WO2018119956A1 - 一种多孔铝箔负极及其制备方法和锂二次电池 - Google Patents
一种多孔铝箔负极及其制备方法和锂二次电池 Download PDFInfo
- Publication number
- WO2018119956A1 WO2018119956A1 PCT/CN2016/113282 CN2016113282W WO2018119956A1 WO 2018119956 A1 WO2018119956 A1 WO 2018119956A1 CN 2016113282 W CN2016113282 W CN 2016113282W WO 2018119956 A1 WO2018119956 A1 WO 2018119956A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aluminum foil
- porous aluminum
- porous
- negative electrode
- holes
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1393—Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
- H01M4/80—Porous plates, e.g. sintered carriers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention relates to the technical field of lithium secondary batteries, in particular to a porous aluminum foil anode, a preparation method thereof and a lithium secondary battery.
- the new high-efficiency battery system utilizes aluminum foil as a negative electrode sheet, and the aluminum foil acts as both a current collector and a negative electrode active material, and has a higher specific energy density and lower cost due to the reduction of the conventional negative electrode active material.
- the battery system has problems of volume expansion and electrolyte compatibility of the aluminum foil during the working process, thereby affecting the charging and discharging efficiency, the cycle performance and the safety performance.
- the first aspect of the present invention provides a porous aluminum foil negative electrode which can be applied to a novel battery system using aluminum foil as both a current collector and a negative electrode active material, which can effectively solve the problem of battery expansion and can be effective
- the problem that the electrolyte electrolyte membrane is broken and decomposed during the charging and discharging cycle of the battery is reduced, and the short circuit problem caused by the aluminum foil burr piercing the diaphragm is solved, thereby improving the charging and discharging efficiency, the cycle performance and the safety performance of the battery.
- the present invention provides a porous aluminum foil negative electrode comprising a porous aluminum foil having uniformly arranged porous holes, and a triangular region formed by a center line of three adjacent holes is a minimum unit, each of the smallest units having an area ratio of 10% to 79%, The distance between the edge of the porous aluminum foil and the outermost porous hole is 0.1 mm to 10 mm.
- the porous aluminum foil negative electrode of the present invention serves as both a current collector and a negative electrode active material.
- the active material of the positive and negative electrode sheets of a lithium ion battery is uniformly coated on the positive and negative current collectors by a coating method according to a certain ratio of the lithium storage capacity of the material.
- the positive and negative active materials are coated unevenly, the surface of the negative electrode is prone to lithium metal deposition, even lithium dendrites, which deteriorates the capacity and cycle performance of the battery, and the battery may have safety hazards.
- the uniformity and consistency of the active material coating of the battery pole piece are the key factors for the electrical performance and safety performance of the battery. Therefore, in the manufacturing process of the lithium battery, it is necessary to strictly control the uniformity of the active material coating of the positive and negative electrode sheets.
- the pore size of the porous aluminum foil and the uniformity of the pore distribution determine whether or not it can be used as The hard target of the negative electrode active material and current collector.
- the triangular area formed by the center line of three adjacent holes is the smallest unit, and the area ratio of the holes in each of the smallest units is 10% to 79%; further optionally, the hole is The area ratio is 25%-60%. In the present invention, preferably, the area of the holes of each of the smallest units is equal.
- the proportion of the pore area of the smallest unit determines the volume expansion of the lithium-encapsulated volume of the porous aluminum foil anode, and thus can be set according to the area ratio of the current collector and the active material in the pre-designed battery. Specifically, since lithium ions are embedded in an aluminum foil to form an aluminum-lithium alloy, the volume expansion thereof is 97%. Therefore, the present invention performs a space-saving design in accordance with a volume change rate of aluminum-lithium alloying.
- the area of the porous aluminum foil anode in the smallest unit serving as the active material is 20%, and the area serving as the current collector is 20%-60%, and the proportion of the pore area in the smallest unit is preferably Set to 20%, or greater than 20%, such as 20%-60%, thus providing a reserve for the volume change caused by lithium ion embedded aluminum foil to form an aluminum alloy.
- the large-sized porous aluminum foil obtained by machining has a hole in the edge of the aluminum foil when it is cut into pole pieces. Destroyed and flakes, there are a lot of burrs.
- the aluminum foil burrs can pierce the diaphragm to form a short circuit, which affects battery performance.
- the invention can effectively avoid the generation of the hair piece and the burr by setting a certain distance of the edge of the negative electrode of the porous aluminum foil without setting holes, thereby improving the stability and safety of the battery.
- the distance between the edge of the porous aluminum foil and the outermost porous hole is 2 mm to 5 mm.
- an isosceles triangle region composed of a center line connecting adjacent three holes of two adjacent rows is a minimum unit, and a hole area ratio of each of the smallest units is equal. Further optionally, the spacing of any two adjacent holes in the lateral direction is equal, and the spacing of any two adjacent holes in the longitudinal direction is equal.
- the spacing of two adjacent holes in the lateral direction is equal to the spacing of two adjacent holes in the longitudinal direction.
- the spacing of two adjacent holes in the lateral direction is equal to the spacing of the adjacent two horizontal rows.
- the porous aluminum foil has a porous pore size of from 20 nm to 2 mm. Further, the porous pore diameter is from 50 ⁇ m to 1.5 mm. Further preferably, the pores of the porous pores are equal in size.
- the porous pores of the porous aluminum foil may have a shape of a circle, an ellipse, a square, a rectangle, a prism, a triangle, a polygon, a pentagonal star, a plum, or the like, and the shape is not limited.
- the surface of the porous aluminum foil is further provided with a carbon material layer, wherein the material of the carbon material layer comprises one or more of conductive carbon black, graphene, graphite flakes, carbon nanotubes and organic carbon compounds.
- the material, the organic carbonaceous material comprises a carbonaceous material of an organic material having a carbonization temperature of 200 to 700 °C.
- the organic matter char is one or more materials such as glucose charcoal, sucrose char, citric acid char, polyvinylpyrrolidone char, polyvinyl alcohol char, polypropylene alcohol char, phenolic resin char.
- the carbon material layer has a thickness of 2 nm to 5 ⁇ m. Further, the thickness of the carbon material layer The degree is from 200 nm to 3 ⁇ m.
- the porous aluminum foil negative electrode provided by the first aspect of the present invention has a porous hole which can provide sufficient space for the volume change caused by lithium ion intercalation of the aluminum foil to form an aluminum-lithium alloy, so that the negative electrode does not expand, thereby solving the battery expansion.
- the problem is that the edge of the negative electrode of the porous aluminum foil is reserved for a certain distance without holes, which can effectively avoid the generation of the hair piece and the burr, and improve the stability and safety of the battery; and by setting the carbon material layer on the surface of the porous aluminum foil, the battery can be charged and discharged.
- the electrolyte forms a stable solid electrolyte membrane on the surface of the porous aluminum foil anode, which effectively reduces the problem that the electrolyte membrane is broken and decomposed during the charging and discharging cycle of the battery, thereby improving the charging and discharging efficiency, cycle performance and safety performance of the battery.
