115c2内での気相酸化用ガスの濃度の均一性を高めることができる。 It is preferable that at least one gas-phase oxidizing gas discharge port 114c is provided in the third chamber lower portion 115c2, and the gas phase is located at a position lower than the lowest point through which the fastener chain 120 passes in the third chamber lower portion 115c2. More preferably, at least one oxidizing gas outlet 114c is provided. Thereby, the uniformity of the concentration of the gas for gas phase oxidation in the third chamber lower portion 115c2 can be improved.
 第3チャンバー115cには気相酸化用ガスが流入するため、第3チャンバー115c内の気相酸化用ガスの濃度が第1チャンバー115a及び第2チャンバー115bよりも高くなりやすい。第3チャンバー115cが第1チャンバー115a及び第2チャンバー115bの間に配置されていることにより、気相酸化用ガスが装置外部に漏洩する危険性が少なくなり、気相酸化装置210の安全性を高めている。 Since the gas-phase oxidizing gas flows into the third chamber 115c, the concentration of the gas-phase oxidizing gas in the third chamber 115c tends to be higher than that of the first chamber 115a and the second chamber 115b. Since the third chamber 115c is disposed between the first chamber 115a and the second chamber 115b, the risk of the gas-phase oxidation gas leaking outside the device is reduced, and the safety of the gas-phase oxidation device 210 is reduced. It is increasing.
 また、第二実施形態においては、出口側にのみ水シールユニット116が設置されている。このため、ガス漏洩防止の観点から、気相酸化装置210は、出口側の第2チャンバー115b内に吸引口121の少なくとも一つを備えることが好ましく、第2チャンバー115b内にのみ吸引口121を備えることがより好ましい。第二実施形態においては、第3チャンバー下部115c2に流入した気相酸化用ガスは第3チャンバー上部115c1に移動し、少なくとも一部はファスナーチェーンの酸化反応に使用されて、第2チャンバー115bを通って吸引口121から排出される。 In the second embodiment, the water seal unit 116 is installed only on the outlet side. Therefore, from the viewpoint of preventing gas leakage, the vapor phase oxidation apparatus 210 preferably includes at least one suction port 121 in the second chamber 115b on the outlet side, and the suction port 121 is provided only in the second chamber 115b. More preferably. In the second embodiment, the gas-phase oxidation gas flowing into the third chamber lower portion 115c2 moves to the third chamber upper portion 115c1, and at least a part of the gas is used for the oxidation reaction of the fastener chain and passes through the second chamber 115b. And discharged from the suction port 121.
 先述した第一実施形態の場合、例えば気相反応用ガスとしてアンモニアを用いると、アンモニアは空気よりも軽いので上方に移動しやすく、反応チャンバー115内で濃度分布が生じるおそれがある。このため、ファスナーチェーン120の上下方向で色調均一性を損なう可能性がある。これに対して、第二実施形態の場合は、第3チャンバー下部115c2内でのファスナーチェーン120の搬送が上下方向(鉛直方向)に行われるため、上下方向に気相反応ガスの濃度分布が生じたとしてもファスナーチェーン120の上下方向の色調均一性に対する影響は抑制される。よって、第二実施形態はファスナーチェーン120表裏での色調均一性を高めることができるという点でも有利である。 In the case of the first embodiment described above, when ammonia is used as the gas phase reaction gas, for example, ammonia is lighter than air, so it tends to move upward, and a concentration distribution may occur in the reaction chamber 115. For this reason, there is a possibility that color tone uniformity is impaired in the vertical direction of the fastener chain 120. On the other hand, in the case of the second embodiment, since the fastener chain 120 is transported in the vertical direction (vertical direction) in the third chamber lower portion 115c2, the concentration distribution of the gas phase reaction gas is generated in the vertical direction. Even so, the influence on the color uniformity of the fastener chain 120 in the vertical direction is suppressed. Therefore, the second embodiment is also advantageous in that the color tone uniformity on the front and back of the fastener chain 120 can be enhanced.
<2-3-3 第三実施形態>
 図7には第三実施形態に係る気相酸化装置310の正面図が模式的に示されている。図7中の参照符号は、特に断りがない限り、第一実施形態で説明した参照符号と同一の意味を有するため、説明を省略する。第三実施形態が第一実施形態異なる点は、第三実施形態においては通常運転時には出口側の水シールユニット116は水封に使用されず、入口側の水シールユニット116のみが水封に使用される点である。本実施形態によれば、ファスナーチェーン120が気相酸化を受ける直前で濡れるため、色調処理後のファスナーチェーン120に色むらが生じやすいが、色むらが許容される場合や色むらによるデザインが望まれる場合には好適な実施形態と言える。
<2-3-3 Third Embodiment>
FIG. 7 schematically shows a front view of the vapor phase oxidation apparatus 310 according to the third embodiment. Unless otherwise specified, the reference numerals in FIG. 7 have the same meaning as the reference numerals described in the first embodiment, and thus the description thereof is omitted. The third embodiment differs from the first embodiment in that in the third embodiment, the water seal unit 116 on the outlet side is not used for water sealing during normal operation, and only the water seal unit 116 on the inlet side is used for water sealing. It is a point to be done. According to this embodiment, since the fastener chain 120 gets wet immediately before being subjected to gas phase oxidation, the fastener chain 120 after the color tone treatment is likely to have uneven color. However, when the uneven color is allowed or a design with uneven color is desired. This is a preferred embodiment.
