WO2018117144A1 - Field-winding type rotating electric machine - Google Patents
Field-winding type rotating electric machine Download PDFInfo
- Publication number
- WO2018117144A1 WO2018117144A1 PCT/JP2017/045685 JP2017045685W WO2018117144A1 WO 2018117144 A1 WO2018117144 A1 WO 2018117144A1 JP 2017045685 W JP2017045685 W JP 2017045685W WO 2018117144 A1 WO2018117144 A1 WO 2018117144A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- field winding
- rotor
- winding
- phase
- voltage pulse
- Prior art date
Links
- 238000004804 winding Methods 0.000 title claims abstract description 623
- 239000003990 capacitor Substances 0.000 claims abstract description 142
- 230000005284 excitation Effects 0.000 claims abstract description 116
- 238000000034 method Methods 0.000 claims description 38
- 230000008569 process Effects 0.000 claims description 21
- 230000003111 delayed effect Effects 0.000 claims description 16
- 230000001939 inductive effect Effects 0.000 claims description 3
- 230000004907 flux Effects 0.000 description 59
- 230000004048 modification Effects 0.000 description 27
- 238000012986 modification Methods 0.000 description 27
- 238000010586 diagram Methods 0.000 description 11
- 230000001965 increasing effect Effects 0.000 description 6
- 238000007792 addition Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000009499 grossing Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 3
- 230000000149 penetrating effect Effects 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 238000007599 discharging Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000010349 pulsation Effects 0.000 description 2
- 206010001497 Agitation Diseases 0.000 description 1
- 239000003985 ceramic capacitor Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K19/00—Synchronous motors or generators
- H02K19/02—Synchronous motors
- H02K19/10—Synchronous motors for multi-phase current
- H02K19/12—Synchronous motors for multi-phase current characterised by the arrangement of exciting windings, e.g. for self-excitation, compounding or pole-changing
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K19/00—Synchronous motors or generators
- H02K19/16—Synchronous generators
- H02K19/26—Synchronous generators characterised by the arrangement of exciting windings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K29/00—Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
- H02K29/03—Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P29/00—Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
- H02P29/50—Reduction of harmonics
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/32—Arrangements for controlling wound field motors, e.g. motors with exciter coils
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P9/00—Arrangements for controlling electric generators for the purpose of obtaining a desired output
- H02P9/10—Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
Definitions
- the present invention relates to a field winding type rotating electrical machine.
- the field winding type rotating electrical machine that generates a magnetic field by energizing a stator armature winding is known (for example, Patent Documents 1 and 2).
- the field winding type rotary electric machine includes a stator and a rotor.
- the stator has a stator core and a stator armature winding wound around the stator core.
- the rotor has a rotor core and a rotor field winding wound around the rotor core.
- the rotor field winding is short-circuited via a diode that is a rectifying element. That is, diodes are connected to both ends of the rotor field winding.
- the field winding type rotating electrical machine includes an inverter circuit connected to the stator armature winding and a control circuit for controlling the inverter circuit so that a current corresponding to the rotational position of the rotor flows in the stator armature winding.
- the current flowing through the stator armature winding is the sum of a fundamental wave current (that is, a synchronous current) that is a current component for generating rotational torque and an excitation current that is a current component for rotor excitation.
- the exciting current for exciting the rotor is a harmonic current having a shorter cycle (that is, a higher frequency) than the fundamental current, and is formed into a pulse-like waveform.
- diodes are connected to both ends of the rotor field winding. For this reason, even if the excitation magnetic flux fluctuates and an AC voltage is generated in the rotor field winding, current flows in the rotor field winding only in one direction, so that the rotor core is excited in a predetermined direction and the field pole (Specifically, N pole and S pole) are formed.
- the field flux for forming the field pole is formed by energizing the stator armature winding with an exciting current for exciting the rotor and rectifying the current in the rotor field winding.
- a rotating electrical machine that forms a field pole by receiving excitation magnetic flux from a stator by a rotor field winding and converting it to a unidirectional current via a diode, in order to generate rotational torque,
- the rotor core is excited by interlinking excitation magnetic flux with the main pole.
- This excitation of the rotor core is realized by superimposing a pulsed excitation current on the fundamental wave current to induce the excitation current in the rotor field winding.
- the rotor field winding has inductance, and each portion of the rotor field winding at each pole constitutes a partial inductance.
- Magnetic flux flowing in the field pole includes leakage magnetic flux and harmonic magnetic flux. If the impedance at the time of excitation of the rotor field winding is high, it becomes difficult for a current to flow through the rotor field winding. When current is difficult to flow, in order to induce the excitation current appropriately in the rotor field winding, it is necessary to increase the amplitude of the harmonic component for exciting the rotor by the amount that the current does not flow easily. For this reason, the torque ripple is increased due to the harmonic component.
- the present invention has been made in view of the above problems, and by reducing the impedance at the time of excitation of the rotor field winding, it is possible to reduce a field ripple that can reduce torque ripple caused by harmonic components. It aims at providing a winding type rotary electric machine.
- a field winding type rotating electrical machine is connected to a stator armature winding wound around a stator core, a rotor field winding wound around a rotor core, and both ends of the rotor field winding.
- the inductance of the winding and the capacitance of the capacitor are in a resonance relationship with the frequency of the harmonic component.
- the amplitude of the harmonic component is adjusted by using a standing wave having a half cycle with respect to the fundamental component as an envelope. According to this configuration, it is possible to control the excitation current amount for exciting the rotor field winding by adjusting the amplitude of the harmonic component superimposed on the fundamental wave component using the standing wave as an envelope, so that the excitation current can be controlled. It is easy to control the amount of current.
- the rotor field winding includes a first field winding portion connected between the other end of the capacitor and the other end of the rectifying element, and the capacitor.
- a second field winding portion connected in parallel, a first resonance frequency based on an inductance of the first field winding portion and a capacitance of the capacitor, and the second field winding.
- At least one of the second resonance frequency based on the inductance of the part and the capacitance of the capacitor is within a predetermined frequency range including the frequency of the harmonic component, or the frequency of the harmonic component is the first resonance frequency. Between the second resonance frequency.
- the stator armature winding when the current in which the fundamental wave component and the harmonic component are superimposed flows in the stator armature winding, the first field winding portion or the second field winding of the rotor field winding.
- the field current induced in the line portion is easy to flow. Therefore, the impedance during excitation of the rotor field winding can be reduced, and the excitation performance of the rotor field winding can be improved.
- the rotor field winding has a plurality of field winding portions connected in series, and each of the capacitors has one end connected to one end of the rectifying element, A plurality of resonance circuits having a plurality of capacitor portions whose ends are connected to corresponding ones of connection points of the field winding portions, and a plurality of the field winding portions and the plurality of capacitor portions. And at least one of the resonance frequencies of the resonance circuit is within a predetermined frequency range including the frequency of the harmonic component, or the frequency of the harmonic component is any two of the two It is between the resonant frequencies of the resonant circuit.
- the harmonic component can be easily adjusted to the resonance frequency of the resonance circuit, or the harmonic component can be easily adjusted between any two resonance frequencies. Therefore, it is possible to easily flow the field current induced in the field winding portion of the rotor field winding.
- the resonance frequencies of the resonance circuits are different from each other. According to this configuration, since the resonance frequency of each resonance circuit can be expanded over a band having a width, it is easy to match the harmonic component to the resonance frequency of the resonance circuit or between any two resonance frequencies. Accordingly, it is possible to easily flow the field current induced in the field winding portion of the rotor field winding.
- the frequency of the harmonic component superimposed on the fundamental wave component is a resonance frequency based on the inductance of the rotor field winding and the capacitance of the capacitor from low to high rotation. Is within a predetermined frequency range.
- the harmonic component having a frequency close to the resonance frequency can be superimposed on the fundamental wave component regardless of the frequency of the fundamental wave component from the low rotation to the high rotation of the field winding type rotary electric machine. Impeding property of the rotor field winding can be improved by reducing the impedance at the time of excitation of the field winding. Further, since the amplitude of the harmonic component can be suppressed from the low rotation to the high rotation of the field winding type rotary electric machine, the torque ripple caused by the harmonic component for rotor excitation can be reduced.
- the predetermined frequency range is a range in which an excitation current or torque induced in the rotor field winding is a predetermined value or more. According to this configuration, it is possible to increase the excitation current or torque induced in the rotor field winding while increasing the excitation property of the rotor field winding by generating the harmonic component.
- the stator armature winding is composed of a three-phase winding, and the control circuit induces an excitation current in the rotor field winding in a rectangular wave control region.
- one of the other two phases is wound at a timing delayed by an electrical angle of 30 ° to 60 ° from the center of the ON period of the rectangular wave voltage waveform for generating the fundamental wave component applied to one phase winding.
- a first negative voltage pulse for turning off for a predetermined period is added to an on period of the rectangular wave voltage waveform for generating the fundamental wave component applied to the line, and applied to the other phase winding of the other two phases.
- a first positive voltage pulse for turning on only for a predetermined period paired with the first negative voltage pulse is added to an off period of the rectangular wave voltage waveform for generating the fundamental wave component, or one phase winding
- the rectangular wave voltage waveform for generating the fundamental wave component applied to the At a timing delayed by an electrical angle of 30 ° to 60 ° from the center of the off period, the rectangular wave voltage waveform for generating the fundamental wave component applied to one of the other two phases is turned off for a predetermined period of time.
- the second positive voltage pulse for turning on is applied, and the second positive voltage pulse is applied during the on period of the rectangular wave voltage waveform for generating the fundamental wave component applied to the other phase winding of the other two phases.
- a second negative voltage pulse for turning off for a predetermined period of time is added. According to this configuration, a set of positive and negative voltage pulse pairs can be applied to adjacent two-phase windings, and one harmonic component can be generated during one control period.
- the control circuit adds the first negative voltage pulse and the first positive voltage pulse with reference to one phase winding, and the second positive voltage pulse and the second positive voltage pulse.
- excitation by the rotor field winding is performed six times at regular intervals per control period, or one One of the addition of the first negative voltage pulse and the first positive voltage pulse and the addition of the second positive voltage pulse and the second negative voltage pulse with reference to the phase winding of the other two-phase phase
- excitation by the rotor field winding is performed three times at regular intervals per control cycle. According to this configuration, since a harmonic component can be generated six or three times at regular intervals during one control period, a harmonic component having a frequency close to the resonance frequency is superimposed on the fundamental component in a predetermined rotation range. can do.
- the stator armature winding is composed of a three-phase winding, and the control circuit induces an excitation current in the rotor field winding in a rectangular wave control region. Then, a first negative voltage pulse for turning off for a predetermined period is added to the beginning of the on period of the rectangular wave voltage waveform for generating the fundamental wave component applied to one phase winding, and any one of the other Adding a first positive voltage pulse for turning on for a predetermined period paired with the first negative voltage pulse in an off period of the rectangular wave voltage waveform for generating the fundamental wave component applied to the phase winding of Adding a second positive voltage pulse for adding the ON period for a predetermined period to the end of the ON period of the rectangular wave voltage waveform for generating the fundamental wave component applied to one phase winding, and any other Generation of the fundamental component applied to one phase winding Performing a first harmonic generation process that adds a second negative voltage pulse for only off a predetermined period of time during the ON period of the rectangular
- the control circuit performs the first harmonic generation process at the timing of both the start and end of the on period of the rectangular wave voltage waveform for each of the three phase windings.
- the excitation by the rotor field winding is performed 6 times at regular intervals per control cycle. According to this configuration, since a harmonic component can be generated six times at regular intervals during one control period, a harmonic component having a frequency close to the resonance frequency can be superimposed on the fundamental component in a predetermined rotation range. it can.
- the control circuit performs the first harmonic generation process at the timing of either the start end or the end of the on-period of the rectangular wave voltage waveform for each of the three phase windings.
- excitation by the rotor field winding is performed three times at regular intervals per control period.
- generation of a harmonic component per control period that can generate a harmonic component having a frequency close to the resonance frequency is possible.
- a harmonic component having a frequency close to the resonance frequency can be superimposed on the fundamental wave component in a rotation range higher than the rotation range when the number of times is six.
- the control circuit induces an excitation current in the rotor field winding in a rectangular wave control region and applies the two phase windings adjacent to each other in the circumferential direction.
- the positive and negative voltage pulse pairs are added to the rectangular wave voltage waveform for generating the fundamental wave component four times at equal intervals per control cycle, and the average value of the applied voltage per one phase and one control cycle is set to zero.
- a harmonic component can be generated four times at regular intervals during one control cycle, a harmonic component can be generated per control cycle that can generate a harmonic component having a frequency close to the resonance frequency.
- a harmonic component having a frequency closer to the resonance frequency can be superimposed on the fundamental wave component in a rotation range between the rotation range when the number of times is six and the rotation range when the number is three.
- the control circuit performs the first harmonic generation processing at a timing of both a start end and a termination of a rectangular wave voltage waveform with a predetermined phase winding, and the predetermined phase winding.
- the rectangular wave voltage waveform for generating the fundamental wave component applied to the two phase windings adjacent to each other in the circumferential direction at a timing separated by an electrical angle of 90 ° from the respective timings of the start and end of the rectangular wave voltage waveform in the line By performing a second harmonic generation process for adding a positive / negative voltage pulse pair to the rotor, excitation by the rotor field winding is performed four times at regular intervals per control period. According to this configuration, harmonic components can be generated four times at regular intervals during one control period.
- the additional frequency of the voltage pulse by the control circuit is within the predetermined frequency range. According to this configuration, by adding a voltage pulse, a harmonic component having a frequency close to the resonance frequency is superimposed on the fundamental wave component regardless of the frequency of the fundamental wave component from low rotation to high rotation of the field winding type rotating electrical machine. be able to.
- FIG. 1 is a circuit diagram of a system including a field winding type rotating electrical machine according to a first embodiment of the present invention. It is a block diagram of the field winding type rotary electric machine of 1st Embodiment. It is sectional drawing at the time of cut
- FIG. 6 is a waveform diagram illustrating an example of a time change of each of a phase current flowing through each phase of a stator armature winding, an exciting current for exciting a rotor, and generated torque in the field winding type rotary electric machine according to the first embodiment.
- FIG. 4 is a diagram illustrating the number of actual pulses and a deviation rate at which the actual frequency of the harmonic component is shifted from the resonance frequency. It is a figure showing the relationship between the rotation speed and deviation rate in FIG. It is a figure showing the relationship between the frequency of the harmonic component in the resonance frequency vicinity of a field winding type rotary electric machine, and the excitation current and torque which are obtained.
- the field winding type rotary electric machine 20 is a synchronous motor generator mounted on, for example, a vehicle.
- the field winding type rotating electrical machine 20 is simply referred to as the rotating electrical machine 20.
- the rotating electrical machine 20 generates a driving force for driving the vehicle when electric power is supplied from a power source 22 such as a battery as shown in FIG. Further, the rotating electrical machine 20 generates electric power for charging the battery by being supplied with driving force from the engine of the vehicle.
- the rotary electric machine 20 includes a stator (armature) 24, a rotor (field) 26, a housing 28, and a bearing 30.
- the stator 24 is housed in a space surrounded by the housing 28 and is fixed to the housing 28.
- the stator 24 has a stator core 32 and a stator armature winding 34.
- the stator core 32 constitutes a part of a magnetic path through which magnetic flux flows.
- the stator core 32 is formed in a hollow cylindrical shape having a hole 36 at the center of the shaft.
- the stator core 32 includes a plurality of slots 38 and a plurality of teeth 40.
- Each slot 38 opens radially inward with respect to the core body and extends along the axial direction.
- the slots 38 are arranged at predetermined intervals in the circumferential direction.
- the slot 38 accommodates the straight portion of the stator armature winding 34.
- the stator armature winding 34 is wound around the teeth 40 of the stator core 32.
- the stator armature winding 34 has three-phase U, V, and W phase windings.
- the rotor 26 is rotatably accommodated in the hole 36 of the stator core 32.
- the rotor 26 is disposed to face the stator 24 with a predetermined air gap inward in the radial direction.
- the rotor 26 is rotatably supported by the housing 28 via a bearing 30.
- the rotor 26 has a rotor core 42 and a rotor field winding 44.
- the rotor core 42 constitutes a part of a magnetic path through which magnetic flux flows.
- the rotor core 42 has a boss portion 46 and a plurality of salient pole portions 48.
- the boss portion 46 is formed in a cylindrical shape, and is a portion where the rotor shaft 50 is inserted into the hollow hole.
- Each salient pole portion 48 is a portion that protrudes radially outward from the boss portion 46.
- the salient pole portions 48 are arranged at predetermined intervals in the circumferential direction.
- the salient pole portion 48 is a main pole that forms a field pole (specifically, an N pole and an S pole).
- the rotor field winding 44 is wound around the salient pole portion 48 of the rotor core 42 so as to surround it.
- the rotor field winding 44 is intensively wound for each salient pole portion 48.
- the rotating electrical machine 20 includes a rectifying element 52.
- the rectifying element 52 is a diode connected to both ends of the rotor field winding 44.
- the anode terminal of the rectifying element 52 is connected to one end of the rotor field winding 44, and the cathode terminal of the rectifying element 52 is connected to the other end of the rotor field winding 44.
- the rectifying element 52 has a function of half-wave rectifying the AC voltage induced in the rotor field winding 44 and limiting the direction of the current flowing through the rotor field winding 44 to one direction. Due to the function of the rectifying element 52, each salient pole portion 48 is excited to one of the N pole and the S pole. Further, the salient pole portions 48 are excited such that the N pole salient pole portions 48 and the S pole salient pole portions 48 are alternately arranged in the circumferential direction.
- the rotating electrical machine 20 includes a capacitor 54.
- the capacitor 54 has one end connected to the anode terminal of the rectifying element 52 and one end of the rotor field winding 44, and the other end connected between both ends of the rotor field winding 44.
- the capacitor 54 has a capacitance C. It should be noted that the connection position between the other end of the capacitor 54 and the rotor field winding 44 is a portion that is easily affected by a leakage flux or a harmonic flux of a magnetic flux that flows through the rotor field winding 44 to the field pole, and a portion that is difficult to receive. It is desirable that the boundary position be divided into The rotor field winding 44, the rectifying element 52, and the capacitor 54 may be arranged in a circuit for each pole or for each pole pair, or may be one set as a whole.
- the rotor field winding 44 has a plurality of n field winding portions 44-1, 44-2,..., 44-n connected in series.
- the rotor field winding 44 is assumed to have two field winding portions, and each of the first field winding portion 44-1 and the second field winding portion 44-2. Call it.
- a connection point between the first field winding portion 44-1 and the second field winding portion 44-2 is connected to the other end of the capacitor 54.
- the first field winding portion 44-1 is a portion connected between the cathode terminal of the rectifying element 52 and the other end of the capacitor 54.
- the second field winding portion 44-2 is connected in parallel to the capacitor 54, and both ends are connected between one end of the capacitor 54 (that is, the anode terminal of the rectifying element 52) and the other end of the capacitor 54. It is a part.
- the direction of the voltage e1 generated at both ends of the first field winding portion 44-1 and the direction of the voltage e2 generated at both ends of the second field winding portion 44-2 are opposite to each other. When the two voltages e1 and e2 cancel each other, the excitation energy corresponding to the canceling voltage is stored.
- the connection point between the first field winding portion 44-1 and the second field winding portion 44-2 is unlikely to receive the rotor field winding 44 as a portion that is susceptible to leakage magnetic flux or harmonic magnetic flux. What is necessary is just to set to the part divided into a part.
- the first field winding portion 44-1 has an inductance L1.
- the second field winding portion 44-2 has an inductance L2.
- the first field winding portion 44-1 is disposed on the side close to the stator core 32 in the radial direction of the salient pole portion.
- the second field winding portion 44-2 is disposed on the far side from the stator core 32 in the radial direction of the salient pole portion 48. That is, the first field winding portion 44-1 is disposed closer to the stator core 32 (ie, radially outward) than the second field winding portion 44-2.
- the first field winding portion 44-1 and the second field winding portion 44-2 are arranged, for example, by winding the second field winding portion 44-2 around the salient pole portion 48 of the rotor core 42. Thereafter, the first field winding portion 44-1 may be wound around the radially outer side of the second field winding portion 44-2.
- the rotating electrical machine 20 is connected to an inverter circuit 60 connected in parallel to the power source 22.
- the inverter circuit 60 is connected to the stator armature winding 34 and is a circuit that applies voltage to the phase windings of the phases U, V, and W of the stator armature winding 34.
- the inverter circuit 60 includes an upper arm element 62 and a lower arm element 64 that are connected in series between both ends of the power supply 22. Three sets of the upper arm element 62 and the lower arm element 64 are provided corresponding to the phase windings of the phases U, V, and W.
- Each of the arm elements 62 and 64 includes a switching element 66 such as an insulated gate bipolar transistor (that is, IGBT) or a MOS field effect transistor, and a flywheel diode 68.
- the switching element 66 of the upper arm element 62 and the switching element 66 of the lower arm element 64 of each phase U, V, W are turned on / off in opposite phases.
- the switching element 66 of the upper arm element 62 of each phase U, V, W is turned on for a predetermined period with a predetermined phase difference.
- Smoothing capacitors 70 are connected to both ends of the inverter circuit 60.
- the smoothing capacitor 70 is connected to both ends of the power source 22 and is connected to the power source 22 in parallel.
- the smoothing capacitor 70 is for smoothing the voltage generated between both ends of the inverter circuit 60.
- a control circuit 72 is connected to the inverter circuit 60.
- the control circuit 72 is connected to the switching elements 66 of the arm elements 62 and 64 of the inverter circuit 60 and is a circuit that controls the inverter circuit 60.
- a position sensor 74 for detecting the rotational position of the rotor 26 is connected to the control circuit 72.
- the control circuit 72 drives the inverter circuit 60 based on the rotational position of the rotor 26 obtained from the position sensor 74 so that a desired current flows through the stator armature winding 34.
- Inverter circuit 60 has phase windings of U, V, and W so that a desired rotating magnetic field is generated from stator armature winding 34 when switching element 66 is driven in accordance with a drive command from control circuit 72. Voltage is applied to
- the control circuit 72 controls the rotor core 42 separately from the fundamental wave component (that is, a synchronous current) that is a current for generating a rotating torque in the rotating electrical machine 20.
- An excitation component which is a current for excitation, is applied to the stator armature winding 34. That is, the control circuit 72 causes the stator armature winding 34 to have a current in which a fundamental wave component for generating rotational torque and an excitation component for rotor excitation whose cycle is shorter than that of the fundamental wave component flow.
- the inverter circuit 60 is controlled.
- the control circuit 72 independently controls the amplitude and period of each of the fundamental wave component and the excitation component.
- the current flowing through the stator armature winding 34 is the sum of currents obtained by superimposing the fundamental wave component and the excitation component.
- the fundamental wave component is a current that changes in a sine wave shape with time.
- the excitation component for exciting the rotor is a current having a short period (that is, a high frequency) compared to the fundamental wave component, and a current having a smaller amplitude than the fundamental wave component.
- This excitation component is a current that pulsates with respect to the fundamental wave component, and is a harmonic component that continuously changes over time.
- the harmonic component for exciting the rotor is a standing wave having a half period with respect to the fundamental component as an envelope.
- the phase of the harmonic component for exciting the rotor with respect to the fundamental component is set so that the maximum amplitude of the harmonic component is generated avoiding the required timing of the fundamental component.
- the harmonic component may be phase-adjusted so that the maximum amplitude is generated at a timing avoiding the maximum amplitude of the fundamental wave component.
- the harmonic component may be phase-adjusted so that the maximum amplitude is generated at the maximum amplitude of the fundamental wave component.
- the amplitude of the harmonic component for exciting the rotor is adjusted so as to be smaller than the amplitude of the fundamental component.
- a rectifying element 52 is connected to both ends of the rotor field winding 44, and the rotor field winding 44 is short-circuited via the rectifying element 52. Therefore, even when an AC voltage is generated in the rotor field winding 44 as described above, the current flows through the rotor field winding 44 only in one direction, so that the rotor core 42 is excited in a predetermined direction and the rotor core 42 is excited.
- Field poles (specifically, N pole and S pole) are formed at 42. The field flux for forming this field pole is formed by energizing the stator armature winding 34 with an exciting current for exciting the rotor and rectifying the current in the rotor field winding 44.
- the rotor field winding 44 has an inductance, and the rotor field winding 44 of each pole constitutes a partial inductance at each portion. Since the magnetic flux flowing in the field pole includes leakage flux, harmonic flux, and the like, the amount and direction of the magnetic flux penetrating depending on the position of the rotor field winding 44 are different from each other. The direction of the generated voltage is not uniform and varies depending on time and rotor rotational position.
- the direction of the voltage generated in the rotor field winding 44 composed of the two field winding portions 44-1 and 44-2 has four patterns as shown in FIG.
- the direction of the voltage e1 generated in the first field winding portion 44-1 and the direction of the voltage e2 generated in the second field winding portion 44-2 are the same direction (pattern 1 and pattern 4), and in the opposite direction (pattern 2 and pattern 3).
- the rectifying element 52 is connected to both ends of the rotor field winding 44, and the anode terminal of the rectifying element 52 and the rotor field A capacitor 54 is connected between the middle portion of the winding 44. That is, a capacitor 54 having one end connected to the anode terminal of the rectifying element 52 and the other end connected between both ends of the rotor field winding 44 is provided.
- the first field winding portion 44-1 and the second field winding portion 44 are separated at the connection point between the rotor field winding 44 and the capacitor 54.
- the applied voltage directions are opposite to each other so that the voltages e1 and e2 cancel each other, and the voltages e1 and e2 cause the field windings 44-1 and 44-2 to rectify.
- 52 is applied so that a current flows from the connection portion side to the connection portion side to the other end of the capacitor 54 (pattern 2), the current flowing through each of the field winding portions 44-1 and 44-2 Flows toward the capacitor 54.
- excitation energy corresponding to the voltage canceling each other between the first field winding portion 44-1 and the second field winding portion 44-2 is stored in the capacitor 54, and the capacitor 54 is charged. .
- the voltage direction of the first field winding portion 44-1 and the voltage direction of the second field winding portion 44-2 are switched as shown in FIG. , E2 are applied in such a direction that the field winding portions 44-1 and 44-2 flow in a direction in which they cancel each other so that a current flows from the connection portion side to the other end of the capacitor 54 to the connection portion side to the rectifying element 52.
- a current flows from the capacitor 54 side to each of the field winding portions 44-1 and 44-2.
- the energy stored in the capacitor 54 is released to the field winding portions 44-1 and 44-2, and the capacitor 54 is discharged. Then, charging and discharging of the capacitor 54 are repeated.
- the voltage e1 generated in the first field winding portion 44-1 and the voltage e2 generated in the second field winding portion 44-2 due to leakage magnetic flux, harmonic magnetic flux and the like are mutually
- the voltage acting on the entire rotor field winding 44 decreases, but the excitation energy corresponding to the mutually canceling voltages is stored in the capacitor 54.
- the voltage direction is switched after the capacitor 54 is charged, the energy stored in the capacitor 54 is released to the rotor field winding 44 and converted into an excitation current that excites the rotor core 42. .
- the rotating electrical machine 20 of the present embodiment when a voltage in a direction canceling each other is generated in each field winding portion 44-1 and 44-2 of the rotor field winding 44, the rotor field winding A field current can be secured by efficiently converting the excitation energy generated at 44 into an excitation current. For this reason, it is possible to prevent the occurrence of excitation energy loss due to a decrease in excitation current when a voltage in a direction canceling each other is generated in each field winding portion 44-1 and 44-2 of the rotor field winding 44. Thus, even when the voltages cancel each other, the rotor core 42 can be excited efficiently.
- the harmonic component to be superimposed on the fundamental wave component as the stator current flowing through the stator armature winding 34, which is necessary for forming the field pole in the rotor core 42, has a small amplitude. Can be suppressed. For this reason, according to the structure of the rotary electric machine 20, torque ripple can be reduced compared with the case where the amplitude of a harmonic component is comparatively large (refer FIG. 4).
- the first field winding portion 44-1 of the rotor field winding 44 is disposed on the side closer to the stator core 32 in the radial direction of the salient pole portion 48 and the second field magnet.
- the winding portion 44-2 is disposed on the side far from the stator core 32 in the radial direction of the salient pole portion. Since the magnetic flux penetrating the salient pole portion 48 of the rotor core 42 includes a leakage magnetic flux, the amount of magnetic flux penetrating and the direction thereof can be different depending on the position of the rotor field winding 44.
- the first field winding portion 44-1 of the rotor field winding 44 and the capacitor 54 constitute a resonance circuit.
- the resonance circuit including the first field winding portion 44-1 and the capacitor 54 is referred to as a first resonance circuit 80.
- the first resonance circuit 80 has a first resonance frequency f1.
- the first resonance frequency f1 is calculated according to the following equation (1) based on the inductance L1 of the first field winding portion 44-1 and the capacitance C of the capacitor 54.
- the second field winding portion 44-2 of the rotor field winding 44 and the capacitor 54 constitute a resonance circuit.
- the resonance circuit composed of the second field winding portion 44-2 and the capacitor 54 is referred to as a second resonance circuit 82.
- the second resonance circuit 82 has a second resonance frequency f2.
- the second resonance frequency f2 is calculated according to the following equation (2) based on the inductance L2 of the second field winding portion 44-2 and the capacitance C of the capacitor 54.
- the inductance L1 of the first field winding portion 44-1 and the capacitance C of the capacitor 54 are superimposed on the fundamental wave component as the current flowing through the stator armature winding 34, and are continuously timed for rotor excitation. Resonant relationship with the frequency of the changing harmonic component.
- the inductance L2 of the second field winding portion 44-2 and the capacitance C of the capacitor 54 are in a resonance relationship with the frequency of the harmonic component. That is, at least one of the first resonance frequency f1 and the second resonance frequency f2 is equal to or close to the frequency of the harmonic component. Note that both the first resonance frequency f1 and the second resonance frequency f2 may be equal to or close to the frequency of the harmonic component.
- the resonance frequency band may be expanded by setting the first resonance frequency f1 and the second resonance frequency f2 to be different from each other.
- the harmonic component can be easily matched with the resonance frequencies f1 and f2 of the resonance circuits 80 and 82. Further, in this case, when both resonance frequencies f1 and f2 are approximated to each other and resonance occurs even at a frequency between the two resonance frequencies f1 and f2, the frequency of the harmonic component is the first resonance frequency thereof.
- the frequency may be between f1 and the second resonance frequency f2, and according to this configuration, the harmonic component can be easily matched between the resonance frequencies f1 and f2.
- the stator armature winding 34 is compared to the configuration in which there is no resonance relationship.
