WO2018139298A1 - 交流電動機の制御装置 - Google Patents
交流電動機の制御装置 Download PDFInfo
- Publication number
- WO2018139298A1 WO2018139298A1 PCT/JP2018/001150 JP2018001150W WO2018139298A1 WO 2018139298 A1 WO2018139298 A1 WO 2018139298A1 JP 2018001150 W JP2018001150 W JP 2018001150W WO 2018139298 A1 WO2018139298 A1 WO 2018139298A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- switching
- feedback control
- torque
- motor
- unit
- Prior art date
Links
- 230000004044 response Effects 0.000 claims abstract description 93
- 230000004043 responsiveness Effects 0.000 claims abstract description 40
- 230000007423 decrease Effects 0.000 claims description 13
- 230000001629 suppression Effects 0.000 claims description 6
- 230000001133 acceleration Effects 0.000 claims description 5
- 230000002596 correlated effect Effects 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 23
- 238000000034 method Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 7
- 230000000875 corresponding effect Effects 0.000 description 6
- 238000011946 reduction process Methods 0.000 description 5
- 238000004804 winding Methods 0.000 description 5
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 235000016496 Panda oleosa Nutrition 0.000 description 2
- 240000000220 Panda oleosa Species 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/22—Current control, e.g. using a current control loop
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P11/00—Arrangements for controlling dynamo-electric converters
- H02P11/06—Arrangements for controlling dynamo-electric converters for controlling dynamo-electric converters having an AC output
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
- H02M7/44—Conversion of DC power input into AC power output without possibility of reversal by static converters
- H02M7/48—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/0003—Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
- H02P21/0021—Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control using different modes of control depending on a parameter, e.g. the speed
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P29/00—Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
- H02P29/40—Regulating or controlling the amount of current drawn or delivered by the motor for controlling the mechanical load
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P4/00—Arrangements specially adapted for regulating or controlling the speed or torque of electric motors that can be connected to two or more different electric power supplies
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/34—Arrangements for starting
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P2205/00—Indexing scheme relating to controlling arrangements characterised by the control loops
- H02P2205/01—Current loop, i.e. comparison of the motor current with a current reference
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P2205/00—Indexing scheme relating to controlling arrangements characterised by the control loops
- H02P2205/05—Torque loop, i.e. comparison of the motor torque with a torque reference
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P2209/00—Indexing scheme relating to controlling arrangements characterised by the waveform of the supplied voltage or current
- H02P2209/13—Different type of waveforms depending on the mode of operation
Definitions
- This disclosure relates to a control device for an AC motor.
- Patent Document 1 includes a boost converter and an inverter.
- a control mode of the inverter a first control mode that is applied when the modulation rate of power conversion is small, and a second that is applied when the modulation rate is large.
- a system that can select one of the control modes is disclosed. This system selects the first control mode when the torque response required for the AC motor is high, and selects the second control mode when the required torque response is not high.
- Patent Document 1 the second control mode is advantageous for reducing power loss, but the torque response is low.
- the control mode is switched to the first control mode.
- switching of the carrier frequency of PWM control can be considered.
- Patent Document 1 does not mention anything about the decrease in torque response associated with such control mode and carrier frequency switching.
- the verb “Kiri-kae” is described as “switching” using a sending kana, and the noun “Kiri-kae” is written as “switching” without using a sending kana.
- Patent Document 1 is premised on a system including a boost converter and cannot be applied to a system not including the boost converter.
- An object of the present disclosure is to provide an AC motor control device that improves torque response.
- the control apparatus for an AC motor includes an inverter, a plurality of feedback control units, a feedback control switching unit, a switching command generation unit, and a torque response request determination unit.
- the inverter converts DC power input from a power source into AC power by operation of a plurality of switching elements and supplies the AC power to the AC motor.
- the plurality of feedback control units feed back control amounts different from each other in feedback control for driving the AC motor.
- the feedback control switching unit selects a feedback control unit based on a magnitude relationship between a predetermined switching determination amount and a switching threshold, and switches feedback control for driving the AC motor.
- the switching command generation unit generates a switching command to the inverter based on the operation amount calculated by the selected feedback control unit.
- the torque response request determination unit determines the degree of torque response required for the AC motor. When the torque response request determination unit determines that the required torque responsiveness is high, the feedback control switching unit reduces the switching frequency of the feedback control.
- the plurality of feedback control units include a current feedback control unit and a torque feedback control unit.
- the current feedback control unit calculates the output voltage of the inverter as an operation amount for performing feedback control of the current flowing through the AC motor.
- the torque feedback control unit calculates the phase of the output voltage of the inverter as an operation amount for performing feedback control of the torque output from the AC motor.
- the feedback control switching unit selects either one or both of the current feedback control unit and the torque feedback control unit.
- the following two configurations can be mainly used as a configuration for reducing the switching frequency. (1) In a configuration having switching hysteresis, the hysteresis width is expanded. (2) After switching once, the next switching is prohibited for a predetermined switching prohibition period. Also, the first aspect of the present disclosure can be applied to a system that does not include a boost converter, unlike the prior art disclosed in Patent Document 1.
- the control device for an AC motor includes an inverter, a carrier wave generator, a carrier wave frequency switching unit, a switching command generation unit, and a torque response request determination unit.
- the inverter converts DC power input from a power source into AC power by operation of a plurality of switching elements and supplies the AC power to the AC motor.
- the carrier wave generator can generate a plurality of carrier waves having different frequencies.
- the carrier frequency switching unit switches the carrier frequency generated by the carrier generator based on a magnitude relationship between a predetermined switching determination amount and a switching threshold.
- the switching command generation unit generates a switching command to the inverter by PWM control that compares the carrier wave generated by the carrier wave generator with the voltage command.
- the torque response request determination unit determines the degree of torque response required for the AC motor. When the torque response request determination unit determines that the required torque response is high, the carrier frequency switching unit reduces the switching frequency of the carrier frequency.
- FIG. 1 is a schematic configuration diagram of a vehicle system to which an AC motor control device according to each embodiment is applied.
- FIG. 2 is a control block diagram of the inverter control unit of each embodiment
- FIG. 3 is a control block diagram of the modulator according to the first to third embodiments.
- FIG. 4 is an NT characteristic diagram showing two-mode feedback control switching according to the first and second embodiments.
- FIG. 5 is a diagram illustrating feedback control switching based on the modulation rate, the rotation speed, and the torque.
- FIG. 6A is a diagram showing feedback control switching based on the current phase in the dq coordinate;
- FIG. 1 is a schematic configuration diagram of a vehicle system to which an AC motor control device according to each embodiment is applied.
- FIG. 2 is a control block diagram of the inverter control unit of each embodiment
- FIG. 3 is a control block diagram of the modulator according to the first to third embodiments.
- FIG. 4 is an NT characteristic diagram showing two-mode feedback control switching according to the first
- FIG. 6B is a diagram showing feedback control switching based on a current range in dq coordinates
- FIG. 6C is a diagram illustrating feedback control switching based on a deviation from the reference current line in the dq coordinate
- FIG. 7 is a torque frequency response characteristic diagram in current / torque feedback control.
- FIG. 8 is a diagram for explaining a decrease in torque response due to switching of feedback control.
- FIG. 9 is an NT characteristic diagram showing the expansion of the hysteresis width in the feedback control switching.
- FIG. 10 is a flowchart of the switching frequency reduction process according to the first embodiment.
- FIG. 11 is a sub-flowchart showing an example of required torque response determination.
- FIG. 12 is a flowchart illustrating an example of feedback control switching.
- FIG. 10 is a flowchart of the switching frequency reduction process according to the first embodiment.
- FIG. 11 is a sub-flowchart showing an example of required torque response determination.
- FIG. 12 is a flowchart
- FIG. 13 is a diagram showing an expansion of the hysteresis width in the feedback control switching based on the modulation rate, the rotation speed, and the torque
- FIG. 14 is a diagram illustrating an expansion of the hysteresis width in the feedback control switching based on the current phase
- FIG. 15 is a flowchart of switching frequency reduction processing according to the second embodiment.
- FIG. 16 is a time chart for explaining the switching prohibition period according to the second embodiment.
- FIG. 17 is an NT characteristic diagram showing three-mode feedback control switching according to the third embodiment.
- FIG. 18 is a control block diagram of the modulator according to the fourth embodiment
- FIG. 19 is a diagram for explaining the relationship between the carrier frequency and the number of times of switching in one electrical angle cycle.
- FIG. 20 is a diagram illustrating the expansion of the hysteresis width in the carrier frequency switching.
- the control apparatus for an AC motor is an apparatus that controls energization of an MG that is a three-phase AC motor in a system that drives a motor generator (hereinafter referred to as “MG”) that is a power source of a hybrid vehicle or an electric vehicle.
- MG motor generator
- MG motor generator
- “MG” and “MG control device” in each embodiment correspond to “AC motor” and “AC motor control device”.
- FIG. 1 shows a vehicle system 100 of a hybrid vehicle including an engine 91 and an MG 80 as a power source for the vehicle.
- the vehicle control device 69 acquires engine information and MG information regarding the operating states of the engine 91 and the MG 80. Further, the vehicle control device 69 acquires information such as an accelerator signal, a brake signal, a shift signal, a vehicle speed signal and the like related to the driving state of the vehicle.
- the vehicle control circuit 69 comprehensively controls each device of the vehicle based on such information.
- the vehicle control circuit 69 issues a torque command Trq * to the inverter control unit 50 of the MG control device 10, and notifies the vibration control and engine start information.
- MG80 is, for example, a permanent magnet type synchronous three-phase AC motor.
- the MG 80 is mounted on the hybrid vehicle 100 including the engine 91.
- the MG 80 has a function as an electric motor that generates torque for driving the drive wheels 95 and a function as a generator that recovers energy from the torque transmitted from the engine 91 and the drive wheels 95 by power generation.
- the MG 80 is connected to the axle 94 via a gear 93 such as a transmission.
- the torque generated by the MG 80 rotates the axle 94 via the gear 93 and drives the drive wheels 95.
- a current sensor for detecting a phase current is provided in a current path connected to the two-phase winding among the three-phase windings 81, 82, and 83 of the MG 80.
- current sensors 87 and 88 for detecting phase currents Iv and Iw are provided in current paths connected to the V-phase winding 82 and the W-phase winding 83, respectively, and the remaining U-phase current Iu is estimated based on Kirchhoff's law.
- any two-phase current may be detected, and a three-phase current may be detected.
- the electrical angle ⁇ e of the MG 80 is detected by a rotation angle sensor 85 such as a resolver.
- the battery 11 as a “power source” is a rechargeable secondary battery.
- Inverter 30 converts the DC power input from battery 11 into three-phase AC power and supplies it to MG 80.
- a boost converter that boosts the voltage of battery 11 and outputs the boosted voltage to inverter 30 may be provided.
- six switching elements 31-36 of upper and lower arms are bridge-connected. Specifically, the switching elements 31, 32, and 33 are upper-arm switching elements of the U phase, the V phase, and the W phase, respectively, and the switching elements 34, 35, and 36 are below the U phase, the V phase, and the W phase, respectively. This is an arm switching element.
- the switching elements 31-36 are made of, for example, IGBTs, and freewheeling diodes that allow current flowing from the low potential side to the high potential side are connected in parallel.
- the inverter 30 converts the DC power into three-phase AC power by the switching elements 31-36 operating according to the gate signals UU, UL, VU, VL, WU, WL from the inverter control unit 50. Then, phase voltages Vu, Vv, Vw according to the voltage command calculated by the inverter control unit 50 are applied to the phase windings 81, 82, 83 of the MG 80.
- the smoothing capacitor 25 smoothes the system voltage Vsys input to the inverter 30.
- the voltage sensor 37 detects the system voltage Vsys.
- the inverter control unit 50 is configured by a microcomputer or the like, and includes a CPU, a ROM, an I / O (not shown), a bus line that connects these configurations, and the like.
- the microcomputer executes control by software processing by executing a program stored in advance by the CPU or hardware processing by a dedicated electronic circuit.
- the inverter control unit 50 acquires the system voltage Vsys, the two-phase currents Iv and Iw, and the electrical angle ⁇ e detected by each sensor. Further, the inverter control unit 50 acquires the angular speed ⁇ [deg / s] obtained by time-differentiating the electrical angle ⁇ e by the differentiator 86 and the rotation speed N [rpm] converted from the angular speed ⁇ .
- a differentiator 86 may be provided inside the inverter control unit 50.
- the inverter control unit 50 receives the torque command Trq * from the vehicle control circuit 69, and calculates gate signals UU, UL, VU, VL, WU, WL for operating the inverter 30 based on such information.
