WO2018138743A1 - Locking device with high resistance to abrasion, drilling and cutting - Google Patents
Locking device with high resistance to abrasion, drilling and cutting Download PDFInfo
- Publication number
- WO2018138743A1 WO2018138743A1 PCT/IT2017/000015 IT2017000015W WO2018138743A1 WO 2018138743 A1 WO2018138743 A1 WO 2018138743A1 IT 2017000015 W IT2017000015 W IT 2017000015W WO 2018138743 A1 WO2018138743 A1 WO 2018138743A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- locking device
- layer
- diamonds
- carats
- protective material
- Prior art date
Links
- 238000005299 abrasion Methods 0.000 title claims abstract description 27
- 238000005520 cutting process Methods 0.000 title claims abstract description 22
- 238000005553 drilling Methods 0.000 title claims abstract description 21
- 239000010432 diamond Substances 0.000 claims abstract description 30
- 239000000463 material Substances 0.000 claims abstract description 17
- 230000001681 protective effect Effects 0.000 claims abstract description 16
- 239000011230 binding agent Substances 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims description 7
- 239000000843 powder Substances 0.000 claims description 7
- 230000008878 coupling Effects 0.000 claims description 6
- 238000010168 coupling process Methods 0.000 claims description 6
- 238000005859 coupling reaction Methods 0.000 claims description 6
- 238000001033 granulometry Methods 0.000 claims description 6
- 230000001012 protector Effects 0.000 claims description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 3
- 238000005245 sintering Methods 0.000 claims description 3
- 238000011282 treatment Methods 0.000 claims description 3
- 229910001316 Ag alloy Inorganic materials 0.000 claims description 2
- 229910000851 Alloy steel Inorganic materials 0.000 claims description 2
- 229910001369 Brass Inorganic materials 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 239000004593 Epoxy Substances 0.000 claims description 2
- 229910000640 Fe alloy Inorganic materials 0.000 claims description 2
- 229910000990 Ni alloy Inorganic materials 0.000 claims description 2
- 239000004952 Polyamide Substances 0.000 claims description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- 229910001128 Sn alloy Inorganic materials 0.000 claims description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 2
- 229910001080 W alloy Inorganic materials 0.000 claims description 2
- 238000004026 adhesive bonding Methods 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 239000004760 aramid Substances 0.000 claims description 2
- 238000000149 argon plasma sintering Methods 0.000 claims description 2
- 229920003235 aromatic polyamide Polymers 0.000 claims description 2
- 239000010951 brass Substances 0.000 claims description 2
- 238000005219 brazing Methods 0.000 claims description 2
- 239000000919 ceramic Substances 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 239000008187 granular material Substances 0.000 claims description 2
- 238000002844 melting Methods 0.000 claims description 2
- 230000008018 melting Effects 0.000 claims description 2
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 2
- 229920002647 polyamide Polymers 0.000 claims description 2
- 239000011347 resin Substances 0.000 claims description 2
- 229920005989 resin Polymers 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 239000010959 steel Substances 0.000 claims description 2
- 230000000930 thermomechanical effect Effects 0.000 claims description 2
- 239000011135 tin Substances 0.000 claims description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 2
- 239000010937 tungsten Substances 0.000 claims description 2
- 238000003466 welding Methods 0.000 claims description 2
- 230000001066 destructive effect Effects 0.000 description 9
- 229910003460 diamond Inorganic materials 0.000 description 7
- 239000013078 crystal Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000003412 degenerative effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05B—LOCKS; ACCESSORIES THEREFOR; HANDCUFFS
- E05B15/00—Other details of locks; Parts for engagement by bolts of fastening devices
- E05B15/16—Use of special materials for parts of locks
- E05B15/1614—Use of special materials for parts of locks of hard materials, to prevent drilling
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05B—LOCKS; ACCESSORIES THEREFOR; HANDCUFFS
- E05B67/00—Padlocks; Details thereof
- E05B67/003—Chain, wire or cable locks
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05B—LOCKS; ACCESSORIES THEREFOR; HANDCUFFS
- E05B9/00—Lock casings or latch-mechanism casings ; Fastening locks or fasteners or parts thereof to the wing
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05B—LOCKS; ACCESSORIES THEREFOR; HANDCUFFS
- E05B9/00—Lock casings or latch-mechanism casings ; Fastening locks or fasteners or parts thereof to the wing
- E05B9/02—Casings of latch-bolt or deadbolt locks
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05B—LOCKS; ACCESSORIES THEREFOR; HANDCUFFS
- E05B9/00—Lock casings or latch-mechanism casings ; Fastening locks or fasteners or parts thereof to the wing
- E05B9/04—Casings of cylinder locks
Definitions
- the present invention relates to a locking device with high resistance to abrasion, drilling and cutting.