 また、第三実施形態では水シールユニット116の設置場所を気相反応チャンバー115の入口115in側に変更したため、気相酸化装置310は、気相反応チャンバー115内に供給された気相酸化用ガスが出口側から入口側に流れるように制御する気流制御機構を備えていることが好ましい。このような気流制御機構を備えていることは、入口側の水シールユニット116が水封に使用されている一方で、出口側の水シールユニット116が設置されていないか設置されていたとしても水封に使用されていない場合にガス漏洩防止の観点から有効である。気流制御機構に特に制限はないが、第三実施形態においては、気流制御機構は、気相反応チャンバー115内に設置された気相酸化用ガスを供給するための少なくとも一つの吐出口114cと、当該チャンバー115内のガスを当該チャンバー115外に排出するための少なくとも一つの吸引口121を備える。そして、少なくとも一つの吸引口121のうち最も入口115in側に近い吸引口は、少なくとも一つの吐出口114cの何れよりも入口115in側に配置されることにより、気相反応チャンバー115内に供給された気相酸化用ガスは出口115out側から入口115in側に流れる。好ましい実施形態においては、少なくとも一つの吸引口121のすべてが、少なくとも一つの吐出口114cの何れよりも入口115in側に配置される。そして、少なくとも一つの吐出口114cからの合計ガス吐出量よりも、少なくとも一つの吸引口121からの合計ガス吸引量を大きくすることで、気相反応チャンバー115内が負圧になり、ガス漏洩を防止することができる。 In the third embodiment, since the installation location of the water seal unit 116 is changed to the inlet 115in side of the gas phase reaction chamber 115, the gas phase oxidation apparatus 310 supplies the gas phase oxidation gas supplied into the gas phase reaction chamber 115. It is preferable to provide an airflow control mechanism that controls the air flow from the outlet side to the inlet side. The provision of such an airflow control mechanism means that the water seal unit 116 on the inlet side is used for water sealing, while the water seal unit 116 on the outlet side is not installed or is installed. It is effective from the viewpoint of preventing gas leakage when not used for water sealing. Although there is no particular limitation on the airflow control mechanism, in the third embodiment, the airflow control mechanism includes at least one discharge port 114c for supplying a gas-phase oxidizing gas installed in the gas-phase reaction chamber 115; At least one suction port 121 for discharging the gas in the chamber 115 to the outside of the chamber 115 is provided. The suction port closest to the inlet 115in among the at least one suction port 121 is disposed in the inlet 115in side of any of the at least one discharge port 114c, and thus is supplied into the gas phase reaction chamber 115. The gas-phase oxidizing gas flows from the outlet 115out side to the inlet 115in side. In a preferred embodiment, all of the at least one suction port 121 is disposed closer to the inlet 115in than any of the at least one discharge port 114c. Then, by making the total gas suction amount from at least one suction port 121 larger than the total gas discharge amount from at least one discharge port 114c, the inside of the gas phase reaction chamber 115 becomes negative pressure and gas leakage is prevented. Can be prevented.
 当該構成により、気相反応チャンバー115内のガスは、気相反応チャンバー115の入口115in付近に設置された吸引口121からブロア等のガス吸引装置113によって吸い出されることにより気相反応チャンバー115外に排出される。 With this configuration, the gas in the gas phase reaction chamber 115 is sucked out of the gas phase reaction chamber 115 by being sucked out by the gas suction device 113 such as a blower from the suction port 121 installed in the vicinity of the inlet 115in of the gas phase reaction chamber 115. To be discharged.
(2-4 色調処理システム)
 図8にはこれまで説明してきた前処理、気相酸化、及び防錆処理を連続的に実施するための色調処理システム30の構成例が示されている。色調処理システム30は、脱脂装置31、水洗装置32、気相酸化装置34、水洗装置35、防錆処理装置36、乾燥装置37、表面処理装置38及び乾燥装置39が順に配置されており、ファスナーチェーン等の長尺のスライドファスナー部品41が矢印の方向にリール・トゥ・リール方式で搬送されながらこれらの装置を順次通過することにより所定の処理を受け、色調処理がなされる。表面処理装置38ではクリアラッカー塗装、ワックス掛け等の表面処理を行うことができる。
(2-4 Color tone processing system)
FIG. 8 shows a configuration example of the color tone processing system 30 for continuously performing the pretreatment, the gas phase oxidation, and the rust prevention treatment described so far. The color tone treatment system 30 includes a degreasing device 31, a water washing device 32, a gas phase oxidation device 34, a water washing device 35, a rust prevention treatment device 36, a drying device 37, a surface treatment device 38, and a drying device 39 arranged in this order. A long slide fastener part 41 such as a chain is subjected to a predetermined process by sequentially passing through these apparatuses while being conveyed in a reel-to-reel manner in the direction of the arrow, and a color tone process is performed. The surface treatment device 38 can perform surface treatment such as clear lacquer coating and waxing.
 以下、本発明の実施例を示すが、これらは本発明及びその利点をより良く理解するために提供するものであり、本発明が限定されることを意図しない。 Examples of the present invention will be described below, but these are provided for better understanding of the present invention and its advantages, and are not intended to limit the present invention.
(試験例1)
 脱脂水洗後の長さ200~250mmの金属ファスナーチェーンを用意した。金属ファスナーチェーンのエレメント列は銅亜鉛合金製(Cu:85質量%(85.4at.%)、Zn:15質量%(14.6at.%))である。なお、上記組成は不可避的不純物を考慮しない場合の値であり、エレメントの組成中に不可避的不純物は含み得る。以下の試験例においても同様である。エレメント列は還元性雰囲気で焼鈍後のY字状のバーをエレメント形状にプレス加工することで成形され、ファスナーテープに加締め固定されている。
(Test Example 1)
A metal fastener chain having a length of 200 to 250 mm after degreasing and washing was prepared. The element row of the metal fastener chain is made of a copper zinc alloy (Cu: 85 mass% (85.4 at.%), Zn: 15 mass% (14.6 at.%)). In addition, the said composition is a value when an unavoidable impurity is not considered, and an unavoidable impurity may be included in the composition of an element. The same applies to the following test examples. The element array is formed by pressing a Y-shaped bar after annealing into an element shape in a reducing atmosphere, and is crimped and fixed to a fastener tape.
 当該ファスナーチェーンを気相反応管状炉バッチ処理装置(φ75mm石英管(0.6L容積))内にセットし、表1に示す反応条件で空気とアンモニアガスの混合ガスを用いて気相酸化を行った。気相酸化後は、2Lの水中で水洗した後、ベンゾトリアゾール水溶液中に1分間浸漬して防錆処理を行い、その後、水洗及び自然乾燥した。なお、クリアラッカー塗装及びワックス掛けの何れも行わなかった。 The fastener chain is set in a gas phase reaction tubular furnace batch processing apparatus (φ75 mm quartz tube (0.6 L capacity)), and gas phase oxidation is performed using a mixed gas of air and ammonia gas under the reaction conditions shown in Table 1. It was. After the gas phase oxidation, it was washed with 2 L of water, then immersed in an aqueous benzotriazole solution for 1 minute for antirust treatment, and then washed with water and dried naturally. Neither clear lacquering nor waxing was performed.
(試験例2)