- the present invention provides a method for preparing a porous aluminum foil negative electrode comprising the following steps:
- the porous aluminum foil is processed by one or more of mechanical molding, chemical etching, laser cutting, plasma etching and electrochemical etching to obtain a porous aluminum foil negative electrode; the porous aluminum foil is provided with porous holes adjacent to each other
- the triangular area formed by the center line of the three holes is the smallest unit, and the area ratio of the holes in each of the smallest units is 10% to 79%, and the distance between the edge of the porous aluminum foil and the outermost porous hole It is 0.1mm-10mm.
- the preparation of the porous aluminum foil may firstly design the surface density of the positive electrode according to the type of the battery or the design of the battery capacity, combined with the type of the positive electrode material, the specific capacity, the compaction density, etc., and then form the lithium aluminum alloy LiAl substance according to the lithium ion and the aluminum foil.
- the specific capacity is 993mAh/g
- the porosity and size (length, width and thickness) of the negative electrode sheet of the battery are designed.
- the pore size, pore shape and pore distribution of the porous aluminum foil are designed according to the porosity and size of the negative electrode sheet.
- mechanical molding is adopted.
- a porous aluminum foil is processed and purged to remove burrs by compressed air.
- an isosceles triangle region composed of a center line connecting adjacent three holes of two adjacent rows is a minimum unit, and a hole area ratio of each of the smallest units is equal.
- the spacing of any two adjacent holes in the lateral direction is equal, and the spacing of any two adjacent holes in the longitudinal direction is equal.
- the spacing of two adjacent holes in the lateral direction is equal to the spacing of two adjacent holes in the longitudinal direction.
- the spacing of two adjacent holes in the lateral direction is equal to the spacing of the adjacent two horizontal rows.
- the porous aluminum foil has a porous pore size of from 20 nm to 2 mm. Further, the porous pore diameter is from 50 ⁇ m to 1.5 mm. Further preferably, the pores of the porous pores are equal in size.
- the porous holes of the porous aluminum foil may have a shape of a circle, an ellipse, a square, a rectangle, a prism, a triangle, a polygon, a pentagonal star, a plum, or the like, and the shape is not limited.
- the area ratio of the holes is 25%-60%.
- the distance between the edge of the porous aluminum foil and the outermost porous hole is 2 mm to 5 mm.
- the porous aluminum foil has a thickness of from 10 to 100 microns.
- a carbon material layer is further prepared on the porous aluminum foil, and the specific steps are as follows:
- An aluminum foil negative electrode comprising a porous aluminum foil and a carbon material layer disposed on a surface of the porous aluminum foil.
- the carbon material includes one or more materials of carbon black, graphene, graphite flakes, carbon nanotubes, and organic carbides
- the carbon material precursor includes an organic material having a carbonization temperature of 200 to 700 °C.
- the organic substance is one or more materials such as glucose, sucrose, citric acid, polyvinylpyrrolidone, polyvinyl alcohol, polypropylene alcohol, phenol resin, and the like.
- the temperature of the heat treatment is 200 to 700 °C.
- the time of the heat treatment The interval is 2-4 hours.
- the carbon material layer has a thickness of 2 nm to 5 ⁇ m. Further, the carbon material layer has a thickness of 200 nm to 3 ⁇ m.
- the inert gas is argon gas, nitrogen gas or the like.
- the reducing gas may be hydrogen.
- the drying operation is: drying at 80 ° C - 100 ° C for 2-6 hours.
- the preparation method of the porous aluminum foil negative electrode provided by the second aspect of the invention has the advantages of simple process, low cost and easy industrial production.
- the present invention provides a lithium secondary battery comprising a positive electrode sheet, an electrolyte solution, a separator, and a negative electrode sheet, wherein the negative electrode sheet is the porous aluminum foil negative electrode according to the first aspect of the invention.
- the porous aluminum foil negative electrode comprises a porous aluminum foil provided with uniformly arranged porous holes, and a triangular region formed by a center line of three adjacent holes is a minimum unit, and each of the smallest units has a hole The ratio of the area is 10% to 79%, and the distance between the edge of the porous aluminum foil and the outermost porous hole is 0.1 mm to 10 mm.
- the porous aluminum foil serves as both a current collector and a negative electrode. Active material.
- the area of the porous aluminum foil as a current collector is 20-60%, and the area of the negative electrode active material is 1-40%.
- the area ratio of the holes is 25-60%. Further optionally, the distance between the edge of the porous aluminum foil and the outermost porous hole is 2 mm to 5 mm.
- an isosceles triangle region composed of a center line connecting adjacent three holes of two adjacent rows is a minimum unit, and a hole area ratio of each of the smallest units is equal. Further optionally, the spacing of any two adjacent holes in the lateral direction is equal, and the spacing of any two adjacent holes in the longitudinal direction is equal.
- the spacing between two adjacent holes in the lateral direction is between the two adjacent holes in the longitudinal direction.
- the distance is equal.
- the spacing of two adjacent holes in the lateral direction is equal to the spacing of the adjacent two horizontal rows.
- the porous aluminum foil has a porous pore size of from 20 nm to 2 mm. Further, the porous pore diameter is from 50 ⁇ m to 1.5 mm. Further preferably, the pores of the porous pores are equal in size.
- the porous holes of the porous aluminum foil may have a shape of a circle, an ellipse, a square, a rectangle, a prism, a triangle, a polygon, a pentagonal star, a plum, or the like, and the shape is not limited.
- the porous aluminum foil has a thickness of from 10 to 100 microns.
- the surface of the porous aluminum foil is further provided with a carbon material layer, wherein the material of the carbon material layer comprises one or more of conductive carbon black, graphene, graphite flakes, carbon nanotubes and organic carbon compounds.
- the material, the organic carbonaceous material comprises a carbonaceous material of an organic material having a carbonization temperature of 200 to 700 °C.
- the organic matter char is one or more materials such as glucose charcoal, sucrose char, citric acid char, polyvinylpyrrolidone char, polyvinyl alcohol char, polypropylene alcohol char, phenolic resin char.
- the carbon material layer has a thickness of 2 nm to 5 ⁇ m. Further, the carbon material layer has a thickness of 200 nm to 3 ⁇ m.
- the positive electrode sheet includes a positive electrode active material, and the positive electrode active material is graphite or a lithium ion positive electrode material such as lithium iron phosphate, lithium cobaltate, lithium titanate or the like. That is, the lithium secondary battery may be a conventional lithium ion battery or an aluminum-graphite dual ion battery. In the case of an aluminum-graphite dual ion battery, the positive electrode sheet includes graphite, that is, graphite is used as a positive electrode active material.
- the electrolyte and the separator are conventional lithium ion battery electrolytes and separators.
- the lithium secondary battery provided by the third aspect of the present invention has a porous aluminum foil having a specific pore design as both a current collector and a negative electrode active material, and has good cycle performance and high safety performance.