- a current in which a fundamental wave component and a harmonic component are superimposed on each other flows, a field current induced in the rotor field winding 44 of each pole easily flows. Therefore, according to the rotating electrical machine 20, the impedance at the time of excitation of the rotor field winding 44 can be reduced, and the excitation performance of the rotor field winding 44 can be improved.
- the rotor field winding 44 When the impedance of the rotor field winding 44 is low, the rotor field winding 44 is appropriately excited even if the amplitude of the harmonic component for exciting the rotor is small. That is, in order to induce the exciting current appropriately in the rotor field winding 44, it is sufficient that the amplitude of the harmonic component for exciting the rotor is small. For this reason, according to the rotating electrical machine 20 of the present embodiment, the amplitude of the harmonic component superimposed on the fundamental wave component as the current flowing through the stator armature winding 34 can be suppressed, so that the harmonic component for rotor excitation can be reduced. The resulting torque ripple can be reduced.
- the harmonic component for exciting the rotor is controlled independently of the fundamental component.
- This harmonic component has a standing wave having a half period with respect to the fundamental component as an envelope.
- the phase of the harmonic component for exciting the rotor with respect to the fundamental component is set so that the maximum amplitude of the harmonic component is generated avoiding the required timing of the fundamental component. For this reason, it is possible to appropriately perform excitation of the rotor field winding 44 by the harmonic component while appropriately generating the rotational torque by the fundamental wave component.
- the amplitude of the harmonic component is adjusted so as to be smaller than the amplitude of the fundamental component. Therefore, by adjusting the amplitude of the harmonic component superimposed on the fundamental wave component using the standing wave as an envelope, the amount of exciting current for exciting the rotor field winding 44 can be controlled. It is easy to control.
- the control circuit 72 causes the above harmonic components to be superimposed on the fundamental component from a low rotation (for example, 0 [rpm]) to a high rotation (for example, MAX [rpm] such as 15000 [rpm]) of the rotating electrical machine 20.
- the inverter circuit 60 is controlled.
- the control of the inverter circuit 60 by the control circuit 72 is based on a fundamental wave within a predetermined frequency range in which the harmonic component includes at least one of the resonance frequencies f1 and f2 of the resonance circuits 80 and 82 from the low rotation to the high rotation of the rotating electrical machine 20. It is performed so as to be superimposed on the component.
- This predetermined frequency range is a range in which the excitation current flowing in the rotor field winding 44 due to the superimposed harmonic component or the torque obtained by the excitation current is equal to or greater than a predetermined value. It is within the range of 40%.
- the predetermined frequency range is preferably within a range of, for example, ⁇ 25% with respect to the resonance frequencies f1 and f2.
- harmonic components having frequencies close to the resonance frequencies f1 and f2 can be superimposed on the fundamental wave component regardless of the frequency of the fundamental wave component from low rotation to high rotation.
- the impedance at the time of excitation of the magnetic winding 44 can be reduced, and the excitation performance of the rotor field winding 44 can be improved. Since the amplitude of the harmonic component superimposed on the fundamental component, which is the current flowing through the stator armature winding 34, can be suppressed from low rotation to high rotation, the torque ripple caused by the harmonic component for rotor excitation Can be reduced.
- the control circuit 72 controls the inverter circuit 60 that applies a voltage to the three-phase winding of the stator armature winding 34 by using a PWM (Pulse Width Modulation) control method and a rectangular wave control method. Perform while switching.
- the PWM control system is a control system that performs current feedback, and directs a number of pulse voltages that are pulse-width modulated by comparing a voltage command generated according to a torque command and a carrier wave (for example, a triangular wave) to the inverter circuit 60. Output.
- the PWM control method is a control method excellent in control response, and is performed from the low rotation region to the middle rotation region of the rotating electrical machine 20.
- the rectangular wave control method is a control method that performs torque feedback by performing phase control of the rectangular wave voltage, and the amplitude is maximum every electrical angle 180 ° within one control period (ie, electrical angle 360 °).
- One rectangular wave voltage fixed to the value or the minimum value is output to the inverter circuit 60.
- the rectangular wave control method is performed from the middle rotation region to the high rotation region of the rotating electrical machine 20.
- the control circuit 72 In the PWM control region (low rotation to medium rotation) in which the PWM control method is implemented, the control circuit 72 generates a harmonic component that induces an excitation current in the rotor field winding 44 and generates a harmonic component and a harmonic component.
- the inverter circuit 60 is PWM driven so that a current superimposed with the wave component flows.
- the harmonics described in detail later Execute the generation process.
- the fundamental wave component of the stator armature winding 34 is delayed by an electrical angle of 90 ° from the fundamental wave component. It is effective to flow a pulsed current that generates a magnetic field in the same direction as in the above.
- a certain phase hereinafter referred to as a reference phase, for example, a V phase
- the above-described phase in which a pulse-like current can flow is an adjacent two phases adjacent to each other in the circumferential direction, which is different from the reference phase ( For example, U phase and W phase).
- a pulse current is passed through two adjacent phases at a timing delayed by an electrical angle of 90 ° with respect to the fundamental wave component of the reference phase. And it is sufficient.
- FIG. 11 and the like indicate phases of the stator armature winding 34, and “+” and “ ⁇ ” attached to the respective phases are The direction of the current flowing through the stator armature winding 34 is shown. For example, when a positive current flows in the V phase, “V +” indicates that the current flows in the V-phase winding, and “V ⁇ ” indicates that the current flows in the V-phase winding. Indicates that current flows in the lateral direction. The opposite is true when a negative current flows in the V phase.
- the magnetic flux between the stator 24 and the rotor 26 is adjacent to both the magnetic fluxes ⁇ 1 and ⁇ 2 in the circumferential direction, that is, in the circumferential center of the magnetic fluxes ⁇ 1 and ⁇ 2. It is possible to excite the rotor field winding 44 by generating a magnetic flux ⁇ p in the clockwise direction similar to the direction of ⁇ 1.
- This clockwise magnetic flux ⁇ p is different from the reference phase V phase, and the pulse current flowing in the phase winding indicated by “U ⁇ ” and the “U ⁇ ” phase winding adjacent in the circumferential direction “ And a pulse current flowing through the phase winding indicated by “W +”. Therefore, the rotor field winding 44 can be excited by generating the magnetic flux ⁇ p together with the magnetic fluxes ⁇ 1 and ⁇ 2.
- the current of the fundamental wave component is delayed by a power factor (eg, 0.7 to 0.9) and delayed by a predetermined electrical angle (eg, 20 ° to 45 °) with respect to the voltage. Furthermore, the pulse current is hardly delayed with respect to the pulse voltage. Therefore, the optimum timing for adding positive and negative voltage pulse pairs corresponding to the pulse currents flowing in the adjacent two phases to the fundamental wave components of those adjacent two phases is a rectangular wave voltage corresponding to the positive current center of the fundamental wave component of the reference phase. The timing is delayed by a predetermined electrical angle corresponding to the power factor described above from the center (positive voltage center) of the ON period of the waveform.
- the rectangular wave voltages corresponding to the fundamental wave components of these adjacent two phases are in different states (ie, the Hi state and the Lo state). It is necessary.
- the electrical angle from the positive voltage center of the reference phase to the state where the adjacent two-phase rectangular wave voltages are different from each other corresponds to the fundamental wave component of one phase of the adjacent two phases from the positive voltage center of the reference phase. It is 30 ° until the beginning of the on period of the rectangular wave voltage waveform.
- the harmonic component can be superimposed on the fundamental component, and the rotor It is possible to generate a magnetic flux that induces an exciting current in the field winding 44. That is, in the rectangular wave control region, a magnetic field in the same direction as the magnetic field generated by the current flow of the fundamental wave component of the reference phase can be generated in two adjacent phases, and an excitation current can be induced in the rotor field winding 44. it can.
- the resonance frequencies f1 and f2 of the resonance circuits 80 and 82 are constant.
- the frequency (or period) of the fundamental wave component that flows through the stator armature winding 34 changes according to the rotational speed rpm of the rotating electrical machine 20. Specifically, as the number of rotations rpm of the rotating electrical machine 20 increases, the period of the fundamental wave component decreases. Further, the target pulse number per one control cycle (that is, electrical angle 360 °) optimum for improving the excitation property of the rotor field winding 44 of the harmonic component is increased as the rotational speed rpm of the rotating electrical machine 20 is increased. Less.
- the target pulse number decreases as the rotational speed rpm increases, as shown in FIG. 12, for example, the rotational speed rpm becomes medium (specifically, , “4000”), the target pulse number is less than “9”.
- a set of voltage pulse pairs may be applied.
- a method of applying a pair of positive and negative voltage pulse pairs to adjacent two phases is to turn on a rectangular wave voltage waveform for generating a fundamental wave component applied to a phase winding of one phase (first phase) of the adjacent two phases.
- a negative voltage pulse shown by hatching in FIG.
- the predetermined period a is an electrical angle necessary for generating a harmonic component for improving the excitation property of the rotor field winding 44.
- one harmonic component can be generated.
- a set of positive and negative voltage pulse pairs to the adjacent two-phase windings with respect to the reference phase when the three phases are all the reference phases (rotor positions “1” and “3” in FIG. 15).
- ”And“ 5 and the electrical angles ⁇ 1 to ⁇ 2, ⁇ 5 to ⁇ 6, and ⁇ 9 to ⁇ 10) in FIG. 16, and harmonic components per control cycle can be generated three times at equal intervals.
- the on-period of the rectangular wave voltage waveform for generating the fundamental wave component applied to the phase winding of the first phase of the adjacent two phases is used.
- a rectangular wave for generating a fundamental wave component to be applied to the phase winding of the second phase of the adjacent two phases is added to the end, adding a positive voltage pulse for adding ON period by a predetermined period a.
- the application of the positive voltage pulse to the end of the on period of the first phase rectangular wave voltage waveform and the application of the negative voltage pulse to the on period of the second phase rectangular wave voltage waveform are performed at the same timing. (For example, electrical angles ⁇ 11 to ⁇ 12).
- one harmonic component can be generated by applying a pair of positive and negative voltage pulse pairs to adjacent two phases with respect to the reference phase.
- a set of positive and negative voltage pulse pairs to adjacent two-phase windings with respect to the reference phase when all three phases are used as reference phases (rotor positions “2” and “4” in FIG. 15).
- harmonic components can be generated three times at regular intervals during one control period.
- the rectangular wave voltage waveform for generating the fundamental wave components of the three phases U, V, and W is delayed by a predetermined period a, and the reverse pulse voltage is applied in any other phase during the period corresponding to the predetermined period a. If applied, harmonic components can be generated six times at regular intervals during one control cycle, and the rotor field winding 44 can be excited six times at regular intervals per control cycle.
- the target number of pulses per control cycle of the harmonic component is, as shown in FIG. 12, the rotational speed rpm of the rotating electrical machine 20 is “5000”, “6000”. , “7000”, and “8000” are “7.2”, “6”, “5.1”, and “4.5”, respectively.
- the rotational speed rpm of the rotating electrical machine 20 is in the middle rotational range of “5000” or more and “8000” or less, 6 pairs of positive and negative voltage pulse pairs are equally spaced on the stator armature winding 34 per control cycle.
- the actual frequency of the component) / f1) or (the actual frequency of the harmonic component) / f2)) is limited to a predetermined range. Specifically, as shown in FIG. 12, the deviation rate is “0.83” when the rotational speed rpm of the rotating electrical machine 20 is “5000”, “6000”, “7000”, and “8000”, respectively. , “1.00”, “1.17”, and “1.33”.
- the harmonic component As shown in FIG. 12 and FIG. 13, the actual frequency of is suppressed to approximately ⁇ 40% of the resonance frequencies f1 and f2 including the resonance frequencies f1 and f2. If the actual frequency of the harmonic component is suppressed within this range, as shown in FIG. 14, the exciting current obtained in the rotor field winding 44 is obtained when the actual frequency of the harmonic component is the resonance frequencies f1 and f2. While taking the maximum value, it becomes more than the allowable threshold value, and the rotational torque obtained by the rotating electrical machine 20 becomes more than the allowable threshold value while taking the maximum value when the actual frequency of the harmonic component is the resonance frequency f1, f2. .
- the control circuit 72 performs three-phase U, U based on the above-described method as the harmonic generation process executed in the rectangular wave control region that is the middle rotation region where the rotation speed rpm is “5000” or more and “8000” or less.
- the rectangular wave voltage waveform for generating each fundamental wave component is delayed by a predetermined period a, and a reverse pulse voltage is applied in any other phase during the period corresponding to the predetermined period a.
- harmonic components can be generated six times at regular intervals per control cycle (ie, electrical angle 360 °) in the middle rotation range, and the rotor field winding 44 can be generated per control cycle, etc. It can be excited six times at intervals.
- the resonance frequency f1 the fundamental wave component is included in the fundamental wave component regardless of the frequency of the rectangular wave fundamental wave component in the middle rotation range where the rotation speed rpm is “5000” or more and “8000” or less.
- a harmonic component having a frequency close to f2 (specifically, within a range of approximately ⁇ 40% with respect to the resonance frequencies f1 and f2) can be superimposed.
- the target number of pulses per one control period of the harmonic component is, as shown in FIG.
- the rotation speed rpm of the rotating electrical machine 20 is higher than “8000” and is not higher than “15000”, positive and negative voltage pulse pairs are equally spaced on the stator armature winding 34 per control cycle. If it is applied six times and the rotor field winding 44 is excited six times at equal intervals, the deviation rate of the actual frequency of the harmonic component with respect to the resonance frequencies f1 and f2 exceeds a predetermined range ( ⁇ 40%). .
- the deviation rate of the actual frequency of the harmonic component with respect to the resonance frequencies f1 and f2 is limited within a predetermined range. Specifically, as shown in FIG. 12, the deviation rate is “0.75” when the rotational speed rpm of the rotating electrical machine 20 is “9000”, “10000”, “12000”, and “15000”, respectively. , “0.83”, “1.00”, and “1.25”.
- the rotational speed rpm is “8000”
- the difference between the deviation rate at the third excitation and the deviation rate “1.00” is different from the deviation rate “1.33” at the sixth excitation. The same “0.67” is obtained.
- the harmonics As shown in FIGS. 12 and 13, the actual frequency of the component is suppressed within a range of approximately ⁇ 40% with respect to the resonance frequencies f1 and f2 including the resonance frequencies f1 and f2. If the actual frequency of the harmonic component is suppressed within this range, as shown in FIG. 14, the exciting current obtained in the rotor field winding 44 is obtained when the actual frequency of the harmonic component is the resonance frequencies f1 and f2. While taking the maximum value, it becomes more than the allowable threshold value, and the rotational torque obtained by the rotating electrical machine 20 becomes more than the allowable threshold value while taking the maximum value when the actual frequency of the harmonic component is the resonance frequency f1, f2. .
- the control circuit 72 performs a three-phase U based on the above-described method as a harmonic generation process executed in the rectangular wave control region, which is a high rotation region where the rotation speed rpm exceeds “8000” and is “15000” or less.
- a negative voltage pulse is added at the beginning of the on period of the rectangular wave voltage waveform for generating the fundamental wave component to cut off the on period by a predetermined period a.
- a positive voltage pulse for turning on for a predetermined period a pairing with the negative voltage pulse is turned off in the off period of the rectangular wave voltage waveform for generating the fundamental wave component in any other adjacent phase.
- harmonic components can be generated three times at equal intervals per control cycle (ie, electrical angle 360 °) in the high rotation range, and the rotor field winding 44 can be generated per control cycle. It can be excited three times at intervals.
- the resonance frequency f1 is applied to the fundamental wave component regardless of the frequency of the fundamental wave component of the rectangular wave in the high rotation range where the rotation speed rpm exceeds “8000” and is “15000” or less.
- F2 (specifically, approximately within a range of ⁇ 40% with respect to the resonance frequencies f1 and f2) can be superimposed.
- the harmonic component is superimposed on the fundamental wave component per control cycle at equal intervals up to 6 times, and when the rotation speed rpm reaches high rotation
- the excitation of the rotor field winding 44 can be performed by switching the number of superimpositions of harmonic components superimposed at equal intervals on the fundamental wave component per control period to three times. For this reason, it is possible to reduce the impedance at the time of excitation of the rotor field winding 44 from the middle rotation to the high rotation of the rotating electrical machine 20 and improve the excitation performance of the rotor field winding 44. Further, since the amplitude of the harmonic component superimposed on the fundamental component that is the current flowing through the stator armature winding 34 can be suppressed, torque ripple caused by the harmonic component for rotor excitation can be reduced.
- the rotating electrical machine 20 includes a stator armature winding 34 wound around the stator core 32, a rotor field winding 44 wound around the rotor core 42, and a rotor field winding.
- a rectifying element 52 connected to both ends of the wire 44; a capacitor 54 having one end connected to one end of the rectifying element 52 and the other end connected between both ends of the rotor field winding 44; and a stator armature winding
- the inductances L1 and L2 of the rotor field winding 44 and the capacitance C of the capacitor 54 are in a resonance relationship with the frequency of the harmonic component for exciting the rotor.
- the amplitude of the harmonic component for exciting the rotor is adjusted by using a standing wave having a 1 ⁇ 2 period with respect to the fundamental component as an envelope. According to this configuration, the amount of exciting current for exciting the rotor field winding 44 can be easily controlled.
- the rotor field winding 44 is connected to the first field winding portion 44-1 connected between the other end of the capacitor 54 and the other end of the rectifying element 52, and the capacitor 54.
- a second field winding portion 44-2 connected in parallel, and a first resonance frequency f1 based on the inductance L1 of the first field winding portion 44-1 and the capacitance C of the capacitor 54, and , At least one of the second resonance frequency f2 based on the inductance L2 of the second field winding portion 44-2 and the capacitance C of the capacitor 54 is within a predetermined frequency range including the frequency of the harmonic component for exciting the rotor.
- the frequency of the harmonic component for exciting the rotor is between the first resonance frequency f1 and the second resonance frequency f2.
- the first field winding portion 44-1 or the first field winding portion 44-1 of the rotor field winding 44 is provided.
- the field current induced in the two-field winding portion 44-2 can easily flow. Therefore, the impedance at the time of excitation of the rotor field winding 44 can be reduced, and the excitation performance of the rotor field winding 44 can be improved.
- the frequency of the harmonic component superimposed on the fundamental wave component is from the low rotation to the high rotation of the inductances L 1 and L 2 of the rotor field winding 44 and the capacitor 54.
- a threshold value specifically, for example, ⁇ 40% of the resonance frequencies f1 and f2
- the control circuit 72 induces an excitation current in the rotor field winding 44 in the rectangular wave control region and applies a fundamental wave component to be applied to one of the three phase windings.
- a fundamental wave component to be applied to any other phase winding while adding a negative voltage pulse to cut off for a predetermined period a at the start of the on period of the rectangular wave voltage waveform for generation
- Harmonic generation processing is executed in which a positive voltage pulse for turning on for a predetermined period a that is paired with the negative voltage pulse is added to the off period of the rectangular wave voltage waveform.
- a positive voltage pulse for turning on by adding a predetermined period a to the end of the on period of the rectangular wave voltage waveform for generating the fundamental wave component applied to one phase winding of the three phase windings
- the harmonic generation process is executed.
- a magnetic field in the same direction as the magnetic field generated by the current flow of the fundamental wave component can be generated by the harmonic generation process of applying positive and negative voltage pulse pairs to adjacent two phases, and the rotor field winding 44 An excitation current can be induced in
- the control circuit 72 is in a predetermined rotation range from the middle rotation to the high rotation of the rotary electric machine 20 (specifically, a rotation range where the rotation speed rpm is “5000” or more and “8000” or less),
- a rotation range where the rotation speed rpm is “5000” or more and “8000” or less By performing the above harmonic generation processing at the timing of both the start and end of the on period of the rectangular wave voltage waveform for each of the three-phase windings, excitation by the rotor field winding 44 is equally spaced per control cycle. 6 times.
- the frequency of the generated harmonic component is suppressed within a predetermined range with respect to the resonance frequencies f1 and f2 of the resonance circuits 80 and 82 in a predetermined rotation range from the middle rotation to the high rotation of the rotating electrical machine 20.
- the excitation current obtained in the rotor field winding 44 and the rotational torque obtained in the rotating electrical machine 20 can be set to an allowable threshold value or more.
- the control circuit 72 performs the above harmonic generation process in a high rotation range of the rotary electric machine 20 (specifically, a rotation range where the rotation speed rpm exceeds “8000” and is “15000” or less). Is performed for each of the three-phase windings at the timing of one of the start and end of the on period of the rectangular wave voltage waveform, so that excitation by the rotor field winding 44 is performed three times at regular intervals per control cycle. .
- the frequency of the generated harmonic component can be suppressed within a predetermined range with respect to the resonance frequencies f1 and f2 of the resonance circuits 80 and 82 in the high rotation range of the rotating electrical machine 20, and the rotor field
- the exciting current obtained in the winding 44 and the rotational torque obtained by the rotating electrical machine 20 can be set to be equal to or higher than an allowable threshold.
- production processing is carried out for the start end of the ON period of a rectangular wave voltage waveform for every three-phase phase winding, and / or By performing at the end timing, excitation by the rotor field winding 44 is performed 6 or 3 times at regular intervals per control cycle.
- the rotational speed rpm of the rotating electrical machine 20 is in the vicinity of “8000”, the number of excitations per one control cycle by the rotor field winding 44 is switched between 6 times and 3 times.
- the present invention is not limited to this.
- the frequency of the generated harmonic component is set to the resonance circuit 80, It is possible to approach the resonance frequencies f1 and f2 of 82.
- the target number of pulses per control cycle of the harmonic component is “7000” or “8000”, as shown in FIG. , “9000”, and “10000” are “5.1”, “4.5”, “4”, and “3.6”, respectively.
- the rotational speed rpm of the rotating electrical machine 20 is in a rotational range exceeding “7000” and “10000” or less, 4 pairs of positive and negative voltage pulses are equally spaced on the stator armature winding 34 per control cycle.
- the deviation rate of the real frequency of the harmonic components with respect to the resonance frequencies f1 and f2 of the resonance circuits 80 and 82 of the rotating electrical machine 20 is within a predetermined range. Limited. Specifically, as shown in FIG. 17, when the rotational speed rpm of the rotating electrical machine 20 is “8000”, “9000”, and “10000”, the deviation rates are “0.89”, “1. 00 ”and“ 1.11 ”. When the rotational speed rpm is “7000”, the difference between the deviation rate at the fourth excitation and the deviation rate “1.00” is different from the deviation rate “1.17” at the sixth excitation. It becomes large “0.78”.
- the harmonics As shown in FIG. 18, the actual frequency of the component is suppressed within a range of approximately ⁇ 25% with respect to the resonance frequencies f1 and f2 including the resonance frequencies f1 and f2. Compared to a narrow range. Therefore, if the actual frequency of the harmonic component is suppressed within this range, the excitation current obtained in the rotor field winding 44 takes a maximum value when the actual frequency of the harmonic component is the resonance frequencies f1 and f2.
- the rotational torque obtained by the rotating electrical machine 20 takes a maximum value when the actual frequency of the harmonic component is the resonance frequency f1, f2, and exceeds an allowable threshold value. It becomes larger than the case.
- control circuit 72 performs phase generation of adjacent two phases adjacent to each other in the circumferential direction as a harmonic generation process executed in the rectangular wave control region where the rotation speed rpm exceeds “7000” and is “10000” or less.
- Positive and negative voltage pulse pairs are added to the rectangular wave voltage waveform to generate the fundamental wave component applied to the winding four times at regular intervals per control cycle, and the average value of the applied voltage per control phase is zero.
- a rectangle for generating a fundamental wave component of a phase winding of a specific one of the three phases U, V, and W (W phase in the example shown in FIG. 19) is used.
- a negative voltage pulse for turning off the ON period by cutting out the ON period by a predetermined period a is added to the beginning of the ON period of the wave voltage waveform, and any other adjacent phase corresponding to the predetermined period a
- a positive voltage pulse for turning on for a predetermined period a that is paired with the negative voltage pulse is added.
- a positive voltage pulse for turning on by adding the on period by a predetermined period a is added to the end of the on period of the rectangular wave voltage waveform for generating the fundamental wave component of the specific one-phase winding.
- the positive voltage pulse A negative voltage pulse for turning off only for a predetermined period a to be paired is added.
- the timings of both the start and end of the on-period of the rectangular wave voltage waveform of the phase winding of a specific one phase for example, W phase
- a positive / negative voltage pulse pair is added to the rectangular wave voltage waveform of the adjacent two-phase winding including that phase, so that the harmonic component per control cycle (ie, electrical angle of 360 °) is 2 in a predetermined rotation range. It is generated at equal intervals (ie, electrical angle of 180 °).
- control circuit 72 further includes the timings of the start and end of the rectangular wave voltage waveform of the specific one-phase phase winding (that is, the specific one phase). Adjacent two phases to which a positive / negative voltage pulse pair can be added at a timing separated by an electrical angle of 90 ° from the addition of a positive / negative voltage pulse pair to the rectangular wave voltage waveform of the adjacent two-phase phase winding (in the example shown in FIG. 19) A positive / negative voltage pulse pair is added to the rectangular wave voltage waveform of the phase winding of (V phase and W phase).
- a specific one phase is a W phase
- a combination of phases that can apply a positive / negative voltage pulse pair of a predetermined period a in adjacent two phases at a timing separated by an electrical angle of 90 ° is a W phase and a V phase. Yes (see FIG. 15).
- harmonic components per control cycle ie, electrical angle 360 °
- regular intervals ie, electrical angle 180 °
- the rectangular wave voltage waveform for generating the fundamental wave component of one specific phase among the three phases U, V, and W is delayed by a predetermined period a, and any other phase is delayed during the period corresponding to the predetermined period a.
- a reverse pulse voltage at the same time, and at a timing separated by an electrical angle of 90 ° from the respective timings of the start and end of the rectangular wave voltage waveform for generating the specific one-phase fundamental wave component, for a predetermined period of time in two adjacent phases. If a positive / negative voltage pulse pair a is applied, harmonic components can be generated four times at regular intervals during one control cycle, and the rotor field winding 44 is excited four times at regular intervals per control cycle. Can do.
- the resonance frequency f1 the fundamental wave component is included in the fundamental wave component regardless of the frequency of the rectangular wave fundamental wave component in the rotation region where the rotation speed rpm exceeds “7000” and is “10000” or less.
- a harmonic component having a frequency close to f2 (specifically, within a range of approximately ⁇ 25% with respect to the resonance frequencies f1 and f2) can be superimposed.
- the frequency of the generated harmonic component can be made closer to the resonance frequencies f1 and f2.
- the harmonic component when the rotational speed rpm of the rotating electrical machine 20 is higher than the middle rotational speed, the harmonic component is superimposed on the fundamental wave component per control cycle at regular intervals up to 6 times, and the rotational speed rpm becomes a predetermined high rotational speed.
- the frequency reaches, the number of harmonic components to be superimposed on the fundamental wave component at regular intervals per control cycle is switched to 4 times.
- the rotor field winding 44 can be excited by switching the number of times of superimposing harmonic components superimposed at equal intervals on the hit fundamental wave component to three.
- the impedance at the time of excitation of the rotor field winding 44 is further reduced from the middle rotation to the high rotation of the rotating electrical machine 20 compared with the first embodiment, and the rotor Excitability of the field winding 44 can be improved.
- the amplitude of the harmonic component superimposed on the fundamental wave component that is the current flowing through the stator armature winding 34 can be further suppressed, torque ripple caused by the harmonic component for rotor excitation can be further reduced. it can.
- the basic phase applied to the phase winding of the reference phase as the timing of applying a positive / negative voltage pulse pair for superimposing the harmonic component on the fundamental wave component flowing as a current in the reference phase.
- the phase of the rectangular wave voltage waveform for generating the wave component is a phase that is delayed by an electrical angle of 30 ° from the center of the on period (positive voltage center) or the center of the off period (negative voltage center) and is different from the reference phase. This is the start or end of the on period of the rectangular wave voltage waveform for generating the fundamental wave component applied to the winding.
- the present invention is not limited to this.
- the timing of applying the positive / negative voltage pulse pair may be a timing with an electrical angle of 30 ° to 60 ° behind the positive voltage center or negative voltage center of the reference phase. Since the power factor in the rotating electrical machine 20 is approximately 0.5 or more and the power factor angle is approximately 60 ° or less, the upper limit value of this electrical angle range is preferably set to 60 °.
- the resonance frequencies f1 and f2 of the resonance circuits 80 and 82 including the rotor field winding 44 and the capacitor 54 are defined as resonance frequencies.
- the resonance frequency of 20 flows in the rotor field winding 44 when the frequency of the harmonic component is changed while flowing the current in which the harmonic component is superimposed on the fundamental wave component in the stator armature winding 34.
- a frequency at which the excitation current or the torque generated by the excitation current exhibits a peak may be used (see FIG. 14).
- the rotating electrical machine 20 includes two field winding portions 44-1 and 44-2 in which the rotor field windings 44 are connected in series, and these field windings.
- a single capacitor 54 having the other end connected to the connection point between the sections 44-1 and 44-2 is provided.
- the rotary electric machine 100 according to the second embodiment of the present invention as shown in FIG. 20, three field winding portions 44-1, 44- having the rotor field windings 44 connected in series are provided. 2 and 44-3, and the other end of each of the field winding portions 44-1, 44-2, 44-3 is connected to the corresponding one of the connection points of the field winding portions 44-1, 44-2, 44-3.
- Two capacitors 54-1 and 54-2 are provided.
- the field winding portions 44-1, 44-2, 44-3 are appropriately replaced with the first field winding portion 44-1, the second field winding portion 44-2, and the third field winding portion. 44-3, and the capacitors 54-1 and 54-2 are referred to as a first capacitor portion 54-1 and a second capacitor portion 54-2. 20 and 21, the same components as those used in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted or simplified.
- Each of the capacitors 54-1 and 54-2 has one end connected to the anode terminal of the rectifying element 52 and one end of the third field winding portion 44-3, and the other end connected to both ends of the rotor field winding 44. It is a capacitor connected between the two.
- the other end of the first capacitor unit 54-1 is connected to a connection point between the first field winding unit 44-1 and the second field winding unit 44-2.
- the other end of the second capacitor unit 54-2 is connected to a connection point between the second field winding unit 44-2 and the third field winding unit 44-3.
- the first capacitor unit 54-1 has a capacitance C1.
- the second capacitor unit 54-2 has a capacitance C2.
- the first field winding portion 44-1 is connected between the cathode terminal of the rectifying element 52 and the other end of the first capacitor portion 54-1.