- Inverter 30 operates switching elements 31-36 according to gate signals UU, UL, VU, VL, WU, WL, thereby converting DC power input from battery 11 to AC power and supplying it to MG 80.
- the configuration of the inverter control unit 50 will be described with reference to FIG.
- the inverter control unit 50 of the present embodiment includes a current feedback control unit 580 and a torque feedback control unit 540 as “a plurality of feedback control units that feed back different control amounts in feedback control for driving the MG 80”.
- “feedback control unit” is referred to as “FB control unit”.
- the current feedback control unit 580 calculates the output voltage of the inverter 30 as an operation amount for performing feedback control of the current flowing through the MG 80.
- inverter 30 is operated by PWM drive using an output voltage waveform generated by comparing a carrier wave and a voltage command.
- Torque feedback control unit 540 calculates the phase of the output voltage of inverter 30 as an operation amount for performing feedback control of the torque output from MG 80.
- inverter 30 is operated by pulse pattern driving using an output voltage waveform selected from a plurality of patterns stored in advance. The pulse pattern includes a pattern that outputs a rectangular wave of one pulse in one electrical cycle.
- the current feedback control by the current feedback control unit 580 and the torque feedback control by the torque feedback control unit 540 are switched based on the magnitude relationship between a predetermined switching determination amount and a switching threshold.
- the first and second embodiments implement switching between two modes using either the current feedback control unit 580 or the torque feedback control unit 540.
- switching between three modes including a mode using both the current feedback control unit 580 and the torque feedback control unit 540 is performed.
- the fourth embodiment is based on the premise of PWM driving and switches the carrier frequency based on the magnitude relationship between a predetermined switching determination amount and a switching threshold.
- the current feedback control unit 580 includes a current subtractor 56, a controller 57, a controller 58, and a voltage amplitude / phase calculation unit 59.
- the controller 57, the controller 58, and the voltage amplitude / phase calculator 59 may be selectively provided according to the configuration of the feedback controller.
- the torque feedback control unit 540 includes a torque subtractor 53 and a controller 54.
- inverter control unit 50 includes a dq conversion unit 51, a torque estimation unit 52, a current command calculation unit 55, a modulator 60, a gate signal generation unit 79, and the like.
- the dq converter 51 converts the phase current acquired from the current sensors 87 and 88 into dq-axis currents Id and Iq based on the electrical angle ⁇ e.
- the current command calculation unit 55 calculates the dq-axis current commands Id * and Iq * using a map or a mathematical formula so as to obtain, for example, the maximum torque per current based on the torque command Trq * .
- the current subtractor 56 calculates current deviations ⁇ Id and ⁇ Iq between the dq axis current commands Id * and Iq * and the dq axis currents Id and Iq fed back from the dq converter 51.
- the controller 58 performs the dq axis voltage commands Vd * and Vq * by PI calculation so that the current deviations ⁇ Id and ⁇ Iq converge to 0 . Is calculated.
- the voltage amplitude / phase calculation unit 59 converts the dq axis voltage commands Vd * and Vq * into a voltage amplitude Vr and a voltage phase ⁇ , and outputs them to the modulator 60.
- the voltage phase ⁇ is shown with reference to the d axis, but the voltage phase may be defined with reference to the q axis.
- the modulator 60 receives information such as the system voltage Vsys, the electrical angle ⁇ e, the angular velocity ⁇ , the rotation speed N, and the like, and an output for operating the inverter 30 based on these information. Generate a voltage waveform.
- Torque subtractor 53 calculates torque deviation ⁇ Trq between torque command Trq * and estimated torque value Trq_est.
- the controller 54 calculates the voltage phase ⁇ by PI calculation so as to converge the torque deviation ⁇ Trq to 0, and outputs it to the modulator 60.
- the modulator 60 In torque feedback control in which the MG 80 is driven by a rectangular wave voltage, the modulator 60 generates a rectangular wave output voltage waveform based on the voltage phase ⁇ calculated by the controller 54.
- the controller 57 of the current feedback control unit 580 performs voltage calculation by PI calculation so that the current deviations ⁇ Id and ⁇ Iq converge to 0.
- the amplitude Vr is calculated and output to the modulator 60.
- the modulator 60 is a rectangle used in an overmodulation region or the like based on the voltage amplitude Vr calculated by the controller 57 of the current feedback control unit 580 and the voltage phase ⁇ calculated by the controller 54 of the torque feedback control unit 540.
- An output voltage waveform having a pulse pattern other than a wave is generated.
- the code of the modulator of the first to third embodiments is “601”
- the code of the modulator of the fourth embodiment is “604”. Subsequently, the description will proceed to each embodiment.
- Modulator 601 includes a modulation factor calculation unit 61, a feedback (“FB” in the figure) control switching unit 62, a switching (“SW” in the figure) command generation unit 65, and a torque response request determination unit 68.
- the feedback control switching unit 62 uses the modulation rate m of the inverter 30, the rotation speed N of the MG 80, the torque T, and the current phase ⁇ q of the current flowing through the MG 80 as the switching determination amount. More than one piece of information is entered.
- the torque T torque command Trq * or may be any of the detection values or estimated values of the actual torque.
- the modulation factor m information on the rotational speed N, torque T, and current phase ⁇ q It is effective to determine switching based on the above.
- the rotational speed N the angular speed ⁇ proportional to the rotational speed N, the rotational speed of the axle correlated with the MG rotational speed, and the like may be used as the switching determination amount.
- the torque T and the current phase ⁇ q “amount related to torque” or “amount related to current amplitude or phase” may be used.
- the feedback control switching unit 62 stores therein a switching threshold for each switching determination amount or acquires it from an external storage device.
- the feedback control switching unit 62 selects either one or both of the current feedback control unit 580 and the torque feedback control unit 540 based on the magnitude relationship between the switching determination amount and the switching threshold value, and performs feedback control for driving the MG 80. Switch. As described above, in the first and second embodiments, switching between two modes in which one of them is selected is performed, and in the third embodiment, switching in three modes including the case where both are selected is performed.
- the switching command generation unit 65 generates switching commands Su, Sv, Sw to the inverter 30 based on the operation amount calculated by the feedback control unit selected by the feedback control switching unit 62 and outputs the switching commands Su, Sv, Sw to the gate signal generation unit 79. . Specifically, when the torque feedback control unit 540 is selected, the switching command generation unit 65 generates a rectangular wave signal that is one of pulse patterns as a switching command. When the current feedback control unit 580 is selected, the switching command generation unit 65 generates a PWM signal as a switching command by comparing the carrier wave and the voltage command. Note that the switching command generation unit 65 acquires information on the electrical angle ⁇ e and the rotation speed N in order to generate a switching command.
- the gate signal generation unit 79 generates gate signals UU, UL, VU, VL, WU, WL based on the switching commands Su, Sv, Sw, and outputs them to the switching elements 31-36 of the inverter 30.
- the inverter 30 is driven by feedback control of the inverter control unit 50.
- FIGS. 4 to 6C for an overview of the two-mode feedback control switching.
- the modulation rate mx of the switching threshold is indicated by a broken line.
- the inverter 30 is PWM-driven by current feedback control.
- the inverter 30 is pulse-pattern driven by torque feedback control.
- current feedback control is referred to as “current FB”
- torque feedback control is referred to as “torque FB”.
- control mode I and “control mode II” as two types of feedback control modes that feed back different control amounts.
- each feedback control region is set with the modulation factor m, the rotation speed N of the MG 80 or the torque T as the switching determination amount.
- the switching threshold values of these switching determination amounts are collectively denoted as X. For example, when the modulation factor m, the rotation speed N, or the torque T is smaller than each switching threshold value X, the current feedback control is selected. Further, when the modulation factor m, the rotation speed N, or the torque T is larger than each switching threshold value X, the torque feedback control is selected.
- the phase ⁇ q of the dq-axis current vector of the current flowing through MG 80 is used as the switching determination amount.
- the current vector may be a current command Id * , Iq * or a detected or estimated current Id, Iq.
- the current phase ⁇ q represents a current phase defined counterclockwise on the q-axis basis. For example, when the current phase ⁇ q is smaller than the switching threshold ⁇ qx, the current feedback control is selected, and when the current phase ⁇ q is larger than the switching threshold ⁇ qx, the torque feedback control is selected.
- the current amplitude Ir is cited in the fourth embodiment. Further, as shown in FIG.
- the current feedback control and the torque feedback control may be switched depending on the range of the current vector on the dq coordinate.
- the magnitude of the current deviation ⁇ Iref from the reference current line defined on the dq coordinate may be used as the switching determination amount.
- the feedback control switching unit 62 of the first and second embodiments switches the current feedback control and the torque feedback control to switch the MG 80 based on the magnitude relationship between one or more switching determination amounts and the switching threshold. To drive.
- a determination method such as which feedback control has priority may be determined as appropriate.
- Patent Document 1 Japanese Patent No. 5297953
- the sine wave PWM control which is the first control mode is selected, and the required torque response is high.
- the rectangular wave voltage control which is the second control mode is selected.
- the rectangular wave voltage control is advantageous for reducing the power loss but the torque response is low.
- the rectangular wave voltage control mode is changed from the sine wave PWM. Switching to the control mode.
- Patent Document 1 does not mention anything about the decrease in torque responsiveness associated with such control mode switching. Further, the prior art of Patent Document 1 is based on a system including a boost converter and cannot be applied to a system not including the boost converter.
- FIG. 7 shows frequency response characteristics with respect to torque frequency in current feedback control and torque feedback control.
- torque feedback control the gain at the same frequency is low and the phase tends to be delayed compared to current feedback control.
- the gains of the current feedback control and torque feedback control at the target frequency ftgt are both equal to or greater than the allowable lower limit value and satisfy the requirement. Further, the absolute value of the phase delay in each feedback control is meaningless. Attention is paid to the phase shift between the current feedback control and the torque feedback control at the target frequency ftgt. That is, every time the control mode is switched, an offset corresponding to this phase shift occurs.
- Fig. 8 shows the torque command and response waveforms in the upper and middle stages of the current feedback control and torque feedback control.
- the amplitude of the response to the torque command is attenuated, and the phase delay is larger than that in the current feedback control.
- the torque response when the current feedback control and the torque feedback control are alternately switched is greatly disturbed from the waveform of the torque command, as indicated by a thick line in the lower stage. Therefore, if the current feedback control and the torque feedback control are frequently switched, the torque response will be significantly reduced compared to the response in each control mode.
- the modulator 601 of the first to third embodiments includes a torque response request determining unit 68 that determines the degree of torque response required for the MG 80.
- the degree of torque responsiveness required for MG 80 is determined from the viewpoint of whether or not vehicle vibration due to torque fluctuation of MG 80 is easily perceived by the user. For example, if the accelerator is stepped on and returned rapidly, the torque command fluctuates more and the required torque response becomes higher.
- the torque response request determination unit 68 acquires information on the frequency of the torque command Trq * , the angular acceleration of the MG 80, or the rotational speed variation from other functional units in the MG control device 10, for example. For example, when the vehicle travels on a wavy road or the like, the frequency of the torque command Trq * increases due to fluctuations in the rotational speed. In such a scene, a high torque response is required. Further, the torque response request determination unit 68 acquires information indicating that damping control or engine start has been requested from the vehicle control circuit 69 of the vehicle system 90. A high torque response is required to suppress vibration during vibration suppression control and engine start. The torque response request determination unit 68 determines the degree of torque response required for the MG 80 based on one or more pieces of information.
- the feedback control switching unit 62 reduces the switching frequency of the feedback control with respect to the normal time. In other words, when it is determined that the required torque responsiveness is high, the feedback control switching unit 62 reduces the number of times feedback control is switched in a certain period of time compared to the normal time.
- the first embodiment is premised on a configuration having hysteresis in switching of feedback control.
- the switching threshold when the switching determination amount increases is collectively referred to as a “first switching threshold”, and the switching threshold when the switching determination amount decreases is generally referred to as a “second switching threshold”.
- the first switching threshold indicated by the alternate long and short dash line is set to be larger than the second switching threshold indicated by the two-dot chain line.
- the difference between the first switching threshold and the second switching threshold is referred to as “hysteresis width”.
- hunting can be prevented by providing hysteresis for control switching.
- the first switching threshold value mx_1 from current feedback control to torque feedback control when the modulation factor m increases is set to be larger than the second switching threshold value mx_2 from torque feedback control to current feedback control when the modulation factor m decreases. Has been.
- S10 a required torque responsiveness determination process is executed.
- S11 it is determined whether any one or more of the following conditions is satisfied.