- locking device in the present discussion, is understood to comprise cylinders for locks and doors and corresponding protectors, locks in general (including electronic ones and/or combination locks), padlocks, padlock chains, safes, mechanical anti-theft devices for bicycles, motorcycles and motor vehicles and the like.
- Locking devices have reached excellent levels of protection against numerous techniques of forcing (picking, bumping etc.) and therefore they ensure good security against possible non-destructive violation attempts from ill-intentioned individuals.
- the aim of the present invention is to solve the above mentioned drawbacks, by providing a locking device with high resistance to abrasion, drilling and cutting, i.e. of a type adapted to abrade and/or damage the drill bits or the cutting disks of power tools used for forcing.
- an object of the invention is to provide a locking device with high resistance to abrasion, drilling and cutting, i.e. of the type adapted to withstand for particularly long times, for example as long as a few hours, an attempt at destructive forcing perpetrated with a power tool, for example a drill and/or an angle grinder.
- Another object of the invention is to provide a locking device with high resistance to abrasion, drilling and cutting, of the type that can be visually identified, in order to constitute a strong deterrent for anyone wanting to carry out a destructive forcing by way of power tools and the like.
- Another object of the present invention is to provide a locking device with high resistance to abrasion, drilling and cutting, which is low cost, easily and practically implemented and safely applied.
- a locking device with high resistance to abrasion, drilling and cutting which is characterized in that it comprises, on at least one of its outer surfaces, at least one layer of a protective material that comprises a plurality of diamonds and at least one binder, the volumetric density of said diamonds in said protective material being comprised between 10 carats/cm 3 and 50 carats/cm 3 .
- Figure 1 is a schematic perspective view of a safe with high resistance to abrasion, according to the invention.
- Figure 2 is a schematic perspective view of a protector for lock cylinders with high resistance to abrasion, according to the invention
- Figure 3 is a schematic perspective view of a lock with high resistance to abrasion, according to the invention.
- Figure 4 is a schematic perspective view of a padlock and a chain with high resistance to abrasion, according to the invention.
- Figure 5 is a schematic perspective view of a lock cylinder with high resistance to abrasion, according to the invention.
- Figure 6 is an enlarged schematic view of a surface of a locking device according to the invention.
- the reference numeral 1 generally designates a locking device with high resistance to abrasion, drilling and cutting.
- the device 1 comprises, on at least one of its outer surfaces, at least one layer 2 of a protective material that comprises a plurality of diamonds 3 and at least one binder 4.
- the volumetric density of the diamonds 3 is advantageously comprised between 10 carats/cm 3 and 50 carats/cm 3 .
- such layer 2 of protective material comprises a mass of diamond crystals 3 with random orientation, such crystals being selected starting from natural or synthetic diamond powder 3, of pre-established granulometry: this mass of diamond crystals is conveniently mixed with suitable quantities of binder 4 and then compacted at very high temperatures and pressure levels.
- the layer 2 of protective material in at least one of the possible applications of the present invention, can be sintered.
- the protection conferred by the layer 2 of protective material relates to the protection action against mechanical abrasion, cutting and drilling, but also against corrosion and the oxidation and degenerative effects that can be produced by saline mists.
- the diamond crystals 3 will be synthetic (industrial diamonds).
- the layer 2 thus provided is very dense, of variable thickness between 0.1 mm and 15 mm, and has the hardness, resistance to abrasion, and thermal conductivity of diamond 3.
- Such characteristics of the layer 2 make it possible to adopt materials with reduced hardness and mechanical performance to provide the surfaces of the locking device onto which the layer 2 will be coupled.