- the second field winding portion 44-2 is connected between the other end of the first capacitor portion 54-1 and the other end of the second capacitor portion 54-2.
- the third field winding portion 44-3 is connected in parallel to the second capacitor portion 54-2.
- the direction of the voltage generated at both ends of the first field winding unit 44-1 and the direction of the voltage generated at the second field winding unit 44-2 are opposite to each other. Thus, when both voltages cancel each other, it has a function of storing excitation energy corresponding to the canceling voltage.
- the direction of the voltage generated on the second field winding unit 44-2 side and the direction of the voltage generated on the third field winding unit 44-3 side are opposite to each other.
- both voltages cancel each other it has a function of storing excitation energy corresponding to the canceling voltage.
- the first field winding portion 44-1 has an inductance L1.
- the second field winding portion 44-2 has an inductance L2.
- the third field winding portion 44-3 has an inductance L3.
- the first field winding portion 44-1, the second field winding portion 44-2, and the third field winding portion 44-3 are arranged in the radial direction of the salient pole portion 48. Arranged in order from the side close to 32. That is, the first field winding portion 44-1 is disposed closer to the stator core 32 (ie, radially outward) than the second field winding portion 44-2. The second field winding portion 44-2 is disposed on the side closer to the stator core 32 (that is, radially outside) than the third field winding portion 44-3.
- the first resonance circuit 102 has a first resonance frequency f11.
- the first resonance frequency f11 is calculated according to the following equation (3) based on the inductance L1 of the first field winding portion 44-1 and the capacitance C1 of the first capacitor portion 54-1.
- the second field winding portion 44-2 and the first capacitor portion 54-1 of the rotor field winding 44 constitute a second resonance circuit 104.
- the second resonance circuit 104 has a second resonance frequency f12.
- the second resonance frequency f12 is calculated according to the following equation (4) based on the inductance L2 of the second field winding portion 44-2 and the capacitance C1 of the first capacitor portion 54-1.
- the second field winding portion 44-2 and the second capacitor portion 54-2 of the rotor field winding 44 constitute a third resonance circuit 106.
- the third resonance circuit 106 has a third resonance frequency f13.
- the third resonance frequency f13 is calculated according to the following equation (5) based on the inductance L2 of the second field winding portion 44-2 and the capacitance C2 of the second capacitor portion 54-2.
- the third field winding portion 44-3 and the second capacitor portion 54-2 of the rotor field winding 44 constitute a fourth resonance circuit 108.
- the fourth resonance circuit 108 has a fourth resonance frequency f14.
- the fourth resonance frequency f14 is calculated according to the following equation (6) based on the inductance L3 of the third field winding portion 44-3 and the capacitance C2 of the second capacitor portion 54-2.
- the inductance L1 of the first field winding portion 44-1 and the capacitance C1 of the first capacitor portion 54-1 are in a resonance relationship with the frequency of the harmonic component for exciting the rotor.
- the inductance L2 of the second field winding portion 44-2 and the capacitance C1 of the first capacitor portion 54-1 are in a resonance relationship with the frequency of the harmonic component.
- the inductance L2 of the second field winding portion 44-2 and the capacitance C2 of the second capacitor portion 54-2 are in a resonance relationship with the frequency of the harmonic component for exciting the rotor.
- the inductance L3 of the third field winding portion 44-3 and the capacitance C2 of the second capacitor portion 54-2 are in a resonance relationship with the frequency of the harmonic component.
- first resonance frequencies are provided corresponding to the four resonance circuits 102 to 108.
- At least one of the first resonance frequency f11, the second resonance frequency f12, the third resonance frequency f13, and the fourth resonance frequency f14 is equal to or close to the frequency of the harmonic component.
- the first resonance frequency f11, the second resonance frequency f12, the third resonance frequency f13, and the fourth resonance frequency f14 may be all equal to or near the frequency of the harmonic component. Good.
- the resonance frequency band may be expanded by setting the first resonance frequency f11 to the fourth resonance frequency f14 for each of the resonance circuits 102 to 108 to be different from each other.
- the harmonic components can be easily matched to the resonance frequencies f11 to f14 of the resonance circuits 102 to 108.
- the frequency of the harmonic component is It may be between these two resonance frequencies, and according to this configuration, the harmonic component can be easily matched between the two resonance frequencies.
- the resonance relationship Compared with a configuration that is not present, when a current in which a fundamental wave component and a harmonic component are superimposed flows in the stator armature winding 34, a field current induced in the rotor field winding 44 of each pole flows. It becomes easy. Therefore, according to the rotating electrical machine 100, the impedance at the time of excitation of the rotor field winding 44 can be reduced, and the excitation performance of the rotor field winding 44 can be improved. Torque ripple caused by wave components can be reduced.
- the rotating electrical machine 100 includes the three field winding portions 44-1, 44-2, and 44-3 in which the rotor field windings 44 are connected in series.
- Two capacitors 54-1 and 54-2 each having the other end connected to a corresponding one of the connection points of the field winding portions 44-1, 44-2 and 44-3 are provided. Yes.
- n capacitor portions 54-1, 54-2,..., 54-n are provided with n capacitor portions 54-1, 54-2,..., 54-n each having the other end connected to the corresponding one.
- n should just be an integer greater than or equal to 3, when including 1st Embodiment and 2nd Embodiment, it may be an integer greater than or equal to 1.
- FIG. 22 the same components as those used in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted or simplified.
- (n + 1) field winding portions 44-1 to 44- (n + 1) and n capacitor portions 54-1 to 54-n of the rotor field winding 44 are (2 ⁇ n)
- the resonance circuit is configured.
- the (n + 1) field winding portions 44-1 to 44- (n + 1) have inductances L1 to L (n + 1).
- the n capacitor units 54-1 to 54-n have capacitances C1 to Cn. At least one of the resonance frequencies of these (2 ⁇ n) resonance circuits is equal to or near the frequency of the harmonic component for exciting the rotor. Note that all (2 ⁇ n) resonance frequencies may be equal to or close to the frequency of the harmonic component.
- the resonance frequency band may be extended over a band having a predetermined width by setting the resonance frequencies for (2 ⁇ n) resonance circuits to be different from each other.
- the harmonic component can be easily matched with the resonance frequency of any of the resonance circuits.
- the frequency of the harmonic component May be between those two resonance frequencies, and according to this configuration, the harmonic component can be easily matched between the two resonance frequencies.
- the fundamental wave component and the harmonic component are superimposed on the stator armature winding 34 as compared with the configuration in which the resonance circuit does not have a resonance relationship.
- the field current induced in the rotor field winding 44 of each pole becomes easy to flow. Therefore, also in the rotating electric machine 200, the impedance at the time of excitation of the rotor field winding 44 can be reduced and the excitation performance of the rotor field winding 44 can be improved. Torque ripple caused by components can be reduced.
- the first field winding portion 44-1 connected between the cathode terminal of the rectifying element 52 and the other end of the capacitor 54 has the radial direction of the salient pole portion 48.
- the second field winding portion 44-2 connected in parallel to the capacitor 54 is disposed on the side far from the stator core 32 in the radial direction of the salient pole portion 48. . That is, the first field winding portion 44-1 is disposed closer to the stator core 32 (that is, radially outside) than the second field winding portion 44-2.
- the present invention is not limited to this, and conversely, the first field winding portion 44-1 is disposed on the side far from the stator core 32 in the radial direction of the salient pole portion 48, and the second field The magnetic winding portion 44-2 may be disposed on the side closer to the stator core 32 in the radial direction of the salient pole portion 48. That is, the first field winding portion 44-1 may be disposed on the side farther from the stator core 32 (that is, radially inward) than the second field winding portion 44-2.
- the same configuration can be applied.
- the rotor core 42 includes a boss portion 46 and a plurality of salient pole portions 48, and further includes a plurality of auxiliary pole portions 302. is doing.
- the salient pole portion 48 is a main pole that forms a field pole (specifically, an N pole and an S pole).
- Each auxiliary pole portion 302 is provided between the pair of salient pole portions 48.
- the auxiliary pole portions 302 are arranged at predetermined intervals so as to be alternately arranged with the salient pole portions 48 in the circumferential direction.
- the auxiliary pole portion 302 is an auxiliary pole that is installed to provide a boundary between the salient pole portions 48 that are adjacent in the circumferential direction, and is a portion that protrudes radially outward from the boss portion 46.
- FIG. 23 the same components as those used in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted or simplified.
- the auxiliary pole portion 302 may have a smaller circumferential width than the salient pole portion 48, and there is a gap between the tip of the auxiliary pole portion 302 and the tip of the teeth 40 of the stator core 32.
- the air gap between the tip of the salient pole portion 48 and the tooth 40 may be larger.
- the rotating electrical machine 300 includes a magnet 304 provided in the auxiliary pole portion 302.
- the magnet 304 is magnetized in a direction that cancels out the leakage magnetic flux that flows between the stator 24 and the rotor 26 between the salient pole portions 48 (or is arranged so as to be magnetized in such a direction).
- the magnet 304 is embedded in the auxiliary pole portion 302 such that, for example, the N pole is disposed on the radially inner side of the auxiliary pole portion 302 and the S pole is disposed on the radially outer side thereof.
- the magnet 304 has a function of suppressing magnetic flux leakage between the salient pole portions 48 across the stator 24 side and the rotor 26 side.
- the magnet 304 provided in the auxiliary pole portion 302 suppresses the magnetic flux from flowing between the stator 24 and the rotor 26 without passing through the salient pole portion 48 (main magnetic pole). Can do. Therefore, according to the rotating electrical machine 300, the magnetic flux flowing through the field pole can be efficiently passed through the main pole, and a field current can be obtained effectively.
- the magnet 304 may be a permanent magnet, but may be an electromagnet.
- the auxiliary pole portion 302 is provided with a winding that generates a magnetic flux in a direction that cancels out the leakage magnetic flux from the stator 24 to the rotor 26.
- a plurality of field winding portions connected in series with the rotor field winding 44 are arranged side by side in the radial direction of the salient pole portion 48.
- the present invention is not limited to this, and a plurality of field winding portions connected in series with the rotor field winding 44 may be arranged side by side in the circumferential direction of the salient pole portion 48. That is, in the rotating electrical machine 400 according to the second modification, as shown in FIG. 24, the first field winding portion 44- connected between the cathode terminal of the rectifying element 52 and the other end of the capacitor 54.
- the second field winding portion 44-2 connected in parallel to the capacitor 54 has a projection of the rotor core 42 in the circumferential direction. It may be arranged on the side far from the pole part 48. That is, the first field winding portion 44-1 may be disposed closer to the salient pole portion 48 of the rotor core 42 than the second field winding portion 44-2.
- the same components as those used in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted or simplified.
- the arrangement of the first field winding portion 44-1 and the second field winding portion 44-2 is, for example, that the first field winding portion 44-1 is wound around the salient pole portion 48 of the rotor core 42. Then, the second field winding portion 44-2 may be wound around the outer side in the circumferential direction of the first field winding portion 44-1.
- the first field winding portion 44-1 and the second field winding portion 44-2 are obtained by dividing one winding with the connection position of the other end of the capacitor 54 as a boundary. Alternatively, two separate windings may be connected at the connection position with the other end of the capacitor 54.
- the energy stored in the capacitor 54 can be increased, and a field current can be obtained effectively.
- the first field winding portion 44-1 is disposed closer to the salient pole portion 48 of the rotor core 42 than the second field winding portion 44-2.
- the present invention is not limited to this, and conversely, the first field winding portion 44-1 is disposed on the side far from the salient pole portion 48 of the rotor core 42 in the circumferential direction, and the second field The magnetic winding portion 44-2 may be disposed on the side close to the salient pole portion 48 of the rotor core 42 in the circumferential direction. That is, the first field winding portion 44-1 may be arranged on the side farther from the salient pole portion 48 of the rotor core 42 than the second field winding portion 44-2.
- the magnet provided in the auxiliary pole part and its auxiliary pole part which were shown in the said 1st modification is not provided.
- the rotor core 42 includes the auxiliary pole portion 502 similar to the auxiliary pole portion 302 of the first modified embodiment, and the first It is good also as what has the magnet 504 similar to the magnet 304 of a deformation
- the same components as those used in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted or simplified.
- the magnet 504 provided in the auxiliary pole portion 502 can suppress the magnetic flux from flowing between the stator 24 and the rotor 26 without passing through the salient pole portion 48 (main magnetic pole).
- the magnetic flux flowing through the field pole can be efficiently passed through the main pole, and a field current can be obtained effectively.
- the magnet 504 may be a permanent magnet or an electromagnet.
- the auxiliary pole portion 502 is provided with a winding that generates a magnetic flux in a direction that cancels out the leakage magnetic flux from the stator 24 to the rotor 26.
- a capacitor 54 is provided, one end of which is connected to the anode terminal of the rectifying element 52 and the other end connected between both ends of the rotor field winding 44.
- the rotating electrical machine 700 according to the fifth modification includes a capacitor 702 instead of the capacitor 54 in the first embodiment. As shown in FIG. 27, the capacitor 702 has one end connected to the cathode terminal of the rectifying element 52 and the other end connected between both ends of the rotor field winding 44.
- the rotor field winding 44 includes a first field winding portion 44-1 connected between the anode terminal of the rectifying element 52 and the other end of the capacitor 702, and a first connected to the capacitor 702 in parallel. 2 field winding portion 44-2.
- Capacitor 702 is configured such that the direction of the voltage generated at both ends of first field winding portion 44-1 and the direction of the voltage generated at both ends of second field winding portion 44-2 are opposite to each other. When the voltages are in the direction of canceling each other, it has a function of storing energy corresponding to the canceling voltage.
- the first field winding portion 44-1 and the second field winding portion 44-2 have directions in which the directions of voltages are opposite to each other and the two voltages cancel each other. These voltages are applied so that current flows through the field winding portions 44-1 and 44-2 from the connection portion side to the rectifying element 52 to the connection portion side to the other end of the capacitor 702 ( Pattern 2), the current that flows through each of the field winding portions 44-1 and 44-2 flows toward the capacitor 702. In this case, excitation energy corresponding to the voltage canceling each other between the first field winding portion 44-1 and the second field winding portion 44-2 is stored in the capacitor 702, and the capacitor 702 is charged. .
- the capacitor 702 After the capacitor 702 is charged, the voltage direction of the first field winding portion 44-1 and the voltage direction of the second field winding portion 44-2 are switched, and these voltages cancel each other out.
- the capacitor A current flows from the 702 side to each of the field winding portions 44-1 and 44-2. In this case, the energy stored in the capacitor 702 is discharged to the field winding portions 44-1 and 44-2, and the capacitor 702 is discharged. Then, charging and discharging of the capacitor 702 are repeated.
- the configuration of the fifth modification can also be applied to the rotating electrical machine 100 shown in FIG. 20 of the second embodiment and the rotating electrical machine 200 shown in FIG. 22 of the third embodiment. That is, one end of each capacitor portion of the rotating electrical machines 100 and 200 may be connected to the cathode terminal of the rectifying element 52, and the other end may be connected between both ends of the rotor field winding 44.
- the frequency of the harmonic component superimposed on the fundamental wave component is changed from low to high rotation of the rotating electrical machine, as in the first embodiment.
- the excitation current obtained in the rotor field winding and the torque of the rotating electrical machine be equal to or greater than a predetermined value to be within a predetermined frequency range including the resonance frequency.
- a positive / negative voltage pulse pair in adjacent two phases as in the first embodiment. What is necessary is just to perform the harmonic generation process which applies.
- the rotor field winding 44 is intensively wound for each salient pole portion 48.
- the present invention is not limited to this, and may be applied to a structure in which the rotor field winding 44 is distributed and wound around several salient pole portions 48.
- the capacitor may be a capacitor in which a plurality of capacitors are connected in series, in parallel, or in both series and parallel.
- a ceramic capacitor is suitable for the capacitor.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Synchronous Machinery (AREA)
Abstract
Provided is a field-winding type rotating electric machine comprising: a stator armature winding that is wound around a stator core; a rotor field winding that is wound around a rotor core; a rectifier element that is connected to both ends of the rotor field winding; a capacitor, one end of which is connected to one end of the rectifier element and the other end of which is connected between the ends of the rotor field winding; and a control circuit that induces an excitation current in the rotor field winding by generating a current on which a fundamental wave component for generating a rotation torque in the stator armature winding and a higher harmonic component having a shorter period than the fundamental wave component are superimposed. The inductance of the rotor field winding and the capacity of the capacitor are in a resonance relationship with the frequency of the higher harmonic component.
Description
本発明は、界磁巻線型回転電機に関する。
The present invention relates to a field winding type rotating electrical machine.
従来、ステータ電機子巻線への通電により磁界を発生させる界磁巻線型回転電機が知られている(例えば、特許文献1及び2など)。界磁巻線型回転電機は、ステータと、ロータと、を備えている。ステータは、ステータコア及びそのステータコアに巻装されたステータ電機子巻線を有している。ロータは、ロータコア及びそのロータコアに巻装されたロータ界磁巻線を有している。ロータ界磁巻線は、整流素子であるダイオードを介して短絡されている。すなわち、ロータ界磁巻線の両端には、ダイオードが接続されている。
Conventionally, a field winding type rotating electrical machine that generates a magnetic field by energizing a stator armature winding is known (for example, Patent Documents 1 and 2). The field winding type rotary electric machine includes a stator and a rotor. The stator has a stator core and a stator armature winding wound around the stator core. The rotor has a rotor core and a rotor field winding wound around the rotor core. The rotor field winding is short-circuited via a diode that is a rectifying element. That is, diodes are connected to both ends of the rotor field winding.
また、上記の界磁巻線型回転電機は、ステータ電機子巻線に接続されたインバータ回路と、ロータの回転位置に対応した電流がステータ電機子巻線に流れるようにインバータ回路を制御する制御回路と、を備えている。ステータ電機子巻線に流れる電流は、回転トルク発生用の電流成分である基本波電流(すなわち、同期電流)と、ロータ励磁用の電流成分である励磁電流と、の和である。ロータ励磁用の励磁電流は、基本波電流に比して短い周期(すなわち、高い周波数)の高調波電流であり、パルス状の波形に成形されている。このロータ励磁用の励磁電流がステータ電機子巻線に流れると、励磁磁束がロータコアの主磁極に鎖交し、ロータ界磁巻線に電圧が発生して励磁電流が誘起される。
The field winding type rotating electrical machine includes an inverter circuit connected to the stator armature winding and a control circuit for controlling the inverter circuit so that a current corresponding to the rotational position of the rotor flows in the stator armature winding. And. The current flowing through the stator armature winding is the sum of a fundamental wave current (that is, a synchronous current) that is a current component for generating rotational torque and an excitation current that is a current component for rotor excitation. The exciting current for exciting the rotor is a harmonic current having a shorter cycle (that is, a higher frequency) than the fundamental current, and is formed into a pulse-like waveform. When the exciting current for exciting the rotor flows in the stator armature winding, the exciting magnetic flux is linked to the main magnetic pole of the rotor core, and a voltage is generated in the rotor field winding to induce the exciting current.
上記の如く、ロータ界磁巻線の両端にはダイオードが接続されている。このため、励磁磁束が変動してロータ界磁巻線に交流電圧が発生しても、ロータ界磁巻線には電流が一方向にのみ流れることで、ロータコアが所定方向へ励磁されて界磁極(具体的には、N極及びS極)が形成される。この界磁極を形成するための界磁束は、ステータ電機子巻線へのロータ励磁用の励磁電流の通電とロータ界磁巻線での電流の整流とにより形成される。
As described above, diodes are connected to both ends of the rotor field winding. For this reason, even if the excitation magnetic flux fluctuates and an AC voltage is generated in the rotor field winding, current flows in the rotor field winding only in one direction, so that the rotor core is excited in a predetermined direction and the field pole (Specifically, N pole and S pole) are formed. The field flux for forming the field pole is formed by energizing the stator armature winding with an exciting current for exciting the rotor and rectifying the current in the rotor field winding.
このように、ステータからの励磁磁束をロータ界磁巻線で受けると共にダイオードを介して一方向電流に変換することで界磁極を構成する回転電機においては、回転トルクを発生させるために、ロータコアの主磁極に励磁磁束を鎖交させてロータコアの励磁を行う。このロータコアの励磁は、基本波電流にパルス状の励磁電流を重畳してロータ界磁巻線に励磁電流を誘起することにより実現される。
Thus, in a rotating electrical machine that forms a field pole by receiving excitation magnetic flux from a stator by a rotor field winding and converting it to a unidirectional current via a diode, in order to generate rotational torque, The rotor core is excited by interlinking excitation magnetic flux with the main pole. This excitation of the rotor core is realized by superimposing a pulsed excitation current on the fundamental wave current to induce the excitation current in the rotor field winding.
ロータ界磁巻線は、インダクタンスを有しており、各極におけるロータ界磁巻線の各々の部分で部分インダクタンスを構成する。界磁極に流れる磁束には漏れ磁束や高調波磁束などがある。ロータ界磁巻線の励磁時におけるインピーダンスが高いと、そのロータ界磁巻線に電流が流れ難くなる。電流が流れ難い場合において、ロータ界磁巻線に励磁電流を適切に誘起するためには、その電流の流れ難い分だけロータ励磁用の高調波成分の振幅を高くすることが必要である。このため、高調波成分に起因してトルクリップルが大きくなってしまう。
The rotor field winding has inductance, and each portion of the rotor field winding at each pole constitutes a partial inductance. Magnetic flux flowing in the field pole includes leakage magnetic flux and harmonic magnetic flux. If the impedance at the time of excitation of the rotor field winding is high, it becomes difficult for a current to flow through the rotor field winding. When current is difficult to flow, in order to induce the excitation current appropriately in the rotor field winding, it is necessary to increase the amplitude of the harmonic component for exciting the rotor by the amount that the current does not flow easily. For this reason, the torque ripple is increased due to the harmonic component.
本発明は、上記の問題点に鑑みてなされたものであり、ロータ界磁巻線の励磁時におけるインピーダンスを低減することで、高調波成分に起因するトルクリップルを低減することが可能な界磁巻線型回転電機を提供することを目的とする。
The present invention has been made in view of the above problems, and by reducing the impedance at the time of excitation of the rotor field winding, it is possible to reduce a field ripple that can reduce torque ripple caused by harmonic components. It aims at providing a winding type rotary electric machine.
本開示に係る界磁巻線型回転電機は、ステータコアに巻装されたステータ電機子巻線と、ロータコアに巻装されたロータ界磁巻線と、前記ロータ界磁巻線の両端に接続された整流素子と、一端が前記整流素子の一端に接続され、他端が前記ロータ界磁巻線の両端の間に接続されたコンデンサと、前記ステータ電機子巻線に回転トルクを発生させるための基本波成分と前記基本波成分に比して周期が短い高調波成分とを重畳した電流を流すことにより、前記ロータ界磁巻線に励磁電流を誘起する制御回路と、を備え、前記ロータ界磁巻線のインダクタンス及び前記コンデンサの容量は、前記高調波成分の周波数に対して共振関係にある。
A field winding type rotating electrical machine according to the present disclosure is connected to a stator armature winding wound around a stator core, a rotor field winding wound around a rotor core, and both ends of the rotor field winding. A rectifying element, a capacitor having one end connected to one end of the rectifying element and the other end connected between both ends of the rotor field winding, and a basis for generating rotational torque in the stator armature winding A control circuit for inducing an excitation current in the rotor field winding by flowing a current in which a wave component and a harmonic component having a period shorter than that of the fundamental wave component are passed. The inductance of the winding and the capacitance of the capacitor are in a resonance relationship with the frequency of the harmonic component.
上記の構成によれば、ステータ電機子巻線に基本波成分と高調波成分とを重畳した電流が流れたときに、ロータ界磁巻線に誘起される界磁電流が流れ易くなる。従って、ロータ界磁巻線の励磁時におけるインピーダンスを低減することができるので、ロータ励磁用の高調波成分に起因するトルクリップルを低減することができる。
According to the above configuration, when a current in which the fundamental wave component and the harmonic component are superimposed on the stator armature winding flows, the field current induced in the rotor field winding easily flows. Therefore, since the impedance at the time of exciting the rotor field winding can be reduced, torque ripple caused by the harmonic component for exciting the rotor can be reduced.
また、上記の界磁巻線型回転電機において、前記高調波成分は、前記基本波成分に対して1/2周期を有する定在波を包絡線として振幅調整されている。この構成によれば、基本波成分に重畳する高調波成分を定在波を包絡線として振幅調整することにより、ロータ界磁巻線を励磁する励磁電流量を制御することができるので、その励磁電流量のコントロールを行い易くなっている。
In the field winding type rotating electrical machine described above, the amplitude of the harmonic component is adjusted by using a standing wave having a half cycle with respect to the fundamental component as an envelope. According to this configuration, it is possible to control the excitation current amount for exciting the rotor field winding by adjusting the amplitude of the harmonic component superimposed on the fundamental wave component using the standing wave as an envelope, so that the excitation current can be controlled. It is easy to control the amount of current.
上記の界磁巻線型回転電機において、前記ロータ界磁巻線は、前記コンデンサの他端と前記整流素子の他端との間に接続されている第1界磁巻線部と、前記コンデンサに並列に接続されている第2界磁巻線部と、を有し、前記第1界磁巻線部のインダクタンス及び前記コンデンサの容量に基づく第1共振周波数、及び、前記第2界磁巻線部のインダクタンス及び前記コンデンサの容量に基づく第2共振周波数の少なくとも一方は、前記高調波成分の周波数を含む所定周波数範囲内にある、又は、前記高調波成分の周波数は、前記第1共振周波数と前記第2共振周波数との間にある。
In the field winding type rotating electrical machine described above, the rotor field winding includes a first field winding portion connected between the other end of the capacitor and the other end of the rectifying element, and the capacitor. A second field winding portion connected in parallel, a first resonance frequency based on an inductance of the first field winding portion and a capacitance of the capacitor, and the second field winding. At least one of the second resonance frequency based on the inductance of the part and the capacitance of the capacitor is within a predetermined frequency range including the frequency of the harmonic component, or the frequency of the harmonic component is the first resonance frequency. Between the second resonance frequency.
上記の構成によれば、ステータ電機子巻線に基本波成分と高調波成分とを重畳した電流が流れたときに、ロータ界磁巻線の第1界磁巻線部又は第2界磁巻線部に誘起される界磁電流が流れ易くなる。従って、ロータ界磁巻線の励磁時におけるインピーダンスを低減することができ、そのロータ界磁巻線の励磁性を向上させることができる。
According to the above configuration, when the current in which the fundamental wave component and the harmonic component are superimposed flows in the stator armature winding, the first field winding portion or the second field winding of the rotor field winding. The field current induced in the line portion is easy to flow. Therefore, the impedance during excitation of the rotor field winding can be reduced, and the excitation performance of the rotor field winding can be improved.
上記の界磁巻線型回転電機において、前記ロータ界磁巻線は、直列接続された複数の界磁巻線部を有し、前記コンデンサは、それぞれ一端が前記整流素子の一端に接続され、他端が界磁巻線部同士の接続点のうちの対応する1つに接続された複数のコンデンサ部を有し、複数の前記界磁巻線部と複数の前記コンデンサ部とにより複数の共振回路が設けられており、前記共振回路の共振周波数の少なくとも何れか一つは、前記高調波成分の周波数を含む所定周波数範囲内にある、又は、前記高調波成分の周波数は、何れか2つの前記共振回路の共振周波数の間にある。この構成によれば、共振周波数を複数設けることができるので、高調波成分を共振回路の共振周波数に合わせ易くすることができ、又は、高調波成分を何れか2つの共振周波数の間に合わせ易くすることができるので、ロータ界磁巻線の界磁巻線部に誘起される界磁電流を流し易くすることができる。
In the above field winding type rotating electrical machine, the rotor field winding has a plurality of field winding portions connected in series, and each of the capacitors has one end connected to one end of the rectifying element, A plurality of resonance circuits having a plurality of capacitor portions whose ends are connected to corresponding ones of connection points of the field winding portions, and a plurality of the field winding portions and the plurality of capacitor portions. And at least one of the resonance frequencies of the resonance circuit is within a predetermined frequency range including the frequency of the harmonic component, or the frequency of the harmonic component is any two of the two It is between the resonant frequencies of the resonant circuit. According to this configuration, since a plurality of resonance frequencies can be provided, the harmonic component can be easily adjusted to the resonance frequency of the resonance circuit, or the harmonic component can be easily adjusted between any two resonance frequencies. Therefore, it is possible to easily flow the field current induced in the field winding portion of the rotor field winding.
上記の界磁巻線型回転電機において、前記共振回路ごとの共振周波数は、互いに異なる。この構成によれば、共振回路ごとの共振周波数を、幅を有する帯域に亘って広げることができるので、高調波成分を共振回路の共振周波数に又は何れか2つの共振周波数の間に合わせ易くすることができ、これにより、ロータ界磁巻線の界磁巻線部に誘起される界磁電流を流し易くすることができる。
In the above-described field winding type rotary electric machine, the resonance frequencies of the resonance circuits are different from each other. According to this configuration, since the resonance frequency of each resonance circuit can be expanded over a band having a width, it is easy to match the harmonic component to the resonance frequency of the resonance circuit or between any two resonance frequencies. Accordingly, it is possible to easily flow the field current induced in the field winding portion of the rotor field winding.
上記の界磁巻線型回転電機において、前記基本波成分に重畳される前記高調波成分の周波数は、低回転から高回転まで、前記ロータ界磁巻線のインダクタンス及び前記コンデンサの容量に基づく共振周波数を含む所定周波数範囲内にある。この構成によれば、界磁巻線型回転電機の低回転から高回転まで、基本波成分の周波数に関係なく共振周波数に近い周波数の高調波成分を基本波成分に重畳することができるので、ロータ界磁巻線の励磁時におけるインピーダンスを低減して、そのロータ界磁巻線の励磁性を向上させることができる。また、界磁巻線型回転電機の低回転から高回転まで、高調波成分の振幅を抑えることができるので、ロータ励磁用の高調波成分に起因するトルクリップルを低減することができる。
In the field winding type rotating electrical machine, the frequency of the harmonic component superimposed on the fundamental wave component is a resonance frequency based on the inductance of the rotor field winding and the capacitance of the capacitor from low to high rotation. Is within a predetermined frequency range. According to this configuration, the harmonic component having a frequency close to the resonance frequency can be superimposed on the fundamental wave component regardless of the frequency of the fundamental wave component from the low rotation to the high rotation of the field winding type rotary electric machine. Impeding property of the rotor field winding can be improved by reducing the impedance at the time of excitation of the field winding. Further, since the amplitude of the harmonic component can be suppressed from the low rotation to the high rotation of the field winding type rotary electric machine, the torque ripple caused by the harmonic component for rotor excitation can be reduced.