- the frequency of the torque command Trq * is higher than the frequency threshold value.
- the frequency threshold is determined by, for example, the engine speed, the torsional frequency of the axle, and the like.
- Vibration suppression control is required in the vehicle system 100.
- the vehicle system 100 is required to start the engine.
- the angular acceleration of the MG 80 is larger than the angular acceleration threshold value, or the rotational speed fluctuation determined from the amplitude and cycle of the rotational speed fluctuation is larger than the fluctuation threshold value.
- S11 is determined to be YES
- S12 is determined to be “required torque response is high”.
- NO is determined in S11
- S13 that “the required torque response is not high”, that is, the normal time.
- YES is determined in S 20
- the feedback control switching unit 62 sets the switching hysteresis width in S 21. Enlargement relative to normal times.
- FIG. 12 shows an example of a flowchart of feedback control switching in a configuration having hysteresis.
- S30 it is determined whether current feedback control is currently being performed. In the case of current feedback control, YES is determined in S30, and the process proceeds to S31. In the case of torque feedback control, NO is determined in S30, and the process proceeds to S33.
- S31 it is determined whether the modulation factor m, the rotation speed N, the torque T, or the current phase ⁇ q exceeds the respective first switching threshold values. If YES is determined in S31, the feedback control switching unit 62 switches from current feedback control to torque feedback control in S32. In S33, it is determined whether the modulation factor m, the rotation speed N, the torque T, or the current phase ⁇ q is below the second switching threshold value. If YES is determined in S33, the feedback control switching unit 62 switches from torque feedback control to current feedback control in S34. If NO is determined in S31 or S33, the current feedback control is maintained.
- FIGS. 9, 13, and 14 show the hysteresis widths at normal times and when the required torque response is high.
- the upper side and the lower side of each figure show the first and second switching threshold values when the required torque response is high.
- “L” is added to the end of the symbol of the switching threshold at the normal time
- “H” is added to the end of the symbol of the switching threshold when the required torque response is high.
- the hysteresis width at the normal time is denoted as “ ⁇ ”
- the hysteresis width when the required torque response is high is denoted as “ ⁇ ”. Note that the symbols of the hysteresis widths ⁇ and ⁇ mean independent values for each switching determination amount in each figure, and are not related to each other.
- the first switching threshold value mx_1L and the second switching threshold value mx_2L is the hysteresis width ⁇ and the required torque response is high
- the first switching threshold value mx_1H is normal.
- the second switching threshold mx_2H is the hysteresis width ⁇ .
- the hysteresis width ⁇ when the required torque response is high is expanded more than the normal hysteresis width ⁇ .
- the first switching threshold value mx_1H is made larger than the normal switching threshold value mx_1L
- the second switching threshold value mx_2H is made smaller than the normal switching threshold value mx_2L
- the hysteresis width is set to both sides. You may enlarge it.
- the hysteresis width may be expanded to one side by expanding only one of the first or second switching threshold values outward. The same applies to FIGS. 13 and 14 below.
- the hysteresis width ⁇ in the normal state is set as small as possible within a range where hunting of control switching does not occur from the viewpoint of optimum loss.
- the hysteresis width ⁇ when the required torque responsiveness is high due to execution of vibration suppression control is as wide as possible based on the torque amplitude required for vibration suppression control and the modulation factor-torque characteristic determined by the MG characteristic. Is set. That is, the first switching threshold value mx_1H serving as the upper limit value of the current feedback control is set from the upper limit modulation rate of the sine wave drive. The second switching threshold value mx_2H serving as the lower limit value of the torque feedback control is set based on the maximum fluctuation amplitude of the torque permitted in the vibration suppression control.
- FIG. 13 shows the normal first switching threshold value X_1L and the second switching threshold value X_2L in common with the modulation factor m, the rotation speed N, and the torque T as the switching determination amount, and the required torque response.
- the first switching threshold when X is high is denoted as X_1H
- the second switching threshold is denoted as X_2H.
- the hysteresis width ⁇ when the required torque response is high is expanded more than the normal hysteresis width ⁇ .
- the q-axis reference current phase ⁇ q as the switching determination amount is represented by a normal first switching threshold value ⁇ qx_1L and a second switching threshold value ⁇ qx_2L, and the first when the required torque response is high.
- the switching threshold is denoted as ⁇ qx_1H
- the second switching threshold is denoted as ⁇ qx_2H.
- the MG control device 10 of the first embodiment can be applied to a system that does not include a boost converter.
- FIG. 15 is a flowchart of the switching frequency reduction process corresponding to FIG. 10 of the first embodiment, and shares the sub-flowchart of the required torque responsiveness determination of FIG.
- the switching prohibition period is set in S22 of FIG. 15 instead of expanding the hysteresis width in S21 of FIG. That is, in the second embodiment, after switching the feedback control once, the switching frequency is reduced by prohibiting the next switching for a predetermined switching prohibition period.
- the time chart of FIG. 16 shows an example of the relationship between the timing of the provisional switching determination by the feedback control switching unit 62 and the switching execution timing. Similar to the first embodiment, the provisional switching determination is made based on the magnitude relationship between the switching determination amount such as the modulation factor m, the rotation speed N, the torque T, the current phase ⁇ q, and the switching threshold value of each determination amount. Note that the hysteresis for switching may not be provided.
- the switching prohibition period starts from that point. Even if the next switch provisional determination is made during the switch prohibition period, the feedback control switching is prohibited and is not performed.
- “OK” is described as the timing when switching is performed among the times t1 to t8 of the temporary switching determination
- “NG” is described as the timing when switching is prohibited.
- the current feedback control is switched to the torque feedback control. Thereafter, a temporary switching determination from torque feedback control to current feedback control is performed at time t2. However, switching is not performed because the switching prohibition period starts at time t1, and current feedback is performed at time t2r when the switching prohibition period ends. Switch to control.
- a temporary determination is made from current feedback control to torque feedback control and from torque feedback control to current feedback control, but none is switched. Thereafter, at time t4r when the switching prohibition period starting from time t2r ends, current feedback control is maintained in accordance with the provisional switching determination at the latest time t4.
- FIG. 17 is an NT characteristic diagram corresponding to FIG. 4.
- the “torque FB” region in FIG. 4 is further divided into a “current FB + torque FB” region and a “torque FB” region.
- the voltage amplitude Vr calculated by the controller 57 of the current feedback control unit 580 and the voltage phase ⁇ calculated by the torque feedback control unit 540 are output to the modulator 60.
- the switching command generator 65 of the modulator 60 generates a switching command by overmodulation PWM control or pulse pattern control based on the voltage amplitude Vr and the voltage phase ⁇ .
- the control mode switching between “current FB” and “current FB + torque FB” is referred to as “low-rotation side switching”. Further, the control mode switching between “current FB + torque FB” and “torque FB” is referred to as “high-speed side switching”. Switching on the low rotation side is performed using the modulation factor mxL as a switching determination threshold. Switching on the high rotation side is performed using a modulation factor mxH larger than the modulation factor mxL as a switching determination threshold value.
- the feedback control switching unit 62 increases the hysteresis width for both the low rotation side switching and the high rotation side switching, or The switching frequency may be reduced by setting a switching prohibition period.
- the feedback control switching unit 62 reduces the switching frequency by increasing the hysteresis width or setting the switching prohibition period for one of the low-rotation side switching and the high-rotation side switching, and the other is the normal time. It is good also as the same switching frequency.
- FIG. 18 is a block diagram of a modulator corresponding to FIG.
- FIG. 20 is a flowchart corresponding to FIG.
- the MG control device of the fourth embodiment is based on the control configuration that drives the MG 80 by PWM control, and reduces the switching frequency when the required torque response is high for switching the carrier frequency of PWM control.
- the modulator 604 of the fourth embodiment includes a carrier wave generator 63, a carrier wave frequency switching unit 64, a switching command generation unit 66, and a torque response request determination unit 68.
- the voltage amplitude Vr and the voltage phase ⁇ calculated by the current feedback control unit 580 are input to the modulator 604.
- the carrier wave generator 63 can generate a plurality of carrier waves having different frequencies.
- the frequency fH and the frequency fL in the figure are different frequencies.
- fH is a relatively high frequency
- fL is a low frequency.
- the carrier frequency switching unit 64 switches the carrier frequencies fH and fL generated by the carrier generator 63 based on the magnitude relationship between a predetermined switching determination amount and a switching determination threshold.
- a switching determination amount for example, current amplitude Ir, torque T, rotation speed N, and the like are used.
- the current amplitude the amplitude or effective value of the phase current may be used in addition to the amplitude Ir of the dq-axis current vector shown in FIG.
- the modulation factor m calculated from the ratio between the voltage amplitude Vr and the system voltage Vsys by the modulation factor calculator 61 may be used as the switching determination amount.
- the switching command generator 66 generates a switching command to the inverter 30 by PWM control that compares the carrier wave generated by the carrier wave generator 63 with the voltage command.
- the torque response request determination unit 68 is the same as the configuration of the first to third embodiments in FIG. 3, and determines the degree of torque response required for the MG 80.
- the carrier frequency switching unit 64 reduces the frequency of switching the carrier frequency.
- the configuration for reducing the switching frequency may be a configuration in which the hysteresis width is expanded as in the first embodiment, or a configuration in which a switching prohibition period is provided as in the second embodiment.
- FIG.10 and FIG.15 is used for the flowchart of the switching frequency reduction process by each structure. Further, FIG. 11 is used as a sub-flowchart of the required torque response determination.
- FIG. 19 Refer to FIG. 19 for the significance of switching the carrier frequency of PWM control.
- the upper side of FIG. 19 shows a switching command signal in one electrical cycle when the carrier frequency is relatively low and the lower side is when the carrier frequency is relatively high.
- the switching command signal When the voltage command exceeds the carrier wave, the switching command signal is turned on, and when the voltage command falls below the carrier wave, the switching command signal is turned off. Therefore, the higher the carrier frequency, the greater the number of switching in one electrical cycle.
- the carrier frequency may be switched according to the number of pulses of one electrical cycle depending on the rotation speed N.
- FIG. 20 shows a diagram corresponding to FIG. 13 of the first embodiment regarding the configuration for reducing the switching frequency of the carrier frequency by enlarging the hysteresis width.
- FIG. 20 shows the first switching threshold value X_1L and the second switching threshold value X_2L in the normal state with respect to the current amplitude Ir or torque T as the switching determination amount, and the first when the required torque responsiveness is high.
- the switching threshold value of X is denoted as X_1H
- the second switching threshold value is denoted as X_2H.
- the carrier frequency switching unit 64 switches the carrier frequency from the high frequency fH to the low frequency fL.
- the carrier frequency switching unit 64 switches the carrier frequency from the low frequency fL to the high frequency fH.
- the time chart of the configuration in which the switching frequency of the carrier wave frequency is reduced by providing the switching prohibition period is simply “high frequency fH” and “high frequency fH” and “current FB” in FIG. 16 of the second embodiment. Since it may be replaced with “low frequency fL”, a dedicated figure is omitted. Note that the switching timing may be adjusted in order to ensure the continuity of the output voltage waveform when the carrier frequency is switched.
- the switching frequency is reduced.
- the plurality of feedback control units to be switched are not limited to the current feedback control unit and the torque feedback control unit exemplified in the first to third embodiments, but feedback other control amounts such as voltage and rotation speed, for example. It may be a feedback control unit. Three or more feedback control units may be switched. Further, in contrast to the fourth embodiment for switching two carrier frequencies, in other embodiments, three or more carrier frequencies may be switched.
- the required torque response is not limited to two stages of “high / not high”, but is divided into three or more stages, and the hysteresis width is multi-staged accordingly.
- the length of the switching prohibition period may be set in multiple stages. That is, the higher the required torque response, the larger the hysteresis width, or the longer the switching prohibition period may be set.
- an amount other than that exemplified in the above embodiment may be used as the switching determination amount. Further, in the comparison with the switching threshold, not only a simple magnitude relationship but also an absolute value or a square value of the switching determination amount may be compared with the switching threshold.
- the AC motor control device may be applied to a vehicle system of an electric vehicle instead of a hybrid vehicle. However, in the vehicle system of an electric vehicle, engine start is excluded from the determination conditions of the required torque response determination process.
- the control device for an AC motor according to the present disclosure may be applied to a drive system for an AC motor for any application, such as for general machines other than a vehicle system. However, vibration control and engine start are excluded from the determination conditions of the required torque responsiveness determination process except for the vehicle.