- the layer 2 can be deposited on less expensive locking devices 1 than those currently on the market, while still ensuring mechanical performance against abrasion, cutting and drilling that is decisively superior than all conventional locking devices.
- the at least one layer 2 has a surface density of diamonds 3 greater than 0.5 carats/cm 2 .
- the at least one layer 2 can positively have the following densities of diamonds 3 :
- volumetric density comprised between 20 carats/cm 3 and 25 carats/cm 3 .
- binder 4 used will conveniently comprise at least one component chosen from among:
- - metallic powders preferably chosen from among cobalt, aluminum, copper, brass, iron, steel, tin, nickel, tungsten, silver, and metallic alloys;
- - resin powders preferably chosen from among aramid, epoxy, phenolic, and polyamide.
- the technician can proceed to increase the granulometry of the diamonds 3 : the greater the granulometry, the better the resistance will be to abrasion (cutting, drilling) ofthe layer 2.
- the diamonds 3 used will preferably be industrial diamonds and will advantageously have a granulometry, understood as the average granule diameter, comprised between 50 ⁇ and 1000 pm, preferably greater than 100 ⁇ .
- the locking device 1 can be positively constituted by a cylinder for locks, by a lock, by a protector for cylinders and the like, on the outer surface la of which is arranged the at least one layer 2 of a protective material that comprises a plurality of diamonds 3 and at least one binder 4.
- the layer 2 can be deposited on the front faces l a thereof (at least the face intended to be directed toward the outside when the cylinder is installed in the respective lock), although the possibility is not ruled out of providing a complete coating of the cylinder in order to ensure protection against transverse attacks as well (for example holes drilled diagonally with respect to the surface of the installation door in order to reach the cylinder while avoiding the outer face la).
- the layer 2 will need to be extended to the entire surface l a or, at least, to the corresponding portion that is exactly aligned with the front face of the underlying cylinder.
- the layer 2 will be used to coat the entire box-like containment body and/or specific portions thereof; however, the possibility is not ruled out of adopting internal components of the lock that are conveniently coated with the layer 2.
- the layer 2 will need to constitute a coating as extended as possible in order to reduce (or even eliminate) the areas that are liable to be damaged by a destructive attack (drilling, cutting and abrasion).
- the layer 2 will be arranged on all the outer surfaces l a so as to define a form of protective shield against destructive attacks (drilling, cutting and abrasion).
- the at least one layer 2 can be advantageously deposited on the surface l a to be coated and sintered directly thereon by way of a thermomechanical treatment such as laser sintering, localized direct melting and the like.
- the adhesion of the layer 2 to the faces la of the locking device 1 will be ensured by the fact that it is directly sintered thereon, with consequent stable coupling without discontinuities at the interface surface.
- the at least one layer 2 can positively be coupled to the surface l a to be coated only at the end of the corresponding sintering process.
- the coupling can be done by way of a technique chosen from among adhesive bonding, mechanical interference, welding, brazing, and interposition of mechanical coupling elements.
- the cohesion of the layer 2 to the faces la on which it is arranged in the respective device 1 will depend, in this second case, on the quality of the coupling performed.
- the present invention solves the above mentioned problems, by providing a locking device with high resistance to abrasion, drilling and cutting, i.e. of a type adapted to abrade and/or damage the drill bits or the cutting disks of the power tools used for forcing: in fact the presence of the diamond crystals 3 in the layer 2 ensures that (having high hardness) they will damage the tools used for forced entry before they can undermine the layer 2.
- the locking device 1 is adapted to resist for particularly long times, for example as long as a few hours, an attempt at destructive forcing perpetrated with a power tool, for example a drill and/or an angle grinder.
- a power tool for example a drill and/or an angle grinder.
- the tools used for forcing will be damaged, with consequent need to replace them in order to continue.
- An increase in the time necessary for forcing implies a higher probability of catching the ill-intentioned individuals in the act (for example by the forces of law and order, alerted by the protracted noise produced with the power tools).
- the locking device 1 is of the visually identifiable device, in order to constitute a strong deterrent to anyone wishing to carry out a destructive forcing by way of power tools and the like.