上記の界磁巻線型回転電機において、前記所定周波数範囲は、前記ロータ界磁巻線に誘起される励磁電流又はトルクが所定値以上となる範囲である。この構成によれば、高調波成分の生成によりロータ界磁巻線の励磁性を高めつつ、ロータ界磁巻線に誘起される励磁電流又はトルクを大きなものとすることができる。
In the above field winding type rotating electrical machine, the predetermined frequency range is a range in which an excitation current or torque induced in the rotor field winding is a predetermined value or more. According to this configuration, it is possible to increase the excitation current or torque induced in the rotor field winding while increasing the excitation property of the rotor field winding by generating the harmonic component.
上記の界磁巻線型回転電機において、前記ステータ電機子巻線は、三相の相巻線からなり、前記制御回路は、矩形波制御領域で前記ロータ界磁巻線に励磁電流を誘起するうえで、一の相巻線に印加する前記基本波成分生成のための矩形波電圧波形のオン期間の中心から電気角30°~60°遅れたタイミングで、他の二相のうち一方の相巻線に印加する前記基本波成分生成のための矩形波電圧波形のオン期間に所定期間だけオフするための第1負電圧パルスを付加すると共に、他の二相のうち他方の相巻線に印加する前記基本波成分生成のための矩形波電圧波形のオフ期間に前記第1負電圧パルスと対をなす所定期間だけオンするための第1正電圧パルスを付加し、又は、一の相巻線に印加する前記基本波成分生成のための矩形波電圧波形のオフ期間の中心から電気角30°~60°遅れたタイミングで、他の二相のうち一方の相巻線に印加する前記基本波成分生成のための矩形波電圧波形のオフ期間に所定期間だけオンするための第2正電圧パルスを付加すると共に、他の二相のうち他方の相巻線に印加する前記基本波成分生成のための矩形波電圧波形のオン期間に前記第2正電圧パルスと対をなす所定期間だけオフするための第2負電圧パルスを付加する。この構成によれば、隣接する二相の相巻線に一組の正負電圧パルス対を印加することができ、一制御周期中に高調波成分を一つ生成することができる。
In the field winding type rotary electric machine, the stator armature winding is composed of a three-phase winding, and the control circuit induces an excitation current in the rotor field winding in a rectangular wave control region. Thus, one of the other two phases is wound at a timing delayed by an electrical angle of 30 ° to 60 ° from the center of the ON period of the rectangular wave voltage waveform for generating the fundamental wave component applied to one phase winding. A first negative voltage pulse for turning off for a predetermined period is added to an on period of the rectangular wave voltage waveform for generating the fundamental wave component applied to the line, and applied to the other phase winding of the other two phases. A first positive voltage pulse for turning on only for a predetermined period paired with the first negative voltage pulse is added to an off period of the rectangular wave voltage waveform for generating the fundamental wave component, or one phase winding The rectangular wave voltage waveform for generating the fundamental wave component applied to the At a timing delayed by an electrical angle of 30 ° to 60 ° from the center of the off period, the rectangular wave voltage waveform for generating the fundamental wave component applied to one of the other two phases is turned off for a predetermined period of time. The second positive voltage pulse for turning on is applied, and the second positive voltage pulse is applied during the on period of the rectangular wave voltage waveform for generating the fundamental wave component applied to the other phase winding of the other two phases. A second negative voltage pulse for turning off for a predetermined period of time is added. According to this configuration, a set of positive and negative voltage pulse pairs can be applied to adjacent two-phase windings, and one harmonic component can be generated during one control period.
上記の界磁巻線型回転電機において、前記制御回路は、一の相巻線を基準とした前記第1負電圧パルス及び前記第1正電圧パルスの付加並びに前記第2正電圧パルス及び前記第2負電圧パルスの付加の双方を他の二相の相巻線を基準とした場合にも行うことにより、前記ロータ界磁巻線による励磁を一制御周期当たり等間隔で6回行い、又は、一の相巻線を基準とした前記第1負電圧パルス及び前記第1正電圧パルスの付加並びに前記第2正電圧パルス及び前記第2負電圧パルスの付加の何れか一方を他の二相の相巻線を基準とした場合にも行うことにより、前記ロータ界磁巻線による励磁を一制御周期当たり等間隔で3回行う。この構成によれば、一制御周期中に高調波成分を等間隔で6回又は3回生成することができるので、所定回転域で、共振周波数に近い周波数の高調波成分を基本波成分に重畳することができる。
In the field winding type rotating electric machine, the control circuit adds the first negative voltage pulse and the first positive voltage pulse with reference to one phase winding, and the second positive voltage pulse and the second positive voltage pulse. By performing both additions of negative voltage pulses with reference to the other two-phase phase windings, excitation by the rotor field winding is performed six times at regular intervals per control period, or one One of the addition of the first negative voltage pulse and the first positive voltage pulse and the addition of the second positive voltage pulse and the second negative voltage pulse with reference to the phase winding of the other two-phase phase By performing also when the winding is used as a reference, excitation by the rotor field winding is performed three times at regular intervals per control cycle. According to this configuration, since a harmonic component can be generated six or three times at regular intervals during one control period, a harmonic component having a frequency close to the resonance frequency is superimposed on the fundamental component in a predetermined rotation range. can do.
上記の界磁巻線型回転電機において、前記ステータ電機子巻線は、三相の相巻線からなり、前記制御回路は、矩形波制御領域で前記ロータ界磁巻線に励磁電流を誘起するうえで、一の相巻線に印加する前記基本波成分生成のための矩形波電圧波形のオン期間の始端に所定期間だけオフするための第1負電圧パルスを付加すると共に、他の何れか一の相巻線に印加する前記基本波成分生成のための矩形波電圧波形のオフ期間に前記第1負電圧パルスと対をなす所定期間だけオンするための第1正電圧パルスを付加し、又は、一の相巻線に印加する前記基本波成分生成のための矩形波電圧波形のオン期間の終端に所定期間だけオン期間を継ぎ足すための第2正電圧パルスを付加すると共に、他の何れか一の相巻線に印加する前記基本波成分生成のための矩形波電圧波形のオン期間に前記第2正電圧パルスと対をなす所定期間だけオフするための第2負電圧パルスを付加する第1高調波生成処理を実行する。この構成によれば、隣接する二相の相巻線に一組の正負電圧パルス対を印加することができ、一制御周期中に高調波成分を二つ生成することができる。
In the field winding type rotary electric machine, the stator armature winding is composed of a three-phase winding, and the control circuit induces an excitation current in the rotor field winding in a rectangular wave control region. Then, a first negative voltage pulse for turning off for a predetermined period is added to the beginning of the on period of the rectangular wave voltage waveform for generating the fundamental wave component applied to one phase winding, and any one of the other Adding a first positive voltage pulse for turning on for a predetermined period paired with the first negative voltage pulse in an off period of the rectangular wave voltage waveform for generating the fundamental wave component applied to the phase winding of Adding a second positive voltage pulse for adding the ON period for a predetermined period to the end of the ON period of the rectangular wave voltage waveform for generating the fundamental wave component applied to one phase winding, and any other Generation of the fundamental component applied to one phase winding Performing a first harmonic generation process that adds a second negative voltage pulse for only off a predetermined period of time during the ON period of the rectangular wave voltage waveforms constituting the second positive voltage pulse and the pair for. According to this configuration, a pair of positive and negative voltage pulse pairs can be applied to adjacent two-phase windings, and two harmonic components can be generated during one control period.
上記の界磁巻線型回転電機において、前記制御回路は、前記第1高調波生成処理を三相の相巻線ごとに矩形波電圧波形のオン期間の始端及び終端の双方のタイミングで行うことにより、前記ロータ界磁巻線による励磁を一制御周期当たり等間隔で6回行う。この構成によれば、一制御周期中に高調波成分を等間隔で6回生成することができるので、所定回転域で、共振周波数に近い周波数の高調波成分を基本波成分に重畳することができる。
In the above field winding type rotating electrical machine, the control circuit performs the first harmonic generation process at the timing of both the start and end of the on period of the rectangular wave voltage waveform for each of the three phase windings. The excitation by the rotor field winding is performed 6 times at regular intervals per control cycle. According to this configuration, since a harmonic component can be generated six times at regular intervals during one control period, a harmonic component having a frequency close to the resonance frequency can be superimposed on the fundamental component in a predetermined rotation range. it can.
上記の界磁巻線型回転電機において、前記制御回路は、前記第1高調波生成処理を三相の相巻線ごとに矩形波電圧波形のオン期間の始端及び終端の何れか一方のタイミングで行うことにより、前記ロータ界磁巻線による励磁を一制御周期当たり等間隔で3回行う。この構成によれば、一制御周期中に高調波成分を等間隔で3回生成することができるので、共振周波数に近い周波数の高調波成分を生成可能な一制御周期当たりの高調波成分の生成回数が6回である場合の回転域よりも高い回転域で、共振周波数に近い周波数の高調波成分を基本波成分に重畳することができる。
In the above field winding type rotating electrical machine, the control circuit performs the first harmonic generation process at the timing of either the start end or the end of the on-period of the rectangular wave voltage waveform for each of the three phase windings. Thus, excitation by the rotor field winding is performed three times at regular intervals per control period. According to this configuration, since a harmonic component can be generated three times at regular intervals during one control period, generation of a harmonic component per control period that can generate a harmonic component having a frequency close to the resonance frequency is possible. A harmonic component having a frequency close to the resonance frequency can be superimposed on the fundamental wave component in a rotation range higher than the rotation range when the number of times is six.
上記の界磁巻線型回転電機において、前記制御回路は、矩形波制御領域で前記ロータ界磁巻線に励磁電流を誘起するうえで、互いに周方向に隣接する二つの相巻線に印加する前記基本波成分生成のための矩形波電圧波形への正負電圧パルス対の付加を一制御周期当たり等間隔で4回行い、一相一制御周期当たりの印加電圧の平均値をゼロとする。この構成によれば、一制御周期中に高調波成分を等間隔で4回生成することができるので、共振周波数に近い周波数の高調波成分を生成可能な一制御周期当たりの高調波成分の生成回数が6回である場合の回転域と3回である場合の回転域との間の回転域で、より共振周波数に近い周波数の高調波成分を基本波成分に重畳することができる。
In the field winding type rotating electrical machine, the control circuit induces an excitation current in the rotor field winding in a rectangular wave control region and applies the two phase windings adjacent to each other in the circumferential direction. The positive and negative voltage pulse pairs are added to the rectangular wave voltage waveform for generating the fundamental wave component four times at equal intervals per control cycle, and the average value of the applied voltage per one phase and one control cycle is set to zero. According to this configuration, since a harmonic component can be generated four times at regular intervals during one control cycle, a harmonic component can be generated per control cycle that can generate a harmonic component having a frequency close to the resonance frequency. A harmonic component having a frequency closer to the resonance frequency can be superimposed on the fundamental wave component in a rotation range between the rotation range when the number of times is six and the rotation range when the number is three.
上記の界磁巻線型回転電機において、前記制御回路は、前記第1高調波生成処理を所定の相巻線で矩形波電圧波形の始端及び終端の双方のタイミングで行うと共に、前記所定の相巻線における矩形波電圧波形の始端及び終端それぞれのタイミングから電気角90°だけ離間したタイミングで、互いに周方向に隣接する二つの相巻線に印加する前記基本波成分生成のための矩形波電圧波形に正負電圧パルス対を付加する第2高調波生成処理を行うことにより、前記ロータ界磁巻線による励磁を一制御周期当たり等間隔で4回行う。この構成によれば、一制御周期中に高調波成分を等間隔で4回生成することができる。
In the field winding type rotating electrical machine, the control circuit performs the first harmonic generation processing at a timing of both a start end and a termination of a rectangular wave voltage waveform with a predetermined phase winding, and the predetermined phase winding. The rectangular wave voltage waveform for generating the fundamental wave component applied to the two phase windings adjacent to each other in the circumferential direction at a timing separated by an electrical angle of 90 ° from the respective timings of the start and end of the rectangular wave voltage waveform in the line By performing a second harmonic generation process for adding a positive / negative voltage pulse pair to the rotor, excitation by the rotor field winding is performed four times at regular intervals per control period. According to this configuration, harmonic components can be generated four times at regular intervals during one control period.
上記の界磁巻線型回転電機において、前記制御回路による電圧パルスの付加周波数は、前記所定周波数範囲内である。この構成によれば、電圧パルスの付加により、界磁巻線型回転電機の低回転から高回転まで、基本波成分の周波数に関係なく共振周波数に近い周波数の高調波成分を基本波成分に重畳することができる。
In the above field winding type rotating electrical machine, the additional frequency of the voltage pulse by the control circuit is within the predetermined frequency range. According to this configuration, by adding a voltage pulse, a harmonic component having a frequency close to the resonance frequency is superimposed on the fundamental wave component regardless of the frequency of the fundamental wave component from low rotation to high rotation of the field winding type rotating electrical machine. be able to.
以下、本発明に係る界磁巻線型回転電機の具体的な実施形態について、図1~図27を参照しつつ説明する。
Hereinafter, specific embodiments of the field winding type rotating electrical machine according to the present invention will be described with reference to FIGS.
[実施形態1]
本発明の第1実施形態において、界磁巻線型回転電機20は、例えば車両などに搭載される同期型の電動発電機である。以下、界磁巻線型回転電機20を単に回転電機20と称す。回転電機20は、図1に示す如くバッテリなどの電源22から電力が供給されることで車両を駆動するための駆動力を発生する。また、回転電機20は、車両のエンジンから駆動力が供給されることでバッテリを充電するための電力を発生する。回転電機20は、図2に示す如く、ステータ(電機子)24と、ロータ(界磁)26と、ハウジング28と、軸受30と、を備えている。 [Embodiment 1]
In the first embodiment of the present invention, the field winding type rotaryelectric machine 20 is a synchronous motor generator mounted on, for example, a vehicle. Hereinafter, the field winding type rotating electrical machine 20 is simply referred to as the rotating electrical machine 20. The rotating electrical machine 20 generates a driving force for driving the vehicle when electric power is supplied from a power source 22 such as a battery as shown in FIG. Further, the rotating electrical machine 20 generates electric power for charging the battery by being supplied with driving force from the engine of the vehicle. As shown in FIG. 2, the rotary electric machine 20 includes a stator (armature) 24, a rotor (field) 26, a housing 28, and a bearing 30.
本発明の第1実施形態において、界磁巻線型回転電機20は、例えば車両などに搭載される同期型の電動発電機である。以下、界磁巻線型回転電機20を単に回転電機20と称す。回転電機20は、図1に示す如くバッテリなどの電源22から電力が供給されることで車両を駆動するための駆動力を発生する。また、回転電機20は、車両のエンジンから駆動力が供給されることでバッテリを充電するための電力を発生する。回転電機20は、図2に示す如く、ステータ(電機子)24と、ロータ(界磁)26と、ハウジング28と、軸受30と、を備えている。 [Embodiment 1]
In the first embodiment of the present invention, the field winding type rotary
ステータ24は、ハウジング28により囲まれた空間に収容されていると共に、そのハウジング28に固定されている。ステータ24は、ステータコア32と、ステータ電機子巻線34と、を有している。ステータコア32は、磁束が流れる磁路の一部を構成する。ステータコア32は、軸中心に孔36が空いた中空円筒状に形成されている。ステータコア32は、図3に示す如く、複数のスロット38と、複数のティース40と、を有している。各スロット38は、コア本体に対して径方向内側に開口しており、軸方向に沿って延びている。スロット38は、周方向において所定間隔で配置されている。スロット38には、ステータ電機子巻線34の直線部が収容される。ステータ電機子巻線34は、ステータコア32のティース40に巻装されている。ステータ電機子巻線34は、三相U,V,Wそれぞれの相巻線を有している。
The stator 24 is housed in a space surrounded by the housing 28 and is fixed to the housing 28. The stator 24 has a stator core 32 and a stator armature winding 34. The stator core 32 constitutes a part of a magnetic path through which magnetic flux flows. The stator core 32 is formed in a hollow cylindrical shape having a hole 36 at the center of the shaft. As shown in FIG. 3, the stator core 32 includes a plurality of slots 38 and a plurality of teeth 40. Each slot 38 opens radially inward with respect to the core body and extends along the axial direction. The slots 38 are arranged at predetermined intervals in the circumferential direction. The slot 38 accommodates the straight portion of the stator armature winding 34. The stator armature winding 34 is wound around the teeth 40 of the stator core 32. The stator armature winding 34 has three-phase U, V, and W phase windings.
ロータ26は、ステータコア32の孔36に回転可能に収容されている。ロータ26は、ステータ24に対して径方向内側に所定のエアギャップを空けて対向して配置されている。ロータ26は、ハウジング28に軸受30を介して回転可能に支持されている。ロータ26は、ロータコア42と、ロータ界磁巻線44と、を有している。ロータコア42は、磁束が流れる磁路の一部を構成する。
The rotor 26 is rotatably accommodated in the hole 36 of the stator core 32. The rotor 26 is disposed to face the stator 24 with a predetermined air gap inward in the radial direction. The rotor 26 is rotatably supported by the housing 28 via a bearing 30. The rotor 26 has a rotor core 42 and a rotor field winding 44. The rotor core 42 constitutes a part of a magnetic path through which magnetic flux flows.
ロータコア42は、ボス部46と、複数の突極部48と、を有している。ボス部46は、円筒状に形成されており、その中空孔にロータシャフト50が嵌挿された部位である。各突極部48は、ボス部46から径方向外側へ向けて突出する部位である。突極部48は、周方向において所定間隔で配置されている。突極部48は、界磁極(具体的には、N極及びS極)をなす主磁極である。ロータ界磁巻線44は、ロータコア42の突極部48にその回りを囲むように巻装されている。ロータ界磁巻線44は、突極部48ごとに集中的に巻かれている。
The rotor core 42 has a boss portion 46 and a plurality of salient pole portions 48. The boss portion 46 is formed in a cylindrical shape, and is a portion where the rotor shaft 50 is inserted into the hollow hole. Each salient pole portion 48 is a portion that protrudes radially outward from the boss portion 46. The salient pole portions 48 are arranged at predetermined intervals in the circumferential direction. The salient pole portion 48 is a main pole that forms a field pole (specifically, an N pole and an S pole). The rotor field winding 44 is wound around the salient pole portion 48 of the rotor core 42 so as to surround it. The rotor field winding 44 is intensively wound for each salient pole portion 48.
回転電機20は、整流素子52を備えている。整流素子52は、ロータ界磁巻線44の両端に接続されるダイオードである。整流素子52のアノード端子はロータ界磁巻線44の一端に接続されていると共に、整流素子52のカソード端子はロータ界磁巻線44の他端に接続されている。整流素子52は、ロータ界磁巻線44に誘起された交流電圧を半波整流して、ロータ界磁巻線44に流れる電流の方向を一方向に限定する機能を有している。この整流素子52の機能により、各突極部48は、N極及びS極のうち何れか一方に励磁される。また、突極部48は、周方向においてN極の突極部48とS極の突極部48とが交互に並ぶよう励磁される。
The rotating electrical machine 20 includes a rectifying element 52. The rectifying element 52 is a diode connected to both ends of the rotor field winding 44. The anode terminal of the rectifying element 52 is connected to one end of the rotor field winding 44, and the cathode terminal of the rectifying element 52 is connected to the other end of the rotor field winding 44. The rectifying element 52 has a function of half-wave rectifying the AC voltage induced in the rotor field winding 44 and limiting the direction of the current flowing through the rotor field winding 44 to one direction. Due to the function of the rectifying element 52, each salient pole portion 48 is excited to one of the N pole and the S pole. Further, the salient pole portions 48 are excited such that the N pole salient pole portions 48 and the S pole salient pole portions 48 are alternately arranged in the circumferential direction.
回転電機20は、コンデンサ54を備えている。コンデンサ54は、一端が整流素子52のアノード端子及びロータ界磁巻線44の一端に接続されていると共に、他端がロータ界磁巻線44の両端の間に接続されているコンデンサであって、電荷を蓄えることが可能な受動素子である。コンデンサ54は、容量Cを有している。尚、コンデンサ54の他端とロータ界磁巻線44との接続位置は、ロータ界磁巻線44を界磁極に流れる磁束の漏れ磁束や高調波磁束などの影響を受け易い部分と受け難い部分とに分ける境界位置であることが望ましい。ロータ界磁巻線44と整流素子52とコンデンサ54とは、極ごと或いは極対ごとに回路配置されてもよいし、全体で一セットでもよい。
The rotating electrical machine 20 includes a capacitor 54. The capacitor 54 has one end connected to the anode terminal of the rectifying element 52 and one end of the rotor field winding 44, and the other end connected between both ends of the rotor field winding 44. , A passive element capable of storing electric charge. The capacitor 54 has a capacitance C. It should be noted that the connection position between the other end of the capacitor 54 and the rotor field winding 44 is a portion that is easily affected by a leakage flux or a harmonic flux of a magnetic flux that flows through the rotor field winding 44 to the field pole, and a portion that is difficult to receive. It is desirable that the boundary position be divided into The rotor field winding 44, the rectifying element 52, and the capacitor 54 may be arranged in a circuit for each pole or for each pole pair, or may be one set as a whole.
ロータ界磁巻線44は、直列接続された複数個nの界磁巻線部44-1,44-2,・・・,44-nを有している。以下、本実施形態において、ロータ界磁巻線44は、2つの界磁巻線部を有するものとし、それぞれ第1界磁巻線部44-1及び第2界磁巻線部44-2と称す。第1界磁巻線部44-1と第2界磁巻線部44-2との接続点は、コンデンサ54の他端に接続されている。
The rotor field winding 44 has a plurality of n field winding portions 44-1, 44-2,..., 44-n connected in series. Hereinafter, in the present embodiment, the rotor field winding 44 is assumed to have two field winding portions, and each of the first field winding portion 44-1 and the second field winding portion 44-2. Call it. A connection point between the first field winding portion 44-1 and the second field winding portion 44-2 is connected to the other end of the capacitor 54.
第1界磁巻線部44-1は、整流素子52のカソード端子とコンデンサ54の他端との間に接続されている部位である。また、第2界磁巻線部44-2は、コンデンサ54に並列に接続され、コンデンサ54の一端(すなわち、整流素子52のアノード端子)とコンデンサ54の他端との間に両端が接続されている部位である。コンデンサ54は、第1界磁巻線部44-1の両端に発生する電圧e1の方向と第2界磁巻線部44-2の両端に発生する電圧e2の方向とが互いに逆方向となって両電圧e1,e2が相互に打ち消し合うときに、その打ち消し合う電圧分の励磁エネルギを蓄える機能を有している。
The first field winding portion 44-1 is a portion connected between the cathode terminal of the rectifying element 52 and the other end of the capacitor 54. The second field winding portion 44-2 is connected in parallel to the capacitor 54, and both ends are connected between one end of the capacitor 54 (that is, the anode terminal of the rectifying element 52) and the other end of the capacitor 54. It is a part. In the capacitor 54, the direction of the voltage e1 generated at both ends of the first field winding portion 44-1 and the direction of the voltage e2 generated at both ends of the second field winding portion 44-2 are opposite to each other. When the two voltages e1 and e2 cancel each other, the excitation energy corresponding to the canceling voltage is stored.
第1界磁巻線部44-1と第2界磁巻線部44-2との接続点は、ロータ界磁巻線44を漏れ磁束や高調波磁束などの影響を受け易い部分と受け難い部分とに分ける箇所に設定されていればよい。第1界磁巻線部44-1は、インダクタンスL1を有している。第2界磁巻線部44-2は、インダクタンスL2を有している。第1界磁巻線部44-1は、突極部48の径方向においてステータコア32に近い側に配置されている。第2界磁巻線部44-2は、突極部48の径方向においてステータコア32から遠い側に配置されている。すなわち、第1界磁巻線部44-1は、第2界磁巻線部44-2に比してステータコア32に近い側(すなわち、径方向外側)に配置されている。
The connection point between the first field winding portion 44-1 and the second field winding portion 44-2 is unlikely to receive the rotor field winding 44 as a portion that is susceptible to leakage magnetic flux or harmonic magnetic flux. What is necessary is just to set to the part divided into a part. The first field winding portion 44-1 has an inductance L1. The second field winding portion 44-2 has an inductance L2. The first field winding portion 44-1 is disposed on the side close to the stator core 32 in the radial direction of the salient pole portion. The second field winding portion 44-2 is disposed on the far side from the stator core 32 in the radial direction of the salient pole portion 48. That is, the first field winding portion 44-1 is disposed closer to the stator core 32 (ie, radially outward) than the second field winding portion 44-2.
尚、第1界磁巻線部44-1及び第2界磁巻線部44-2の配置は、例えば、ロータコア42の突極部48に第2界磁巻線部44-2を巻装した後にその第2界磁巻線部44-2の径方向外側に第1界磁巻線部44-1を巻装することにより実現されるものであってよい。
The first field winding portion 44-1 and the second field winding portion 44-2 are arranged, for example, by winding the second field winding portion 44-2 around the salient pole portion 48 of the rotor core 42. Thereafter, the first field winding portion 44-1 may be wound around the radially outer side of the second field winding portion 44-2.
図1に示す如く、回転電機20には、電源22に並列に接続されるインバータ回路60が接続されている。インバータ回路60は、ステータ電機子巻線34に接続されており、ステータ電機子巻線34の各相U,V,Wの相巻線に電圧印加を行う回路である。インバータ回路60は、電源22の両端間に直列接続される上アーム素子62及び下アーム素子64を有している。上アーム素子62及び下アーム素子64は、各相U,V,Wの相巻線に対応して3組設けられている。
As shown in FIG. 1, the rotating electrical machine 20 is connected to an inverter circuit 60 connected in parallel to the power source 22. The inverter circuit 60 is connected to the stator armature winding 34 and is a circuit that applies voltage to the phase windings of the phases U, V, and W of the stator armature winding 34. The inverter circuit 60 includes an upper arm element 62 and a lower arm element 64 that are connected in series between both ends of the power supply 22. Three sets of the upper arm element 62 and the lower arm element 64 are provided corresponding to the phase windings of the phases U, V, and W.
各アーム素子62,64はそれぞれ、絶縁ゲート型バイポーラトランジスタ(すなわちIGBT)やMOS電界効果トランジスタなどのスイッチング素子66と、フライホイルダイオード68と、により構成されている。各相U,V,Wそれぞれの上アーム素子62のスイッチング素子66と下アーム素子64のスイッチング素子66とは、互いに逆相でオン/オフされる。各相U,V,Wの上アーム素子62のスイッチング素子66は、所定位相差を伴って所定期間だけオンされる。
Each of the arm elements 62 and 64 includes a switching element 66 such as an insulated gate bipolar transistor (that is, IGBT) or a MOS field effect transistor, and a flywheel diode 68. The switching element 66 of the upper arm element 62 and the switching element 66 of the lower arm element 64 of each phase U, V, W are turned on / off in opposite phases. The switching element 66 of the upper arm element 62 of each phase U, V, W is turned on for a predetermined period with a predetermined phase difference.
インバータ回路60の両端には、平滑コンデンサ70が接続されている。平滑コンデンサ70は、電源22の両端に接続されており、電源22に並列に接続されている。平滑コンデンサ70は、インバータ回路60の両端間に生じる電圧を平滑化するためのものである。
Smoothing capacitors 70 are connected to both ends of the inverter circuit 60. The smoothing capacitor 70 is connected to both ends of the power source 22 and is connected to the power source 22 in parallel. The smoothing capacitor 70 is for smoothing the voltage generated between both ends of the inverter circuit 60.
インバータ回路60には、制御回路72が接続されている。制御回路72は、インバータ回路60の各アーム素子62,64のスイッチング素子66に接続されており、そのインバータ回路60を制御する回路である。制御回路72には、ロータ26の回転位置を検出するための位置センサ74が接続されている。制御回路72は、位置センサ74から得られたロータ26の回転位置に基づいて、ステータ電機子巻線34に所望の電流が流れるようにインバータ回路60を駆動する。インバータ回路60は、制御回路72からの駆動指令に従ってスイッチング素子66が駆動されることにより、ステータ電機子巻線34から所望の回転磁界が発生するように各相U,V,Wの相巻線に電圧印加を行う。
A control circuit 72 is connected to the inverter circuit 60. The control circuit 72 is connected to the switching elements 66 of the arm elements 62 and 64 of the inverter circuit 60 and is a circuit that controls the inverter circuit 60. A position sensor 74 for detecting the rotational position of the rotor 26 is connected to the control circuit 72. The control circuit 72 drives the inverter circuit 60 based on the rotational position of the rotor 26 obtained from the position sensor 74 so that a desired current flows through the stator armature winding 34. Inverter circuit 60 has phase windings of U, V, and W so that a desired rotating magnetic field is generated from stator armature winding 34 when switching element 66 is driven in accordance with a drive command from control circuit 72. Voltage is applied to
次に、本実施形態の回転電機20の動作について説明する。
Next, the operation of the rotating electrical machine 20 of this embodiment will be described.
制御回路72は、ロータ界磁巻線44に界磁電流を誘起するために、回転電機20に回転トルクを発生させるための電流である基本波成分(すなわち同期電流)とは別に、ロータコア42を励磁させるための電流である励磁成分をステータ電機子巻線34に通電させる。すなわち、制御回路72は、回転トルク発生用の基本波成分とその基本波成分に比して周期が短いロータ励磁用の励磁成分とを重畳した電流がステータ電機子巻線34に流れるように、インバータ回路60を制御する。制御回路72は、基本波成分及び励磁成分それぞれの振幅及び周期をそれぞれ独立して制御する。
In order to induce a field current in the rotor field winding 44, the control circuit 72 controls the rotor core 42 separately from the fundamental wave component (that is, a synchronous current) that is a current for generating a rotating torque in the rotating electrical machine 20. An excitation component, which is a current for excitation, is applied to the stator armature winding 34. That is, the control circuit 72 causes the stator armature winding 34 to have a current in which a fundamental wave component for generating rotational torque and an excitation component for rotor excitation whose cycle is shorter than that of the fundamental wave component flow. The inverter circuit 60 is controlled. The control circuit 72 independently controls the amplitude and period of each of the fundamental wave component and the excitation component.