- the number of phases of the AC motor driven in the system to which the present disclosure is applied is not limited to three phases, and may be any number of phases. Further, the AC motor is not limited to a permanent magnet type synchronous motor, and may be an induction motor or other synchronous motor.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
- Inverter Devices (AREA)
Abstract
インバータ制御部のフィードバック制御切替部は、所定の切替判定量と切替閾値との大小関係に基づいてフィードバック制御部を選択し、交流電動機を駆動するフィードバック制御(例えば電流フィードバック制御及びトルクフィードバック制御)を切り替える。スイッチング指令生成部は、選択されたフィードバック制御部により演算される操作量に基づいてインバータへのスイッチング指令を生成する。トルク応答要求判定部は、交流電動機に要求されるトルク応答性の度合いを判定する。トルク応答要求判定部により、要求されるトルク応答性が高いと判断されたとき、フィードバック制御切替部は、例えば通常時のヒステリシス幅αをβ(>α)に拡大することにより、フィードバック制御の切替頻度を低減する。
Description
本出願は、2017年1月24日に出願された特許出願番号2017-10058号に基づくものであり、ここにその記載内容を援用する。
本開示は、交流電動機の制御装置に関する。
従来、交流電動機の制御におけるトルク応答性を向上させる技術が知られている。
例えば特許文献1には、昇圧コンバータ及びインバータを備え、インバータの制御モードとして、電力変換の変調率が小さいときに適用される第1の制御モードと、変調率が大きいときに適用される第2の制御モードとを選択可能なシステムが開示されている。このシステムは、交流電動機に要求されるトルク応答性が高いときは第1の制御モードを選択し、要求されるトルク応答性が高くないときは第2の制御モードを選択する。
例えば特許文献1には、昇圧コンバータ及びインバータを備え、インバータの制御モードとして、電力変換の変調率が小さいときに適用される第1の制御モードと、変調率が大きいときに適用される第2の制御モードとを選択可能なシステムが開示されている。このシステムは、交流電動機に要求されるトルク応答性が高いときは第1の制御モードを選択し、要求されるトルク応答性が高くないときは第2の制御モードを選択する。
特許文献1の従来技術は、単に、第2の制御モードは電力損失低減には有利であるがトルク応答性が低いことに対し、電力損失低減よりもトルク高応答を優先する状態では第2の制御モードから第1の制御モードに切り替えるというものである。しかし、複数の制御モードがそれぞれ高いトルク応答性を満足するにもかかわらず、制御モードの切替が頻繁に生じると、それぞれの制御モードでの応答性と比べてトルク応答性が著しく低下することを発明者は見出した。また、PWM制御の搬送波周波数の切替についても、同様に考えられる。特許文献1には、このような制御モードや搬送波周波数の切替に伴うトルク応答性の低下に関し、何ら言及されていない。なお、本明細書では、動詞の「きりかえる」には、送り仮名を用いて「切り替える」と表記し、名詞の「きりかえ」には、送り仮名を用いず「切替」と表記する。
また、特許文献1の従来技術は、昇圧コンバータを備えるシステムを前提としており、昇圧コンバータを備えないシステムには適用することができない。
本開示の目的は、トルク応答性を向上させる交流電動機の制御装置を提供することにある。
本開示の第一の態様による交流電動機の制御装置は、インバータと、複数のフィードバック制御部と、フィードバック制御切替部と、スイッチング指令生成部と、トルク応答要求判定部とを備える。インバータは、電源から入力される直流電力を複数のスイッチング素子の動作により交流電力に変換し交流電動機に供給する。複数のフィードバック制御部は、交流電動機を駆動するフィードバック制御において、互いに異なる制御量をフィードバックする。フィードバック制御切替部は、所定の切替判定量と切替閾値との大小関係に基づいてフィードバック制御部を選択し、交流電動機を駆動するフィードバック制御を切り替える。
スイッチング指令生成部は、選択されたフィードバック制御部により演算される操作量に基づいてインバータへのスイッチング指令を生成する。トルク応答要求判定部は、交流電動機に要求されるトルク応答性の度合いを判定する。トルク応答要求判定部により、要求されるトルク応答性が高いと判断されたとき、フィードバック制御切替部は、フィードバック制御の切替頻度を低減する。
具体的に複数のフィードバック制御部は、電流フィードバック制御部と、トルクフィードバック制御部とを含む。電流フィードバック制御部は、交流電動機を流れる電流をフィードバック制御するための操作量として、インバータの出力電圧を演算する。トルクフィードバック制御部は、交流電動機が出力するトルクをフィードバック制御するための操作量として、インバータの出力電圧の位相を演算する。フィードバック制御切替部は、電流フィードバック制御部とトルクフィードバック制御部とのいずれか一方または両方を選択する。
本開示の第一の態様では、要求されるトルク応答性が高いと判断されたとき、フィードバック制御の切替頻度を低減することで、フィードバック制御の切替に伴うトルク応答性の低下を抑制することができる。よって、トルク応答性を向上させることができる。
切替頻度を低減させる構成として、主に以下の二つの構成を取り得る。(1)切替のヒステリシスを有する構成において、ヒステリシス幅を拡大する。(2)一度切り替えた後、所定の切替禁止期間、次の切替を禁止する。また、本開示の第一の態様は、特許文献1の従来技術とは異なり、昇圧コンバータを備えないシステムにも適用することができる。
本開示の第二の態様による交流電動機の制御装置は、インバータと、搬送波生成器と、搬送波周波数切替部と、スイッチング指令生成部と、トルク応答要求判定部とを備える。インバータは、電源から入力される直流電力を複数のスイッチング素子の動作により交流電力に変換し交流電動機に供給する。搬送波生成器は、周波数が異なる複数の搬送波を生成可能である。搬送波周波数切替部は、所定の切替判定量と切替閾値との大小関係に基づき、搬送波生成器が生成する搬送波周波数を切り替える。
スイッチング指令生成部は、搬送波生成器が生成する搬送波と電圧指令とを比較するPWM制御により、インバータへのスイッチング指令を生成する。トルク応答要求判定部は、交流電動機に要求されるトルク応答性の度合いを判定する。トルク応答要求判定部により、要求されるトルク応答性が高いと判断されたとき、搬送波周波数切替部は、搬送波周波数の切替頻度を低減する。
本開示の第二の態様では、要求されるトルク応答性が高いと判断されたとき、搬送波周波数の切替頻度を低減することで、搬送波周波数の切替に伴うトルク応答性の低下を抑制し、トルク応答性を向上させることができる。
本開示についての上記目的及びその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、各実施形態による交流電動機の制御装置が適用される車両システムの概略構成図であり、
図2は、各実施形態のインバータ制御部の制御ブロック図であり、
図3は、第1~第3実施形態による変調器の制御ブロック図であり、
図4は、第1、第2実施形態による2モードのフィードバック制御切替を示すN-T特性図であり、
図5は、変調率、回転数、トルクに基づくフィードバック制御切替を示す図であり、
図6Aは、dq座標での電流位相に基づくフィードバック制御切替を示す図であり、
図6Bは、dq座標での電流範囲に基づくフィードバック制御切替を示す図であり、
図6Cは、dq座標での基準電流ラインからの偏差に基づくフィードバック制御切替を示す図であり、
図7は、電流/トルクフィードバック制御でのトルク周波数応答特性図であり、
図8は、フィードバック制御の切替によるトルク応答性の低下を説明する図であり、
図9は、フィードバック制御切替におけるヒステリシス幅拡大を示すN-T特性図であり、
図10は、第1実施形態による切替頻度低減処理のフローチャートであり、
図11は、要求トルク応答性判定の例を示すサブフローチャートであり、
図12は、フィードバック制御切替の例を示すフローチャートであり、
図13は、変調率、回転数、トルクに基づくフィードバック制御切替におけるヒステリシス幅拡大を示す図であり、
図14は、電流位相に基づくフィードバック制御切替におけるヒステリシス幅拡大を示す図であり、
図15は、第2実施形態による切替頻度低減処理のフローチャートであり、
図16は、第2実施形態による切替禁止期間を説明するタイムチャートであり、
図17は、第3実施形態による3モードのフィードバック制御切替を示すN-T特性図であり、
図18は、第4実施形態による変調器の制御ブロック図であり、
図19は、搬送波周波数と電気角1周期のスイッチング回数との関係を説明する図であり、
図20は、搬送波周波数切替におけるヒステリシス幅拡大を示す図である。
以下、交流電動機の制御装置の複数の実施形態を図面に基づいて説明する。複数の実施形態において実質的に同一の構成には、同一の符号を付して説明を省略する。また、以下の第1~第4実施形態を包括して「本実施形態」という。
本実施形態の交流電動機の制御装置は、ハイブリッド自動車や電気自動車の動力源であるモータジェネレータ(以下「MG」)を駆動するシステムにおいて、三相交流モータであるMGの通電を制御する装置である。各実施形態の「MG」及び「MG制御装置」は、「交流電動機」及び「交流電動機の制御装置」に相当する。
本実施形態の交流電動機の制御装置は、ハイブリッド自動車や電気自動車の動力源であるモータジェネレータ(以下「MG」)を駆動するシステムにおいて、三相交流モータであるMGの通電を制御する装置である。各実施形態の「MG」及び「MG制御装置」は、「交流電動機」及び「交流電動機の制御装置」に相当する。
[システム構成]
まず、各実施形態のMG制御装置が適用される車両システムの全体構成について図1を参照して説明する。図1に、車両の動力源としてエンジン91及びMG80を備えるハイブリッド自動車の車両システム100を示す。車両システム100において、車両制御装置69は、エンジン91及びMG80の動作状態に関するエンジン情報及びMG情報を取得する。また、車両制御装置69は、車両の運転状態に関するアクセル信号、ブレーキ信号、シフト信号、車速信号等の情報を取得する。車両制御回路69は、これらの情報に基づき、車両の各機器を統括的に制御する。特に本実施形態では、車両制御回路69は、MG制御装置10のインバータ制御部50に対し、トルク指令Trq*を指令する他、制振制御やエンジン始動の情報を通知する。
まず、各実施形態のMG制御装置が適用される車両システムの全体構成について図1を参照して説明する。図1に、車両の動力源としてエンジン91及びMG80を備えるハイブリッド自動車の車両システム100を示す。車両システム100において、車両制御装置69は、エンジン91及びMG80の動作状態に関するエンジン情報及びMG情報を取得する。また、車両制御装置69は、車両の運転状態に関するアクセル信号、ブレーキ信号、シフト信号、車速信号等の情報を取得する。車両制御回路69は、これらの情報に基づき、車両の各機器を統括的に制御する。特に本実施形態では、車両制御回路69は、MG制御装置10のインバータ制御部50に対し、トルク指令Trq*を指令する他、制振制御やエンジン始動の情報を通知する。
MG80は、例えば永久磁石式同期型の三相交流モータである。本実施形態では、MG80は、エンジン91を備えたハイブリッド自動車100に搭載される。MG80は、駆動輪95を駆動するトルクを発生する電動機としての機能、及び、エンジン91や駆動輪95から伝達されるトルクを発電によってエネルギー回収する発電機としての機能を兼ね備える。MG80は、変速機等のギア93を介して車軸94に接続されている。MG80が発生したトルクは、ギア93を介して車軸94を回転させ、駆動輪95を駆動する。
MG80の三相巻線81、82、83のうち二相の巻線に接続される電流経路には、相電流を検出する電流センサが設けられる。図1の例では、V相巻線82及びW相巻線83に接続される電流経路に、それぞれ相電流Iv、Iwを検出する電流センサ87、88が設けられており、残るU相の電流Iuをキルヒホッフの法則に基づいて推定している。他の実施形態では、どの二相の電流を検出してもよく、三相の電流を検出してもよい。或いは、一相の電流検出値に基づいて他の二相の電流を推定する技術を採用してもよい。
MG80の電気角θeは、例えばレゾルバ等の回転角センサ85により検出される。
MG80の電気角θeは、例えばレゾルバ等の回転角センサ85により検出される。
「電源」としてのバッテリ11は、充放電可能な二次電池である。インバータ30は、バッテリ11から入力される直流電力を三相交流電力に変換し、MG80に供給する。なお、バッテリ11の電圧を昇圧してインバータ30に出力する昇圧コンバータが設けられてもよい。インバータ30は、上下アームの6つのスイッチング素子31-36がブリッジ接続されている。詳しくは、スイッチング素子31、32、33は、それぞれU相、V相、W相の上アームのスイッチング素子であり、スイッチング素子34、35、36は、それぞれU相、V相、W相の下アームのスイッチング素子である。スイッチング素子31-36は、例えばIGBTで構成され、低電位側から高電位側へ向かう電流を許容する還流ダイオードが並列に接続されている。