- the layer 2 has an appearance that is appreciably different from that of the metals usually used, and therefore the ill-intentioned individual, after having seen the presence of the layer 2, will tend to abandon the forcing owing to the extreme difficulty that he/she would encounter in order to damage the layer 2.
- the locking device 1 is easily and practically implemented and is low cost: such characteristics make the device 1 according to the invention an innovation that is safe in use.
- the materials employed, as well as the dimensions, may be any according to requirements and to the state of the art.
Landscapes
- Processing Of Stones Or Stones Resemblance Materials (AREA)
Abstract
A locking device (1) with high resistance to abrasion, drilling and cutting, which comprises, on at least one of its outer surfaces (la), at least one layer (2) of a protective material that comprises a plurality of diamonds (3) and at least one binder (4), the volumetric density of the diamonds (3) in the protective material being comprised between 10 carats/cm3 and 50 carats/cm3.
Description
LOCKING DEVICE WITH HIGH RESISTANCE TO ABRASION, DRILLING AND CUTTING
The present invention relates to a locking device with high resistance to abrasion, drilling and cutting.
The definition of locking device, in the present discussion, is understood to comprise cylinders for locks and doors and corresponding protectors, locks in general (including electronic ones and/or combination locks), padlocks, padlock chains, safes, mechanical anti-theft devices for bicycles, motorcycles and motor vehicles and the like.
Locking devices have reached excellent levels of protection against numerous techniques of forcing (picking, bumping etc.) and therefore they ensure good security against possible non-destructive violation attempts from ill-intentioned individuals.
Unfortunately however, the use is increasingly frequent of destructive forcing methods: the reason for such tendency is the greater usability (moreover at low cost) of battery-powered tools (therefore easily transported and usable anywhere) with high power levels.
By using battery-powered drills on which tools of high hardness (drill bits coated in titanium nitride and the like) are fitted, it is possible to pierce practically any locking device in a fairly short time instead; by using angle grinders, on which diamond abrasive disks are fitted, it is possible to cut practically any locking device in a fairly short time.
The widespread nature of such battery-powered tools means that any locking device is to be considered liable to destructive forcing and therefore is intrinsically non-secure.
The aim of the present invention is to solve the above mentioned drawbacks, by providing a locking device with high resistance to abrasion, drilling and cutting, i.e. of a type adapted to abrade and/or damage the drill bits or the cutting disks of power tools used for forcing.
Within this aim, an object of the invention is to provide a locking
device with high resistance to abrasion, drilling and cutting, i.e. of the type adapted to withstand for particularly long times, for example as long as a few hours, an attempt at destructive forcing perpetrated with a power tool, for example a drill and/or an angle grinder.
Another object of the invention is to provide a locking device with high resistance to abrasion, drilling and cutting, of the type that can be visually identified, in order to constitute a strong deterrent for anyone wanting to carry out a destructive forcing by way of power tools and the like.
Another object of the present invention is to provide a locking device with high resistance to abrasion, drilling and cutting, which is low cost, easily and practically implemented and safely applied.
This aim and these and other objects which will become better apparent hereinafter, are achieved by a locking device with high resistance to abrasion, drilling and cutting, which is characterized in that it comprises, on at least one of its outer surfaces, at least one layer of a protective material that comprises a plurality of diamonds and at least one binder, the volumetric density of said diamonds in said protective material being comprised between 10 carats/cm3 and 50 carats/cm3.
Further characteristics and advantages of the invention will become better apparent from the detailed description that follows of a preferred, but not exclusive, embodiment of the locking device with high resistance to abrasion, drilling and cutting, according to the invention, which is illustrated by way of non-limiting example in the accompanying drawings, wherein:
Figure 1 is a schematic perspective view of a safe with high resistance to abrasion, according to the invention;
Figure 2 is a schematic perspective view of a protector for lock cylinders with high resistance to abrasion, according to the invention;
Figure 3 is a schematic perspective view of a lock with high resistance
to abrasion, according to the invention;
Figure 4 is a schematic perspective view of a padlock and a chain with high resistance to abrasion, according to the invention;
Figure 5 is a schematic perspective view of a lock cylinder with high resistance to abrasion, according to the invention;
Figure 6 is an enlarged schematic view of a surface of a locking device according to the invention.