- FIG. 1 is a schematic structural view of a porous aluminum foil according to Embodiment 1 of the present invention.
- FIG. 2 is a schematic structural view of a porous aluminum foil according to Embodiment 2 of the present invention.
- Figure 3 is a schematic view showing the structure of a porous aluminum foil according to Example 64 of the present invention.
- a method for preparing a porous aluminum foil anode comprises the following steps:
- a 50-micron-thick aluminum foil with a ratio of 25% of the area of the hole in each of the smallest units, a hole diameter of 1 mm, a hole shape of a circular hole, and a distance of 2 mm from the edge of the outer peripheral hole and the edge of the aluminum foil.
- the porous aluminum foil is processed by mechanical molding, and the burr is removed by purging with compressed air;
- porous aluminum foil was immersed in an aqueous solution containing 20% polyvinylpyrrolidone for 10 minutes, and the above porous aluminum foil was placed in a sintering furnace with nitrogen gas to raise the temperature to 400 ° C at a rate of 3 ° C / min, and at 400 ° C.
- the carbon aluminum alloy was subjected to carbonization for 4 hours to obtain a porous aluminum foil negative electrode.
- FIG. 1 is a schematic structural view of a porous aluminum foil according to Embodiment 1 of the present invention; in the figure, d is the distance between the edge of the outermost hole and the edge of the aluminum foil (2 mm); r is the radius of the hole of the circular hole, and the center line of the adjacent three holes
- the formed isosceles triangle area is the smallest unit, and the ratio of the area ( ⁇ r 2 )/2 of the hole to the total area (h*L)/2 of the triangular area in each of the minimum units is 25%.
- the porous holes are arranged in a rectangular array, and the spacing of any two adjacent holes in the lateral direction is equal, the spacing of any two adjacent holes in the longitudinal direction is equal, and the spacing and longitudinal direction of the two adjacent holes in the lateral direction are longitudinally The spacing between any two adjacent holes is equal.
- the number of holes in each horizontal row is equal, and the number of holes in each longitudinal row is equal, and the holes are aligned and the apertures are equal in size.
- a lithium iron phosphate cathode material having a specific capacity of 140 mAh/g and PVDF and conductive carbon black were coated on an aluminum foil at 95:3:2 as a positive electrode sheet.
- the processing technology and process control of the positive electrode sheet adopt the current industrialized process technology.
- the processed porous aluminum foil negative electrode and the above positive electrode, the electrolyte is 1 mol/L LiPF6 ethylene carbonate (EC) and dimethyl carbonate.
- a mixed solution of (DMC) (volume ratio 1:1), a diaphragm of celgard 2400 polypropylene porous membrane was assembled into a full battery in an argon-filled glove box to obtain a battery sample C1.
- the 50 ⁇ m thick aluminum foil was immersed in an aqueous solution containing 20% polyvinylpyrrolidone for 10 minutes, and the above porous aluminum foil was placed in a sintering furnace with nitrogen gas to raise the temperature to 400 ° C at a rate of 3 ° C/min, and at 400 ° C.
- An aluminum foil negative electrode sheet can be obtained by subjecting the carbonization treatment to a constant temperature for 4 hours.
- a lithium iron phosphate cathode material having a specific capacity of 140 mAh/g and PVDF and conductive carbon black were coated on an aluminum foil at 95:3:2 as a positive electrode sheet.
- the processing technology and process control of the positive electrode sheet adopt the current industrialized process technology.
- EC ethylene carbonate
- DMC dimethyl carbonate
- the porous membrane was assembled into a full battery in an argon-filled glove box to obtain a battery sample C0.
- a method for preparing a porous aluminum foil anode comprises the following steps:
- the aluminum foil with a thickness of 20 micrometers has a design ratio of 25% of the area of the holes in each of the smallest units, a hole diameter of 1 mm, a hole shape of a circular hole, and a distance between the edge of the outermost hole and the edge of the aluminum foil of 2 mm.
- the porous aluminum foil is processed by mechanical molding, and the burr is removed by purging with compressed air;
- porous aluminum foil was immersed in an aqueous solution containing 20% polyvinylpyrrolidone for 10 minutes, and the above porous aluminum foil was placed in a sintering furnace through which an inert gas or a reducing gas was passed, and the temperature was raised to 400 ° C at a rate of 3 ° C/min. And the carbonization treatment was carried out at a temperature of 400 ° C for 4 hours, and a porous aluminum foil negative electrode was obtained.
- a graphite positive electrode material having a specific capacity of 100 mAh/g and PVDF and conductive carbon black were coated on an aluminum foil at 95:3:2 as a positive electrode sheet.
- the processing technology and process control of the positive electrode sheet adopt the current industrialized technology.
- the carbon-modified aluminum foil negative electrode piece can be obtained by performing carbonization treatment at a temperature of 400 ° C for 4 hours.
- a graphite cathode material with a specific capacity of 100 mAh/g and PVDF and conductive carbon black were coated on an aluminum foil as a positive electrode sheet at 95:3:2. The processing technology and process control of the positive electrode sheet were both industrialized and processed.
- EC ethylene carbonate
- EMC ethyl methyl carbonate
- VC vinylene carbonate
- Embodiments 40-63 refer to the specific steps of Example 39 to adjust the relevant parameters to obtain different embodiments 40-63.
- the parameters and test results of specific embodiments are shown in Table 2:
- a method for preparing a porous aluminum foil anode comprises the following steps:
- the aluminum foil with a thickness of 20 micrometers is designed according to the area of the holes in the smallest unit, the proportion of the holes is 25%, the aperture is 1 mm, the shape of the hole is a circular hole, and the distance between the edge of the outermost hole and the edge of the aluminum foil is 2 mm.
- Mechanical molding processing method manufacturing porous aluminum foil, and purging by using compressed air to remove burrs;
- porous aluminum foil was then immersed in an aqueous solution containing 20% polyvinylpyrrolidone for 10 minutes. Then, the porous aluminum foil is placed in a sintering furnace through which an inert gas or a reducing gas is passed, and the temperature is raised to 400 ° C at a rate of 3 ° C / min, and the carbonization treatment is performed at a temperature of 400 ° C for 4 hours to obtain a porous aluminum foil negative electrode. .
- Fig. 3 is a view showing the structure of a porous aluminum foil according to Example 64 of the present invention.
- d is the distance between the edge of the outermost hole and the edge of the aluminum foil (2 mm)
- the radius of the hole of the circular hole is r
- the isosceles triangle area composed of the center line of three adjacent rows of two adjacent rows is the smallest unit.
- the ratio of the area of the hole ( ⁇ r 2 )/2 to the total area of the triangular area is 25%.
- the spacing of any two adjacent holes in the lateral direction is equal, and the spacing of any two adjacent holes in the longitudinal direction is equal, and the spacing between two adjacent holes in the lateral direction is equal to the spacing between the adjacent two horizontal rows.