インバータ30は、インバータ制御部50からのゲート信号UU、UL、VU、VL、WU、WLに従ってスイッチング素子31-36が動作することで直流電力を三相交流電力に変換する。そして、インバータ制御部50が演算した電圧指令に応じた相電圧Vu、Vv、VwをMG80の各相巻線81、82、83に印加する。平滑コンデンサ25は、インバータ30に入力されるシステム電圧Vsysを平滑化する。電圧センサ37はシステム電圧Vsysを検出する。
インバータ制御部50は、マイコン等により構成され、図示しないCPU、ROM、I/O、及び、これらの構成を接続するバスライン等を内部に備えている。マイコンは、予め記憶されたプログラムをCPUで実行することによるソフトウェア処理や、専用の電子回路によるハードウェア処理による制御を実行する。インバータ制御部50は、各センサが検出したシステム電圧Vsys、二相の相電流Iv、Iw、電気角θeを取得する。また、インバータ制御部50は、微分器86により電気角θeが時間微分された角速度ω[deg/s]、及び、角速度ωが換算された回転数N[rpm]を取得する。なお、インバータ制御部50の内部に微分器86を有してもよい。
さらにインバータ制御部50は、車両制御回路69からトルク指令Trq*が入力され、これらの情報に基づいて、インバータ30を操作するゲート信号UU、UL、VU、VL、WU、WLを演算する。インバータ30は、ゲート信号UU、UL、VU、VL、WU、WLに従ってスイッチング素子31-36が動作することにより、バッテリ11から入力される直流電力を交流電力に変換しMG80に供給する。
[インバータ制御部の構成]
インバータ制御部50の構成について、図2を参照して説明する。本実施形態のインバータ制御部50は、「MG80を駆動するフィードバック制御において、互いに異なる制御量をフィードバックする複数のフィードバック制御部」として、電流フィードバック制御部580及びトルクフィードバック制御部540を含む。図中、「フィードバック制御部」を「FB制御部」と記す。
インバータ制御部50の構成について、図2を参照して説明する。本実施形態のインバータ制御部50は、「MG80を駆動するフィードバック制御において、互いに異なる制御量をフィードバックする複数のフィードバック制御部」として、電流フィードバック制御部580及びトルクフィードバック制御部540を含む。図中、「フィードバック制御部」を「FB制御部」と記す。
電流フィードバック制御部580は、MG80に流れる電流をフィードバック制御するための操作量として、インバータ30の出力電圧を演算する。電流フィードバック制御では代表的に、搬送波と電圧指令とを比較して生成される出力電圧波形を用いるPWM駆動によってインバータ30を動作させる。トルクフィードバック制御部540は、MG80が出力するトルクをフィードバック制御するための操作量として、インバータ30の出力電圧の位相を演算する。トルクフィードバック制御では代表的に、予め記憶された複数のパターンから選択される出力電圧波形を用いるパルスパターン駆動によってインバータ30を動作させる。パルスパターンには、電気1周期に1パルスの矩形波を出力するパターンが含まれる。
以下の第1~第3実施形態は、所定の切替判定量と切替閾値との大小関係に基づき、電流フィードバック制御部580による電流フィードバック制御と、トルクフィードバック制御部540によるトルクフィードバック制御とを切り替える。そのうち、第1、第2実施形態は、電流フィードバック制御部580またはトルクフィードバック制御部540のいずれか一方を用いる2モードの切替を実施する。第3実施形態は、電流フィードバック制御部580とトルクフィードバック制御部540との両方を用いるモードをさらに含む3モードの切替を実施する。一方、第4実施形態は、PWM駆動を前提とし、所定の切替判定量と切替閾値との大小関係に基づき、搬送波周波数を切り替える。
ここでは、各実施形態を総括し、インバータ制御部50の構成の全体を説明する。電流フィードバック制御部580は、電流減算器56、制御器57、制御器58、及び電圧振幅/位相演算部59を含む。このうち、制御器57と、制御器58及び電圧振幅/位相演算部59とは、フィードバック制御部の構成に応じて選択的に設けられてもよい。トルクフィードバック制御部540は、トルク減算器53及び制御器54を含む。インバータ制御部50は、その他に、dq変換部51、トルク推定部52、電流指令演算部55、変調器60、及びゲート信号生成部79等を含む。
まず、両方のフィードバック制御に共通に、dq変換部51は、電気角θeに基づき、電流センサ87、88から取得した相電流をdq軸電流Id、Iqに変換する。電流フィードバック制御では、電流指令演算部55は、トルク指令Trq*に基づき、例えば電流当たり最大トルクが得られるように、マップや数式を用いてdq軸電流指令Id*、Iq*を演算する。電流減算器56は、dq軸電流指令Id*、Iq*と、dq変換部51からフィードバックされるdq軸電流Id、Iqとの電流偏差ΔId、ΔIqを算出する。
電流フィードバック制御部580により出力電圧の振幅Vr及び位相φを演算する構成では、制御器58は、電流偏差ΔId、ΔIqを0に収束させるように、PI演算によりdq軸電圧指令Vd*、Vq*を演算する。電圧振幅/位相演算部59は、dq軸電圧指令Vd*、Vq*を電圧振幅Vr及び電圧位相φに変換し、変調器60に出力する。なお、図2では電圧位相φをd軸基準で示しているが、q軸基準で電圧位相を定義してもよい。変調器60は、電圧振幅Vr及び電圧位相φの他に、システム電圧Vsys、電気角θe、角速度ω、回転数N等の情報が入力され、これらの情報に基づいて、インバータ30を動作させる出力電圧波形を生成する。
次に、トルクフィードバック制御では、トルク推定部52は、dq軸電流Id、Iq、及び、MG80のモータ定数に基づき、式(1)を用いてトルク推定値Trq_estを算出する。なお、MG80にトルクセンサを備えたシステムでは、トルク推定部52を設けず、トルク検出値を取得してもよい。
Trq_est=p×{Iq×ψ+(Ld-Lq)×Id×Iq} ・・・(1)
ただし、
p :MGの極対数
ψ :逆起電圧定数
Ld、Lq:d軸インダクタンス、q軸インダクタンス
Trq_est=p×{Iq×ψ+(Ld-Lq)×Id×Iq} ・・・(1)
ただし、
p :MGの極対数
ψ :逆起電圧定数
Ld、Lq:d軸インダクタンス、q軸インダクタンス
トルク減算器53は、トルク指令Trq*とトルク推定値Trq_estとのトルク偏差ΔTrqを算出する。制御器54は、トルク偏差ΔTrqを0に収束させるように、PI演算により電圧位相φを演算し、変調器60に出力する。矩形波電圧によりMG80を駆動するトルクフィードバック制御では、変調器60は、制御器54が演算した電圧位相φに基づいて矩形波の出力電圧波形を生成する。
また、電流フィードバック制御部580とトルクフィードバック制御部540との両方を用いる制御モードでは、電流フィードバック制御部580の制御器57は、電流偏差ΔId、ΔIqを0に収束させるように、PI演算により電圧振幅Vrを演算し、変調器60に出力する。変調器60は、電流フィードバック制御部580の制御器57が演算した電圧振幅Vrと、トルクフィードバック制御部540の制御器54が演算した電圧位相φとに基づいて、過変調領域等で用いられる矩形波以外のパルスパターンの出力電圧波形を生成する。
変調器60の詳細な構成については、第1~第3実施形態と、第4実施形態とに分けて説明する。以下、第1~第3実施形態の変調器の符号を「601」とし、第4実施形態の変調器の符号を「604」とする。
続いて各実施形態の説明に移る。
続いて各実施形態の説明に移る。
(第1実施形態)
第1実施形態について、図3~図14を参照して説明する。まず図3を参照し、第1~第3実施形態に共通の変調器601の構成を説明する。変調器601は、変調率算出部61、フィードバック(図中「FB」)制御切替部62、スイッチング(図中「SW」)指令生成部65及びトルク応答要求判定部68を含む。変調率算出部61は、電圧振幅Vr及びシステム電圧Vsysに基づいて、式(2)により変調率mを算出する。
m=2√(2/3)×(Vr/Vsys) ・・・(2)
第1実施形態について、図3~図14を参照して説明する。まず図3を参照し、第1~第3実施形態に共通の変調器601の構成を説明する。変調器601は、変調率算出部61、フィードバック(図中「FB」)制御切替部62、スイッチング(図中「SW」)指令生成部65及びトルク応答要求判定部68を含む。変調率算出部61は、電圧振幅Vr及びシステム電圧Vsysに基づいて、式(2)により変調率mを算出する。
m=2√(2/3)×(Vr/Vsys) ・・・(2)
フィードバック制御切替部62は、電圧振幅Vr及び電圧位相φの他に、切替判定量として、インバータ30の変調率m、MG80の回転数N、トルクT、MG80に流れる電流の電流位相θqのうち一つ以上の情報が入力される。ここで、トルクTは、トルク指令Trq*、または、実トルクの検出値もしくは推定値のいずれでもよい。例えば変調器60にて電圧振幅Vrの上限を制限する場合、変調率mのみでは切替判定ができないため、変調率mに代えて、または加えて、回転数N、トルクT、電流位相θqの情報に基づいて切替判定することが有効である。なお、回転数Nに代えて、回転数Nに比例する角速度ω、MG回転数と相関する車軸の回転数等を切替判定量としてもよい。また、トルクT、電流位相θqに代えて、「トルクに関する量」や「電流の振幅または位相に関する量」を用いてもよい。
また、フィードバック制御切替部62は、各切替判定量に対する切替閾値を内部に記憶しているか、外部の記憶装置から取得する。そして、フィードバック制御切替部62は、切替判定量と切替閾値との大小関係に基づき、電流フィードバック制御部580とトルクフィードバック制御部540とのいずれか一方または両方を選択し、MG80を駆動するフィードバック制御を切り替える。上述の通り、第1、第2実施形態では、いずれか一方が選択される2モードの切替が行われ、第3実施形態では、両方が選択される場合を含む3モードの切替が行われる。
スイッチング指令生成部65は、フィードバック制御切替部62が選択したフィードバック制御部により演算される操作量に基づき、インバータ30へのスイッチング指令Su、Sv、Swを生成し、ゲート信号生成部79に出力する。具体的には、トルクフィードバック制御部540が選択されたとき、スイッチング指令生成部65は、スイッチング指令として、パルスパターンの一つである矩形波信号を生成する。また、電流フィードバック制御部580が選択されたとき、スイッチング指令生成部65は、スイッチング指令として、搬送波と電圧指令との比較によりPWM信号を生成する。なお、スイッチング指令生成部65は、スイッチング指令生成のため、電気角θe及び回転数Nの情報を取得する。
ゲート信号生成部79は、スイッチング指令Su、Sv、Swに基づいて、ゲート信号UU、UL、VU、VL、WU、WLを生成し、インバータ30のスイッチング素子31-36に出力する。こうしてインバータ30は、インバータ制御部50のフィードバック制御によって駆動される。
次に、トルク応答要求判定部68の説明に移る前に、2モードのフィードバック制御切替の概略について、図4~図6Cを参照する。この部分の説明では、第1実施形態に特有の構成である制御切替のヒステリシスについては言及しない。図4の回転数-トルク特性(以下、「N-T」特性)図において、切替閾値の変調率mxを破線で示す。変調率mが切替閾値mxより小さい低回転数領域では、電流フィードバック制御によりインバータ30がPWM駆動される。変調率mが切替閾値mxより大きい高回転数領域では、トルクフィードバック制御によりインバータ30がパルスパターン駆動される。以下の図中、電流フィードバック制御を「電流FB」と記し、トルクフィードバック制御を「トルクFB」と記す。
図5~図6Cに、電流フィードバック制御とトルクフィードバック制御との切替に用いられる切替判定量の例を示す。電流フィードバック制御及びトルクフィードバック制御は、互いに異なる制御量をフィードバックする2種類のフィードバック制御モードとして、例えば「制御モードI」及び「制御モードII」というように一般化して扱ってもよい。
図5に示す例では、変調率m、MG80の回転数NまたはトルクTを切替判定量として各フィードバック制御の領域が設定される。これらの切替判定量のそれぞれの切替閾値をまとめてXと記す。例えば、変調率m、回転数NまたはトルクTがそれぞれの切替閾値Xよりも小さいとき、電流フィードバック制御が選択される。また、変調率m、回転数NまたはトルクTがそれぞれの切替閾値Xよりも大きいとき、トルクフィードバック制御が選択される。
図6Aに示す例では、MG80に流れる電流のdq軸電流ベクトルの位相θqが切替判定量として用いられる。電流ベクトルは、電流指令Id*、Iq*でも、検出または推定電流Id、Iqでもよい。以下、電流位相θqは、q軸基準で反時計回りに定義した電流位相を表す。例えば、電流位相θqが切替閾値θqxよりも小さいとき、電流フィードバック制御が選択され、電流位相θqが切替閾値θqxよりも大きいとき、トルクフィードバック制御が選択される。なお、電流振幅Irは、第4実施形態で引用される。また、図6Bに示すように、dq座標上の電流ベクトルの範囲によって、電流フィードバック制御とトルクフィードバック制御とが切り替えられてもよい。或いは、図6Cに示すように、dq座標上で規定された基準電流ラインからの電流偏差ΔIrefの大きさを切替判定量としてもよい。