With reference to the figures, the reference numeral 1 generally designates a locking device with high resistance to abrasion, drilling and cutting.
The device 1 comprises, on at least one of its outer surfaces, at least one layer 2 of a protective material that comprises a plurality of diamonds 3 and at least one binder 4.
In such layer 2 of protective material, the volumetric density of the diamonds 3 is advantageously comprised between 10 carats/cm3 and 50 carats/cm3.
In practice such layer 2 of protective material comprises a mass of diamond crystals 3 with random orientation, such crystals being selected starting from natural or synthetic diamond powder 3, of pre-established granulometry: this mass of diamond crystals is conveniently mixed with suitable quantities of binder 4 and then compacted at very high temperatures and pressure levels.
The layer 2 of protective material, in at least one of the possible applications of the present invention, can be sintered.
The protection conferred by the layer 2 of protective material relates to the protection action against mechanical abrasion, cutting and drilling, but also against corrosion and the oxidation and degenerative effects that can be produced by saline mists.
It should be noted that, preferably, for reasons of containment of costs, the diamond crystals 3 will be synthetic (industrial diamonds).
The layer 2 thus provided is very dense, of variable thickness between 0.1 mm and 15 mm, and has the hardness, resistance to abrasion, and thermal conductivity of diamond 3.
Such characteristics of the layer 2 make it possible to adopt materials with reduced hardness and mechanical performance to provide the surfaces of the locking device onto which the layer 2 will be coupled.
The adoption of easily-deformable metals for the production of cylinders, protectors for cylinders, locks (in particular the box-like body that delimits it), padlocks (and chains), and anti-theft devices for vehicles, safes and the like makes it possible to appreciably limit the production costs thereof, since such metals are more easily workable when cold and do not require thermal and/or thermochemical and/or electrochemical treatments for their stabilization.
It follows from this therefore that the layer 2 can be deposited on less expensive locking devices 1 than those currently on the market, while still ensuring mechanical performance against abrasion, cutting and drilling that is decisively superior than all conventional locking devices.
It should be noted that the at least one layer 2 has a surface density of diamonds 3 greater than 0.5 carats/cm2.
With particular reference to an embodiment that makes it possible to obtain an optimal resistance to abrasion, to cutting and to drilling, it should be noted that the at least one layer 2 can positively have the following densities of diamonds 3 :
- surface density greater than 0.9 carats/cm2,
- volumetric density comprised between 20 carats/cm3 and 25 carats/cm3.
Note that one carat corresponds to 0.2 grams.
In order to increase the resistance to abrasion (cutting, drilling) of the device 1 according to the invention, it should be noted that it will similarly be possible to coat the respective faces 1 a thereof with two or more layers 2,
optionally selecting layers 2 with different densities.
It should be noted that the binder 4 used will conveniently comprise at least one component chosen from among:
- metallic powders, preferably chosen from among cobalt, aluminum, copper, brass, iron, steel, tin, nickel, tungsten, silver, and metallic alloys;
- ceramic powders;
- resin powders, preferably chosen from among aramid, epoxy, phenolic, and polyamide.
According to the type of layer 2 that it is desired to obtain, different binders can be adopted that require a different and specific sintering process.
In order to increase the resistance of the layer 2, the technician can proceed to increase the granulometry of the diamonds 3 : the greater the granulometry, the better the resistance will be to abrasion (cutting, drilling) ofthe layer 2.
Specifically, it should be noted the diamonds 3 used will preferably be industrial diamonds and will advantageously have a granulometry, understood as the average granule diameter, comprised between 50 μιη and 1000 pm, preferably greater than 100 μηι.
The greater the granulometry of the diamonds 3 in the layer 2, the better the resistance will be to abrasion (cutting, drilling) of the locking device 1 that will comprise such layer 2.
It should be noted that, from an applicative point of view, the locking device 1 can be positively constituted by a cylinder for locks, by a lock, by a protector for cylinders and the like, on the outer surface la of which is arranged the at least one layer 2 of a protective material that comprises a plurality of diamonds 3 and at least one binder 4.