- the spacing of two adjacent holes in the lateral direction and the spacing between adjacent two rows may also be unequal.
- the number of holes in the odd horizontal rows or the vertical rows is equal, and the number of holes in the even horizontal rows or the vertical rows is equal.
- the odd-numbered horizontal rows of holes are aligned, and the even-numbered horizontal rows of holes are aligned and the apertures are equal in size.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
一种多孔铝箔负极、其制备方法以及锂二次电池,该负极包括多孔铝箔,所述多孔铝箔上设有均匀排布的多孔孔洞,以相邻三个孔洞的中心连线构成的三角形区域为最小单元,每个所述最小单元中孔洞的面积占比均为10%-79%,所述多孔铝箔的边缘与最外围多孔孔洞之间的距离为0.1mm-10mm。该多孔铝箔负极可应用于以铝箔同时作为集流体和负极活性材料的锂离子电池体系中,有效解决电池膨胀问题,且可以有效降低电解液在电池充放电循环过程中固体电解质膜被破坏而分解的问题,以及由于铝箔毛刺刺破隔膜导致的短路问题,进而提高电池的充放电效率、循环稳定性以及安全性能。
Description
本发明涉及锂二次电池技术领域,特别是涉及一种多孔铝箔负极及其制备方法和锂二次电池。
2016年,中国科学院深圳先进技术研究院在新型高效电池研究方面取得突破性进展,开发了一种全新的铝-石墨双离子电池技术,该研究成果发布在《Advanced Energy Materials》上(DOI:10.1002/aenm.201502588),该新型高效电池体系利用铝箔作为负极片,铝箔同时充当集流体和负极活性材料,由于减少了传统的负极活性材料,比能量密度更高、成本更低,具有极大的应用前景,但该电池体系在工作过程中存在铝箔体积膨胀和电解液兼容性的问题,从而影响充放电效率、循环性能以及安全性能。
发明内容
鉴于此,本发明第一方面提供了一种多孔铝箔负极,该多孔铝箔负极可应用于以铝箔同时作为集流体和负极活性材料的新型电池体系中,其可以有效解决电池膨胀问题,且可以有效降低电解液在电池充放电循环过程中固体电解质膜被破坏而分解的问题,以及解决由于铝箔毛刺刺破隔膜导致的短路问题,进而提高电池的充放电效率、循环性能以及安全性能。
具体地,第一方面,本发明提供了一种多孔铝箔负极,包括多孔铝箔,所述多孔铝箔上设有均匀排布的多孔孔洞,以相邻三个孔洞的中心连线构成的三角形区域为最小单元,每个所述最小单元中孔洞的面积占比均为10%-79%,所述
多孔铝箔的边缘与最外围的多孔孔洞之间的距离为0.1mm-10mm。本发明中所述多孔铝箔负极中,所述多孔铝箔同时充当集流体和负极活性材料。
众所周知,目前锂离子电池正负极片活性物质根据材料储锂能力按照一定的比例,通过涂布方式均匀地涂覆在正负极集流体上。正负极活性物质涂覆不均一的时候,负极表面容易出现锂金属沉积,甚是锂枝晶产生,劣化电池的容量和循环性能,并且电池会存在安全隐患问题。可见电池极片活性材料涂覆均匀性和一致性是电池电性能和安全性能的关键因素,因此在锂电池制造过程中,需要严格控制正负极片活性物质涂覆的均匀性。同样在以多孔铝箔同时作为集流体和负极活性材料的新型锂离子电池体系中,也需要严格控制多孔铝箔的均一性,所以多孔铝箔的孔径的大小和孔分布的均匀性是决定其能否作为负极活性材料兼集流体的硬性指标。本发明中,以相邻三个孔洞的中心连线构成的三角形区域为最小单元,每个所述最小单元中,孔洞的面积占比均为10%-79%;进一步可选地,孔洞的面积占比均为25%-60%。本发明中,优选地,每个最小单元的孔洞面积占比相等。
最小单元的孔洞面积占比决定了多孔铝箔负极能承受的嵌锂体积膨胀大小,因此可根据预设计的电池中多孔铝箔负极分别充当集流体和活性物质的面积占比而设定。具体地,由于锂离子嵌入铝箔形成铝锂合金时,其体积膨胀达97%,因此本发明按铝锂合金化时一倍体积变化率进行预留空间设计。即若预设计的电池中,最小单元内多孔铝箔负极充当活性物质的面积占比为20%,充当集流体的面积占比为20%-60%,则最小单元内的孔洞面积占比可优选设置为20%,或者大于20%,如20%-60%,从而为锂离子嵌入铝箔形成铝合金带来的体积变化提供预留空间。
目前机械加工得到的大尺寸多孔铝箔,在分切成极片时,铝箔边缘会因为孔
被破坏而毛片,出现大量的毛刺。当组装成电池时铝箔毛刺会刺破隔膜形成短路,影响电池性能。本发明通过将多孔铝箔负极的边缘预留一定距离不设置孔洞,可以有效避免毛片和毛刺的产生,提高电池稳定性和安全性。本发明中,进一步可选地,所述多孔铝箔的边缘与最外围多孔孔洞之间的距离为2mm-5mm。
本发明中,所述多孔铝箔上,以相邻两横排的相邻三个孔洞的中心连线构成的等腰三角形区域为最小单元,且每个最小单元的孔洞面积占比相等。进一步可选地,横向任意相邻的两个孔洞的间距相等,纵向任意相邻的两个孔洞的间距相等。
可选地,横向任意相邻的两个孔洞的间距与纵向任意相邻的两个孔洞的间距相等。可选地,横向任意相邻的两个孔洞的间距与相邻两横排的间距相等。
可选地,所述多孔铝箔的多孔孔径为20nm-2mm。进一步地,多孔孔径为50μm-1.5mm。进一步优选地,多孔孔洞的孔径大小相等。
本发明中,所述多孔铝箔的多孔孔洞的形状可以是圆形、椭圆形、正方形、长方形、棱形、三角形、多边形、五角星、梅花形等,形状不作限制。孔洞的边长越大,越有利于锂离子的嵌入。
本发明中,所述多孔铝箔的表面进一步设置有碳材料层,其中,所述碳材料层的材质包括导电炭黑、石墨烯、石墨片、碳纳米管和有机物炭化物中的一种或多种材料,所述有机物炭化物包括炭化温度为200-700℃的有机物的炭化物。具体地,所述有机物炭化物为葡萄糖炭化物、蔗糖炭化物、柠檬酸炭化物、聚乙烯吡咯烷酮炭化物、聚乙烯醇炭化物、聚丙烯醇炭化物、酚醛树脂炭化物等一种或多种材料。
可选地,所述碳材料层的厚度为2nm-5μm。进一步地,所述碳材料层的厚
度为200nm-3μm。
本发明第一方面提供的多孔铝箔负极,其多孔孔洞可以为锂离子嵌入铝箔形成铝锂合金带来的体积变化提供足够的预留空间,从而使负极极不会发生膨胀问题,解决了电池膨胀问题;将多孔铝箔负极的边缘预留一定距离不设置孔洞,可以有效避免毛片和毛刺的产生,提高电池稳定性和安全性;而通过在多孔铝箔表面设置碳材料层,可以使得电池充放电时电解液在多孔铝箔负极表面形成稳定的固体电解质膜,有效降低电解液在电池充放电循环过程中固体电解质膜被破坏而分解的问题,进而提高电池的充放电效率、循环性能以及安全性能。