 脱脂水洗後の長さ200~250mmの金属ファスナーチェーンを用意した。金属ファスナーチェーンのエレメント列は銅亜鉛合金製(Cu:65質量%(65.7at.%)、Zn:35質量%(34.3at.%))である。エレメント列は酸化性雰囲気で焼鈍後のY字状のバーをエレメント形状にプレス加工することで成形され、ファスナーテープに加締め固定されている。当該ファスナーチェーンを気相反応管状炉バッチ処理装置(φ75mm石英管(0.6L容積))内にセットし、表1に示す反応条件で空気とアンモニアガスの混合ガスを用いて気相酸化を行った。気相酸化後のファスナーチェーンに対して、試験例1と同様の防錆処理を実施した。なお、クリアラッカー塗装及びワックス掛けの何れも行わなかった。
(Test Example 2)
A metal fastener chain having a length of 200 to 250 mm after degreasing and washing was prepared. The element row of the metal fastener chain is made of a copper zinc alloy (Cu: 65 mass% (65.7 at.%), Zn: 35 mass% (34.3 at.%)). The element row is formed by pressing a Y-shaped bar after annealing in an oxidizing atmosphere into an element shape, and is fastened and fixed to a fastener tape. The fastener chain is set in a gas phase reaction tubular furnace batch processing apparatus (φ75 mm quartz tube (0.6 L capacity)), and gas phase oxidation is performed using a mixed gas of air and ammonia gas under the reaction conditions shown in Table 1. It was. The same antirust treatment as in Test Example 1 was performed on the fastener chain after the gas phase oxidation. Neither clear lacquering nor waxing was performed.
(試験例3)
 脱脂水洗後の長さ200~250mmの金属ファスナーチェーンを用意した。金属ファスナーチェーンのエレメント列は銅亜鉛合金製(Cu:60質量%(60.7at.%)、Zn:40質量%(39.3at.%))である。エレメント列は酸化性雰囲気で焼鈍後のY字状のバーをエレメント形状にプレス加工することで成形され、ファスナーテープに加締め固定されている。当該ファスナーチェーンを気相反応管状炉バッチ処理装置(φ75mm石英管(0.6L容積))内にセットし、表1に示す反応条件で空気とアンモニアガスの混合ガスを用いて気相酸化を行った。気相酸化後のファスナーチェーンに対して、試験例1と同様の防錆処理を実施した。なお、クリアラッカー塗装及びワックス掛けの何れも行わなかった。
(Test Example 3)
A metal fastener chain having a length of 200 to 250 mm after degreasing and washing was prepared. The element row of the metal fastener chain is made of a copper zinc alloy (Cu: 60% by mass (60.7 at.%), Zn: 40% by mass (39.3 at.%)). The element row is formed by pressing a Y-shaped bar after annealing in an oxidizing atmosphere into an element shape, and is fastened and fixed to a fastener tape. The fastener chain is set in a gas phase reaction tubular furnace batch processing apparatus (φ75 mm quartz tube (0.6 L capacity)), and gas phase oxidation is performed using a mixed gas of air and ammonia gas under the reaction conditions shown in Table 1. It was. The same antirust treatment as in Test Example 1 was performed on the fastener chain after the gas phase oxidation. Neither clear lacquering nor waxing was performed.
(試験例4)
 試験例1と同様のファスナーチェーンに対して、気相酸化ではなく、液相による化成処理で着色を行った。具体的には、脱脂水洗後のファスナーチェーンを化成処理液に浸漬することにより化成処理を行った。化成処理後は、試験例1と同様の防錆処理を行った。なお、クリアラッカー塗装及びワックス掛けの何れも行わなかった。
(Test Example 4)
The same fastener chain as in Test Example 1 was colored by chemical conversion treatment using a liquid phase instead of vapor phase oxidation. Specifically, the chemical conversion treatment was performed by immersing the fastener chain after the degreasing water washing in the chemical conversion treatment liquid. After the chemical conversion treatment, the same rust prevention treatment as in Test Example 1 was performed. Neither clear lacquering nor waxing was performed.
(試験例5)
 試験例2と同様のファスナーチェーンに対して、気相酸化ではなく、液相による化成処理で着色を行った。具体的には、脱脂水洗後のファスナーチェーンを化成処理液に浸漬することにより化成処理を行った。化成処理後は、試験例1と同様の防錆処理を行った。なお、クリアラッカー塗装及びワックス掛けの何れも行わなかった。
(Test Example 5)
The same fastener chain as in Test Example 2 was colored by chemical conversion treatment using a liquid phase instead of vapor phase oxidation. Specifically, the chemical conversion treatment was performed by immersing the fastener chain after the degreasing water washing in the chemical conversion treatment liquid. After the chemical conversion treatment, the same rust prevention treatment as in Test Example 1 was performed. Neither clear lacquering nor waxing was performed.
(試験例6)
 試験例3と同様のファスナーチェーンに対して、気相酸化ではなく、液相による化成処理で着色を行った。具体的には、脱脂水洗後のファスナーチェーンを化成処理液に浸漬することにより化成処理を行った。化成処理後は、試験例1と同様の防錆処理を行った。なお、クリアラッカー塗装及びワックス掛けの何れも行わなかった。
(Test Example 6)
The same fastener chain as in Test Example 3 was colored by chemical conversion treatment using a liquid phase instead of vapor phase oxidation. Specifically, the chemical conversion treatment was performed by immersing the fastener chain after the degreasing water washing in the chemical conversion treatment liquid. After the chemical conversion treatment, the same rust prevention treatment as in Test Example 1 was performed. Neither clear lacquering nor waxing was performed.
 試験例1~6について、得られた色調は、処理時間、処理するガスあるいは液体の濃度によって変化するが、おおよそ時間、濃度に応じて黄色→赤褐色→茶色→黒っぽい茶色に変化する。またそのときの推定される酸化膜の組成はCu2OやCuOなどの酸化された銅である。 For Test Examples 1 to 6, the obtained color tone changes depending on the processing time and the concentration of the gas or liquid to be processed, but changes from yellow to reddish brown to brown to dark brown depending on the time and concentration. Also, the estimated oxide film composition at that time is oxidized copper such as Cu 2 O and CuO.
<各種性能試験>
 試験例1~6の金属ファスナーチェーンの各サンプルについて、機械的特性の性能評価を行った結果を表1に示す。
 「英耐L級」はJIS S 3015:2007の方法での試験(往復開閉耐久度試験)を指す。すべてのサンプルにおいて「500回 クリア」という評価が得られた。「500回 クリア」というのはファスナーチェーンにスライダー、止具などを取り付けた状態で500回スライダーをファスナーチェーンに対して往復移動させたあとでもスライドファスナーとして機能する状態であれば異常がないことを意味する。
<Various performance tests>
Table 1 shows the results of the performance evaluation of the mechanical properties of the samples of the metal fastener chains of Test Examples 1 to 6.
“English class L” refers to a test (reciprocation durability test) according to the method of JIS S 3015: 2007. All samples gave a rating of “500 clears”. “500 times clear” means that there is no problem if the slider functions as a slide fastener even after the slider has been reciprocated 500 times with the fastener chain attached to the fastener chain. means.