ステータ電機子巻線34に流す電流は、図4に示す如く、上記の基本波成分と上記の励磁成分とを重畳した、電流の和である。図5及び図6に示す如く、基本波成分は、時間経過に伴って正弦波状に変化する電流である。ロータ励磁用の励磁成分は、基本波成分に比して短い周期(すなわち、高い周波数)の電流であると共に、基本波成分に比して小さい振幅の電流である。この励磁成分は、基本波成分に対して脈動する電流であって、時間経過に伴って連続的に変化する高調波成分である。
As shown in FIG. 4, the current flowing through the stator armature winding 34 is the sum of currents obtained by superimposing the fundamental wave component and the excitation component. As shown in FIGS. 5 and 6, the fundamental wave component is a current that changes in a sine wave shape with time. The excitation component for exciting the rotor is a current having a short period (that is, a high frequency) compared to the fundamental wave component, and a current having a smaller amplitude than the fundamental wave component. This excitation component is a current that pulsates with respect to the fundamental wave component, and is a harmonic component that continuously changes over time.
ロータ励磁用の高調波成分は、基本波成分に対して1/2周期を有する定在波を包絡線とする。ロータ励磁用の高調波成分の、基本波成分に対する位相は、高調波成分の最大振幅が基本波成分の必要なタイミングを避けて生じるように設定されている。例えば、高調波成分は、図5に示す如く、その最大振幅が基本波成分の最大振幅時を避けたタイミングで生じるように位相調整されていてよい。また、高調波成分は、図6に示す如く、その最大振幅が基本波成分の最大振幅時に生じるように位相調整されていてよい。ロータ励磁用の高調波成分は、基本波成分の振幅に比して小さくなるように振幅調整されている。
The harmonic component for exciting the rotor is a standing wave having a half period with respect to the fundamental component as an envelope. The phase of the harmonic component for exciting the rotor with respect to the fundamental component is set so that the maximum amplitude of the harmonic component is generated avoiding the required timing of the fundamental component. For example, as shown in FIG. 5, the harmonic component may be phase-adjusted so that the maximum amplitude is generated at a timing avoiding the maximum amplitude of the fundamental wave component. Further, as shown in FIG. 6, the harmonic component may be phase-adjusted so that the maximum amplitude is generated at the maximum amplitude of the fundamental wave component. The amplitude of the harmonic component for exciting the rotor is adjusted so as to be smaller than the amplitude of the fundamental component.
制御回路72の駆動指令に従ってインバータ回路60からステータ電機子巻線34の各相巻線に基本波電流が流れると、ロータ26を回転させる回転磁界が発生する。また、そのステータ電機子巻線34の各相巻線に高調波電流が流れると、その高調波電流に応じた交流磁界が発生して励磁磁束が発生する。この場合、励磁磁束がロータコア42の突極部48に鎖交し、ロータ界磁巻線44に交流電圧が発生して界磁電流が誘起される。ステータ電機子巻線34の基本波電流とロータ界磁巻線44の界磁電流とにより、回転電機20を回転させる回転トルクが発生する。
When a fundamental current flows from the inverter circuit 60 to each phase winding of the stator armature winding 34 according to the drive command of the control circuit 72, a rotating magnetic field that rotates the rotor 26 is generated. Further, when a harmonic current flows through each phase winding of the stator armature winding 34, an alternating magnetic field corresponding to the harmonic current is generated and an exciting magnetic flux is generated. In this case, the exciting magnetic flux is linked to the salient pole portion 48 of the rotor core 42, and an AC voltage is generated in the rotor field winding 44 to induce a field current. A rotational torque for rotating the rotating electrical machine 20 is generated by the fundamental wave current of the stator armature winding 34 and the field current of the rotor field winding 44.
ロータ界磁巻線44の両端には整流素子52が接続されており、ロータ界磁巻線44は整流素子52を介して短絡されている。このため、上記の如くロータ界磁巻線44に交流電圧が発生しても、そのロータ界磁巻線44には電流が一方向にのみ流れることで、ロータコア42が所定方向へ励磁されてロータコア42に界磁極(具体的には、N極及びS極)が形成される。この界磁極を形成するための界磁束は、ステータ電機子巻線34へのロータ励磁用の励磁電流の通電とロータ界磁巻線44での電流の整流とにより形成される。
A rectifying element 52 is connected to both ends of the rotor field winding 44, and the rotor field winding 44 is short-circuited via the rectifying element 52. Therefore, even when an AC voltage is generated in the rotor field winding 44 as described above, the current flows through the rotor field winding 44 only in one direction, so that the rotor core 42 is excited in a predetermined direction and the rotor core 42 is excited. Field poles (specifically, N pole and S pole) are formed at 42. The field flux for forming this field pole is formed by energizing the stator armature winding 34 with an exciting current for exciting the rotor and rectifying the current in the rotor field winding 44.
ところで、ロータ界磁巻線44は、インダクタンスを有しており、各極のロータ界磁巻線44は各々の部分で部分インダクタンスを構成する。界磁極に流れる磁束には漏れ磁束や高調波磁束などがあるので、ロータ界磁巻線44の位置によって貫く磁束量やその向きは互いに異なるものとなり、ロータ界磁巻線44の各部分インダクタンスに発生する電圧の方向は一様でなく時間やロータ回転位置によって変化する。
Incidentally, the rotor field winding 44 has an inductance, and the rotor field winding 44 of each pole constitutes a partial inductance at each portion. Since the magnetic flux flowing in the field pole includes leakage flux, harmonic flux, and the like, the amount and direction of the magnetic flux penetrating depending on the position of the rotor field winding 44 are different from each other. The direction of the generated voltage is not uniform and varies depending on time and rotor rotational position.
具体的には、2つの界磁巻線部44-1,44-2からなるロータ界磁巻線44に発生する電圧の方向としては、図7に示す如く4つのパターンがある。この4つのパターンは、第1界磁巻線部44-1に発生する電圧e1の方向と第2界磁巻線部44-2に発生する電圧e2の方向とが同方向である場合(パターン1及びパターン4)と、逆方向である場合(パターン2及びパターン3)と、である。パターン2及びパターン3に示す如くロータ界磁巻線44の各部分インダクタンスに相互に打ち消し合う電圧が発生すると、そのロータ界磁巻線44の全体電圧が下がって励磁電流が減少し、励磁エネルギの損失が発生するおそれがある。
Specifically, the direction of the voltage generated in the rotor field winding 44 composed of the two field winding portions 44-1 and 44-2 has four patterns as shown in FIG. In these four patterns, the direction of the voltage e1 generated in the first field winding portion 44-1 and the direction of the voltage e2 generated in the second field winding portion 44-2 are the same direction (pattern 1 and pattern 4), and in the opposite direction (pattern 2 and pattern 3). When a voltage canceling each other is generated in each partial inductance of the rotor field winding 44 as shown in the pattern 2 and the pattern 3, the entire voltage of the rotor field winding 44 is lowered, the excitation current is reduced, and the excitation energy is reduced. There is a risk of loss.
これに対して、本実施形態の回転電機20においては、図8に示す如く、ロータ界磁巻線44の両端に整流素子52が接続されていると共に、整流素子52のアノード端子とロータ界磁巻線44の中間部分との間にコンデンサ54が接続されている。すなわち、一端が整流素子52のアノード端子に接続され、他端がロータ界磁巻線44の両端の間に接続されるコンデンサ54が設けられている。
On the other hand, in the rotating electrical machine 20 of the present embodiment, as shown in FIG. 8, the rectifying element 52 is connected to both ends of the rotor field winding 44, and the anode terminal of the rectifying element 52 and the rotor field A capacitor 54 is connected between the middle portion of the winding 44. That is, a capacitor 54 having one end connected to the anode terminal of the rectifying element 52 and the other end connected between both ends of the rotor field winding 44 is provided.
かかる回転電機20の構造においては、図9に示す如く、ロータ界磁巻線44におけるコンデンサ54との接続点で分かれた第1界磁巻線部44-1と第2界磁巻線部44-2とで、印加電圧方向が互いに逆方向となって両電圧e1,e2が相互に打ち消し合うと共に、それらの電圧e1,e2が、各界磁巻線部44-1,44-2を整流素子52との接続部側からコンデンサ54の他端との接続部側へ電流が流れるように印加される場合(パターン2)、それらの各界磁巻線部44-1,44-2を流れた電流がコンデンサ54に向けて流れる。この場合は、第1界磁巻線部44-1と第2界磁巻線部44-2とで相互に打ち消し合う電圧分の励磁エネルギがコンデンサ54に蓄えられて、コンデンサ54が充電される。
In the structure of the rotating electrical machine 20, as shown in FIG. 9, the first field winding portion 44-1 and the second field winding portion 44 are separated at the connection point between the rotor field winding 44 and the capacitor 54. -2, the applied voltage directions are opposite to each other so that the voltages e1 and e2 cancel each other, and the voltages e1 and e2 cause the field windings 44-1 and 44-2 to rectify. 52 is applied so that a current flows from the connection portion side to the connection portion side to the other end of the capacitor 54 (pattern 2), the current flowing through each of the field winding portions 44-1 and 44-2 Flows toward the capacitor 54. In this case, excitation energy corresponding to the voltage canceling each other between the first field winding portion 44-1 and the second field winding portion 44-2 is stored in the capacitor 54, and the capacitor 54 is charged. .
上記したコンデンサ54の充電後、図10に示す如く、第1界磁巻線部44-1の電圧方向と第2界磁巻線部44-2の電圧方向とが切り替わって、それらの電圧e1,e2が、相互に打ち消し合う方向で、各界磁巻線部44-1,44-2をコンデンサ54の他端との接続部側から整流素子52との接続部側へ電流が流れるように印加される場合(パターン3)、コンデンサ54側から各界磁巻線部44-1,44-2に電流が流れる。この場合は、コンデンサ54に蓄えられていたエネルギが各界磁巻線部44-1,44-2へ放出されて、コンデンサ54が放電される。そして、コンデンサ54の充電と放電とが繰り返される。
After charging the capacitor 54, the voltage direction of the first field winding portion 44-1 and the voltage direction of the second field winding portion 44-2 are switched as shown in FIG. , E2 are applied in such a direction that the field winding portions 44-1 and 44-2 flow in a direction in which they cancel each other so that a current flows from the connection portion side to the other end of the capacitor 54 to the connection portion side to the rectifying element 52. In the case (pattern 3), a current flows from the capacitor 54 side to each of the field winding portions 44-1 and 44-2. In this case, the energy stored in the capacitor 54 is released to the field winding portions 44-1 and 44-2, and the capacitor 54 is discharged. Then, charging and discharging of the capacitor 54 are repeated.
このように、漏れ磁束や高調波磁束などに起因して第1界磁巻線部44-1に発生する電圧e1と第2界磁巻線部44-2に発生する電圧e2とが相互に打ち消し合うときに、ロータ界磁巻線44の全体に作用する電圧は下がるが、その相互に打ち消し合う電圧分の励磁エネルギはコンデンサ54に蓄えられる。そして、そのコンデンサ54の充電後に上記の電圧方向が切り替わったときに、そのコンデンサ54に蓄えられていたエネルギがロータ界磁巻線44へ放出されて、ロータコア42を励磁する励磁電流に変換される。
As described above, the voltage e1 generated in the first field winding portion 44-1 and the voltage e2 generated in the second field winding portion 44-2 due to leakage magnetic flux, harmonic magnetic flux and the like are mutually When canceling each other, the voltage acting on the entire rotor field winding 44 decreases, but the excitation energy corresponding to the mutually canceling voltages is stored in the capacitor 54. When the voltage direction is switched after the capacitor 54 is charged, the energy stored in the capacitor 54 is released to the rotor field winding 44 and converted into an excitation current that excites the rotor core 42. .
従って、本実施形態の回転電機20によれば、ロータ界磁巻線44の各界磁巻線部44-1,44-2に相互に打ち消し合う方向の電圧が発生するとき、ロータ界磁巻線44で発生した励磁エネルギを効率良く励磁電流に変換することで、界磁電流を確保することができる。このため、ロータ界磁巻線44の各界磁巻線部44-1,44-2に相互に打ち消し合う方向の電圧が発生するときの励磁電流の減少に伴う励磁エネルギ損失の発生を防止することができ、それらの電圧が相互に打ち消し合う事態が生じても、ロータコア42を効率良く励磁することができる。
Therefore, according to the rotating electrical machine 20 of the present embodiment, when a voltage in a direction canceling each other is generated in each field winding portion 44-1 and 44-2 of the rotor field winding 44, the rotor field winding A field current can be secured by efficiently converting the excitation energy generated at 44 into an excitation current. For this reason, it is possible to prevent the occurrence of excitation energy loss due to a decrease in excitation current when a voltage in a direction canceling each other is generated in each field winding portion 44-1 and 44-2 of the rotor field winding 44. Thus, even when the voltages cancel each other, the rotor core 42 can be excited efficiently.
また、上記の如く界磁電流が確保されるので、ロータコア42に界磁極を形成するうえで必要な、ステータ電機子巻線34に流すステータ電流として基本波成分に重畳させる高調波成分を小さい振幅に抑えることができる。このため、回転電機20の構造によれば、高調波成分の振幅が比較的大きいときに比べて、トルクリップルを低減することができる(図4参照)。
Further, since the field current is ensured as described above, the harmonic component to be superimposed on the fundamental wave component as the stator current flowing through the stator armature winding 34, which is necessary for forming the field pole in the rotor core 42, has a small amplitude. Can be suppressed. For this reason, according to the structure of the rotary electric machine 20, torque ripple can be reduced compared with the case where the amplitude of a harmonic component is comparatively large (refer FIG. 4).
また、回転電機20においては、ロータ界磁巻線44の第1界磁巻線部44-1が突極部48の径方向においてステータコア32に近い側に配置されていると共に、第2界磁巻線部44-2が突極部48の径方向においてステータコア32から遠い側に配置されている。ロータコア42の突極部48を貫く磁束には漏れ磁束などがあるので、ロータ界磁巻線44の位置によって貫く磁束量やその向きは互いに異なるものとなり得る。この現象は特に高調波磁束において顕著であり、ロータ界磁巻線44のステータコア32に近い側と遠い側(すなわちロータコア42のボス部46側)とで磁束量の差が大きい。このため、上記した回転電機20の構造によれば、その差の分だけコンデンサ54に蓄えるエネルギを大きくすることができ、効果的に界磁電流を得ることができる。
In the rotating electrical machine 20, the first field winding portion 44-1 of the rotor field winding 44 is disposed on the side closer to the stator core 32 in the radial direction of the salient pole portion 48 and the second field magnet. The winding portion 44-2 is disposed on the side far from the stator core 32 in the radial direction of the salient pole portion. Since the magnetic flux penetrating the salient pole portion 48 of the rotor core 42 includes a leakage magnetic flux, the amount of magnetic flux penetrating and the direction thereof can be different depending on the position of the rotor field winding 44. This phenomenon is particularly noticeable in the harmonic magnetic flux, and there is a large difference in the amount of magnetic flux between the side close to the stator core 32 and the side far from the stator core 32 of the rotor field winding 44 (that is, the boss portion 46 side of the rotor core 42). For this reason, according to the structure of the rotary electric machine 20 described above, the energy stored in the capacitor 54 can be increased by the difference, and a field current can be obtained effectively.
また、回転電機20において、ロータ界磁巻線44の第1界磁巻線部44-1とコンデンサ54とは、共振回路を構成する。以下、この第1界磁巻線部44-1とコンデンサ54とからなる共振回路を第1共振回路80と称す。第1共振回路80は、第1共振周波数f1を有している。第1共振周波数f1は、第1界磁巻線部44-1のインダクタンスL1とコンデンサ54の容量Cとに基づいて次式(1)に従って算出される。
In the rotating electrical machine 20, the first field winding portion 44-1 of the rotor field winding 44 and the capacitor 54 constitute a resonance circuit. Hereinafter, the resonance circuit including the first field winding portion 44-1 and the capacitor 54 is referred to as a first resonance circuit 80. The first resonance circuit 80 has a first resonance frequency f1. The first resonance frequency f1 is calculated according to the following equation (1) based on the inductance L1 of the first field winding portion 44-1 and the capacitance C of the capacitor 54.
また、ロータ界磁巻線44の第2界磁巻線部44-2とコンデンサ54とは、共振回路を構成する。以下、この第2界磁巻線部44-2とコンデンサ54とからなる共振回路を第2共振回路82と称す。第2共振回路82は、第2共振周波数f2を有している。第2共振周波数f2は、第2界磁巻線部44-2のインダクタンスL2とコンデンサ54の容量Cとに基づいて次式(2)に従って算出される。
The second field winding portion 44-2 of the rotor field winding 44 and the capacitor 54 constitute a resonance circuit. Hereinafter, the resonance circuit composed of the second field winding portion 44-2 and the capacitor 54 is referred to as a second resonance circuit 82. The second resonance circuit 82 has a second resonance frequency f2. The second resonance frequency f2 is calculated according to the following equation (2) based on the inductance L2 of the second field winding portion 44-2 and the capacitance C of the capacitor 54.
f1=1/(2×π×(L1×C)1/2) ・・・(1)
f2=1/(2×π×(L2×C)1/2) ・・・(2) f1 = 1 / (2 × π × (L1 × C) 1/2 ) (1)
f2 = 1 / (2 × π × (L2 × C) 1/2 ) (2)
f2=1/(2×π×(L2×C)1/2) ・・・(2) f1 = 1 / (2 × π × (L1 × C) 1/2 ) (1)
f2 = 1 / (2 × π × (L2 × C) 1/2 ) (2)
第1界磁巻線部44-1のインダクタンスL1及びコンデンサ54の容量Cは、ステータ電機子巻線34に流す電流としての基本波成分に対して重畳される、ロータ励磁用の連続的に時間変化する高調波成分の周波数に対して共振関係にある。又は、第2界磁巻線部44-2のインダクタンスL2及びコンデンサ54の容量Cは、その高調波成分の周波数に対して共振関係にある。すなわち、第1共振周波数f1及び第2共振周波数f2の少なくとも一方は、高調波成分の周波数に等しい或いはその高調波成分の周波数付近にある。尚、第1共振周波数f1及び第2共振周波数f2の双方が、高調波成分の周波数に等しい或いはその高調波成分の周波数付近にあることとしてもよい。
The inductance L1 of the first field winding portion 44-1 and the capacitance C of the capacitor 54 are superimposed on the fundamental wave component as the current flowing through the stator armature winding 34, and are continuously timed for rotor excitation. Resonant relationship with the frequency of the changing harmonic component. Alternatively, the inductance L2 of the second field winding portion 44-2 and the capacitance C of the capacitor 54 are in a resonance relationship with the frequency of the harmonic component. That is, at least one of the first resonance frequency f1 and the second resonance frequency f2 is equal to or close to the frequency of the harmonic component. Note that both the first resonance frequency f1 and the second resonance frequency f2 may be equal to or close to the frequency of the harmonic component.
また、第1共振周波数f1と第2共振周波数f2とを互いに異なるように設定することで共振周波数帯を広げることとしてもよい。この構成によれば、高調波成分を共振回路80,82の共振周波数f1,f2に合わせ易くすることができる。また、この場合において、両共振周波数f1,f2が互いに近似することでそれら2つの共振周波数f1,f2の間の周波数でも共振が生じるときは、高調波成分の周波数は、それらの第1共振周波数f1と第2共振周波数f2との間にあってもよく、この構成によれば、高調波成分を両共振周波数f1,f2の間に合わせ易くすることができる。
Also, the resonance frequency band may be expanded by setting the first resonance frequency f1 and the second resonance frequency f2 to be different from each other. According to this configuration, the harmonic component can be easily matched with the resonance frequencies f1 and f2 of the resonance circuits 80 and 82. Further, in this case, when both resonance frequencies f1 and f2 are approximated to each other and resonance occurs even at a frequency between the two resonance frequencies f1 and f2, the frequency of the harmonic component is the first resonance frequency thereof. The frequency may be between f1 and the second resonance frequency f2, and according to this configuration, the harmonic component can be easily matched between the resonance frequencies f1 and f2.
このように第1共振周波数f1及び第2共振周波数f2の少なくとも何れか一つと高調波成分の周波数とが共振関係にある構成においては、共振関係にない構成に比べて、ステータ電機子巻線34に基本波成分と高調波成分とを重畳した電流が流れたときに、各極のロータ界磁巻線44に誘起される界磁電流が流れ易くなる。従って、回転電機20によれば、ロータ界磁巻線44の励磁時におけるインピーダンスを低減することができ、そのロータ界磁巻線44の励磁性を向上させることができる。
As described above, in the configuration in which at least one of the first resonance frequency f1 and the second resonance frequency f2 and the frequency of the harmonic component are in a resonance relationship, the stator armature winding 34 is compared to the configuration in which there is no resonance relationship. When a current in which a fundamental wave component and a harmonic component are superimposed on each other flows, a field current induced in the rotor field winding 44 of each pole easily flows. Therefore, according to the rotating electrical machine 20, the impedance at the time of excitation of the rotor field winding 44 can be reduced, and the excitation performance of the rotor field winding 44 can be improved.
ロータ界磁巻線44の励磁時におけるインピーダンスが低いときは、ロータ励磁用の高調波成分の振幅が小さくても、ロータ界磁巻線44の励磁が適切に行われる。すなわち、ロータ界磁巻線44に励磁電流を適切に誘起するうえで、ロータ励磁用の高調波成分の振幅が小さくても十分である。このため、本実施形態の回転電機20によれば、ステータ電機子巻線34に流す電流として基本波成分に重畳する高調波成分の振幅を抑えることができるので、ロータ励磁用の高調波成分に起因するトルクリップルを低減することができる。
When the impedance of the rotor field winding 44 is low, the rotor field winding 44 is appropriately excited even if the amplitude of the harmonic component for exciting the rotor is small. That is, in order to induce the exciting current appropriately in the rotor field winding 44, it is sufficient that the amplitude of the harmonic component for exciting the rotor is small. For this reason, according to the rotating electrical machine 20 of the present embodiment, the amplitude of the harmonic component superimposed on the fundamental wave component as the current flowing through the stator armature winding 34 can be suppressed, so that the harmonic component for rotor excitation can be reduced. The resulting torque ripple can be reduced.
また、回転電機20において、ロータ励磁用の高調波成分は、基本波成分とは独立して制御される。この高調波成分は、基本波成分に対して1/2周期を有する定在波を包絡線とする。ロータ励磁用の高調波成分の、基本波成分に対する位相は、高調波成分の最大振幅が基本波成分の必要なタイミングを避けて生じるように設定されている。このため、基本波成分による回転トルクの発生を適切に行いつつ、高調波成分によるロータ界磁巻線44の励磁を適切に行うことができる。更に、上記の高調波成分は、基本波成分の振幅に比して小さくなるように振幅調整されている。このため、基本波成分に重畳する高調波成分を定在波を包絡線として振幅調整することにより、ロータ界磁巻線44を励磁する励磁電流量を制御することができるので、その励磁電流量のコントロールを行い易くなっている。
In the rotating electrical machine 20, the harmonic component for exciting the rotor is controlled independently of the fundamental component. This harmonic component has a standing wave having a half period with respect to the fundamental component as an envelope. The phase of the harmonic component for exciting the rotor with respect to the fundamental component is set so that the maximum amplitude of the harmonic component is generated avoiding the required timing of the fundamental component. For this reason, it is possible to appropriately perform excitation of the rotor field winding 44 by the harmonic component while appropriately generating the rotational torque by the fundamental wave component. Further, the amplitude of the harmonic component is adjusted so as to be smaller than the amplitude of the fundamental component. Therefore, by adjusting the amplitude of the harmonic component superimposed on the fundamental wave component using the standing wave as an envelope, the amount of exciting current for exciting the rotor field winding 44 can be controlled. It is easy to control.
次に、制御回路72における高調波成分の生成手法について説明する。
制御回路72は、回転電機20の低回転(例えば0[rpm])から高回転(例えば15000[rpm]などのMAX[rpm])まで上記の高調波成分が基本波成分に重畳されるようにインバータ回路60を制御する。この制御回路72によるインバータ回路60の制御は、高調波成分が回転電機20の低回転から高回転まで共振回路80,82の共振周波数f1,f2の少なくとも何れかを含む所定周波数範囲内で基本波成分に重畳されるように行われる。この所定周波数範囲は、重畳高調波成分によってロータ界磁巻線44に流れる励磁電流又はその励磁電流により得られるトルクが所定値以上となる範囲であって、共振周波数f1,f2に対して例えば±40%の範囲内である。尚、所定周波数範囲は、好ましくは、共振周波数f1,f2に対して例えば±25%の範囲内である。 Next, a method for generating harmonic components in thecontrol circuit 72 will be described.
Thecontrol circuit 72 causes the above harmonic components to be superimposed on the fundamental component from a low rotation (for example, 0 [rpm]) to a high rotation (for example, MAX [rpm] such as 15000 [rpm]) of the rotating electrical machine 20. The inverter circuit 60 is controlled. The control of the inverter circuit 60 by the control circuit 72 is based on a fundamental wave within a predetermined frequency range in which the harmonic component includes at least one of the resonance frequencies f1 and f2 of the resonance circuits 80 and 82 from the low rotation to the high rotation of the rotating electrical machine 20. It is performed so as to be superimposed on the component. This predetermined frequency range is a range in which the excitation current flowing in the rotor field winding 44 due to the superimposed harmonic component or the torque obtained by the excitation current is equal to or greater than a predetermined value. It is within the range of 40%. The predetermined frequency range is preferably within a range of, for example, ± 25% with respect to the resonance frequencies f1 and f2.
制御回路72は、回転電機20の低回転(例えば0[rpm])から高回転(例えば15000[rpm]などのMAX[rpm])まで上記の高調波成分が基本波成分に重畳されるようにインバータ回路60を制御する。この制御回路72によるインバータ回路60の制御は、高調波成分が回転電機20の低回転から高回転まで共振回路80,82の共振周波数f1,f2の少なくとも何れかを含む所定周波数範囲内で基本波成分に重畳されるように行われる。この所定周波数範囲は、重畳高調波成分によってロータ界磁巻線44に流れる励磁電流又はその励磁電流により得られるトルクが所定値以上となる範囲であって、共振周波数f1,f2に対して例えば±40%の範囲内である。尚、所定周波数範囲は、好ましくは、共振周波数f1,f2に対して例えば±25%の範囲内である。 Next, a method for generating harmonic components in the
The
かかる制御処理によれば、低回転から高回転まで、基本波成分の周波数に関係なく上記の共振周波数f1,f2に近い周波数の高調波成分を基本波成分に重畳することができるので、ロータ界磁巻線44の励磁時におけるインピーダンスを低減して、そのロータ界磁巻線44の励磁性を向上させることができる。そして、低回転から高回転まで、ステータ電機子巻線34に流す電流である基本波成分に重畳する高調波成分の振幅を抑えることができるので、ロータ励磁用の高調波成分に起因するトルクリップルを低減することができる。
According to such control processing, harmonic components having frequencies close to the resonance frequencies f1 and f2 can be superimposed on the fundamental wave component regardless of the frequency of the fundamental wave component from low rotation to high rotation. The impedance at the time of excitation of the magnetic winding 44 can be reduced, and the excitation performance of the rotor field winding 44 can be improved. Since the amplitude of the harmonic component superimposed on the fundamental component, which is the current flowing through the stator armature winding 34, can be suppressed from low rotation to high rotation, the torque ripple caused by the harmonic component for rotor excitation Can be reduced.
具体的には、制御回路72は、ステータ電機子巻線34の三相の相巻線に電圧印加を行うインバータ回路60の制御を、PWM(Pulse Width Modulation)制御方式と矩形波制御方式とを切り替えながら行う。尚、PWM制御方式は、電流フィードバックを行う制御方式であって、トルク指令に従って生成される電圧指令と搬送波(例えば三角波)との比較によりパルス幅変調された多数のパルス電圧をインバータ回路60に向けて出力するものである。PWM制御方式は、制御応答性に優れた制御方式であり、回転電機20の低回転域から中回転域にかけて行われる。また、矩形波制御方式は、矩形波電圧の位相制御を行うことでトルクフィードバックを行う制御方式であって、一制御周期(すなわち、電気角360°)内で振幅が電気角180°ごとに最大値又は最小値に固定された一つの矩形波状の電圧をインバータ回路60に向けて出力するものである。矩形波制御方式は、回転電機20の中回転域から高回転域にかけて行われる。
Specifically, the control circuit 72 controls the inverter circuit 60 that applies a voltage to the three-phase winding of the stator armature winding 34 by using a PWM (Pulse Width Modulation) control method and a rectangular wave control method. Perform while switching. The PWM control system is a control system that performs current feedback, and directs a number of pulse voltages that are pulse-width modulated by comparing a voltage command generated according to a torque command and a carrier wave (for example, a triangular wave) to the inverter circuit 60. Output. The PWM control method is a control method excellent in control response, and is performed from the low rotation region to the middle rotation region of the rotating electrical machine 20. In addition, the rectangular wave control method is a control method that performs torque feedback by performing phase control of the rectangular wave voltage, and the amplitude is maximum every electrical angle 180 ° within one control period (ie, electrical angle 360 °). One rectangular wave voltage fixed to the value or the minimum value is output to the inverter circuit 60. The rectangular wave control method is performed from the middle rotation region to the high rotation region of the rotating electrical machine 20.
制御回路72は、PWM制御方式が実施されるPWM制御領域(低回転~中回転)では、ロータ界磁巻線44に励磁電流を誘起する高調波成分を生成するために、基本波成分と高調波成分とが重畳した電流が流れるようにインバータ回路60をPWM駆動する。また、矩形波制御方式が実施される矩形波制御領域(中回転~高回転)では、ロータ界磁巻線44に励磁電流を誘起する高調波成分を生成するために、後に詳述する高調波生成処理を実行する。
In the PWM control region (low rotation to medium rotation) in which the PWM control method is implemented, the control circuit 72 generates a harmonic component that induces an excitation current in the rotor field winding 44 and generates a harmonic component and a harmonic component. The inverter circuit 60 is PWM driven so that a current superimposed with the wave component flows. Further, in the rectangular wave control region (medium rotation to high rotation) where the rectangular wave control method is implemented, in order to generate a harmonic component that induces an excitation current in the rotor field winding 44, the harmonics described in detail later. Execute the generation process.