第二方面,本发明提供了一种多孔铝箔负极的制备方法,包括以下步骤:
采用机械模压、化学蚀刻、激光切割、等离子刻蚀和电化学刻蚀中的一种或多种方式加工得到多孔铝箔,即得到多孔铝箔负极;所述多孔铝箔上设有多孔孔洞,以相邻三个孔洞的中心连线构成的三角形区域为最小单元,每个所述最小单元中孔洞的面积占比均为10%-79%,所述多孔铝箔的边缘与最外围多孔孔洞之间的距离为0.1mm-10mm。
具体地,多孔铝箔的制备可先根据电池的型号或电池容量设计要求,结合正极材料种类、比容量、压实密度等因素设计正极片面密度,随后按照锂离子和铝箔形成锂铝合金LiAl物质,比容量为993mAh/g,设计电池负极片的孔隙率、尺寸(长度、宽度、厚度);再根据负极片的孔隙率、尺寸设计多孔铝箔的孔径大小、孔形状及孔分布;最后采用机械模压、化学蚀刻、等离子刻蚀、电化学刻蚀等任何一种或几种共同加工的方式,结合上述的设计方案加工制造出多孔铝箔,并利用压缩空气进行吹扫去除毛刺。
本发明中,所述多孔铝箔上,以相邻两横排的相邻三个孔洞的中心连线构成的等腰三角形区域为最小单元,且每个最小单元的孔洞面积占比相等。进一
步可选地,横向任意相邻的两个孔洞的间距相等,纵向任意相邻的两个孔洞的间距相等。
可选地,横向任意相邻的两个孔洞的间距与纵向任意相邻的两个孔洞的间距相等。可选地,横向任意相邻的两个孔洞的间距与相邻两横排的间距相等。
可选地,所述多孔铝箔的多孔孔径为20nm-2mm。进一步地,多孔孔径为50μm-1.5mm。进一步优选地,多孔孔洞的孔径大小相等。
本发明中,所述多孔铝箔的多孔孔洞的形状可以是圆形、椭圆形、正方形、长方形、棱形、三角形、多边形、五角星、梅花形等,形状不做限制。
进一步可选地,每个所述最小单元中,孔洞的面积占比均为25%-60%。
进一步可选地,所述多孔铝箔的边缘与最外围多孔孔洞之间的距离为2mm-5mm。这样在将机械加工得到的大尺寸多孔铝箔分切成极片时,铝箔边缘就不会因为孔被破坏而毛片,从而避免出现大量的毛刺。
可选地,多孔铝箔的厚度为10-100微米。
其中,可选地,在所述多孔铝箔上进一步制备碳材料层,具体步骤为:
将含有碳材料的溶液涂覆到所述多孔铝箔的表面,烘干,得到多孔铝箔负极;
或将含有碳材料前驱体的溶液涂覆到所述多孔铝箔的表面,然后置于惰性气体或还原性气体的烧结炉中热处理0.5-6小时,使所述碳材料前驱体碳化,即得到多孔铝箔负极,所述多孔铝箔负极包括多孔铝箔和设置于所述多孔铝箔表面的碳材料层。
所述碳材料包括导炭黑、石墨烯、石墨片、碳纳米管和有机物炭化物中的一种或多种材料,所述碳材料前驱体包括碳化温度为200-700℃的有机物。具体地,所述有机物为葡萄糖、蔗糖、柠檬酸、聚乙烯吡咯烷酮、聚乙烯醇、聚丙烯醇、酚醛树脂等一种或多种材料。所述热处理的温度为200-700℃。所述热处理的时
间为2-4小时。
可选地,所述碳材料层的厚度为2nm-5μm。进一步地,所述碳材料层的厚度为200nm-3μm。
所述惰性气体为氩气、氮气等。所述还原性气体可为氢气。所述烘干的操作为:于80℃-100℃烘干2-6小时。
本发明第二方面提供的多孔铝箔负极的制备方法,工艺简单、成本低,易于工业化生产。
第三方面,本发明提供了一种锂二次电池,包括正极片、电解液、隔膜、负极片,所述负极片为本发明第一方面所述的多孔铝箔负极。所述多孔铝箔负极包括多孔铝箔,所述多孔铝箔上设有均匀排布的多孔孔洞,以相邻三个孔洞的中心连线构成的三角形区域为最小单元,每个所述最小单元中孔洞的面积占比均为10%-79%,所述多孔铝箔的边缘与最外围的多孔孔洞之间的距离为0.1mm-10mm,所述多孔铝箔负极中,所述多孔铝箔同时充当集流体和负极活性材料。
本发明所述的锂二次电池,每个所述最小单元中,所述多孔铝箔作为集流体的面积占比为20-60%,作为负极活性材料的面积占比为1-40%。
进一步可选地,每个所述最小单元中,孔洞的面积占比均为25-60%。进一步可选地,所述多孔铝箔的边缘与最外围多孔孔洞之间的距离为2mm-5mm。
本发明中,所述多孔铝箔上,以相邻两横排的相邻三个孔洞的中心连线构成的等腰三角形区域为最小单元,且每个最小单元的孔洞面积占比相等。进一步可选地,横向任意相邻的两个孔洞的间距相等,纵向任意相邻的两个孔洞的间距相等。
可选地,横向任意相邻的两个孔洞的间距与纵向任意相邻的两个孔洞的间
距相等。可选地,横向任意相邻的两个孔洞的间距与相邻两横排的间距相等。
可选地,所述多孔铝箔的多孔孔径为20nm-2mm。进一步地,多孔孔径为50μm-1.5mm。进一步优选地,多孔孔洞的孔径大小相等。
本发明中,所述多孔铝箔的多孔孔洞的形状可以是圆形、椭圆形、正方形、长方形、棱形、三角形、多边形、五角星、梅花形等,形状不做限制。
可选地,多孔铝箔的厚度为10-100微米。
本发明中,所述多孔铝箔的表面进一步设置有碳材料层,其中,所述碳材料层的材质包括导电炭黑、石墨烯、石墨片、碳纳米管和有机物炭化物中的一种或多种材料,所述有机物炭化物包括炭化温度为200-700℃的有机物的炭化物。具体地,所述有机物炭化物为葡萄糖炭化物、蔗糖炭化物、柠檬酸炭化物、聚乙烯吡咯烷酮炭化物、聚乙烯醇炭化物、聚丙烯醇炭化物、酚醛树脂炭化物等一种或多种材料。
可选地,所述碳材料层的厚度为2nm-5μm。进一步地,所述碳材料层的厚度为200nm-3μm。
本发明中,所述正极片包括正极活性材料,所述正极活性材料为石墨或锂离子正极材料,例如磷酸铁锂、钴酸锂、钛酸锂等。即锂二次电池可以是常规的锂离子电池,也可以是铝-石墨双离子电池。当为铝-石墨双离子电池时,所述正极片包括石墨,即以石墨作为正极活性材料。
其中,电解液和隔膜为现有常用的锂离子电池电解液和隔膜。
本发明第三方面提供的锂二次电池,以具有特定孔设计的多孔铝箔同时作为集流体和负极活性材料,循环性能良好、安全性能高。
本发明的优点将会在下面的说明书中部分阐明,一部分根据说明书是显而易见的,或者可以通过本发明实施例的实施而获知。
图1为本发明实施例1的多孔铝箔的结构示意图;
图2为本发明实施例2的多孔铝箔的结构示意图;
图3为本发明实施例64的多孔铝箔的结构示意图。
以下所述是本发明实施例的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明实施例原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明实施例的保护范围。
下面分多个实施例对本发明实施例进行进一步的说明。其中,本发明实施例不限定于以下的具体实施例。在不变主权利的范围内,可以适当的进行变更实施。
实施例1
一种多孔铝箔负极的制备方法,包括以下步骤:
(1)将50微米厚度的铝箔,按照每个最小单元中孔洞的面积占比为25%、孔径1毫米,孔形状为圆孔,最外围孔边缘与铝箔边缘距离为2毫米的设计参数,采用机械模压加工方式,加工制造出多孔铝箔,并利用压缩空气进行吹扫去除毛刺;
(2)随后将多孔铝箔浸泡在含有20%聚乙烯吡咯烷酮水溶液中10分钟,再将上述的多孔铝箔放置通有氮气的烧结炉中以3℃/min的速率升温至400℃,并在400℃下进行恒温4小时炭化处理,即可得到多孔铝箔负极。