 「摩擦堅牢度」は染色テープ用の試験であるJIS L 0803:2011、JIS L 0849:2013の方法での試験をエレメントに対して行った。摩擦堅牢度は試験後のエレメントの表面と試験布が接触する面を目視観察したときの汚れ(付着と剥がれに起因する)の有無で評価した。
汚れがついていない:○
汚れがついている:×
“Friction fastness” was tested on the element by the method of JIS L 0803: 2011 and JIS L 0849: 2013, which are tests for dyeing tape. The fastness to friction was evaluated by the presence or absence of dirt (caused by adhesion and peeling) when the surface of the element after the test and the surface where the test cloth contacted was visually observed.
No dirt: ○
Dirty: ×
<酸化層の深さ方向分析>
 試験例1~6の金属ファスナーチェーンの各サンプルについて、気相酸化又は化成処理の後であって防錆処理前のエレメント表面を、FE電子銃を装備したオージェ電子分光装置を用いてAES分析して、デプスプロファイルを得た。AES分析の条件は電子銃の加速電圧10kV、電流量3×10-8A、ビーム径50μm、試料傾斜30°とした。エッチングにはArモノマーイオンガン2kVを用いた。検出深さはSiO2標準物質のエッチング速度8.0nm/minを用いてスパッタ時間より換算し、算出した。エッチング速度はSiO2標準物質(Si基盤上の100nmの熱酸化膜)のOの強度が半分になる時間にて100nmを割った値である。
 Cu、Zn及びOの原子濃度は相対感度係数をCu:1、Zn:1、O:1にして算出した。酸化層における平均Zn濃度、平均Cu濃度及び平均O濃度は、酸化層表面からの深さ10~20nmの各測定値の平均を使用し、基材表面における平均Zn濃度及び平均Cu濃度は、O濃度5at.%以下となる酸化層と基材の境界(基材表面)から20nmの深さまでの測定値の平均を使用した。また、参考に、試験例3及び6のデプスプロファイルを図3及び図4に示す。
<Depth direction analysis of oxide layer>
For each sample of the metal fastener chains of Test Examples 1 to 6, the element surface after the gas phase oxidation or chemical conversion treatment and before the rust prevention treatment was subjected to AES analysis using an Auger electron spectrometer equipped with an FE electron gun. To obtain a depth profile. The AES analysis conditions were an electron gun acceleration voltage of 10 kV, a current amount of 3 × 10 −8 A, a beam diameter of 50 μm, and a sample tilt of 30 °. For etching, an Ar monomer ion gun of 2 kV was used. The detection depth was calculated by converting from the sputtering time using the etching rate of 8.0 nm / min of the SiO 2 standard material. The etching rate is a value obtained by dividing 100 nm by the time when the intensity of O of the SiO 2 standard material (100 nm thermal oxide film on the Si substrate) becomes half.
The atomic concentrations of Cu, Zn, and O were calculated with relative sensitivity coefficients of Cu: 1, Zn: 1, and O: 1. The average Zn concentration, the average Cu concentration and the average O concentration in the oxide layer use the average of each measured value at a depth of 10 to 20 nm from the surface of the oxide layer, and the average Zn concentration and the average Cu concentration on the substrate surface are O Concentration 5 at. The average of measured values from the boundary between the oxide layer and the base material (base material surface) of 20% or less to a depth of 20 nm was used. For reference, depth profiles of Test Examples 3 and 6 are shown in FIGS.
Figure JPOXMLDOC01-appb-T000001
*1:アンモニア濃度:100%アンモニアガスVol/(空気+100%アンモニアガス)Vol×100 
Figure JPOXMLDOC01-appb-T000001
* 1: Ammonia concentration: 100% ammonia gas Vol / (air + 100% ammonia gas) Vol x 100
Figure JPOXMLDOC01-appb-T000002
*1:アンモニア濃度:100%アンモニアガスVol/(空気+100%アンモニアガス)Vol×100 
Figure JPOXMLDOC01-appb-T000002
* 1: Ammonia concentration: 100% ammonia gas Vol / (air + 100% ammonia gas) Vol x 100
 表1の結果より、試験例1~3の各サンプルの英耐L級試験に対する結果は従来の化成処理(試験例4~6)と同等であるが、摩擦堅牢度については試験例1~3のサンプルのほうが試験例4~6より優れていた。 From the results shown in Table 1, the results of the test examples 1 to 3 with respect to the British L class test are the same as those of the conventional chemical conversion treatment (Test Examples 4 to 6). This sample was superior to Test Examples 4-6.
<仕上げ層のあるサンプルに対する酸化層の深さ方向分析>
 上述した試験例1~3の金属ファスナーチェーンの各サンプルについて、気相酸化後、防錆処理及びクリアラッカー塗装を順に行った。乾燥後の各サンプルから剥離剤(エスバックH-300:佐々木化学薬品製)に物品を常温にて一晩浸漬させてクリアラッカー塗装及び防錆処理層を除去してエレメント表面の酸化層を露出した。次いで、酸化層の深さ方向分析を先述した方法により行ったところ、何れのサンプルについても仕上げ層を形成する前と実質的に同一の試験結果が得られた。
<Oxidation layer depth analysis for samples with finishing layer>
Each sample of the metal fastener chains of Test Examples 1 to 3 described above was subjected to rust prevention treatment and clear lacquer coating in order after vapor phase oxidation. Remove the clear lacquer and rust preventive treatment layer by exposing the dried sample (Esback H-300 manufactured by Sasaki Chemicals) to room temperature overnight by removing the clear lacquer and the anti-rust treatment layer from each sample after drying. did. Next, when the depth direction analysis of the oxide layer was performed by the method described above, substantially the same test results as before the finish layer were formed were obtained for any sample.
10、20 物品
11 基材
12 酸化層
13 仕上げ層
110、210、310  気相酸化装置
118  制御装置
112  アンモニアガス分解装置
113  ブロア(ガス吸引装置)
114  気相酸化用ガス供給系統
115  気相反応チャンバー
116  水シールユニット
120  ファスナーチェーン
122  搬送機構
30  色調処理システム
31  脱脂装置
32  水洗装置
34  気相酸化装置
35  水洗装置
36  防錆処理装置
37  乾燥装置
38  表面処理装置
39  乾燥装置
41  スライドファスナー部品
10, 20 Article 11 Base 12 Oxidation layer 13 Finishing layer 110, 210, 310 Gas phase oxidation device 118 Control device 112 Ammonia gas decomposition device 113 Blower (gas suction device)
114 Gas supply system for gas phase oxidation 115 Gas phase reaction chamber 116 Water seal unit 120 Fastener chain 122 Conveying mechanism 30 Color tone processing system 31 Degreasing device 32 Water washing device 34 Gas phase oxidation device 35 Water washing device 36 Rust prevention processing device 37 Drying device 38 Surface treatment device 39 Drying device 41 Slide fastener parts