矩形波制御方式においてロータ界磁巻線44に励磁電流を誘起する磁束を発生させるうえでは、ステータ電機子巻線34に基本波成分に対して電気角90°遅れたタイミングで、その基本波成分のときと同じ方向の磁界を発生させるパルス状の電流を流すことが有効である。ある相(以下、基準相と称す。例えばV相)を基準とすると、上記のパルス状の電流を流すことが可能な相は、その基準相とは異なる互いに周方向に隣接する隣接二相(例えばU相及びW相)である。従って、基本波成分のときと同じ方向の磁界を発生させるパルス状の電流を流すうえでは、基準相の基本波成分に対して電気角90°遅れたタイミングで隣接二相にパルス電流を流すこととすればよい。
In generating a magnetic flux that induces an exciting current in the rotor field winding 44 in the rectangular wave control method, the fundamental wave component of the stator armature winding 34 is delayed by an electrical angle of 90 ° from the fundamental wave component. It is effective to flow a pulsed current that generates a magnetic field in the same direction as in the above. When a certain phase (hereinafter referred to as a reference phase, for example, a V phase) is used as a reference, the above-described phase in which a pulse-like current can flow is an adjacent two phases adjacent to each other in the circumferential direction, which is different from the reference phase ( For example, U phase and W phase). Therefore, in order to flow a pulsed current that generates a magnetic field in the same direction as that of the fundamental wave component, a pulse current is passed through two adjacent phases at a timing delayed by an electrical angle of 90 ° with respect to the fundamental wave component of the reference phase. And it is sufficient.
例えば、図11に示す如く、基準相であるV相の相巻線に流れる基本波成分のV相電流が最大であるときは、ステータ24とロータ26との間でそのV相電流に基づいて、時計回り方向の磁束φ1が発生すると共に、周方向に隣接して反時計回り方向の磁束φ2が発生する。すなわち、周方向に隣り合う磁束φ1,φ2が互いに反対方向に向く。この場合、ロータコア42の一方側(図11において左側)の突極部48は、矢印方向A1に磁化されてN極になり、他方側(図11において右側)の突極部48は、矢印方向A2に磁化されてS極になる。
For example, as shown in FIG. 11, when the V-phase current of the fundamental wave component flowing in the phase winding of the V-phase that is the reference phase is maximum, based on the V-phase current between the stator 24 and the rotor 26. A clockwise magnetic flux φ1 is generated, and a counterclockwise magnetic flux φ2 is generated adjacent to the circumferential direction. That is, the magnetic fluxes φ1 and φ2 adjacent in the circumferential direction are directed in opposite directions. In this case, the salient pole portion 48 on one side (left side in FIG. 11) of the rotor core 42 is magnetized in the arrow direction A1 to become the N pole, and the salient pole portion 48 on the other side (right side in FIG. 11) is in the arrow direction. It is magnetized by A2 and becomes the S pole.
尚、図11などにおいて、「U」,「V」,「W」は、ステータ電機子巻線34の各相を示し、また、それら各相に添えられた「+」,「-」は、ステータ電機子巻線34に流れる電流の方向を示す。例えば、V相に正電流が流れたとき、「V+」は、V相の相巻線に紙面手前方向に電流が流れることを示し、「V-」は、V相の相巻線に紙面奥側方向に電流が流れることを示す。尚、V相に負電流が流れたときは、この逆になる。
In FIG. 11 and the like, “U”, “V”, and “W” indicate phases of the stator armature winding 34, and “+” and “−” attached to the respective phases are The direction of the current flowing through the stator armature winding 34 is shown. For example, when a positive current flows in the V phase, “V +” indicates that the current flows in the V-phase winding, and “V−” indicates that the current flows in the V-phase winding. Indicates that current flows in the lateral direction. The opposite is true when a negative current flows in the V phase.
また、上記の磁束φ1,φ2が発生しているときでも、ステータ24とロータ26との間に、磁束φ1,φ2の双方に周方向に隣接してすなわち磁束φ1,φ2の周方向中央に磁束φ1の方向と同様の時計回り方向の磁束φpを生じさせて、ロータ界磁巻線44を励磁することが可能である。この時計回り方向の磁束φpは、基準相であるV相とは異なる、「U-」で示す相巻線に流れるパルス電流と、その「U-」の相巻線に周方向で隣接する「W+」で示す相巻線に流れるパルス電流と、により発生される。従って、磁束φ1,φ2と共に磁束φpを発生させることによりロータ界磁巻線44を励磁することができる。
Further, even when the magnetic fluxes φ1 and φ2 are generated, the magnetic flux between the stator 24 and the rotor 26 is adjacent to both the magnetic fluxes φ1 and φ2 in the circumferential direction, that is, in the circumferential center of the magnetic fluxes φ1 and φ2. It is possible to excite the rotor field winding 44 by generating a magnetic flux φp in the clockwise direction similar to the direction of φ1. This clockwise magnetic flux φp is different from the reference phase V phase, and the pulse current flowing in the phase winding indicated by “U−” and the “U−” phase winding adjacent in the circumferential direction “ And a pulse current flowing through the phase winding indicated by “W +”. Therefore, the rotor field winding 44 can be excited by generating the magnetic flux φp together with the magnetic fluxes φ1 and φ2.
また、基本波成分の電流は、電圧に対して力率分(例えば、0.7~0.9)だけ遅れ、所定電気角分(例えば、20°~45°)だけ遅れる。更に、パルス電流は、パルス電圧に対してほとんど遅れない。従って、隣接二相に流すパルス電流に相当する正負の電圧パルス対をそれらの隣接二相の基本波成分に付加する最適タイミングは、基準相の基本波成分の正電流中心に対応する矩形波電圧波形のオン期間の中心(正電圧中心)から上記した力率分の所定電気角分だけ遅れたタイミングである。
Also, the current of the fundamental wave component is delayed by a power factor (eg, 0.7 to 0.9) and delayed by a predetermined electrical angle (eg, 20 ° to 45 °) with respect to the voltage. Furthermore, the pulse current is hardly delayed with respect to the pulse voltage. Therefore, the optimum timing for adding positive and negative voltage pulse pairs corresponding to the pulse currents flowing in the adjacent two phases to the fundamental wave components of those adjacent two phases is a rectangular wave voltage corresponding to the positive current center of the fundamental wave component of the reference phase. The timing is delayed by a predetermined electrical angle corresponding to the power factor described above from the center (positive voltage center) of the ON period of the waveform.
しかし、隣接二相の相巻線に正負電圧パルス対を印加するうえでは、それらの隣接二相の基本波成分に対応する矩形波電圧が互いに異なる状態(すなわち、Hi状態とLo状態)にあることが必要である。基準相の正電圧中心から隣接二相の矩形波電圧が互いに異なる状態になるまでの電気角は、その基準相の正電圧中心からその隣接二相のうちの一相の基本波成分に対応する矩形波電圧波形のオン期間の始端までの30°である。従って、基準相の正電圧中心から電気角30°遅れたタイミング以降で正負電圧パルス対を隣接二相の相巻線に印加すれば、基本波成分に高調波成分を重畳することができ、ロータ界磁巻線44に励磁電流を誘起する磁束を発生させることが可能となる。すなわち、矩形波制御領域で、基準相の基本波成分の電流流通により生じる磁界と同じ方向の磁界を隣接二相で発生させることができ、ロータ界磁巻線44に励磁電流を誘起することができる。
However, in applying positive and negative voltage pulse pairs to adjacent two-phase phase windings, the rectangular wave voltages corresponding to the fundamental wave components of these adjacent two phases are in different states (ie, the Hi state and the Lo state). It is necessary. The electrical angle from the positive voltage center of the reference phase to the state where the adjacent two-phase rectangular wave voltages are different from each other corresponds to the fundamental wave component of one phase of the adjacent two phases from the positive voltage center of the reference phase. It is 30 ° until the beginning of the on period of the rectangular wave voltage waveform. Therefore, if a positive / negative voltage pulse pair is applied to the adjacent two-phase phase winding after a timing delayed by an electrical angle of 30 ° from the positive voltage center of the reference phase, the harmonic component can be superimposed on the fundamental component, and the rotor It is possible to generate a magnetic flux that induces an exciting current in the field winding 44. That is, in the rectangular wave control region, a magnetic field in the same direction as the magnetic field generated by the current flow of the fundamental wave component of the reference phase can be generated in two adjacent phases, and an excitation current can be induced in the rotor field winding 44. it can.
上記した共振回路80,82の共振周波数f1,f2は、一定である。一方、ステータ電機子巻線34に流す基本波成分の周波数(或いは周期)は、回転電機20の回転数rpmに応じて変化する。具体的には、回転電機20の回転数rpmが多くなるほど、基本波成分の周期が小さくなる。また、高調波成分の、ロータ界磁巻線44の励磁性を向上させるために最適な一制御周期(すなわち電気角360°)当たりの目標パルス数は、回転電機20の回転数rpmが多くなるほど少なくなる。回転電機20のロータ26が例えば4極対である場合における上記の目標パルス数は、図12に示す如く、回転数rpmが多くなるほど少なくなり、例えば、回転数rpmが中回転(具体的には、“4000”)より多くなった場合は上記の目標パルス数が“9”個より少なくなる。
The resonance frequencies f1 and f2 of the resonance circuits 80 and 82 are constant. On the other hand, the frequency (or period) of the fundamental wave component that flows through the stator armature winding 34 changes according to the rotational speed rpm of the rotating electrical machine 20. Specifically, as the number of rotations rpm of the rotating electrical machine 20 increases, the period of the fundamental wave component decreases. Further, the target pulse number per one control cycle (that is, electrical angle 360 °) optimum for improving the excitation property of the rotor field winding 44 of the harmonic component is increased as the rotational speed rpm of the rotating electrical machine 20 is increased. Less. When the rotor 26 of the rotating electrical machine 20 is, for example, a quadrupole pair, the target pulse number decreases as the rotational speed rpm increases, as shown in FIG. 12, for example, the rotational speed rpm becomes medium (specifically, , “4000”), the target pulse number is less than “9”.
一制御周期中に基準相(例えばV相)の基本波成分に重畳する高調波成分を一つ生成するうえでは、互いに隣接する隣接二相(例えばU相及びW相)の相巻線に正負電圧パルス対を一組、印加すればよい。隣接二相に正負電圧パルス対を一組印加する手法としては、隣接二相のうちの一相(第1相)の相巻線に印加する基本波成分生成のための矩形波電圧波形のオン期間の始端に、そのオン期間を所定期間aだけ切り欠いてオフするための負電圧パルス(図16に網掛けで示すもの)を付加すると共に、その隣接二相のうちの他の一相(第2相)の相巻線に印加する基本波成分生成のための矩形波電圧波形のオフ期間に、その負電圧パルスと対をなす所定期間aだけオンするための正電圧パルス(図16に斜線で示すもの)を付加する手法がある。これらの第1相の矩形波電圧波形のオン期間の始端への負電圧パルスの印加と、第2相の矩形波電圧波形のオフ期間への正電圧パルスの印加と、は同タイミングで行われる(例えば図16における電気角ω5~ω6)。尚、上記の所定期間aは、ロータ界磁巻線44の励磁性を向上させるための高調波成分を生成するうえで必要な電気角である。
In order to generate one harmonic component to be superimposed on the fundamental component of the reference phase (for example, V phase) during one control cycle, positive and negative are applied to adjacent two phase windings (for example, U phase and W phase). A set of voltage pulse pairs may be applied. A method of applying a pair of positive and negative voltage pulse pairs to adjacent two phases is to turn on a rectangular wave voltage waveform for generating a fundamental wave component applied to a phase winding of one phase (first phase) of the adjacent two phases. At the beginning of the period, a negative voltage pulse (shown by hatching in FIG. 16) for cutting off the ON period by a predetermined period a and turning it off is added, and one of the two adjacent phases ( In the OFF period of the rectangular wave voltage waveform for generating the fundamental wave component applied to the phase winding of the second phase), a positive voltage pulse for turning on for a predetermined period a paired with the negative voltage pulse (see FIG. 16). There is a method of adding (shown by diagonal lines). The application of the negative voltage pulse to the beginning of the on period of the first-phase rectangular wave voltage waveform and the application of the positive voltage pulse to the off-period of the second phase rectangular wave voltage waveform are performed at the same timing. (For example, electrical angles ω5 to ω6 in FIG. 16). The predetermined period a is an electrical angle necessary for generating a harmonic component for improving the excitation property of the rotor field winding 44.
この基準相に対する隣接二相への一組の正負電圧パルス対の印加処理によれば、高調波成分を一つ生成することができる。この基準相に対する隣接二相の相巻線への一組の正負電圧パルス対の印加を、三相すべてを基準相とした場合それぞれで行うことで(図15におけるロータ位置“1”、“3”、及び“5”、並びに、図16における電気角ω1~ω2、ω5~ω6、及びω9~ω10)、一制御周期当たり高調波成分を等間隔で3回生成することができる。
According to the application processing of a set of positive and negative voltage pulse pairs to adjacent two phases with respect to the reference phase, one harmonic component can be generated. By applying a set of positive and negative voltage pulse pairs to the adjacent two-phase windings with respect to the reference phase when the three phases are all the reference phases (rotor positions “1” and “3” in FIG. 15). ”And“ 5 ”, and the electrical angles ω1 to ω2, ω5 to ω6, and ω9 to ω10) in FIG. 16, and harmonic components per control cycle can be generated three times at equal intervals.
また、隣接二相に正負電圧パルス対を一組印加する手法としては、隣接二相のうちの第1相の相巻線に印加する基本波成分生成のための矩形波電圧波形のオン期間の終端に、所定期間aだけオン期間を継ぎ足してオンするための正電圧パルスを付加すると共に、その隣接二相のうちの第2相の相巻線に印加する基本波成分生成のための矩形波電圧波形のオン期間に、その正電圧パルスと対をなす所定期間aだけオフするための負電圧パルスを付加する手法がある。これらの第1相の矩形波電圧波形のオン期間の終端への正電圧パルスの印加と、第2相の矩形波電圧波形のオン期間への負電圧パルスの印加と、は同タイミングで行われる(例えば電気角ω11~ω12)。
As a method of applying a set of positive and negative voltage pulse pairs to adjacent two phases, the on-period of the rectangular wave voltage waveform for generating the fundamental wave component applied to the phase winding of the first phase of the adjacent two phases is used. A rectangular wave for generating a fundamental wave component to be applied to the phase winding of the second phase of the adjacent two phases is added to the end, adding a positive voltage pulse for adding ON period by a predetermined period a. There is a method of adding a negative voltage pulse for turning off for a predetermined period a paired with the positive voltage pulse to the on period of the voltage waveform. The application of the positive voltage pulse to the end of the on period of the first phase rectangular wave voltage waveform and the application of the negative voltage pulse to the on period of the second phase rectangular wave voltage waveform are performed at the same timing. (For example, electrical angles ω11 to ω12).
この基準相に対する隣接二相への一組の正負電圧パルス対の印加処理によっても同様に、高調波成分を一つ生成することができる。この基準相に対する隣接二相の相巻線への一組の正負電圧パルス対の印加を、三相すべてを基準相とした場合それぞれで行うことで(図15におけるロータ位置“2”、“4”、及び“6”、並びに、図16における電気角ω3~ω4、ω7~ω8、及びω11~ω12)、一制御周期中に高調波成分を等間隔で3回生成することができる。
Similarly, one harmonic component can be generated by applying a pair of positive and negative voltage pulse pairs to adjacent two phases with respect to the reference phase. By applying a set of positive and negative voltage pulse pairs to adjacent two-phase windings with respect to the reference phase when all three phases are used as reference phases (rotor positions “2” and “4” in FIG. 15). ”,“ 6 ”, and electrical angles ω3 to ω4, ω7 to ω8, and ω11 to ω12) in FIG. 16, and harmonic components can be generated three times at regular intervals during one control period.
従って、三相U,V,Wそれぞれの基本波成分生成のための矩形波電圧波形を所定期間aだけ遅らせ、その所定期間aに対応する期間に他の何れかの相で逆のパルス電圧を印加すれば、一制御周期中に高調波成分を等間隔で6回生成することができ、ロータ界磁巻線44を一制御周期当たり等間隔で6回励磁することができる。
Therefore, the rectangular wave voltage waveform for generating the fundamental wave components of the three phases U, V, and W is delayed by a predetermined period a, and the reverse pulse voltage is applied in any other phase during the period corresponding to the predetermined period a. If applied, harmonic components can be generated six times at regular intervals during one control cycle, and the rotor field winding 44 can be excited six times at regular intervals per control cycle.
回転電機20のロータ26が例えば4極対である場合における高調波成分の一制御周期当たりの目標パルス数は、図12に示す如く、回転電機20の回転数rpmが“5000”、“6000”、“7000”、及び“8000”であるとき、それぞれ“7.2”、“6”、“5.1”、及び“4.5”である。この場合は、回転電機20の回転数rpmが“5000”以上かつ“8000”以下の中回転域であるときに一制御周期当たりにステータ電機子巻線34に正負電圧パルス対を等間隔で6回印加してロータ界磁巻線44を等間隔で6回励磁すれば、回転電機20の共振回路80,82の共振周波数f1,f2に対する高調波成分の実周波数のズレ率(=(高調波成分の実周波数)/f1)又は(高調波成分の実周波数)/f2))が所定範囲内に限定される。具体的には、そのズレ率は、図12に示す如く、回転電機20の回転数rpmが“5000”、“6000”、“7000”、及び“8000”であるとき、それぞれ“0.83”、“1.00”、“1.17”、及び“1.33”となる。
For example, when the rotor 26 of the rotating electrical machine 20 is a quadrupole pair, the target number of pulses per control cycle of the harmonic component is, as shown in FIG. 12, the rotational speed rpm of the rotating electrical machine 20 is “5000”, “6000”. , “7000”, and “8000” are “7.2”, “6”, “5.1”, and “4.5”, respectively. In this case, when the rotational speed rpm of the rotating electrical machine 20 is in the middle rotational range of “5000” or more and “8000” or less, 6 pairs of positive and negative voltage pulse pairs are equally spaced on the stator armature winding 34 per control cycle. If the rotor field winding 44 is excited six times at equal intervals and applied twice, the actual frequency deviation rate (= (harmonic) of the harmonic components with respect to the resonance frequencies f1 and f2 of the resonance circuits 80 and 82 of the rotating electrical machine 20 The actual frequency of the component) / f1) or (the actual frequency of the harmonic component) / f2)) is limited to a predetermined range. Specifically, as shown in FIG. 12, the deviation rate is “0.83” when the rotational speed rpm of the rotating electrical machine 20 is “5000”, “6000”, “7000”, and “8000”, respectively. , “1.00”, “1.17”, and “1.33”.
このため、回転電機20の回転数rpmが“5000”以上かつ“8000”以下の範囲内にあるとき、一制御周期当たりロータ界磁巻線44を等間隔で6回励磁すれば、高調波成分の実周波数は、図12及び図13に示す如く、共振周波数f1,f2を含むその共振周波数f1,f2に対して概ね±40%の範囲内に抑えられる。高調波成分の実周波数がこの範囲内に抑えられれば、図14に示す如く、ロータ界磁巻線44に得られる励磁電流が、高調波成分の実周波数が共振周波数f1,f2であるときに最大値をとりつつ、許容できる閾値以上となり、回転電機20で得られる回転トルクが、高調波成分の実周波数が共振周波数f1,f2であるときに最大値をとりつつ、許容できる閾値以上となる。
Therefore, when the rotational speed rpm of the rotating electrical machine 20 is in the range of “5000” or more and “8000” or less, if the rotor field winding 44 is excited six times at regular intervals per control cycle, the harmonic component As shown in FIG. 12 and FIG. 13, the actual frequency of is suppressed to approximately ± 40% of the resonance frequencies f1 and f2 including the resonance frequencies f1 and f2. If the actual frequency of the harmonic component is suppressed within this range, as shown in FIG. 14, the exciting current obtained in the rotor field winding 44 is obtained when the actual frequency of the harmonic component is the resonance frequencies f1 and f2. While taking the maximum value, it becomes more than the allowable threshold value, and the rotational torque obtained by the rotating electrical machine 20 becomes more than the allowable threshold value while taking the maximum value when the actual frequency of the harmonic component is the resonance frequency f1, f2. .
そこで、制御回路72は、回転数rpmが“5000”以上かつ“8000”以下の中回転域である矩形波制御領域で実行する高調波生成処理として、上記した手法に基づいて、三相U,V,Wの相巻線ごとにそれぞれの基本波成分生成のための矩形波電圧波形を所定期間aだけ遅らせ、その所定期間aに対応する期間に他の何れかの相で逆のパルス電圧を付加する。この高調波生成処理においては、中回転域で一制御周期(すなわち電気角360°)当たり高調波成分を等間隔で6回生成することができ、ロータ界磁巻線44を一制御周期当たり等間隔で6回励磁することができる。
Therefore, the control circuit 72 performs three-phase U, U based on the above-described method as the harmonic generation process executed in the rectangular wave control region that is the middle rotation region where the rotation speed rpm is “5000” or more and “8000” or less. For each phase winding of V and W, the rectangular wave voltage waveform for generating each fundamental wave component is delayed by a predetermined period a, and a reverse pulse voltage is applied in any other phase during the period corresponding to the predetermined period a. Append. In this harmonic generation process, harmonic components can be generated six times at regular intervals per control cycle (ie, electrical angle 360 °) in the middle rotation range, and the rotor field winding 44 can be generated per control cycle, etc. It can be excited six times at intervals.
この高調波生成処理によれば、回転数rpmが“5000”以上かつ“8000”以下である中回転域で、矩形波状の基本波成分の周波数に関係なく、その基本波成分に共振周波数f1,f2に近い周波数(具体的には、共振周波数f1,f2に対して概ね±40%の範囲内)の高調波成分を重畳することができる。
According to the harmonic generation process, the resonance frequency f1, the fundamental wave component is included in the fundamental wave component regardless of the frequency of the rectangular wave fundamental wave component in the middle rotation range where the rotation speed rpm is “5000” or more and “8000” or less. A harmonic component having a frequency close to f2 (specifically, within a range of approximately ± 40% with respect to the resonance frequencies f1 and f2) can be superimposed.
また、回転電機20のロータ26が例えば4極対である場合における高調波成分の一制御周期当たりの目標パルス数は、図12に示す如く、回転電機20の回転数rpmが“8000”、“9000”、“10000”、“12000”、及び“15000”であるとき、それぞれ“4.5”、“4”、“3.6”、“3”、及び“2.4”である。この場合は、回転電機20の回転数rpmが“8000”を超えかつ“15000”以下の高回転域であるときに一制御周期当たりにステータ電機子巻線34に正負電圧パルス対を等間隔で6回印加してロータ界磁巻線44を等間隔で6回励磁するものとすると、共振周波数f1,f2に対する高調波成分の実周波数のズレ率が所定範囲(±40%)を超えてしまう。
Further, when the rotor 26 of the rotating electrical machine 20 is, for example, a quadrupole pair, the target number of pulses per one control period of the harmonic component is, as shown in FIG. When “9000”, “10000”, “12000”, and “15000”, they are “4.5”, “4”, “3.6”, “3”, and “2.4”, respectively. In this case, when the rotation speed rpm of the rotating electrical machine 20 is higher than “8000” and is not higher than “15000”, positive and negative voltage pulse pairs are equally spaced on the stator armature winding 34 per control cycle. If it is applied six times and the rotor field winding 44 is excited six times at equal intervals, the deviation rate of the actual frequency of the harmonic component with respect to the resonance frequencies f1 and f2 exceeds a predetermined range (± 40%). .
一方、回転電機20の回転数rpmが“8000”を超えかつ“15000”以下の高回転域であるときに一制御周期当たりにステータ電機子巻線34に正負電圧パルス対を等間隔で3回印加してロータ界磁巻線44を等間隔で3回励磁すれば、共振周波数f1,f2に対する高調波成分の実周波数のズレ率が所定範囲内に限定される。具体的には、そのズレ率は、図12に示す如く、回転電機20の回転数rpmが“9000”、“10000”、“12000”、及び“15000”であるとき、それぞれ“0.75”、“0.83”、“1.00”、及び“1.25”となる。尚、回転数rpmが“8000”であるときは、3回励磁時のズレ率が、6回励磁時のズレ率“1.33”に比してズレ率“1.00”との差が同じ“0.67”となる。
On the other hand, when the rotational speed rpm of the rotating electrical machine 20 is in a high rotational range exceeding “8000” and “15000” or less, positive and negative voltage pulse pairs are applied to the stator armature winding 34 three times at regular intervals per control cycle. When applied and the rotor field winding 44 is excited three times at equal intervals, the deviation rate of the actual frequency of the harmonic component with respect to the resonance frequencies f1 and f2 is limited within a predetermined range. Specifically, as shown in FIG. 12, the deviation rate is “0.75” when the rotational speed rpm of the rotating electrical machine 20 is “9000”, “10000”, “12000”, and “15000”, respectively. , “0.83”, “1.00”, and “1.25”. When the rotational speed rpm is “8000”, the difference between the deviation rate at the third excitation and the deviation rate “1.00” is different from the deviation rate “1.33” at the sixth excitation. The same “0.67” is obtained.
このため、回転電機20の回転数rpmが“8000”を超えかつ“15000”以下の範囲内にあるとき、一制御周期当たりロータ界磁巻線44を等間隔で3回励磁すれば、高調波成分の実周波数は、図12及び図13に示す如く、共振周波数f1,f2を含むその共振周波数f1,f2に対して概ね±40%の範囲内に抑えられる。高調波成分の実周波数がこの範囲内に抑えられれば、図14に示す如く、ロータ界磁巻線44に得られる励磁電流が、高調波成分の実周波数が共振周波数f1,f2であるときに最大値をとりつつ、許容できる閾値以上となり、回転電機20で得られる回転トルクが、高調波成分の実周波数が共振周波数f1,f2であるときに最大値をとりつつ、許容できる閾値以上となる。
For this reason, if the rotor field winding 44 is excited three times at equal intervals per control period when the rotational speed rpm of the rotating electrical machine 20 is in the range of more than “8000” and “15000” or less, the harmonics As shown in FIGS. 12 and 13, the actual frequency of the component is suppressed within a range of approximately ± 40% with respect to the resonance frequencies f1 and f2 including the resonance frequencies f1 and f2. If the actual frequency of the harmonic component is suppressed within this range, as shown in FIG. 14, the exciting current obtained in the rotor field winding 44 is obtained when the actual frequency of the harmonic component is the resonance frequencies f1 and f2. While taking the maximum value, it becomes more than the allowable threshold value, and the rotational torque obtained by the rotating electrical machine 20 becomes more than the allowable threshold value while taking the maximum value when the actual frequency of the harmonic component is the resonance frequency f1, f2. .
そこで、制御回路72は、回転数rpmが“8000”を超えかつ“15000”以下の高回転域である矩形波制御領域で実行する高調波生成処理として、上記した手法に基づいて、三相U,V,Wの相巻線ごとにそれぞれの基本波成分生成のための矩形波電圧波形のオン期間の始端に、そのオン期間を所定期間aだけ切り欠いてオフするための負電圧パルスを付加すると共に、同時に、他の何れかの隣接する相で基本波成分生成のための矩形波電圧波形のオフ期間に、その負電圧パルスと対をなす所定期間aだけオンするための正電圧パルスを付加する。又は、その矩形波電圧波形のオン期間の始端タイミングへの正負電圧パルス対の付加に代えて、三相U,V,Wそれぞれの基本波成分生成のための矩形波電圧波形のオン期間の終端に、そのオン期間を所定期間aだけ継ぎ足してオンするための正電圧パルスを付加すると共に、同時に、他の何れかの隣接する相で基本波成分生成のための矩形波電圧波形のオン期間に、その正電圧パルスと対をなす所定期間aだけオフするための負電圧パルスを付加する。この高調波生成処理においては、高回転域で一制御周期(すなわち電気角360°)当たり高調波成分を等間隔で3回生成することができ、ロータ界磁巻線44を一制御周期当たり等間隔で3回励磁することができる。
Therefore, the control circuit 72 performs a three-phase U based on the above-described method as a harmonic generation process executed in the rectangular wave control region, which is a high rotation region where the rotation speed rpm exceeds “8000” and is “15000” or less. For each phase winding of, V, W, a negative voltage pulse is added at the beginning of the on period of the rectangular wave voltage waveform for generating the fundamental wave component to cut off the on period by a predetermined period a. At the same time, a positive voltage pulse for turning on for a predetermined period a pairing with the negative voltage pulse is turned off in the off period of the rectangular wave voltage waveform for generating the fundamental wave component in any other adjacent phase. Append. Alternatively, instead of adding a positive / negative voltage pulse pair to the start timing of the on period of the rectangular wave voltage waveform, the end of the on period of the rectangular wave voltage waveform for generating the fundamental wave components of the three phases U, V, W In addition, a positive voltage pulse for adding the ON period by a predetermined period a is added, and at the same time, in the ON period of the rectangular wave voltage waveform for generating the fundamental wave component in any other adjacent phase Then, a negative voltage pulse for turning off for a predetermined period a paired with the positive voltage pulse is added. In this harmonic generation processing, harmonic components can be generated three times at equal intervals per control cycle (ie, electrical angle 360 °) in the high rotation range, and the rotor field winding 44 can be generated per control cycle. It can be excited three times at intervals.
この高調波生成処理によれば、回転数rpmが“8000”を超えかつ“15000”以下である高回転域で、矩形波状の基本波成分の周波数に関係なく、その基本波成分に共振周波数f1,f2に近い周波数(具体的には、共振周波数f1,f2に対して概ね±40%の範囲内)の高調波成分を重畳することができる。
According to this harmonic generation process, the resonance frequency f1 is applied to the fundamental wave component regardless of the frequency of the fundamental wave component of the rectangular wave in the high rotation range where the rotation speed rpm exceeds “8000” and is “15000” or less. , F2 (specifically, approximately within a range of ± 40% with respect to the resonance frequencies f1 and f2) can be superimposed.
このように、回転電機20の回転数rpmが中回転より高いとき、一制御周期当たり基本波成分に高調波成分を等間隔で最大6回重畳し、更に回転数rpmが高回転に達したときは、一制御周期当たり基本波成分に等間隔で重畳する高調波成分の重畳回数を3回に切り替えることで、ロータ界磁巻線44の励磁を行うことができる。このため、回転電機20の中回転から高回転まで、ロータ界磁巻線44の励磁時におけるインピーダンスを低減して、そのロータ界磁巻線44の励磁性を向上させることができる。また、ステータ電機子巻線34に流す電流である基本波成分に重畳する高調波成分の振幅を抑えることができるので、ロータ励磁用の高調波成分に起因するトルクリップルを低減することができる。
Thus, when the rotation speed rpm of the rotating electrical machine 20 is higher than the middle rotation, the harmonic component is superimposed on the fundamental wave component per control cycle at equal intervals up to 6 times, and when the rotation speed rpm reaches high rotation The excitation of the rotor field winding 44 can be performed by switching the number of superimpositions of harmonic components superimposed at equal intervals on the fundamental wave component per control period to three times. For this reason, it is possible to reduce the impedance at the time of excitation of the rotor field winding 44 from the middle rotation to the high rotation of the rotating electrical machine 20 and improve the excitation performance of the rotor field winding 44. Further, since the amplitude of the harmonic component superimposed on the fundamental component that is the current flowing through the stator armature winding 34 can be suppressed, torque ripple caused by the harmonic component for rotor excitation can be reduced.