图1为本发明实施例1的多孔铝箔的结构示意图;图中,d为最外围孔边缘与铝箔边缘的距离(2毫米);r为圆孔孔洞半径,相邻三个孔的中心连线构成的
等腰三角形区域为最小单元,每个所述最小单元中,孔洞的面积(πr2)/2占三角形区域的总面积(h*L)/2的比例为25%。本实施例中,多孔孔洞呈矩形阵列排布,横向任意相邻的两个孔洞的间距相等,纵向任意相邻的两个孔洞的间距相等,且横向任意相邻的两个孔洞的间距与纵向任意相邻的两个孔洞的间距相等。横向各排的孔洞数目相等,且纵向各排的孔洞数目相等,各孔洞对齐排列,孔径大小相等。
常规锂离子电池的制备
将比容量为140mAh/g的磷酸铁锂正极材料与PVDF、导电炭黑按95:3:2涂覆在铝箔上作为正极片。正极片的加工工艺及过程控制均采用目前产业化的工艺技术,最后将加工后的多孔铝箔负极与上述的正极,电解液为1mol/L LiPF6的碳酸乙烯酯(EC)和二甲基碳酸酯(DMC)的混合溶液(体积比为=1:1),隔膜为celgard2400聚丙烯多孔膜在充满氩气的手套箱中组装成全电池得到电池样品C1。
对比例1(常规锂离子电池)
将50微米厚度的铝箔浸泡在含有20%聚乙烯吡咯烷酮水溶液中10分钟,再将上述的多孔铝箔放置通有氮气的烧结炉中以3℃/min的速率升温至400℃,并在400℃下进行恒温4小时炭化处理,即可得到铝箔负极片。将比容量为140mAh/g的磷酸铁锂正极材料与PVDF、导电炭黑按95:3:2涂覆在铝箔上作为正极片。正极片的加工工艺及过程控制均采用目前产业化的工艺技术,最后将加工后的正极片与铝箔负极片,电解液为1mol/L LiPF6的碳酸乙烯酯(EC)和二甲基碳酸酯(DMC)的混合溶液(体积比为=1:1),隔膜为celgard2400聚丙烯
多孔膜在充满氩气的手套箱中组装成全电池得到电池样品C0。
实施例2-38
参照实施例1的具体步骤,对相关参数进行调整即可得到不同的实施例2-38。具体实施例参数及测试结果如表1所示:
表1
实施例39
一种多孔铝箔负极的制备方法,包括以下步骤:
(1)将20微米厚度的铝箔,按照每个最小单元中孔洞的面积占比为25%、孔径1毫米,孔形状为圆孔,最外围孔边缘与铝箔边缘距离为2毫米的设计参数,采用机械模压加工方式,加工制造出多孔铝箔,并利用压缩空气进行吹扫去除毛刺;
(2)随后将多孔铝箔浸泡在含有20%聚乙烯吡咯烷酮水溶液中10分钟,再将上述的多孔铝箔放置通有惰性气体或还原行气体的烧结炉中以3℃/min的速率升温至400℃,并在400℃温度下进行恒温4小时炭化处理,即可得到多孔铝箔负极。
铝-石墨双离子电池的制备
将比容量为100mAh/g的石墨正极材料与PVDF、导电炭黑按95:3:2涂覆在铝箔上作为正极片。正极片的加工工艺及过程控制均采用目前产业化的工艺技
术,最后将加工后的多孔铝箔负极与上述的正极,电解液为4mol/L LiPF6的碳酸乙烯酯(EC)和碳酸甲乙酯(EMC)的混合溶液(体积比为=1:1)+2%亚乙烯碳酸酯(VC),隔膜为celgard2400聚丙烯多孔膜在充满氩气的手套箱中组装成全电池得到电池样品C10。
对比例2(铝-石墨双离子电池)
将20微米厚度的铝箔浸泡在含有20%聚乙烯吡咯烷酮水溶液中10分钟,再将上述的多孔铝箔放置通有惰性气体或还原行气体的烧结炉中以每分钟3℃的速率升温至400℃,并在400℃温度下进行恒温4小时炭化处理,即可得到炭改性铝箔负极极片。将比容量为100mAh/g的石墨正极材料与PVDF、导电炭黑按95:3:2涂覆在铝箔上作为正极片,正极片的加工工艺及过程控制均采用目前产业化的工艺技术,最后将加工后的正极片与炭改性铝箔作为负极极片,电解液为4mol/L LiPF6的碳酸乙烯酯(EC)和碳酸甲乙酯(EMC)的混合溶液(体积比为=1:1)+2%亚乙烯碳酸酯(VC),隔膜为celgard2400聚丙烯多孔膜在充满氩气的手套箱中组装成全电池得到电池样品C00。
实施例40-63参照实施例39的具体步骤,对相关参数进行调整即可得到不同的实施例40-63。具体实施例参数及测试结果如表2所示:
表2
实施例64
一种多孔铝箔负极的制备方法,包括以下步骤:
(1)将20微米厚度的铝箔,按照最小单元中孔洞的面积占比均为25%、孔径1毫米,孔形状为圆孔,最外围孔边缘与铝箔边缘距离为2毫米的设计参数,采用机械模压加工方式,加工制造出多孔铝箔,并利用压缩空气进行吹扫去除毛刺;
(2)随后将多孔铝箔浸泡在含有20%聚乙烯吡咯烷酮水溶液中10分钟,
再将上述的多孔铝箔放置通有惰性气体或还原行气体的烧结炉中以3℃/min的速率升温至400℃,并在400℃温度下进行恒温4小时炭化处理,即可得到多孔铝箔负极。
图3所示为本发明实施例64的多孔铝箔的结构示意图。图中,d为最外围孔边缘与铝箔边缘的距离(2毫米),圆孔孔洞半径为r,以相邻两横排相邻三个孔的中心连线构成的等腰三角形区域为最小单元,每个所述最小单元中,孔洞的面积(πr2)/2占三角形区域的总面积的比例为25%。本实施例中,横向任意相邻的两个孔的间距相等,纵向任意相邻的两个孔的间距相等,且横向任意相邻的两个孔洞的间距与相邻两横排的间距相等。在其他实施例中,横向任意相邻的两个孔洞的间距与相邻两横排的间距也可不相等。奇数横向各排或纵向各排的孔洞数目相等,偶数横向各排或纵向各排的孔洞数目相等。奇数横向各排孔洞对齐排列,偶数横向各排孔洞对齐排列,且孔径大小相等。
需要说明的是,根据上述说明书的揭示和和阐述,本发明所属领域的技术人员还可以对上述实施方式进行变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的一些等同修改和变更也应当在本发明的权利要求的保护范围之内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。
Claims (22)
- 一种多孔铝箔负极,其特征在于,包括多孔铝箔,所述多孔铝箔上设有均匀排布的多孔孔洞,以相邻三个孔洞的中心连线构成的三角形区域为最小单元,每个所述最小单元中孔洞的面积占比均为10%-79%,所述多孔铝箔的边缘与最外围的多孔孔洞之间的距离为0.1mm-10mm。
- 如权利要求1所述的多孔铝箔负极,其特征在于,以相邻两横排的相邻三个孔洞的中心连线构成的等腰三角形区域为最小单元,且每个最小单元的孔洞面积占比相等。
- 如权利要求2所述的多孔铝箔负极,其特征在于,横向任意相邻的两个孔洞的间距相等,纵向任意相邻的两个孔洞的间距相等。
- 如权利要求3所述的多孔铝箔负极,其特征在于,横向任意相邻的两个孔洞的间距与纵向任意相邻的两个孔洞的间距相等。
- 如权利要求3所述的多孔铝箔负极,其特征在于,横向任意相邻的两个孔洞的间距与相邻两横排的间距相等。
- 如权利要求1所述的多孔铝箔负极,其特征在于,所述多孔孔洞的孔径大小相等。
- 如权利要求1所述的多孔铝箔负极,其特征在于,每个所述最小单元中,孔洞的面积占比均为25%-60%。
- 如权利要求1所述的多孔铝箔负极,其特征在于,所述多孔铝箔的边缘与最外围多孔孔洞之间的距离为2mm-5mm。