以上のように、第1、第2実施形態のフィードバック制御切替部62は、一つ以上の切替判定量と切替閾値との大小関係に基づき、電流フィードバック制御とトルクフィードバック制御とを切り替えてMG80を駆動する。なお、複数の切替判定量を用いる場合において、各切替判定量に基づき選択されるフィードバック制御が異なったとき、どのフィードバック制御を優先するか等の判断方法については、適宜決定してよい。
ところで、特許文献1(特許第5297953号公報)の従来技術では、要求されるトルク応答性が高いとき、第1の制御モードである正弦波PWM制御を選択し、要求されるトルク応答性が高くないとき、第2の制御モードである矩形波電圧制御を選択する。この従来技術は、矩形波電圧制御は電力損失低減には有利であるがトルク応答性が低いことに対し、電力損失低減よりもトルク高応答を優先する状態では矩形波電圧制御モードから正弦波PWM制御モードに切り替えるというものである。
しかし、以下に説明する通り、複数の制御モードがそれぞれ高いトルク応答性を満足するにもかかわらず、制御モードを頻繁に切り替えると、それぞれの制御モードでの応答性と比べてトルク応答性が著しく低下する。特許文献1には、このような制御モードの切替に伴うトルク応答性の低下に関し、何ら言及されていない。また、特許文献1の従来技術は、昇圧コンバータを備えるシステムを前提としており、昇圧コンバータを備えないシステムには適用することができない。
制御モードの頻繁な切替に伴うトルク応答性の低下について、図7、図8を参照する。図7に、電流フィードバック制御及びトルクフィードバック制御での、トルク周波数に対する周波数応答特性を示す。トルクフィードバック制御では、電流フィードバック制御に対し、同じ周波数でのゲインが低く、位相が遅れる傾向にある。
ただし、丸印及び四角印で示す通り、目標周波数ftgtにおける電流フィードバック制御及びトルクフィードバック制御のゲインは、いずれも許容下限値以上であって要求を満足している。また、各フィードバック制御での位相遅れの絶対値には意味はない。ここで注目するのは、目標周波数ftgtにおける電流フィードバック制御とトルクフィードバック制御との位相ずれである。つまり、制御モードを切り替える度に、この位相ずれ分のオフセットが生じることとなる。
図8の上段及び中段に、電流フィードバック制御及びトルクフィードバック制御によるトルク指令及び応答の波形を示す。トルクフィードバック制御では、トルク指令に対する応答の振幅が減衰し、また、電流フィードバック制御よりも位相遅れが大きくなる。電流フィードバック制御とトルクフィードバック制御とを交互に切り替えたときのトルク応答は、下段に太線で示すように、トルク指令の波形から大きく乱れる。したがって、電流フィードバック制御とトルクフィードバック制御とを頻繁に切り替えると、それぞれの制御モードでの応答性と比べてトルク応答性が著しく低下することとなる。
そこで、図3に戻ると、第1~第3実施形態の変調器601は、MG80に要求されるトルク応答性の度合いを判定するトルク応答要求判定部68を含む。MG80に要求されるトルク応答性の度合いは、特許文献1の段落[0062]に記載されたように、MG80のトルク変動による車両振動がユーザに感知されやすいかどうか等の視点から判断される。例えば、アクセルの踏込みと戻しが急激に繰り返されるとトルク指令の変動が激しくなり、要求されるトルク応答性の度合いが高くなる。
トルク応答要求判定部68は、例えばMG制御装置10内の他の機能部からトルク指令Trq*の周波数、MG80の角加速度または回転数変動の情報を取得する。例えば車両が波状路等を走行するとき、回転数変動によりトルク指令Trq*の周波数が増加する。このような場面では、高いトルク応答が要求される。また、トルク応答要求判定部68は、車両システム90の車両制御回路69から、制振制御やエンジン始動が要求されたことの情報を取得する。制振制御時やエンジン始動時には、振動を抑制するため、高いトルク応答が要求される。トルク応答要求判定部68は、これらのうち一つ以上の情報に基づいて、MG80に要求されるトルク応答性の度合いを判定する。
トルク応答要求判定部68により、要求されるトルク応答性が高いと判定されたとき、フィードバック制御切替部62は、通常時に対し、フィードバック制御の切替頻度を低減する。言い換えれば、要求されるトルク応答性が高いと判定されたとき、フィードバック制御切替部62は、一定期間でのフィードバック制御の切替回数を通常時よりも減らす。
次に、フィードバック制御の切替頻度を低減する具体的方法について、第1実施形態、第2実施形態の順に説明する。第1実施形態の切替頻度低減処理について、図9~図14を参照する。図9に示すように、第1実施形態は、フィードバック制御の切替にヒステリシスを有する構成を前提とする。以下、切替判定量の増加時における切替閾値を総じて「第1の切替閾値」といい、切替判定量の減少時における切替閾値を総じて「第2の切替閾値」という。切替のヒステリシスを有する構成では、一点鎖線で示す第1の切替閾値は、二点鎖線で示す第2の切替閾値よりも大きく設定される。また、第1の切替閾値と第2の切替閾値との差分を「ヒステリシス幅」という。一般に、制御切替にヒステリシスを設けることにより、ハンチングを防止することができる。
フィードバック制御の切替判定量を変調率mとする図9のN-T特性図において、変調率の切替閾値mxの記号末尾の「L」、「H」を一旦無視する。変調率mの増加時における電流フィードバック制御からトルクフィードバック制御への第1の切替閾値mx_1は、変調率mの減少時におけるトルクフィードバック制御から電流フィードバック制御への第2の切替閾値mx_2よりも大きく設定されている。
図10、図11に、第1実施形態による切替頻度低減処理のフローチャートを示す。以下のフローチャートの説明で、記号「S」はステップを意味する。S10では、要求トルク応答性判定処理が実行される。図11に示す要求トルク応答性判定処理のサブフローチャートにおいて、S11では、下記のいずれか一つ以上の条件が成立するか判定する。
(1)トルク指令Trq*の周波数が周波数閾値より高い。周波数閾値は、例えばエンジン回転数や車軸のねじれ周波数等により決定される。
(2)車両システム100において制振制御が要求されている。
(3)車両システム100においてエンジン始動が要求されている。
(4)MG80の角加速度が角加速度閾値より大きい、または、回転数変動の振幅や周期から判断される回転数変動が変動閾値より大きい。
(2)車両システム100において制振制御が要求されている。
(3)車両システム100においてエンジン始動が要求されている。
(4)MG80の角加速度が角加速度閾値より大きい、または、回転数変動の振幅や周期から判断される回転数変動が変動閾値より大きい。
上記(1)-(4)のいずれか一つ以上の条件が成立するとき、S11でYESと判断され、S12で「要求トルク応答性が高い」と判定される。一方、上記のいずれの条件も成立しないとき、S11でNOと判断され、S13で「要求トルク応答性が高くない」、すなわち通常時である、と判定される。図10に戻り、要求トルク応答性判定処理の結果、「要求トルク応答性が高い」と判定されたとき、S20でYESと判断され、フィードバック制御切替部62は、S21で、切替のヒステリシス幅を通常時に対して拡大する。
続いて、具体的な切替判定量に基づくフィードバック制御切替におけるヒステリシス幅拡大の実施例について、図9、図12~図14を参照する。図12に、ヒステリシスを有する構成でのフィードバック制御切替のフローチャートの例を示す。S30では、現在、電流フィードバック制御であるか否か判断される。電流フィードバック制御の場合、S30でYESと判断され、S31に移行する。トルクフィードバック制御の場合、S30でNOと判断され、S33に移行する。
S31では、変調率m、回転数N、トルクTまたは電流位相θqが、それぞれの第1の切替閾値を上回っているか判断される。S31でYESと判断されると、フィードバック制御切替部62は、S32で電流フィードバック制御からトルクフィードバック制御に切り替える。S33では、変調率m、回転数N、トルクTまたは電流位相θqが、それぞれの第2の切替閾値を下回っているか判断される。S33でYESと判断されると、フィードバック制御切替部62は、S34でトルクフィードバック制御から電流フィードバック制御に切り替える。S31またはS33でNOと判断されると、現在のフィードバック制御が維持される。
このようなヒステリシスを有する構成を前提とし、通常時、及び、要求トルク応答性が高いときのヒステリシス幅を図9、図13、図14に示す。各図の上側には通常時、下側には、要求トルク応答性が高いときの第1、第2の切替閾値を示す。各図に共通して、通常時の切替閾値の記号末尾に「L」、要求トルク応答性が高いときの切替閾値の記号末尾に「H」を付す。また、通常時のヒステリシス幅を「α」、要求トルク応答性が高いときのヒステリシス幅を「β」と記す。なお、ヒステリシス幅α、βの記号は、各図の切替判定量毎に独立した値を意味し、別の図同士の間では関係がないものとする。
図9のN-T特性図において、通常時、第1の切替閾値mx_1Lと第2の切替閾値mx_2Lとの差分がヒステリシス幅αであり、要求トルク応答性が高いとき、第1の切替閾値mx_1Hと第2の切替閾値mx_2Hとの差分がヒステリシス幅βである。切替判定量としての変調率mについて、要求トルク応答性が高いときのヒステリシス幅βは、通常時のヒステリシス幅αよりも拡大される。
ここで、要求トルク応答性が高いとき、第1の切替閾値mx_1Hを通常時の切替閾値mx_1Lより大きくすると共に、第2の切替閾値mx_2Hを通常時の切替閾値mx_2Lより小さくし、ヒステリシス幅を両側に拡大してもよい。或いは、要求トルク応答性が高いとき、第1または第2の切替閾値の一方のみを外側に広げることで、ヒステリシス幅を片側に拡大してもよい。以下の図13、図14でも同様とする。
なお、好ましくは、通常時のヒステリシス幅αは、損失最適の観点から制御切替のハンチングが生じない範囲で可能な限り小さく設定される。また、例えば制振制御実行のため要求トルク応答性が高いときのヒステリシス幅βは、制振制御に要求されるトルク振幅と、MG特性により決まる変調率-トルク特性に基づいて、可能な限り広く設定される。すなわち、電流フィードバック制御の上限値となる第1の切替閾値mx_1Hは、正弦波駆動の上限変調率から設定される。トルクフィードバック制御の下限値となる第2の切替閾値mx_2Hは、制振制御で許容されるトルクの最大変動振幅から設定される。
図13には、切替判定量としての変調率m、回転数N、トルクTに共通して、通常時の第1の切替閾値をX_1L、第2の切替閾値をX_2Lと示し、要求トルク応答性が高いときの第1の切替閾値をX_1H、第2の切替閾値をX_2Hと記す。いずれの切替判定量を用いる場合でも、要求トルク応答性が高いときのヒステリシス幅βは、通常時のヒステリシス幅αよりも拡大される。
図14には、切替判定量としてのq軸基準電流位相θqについて、通常時の第1の切替閾値をθqx_1L、第2の切替閾値をθqx_2Lと示し、要求トルク応答性が高いときの第1の切替閾値をθqx_1H、第2の切替閾値をθqx_2Hと記す。要求トルク応答性が高いときの電流位相θqのヒステリシス幅βは、通常時のヒステリシス幅αよりも拡大される。
以上のように、第1実施形態では、要求トルク応答性が高いと判定されたとき、ヒステリシス幅を通常時よりも拡大することにより、フィードバック制御の切替頻度を低減することで、フィードバック制御の切替に伴うトルク応答性の低下を抑制することができる。よって、トルク応答性を向上させることができる。また、第1実施形態のMG制御装置10は、特許文献1の従来技術とは異なり、昇圧コンバータを備えないシステムにも適用することができる。
(第2実施形態)
第2実施形態について、図15、図16を参照して説明する。図15は、第1実施形態の図10に対応する切替頻度低減処理のフローチャートであり、図11の要求トルク応答性判定のサブフローチャートを共用する。S20で要求トルク応答性が高いと判定されたとき、図10のS21ではヒステリシス幅が拡大されることに代えて、図15のS22では切替禁止期間が設定される点が異なる。すなわち第2実施形態では、フィードバック制御を一度切り替えた後、所定の切替禁止期間、次の切替を禁止することにより、切替頻度を低減する。
第2実施形態について、図15、図16を参照して説明する。図15は、第1実施形態の図10に対応する切替頻度低減処理のフローチャートであり、図11の要求トルク応答性判定のサブフローチャートを共用する。S20で要求トルク応答性が高いと判定されたとき、図10のS21ではヒステリシス幅が拡大されることに代えて、図15のS22では切替禁止期間が設定される点が異なる。すなわち第2実施形態では、フィードバック制御を一度切り替えた後、所定の切替禁止期間、次の切替を禁止することにより、切替頻度を低減する。
図16のタイムチャートは、フィードバック制御切替部62による切替仮判定のタイミングと切替実施タイミングとの関係の例を示す。切替仮判定は、第1実施形態と同様に、変調率m、回転数N、トルクT、電流位相θq等の切替判定量と、各判定量の切替閾値との大小関係に基づいてなされる。なお、切替のヒステリシスは設けられなくてもよい。ある切替仮判定のタイミングでフィードバック制御の切替が実施されると、その時点から切替禁止期間が開始する。そして、切替禁止期間中に次回の切替仮判定がなされても、フィードバック制御の切替は禁止され、実施されない。図16の例で、切替仮判定の時刻t1~t8のうち切替が実施されるタイミングに「OK」、切替が禁止されるタイミングに「NG」と記す。