以上、説明したことから明らかなように、回転電機20は、ステータコア32に巻装されたステータ電機子巻線34と、ロータコア42に巻装されたロータ界磁巻線44と、ロータ界磁巻線44の両端に接続された整流素子52と、一端が整流素子52の一端に接続され、他端がロータ界磁巻線44の両端の間に接続されたコンデンサ54と、ステータ電機子巻線34に回転トルクを発生させるための基本波成分と基本波成分に比して周期が短い高調波成分とを重畳した電流を流すことにより、ロータ界磁巻線44に励磁電流を誘起する制御回路72と、を備える。ロータ界磁巻線44のインダクタンスL1,L2及びコンデンサ54の容量Cは、ロータ励磁用の高調波成分の周波数に対して共振関係にある。
As is apparent from the above description, the rotating electrical machine 20 includes a stator armature winding 34 wound around the stator core 32, a rotor field winding 44 wound around the rotor core 42, and a rotor field winding. A rectifying element 52 connected to both ends of the wire 44; a capacitor 54 having one end connected to one end of the rectifying element 52 and the other end connected between both ends of the rotor field winding 44; and a stator armature winding A control circuit for inducing an excitation current in the rotor field winding 44 by flowing a current in which a fundamental wave component for generating a rotational torque in 34 and a harmonic component having a shorter period than the fundamental wave component are passed. 72. The inductances L1 and L2 of the rotor field winding 44 and the capacitance C of the capacitor 54 are in a resonance relationship with the frequency of the harmonic component for exciting the rotor.
この構成によれば、ステータ電機子巻線34に基本波成分と高調波成分とを重畳した電流が流れたときに、ロータ界磁巻線44に誘起される界磁電流が流れ易くなる。従って、ロータ界磁巻線44の励磁時におけるインピーダンスを低減することができ、そのロータ界磁巻線44の励磁性を向上させることができるので、ロータ励磁用の高調波成分に起因するトルクリップルを低減することができる。
According to this configuration, when a current in which a fundamental wave component and a harmonic component are superimposed flows in the stator armature winding 34, a field current induced in the rotor field winding 44 is likely to flow. Therefore, the impedance at the time of excitation of the rotor field winding 44 can be reduced, and the excitation performance of the rotor field winding 44 can be improved, so that the torque ripple caused by the harmonic component for rotor excitation Can be reduced.
回転電機20において、ロータ励磁用の高調波成分は、基本波成分に対して1/2周期を有する定在波を包絡線として振幅調整されている。この構成によれば、ロータ界磁巻線44を励磁する励磁電流量を容易にコントロールすることができる。
In the rotating electrical machine 20, the amplitude of the harmonic component for exciting the rotor is adjusted by using a standing wave having a ½ period with respect to the fundamental component as an envelope. According to this configuration, the amount of exciting current for exciting the rotor field winding 44 can be easily controlled.
また、回転電機20において、ロータ界磁巻線44は、コンデンサ54の他端と整流素子52の他端との間に接続されている第1界磁巻線部44-1と、コンデンサ54に並列に接続されている第2界磁巻線部44-2と、を有し、第1界磁巻線部44-1のインダクタンスL1及びコンデンサ54の容量Cに基づく第1共振周波数f1、及び、第2界磁巻線部44-2のインダクタンスL2及びコンデンサ54の容量Cに基づく第2共振周波数f2の少なくとも一方は、ロータ励磁用の高調波成分の周波数を含む所定周波数範囲内にある、又は、ロータ励磁用の高調波成分の周波数は、第1共振周波f1と第2共振周波数f2との間にある。
In the rotary electric machine 20, the rotor field winding 44 is connected to the first field winding portion 44-1 connected between the other end of the capacitor 54 and the other end of the rectifying element 52, and the capacitor 54. A second field winding portion 44-2 connected in parallel, and a first resonance frequency f1 based on the inductance L1 of the first field winding portion 44-1 and the capacitance C of the capacitor 54, and , At least one of the second resonance frequency f2 based on the inductance L2 of the second field winding portion 44-2 and the capacitance C of the capacitor 54 is within a predetermined frequency range including the frequency of the harmonic component for exciting the rotor. Alternatively, the frequency of the harmonic component for exciting the rotor is between the first resonance frequency f1 and the second resonance frequency f2.
この構成によれば、ステータ電機子巻線34に基本波成分と高調波成分とを重畳した電流が流れたときに、ロータ界磁巻線44の第1界磁巻線部44-1又は第2界磁巻線部44-2に誘起される界磁電流が流れ易くなる。従って、ロータ界磁巻線44の励磁時におけるインピーダンスを低減することができ、そのロータ界磁巻線44の励磁性を向上させることができる。
According to this configuration, when the current in which the fundamental wave component and the harmonic component are superimposed flows in the stator armature winding 34, the first field winding portion 44-1 or the first field winding portion 44-1 of the rotor field winding 44 is provided. The field current induced in the two-field winding portion 44-2 can easily flow. Therefore, the impedance at the time of excitation of the rotor field winding 44 can be reduced, and the excitation performance of the rotor field winding 44 can be improved.
回転電機20において、基本波成分に重畳される高調波成分の周波数すなわち正負電圧パルス対を付加する周波数は、低回転から高回転まで、ロータ界磁巻線44のインダクタンスL1,L2及びコンデンサ54の容量Cに基づく共振周波数f1,f2を含む、得られる励磁電流又は回転トルクが必要以上(閾値以上)となる所定周波数範囲(具体的には、共振周波数f1,f2に対して例えば±40%の範囲)内である。この構成によれば、低回転から高回転まで、基本波成分の周波数に関係なく上記の共振周波数f1,f2に近い周波数の高調波成分を基本波成分に重畳することができ、ロータ界磁巻線44の励磁時におけるインピーダンスを低減して、そのロータ界磁巻線44の励磁性を向上させることができる。
In the rotating electrical machine 20, the frequency of the harmonic component superimposed on the fundamental wave component, that is, the frequency to which the positive / negative voltage pulse pair is added, is from the low rotation to the high rotation of the inductances L 1 and L 2 of the rotor field winding 44 and the capacitor 54. A predetermined frequency range including the resonance frequencies f1 and f2 based on the capacitance C and where the obtained excitation current or rotational torque is more than necessary (more than a threshold value) (specifically, for example, ± 40% of the resonance frequencies f1 and f2) Range). According to this configuration, it is possible to superimpose harmonic components having frequencies close to the resonance frequencies f1 and f2 on the fundamental wave component from the low rotation to the high rotation regardless of the frequency of the fundamental wave component. The impedance at the time of exciting the wire 44 can be reduced, and the exciting property of the rotor field winding 44 can be improved.
回転電機20において、制御回路72は、矩形波制御領域でロータ界磁巻線44に励磁電流を誘起するうえで、三相の相巻線のうちの一の相巻線に印加する基本波成分生成のための矩形波電圧波形のオン期間の始端に所定期間aだけ切り欠いてオフするための負電圧パルスを付加すると共に、他の何れかの相巻線に印加する基本波成分生成のための矩形波電圧波形のオフ期間に、その負電圧パルスと対をなす所定期間aだけオンするための正電圧パルスを付加する、高調波生成処理を実行する。又は、三相の相巻線のうちの一の相巻線に印加する基本波成分生成のための矩形波電圧波形のオン期間の終端に所定期間aだけ継ぎ足してオンするための正電圧パルスを付加すると共に、他の何れかの相巻線に印加する基本波成分生成のための矩形波電圧波形のオン期間に、その正電圧パルスと対をなす所定期間aだけオフするための負電圧パルスを付加する、高調波生成処理を実行する。
In the rotary electric machine 20, the control circuit 72 induces an excitation current in the rotor field winding 44 in the rectangular wave control region and applies a fundamental wave component to be applied to one of the three phase windings. For generating a fundamental wave component to be applied to any other phase winding while adding a negative voltage pulse to cut off for a predetermined period a at the start of the on period of the rectangular wave voltage waveform for generation Harmonic generation processing is executed in which a positive voltage pulse for turning on for a predetermined period a that is paired with the negative voltage pulse is added to the off period of the rectangular wave voltage waveform. Alternatively, a positive voltage pulse for turning on by adding a predetermined period a to the end of the on period of the rectangular wave voltage waveform for generating the fundamental wave component applied to one phase winding of the three phase windings In addition, a negative voltage pulse for turning off for a predetermined period a paired with the positive voltage pulse during the on period of the rectangular wave voltage waveform for generating the fundamental wave component applied to any other phase winding The harmonic generation process is executed.
この構成によれば、隣接二相に正負電圧パルス対を印加する高調波生成処理により、基本波成分の電流流通により生じる磁界と同じ方向の磁界を発生させることができ、ロータ界磁巻線44に励磁電流を誘起することができる。
According to this configuration, a magnetic field in the same direction as the magnetic field generated by the current flow of the fundamental wave component can be generated by the harmonic generation process of applying positive and negative voltage pulse pairs to adjacent two phases, and the rotor field winding 44 An excitation current can be induced in
回転電機20において、制御回路72は、回転電機20の中回転から高回転までの所定回転域(具体的には、回転数rpmが“5000”以上かつ“8000”以下である回転域)で、上記の高調波生成処理を三相の相巻線ごとに矩形波電圧波形のオン期間の始端及び終端の双方のタイミングで行うことにより、ロータ界磁巻線44による励磁を一制御周期当たり等間隔で6回行う。この構成によれば、回転電機20の中回転から高回転までの所定回転域で、生成される高調波成分の周波数を共振回路80,82の共振周波数f1,f2に対して所定範囲内に抑えることができ、ロータ界磁巻線44に得られる励磁電流や回転電機20で得られる回転トルクを許容できる閾値以上とすることができる。
In the rotary electric machine 20, the control circuit 72 is in a predetermined rotation range from the middle rotation to the high rotation of the rotary electric machine 20 (specifically, a rotation range where the rotation speed rpm is “5000” or more and “8000” or less), By performing the above harmonic generation processing at the timing of both the start and end of the on period of the rectangular wave voltage waveform for each of the three-phase windings, excitation by the rotor field winding 44 is equally spaced per control cycle. 6 times. According to this configuration, the frequency of the generated harmonic component is suppressed within a predetermined range with respect to the resonance frequencies f1 and f2 of the resonance circuits 80 and 82 in a predetermined rotation range from the middle rotation to the high rotation of the rotating electrical machine 20. The excitation current obtained in the rotor field winding 44 and the rotational torque obtained in the rotating electrical machine 20 can be set to an allowable threshold value or more.
回転電機20において、制御回路72は、回転電機20の高回転域(具体的には、回転数rpmが“8000”を超えかつ“15000”以下である回転域)で、上記の高調波生成処理を三相の相巻線ごとに矩形波電圧波形のオン期間の始端及び終端の何れか一方のタイミングで行うことにより、ロータ界磁巻線44による励磁を一制御周期当たり等間隔で3回行う。この構成によれば、回転電機20の高回転域で、生成される高調波成分の周波数を共振回路80,82の共振周波数f1,f2に対して所定範囲内に抑えることができ、ロータ界磁巻線44に得られる励磁電流や回転電機20で得られる回転トルクを許容できる閾値以上とすることができる。
In the rotary electric machine 20, the control circuit 72 performs the above harmonic generation process in a high rotation range of the rotary electric machine 20 (specifically, a rotation range where the rotation speed rpm exceeds “8000” and is “15000” or less). Is performed for each of the three-phase windings at the timing of one of the start and end of the on period of the rectangular wave voltage waveform, so that excitation by the rotor field winding 44 is performed three times at regular intervals per control cycle. . According to this configuration, the frequency of the generated harmonic component can be suppressed within a predetermined range with respect to the resonance frequencies f1 and f2 of the resonance circuits 80 and 82 in the high rotation range of the rotating electrical machine 20, and the rotor field The exciting current obtained in the winding 44 and the rotational torque obtained by the rotating electrical machine 20 can be set to be equal to or higher than an allowable threshold.
ところで、上記の第1実施形態においては、回転電機20の中回転以上の回転域で、上記の高調波生成処理を三相の相巻線ごとに矩形波電圧波形のオン期間の始端及び/又は終端のタイミングで行うことにより、ロータ界磁巻線44による励磁を一制御周期当たり等間隔で6回又は3回行うこととしている。そして、回転電機20の回転数rpmが“8000”近傍にあるときに、ロータ界磁巻線44による励磁の一制御周期当たりの回数を6回と3回とで切り替えることとしている。しかし、本発明はこれに限定されるものではない。この一制御周期当たりの励磁回数を切り替える回転数“8000”rpm近傍において、その励磁回数を6回と3回との間の回数に設定できれば、生成される高調波成分の周波数を共振回路80,82の共振周波数f1,f2により近づけることが可能となる。
By the way, in said 1st Embodiment, in the rotation area | region more than the middle rotation of the rotary electric machine 20, said harmonic generation | occurrence | production processing is carried out for the start end of the ON period of a rectangular wave voltage waveform for every three-phase phase winding, and / or By performing at the end timing, excitation by the rotor field winding 44 is performed 6 or 3 times at regular intervals per control cycle. When the rotational speed rpm of the rotating electrical machine 20 is in the vicinity of “8000”, the number of excitations per one control cycle by the rotor field winding 44 is switched between 6 times and 3 times. However, the present invention is not limited to this. If the number of excitations can be set to between 6 and 3 in the vicinity of the rotational speed “8000” rpm for switching the number of excitations per control cycle, the frequency of the generated harmonic component is set to the resonance circuit 80, It is possible to approach the resonance frequencies f1 and f2 of 82.
回転電機20のロータ26が例えば4極対である場合における高調波成分の一制御周期当たりの目標パルス数は、図17に示す如く、回転電機20の回転数rpmが“7000”、“8000”、“9000”、及び“10000”であるとき、それぞれ“5.1”、“4.5”、“4”、及び“3.6”である。この場合は、回転電機20の回転数rpmが“7000”を超えかつ“10000”以下の回転域であるときに一制御周期当たりにステータ電機子巻線34に正負電圧パルス対を等間隔で4回印加してロータ界磁巻線44を等間隔で4回励磁すれば、回転電機20の共振回路80,82の共振周波数f1,f2に対する高調波成分の実周波数のズレ率が所定範囲内に限定される。具体的には、そのズレ率は、図17に示す如く、回転電機20の回転数rpmが“8000”、“9000”、及び“10000”であるとき、それぞれ“0.89”、“1.00”、及び“1.11”となる。尚、回転数rpmが“7000”であるときは、4回励磁時のズレ率が、6回励磁時のズレ率“1.17”に比してズレ率“1.00”との差が大きい“0.78”となる。
When the rotor 26 of the rotating electrical machine 20 is, for example, a quadrupole pair, the target number of pulses per control cycle of the harmonic component is “7000” or “8000”, as shown in FIG. , “9000”, and “10000” are “5.1”, “4.5”, “4”, and “3.6”, respectively. In this case, when the rotational speed rpm of the rotating electrical machine 20 is in a rotational range exceeding “7000” and “10000” or less, 4 pairs of positive and negative voltage pulses are equally spaced on the stator armature winding 34 per control cycle. If the rotor field winding 44 is excited four times at equal intervals, the deviation rate of the real frequency of the harmonic components with respect to the resonance frequencies f1 and f2 of the resonance circuits 80 and 82 of the rotating electrical machine 20 is within a predetermined range. Limited. Specifically, as shown in FIG. 17, when the rotational speed rpm of the rotating electrical machine 20 is “8000”, “9000”, and “10000”, the deviation rates are “0.89”, “1. 00 ”and“ 1.11 ”. When the rotational speed rpm is “7000”, the difference between the deviation rate at the fourth excitation and the deviation rate “1.00” is different from the deviation rate “1.17” at the sixth excitation. It becomes large “0.78”.
このため、回転電機20の回転数rpmが“7000”を超えかつ“10000”以下の範囲内にあるとき、一制御周期当たりロータ界磁巻線44を等間隔で4回励磁すれば、高調波成分の実周波数は、図18に示す如く、共振周波数f1,f2を含むその共振周波数f1,f2に対して概ね±25%の範囲内に抑えられ、上記した6回励磁や3回励磁の場合と比較して狭い範囲に抑えられる。従って、高調波成分の実周波数がこの範囲内に抑えられれば、ロータ界磁巻線44に得られる励磁電流が、高調波成分の実周波数が共振周波数f1,f2であるときに最大値をとりつつ、許容できる閾値以上となり、上記した6回励磁や3回励磁の場合と比較して大きくなる。また、回転電機20で得られる回転トルクが、高調波成分の実周波数が共振周波数f1,f2であるときに最大値をとりつつ、許容できる閾値以上となり、上記した6回励磁や3回励磁の場合と比較して大きくなる。
For this reason, if the rotor field winding 44 is excited four times at regular intervals per control period when the rotational speed rpm of the rotating electrical machine 20 is in the range of more than “7000” and not more than “10000”, the harmonics As shown in FIG. 18, the actual frequency of the component is suppressed within a range of approximately ± 25% with respect to the resonance frequencies f1 and f2 including the resonance frequencies f1 and f2. Compared to a narrow range. Therefore, if the actual frequency of the harmonic component is suppressed within this range, the excitation current obtained in the rotor field winding 44 takes a maximum value when the actual frequency of the harmonic component is the resonance frequencies f1 and f2. On the other hand, it becomes an allowable threshold value or more, which is larger than the case of the 6-time excitation or the 3-time excitation described above. In addition, the rotational torque obtained by the rotating electrical machine 20 takes a maximum value when the actual frequency of the harmonic component is the resonance frequency f1, f2, and exceeds an allowable threshold value. It becomes larger than the case.
そこで、制御回路72は、回転数rpmが“7000”を超えかつ“10000”以下の回転域である矩形波制御領域で実行する高調波生成処理として、互いに周方向に隣接する隣接二相の相巻線に印加する基本波成分生成のための矩形波電圧波形への正負電圧パルス対の付加を一制御周期当たり等間隔で4回行い、一相一制御周期当たりの印加電圧の平均値をゼロとする。
Therefore, the control circuit 72 performs phase generation of adjacent two phases adjacent to each other in the circumferential direction as a harmonic generation process executed in the rectangular wave control region where the rotation speed rpm exceeds “7000” and is “10000” or less. Positive and negative voltage pulse pairs are added to the rectangular wave voltage waveform to generate the fundamental wave component applied to the winding four times at regular intervals per control cycle, and the average value of the applied voltage per control phase is zero. And
具体的には、上記の高調波生成処理として、三相U,V,Wのうちの特定の一相(図19に示す例ではW相)の相巻線の基本波成分生成のための矩形波電圧波形のオン期間の始端に、そのオン期間を所定期間aだけ切り欠いてオフするための負電圧パルスを付加すると共に、その所定期間aに対応して、他の何れかの隣接する相(図19に示す例ではU相)で基本波成分生成のための矩形波電圧波形のオフ期間に、その負電圧パルスと対をなす所定期間aだけオンするための正電圧パルスを付加する。更に、上記特定の一相の相巻線の基本波成分生成のための矩形波電圧波形のオン期間の終端に、オン期間を所定期間aだけ継ぎ足してオンするための正電圧パルスを付加すると共に、その所定期間aに対応して、他の何れかの隣接する相(図19に示す例ではU相)で基本波成分生成のための矩形波電圧波形のオン期間に、その正電圧パルスと対をなす所定期間aだけオフするための負電圧パルスを付加する。
Specifically, as the above-described harmonic generation processing, a rectangle for generating a fundamental wave component of a phase winding of a specific one of the three phases U, V, and W (W phase in the example shown in FIG. 19) is used. A negative voltage pulse for turning off the ON period by cutting out the ON period by a predetermined period a is added to the beginning of the ON period of the wave voltage waveform, and any other adjacent phase corresponding to the predetermined period a In the off period of the rectangular wave voltage waveform for generating the fundamental wave component (in the example shown in FIG. 19, the U phase), a positive voltage pulse for turning on for a predetermined period a that is paired with the negative voltage pulse is added. Further, a positive voltage pulse for turning on by adding the on period by a predetermined period a is added to the end of the on period of the rectangular wave voltage waveform for generating the fundamental wave component of the specific one-phase winding. Corresponding to the predetermined period a, during the on period of the rectangular wave voltage waveform for generating the fundamental wave component in any other adjacent phase (U phase in the example shown in FIG. 19), the positive voltage pulse A negative voltage pulse for turning off only for a predetermined period a to be paired is added.
この高調波生成処理においては、特定の一相(例えばW相)の相巻線の矩形波電圧波形のオン期間の始端及び終端の双方のタイミング(図19における電気角ω24~ω25及びω29~ω30)でその相を含む隣接二相の相巻線の矩形波電圧波形に正負電圧パルス対が付加されるので、所定の回転域で一制御周期(すなわち電気角360°)当たり高調波成分が2回等間隔(すなわち電気角180°)で生成される。
In this harmonic generation process, the timings of both the start and end of the on-period of the rectangular wave voltage waveform of the phase winding of a specific one phase (for example, W phase) (electrical angles ω24 to ω25 and ω29 to ω30 in FIG. 19). ), A positive / negative voltage pulse pair is added to the rectangular wave voltage waveform of the adjacent two-phase winding including that phase, so that the harmonic component per control cycle (ie, electrical angle of 360 °) is 2 in a predetermined rotation range. It is generated at equal intervals (ie, electrical angle of 180 °).
制御回路72は、上記の高調波生成処理に加えて更に、上記の特定の一相の相巻線の矩形波電圧波形のオン期間の始端及び終端それぞれのタイミング(すなわち、特定の一相を含む隣接二相の相巻線の矩形波電圧波形への正負電圧パルス対の付加)から電気角90°だけ離間したタイミングで、正負電圧パルス対を付加可能な隣接二相(図19に示す例ではV相及びW相)の相巻線の矩形波電圧波形に正負電圧パルス対を付加する。ここで、特定の一相をW相とした場合、電気角90°だけ離間したタイミングにおいて隣接二相で所定期間aの正負電圧パルス対を印加可能な相の組み合わせは、W相及びV相である(図15参照)。
In addition to the above harmonic generation processing, the control circuit 72 further includes the timings of the start and end of the rectangular wave voltage waveform of the specific one-phase phase winding (that is, the specific one phase). Adjacent two phases to which a positive / negative voltage pulse pair can be added at a timing separated by an electrical angle of 90 ° from the addition of a positive / negative voltage pulse pair to the rectangular wave voltage waveform of the adjacent two-phase phase winding (in the example shown in FIG. 19) A positive / negative voltage pulse pair is added to the rectangular wave voltage waveform of the phase winding of (V phase and W phase). Here, when a specific one phase is a W phase, a combination of phases that can apply a positive / negative voltage pulse pair of a predetermined period a in adjacent two phases at a timing separated by an electrical angle of 90 ° is a W phase and a V phase. Yes (see FIG. 15).
この正負電圧パルス対の付加によれば、一制御周期当たり高調波成分が等間隔で2回生成されるタイミングから電気角90だけずれたタイミング(図19における電気角ω22~ω23及びω27~ω28)で、一制御周期(すなわち電気角360°)当たり高調波成分が等間隔(すなわち電気角180°)で2回生成される。
According to the addition of the positive and negative voltage pulse pairs, timings deviated by an electrical angle 90 from the timing at which the harmonic component per control cycle is generated twice at equal intervals (electrical angles ω22 to ω23 and ω27 to ω28 in FIG. 19). Thus, harmonic components per control cycle (ie, electrical angle 360 °) are generated twice at regular intervals (ie, electrical angle 180 °).
従って、三相U,V,Wのうちの特定の一相の基本波成分生成のための矩形波電圧波形を所定期間aだけ遅らせ、その所定期間aに対応する期間に他の何れかの相で逆のパルス電圧を印加すると共に、その特定の一相の基本波成分生成のための矩形波電圧波形の始端及び終端それぞれのタイミングから電気角90°だけ離間したタイミングにおいて隣接二相で所定期間aの正負電圧パルス対を印加すれば、一制御周期中に高調波成分を等間隔で4回生成することができ、ロータ界磁巻線44を一制御周期当たり等間隔で4回励磁することができる。
Accordingly, the rectangular wave voltage waveform for generating the fundamental wave component of one specific phase among the three phases U, V, and W is delayed by a predetermined period a, and any other phase is delayed during the period corresponding to the predetermined period a. And applying a reverse pulse voltage at the same time, and at a timing separated by an electrical angle of 90 ° from the respective timings of the start and end of the rectangular wave voltage waveform for generating the specific one-phase fundamental wave component, for a predetermined period of time in two adjacent phases. If a positive / negative voltage pulse pair a is applied, harmonic components can be generated four times at regular intervals during one control cycle, and the rotor field winding 44 is excited four times at regular intervals per control cycle. Can do.
この高調波生成処理によれば、回転数rpmが“7000”を超えかつ“10000”以下である回転域で、矩形波状の基本波成分の周波数に関係なく、その基本波成分に共振周波数f1,f2に近い周波数(具体的には、共振周波数f1,f2に対して概ね±25%の範囲内)の高調波成分を重畳することができる。この場合は、回転数rpmが“7000”を超えかつ“10000”以下である回転域で、一制御周期中に高調波成分を等間隔で6回又は3回生成する上記第1実施形態の構成に比べて、生成される高調波成分の周波数を共振周波数f1,f2に近づけることができる。
According to the harmonic generation process, the resonance frequency f1, the fundamental wave component is included in the fundamental wave component regardless of the frequency of the rectangular wave fundamental wave component in the rotation region where the rotation speed rpm exceeds “7000” and is “10000” or less. A harmonic component having a frequency close to f2 (specifically, within a range of approximately ± 25% with respect to the resonance frequencies f1 and f2) can be superimposed. In this case, the configuration of the first embodiment in which the harmonic component is generated six times or three times at regular intervals in one control period in the rotation range where the rotation speed rpm exceeds “7000” and is “10000” or less. As compared with the above, the frequency of the generated harmonic component can be made closer to the resonance frequencies f1 and f2.
この変形形態においては、回転電機20の回転数rpmが中回転より高いとき、一制御周期当たり基本波成分に高調波成分を等間隔で最大6回重畳し、回転数rpmが所定の高回転に達したときは、一制御周期当たり基本波成分に等間隔で重畳する高調波成分の重畳回数を4回に切り替え、更に回転数rpmがより高い所定の高回転に達したときは、一制御周期当たり基本波成分に等間隔で重畳する高調波成分の重畳回数を3回に切り替えることで、ロータ界磁巻線44の励磁を行うことができる。
In this modification, when the rotational speed rpm of the rotating electrical machine 20 is higher than the middle rotational speed, the harmonic component is superimposed on the fundamental wave component per control cycle at regular intervals up to 6 times, and the rotational speed rpm becomes a predetermined high rotational speed. When the frequency reaches, the number of harmonic components to be superimposed on the fundamental wave component at regular intervals per control cycle is switched to 4 times. The rotor field winding 44 can be excited by switching the number of times of superimposing harmonic components superimposed at equal intervals on the hit fundamental wave component to three.
このため、この変形形態によれば、上記の第1実施形態に比べて更に、回転電機20の中回転から高回転まで、ロータ界磁巻線44の励磁時におけるインピーダンスを低減して、そのロータ界磁巻線44の励磁性を向上させることができる。また、ステータ電機子巻線34に流す電流である基本波成分に重畳する高調波成分の振幅を更に抑えることができるので、ロータ励磁用の高調波成分に起因するトルクリップルを更に低減することができる。
For this reason, according to this modified embodiment, the impedance at the time of excitation of the rotor field winding 44 is further reduced from the middle rotation to the high rotation of the rotating electrical machine 20 compared with the first embodiment, and the rotor Excitability of the field winding 44 can be improved. In addition, since the amplitude of the harmonic component superimposed on the fundamental wave component that is the current flowing through the stator armature winding 34 can be further suppressed, torque ripple caused by the harmonic component for rotor excitation can be further reduced. it can.
尚、上記の第1実施形態やその変形形態においては、回転電機20のロータ26が4極対である場合の例を示した。しかし、本発明はこれに限定されるものではなく、極対数が他の数であるロータ26に適用することとしてもよい。
In the above-described first embodiment and its modifications, an example in which the rotor 26 of the rotating electrical machine 20 is a four-pole pair has been shown. However, the present invention is not limited to this, and may be applied to the rotor 26 having a different number of pole pairs.
また、上記の第1実施形態においては、基準相で電流として流す基本波成分に高調波成分を重畳させるための正負電圧パルス対を印加するタイミングとして、その基準相の相巻線に印加する基本波成分生成のための矩形波電圧波形のオン期間の中心(正電圧中心)又はオフ期間の中心(負電圧中心)から電気角30°遅れたタイミングとし、その基準相とは異なる一相の相巻線に印加する基本波成分生成のための矩形波電圧波形のオン期間の始端又は終端としている。しかし、本発明はこれに限定されるものではない。上記の正負電圧パルス対を印加するタイミングとしては、基準相の正電圧中心又は負電圧中心から遅れて電気角30°~60°のタイミングであってよい。回転電機20における力率が概ね0.5以上であり、その力率角が概ね電気角60°以下であるので、この電気角範囲の上限値は電気角60°に設定されるのが好ましい。
In the first embodiment, the basic phase applied to the phase winding of the reference phase as the timing of applying a positive / negative voltage pulse pair for superimposing the harmonic component on the fundamental wave component flowing as a current in the reference phase. The phase of the rectangular wave voltage waveform for generating the wave component is a phase that is delayed by an electrical angle of 30 ° from the center of the on period (positive voltage center) or the center of the off period (negative voltage center) and is different from the reference phase. This is the start or end of the on period of the rectangular wave voltage waveform for generating the fundamental wave component applied to the winding. However, the present invention is not limited to this. The timing of applying the positive / negative voltage pulse pair may be a timing with an electrical angle of 30 ° to 60 ° behind the positive voltage center or negative voltage center of the reference phase. Since the power factor in the rotating electrical machine 20 is approximately 0.5 or more and the power factor angle is approximately 60 ° or less, the upper limit value of this electrical angle range is preferably set to 60 °.
また、上記の第1実施形態においては、ロータ界磁巻線44とコンデンサ54とからなる共振回路80,82の共振周波数f1,f2を共振周波数と定義しているが、界磁巻線型回転電機20の共振周波数としては、基本波成分に高調波成分を重畳させた電流をステータ電機子巻線34に流しながらその高調波成分の周波数を変化させた場合に、ロータ界磁巻線44に流れる励磁電流又はその励磁電流により発生するトルクがピークを示す周波数を用いることとしてもよい(図14参照)。
In the first embodiment, the resonance frequencies f1 and f2 of the resonance circuits 80 and 82 including the rotor field winding 44 and the capacitor 54 are defined as resonance frequencies. The resonance frequency of 20 flows in the rotor field winding 44 when the frequency of the harmonic component is changed while flowing the current in which the harmonic component is superimposed on the fundamental wave component in the stator armature winding 34. A frequency at which the excitation current or the torque generated by the excitation current exhibits a peak may be used (see FIG. 14).