- 如权利要求1所述的多孔铝箔负极,其特征在于,所述多孔孔洞的孔径为20nm-2mm,所述孔洞的形状包括圆形、椭圆形、正方形、长方形、棱形、 三角形、多边形、五角星、梅花形中的一种或多种。
- 如权利要求1所述的多孔铝箔负极,其特征在于,所述多孔铝箔的表面进一步设置有碳材料层,所述碳材料层的厚度为2nm-5μm。
- 如权利要求10所述的多孔铝箔负极,其特征在于,所述碳材料层的材质包括导电炭黑、石墨烯、石墨片、碳纳米管和有机物炭化物中的一种或多种,所述有机物炭化物包括炭化温度为200℃-700℃的有机物的炭化物。
- 一种多孔铝箔负极的制备方法,其特征在于,包括以下步骤:采用机械模压、化学蚀刻、激光切割、等离子刻蚀和电化学刻蚀中的一种或多种方式加工得到多孔铝箔,即得到多孔铝箔负极;所述多孔铝箔上设有均匀排布的多孔孔洞,以相邻三个孔洞的中心连线构成的三角形区域为最小单元,每个所述最小单元中孔洞的面积占比均为10%-79%,所述多孔铝箔的边缘与最外围多孔孔洞之间的距离为0.1mm-10mm。
- 如权利要求12所述的制备方法,其特征在于,在所述多孔铝箔上进一步制备碳材料层,具体步骤为:将含有碳材料的溶液涂覆到所述多孔铝箔的表面,烘干,得到多孔铝箔负极;或将含有碳材料前驱体的溶液涂覆到所述多孔铝箔的表面,然后置于惰性气体或还原性气体的烧结炉中热处理0.5-6小时,使所述碳材料前驱体碳化,得到多孔铝箔负极。
- 一种锂二次电池,其特征在于,包括正极片、电解液、隔膜、负极片,所述负极片为多孔铝箔负极,所述多孔铝箔负极包括多孔铝箔,所述多孔铝箔上设有均匀排布的多孔孔洞,以相邻三个孔洞的中心连线构成的三角形区域为最小单元,每个所述最小单元中孔洞的面积占比均为10%-79%,所述多孔铝箔的边缘与最外围的多孔孔洞之间的距离为0.1mm-10mm,所述多孔铝箔负极中, 所述多孔铝箔同时充当集流体和负极活性材料。
- 如权利要求14所述的锂二次电池,其特征在于,以相邻两横排的相邻三个孔洞的中心连线构成的等腰三角形区域为最小单元,且每个最小单元的孔洞面积占比相等。
- 如权利要求15所述的锂二次电池,其特征在于,横向任意相邻的两个孔洞的间距相等,纵向任意相邻的两个孔洞的间距相等。
- 如权利要求16所述的锂二次电池,其特征在于,横向任意相邻的两个孔洞的间距与纵向任意相邻的两个孔的间距相等。
- 如权利要求16所述的锂二次电池,其特征在于,横向任意相邻的两个孔洞的间距与相邻两横排的间距相等。
- 如权利要求14所述的锂二次电池,其特征在于,所述多孔孔洞的孔径大小相等。
- 如权利要求14所述的锂二次电池,其特征在于,所述多孔孔洞的孔径为20nm-2mm,所述孔洞的形状包括圆形、椭圆形、正方形、长方形、棱形、三角形、多边形、五角星、梅花形中的一种或多种。
- 如权利要求14所述的锂二次电池,其特征在于,所述多孔铝箔的表面进一步设置有碳材料层,所述碳材料层的厚度为2nm-5μm。
- 如权利要求14所述的锂二次电池,其特征在于,每个所述最小单元中,所述多孔铝箔作为集流体的面积占比为20-60%,作为负极活性材料的面积占比为1-40%。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/475,268 US20200099059A1 (en) | 2016-12-29 | 2016-12-29 | Porous aluminum-foil anode and method for preparing same, and lithium secondary battery |
PCT/CN2016/113282 WO2018119956A1 (zh) | 2016-12-29 | 2016-12-29 | 一种多孔铝箔负极及其制备方法和锂二次电池 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2016/113282 WO2018119956A1 (zh) | 2016-12-29 | 2016-12-29 | 一种多孔铝箔负极及其制备方法和锂二次电池 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018119956A1 true WO2018119956A1 (zh) | 2018-07-05 |
Family
ID=62706612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/113282 WO2018119956A1 (zh) | 2016-12-29 | 2016-12-29 | 一种多孔铝箔负极及其制备方法和锂二次电池 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20200099059A1 (zh) |
WO (1) | WO2018119956A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113471443A (zh) * | 2021-06-30 | 2021-10-01 | 复旦大学 | 负极片及锂离子电池 |
WO2023019741A1 (zh) * | 2021-08-19 | 2023-02-23 | 深圳市西盟特电子有限公司 | 一种集流体的制备方法及极片 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111755660A (zh) * | 2020-06-15 | 2020-10-09 | 宁波锋成先进能源材料研究院 | 一种电极极片及其制备方法与应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000090936A (ja) * | 1998-09-11 | 2000-03-31 | Fujitsu Ltd | 巻回式二次電池とそれに用いる集電体 |
CN102237527A (zh) * | 2010-04-29 | 2011-11-09 | 上海比亚迪有限公司 | 一种锂离子电池电极材料及浆料和电极、电池 |
US20120052378A1 (en) * | 2010-08-25 | 2012-03-01 | Naoto Torata | Collector and electrode for nonaqueous secondary battery and nonaqueous secondary battery |
CN204407415U (zh) * | 2014-10-31 | 2015-06-17 | 东莞市安德丰电池有限公司 | 一种电池极片及用于制作该电池极片的片材 |
CN105406125A (zh) * | 2014-09-11 | 2016-03-16 | 中国科学院长春应用化学研究所 | 一种双离子电池 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2820468A1 (fr) * | 2013-06-21 | 2014-12-21 | Hydro-Quebec | Anode comprenant un alliage de lithium pour batteries a haute energie |