まず、時刻t1に電流フィードバック制御からトルクフィードバック制御に切り替えられる。その後、時刻t2に、トルクフィードバック制御から電流フィードバック制御への切替仮判定がなされるが、時刻t1起点の切替禁止期間中のため切替は実施されず、切替禁止期間が終了する時刻t2rに電流フィードバック制御に切り替えられる。次に、時刻t2r起点の切替禁止期間中の時刻t3及びt4に電流フィードバック制御からトルクフィードバック制御へ、トルクフィードバック制御から電流フィードバック制御への切替仮判定がなされるが、いずれも切替は実施されない。その後、時刻t2r起点の切替禁止期間が終了する時刻t4rには、最新の時刻t4での切替仮判定に従い、電流フィードバック制御が維持される。
次に、時刻t5に電流フィードバック制御からトルクフィードバック制御へ切替仮判定がなされると、切替が実施される。その後、時刻t5起点の切替禁止期間中の時刻t6、t7及びt8の切替仮判定に対し、いずれも切替は実施されない。そして、時刻t5起点の切替禁止期間が終了する時刻t8rに、最新の時刻t8での切替仮判定に従い、トルクフィードバック制御から電流フィードバック制御への切替が実施される。
このように図16の例では、時刻t1から時刻t8までの期間に、8回の切替仮判定のうち4回の切替は実施されず、残り4回のみ切替が実施される。これにより、要求トルク応答性が高いと判定されたとき、フィードバック制御の切替頻度を低減し、トルク応答性を向上させることができる。
(第3実施形態)
第3実施形態について、図17を参照して説明する。図17は、図4に対応するN-T特性図であり、図4の「トルクFB」領域が、さらに、「電流FB+トルクFB」領域と「トルクFB」領域とに分かれている。「電流FB+トルクFB」領域では、電流フィードバック制御部580の制御器57で演算された電圧振幅Vrとトルクフィードバック制御部540で演算された電圧位相φとが変調器60に出力される。変調器60のスイッチング指令生成部65は、電圧振幅Vr及び電圧位相φに基づいて、過変調PWM制御、又はパルスパターン制御によりスイッチング指令を生成する。
第3実施形態について、図17を参照して説明する。図17は、図4に対応するN-T特性図であり、図4の「トルクFB」領域が、さらに、「電流FB+トルクFB」領域と「トルクFB」領域とに分かれている。「電流FB+トルクFB」領域では、電流フィードバック制御部580の制御器57で演算された電圧振幅Vrとトルクフィードバック制御部540で演算された電圧位相φとが変調器60に出力される。変調器60のスイッチング指令生成部65は、電圧振幅Vr及び電圧位相φに基づいて、過変調PWM制御、又はパルスパターン制御によりスイッチング指令を生成する。
第3実施形態では、(1)電流フィードバック制御部580のみ、(2)電流フィードバック制御部580及びトルクフィードバック制御部540の両方、(3)トルクフィードバック制御部540のみ、の3通りのフィードバック制御方式が選択される。図17において、「電流FB」と「電流FB+トルクFB」との制御モード切替を「低回転側の切替」という。また、「電流FB+トルクFB」と「トルクFB」との制御モード切替を「高回転側の切替」という。低回転側の切替は、変調率mxLを切替判定閾値として行われる。高回転側の切替は、変調率mxLより大きい変調率mxHを切替判定閾値として行われる。
トルク応答要求判定部68により、要求されるトルク応答性が高いと判定されたとき、フィードバック制御切替部62は、低回転側の切替及び高回転側の切替の両方について、ヒステリシス幅の拡大、又は、切替禁止期間の設定等により切替頻度を低減してもよい。或いは、フィードバック制御切替部62は、低回転側の切替及び高回転側の切替の一方について、ヒステリシス幅の拡大、又は、切替禁止期間の設定等により切替頻度を低減し、他方については通常時と同様の切替頻度としてもよい。これにより、第3実施形態では、第1、第2実施形態と同様の効果が得られる。
(第4実施形態)
第4実施形態について、図18~図20を参照して説明する。図18は、図3に対応する変調器のブロック図である。図20は、図11に対応するフローチャートである。第4実施形態のMG制御装置は、PWM制御によりMG80を駆動する制御構成を前提とし、PWM制御の搬送波周波数の切替について、要求されるトルク応答性が高いとき、切替頻度を低減する。
第4実施形態について、図18~図20を参照して説明する。図18は、図3に対応する変調器のブロック図である。図20は、図11に対応するフローチャートである。第4実施形態のMG制御装置は、PWM制御によりMG80を駆動する制御構成を前提とし、PWM制御の搬送波周波数の切替について、要求されるトルク応答性が高いとき、切替頻度を低減する。
図18に示すように、第4実施形態の変調器604は、搬送波生成器63、搬送波周波数切替部64、スイッチング指令生成部66、及びトルク応答要求判定部68を有する。変調器604には、電流フィードバック制御部580により演算された電圧振幅Vr及び電圧位相φが入力される。搬送波生成器63は、周波数が異なる複数の搬送波を生成可能である。図中の周波数fHと周波数fLとは、異なる周波数である。ここでは、相対的にfHが高周波数、fLが低周波数であるとする。
搬送波周波数切替部64は、所定の切替判定量と切替判定閾値との大小関係に基づき、搬送波生成器63が生成する搬送波周波数fH、fLを切り替える。切替判定量として、例えば、電流振幅Ir、トルクT、回転数N等が用いられる。電流振幅は、図6(a)に示すdq軸電流ベクトルの振幅Irの他、相電流の振幅や実効値を用いてもよい。また、破線で示すように、変調率算出部61で電圧振幅Vrとシステム電圧Vsysとの比から算出される変調率mを切替判定量としてもよい。スイッチング指令生成部66は、搬送波生成器63が生成する搬送波と電圧指令とを比較するPWM制御により、インバータ30へのスイッチング指令を生成する。
トルク応答要求判定部68は、図3における第1~第3実施形態の構成と同様であり、MG80に要求されるトルク応答性の度合いを判定する。トルク応答要求判定部68により、要求されるトルク応答性が高いと判定されたとき、搬送波周波数切替部64は、搬送波周波数の切替頻度を低減する。切替頻度を低減する構成は、第1実施形態と同様にヒステリシス幅を拡大する構成でもよく、第2実施形態と同様に切替禁止期間を設ける構成でもよい。各構成による切替頻度低減処理のフローチャートは、図10及び図15が援用される。また、要求トルク応答性判定のサブフローチャートは、図11が援用される。
PWM制御の搬送波周波数を切り替える意義について、図19を参照する。図19の上側には搬送波周波数が相対的に低いとき、下側には搬送波周波数が相対的に高いときの電気1周期におけるスイッチング指令信号を示す。電圧指令が搬送波を上回るときスイッチング指令信号はONとなり、電圧指令が搬送波を下回るときスイッチング指令信号はOFFとなる。したがって、搬送波周波数が高いほど、電気1周期のスイッチング回数が増加する。
電気1周期のスイッチング回数が多いと、制御性が向上する反面、素子の発熱によりスイッチング損失が増加する。そこで、電流振幅Ir又はトルクTが比較的大きいときには、熱要件、すなわち素子の過熱保護の観点から搬送波周波数を低くしてスイッチング回数を減らすことが求められる。トルクTと相関する変調率mについても同様である。一方、電流振幅Ir又はトルクTが比較的小さいときには、制御性確保の観点から搬送波周波数を高くしてスイッチング回数を増やすことが好ましい。その他、回転数Nに依存する電気1周期のパルス数に応じて搬送波周波数を切り替えてもよい。
ヒステリシス幅を拡大することにより搬送波周波数の切替頻度を低減する構成について、第1実施形態の図13に対応する図を図20に示す。図20には、切替判定量としての電流振幅IrまたはトルクTに対し、通常時の第1の切替閾値をX_1L、第2の切替閾値をX_2Lと示し、要求トルク応答性が高いときの第1の切替閾値をX_1H、第2の切替閾値をX_2Hと記す。
現在、高周波数fHであるとき、電流振幅IrまたはトルクTが増加し、第1の切替閾値X_1L、X_1Hを上回ると、搬送波周波数切替部64は、搬送波周波数を高周波数fHから低周波数fLに切り替える。現在、低周波数fLであるとき、電流振幅IrまたはトルクTが減少し、第2の切替閾値X_1L、X_2Hを下回ると、搬送波周波数切替部64は、搬送波周波数を低周波数fLから高周波数fHに切り替える。このように搬送波周波数の切替にヒステリシスを有する構成において、要求トルク応答性が高いときのヒステリシス幅βは、通常時のヒステリシス幅αよりも拡大される。
また、切替禁止期間を設けることにより搬送波周波数の切替頻度を低減する構成のタイムチャートは、第2実施形態の図16における「トルクFB」及び「電流FB」を単純に「高周波数fH」及び「低周波数fL」に置き換えればよいため、専用の図を省略する。なお、搬送波周波数の切替時における出力電圧波形の連続性を確保するため、切替タイミングが調整されてもよい。
このように第4実施形態では、PWM制御の搬送波周波数の切替について、要求されるトルク応答性が高いとき、切替頻度を低減する。これにより、フィードバック制御の切替に関する第1、第2実施形態と同様に、搬送波周波数の切替に伴うトルク応答性の低下を抑制し、トルク応答性を向上させることができる。
(その他の実施形態)
(a)切替対象となる複数のフィードバック制御部は、第1~第3実施形態で例示した電流フィードバック制御部及びトルクフィードバック制御部に限らず、例えば電圧や回転数等、その他の制御量をフィードバックするフィードバック制御部であってもよい。三つ以上のフィードバック制御部を切替対象としてもよい。また、二つの搬送波周波数を切り替える第4実施形態に対し、他の実施形態では、三つ以上の搬送波周波数を切り替えてもよい。
(a)切替対象となる複数のフィードバック制御部は、第1~第3実施形態で例示した電流フィードバック制御部及びトルクフィードバック制御部に限らず、例えば電圧や回転数等、その他の制御量をフィードバックするフィードバック制御部であってもよい。三つ以上のフィードバック制御部を切替対象としてもよい。また、二つの搬送波周波数を切り替える第4実施形態に対し、他の実施形態では、三つ以上の搬送波周波数を切り替えてもよい。
(b)要求トルク応答性判定において、要求されるトルク応答性を「高い/高くない」の二段階に区分する形態に限らず、三段階以上に区分し、それに応じてヒステリシス幅を多段階に拡大し、或いは、切替禁止期間の長さを多段階に設定してもよい。つまり、要求トルク応答性が高いほど、ヒステリシス幅を広くするように拡大し、或いは、切替禁止期間を長くするように設定すればよい。
(c)切替頻度を低減する手段として、ヒステリシス幅の拡大と切替禁止期間の設定とを組み合わせてもよい。
(d)切替判定量として上記実施形態に例示した以外の量を用いてもよい。また、切替閾値との比較において、単純な大小関係を比較するだけでなく、切替判定量の絶対値や二乗値等を切替閾値と比較してもよい。
(e)要求トルク応答性判定において、上記実施形態に例示した以外の判定条件を用いてもよい。
(f)本開示による交流電動機の制御装置は、ハイブリッド自動車でなく電気自動車の車両システムに適用されてもよい。ただし、電気自動車の車両システムでは、要求トルク応答性判定処理の判断条件のうちエンジン始動が除外される。また、本開示による交流電動機の制御装置は、車両システム以外に一般機械用等、いかなる用途の交流電動機の駆動システムに適用されてもよい。ただし、車両以外では、要求トルク応答性判定処理の判断条件のうち制振制御及びエンジン始動が除外される。
(g)本開示が適用されるシステムにおいて駆動される交流電動機の相の数は、三相に限らず何相でもよい。また、交流電動機は、永久磁石式同期型モータに限らず、誘導電動機やその他の同期モータであってもよい。
以上、本開示は、上記実施形態になんら限定されるものではなく、その趣旨を逸脱しない範囲において種々の形態で実施可能である。
本開示は、実施形態に準拠して記述された。しかしながら、本開示は当該実施形態および構造に限定されるものではない。本開示は、様々な変形例および均等の範囲内の変形をも包含する。また、様々な組み合わせおよび形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせおよび形態も本開示の範疇および思想範囲に入るものである。
Claims (15)
- 電源(11)から入力される直流電力を複数のスイッチング素子(31-36)の動作により交流電力に変換し交流電動機(80)に供給するインバータ(30)と、
前記交流電動機を駆動するフィードバック制御において、互いに異なる制御量をフィードバックする複数のフィードバック制御部(540、580)と、
所定の切替判定量と切替閾値との大小関係に基づいて前記フィードバック制御部を選択し、前記交流電動機を駆動するフィードバック制御を切り替えるフィードバック制御切替部(62)と、
選択された前記フィードバック制御部により演算される操作量に基づいて前記インバータへのスイッチング指令を生成するスイッチング指令生成部(65)と、
前記交流電動機に要求されるトルク応答性の度合いを判定するトルク応答要求判定部(68)と、
を備え、
前記トルク応答要求判定部により、要求されるトルク応答性が高いと判定されたとき、前記フィードバック制御切替部は、フィードバック制御の切替頻度を低減する交流電動機の制御装置。 - 前記複数のフィードバック制御部は、
前記交流電動機に流れる電流をフィードバック制御するための操作量として、前記インバータの出力電圧を演算する電流フィードバック制御部(580)と、