Claims (27)

  1.  少なくとも表面が亜鉛を含有する銅合金で構成されている基材11と、該基材11表面に隣接する酸化層12とを有し、該酸化層12表面を基準にして、10nmの深さから20nmの深さまでの範囲における平均銅濃度に対する平均亜鉛濃度の比Aが該基材11表面における平均銅濃度に対する平均亜鉛濃度の比Bよりも高い物品。 The substrate 11 has at least a surface made of a copper alloy containing zinc, and an oxide layer 12 adjacent to the surface of the substrate 11, and has a depth of 10 nm with respect to the surface of the oxide layer 12. Articles in which the ratio A of the average zinc concentration to the average copper concentration in the range up to a depth of 20 nm is higher than the ratio B of the average zinc concentration to the average copper concentration on the surface of the substrate 11.
  2.  前記基材11表面の平均亜鉛濃度が5~50at.%である請求項1に記載の物品。 The average zinc concentration on the surface of the substrate 11 is 5 to 50 at. The article of claim 1, which is%.
  3.  前記比Bに対する前記比Aの比A/Bが2.0以上である請求項1又は2に記載の物品。 The article according to claim 1 or 2, wherein the ratio A / B of the ratio A to the ratio B is 2.0 or more.
  4.  基材11全体が亜鉛を含有する銅合金で構成されている請求項1~3の何れか一項に記載の物品。 The article according to any one of claims 1 to 3, wherein the entire substrate 11 is made of a copper alloy containing zinc.
  5.  前記酸化層12表面を基準にして、10nmの深さから20nmの深さまでの範囲における平均亜鉛濃度が5~80at.%である請求項4に記載の物品。 The average zinc concentration in the range from a depth of 10 nm to a depth of 20 nm with respect to the surface of the oxide layer 12 is 5 to 80 at. The article of claim 4, which is%.
  6.  物品がスライドファスナー部材である請求項1~5の何れか一項に記載の物品。 The article according to any one of claims 1 to 5, wherein the article is a slide fastener member.
  7.  請求項6に記載の物品を備えたスライドファスナー。 A slide fastener comprising the article according to claim 6.
  8.  少なくとも表面が亜鉛を含有する銅合金で構成されている基材を有する物品を少なくとも酸素の存在下で気相酸化することを含む物品の色調処理方法。 A method for color tone treatment of an article, comprising subjecting an article having a substrate composed of a copper alloy containing at least a surface of zinc to gas phase oxidation in the presence of at least oxygen.
  9.  基材表面に隣接した酸化層であって、該酸化層表面を基準にして、10nmの深さから20nmの深さまでの範囲における平均銅濃度に対する平均亜鉛濃度の比Aが該基材表面における平均銅濃度に対する平均亜鉛濃度の比Bよりも高い酸化層を気相酸化によって形成することを含む請求項8に記載の物品の色調処理方法。 An oxide layer adjacent to the substrate surface, wherein the ratio A of the average zinc concentration to the average copper concentration in the range from a depth of 10 nm to a depth of 20 nm with respect to the oxide layer surface is an average on the substrate surface The color tone processing method for an article according to claim 8, comprising forming an oxide layer having a higher ratio B of the average zinc concentration to the copper concentration by vapor phase oxidation.
  10.  気相酸化をアンモニアの存在下で実施する請求項8又は9に記載の色調処理方法。 The color tone processing method according to claim 8 or 9, wherein the gas phase oxidation is carried out in the presence of ammonia.
  11.  前記気相酸化による色調制御を、アンモニアの濃度、酸素の濃度、その他の反応性ガスの濃度、反応系内の湿度、反応系内の温度、処理時間、物品の温度よりなる群から選択される一種以上を変化させることにより行う請求項8~10の何れか一項に記載の色調処理方法。 The color tone control by gas phase oxidation is selected from the group consisting of ammonia concentration, oxygen concentration, other reactive gas concentration, humidity in the reaction system, temperature in the reaction system, processing time, and article temperature. The color tone processing method according to any one of claims 8 to 10, which is performed by changing one or more of them.
  12.  物品がファスナー部材である請求項8~11の何れか一項に記載の色調処理方法。 The color tone processing method according to any one of claims 8 to 11, wherein the article is a fastener member.
  13.  前記気相酸化を20~80℃の雰囲気温度で実施する請求項8~12の何れか一項に記載の色調処理方法。 The color tone processing method according to any one of claims 8 to 12, wherein the gas phase oxidation is performed at an atmospheric temperature of 20 to 80 ° C.
  14.  前記気相酸化を負圧下で実施する請求項8~13の何れか一項に記載の色調処理方法。 The color tone processing method according to any one of claims 8 to 13, wherein the gas phase oxidation is performed under a negative pressure.
  15.  前記気相酸化を実施する前に、基材表面に対して活性化処理及び水洗を順に実施することを含む請求項8~14の何れか一項に記載の色調処理方法。 The color tone processing method according to any one of claims 8 to 14, further comprising sequentially performing activation treatment and water washing on the surface of the substrate before performing the gas phase oxidation.
  16.  前記気相酸化を実施する前に、基材表面に対して脱脂及び水洗を順に実施することを含む請求項8~15の何れか一項に記載の色調処理方法。 The color tone processing method according to any one of claims 8 to 15, further comprising sequentially performing degreasing and water washing on the surface of the base material before performing the gas phase oxidation.
  17.  前記気相酸化により形成された酸化層表面に、クリア塗装、防錆処理及びワックス掛けよりなる群から選択される少なくとも一以上の表面処理を実施することを含む請求項8~14の何れか一項に記載の色調処理方法。 15. The method according to claim 8, further comprising performing at least one surface treatment selected from the group consisting of clear coating, rust prevention treatment and waxing on the surface of the oxide layer formed by the gas phase oxidation. The color tone processing method according to Item.
  18.  入口115in及び出口115outを有する気相酸化を行うための気相反応チャンバー115、少なくとも表面が金属からなる部分を少なくとも一部に備える長尺な部材が当該入口から入り気相反応チャンバー115内を通過して当該出口から連続的に出るようにするための搬送機構122、前記気相反応チャンバー115内に気相酸化用ガスを供給するための吐出口114c、及び、前記気相反応チャンバー115内の気体を当該チャンバー115外に排出するための吸引口121を備えた色調処理方法を実施するための気相酸化装置。 A gas phase reaction chamber 115 for performing gas phase oxidation having an inlet 115in and an outlet 115out, and a long member having at least a part of which at least a surface is made of metal enter from the inlet and pass through the gas phase reaction chamber 115. Then, a transport mechanism 122 for continuously exiting from the outlet, a discharge port 114c for supplying a gas-phase oxidation gas into the gas-phase reaction chamber 115, and a gas-phase reaction chamber 115 A gas phase oxidation apparatus for carrying out a color tone processing method provided with a suction port 121 for discharging gas out of the chamber 115.