WO2016133214A1 (ja) * | 2015-02-20 | 2016-08-25 | 株式会社カネカ | グラファイトフィルム、積層フィルムおよびそれらの製造方法、並びに電極用材料 |
-
2016
- 2016-12-29 US US16/475,268 patent/US20200099059A1/en not_active Abandoned
- 2016-12-29 WO PCT/CN2016/113282 patent/WO2018119956A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000090936A (ja) * | 1998-09-11 | 2000-03-31 | Fujitsu Ltd | 巻回式二次電池とそれに用いる集電体 |
CN102237527A (zh) * | 2010-04-29 | 2011-11-09 | 上海比亚迪有限公司 | 一种锂离子电池电极材料及浆料和电极、电池 |
US20120052378A1 (en) * | 2010-08-25 | 2012-03-01 | Naoto Torata | Collector and electrode for nonaqueous secondary battery and nonaqueous secondary battery |
CN105406125A (zh) * | 2014-09-11 | 2016-03-16 | 中国科学院长春应用化学研究所 | 一种双离子电池 |
CN204407415U (zh) * | 2014-10-31 | 2015-06-17 | 东莞市安德丰电池有限公司 | 一种电池极片及用于制作该电池极片的片材 |
Non-Patent Citations (1)
Title |
---|
ZHANG, XIAOLONG ET AL.: "A Novel Aluminum-Graphite Dual-Ion Battery", ADVANCED ENERGY MATERIALS, vol. 6, no. 11, 15 March 2016 (2016-03-15), pages 1 - 6, XP055415692, ISSN: 1614-6840 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113471443A (zh) * | 2021-06-30 | 2021-10-01 | 复旦大学 | 负极片及锂离子电池 |
WO2023019741A1 (zh) * | 2021-08-19 | 2023-02-23 | 深圳市西盟特电子有限公司 | 一种集流体的制备方法及极片 |
Also Published As
Publication number | Publication date |
---|---|
US20200099059A1 (en) | 2020-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106654289A (zh) | 一种多孔铝箔负极及其制备方法和锂二次电池 | |
KR101588954B1 (ko) | 다공성 실리콘계 음극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차전지 | |
KR102168331B1 (ko) | 미세 패턴을 갖는 리튬 금속층 및 그 보호층으로 이루어진 이차전지용 음극 및 이의 제조방법 | |
CN106848272B (zh) | 一种多孔锡箔负极及其制备方法和钠离子二次电池 | |
CN110957477B (zh) | 一种多孔陶瓷复合锂金属负极及其制备方法 | |
CN207504104U (zh) | 一种集流体及使用该集流体的二次电池 | |
CN113488659B (zh) | 一种负极集流体复合体及其制备方法与锂金属电池 | |
CN110010895A (zh) | 碳纤维负载氧化镁颗粒交联纳米片阵列复合材料及其制备方法和应用 | |
KR20170034606A (ko) | 3차원 리튬 이차전지용 양극 및 그 제조방법 | |
CN110890530B (zh) | 基于多孔陶瓷复合锂金属负极的锂金属二次电池及其制备方法 | |
CN117199501A (zh) | 电池 | |
KR20190066867A (ko) | 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 리튬 이차전지 | |
US20240372083A1 (en) | Method for preparing silicon-carbon composite anode material and use thereof | |
WO2018119956A1 (zh) | 一种多孔铝箔负极及其制备方法和锂二次电池 | |
KR101284025B1 (ko) | 리튬이차전지용 음극소재 및 이의 제조방법 | |
CN114127986A (zh) | 一种负极极片、电化学装置及电子装置 | |
KR101595616B1 (ko) | 이차전지용 도전재 및 이를 포함하는 리튬 이차전지용 전극 | |
CN117023569B (zh) | 石墨烯电热膜及其制备方法、负极、锂金属电池及其去除枝晶的方法 | |
WO2018119957A1 (zh) | 一种多孔锡箔负极及其制备方法和钠离子二次电池 | |
KR101737197B1 (ko) | 다공성 실리콘계 음극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차전지 | |
CN114678514B (zh) | 图案化锂金属、包含其的二次电池用电极和二次电池 | |
JP5904096B2 (ja) | リチウムイオン二次電池用集電体、およびそれを用いたリチウムイオン二次電池 | |
JP5045085B2 (ja) | リチウム二次電池用負極 | |
CN111180672B (zh) | 碱金属负极的保护方法及其制得的负极和应用 | |
CN115172656B (zh) | 一种负极片和电池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16925948 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16925948 Country of ref document: EP Kind code of ref document: A1 |