As regards the cylinder, it should be noted that the layer 2 can be deposited on the front faces l a thereof (at least the face intended to be directed toward the outside when the cylinder is installed in the respective
lock), although the possibility is not ruled out of providing a complete coating of the cylinder in order to ensure protection against transverse attacks as well (for example holes drilled diagonally with respect to the surface of the installation door in order to reach the cylinder while avoiding the outer face la).
Regarding protectors for cylinders, the layer 2 will need to be extended to the entire surface l a or, at least, to the corresponding portion that is exactly aligned with the front face of the underlying cylinder.
For locks, the layer 2 will be used to coat the entire box-like containment body and/or specific portions thereof; however, the possibility is not ruled out of adopting internal components of the lock that are conveniently coated with the layer 2.
For padlocks, chains and anti-theft devices for vehicles in general, obviously the layer 2 will need to constitute a coating as extended as possible in order to reduce (or even eliminate) the areas that are liable to be damaged by a destructive attack (drilling, cutting and abrasion).
Finally it should be noted that for safes (and safe deposit boxes in general) the layer 2 will be arranged on all the outer surfaces l a so as to define a form of protective shield against destructive attacks (drilling, cutting and abrasion).
It should be noted that the at least one layer 2 can be advantageously deposited on the surface l a to be coated and sintered directly thereon by way of a thermomechanical treatment such as laser sintering, localized direct melting and the like.
In such case, the adhesion of the layer 2 to the faces la of the locking device 1 will be ensured by the fact that it is directly sintered thereon, with consequent stable coupling without discontinuities at the interface surface.
Alternatively, the at least one layer 2 can positively be coupled to the surface l a to be coated only at the end of the corresponding sintering process.
In this second case, the coupling can be done by way of a technique chosen from among adhesive bonding, mechanical interference, welding, brazing, and interposition of mechanical coupling elements.
The cohesion of the layer 2 to the faces la on which it is arranged in the respective device 1 will depend, in this second case, on the quality of the coupling performed.
Advantageously the present invention solves the above mentioned problems, by providing a locking device with high resistance to abrasion, drilling and cutting, i.e. of a type adapted to abrade and/or damage the drill bits or the cutting disks of the power tools used for forcing: in fact the presence of the diamond crystals 3 in the layer 2 ensures that (having high hardness) they will damage the tools used for forced entry before they can undermine the layer 2.
Conveniently the locking device 1 is adapted to resist for particularly long times, for example as long as a few hours, an attempt at destructive forcing perpetrated with a power tool, for example a drill and/or an angle grinder. In such period of time in fact, the tools used for forcing will be damaged, with consequent need to replace them in order to continue. An increase in the time necessary for forcing implies a higher probability of catching the ill-intentioned individuals in the act (for example by the forces of law and order, alerted by the protracted noise produced with the power tools).
Profitably the locking device 1 is of the visually identifiable device, in order to constitute a strong deterrent to anyone wishing to carry out a destructive forcing by way of power tools and the like.
In fact the layer 2 has an appearance that is appreciably different from that of the metals usually used, and therefore the ill-intentioned individual, after having seen the presence of the layer 2, will tend to abandon the forcing owing to the extreme difficulty that he/she would encounter in order to damage the layer 2.
Positively the locking device 1 is easily and practically implemented and is low cost: such characteristics make the device 1 according to the invention an innovation that is safe in use.
The invention, thus conceived, is susceptible of numerous modifications and variations, all of which are within the scope of the appended claims. Moreover, all the details may be substituted by other, technically equivalent elements.
In the embodiments illustrated, individual characteristics shown in relation to specific examples may in reality be interchanged with other, different characteristics, existing in other embodiments.
In practice, the materials employed, as well as the dimensions, may be any according to requirements and to the state of the art.
Where the technical features mentioned in any claim are followed by reference numerals and/or signs, those reference numerals and/or signs have been included for the sole purpose of increasing the intelligibility of the claims and accordingly, such reference numerals and/or signs do not have any limiting effect on the interpretation of each element identified by way of example by such reference numerals and/or signs.