  19.  前記気相反応チャンバー115の出口115out側及び入口115in側の何れか一方又は両方に、気相反応チャンバー115内部のガスを遮断するための水シールユニット116が設置されている請求項18に記載の気相酸化装置。 19. The water seal unit 116 for blocking a gas inside the gas phase reaction chamber 115 is installed on either or both of the outlet 115 out side and the inlet 115 in side of the gas phase reaction chamber 115. Gas phase oxidation equipment.
  20.  前記気相反応チャンバー115の出口115out側のみに気相反応チャンバー115内部のガスを外部と遮断するための水シールユニット116が設置されている請求項19に記載の気相酸化装置。 20. The gas phase oxidation apparatus according to claim 19, wherein a water seal unit 116 for blocking gas inside the gas phase reaction chamber 115 from the outside is installed only on the outlet 115out side of the gas phase reaction chamber 115.
  21.  前記気相反応チャンバー115内に供給された気相酸化用ガスが入口115in側から出口115out側に流れるように制御する気流制御機構を備える請求項20に記載の気相酸化装置。 21. The vapor phase oxidation apparatus according to claim 20, further comprising an airflow control mechanism for controlling the gas phase oxidation gas supplied into the gas phase reaction chamber 115 to flow from the inlet 115in side to the outlet 115out side.
  22.  前記気流制御機構は、前記気相反応チャンバー115内に設置された気相酸化用ガスを供給するための少なくとも一つの吐出口114cと、当該チャンバー115内のガスを当該チャンバー115外に排出するための少なくとも一つの吸引口121を備え、前記少なくとも一つの吸引口121のうちすべての吸引口が、前記少なくとも一つの吐出口のうちすべての吐出口よりも出口側に配置される請求項21に記載の気相酸化装置。 The air flow control mechanism includes at least one discharge port 114c for supplying a gas-phase oxidizing gas installed in the gas-phase reaction chamber 115 and discharging the gas in the chamber 115 to the outside of the chamber 115. The at least one suction port 121 is provided, and all the suction ports of the at least one suction port 121 are arranged on the outlet side of all the discharge ports of the at least one discharge port. Gas phase oxidation equipment.
  23.  前記搬送機構122は、前記物品が気相反応チャンバー115内を通過する方向として略鉛直上方向及び略鉛直下方向の一方又は両方が含まれるように構成されている請求項22に記載の気相酸化装置。 The gas phase according to claim 22, wherein the transport mechanism 122 is configured to include one or both of a substantially vertical upward direction and a substantially vertical downward direction as a direction in which the article passes through the gas phase reaction chamber 115. Oxidation equipment.
  24.  前記気相反応チャンバー115は入口115in側にある第1チャンバー115a、出口115out側にある第2チャンバー115b、及び、第1チャンバー115aと第2チャンバー115bの間にある第3チャンバー115cを備え、前記搬送機構122は、前記物品が第1チャンバー115a、第3チャンバー115c及び第2チャンバー115b内を順次通過できるように構成されていると共に、前記物品が第3チャンバー115c内を通過する方向として略鉛直上方向及び略鉛直下方向の一方又は両方が含まれるように構成されている請求項23に記載の気相酸化装置。 The gas phase reaction chamber 115 includes a first chamber 115a on the inlet 115in side, a second chamber 115b on the outlet 115out side, and a third chamber 115c between the first chamber 115a and the second chamber 115b, The transport mechanism 122 is configured so that the article can sequentially pass through the first chamber 115a, the third chamber 115c, and the second chamber 115b, and is substantially vertical as a direction in which the article passes through the third chamber 115c. 24. The gas phase oxidation apparatus according to claim 23, configured to include one or both of an upward direction and a substantially vertical downward direction.
  25.  第3チャンバー115cは、第1チャンバー115a及び第2チャンバー115bと同一高さにある第3チャンバー上部115c1と第3チャンバー上部115c1よりも下側にある第3チャンバー下部115c2を備え、前記搬送機構122は、前記物品が第1チャンバー115a、第3チャンバー上部115c1、第3チャンバー下部115c2及び第2チャンバー115bを通過できるように構成されている請求項24に記載の気相酸化装置。 The third chamber 115c includes a third chamber upper portion 115c1 and a third chamber lower portion 115c2 below the third chamber upper portion 115c1, which are at the same height as the first chamber 115a and the second chamber 115b. The gas phase oxidation apparatus according to claim 24, wherein the article is configured to be able to pass through the first chamber 115a, the third chamber upper part 115c1, the third chamber lower part 115c2, and the second chamber 115b.
  26.  第3チャンバー下部115c2に前記吐出口114cを少なくとも一つ備え、第2チャンバー115bに前記吸引口121の少なくとも一つを備える請求項24又は25に記載の気相酸化装置。 The vapor phase oxidation apparatus according to claim 24 or 25, wherein the third chamber lower portion 115c2 includes at least one discharge port 114c, and the second chamber 115b includes at least one suction port 121.
  27.  前記搬送機構122は、前記物品が第3チャンバー115c内を通過する方向として略鉛直上方向及び略鉛直下方向の両方が含まれるように構成されている請求項24~26の何れか一項に記載の気相酸化装置。 27. The transfer mechanism 122 is configured to include both a substantially vertical upward direction and a substantially vertical downward direction as directions in which the article passes through the third chamber 115c. The gas phase oxidation apparatus as described.
PCT/JP2017/003473 2017-01-31 2017-01-31 Article having metallic surface, tone-treatment method therefor, and gas phase oxidation device WO2018142487A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780085078.XA CN110234782B (en) 2017-01-31 2017-01-31 Object having metal surface, color tone processing method thereof, and gas phase oxidation apparatus
PCT/JP2017/003473 WO2018142487A1 (en) 2017-01-31 2017-01-31 Article having metallic surface, tone-treatment method therefor, and gas phase oxidation device
EP17895187.7A EP3578681A4 (en) 2017-01-31 2017-01-31 OBJECT WITH METALLIC SURFACE, CLAY TREATMENT PROCESS FOR IT AND GAS PHASE OXIDATION DEVICE
TW106118490A TWI666342B (en) 2017-01-31 2017-06-05 Object and its color processing method, zipper and gas phase oxidation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/003473 WO2018142487A1 (en) 2017-01-31 2017-01-31 Article having metallic surface, tone-treatment method therefor, and gas phase oxidation device