前記交流電動機が出力するトルクをフィードバック制御するための操作量として、前記インバータの出力電圧の位相を演算するトルクフィードバック制御部(540)と、
を含み、
前記フィードバック制御切替部は、前記電流フィードバック制御部と前記トルクフィードバック制御部とのいずれか一方または両方を選択する請求項1に記載の交流電動機の制御装置。 - 前記切替判定量の増加時における第1の切替閾値が、前記切替判定量の減少時における第2の切替閾値よりも大きく設定されるヒステリシスを有する構成において、
前記トルク応答要求判定部により、要求されるトルク応答性が高いと判定されたとき、
前記フィードバック制御切替部は、前記第1の切替閾値と前記第2の切替閾値との差分であるヒステリシス幅を拡大する請求項1または2に記載の交流電動機の制御装置。 - 前記トルク応答要求判定部により、要求されるトルク応答性が高いと判定されたとき、
前記フィードバック制御切替部は、フィードバック制御を一度切り替えた後、所定の切替禁止期間、次の切替を禁止する請求項1~3のいずれか一項に記載の交流電動機の制御装置。 - 電源(11)から入力される直流電力を複数のスイッチング素子(31-36)の動作により交流電力に変換し交流電動機(80)に供給するインバータ(30)と、
周波数が異なる複数の搬送波を生成可能な搬送波生成器(63)と、
所定の切替判定量と切替閾値との大小関係に基づき、前記搬送波生成器が生成する搬送波周波数を切り替える搬送波周波数切替部(64)と、
前記搬送波生成器が生成する搬送波と電圧指令とを比較するPWM制御により、前記インバータへのスイッチング指令を生成するスイッチング指令生成部(66)と、
前記交流電動機に要求されるトルク応答性の度合いを判定するトルク応答要求判定部(68)と、
を備え、
前記トルク応答要求判定部により、要求されるトルク応答性が高いと判定されたとき、前記搬送波周波数切替部は、搬送波周波数の切替頻度を低減する交流電動機の制御装置。 - 前記切替判定量の増加時における第1の切替閾値が、前記切替判定量の減少時における第2の切替閾値よりも大きく設定されるヒステリシスを有する構成において、
前記トルク応答要求判定部により、要求されるトルク応答性が高いと判定されたとき、
前記搬送波周波数切替部は、前記第1の切替閾値と前記第2の切替閾値との差分であるヒステリシス幅を拡大する請求項5に記載の交流電動機の制御装置。 - 前記トルク応答要求判定部により、要求されるトルク応答性が高いと判定されたとき、
前記搬送波周波数切替部は、搬送波周波数を一度切り替えた後、所定の切替禁止期間、次の切替を禁止する請求項5または6に記載の交流電動機の制御装置。 - 前記切替判定量には、前記インバータの変調率が含まれる請求項1~7のいずれか一項に記載の交流電動機の制御装置。
- 前記切替判定量には、前記交流電動機に流れる電流の振幅または位相に関する量が含まれる請求項1~8のいずれか一項に記載の交流電動機の制御装置。
- 前記切替判定量には、前記交流電動機の回転数、または回転数と相関する量が含まれる請求項1~9のいずれか一項に記載の交流電動機の制御装置。
- 前記切替判定量には、前記交流電動機のトルクに関する量が含まれる請求項1~10のいずれか一項に記載の交流電動機の制御装置。
- 前記トルク応答要求判定部は、
前記交流電動機に対するトルク指令値の周波数が周波数閾値より高いとき、要求されるトルク応答性が高いと判定する請求項1~11のいずれか一項に記載の交流電動機の制御装置。 - 前記交流電動機を車両の動力源として用いる車両システム(100)に適用され、
前記トルク応答要求判定部は、
前記車両システムにおいて制振制御が要求されているとき、要求されるトルク応答性が高いと判定する請求項1~12のいずれか一項に記載の交流電動機の制御装置。 - 前記交流電動機及びエンジンを車両の動力源として用いるハイブリッド自動車の車両システム(100)に適用され、
前記トルク応答要求判定部は、
前記車両システムにおいてエンジン始動が要求されているとき、要求されるトルク応答性が高いと判定する請求項1~13のいずれか一項に記載の交流電動機の制御装置。 - 前記トルク応答要求判定部は、
前記交流電動機の角加速度が角加速度閾値より大きいとき、または、回転数変動が変動閾値より大きいとき、要求されるトルク応答性が高いと判定する請求項1~14のいずれか一項に記載の交流電動機の制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/520,659 US10910974B2 (en) | 2017-01-24 | 2019-07-24 | Control device for AC motor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017010058A JP6635059B2 (ja) | 2017-01-24 | 2017-01-24 | 交流電動機の制御装置 |
JP2017-010058 | 2017-01-24 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/520,659 Continuation US10910974B2 (en) | 2017-01-24 | 2019-07-24 | Control device for AC motor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018139298A1 true WO2018139298A1 (ja) | 2018-08-02 |
Family
ID=62979296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/001150 WO2018139298A1 (ja) | 2017-01-24 | 2018-01-17 | 交流電動機の制御装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10910974B2 (ja) |
JP (1) | JP6635059B2 (ja) |
WO (1) | WO2018139298A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7343269B2 (ja) * | 2018-10-24 | 2023-09-12 | 株式会社Subaru | モータの制御装置および制御方法 |
JP7115378B2 (ja) * | 2019-03-20 | 2022-08-09 | トヨタ自動車株式会社 | 駆動装置 |
JP7424091B2 (ja) * | 2020-02-14 | 2024-01-30 | 株式会社デンソー | インバータの制御装置 |
JP7413171B2 (ja) * | 2020-07-15 | 2024-01-15 | 株式会社日立製作所 | モータ制御装置、機電一体ユニット、発電機システム、昇圧コンバータシステム、および電動車両システム |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0951699A (ja) * | 1995-08-04 | 1997-02-18 | Denso Corp | 多相交流モータの制御装置 |
JP2008306798A (ja) * | 2007-06-05 | 2008-12-18 | Fanuc Ltd | 電動機制御装置 |
JP2009303346A (ja) * | 2008-06-11 | 2009-12-24 | Denso Corp | 回転機の制御装置、及び回転機の制御システム |
US20120098476A1 (en) * | 2010-10-25 | 2012-04-26 | Kuo-Lin Chiu | Feedback switching device and method for driving of servo motor |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3746334B2 (ja) * | 1996-08-22 | 2006-02-15 | トヨタ自動車株式会社 | 永久磁石型同期モータの駆動制御装置及び方法 |
JP5018516B2 (ja) * | 2008-01-31 | 2012-09-05 | アイシン・エィ・ダブリュ株式会社 | 回転電機制御装置 |
JP5297953B2 (ja) | 2009-09-08 | 2013-09-25 | トヨタ自動車株式会社 | 電動車両の電動機駆動システム |
JP5751240B2 (ja) * | 2012-11-07 | 2015-07-22 | トヨタ自動車株式会社 | 交流電動機の制御システム |
-
2017
- 2017-01-24 JP JP2017010058A patent/JP6635059B2/ja active Active
-
2018
- 2018-01-17 WO PCT/JP2018/001150 patent/WO2018139298A1/ja active Application Filing
-
2019
- 2019-07-24 US US16/520,659 patent/US10910974B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0951699A (ja) * | 1995-08-04 | 1997-02-18 | Denso Corp | 多相交流モータの制御装置 |
JP2008306798A (ja) * | 2007-06-05 | 2008-12-18 | Fanuc Ltd | 電動機制御装置 |
JP2009303346A (ja) * | 2008-06-11 | 2009-12-24 | Denso Corp | 回転機の制御装置、及び回転機の制御システム |
US20120098476A1 (en) * | 2010-10-25 | 2012-04-26 | Kuo-Lin Chiu | Feedback switching device and method for driving of servo motor |
Also Published As
Publication number | Publication date |
---|---|
US20190348938A1 (en) | 2019-11-14 |
JP2018121403A (ja) | 2018-08-02 |
US10910974B2 (en) | 2021-02-02 |
JP6635059B2 (ja) | 2020-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5120670B2 (ja) | 電動機駆動装置の制御装置 | |
JP5120669B2 (ja) | 電動機駆動装置の制御装置 | |
US8310197B2 (en) | Control device for electric motor drive device | |
JP4329855B2 (ja) | 交流モータの制御装置および交流モータの制御方法 | |
JP7016249B2 (ja) | モータ駆動システム | |
WO2010038727A1 (ja) | 交流電動機の制御装置および制御方法 | |
WO2012137300A1 (ja) | 電動機の制御装置およびそれを備える電動車両、ならびに電動機の制御方法 | |
JP2007159368A (ja) | モータ駆動システムの制御装置 | |
CN102282758A (zh) | 交流电动机的控制装置及电动车辆 | |
JP5370769B2 (ja) | 電動機駆動装置の制御装置 | |
US10910974B2 (en) | Control device for AC motor | |
WO2016006386A1 (ja) | 車両用回転電機の制御装置、及び制御方法 | |
JP6119585B2 (ja) | 電動機駆動装置 | |
JP7517205B2 (ja) | モータ制御装置、および、それを備えた電動パワーステアリング装置 | |
JP5281370B2 (ja) | 交流電動機の制御装置 | |
US8269437B2 (en) | Rotary electric machine control system | |
JP7070064B2 (ja) | 回転電機の制御装置 | |
JP2009201250A (ja) | モータの制御装置 | |
JP5370748B2 (ja) | 電動機駆動装置の制御装置 | |
JP4007309B2 (ja) | モータ制御装置及びモータ制御方法 | |
JP2017093218A (ja) | 交流電動機の制御システム | |
JP2005168140A (ja) | モータ制御装置及びその制御方法 | |
JP4476049B2 (ja) | ブラシレスモータの制御装置 | |
JP7073799B2 (ja) | モータ制御方法、及び、モータ制御装置 | |
WO2023281794A1 (ja) | モータ制御装置、モータ制御方法、ステアリングシステム、および車両駆動システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18745050 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18745050 Country of ref document: EP Kind code of ref document: A1 |