Claims
1. A locking device with high resistance to abrasion, drilling and cutting, characterized in that it comprises, on at least one of its outer surfaces (la), at least one layer (2) of a protective material that comprises a plurality of diamonds (3) and at least one binder (4), the volumetric density of said diamonds (3) in said protective material being comprised between 10 carats/cm3 and 50 carats/cm3.
2. The locking device according to claim 1 , characterized in that said at least one layer (2) has a surface density of diamonds (3) greater than 0.5 carats/cm2.
3. The locking device according to one or more of the preceding claims, characterized in that said at least one layer (2) has the following densities of diamonds (3):
- surface density greater than 0.9 carats/cm2,
- volumetric density comprised between 20 carats/cm3 and 25 carats/cm3.
4. The locking device according to claim 1 , characterized in that said binder (4) comprises at least one component chosen from among:
- metallic powders, preferably chosen from among cobalt, aluminum, copper, brass, iron, steel, tin, nickel, tungsten, silver, and metallic alloys,
- ceramic powders,
- resin powders, preferably chosen from among aramid, epoxy, phenolic, and polyamide.
5. The locking device according to claim 1 , characterized in that said diamonds (3) are industrial diamonds and have a granulometry, understood as the average granule diameter, comprised between 50 μηι and 1000 μη , preferably greater than 100 μιη.
6. The locking device according to claim 1 , characterized in that it is constituted by at least one component chosen from among a cylinder for locks, a lock, a protector for cylinders and the like, on the outer surface (l a)
of which said at least one layer (2) of a protective material is arranged that comprises a plurality of diamonds (3) and at least one binder (4).
7. The locking device according to one or more of the preceding claims, characterized in that it is constituted by at least one component chosen from among a padlock, a chain, an anti-theft device for means of transport and the like, on the outer surface (la) of which said at least one layer (2) of a protective material is arranged that comprises a plurality of diamonds (3) and at least one binder (4).
8. The locking device according to one or more of the preceding claims, characterized in that it is constituted by a safe on the outer surface
( la) of which said at least one layer (2) of a protective material is arranged that comprises a plurality of diamonds (3) and at least one binder (4).
9. The locking device according to one or more of the preceding claims, characterized in that said at least one layer (2) is deposited on the surface (la) to be coated and sintered directly thereon by way of a thermomechanical treatment such as laser sintering, localized direct melting and the like.
10. The locking device according to one or more of the preceding claims, characterized in that said at least one layer (2) is coupled to the surface (l a) to be coated after the corresponding sintering process, said coupling being obtained by way of a technique chosen from among adhesive bonding, mechanical interference, welding, brazing, interposition of mechanical coupling elements.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17715788.0A EP3574169A1 (en) | 2017-01-26 | 2017-01-26 | Locking device with high resistance to abrasion, drilling and cutting |
PCT/IT2017/000015 WO2018138743A1 (en) | 2017-01-26 | 2017-01-26 | Locking device with high resistance to abrasion, drilling and cutting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/IT2017/000015 WO2018138743A1 (en) | 2017-01-26 | 2017-01-26 | Locking device with high resistance to abrasion, drilling and cutting |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018138743A1 true WO2018138743A1 (en) | 2018-08-02 |
Family
ID=58489377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IT2017/000015 WO2018138743A1 (en) | 2017-01-26 | 2017-01-26 | Locking device with high resistance to abrasion, drilling and cutting |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3574169A1 (en) |
WO (1) | WO2018138743A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023052778A1 (en) | 2021-09-29 | 2023-04-06 | Zeal Innovation Ltd | Security devices |
GB2621663A (en) * | 2022-05-17 | 2024-02-21 | Tenmat Ltd | Material and uses thereof |