Publications (1)

Publication Number Publication Date
WO2018142487A1 true WO2018142487A1 (en) 2018-08-09

Family

ID=63039498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003473 WO2018142487A1 (en) 2017-01-31 2017-01-31 Article having metallic surface, tone-treatment method therefor, and gas phase oxidation device

Country Status (4)

Country Link
EP (1) EP3578681A4 (en)
CN (1) CN110234782B (en)
TW (1) TWI666342B (en)
WO (1) WO2018142487A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3514256A1 (en) * 2018-01-17 2019-07-24 Contemporary Amperex Technology Co., Limited Current collector production apparatus
CN115652133A (en) * 2022-08-31 2023-01-31 宁波金田铜业(集团)股份有限公司 Zinc white copper strip and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7106655B2 (en) * 2018-09-06 2022-07-26 Ykk株式会社 Fastener material

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566324A (en) * 1979-06-26 1981-01-22 Fujikura Ltd Method of forming insulating film on copper wire
JPS61146422A (en) * 1984-12-17 1986-07-04 Sumitomo Electric Ind Ltd Manufacture of electric discharge machining wire
JPS62114829A (en) * 1985-11-13 1987-05-26 Hitachi Cable Ltd Manufacturing method of wire cut electrode wire for electrical discharge machining
JPS63241132A (en) * 1986-11-21 1988-10-06 Nikko Aen Kk Zinc alloy for hot dip coating to form olive gray colored plating and method for using alloy
JPH0257674A (en) * 1988-08-22 1990-02-27 Furukawa Electric Co Ltd:The Manufacture of electrode wire for electric discharge machining
JPH0428886A (en) * 1990-05-24 1992-01-31 Furukawa Electric Co Ltd:The Heat exchanger excellent in corrosion resistance and its production
JPH0499859A (en) * 1990-08-14 1992-03-31 Furukawa Electric Co Ltd:The Method for blackening surface of copper-based shape memory alloy material
JPH04337059A (en) * 1991-05-15 1992-11-25 Nippon Steel Corp Manufacturing method of alloyed hot-dip galvanized steel sheet with excellent spot weldability
WO2011077567A1 (en) * 2009-12-25 2011-06-30 Ykk株式会社 Zipper component and slide zipper, and method for producing zipper component
JP2013249522A (en) * 2012-06-01 2013-12-12 Hitachi Cable Ltd Copper-based material and method for producing the same
WO2014024293A1 (en) * 2012-08-09 2014-02-13 Ykk株式会社 Fastening copper alloy
JP2014205871A (en) 2013-04-11 2014-10-30 日本ニュークローム株式会社 Method of treating surface of copper-based metal to color blue