WO2025082602A1 (en) * | 2023-10-18 | 2025-04-24 | Allegion Netherlands B.V. | Bicycle lock, bicycle, and bicycle lock manufacturing method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101386154A (en) * | 2008-09-28 | 2009-03-18 | 广东奔朗超硬材料制品有限公司 | Resin anchoring agent diamond grinding wheel and production method thereof |
US20110017520A1 (en) * | 2009-07-24 | 2011-01-27 | Diamond Innovations, Inc. | Metal-free supported polycrystalline diamond and method to form |
DE102010047020A1 (en) * | 2010-09-30 | 2012-04-05 | Obeko Gmbh | Producing an ultrahard protective coating on components of a safety equipment, comprises providing the component comprising a surface to be coated, and applying a coating mixture to the surface by a thermal spraying method |
-
2017
- 2017-01-26 WO PCT/IT2017/000015 patent/WO2018138743A1/en unknown
- 2017-01-26 EP EP17715788.0A patent/EP3574169A1/en not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101386154A (en) * | 2008-09-28 | 2009-03-18 | 广东奔朗超硬材料制品有限公司 | Resin anchoring agent diamond grinding wheel and production method thereof |
US20110017520A1 (en) * | 2009-07-24 | 2011-01-27 | Diamond Innovations, Inc. | Metal-free supported polycrystalline diamond and method to form |
DE102010047020A1 (en) * | 2010-09-30 | 2012-04-05 | Obeko Gmbh | Producing an ultrahard protective coating on components of a safety equipment, comprises providing the component comprising a surface to be coated, and applying a coating mixture to the surface by a thermal spraying method |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023052778A1 (en) | 2021-09-29 | 2023-04-06 | Zeal Innovation Ltd | Security devices |
GB2621663A (en) * | 2022-05-17 | 2024-02-21 | Tenmat Ltd | Material and uses thereof |
GB2621663B (en) * | 2022-05-17 | 2024-11-20 | Permali Gloucester Ltd | Material and uses thereof |
WO2025082602A1 (en) * | 2023-10-18 | 2025-04-24 | Allegion Netherlands B.V. | Bicycle lock, bicycle, and bicycle lock manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
EP3574169A1 (en) | 2019-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2797700C (en) | Polycrystalline diamond compacts, cutting elements and earth-boring tools including such compacts, and methods of forming such compacts and earth-boring tools | |
WO2018138743A1 (en) | Locking device with high resistance to abrasion, drilling and cutting | |
US9322219B2 (en) | Rolling cutter using pin, ball or extrusion on the bit body as attachment methods | |
US9187962B2 (en) | Methods of attaching rolling cutters in fixed cutter bits using sleeve, compression spring, and/or pin(s)/ball(s) | |
US9976353B2 (en) | Rolling element assemblies | |
US20160201357A1 (en) | Tamper resistant bicycle lock | |
US9611699B2 (en) | Coated particles and related methods | |
US20130207445A1 (en) | Metal Matrix Composite Mining Pick and Method of Making | |
US9604345B2 (en) | Hard-facing for downhole tools and matrix bit bodies with enhanced wear resistance and fracture toughness | |
WO2018095441A1 (en) | Single cone bit having rotating tooth | |
US10221630B2 (en) | Anodic bonding of thermally stable polycrystalline materials to substrate | |
US20140130418A1 (en) | Method of making carbonate pcd and sintering carbonate pcd on carbide substrate | |
US20150079349A1 (en) | Hard-faced Surface and a Wear Piece Element | |
CA2915454C (en) | Clad hardfacing application on downhole cutting tools | |
US8528667B2 (en) | Wear resistant material at the leading edge of the leg for a rotary cone drill bit | |
GB2621761A (en) | Security devices | |
CN107923226B (en) | Cutting element with impact resistant diamond body | |
US20160237755A1 (en) | Rotational Drill Bits and Drilling Apparatuses Including the Same | |
Imaizumi et al. | Drilling performance of PDC bits for geothermal well development in field experiments | |
US20230374633A1 (en) | Material and uses thereof | |
JP2009074256A (en) | Cylinder lock device, fixing case therefor, and manufacturing method for them | |
US9133531B2 (en) | High energy treatment of cutter substrates having a wear resistant layer | |
CN207470181U (en) | A kind of wear-resisting no-spark knife shape cutter teeth | |
US20180163322A1 (en) | Mechanically strengthened bond between thermally stable polycrystalline hard materials and hard composites | |
FR2568616A1 (en) | Safety lock with reinforced protection against break-in by drilling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17715788 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017715788 Country of ref document: EP Effective date: 20190826 |