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63130758A (en) * 1986-11-21 1988-06-02 Nikko Aen Kk Formation of purple colored plating
JPH05171389A (en) * 1991-12-16 1993-07-09 Sumitomo Metal Ind Ltd Method for producing hot dip galvanized steel sheet
IT1281420B1 (en) * 1995-09-13 1998-02-18 Danieli Off Mecc EQUALIZATION PROCEDURE IN A HEATING FURNACE WITH A CONTROLLED OXIDATION ENVIRONMENT AND HEATING FURNACE
US6183886B1 (en) * 1998-04-03 2001-02-06 Olin Corporation Tin coatings incorporating selected elemental additions to reduce discoloration
US6440208B1 (en) * 2000-11-06 2002-08-27 Engelhard Corporation Alloy color effect materials and production thereof
EP2382888B1 (en) * 2009-01-13 2014-06-04 YKK Corporation Slide fastener
ES2644287T3 (en) * 2010-12-17 2017-11-28 Ykk Corporation Closure band and zipper closure chain, and manufacturing process of the zipper closure chain
JP6442042B2 (en) * 2015-03-12 2018-12-19 Ykk株式会社 Metal fastener member and fastener having the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566324A (en) * 1979-06-26 1981-01-22 Fujikura Ltd Method of forming insulating film on copper wire
JPS61146422A (en) * 1984-12-17 1986-07-04 Sumitomo Electric Ind Ltd Manufacture of electric discharge machining wire
JPS62114829A (en) * 1985-11-13 1987-05-26 Hitachi Cable Ltd Manufacturing method of wire cut electrode wire for electrical discharge machining
JPS63241132A (en) * 1986-11-21 1988-10-06 Nikko Aen Kk Zinc alloy for hot dip coating to form olive gray colored plating and method for using alloy
JPH0257674A (en) * 1988-08-22 1990-02-27 Furukawa Electric Co Ltd:The Manufacture of electrode wire for electric discharge machining
JPH0428886A (en) * 1990-05-24 1992-01-31 Furukawa Electric Co Ltd:The Heat exchanger excellent in corrosion resistance and its production
JPH0499859A (en) * 1990-08-14 1992-03-31 Furukawa Electric Co Ltd:The Method for blackening surface of copper-based shape memory alloy material
JPH04337059A (en) * 1991-05-15 1992-11-25 Nippon Steel Corp Manufacturing method of alloyed hot-dip galvanized steel sheet with excellent spot weldability
WO2011077567A1 (en) * 2009-12-25 2011-06-30 Ykk株式会社 Zipper component and slide zipper, and method for producing zipper component
JP2013249522A (en) * 2012-06-01 2013-12-12 Hitachi Cable Ltd Copper-based material and method for producing the same
WO2014024293A1 (en) * 2012-08-09 2014-02-13 Ykk株式会社 Fastening copper alloy
JP2014205871A (en) 2013-04-11 2014-10-30 日本ニュークローム株式会社 Method of treating surface of copper-based metal to color blue

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3578681A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3514256A1 (en) * 2018-01-17 2019-07-24 Contemporary Amperex Technology Co., Limited Current collector production apparatus
US10954589B2 (en) 2018-01-17 2021-03-23 Contemporary Amperex Technology Co., Limited Current collector production apparatus
CN115652133A (en) * 2022-08-31 2023-01-31 宁波金田铜业(集团)股份有限公司 Zinc white copper strip and preparation method thereof
CN115652133B (en) * 2022-08-31 2024-05-03 宁波金田铜业(集团)股份有限公司 A zinc-nickel copper strip and preparation method thereof

Also Published As

Publication number Publication date
CN110234782B (en) 2021-12-17
TWI666342B (en) 2019-07-21
TW201829841A (en) 2018-08-16
EP3578681A1 (en) 2019-12-11
EP3578681A4 (en) 2020-08-26
CN110234782A (en) 2019-09-13

Similar Documents

Publication Publication Date Title
WO2018142487A1 (en) Article having metallic surface, tone-treatment method therefor, and gas phase oxidation device
RU2573843C2 (en) Production of flat steel rolled stock
JP5420354B2 (en) Chromium-free black surface-treated iron-based metal material and method for producing the same
RU2590443C1 (en) Method for production of melt of zinc alloy coated steel sheet
WO2012070695A1 (en) Al-Zn-BASED HOT-DIP PLATED STEEL SHEET
US8221900B2 (en) Zinc-based metal plated steel sheet
JP6137089B2 (en) Cold rolled steel sheet manufacturing method and cold rolled steel sheet manufacturing equipment
RU2019143089A (en) HIGH STRENGTH STEEL SHEET WITH SURFACE COATING BASED ON Zn-Al-Mg AND ITS PRODUCTION METHOD
EP1524326B1 (en) Zinc-base hot dip galvanized steel sheet excellent in retention of gloss
CN106062250B (en) Zinc-based metal plated steel sheet and its manufacturing method
EP3112501A1 (en) Galvanized steel sheet and method for manufacturing the same
US10125414B2 (en) Method of producing hot-dip Zn alloy-plated steel sheet
CN100467628C (en) Annealing process and annealing furnace for continuous hot galvanizing production of strip steel
US6677058B1 (en) Hot-dip Zn plated steel sheet excellent in luster-retaining property and method of producing the same
CN101970706A (en) Chromate-free film-covered hot-dip galvanized steel sheet possessing high corrosion resistance
CN107709620B (en) Method and apparatus for manufacturing cold-rolled steel strip
JP2001323355A (en) Si-containing high-strength hot-dip galvanized steel sheet and coated steel sheet having good plating adhesion and post-paint corrosion resistance, and method for producing the same
KR102150365B1 (en) Manufacturing method of galvanized steel sheet
CN110669918A (en) Heat treatment quenching process for high-toughness steel strip
CN102245809A (en) Galvanized steel sheet and method for manufacturing the same
JP2005139557A (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
RU2358033C1 (en) Method and installation for applying coating on metal strip by immersing it into melt
US20190233943A1 (en) Coated substrate having corrosion resistant coating
KR101004926B1 (en) Surface treatment method of steel material with excellent corrosion resistance
JP3770995B2 (en) Black stainless steel plate with excellent corrosion resistance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017895187

Country of ref document: EP

Effective date: 20190902

NENP Non-entry into the national phase

Ref country code: JP