[実施形態2]
上記の第1実施形態の回転電機20においては、ロータ界磁巻線44が直列接続された2つの界磁巻線部44-1,44-2を有しており、それらの界磁巻線部44-1,44-2同士の接続点に他端が接続された唯一つのコンデンサ54が設けられている。これに対して、本発明の第2実施形態に係る回転電機100においては、図20に示す如く、ロータ界磁巻線44が直列接続された3つの界磁巻線部44-1,44-2,44-3を有しており、それらの界磁巻線部44-1,44-2,44-3同士の接続点のうちの対応する1つにそれぞれの他端が接続された2つのコンデンサ54-1,54-2が設けられている。 [Embodiment 2]
The rotatingelectrical machine 20 according to the first embodiment includes two field winding portions 44-1 and 44-2 in which the rotor field windings 44 are connected in series, and these field windings. A single capacitor 54 having the other end connected to the connection point between the sections 44-1 and 44-2 is provided. On the other hand, in the rotary electric machine 100 according to the second embodiment of the present invention, as shown in FIG. 20, three field winding portions 44-1, 44- having the rotor field windings 44 connected in series are provided. 2 and 44-3, and the other end of each of the field winding portions 44-1, 44-2, 44-3 is connected to the corresponding one of the connection points of the field winding portions 44-1, 44-2, 44-3. Two capacitors 54-1 and 54-2 are provided.
上記の第1実施形態の回転電機20においては、ロータ界磁巻線44が直列接続された2つの界磁巻線部44-1,44-2を有しており、それらの界磁巻線部44-1,44-2同士の接続点に他端が接続された唯一つのコンデンサ54が設けられている。これに対して、本発明の第2実施形態に係る回転電機100においては、図20に示す如く、ロータ界磁巻線44が直列接続された3つの界磁巻線部44-1,44-2,44-3を有しており、それらの界磁巻線部44-1,44-2,44-3同士の接続点のうちの対応する1つにそれぞれの他端が接続された2つのコンデンサ54-1,54-2が設けられている。 [Embodiment 2]
The rotating
以下適宜、界磁巻線部44-1,44-2,44-3を第1界磁巻線部44-1、第2界磁巻線部44-2、及び第3界磁巻線部44-3と称し、コンデンサ54-1,54-2を第1コンデンサ部54-1及び第2コンデンサ部54-2と称す。尚、図20及び図21において、上記第1実施形態において用いた構成部分と同一の構成部分については、同一の符号を付してその説明を省略又は簡略する。
The field winding portions 44-1, 44-2, 44-3 are appropriately replaced with the first field winding portion 44-1, the second field winding portion 44-2, and the third field winding portion. 44-3, and the capacitors 54-1 and 54-2 are referred to as a first capacitor portion 54-1 and a second capacitor portion 54-2. 20 and 21, the same components as those used in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted or simplified.
コンデンサ54-1,54-2はそれぞれ、一端が整流素子52のアノード端子及び第3界磁巻線部44-3の一端に接続されていると共に、他端がロータ界磁巻線44の両端の間に接続されているコンデンサである。第1コンデンサ部54-1の他端は、第1界磁巻線部44-1と第2界磁巻線部44-2との接続点に接続されている。第2コンデンサ部54-2の他端は、第2界磁巻線部44-2と第3界磁巻線部44-3との接続点に接続されている。第1コンデンサ部54-1は、容量C1を有している。第2コンデンサ部54-2は、容量C2を有している。
Each of the capacitors 54-1 and 54-2 has one end connected to the anode terminal of the rectifying element 52 and one end of the third field winding portion 44-3, and the other end connected to both ends of the rotor field winding 44. It is a capacitor connected between the two. The other end of the first capacitor unit 54-1 is connected to a connection point between the first field winding unit 44-1 and the second field winding unit 44-2. The other end of the second capacitor unit 54-2 is connected to a connection point between the second field winding unit 44-2 and the third field winding unit 44-3. The first capacitor unit 54-1 has a capacitance C1. The second capacitor unit 54-2 has a capacitance C2.
第1界磁巻線部44-1は、整流素子52のカソード端子と第1コンデンサ部54-1の他端との間に接続されている。第2界磁巻線部44-2は、第1コンデンサ部54-1の他端と第2コンデンサ部54-2の他端との間に接続されている。第3界磁巻線部44-3は、第2コンデンサ部54-2に並列に接続されている。第1コンデンサ部54-1は、第1界磁巻線部44-1の両端に発生する電圧の方向と第2界磁巻線部44-2側に発生する電圧の方向とが互いに逆方向となって両電圧が相互に打ち消し合うときに、その打ち消し合う電圧分の励磁エネルギを蓄える機能を有している。第2コンデンサ部54-2は、第2界磁巻線部44-2側に発生する電圧の方向と第3界磁巻線部44-3側に発生する電圧の方向とが互いに逆方向となって両電圧が相互に打ち消し合うときに、その打ち消し合う電圧分の励磁エネルギを蓄える機能を有している。
The first field winding portion 44-1 is connected between the cathode terminal of the rectifying element 52 and the other end of the first capacitor portion 54-1. The second field winding portion 44-2 is connected between the other end of the first capacitor portion 54-1 and the other end of the second capacitor portion 54-2. The third field winding portion 44-3 is connected in parallel to the second capacitor portion 54-2. In the first capacitor unit 54-1, the direction of the voltage generated at both ends of the first field winding unit 44-1 and the direction of the voltage generated at the second field winding unit 44-2 are opposite to each other. Thus, when both voltages cancel each other, it has a function of storing excitation energy corresponding to the canceling voltage. In the second capacitor unit 54-2, the direction of the voltage generated on the second field winding unit 44-2 side and the direction of the voltage generated on the third field winding unit 44-3 side are opposite to each other. Thus, when both voltages cancel each other, it has a function of storing excitation energy corresponding to the canceling voltage.
第1界磁巻線部44-1と第2界磁巻線部44-2との接続点、及び、第2界磁巻線部44-2と第3界磁巻線部44-3との接続点は、ロータ界磁巻線44を漏れ磁束や高調波磁束などの影響を受け易い部分と受け難い部分とに段階的に分ける箇所に設定されていればよい。第1界磁巻線部44-1は、インダクタンスL1を有している。第2界磁巻線部44-2は、インダクタンスL2を有している。第3界磁巻線部44-3は、インダクタンスL3を有している。
A connection point between the first field winding portion 44-1 and the second field winding portion 44-2, and the second field winding portion 44-2 and the third field winding portion 44-3. These connection points may be set so as to divide the rotor field winding 44 into portions that are easily affected by leakage magnetic flux and harmonic magnetic flux and portions that are difficult to receive. The first field winding portion 44-1 has an inductance L1. The second field winding portion 44-2 has an inductance L2. The third field winding portion 44-3 has an inductance L3.
第1界磁巻線部44-1、第2界磁巻線部44-2、及び第3界磁巻線部44-3は、図21に示す如く、突極部48の径方向においてステータコア32に近い側から順に配置されている。すなわち、第1界磁巻線部44-1は、第2界磁巻線部44-2に比してステータコア32に近い側(すなわち、径方向外側)に配置されている。第2界磁巻線部44-2は、第3界磁巻線部44-3に比してステータコア32に近い側(すなわち、径方向外側)に配置されている。
As shown in FIG. 21, the first field winding portion 44-1, the second field winding portion 44-2, and the third field winding portion 44-3 are arranged in the radial direction of the salient pole portion 48. Arranged in order from the side close to 32. That is, the first field winding portion 44-1 is disposed closer to the stator core 32 (ie, radially outward) than the second field winding portion 44-2. The second field winding portion 44-2 is disposed on the side closer to the stator core 32 (that is, radially outside) than the third field winding portion 44-3.
回転電機100においては、ロータ界磁巻線44の3つの界磁巻線部44-1,44-2,44-3と2つのコンデンサ54-1,54-2とにより4つの共振回路が設けられている。すなわち、ロータ界磁巻線44の第1界磁巻線部44-1と第1コンデンサ部54-1とは、第1共振回路102を構成する。第1共振回路102は、第1共振周波数f11を有している。第1共振周波数f11は、第1界磁巻線部44-1のインダクタンスL1と第1コンデンサ部54-1の容量C1とに基づいて次式(3)に従って算出される。
In the rotary electric machine 100, four resonance circuits are provided by the three field winding portions 44-1 44-2 44-3 of the rotor field winding 44 and the two capacitors 54-1 54-2. It has been. That is, the first field winding portion 44-1 and the first capacitor portion 54-1 of the rotor field winding 44 constitute the first resonance circuit 102. The first resonance circuit 102 has a first resonance frequency f11. The first resonance frequency f11 is calculated according to the following equation (3) based on the inductance L1 of the first field winding portion 44-1 and the capacitance C1 of the first capacitor portion 54-1.
ロータ界磁巻線44の第2界磁巻線部44-2と第1コンデンサ部54-1とは、第2共振回路104を構成する。第2共振回路104は、第2共振周波数f12を有している。第2共振周波数f12は、第2界磁巻線部44-2のインダクタンスL2と第1コンデンサ部54-1の容量C1とに基づいて次式(4)に従って算出される。
The second field winding portion 44-2 and the first capacitor portion 54-1 of the rotor field winding 44 constitute a second resonance circuit 104. The second resonance circuit 104 has a second resonance frequency f12. The second resonance frequency f12 is calculated according to the following equation (4) based on the inductance L2 of the second field winding portion 44-2 and the capacitance C1 of the first capacitor portion 54-1.
ロータ界磁巻線44の第2界磁巻線部44-2と第2コンデンサ部54-2とは、第3共振回路106を構成する。第3共振回路106は、第3共振周波数f13を有している。第3共振周波数f13は、第2界磁巻線部44-2のインダクタンスL2と第2コンデンサ部54-2の容量C2とに基づいて次式(5)に従って算出される。
The second field winding portion 44-2 and the second capacitor portion 54-2 of the rotor field winding 44 constitute a third resonance circuit 106. The third resonance circuit 106 has a third resonance frequency f13. The third resonance frequency f13 is calculated according to the following equation (5) based on the inductance L2 of the second field winding portion 44-2 and the capacitance C2 of the second capacitor portion 54-2.
ロータ界磁巻線44の第3界磁巻線部44-3と第2コンデンサ部54-2とは、第4共振回路108を構成する。第4共振回路108は、第4共振周波数f14を有している。第4共振周波数f14は、第3界磁巻線部44-3のインダクタンスL3と第2コンデンサ部54-2の容量C2とに基づいて次式(6)に従って算出される。
The third field winding portion 44-3 and the second capacitor portion 54-2 of the rotor field winding 44 constitute a fourth resonance circuit 108. The fourth resonance circuit 108 has a fourth resonance frequency f14. The fourth resonance frequency f14 is calculated according to the following equation (6) based on the inductance L3 of the third field winding portion 44-3 and the capacitance C2 of the second capacitor portion 54-2.
f11=1/(2×π×(L1×C1)1/2) ・・・(3)
f12=1/(2×π×(L2×C1)1/2) ・・・(4)
f13=1/(2×π×(L2×C2)1/2) ・・・(5)
f14=1/(2×π×(L3×C2)1/2) ・・・(6) f11 = 1 / (2 × π × (L1 × C1) 1/2 ) (3)
f12 = 1 / (2 × π × (L2 × C1) 1/2 ) (4)
f13 = 1 / (2 × π × (L2 × C2) 1/2) ··· (5)
f14 = 1 / (2 × π × (L3 × C2) 1/2 ) (6)
f12=1/(2×π×(L2×C1)1/2) ・・・(4)
f13=1/(2×π×(L2×C2)1/2) ・・・(5)
f14=1/(2×π×(L3×C2)1/2) ・・・(6) f11 = 1 / (2 × π × (L1 × C1) 1/2 ) (3)
f12 = 1 / (2 × π × (L2 × C1) 1/2 ) (4)
f13 = 1 / (2 × π × (L2 × C2) 1/2) ··· (5)
f14 = 1 / (2 × π × (L3 × C2) 1/2 ) (6)
第1界磁巻線部44-1のインダクタンスL1及び第1コンデンサ部54-1の容量C1は、ロータ励磁用の高調波成分の周波数に対して共振関係にある。又は、第2界磁巻線部44-2のインダクタンスL2及び第1コンデンサ部54-1の容量C1は、その高調波成分の周波数に対して共振関係にある。又は、第2界磁巻線部44-2のインダクタンスL2及び第2コンデンサ部54-2の容量C2は、ロータ励磁用の高調波成分の周波数に対して共振関係にある。又は、第3界磁巻線部44-3のインダクタンスL3及び第2コンデンサ部54-2の容量C2は、その高調波成分の周波数に対して共振関係にある。
The inductance L1 of the first field winding portion 44-1 and the capacitance C1 of the first capacitor portion 54-1 are in a resonance relationship with the frequency of the harmonic component for exciting the rotor. Alternatively, the inductance L2 of the second field winding portion 44-2 and the capacitance C1 of the first capacitor portion 54-1 are in a resonance relationship with the frequency of the harmonic component. Alternatively, the inductance L2 of the second field winding portion 44-2 and the capacitance C2 of the second capacitor portion 54-2 are in a resonance relationship with the frequency of the harmonic component for exciting the rotor. Alternatively, the inductance L3 of the third field winding portion 44-3 and the capacitance C2 of the second capacitor portion 54-2 are in a resonance relationship with the frequency of the harmonic component.
すなわち、共振周波数は、4つの共振回路102~108に対応して4つ設けられている。第1共振周波数f11、第2共振周波数f12、第3共振周波数f13、及び第4共振周波数f14の少なくとも何れか一つは、高調波成分の周波数に等しい或いはその高調波成分の周波数付近にある。尚、第1共振周波数f11、第2共振周波数f12、第3共振周波数f13、及び第4共振周波数f14のすべてが、高調波成分の周波数に等しい或いはその高調波成分の周波数付近にあることとしてもよい。
That is, four resonance frequencies are provided corresponding to the four resonance circuits 102 to 108. At least one of the first resonance frequency f11, the second resonance frequency f12, the third resonance frequency f13, and the fourth resonance frequency f14 is equal to or close to the frequency of the harmonic component. The first resonance frequency f11, the second resonance frequency f12, the third resonance frequency f13, and the fourth resonance frequency f14 may be all equal to or near the frequency of the harmonic component. Good.
また、共振回路102~108ごとの第1共振周波数f11~第4共振周波数f14を互いに異なるものに設定することで共振周波数帯を広げることとしてもよい。この構成によれば、高調波成分を共振回路102~108の共振周波数f11~f14に合わせ易くすることができる。また、この場合において、4つの共振周波数f11~f14のうち何れか2つの共振周波数が互いに近似することでそれら2つの共振周波数の間の周波数でも共振が生じるときは、高調波成分の周波数は、それら2つの共振周波数の間にあってもよく、この構成によれば、高調波成分を2つの共振周波数の間に合わせ易くすることができる。
Further, the resonance frequency band may be expanded by setting the first resonance frequency f11 to the fourth resonance frequency f14 for each of the resonance circuits 102 to 108 to be different from each other. According to this configuration, the harmonic components can be easily matched to the resonance frequencies f11 to f14 of the resonance circuits 102 to 108. Further, in this case, when any two resonance frequencies of the four resonance frequencies f11 to f14 are approximated to each other and resonance occurs at a frequency between those two resonance frequencies, the frequency of the harmonic component is It may be between these two resonance frequencies, and according to this configuration, the harmonic component can be easily matched between the two resonance frequencies.
このように第1共振周波数f11、第2共振周波数f12、第3共振周波数f13、及び第4共振周波数f14の少なくとも何れか一つと高調波成分の周波数とが共振関係にある構成においては、共振関係にない構成に比べて、ステータ電機子巻線34に基本波成分と高調波成分とを重畳した電流が流れたときに、各極のロータ界磁巻線44に誘起される界磁電流が流れ易くなる。従って、回転電機100によれば、ロータ界磁巻線44の励磁時におけるインピーダンスを低減することができ、そのロータ界磁巻線44の励磁性を向上させることができるので、ロータ励磁用の高調波成分に起因するトルクリップルを低減することができる。
Thus, in a configuration in which at least one of the first resonance frequency f11, the second resonance frequency f12, the third resonance frequency f13, and the fourth resonance frequency f14 and the frequency of the harmonic component are in a resonance relationship, the resonance relationship Compared with a configuration that is not present, when a current in which a fundamental wave component and a harmonic component are superimposed flows in the stator armature winding 34, a field current induced in the rotor field winding 44 of each pole flows. It becomes easy. Therefore, according to the rotating electrical machine 100, the impedance at the time of excitation of the rotor field winding 44 can be reduced, and the excitation performance of the rotor field winding 44 can be improved. Torque ripple caused by wave components can be reduced.
[実施形態3]
上記の第2実施形態の回転電機100においては、ロータ界磁巻線44が直列接続された3つの界磁巻線部44-1,44-2,44-3を有しており、それらの界磁巻線部44-1,44-2,44-3同士の接続点のうちの対応する1つにそれぞれの他端が接続された2つのコンデンサ54-1,54-2が設けられている。これに対して、本発明の第3実施形態に係る回転電機200においては、図22に示す如く、ロータ界磁巻線44が直列接続された(n+1)個の界磁巻線部44-1,44-2,・・・,44-(n+1)を有しており、それらの界磁巻線部44-1,44-2,・・・,44-(n+1)同士の接続点のうちの対応する1つにそれぞれの他端が接続されたn個のコンデンサ部54-1,54-2,・・・,54-nが設けられている。尚、nは、3以上の整数であればよいが、第1実施形態及び第2実施形態を含めるときは1以上の整数であってよい。また、図22において、上記第1実施形態において用いた構成部分と同一の構成部分については、同一の符号を付してその説明を省略又は簡略する。 [Embodiment 3]
The rotatingelectrical machine 100 according to the second embodiment includes the three field winding portions 44-1, 44-2, and 44-3 in which the rotor field windings 44 are connected in series. Two capacitors 54-1 and 54-2 each having the other end connected to a corresponding one of the connection points of the field winding portions 44-1, 44-2 and 44-3 are provided. Yes. In contrast, in the rotating electrical machine 200 according to the third embodiment of the present invention, as shown in FIG. 22, (n + 1) field winding portions 44-1 in which the rotor field windings 44 are connected in series. , 44-2,..., 44- (n + 1), and the field winding portions 44-1, 44-2,. , 54-n are provided with n capacitor portions 54-1, 54-2,..., 54-n each having the other end connected to the corresponding one. In addition, although n should just be an integer greater than or equal to 3, when including 1st Embodiment and 2nd Embodiment, it may be an integer greater than or equal to 1. In FIG. 22, the same components as those used in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted or simplified.
上記の第2実施形態の回転電機100においては、ロータ界磁巻線44が直列接続された3つの界磁巻線部44-1,44-2,44-3を有しており、それらの界磁巻線部44-1,44-2,44-3同士の接続点のうちの対応する1つにそれぞれの他端が接続された2つのコンデンサ54-1,54-2が設けられている。これに対して、本発明の第3実施形態に係る回転電機200においては、図22に示す如く、ロータ界磁巻線44が直列接続された(n+1)個の界磁巻線部44-1,44-2,・・・,44-(n+1)を有しており、それらの界磁巻線部44-1,44-2,・・・,44-(n+1)同士の接続点のうちの対応する1つにそれぞれの他端が接続されたn個のコンデンサ部54-1,54-2,・・・,54-nが設けられている。尚、nは、3以上の整数であればよいが、第1実施形態及び第2実施形態を含めるときは1以上の整数であってよい。また、図22において、上記第1実施形態において用いた構成部分と同一の構成部分については、同一の符号を付してその説明を省略又は簡略する。 [Embodiment 3]
The rotating
回転電機200においては、ロータ界磁巻線44の(n+1)個の界磁巻線部44-1~44-(n+1)とn個のコンデンサ部54-1~54-nとにより(2×n)個の共振回路が設けられている。すなわち、ロータ界磁巻線44の(n+1)個の界磁巻線部44-1~44-(n+1)とn個のコンデンサ部54-1~54-nとは、(2×n)個の共振回路を構成する。(n+1)個の界磁巻線部44-1~44-(n+1)は、インダクタンスL1~L(n+1)を有する。n個のコンデンサ部54-1~54-nは、容量C1~Cnを有する。これら(2×n)個の共振回路の共振周波数の少なくとも何れか一つは、ロータ励磁用の高調波成分の周波数に等しい或いはその高調波成分の周波数付近にある。尚、(2×n)個の共振周波数のすべてが、高調波成分の周波数に等しい或いはその高調波成分の周波数付近にあることとしてもよい。
In the rotary electric machine 200, (n + 1) field winding portions 44-1 to 44- (n + 1) and n capacitor portions 54-1 to 54-n of the rotor field winding 44 are (2 × n) There are provided resonant circuits. That is, (n + 1) field winding portions 44-1 to 44- (n + 1) and n capacitor portions 54-1 to 54-n of the rotor field winding 44 are (2 × n). The resonance circuit is configured. The (n + 1) field winding portions 44-1 to 44- (n + 1) have inductances L1 to L (n + 1). The n capacitor units 54-1 to 54-n have capacitances C1 to Cn. At least one of the resonance frequencies of these (2 × n) resonance circuits is equal to or near the frequency of the harmonic component for exciting the rotor. Note that all (2 × n) resonance frequencies may be equal to or close to the frequency of the harmonic component.
また、(2×n)個の共振回路ごとの共振周波数を互いに異なるものに設定することで、共振周波数帯を所定幅を有する帯域に亘って広げることとしてもよい。この構成によれば、高調波成分を何れかの共振回路の共振周波数に合わせ易くすることができる。また、この場合において、(2×n)個の共振周波数のうち何れか2つの共振周波数が互いに近似することでそれら2つの共振周波数の間の周波数でも共振が生じるときは、高調波成分の周波数は、それら2つの共振周波数の間にあってもよく、この構成によれば、高調波成分を2つの共振周波数の間に合わせ易くすることができる。
Further, the resonance frequency band may be extended over a band having a predetermined width by setting the resonance frequencies for (2 × n) resonance circuits to be different from each other. According to this configuration, the harmonic component can be easily matched with the resonance frequency of any of the resonance circuits. Further, in this case, when any two resonance frequencies of (2 × n) resonance frequencies approximate each other to cause resonance even at a frequency between the two resonance frequencies, the frequency of the harmonic component May be between those two resonance frequencies, and according to this configuration, the harmonic component can be easily matched between the two resonance frequencies.
このように共振回路の共振周波数と高調波成分の周波数とが共振関係にある構成においては、共振関係にない構成に比べて、ステータ電機子巻線34に基本波成分と高調波成分とを重畳した電流が流れたときに、各極のロータ界磁巻線44に誘起される界磁電流が流れ易くなる。従って、回転電機200においても、ロータ界磁巻線44の励磁時におけるインピーダンスを低減することができ、そのロータ界磁巻線44の励磁性を向上させることができるので、ロータ励磁用の高調波成分に起因するトルクリップルを低減することができる。
Thus, in the configuration in which the resonance frequency of the resonance circuit and the frequency of the harmonic component are in a resonance relationship, the fundamental wave component and the harmonic component are superimposed on the stator armature winding 34 as compared with the configuration in which the resonance circuit does not have a resonance relationship. When the current flows, the field current induced in the rotor field winding 44 of each pole becomes easy to flow. Therefore, also in the rotating electric machine 200, the impedance at the time of excitation of the rotor field winding 44 can be reduced and the excitation performance of the rotor field winding 44 can be improved. Torque ripple caused by components can be reduced.
[その他]
ところで、上記の第1実施形態においては、整流素子52のカソード端子とコンデンサ54の他端との間に接続されている第1界磁巻線部44-1が、突極部48の径方向においてステータコア32に近い側に配置されると共に、コンデンサ54に並列に接続されている第2界磁巻線部44-2が、突極部48の径方向においてステータコア32から遠い側に配置される。すなわち、第1界磁巻線部44-1が第2界磁巻線部44-2に比してステータコア32に近い側(すなわち、径方向外側)に配置される。しかし、本発明はこれに限定されるものではなく、逆に、第1界磁巻線部44-1が突極部48の径方向においてステータコア32から遠い側に配置されると共に、第2界磁巻線部44-2が突極部48の径方向においてステータコア32に近い側に配置されるものであってもよい。すなわち、第1界磁巻線部44-1が第2界磁巻線部44-2に比してステータコア32から遠い側(すなわち、径方向内側)に配置されていてもよい。尚、第2実施形態や第3実施形態においても、これと同様の構成を適用することが可能である。 [Others]
By the way, in the first embodiment, the first field winding portion 44-1 connected between the cathode terminal of the rectifyingelement 52 and the other end of the capacitor 54 has the radial direction of the salient pole portion 48. And the second field winding portion 44-2 connected in parallel to the capacitor 54 is disposed on the side far from the stator core 32 in the radial direction of the salient pole portion 48. . That is, the first field winding portion 44-1 is disposed closer to the stator core 32 (that is, radially outside) than the second field winding portion 44-2. However, the present invention is not limited to this, and conversely, the first field winding portion 44-1 is disposed on the side far from the stator core 32 in the radial direction of the salient pole portion 48, and the second field The magnetic winding portion 44-2 may be disposed on the side closer to the stator core 32 in the radial direction of the salient pole portion 48. That is, the first field winding portion 44-1 may be disposed on the side farther from the stator core 32 (that is, radially inward) than the second field winding portion 44-2. In the second embodiment and the third embodiment, the same configuration can be applied.
ところで、上記の第1実施形態においては、整流素子52のカソード端子とコンデンサ54の他端との間に接続されている第1界磁巻線部44-1が、突極部48の径方向においてステータコア32に近い側に配置されると共に、コンデンサ54に並列に接続されている第2界磁巻線部44-2が、突極部48の径方向においてステータコア32から遠い側に配置される。すなわち、第1界磁巻線部44-1が第2界磁巻線部44-2に比してステータコア32に近い側(すなわち、径方向外側)に配置される。しかし、本発明はこれに限定されるものではなく、逆に、第1界磁巻線部44-1が突極部48の径方向においてステータコア32から遠い側に配置されると共に、第2界磁巻線部44-2が突極部48の径方向においてステータコア32に近い側に配置されるものであってもよい。すなわち、第1界磁巻線部44-1が第2界磁巻線部44-2に比してステータコア32から遠い側(すなわち、径方向内側)に配置されていてもよい。尚、第2実施形態や第3実施形態においても、これと同様の構成を適用することが可能である。 [Others]
By the way, in the first embodiment, the first field winding portion 44-1 connected between the cathode terminal of the rectifying
[変形形態1]
界磁極に流れる磁束には漏れ磁束があるが、この漏れ磁束には主磁極である突極部48を経由せずにステータ24とロータ26との間で流れる磁束があるので、効率良い磁束形成が阻害されるおそれがある。 [Modification 1]
The magnetic flux flowing in the field pole has a leakage magnetic flux, but the leakage magnetic flux has a magnetic flux flowing between thestator 24 and the rotor 26 without passing through the salient pole portion 48 which is the main magnetic pole. May be disturbed.
界磁極に流れる磁束には漏れ磁束があるが、この漏れ磁束には主磁極である突極部48を経由せずにステータ24とロータ26との間で流れる磁束があるので、効率良い磁束形成が阻害されるおそれがある。 [Modification 1]
The magnetic flux flowing in the field pole has a leakage magnetic flux, but the leakage magnetic flux has a magnetic flux flowing between the
そこで、第1変形形態に係る回転電機300においては、図23に示す如く、ロータコア42が、ボス部46及び複数の突極部48を有していると共に、更に複数の補助極部302を有している。突極部48は、界磁極(具体的には、N極及びS極)をなす主磁極である。各補助極部302は、一対の突極部48間に設けられている。補助極部302は、周方向において突極部48と交互に並ぶように所定間隔で配置されている。補助極部302は、周方向に隣り合う突極部48の間に境界を設けるために設置された補助極であって、ボス部46から径方向外側へ向けて突出する部位である。尚、図23において、上記第1実施形態において用いた構成部分と同一の構成部分については、同一の符号を付してその説明を省略又は簡略する。
Therefore, in the rotating electrical machine 300 according to the first modified embodiment, as shown in FIG. 23, the rotor core 42 includes a boss portion 46 and a plurality of salient pole portions 48, and further includes a plurality of auxiliary pole portions 302. is doing. The salient pole portion 48 is a main pole that forms a field pole (specifically, an N pole and an S pole). Each auxiliary pole portion 302 is provided between the pair of salient pole portions 48. The auxiliary pole portions 302 are arranged at predetermined intervals so as to be alternately arranged with the salient pole portions 48 in the circumferential direction. The auxiliary pole portion 302 is an auxiliary pole that is installed to provide a boundary between the salient pole portions 48 that are adjacent in the circumferential direction, and is a portion that protrudes radially outward from the boss portion 46. In FIG. 23, the same components as those used in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted or simplified.
尚、補助極部302は、突極部48に比して周方向幅の小さいものであってよく、また、その補助極部302の先端とステータコア32のティース40の先端との間の隙間が、突極部48の先端とそのティース40との間のエアギャップに比して大きいものであってよい。
The auxiliary pole portion 302 may have a smaller circumferential width than the salient pole portion 48, and there is a gap between the tip of the auxiliary pole portion 302 and the tip of the teeth 40 of the stator core 32. The air gap between the tip of the salient pole portion 48 and the tooth 40 may be larger.
回転電機300は、補助極部302に設けられる磁石304を備えている。磁石304は、突極部48間においてステータ24とロータ26との間で流れる漏れ磁束を打ち消す方向に着磁されている(或いはそのような方向に着磁されるように配置されている)。磁石304は、例えば、補助極部302の径方向内側にN極が配置されかつその径方向外側にS極が配置されるように補助極部302に埋設されている。磁石304は、突極部48間においてステータ24側とロータ26側とを跨いで磁束が漏れるのを抑える機能を有している。
The rotating electrical machine 300 includes a magnet 304 provided in the auxiliary pole portion 302. The magnet 304 is magnetized in a direction that cancels out the leakage magnetic flux that flows between the stator 24 and the rotor 26 between the salient pole portions 48 (or is arranged so as to be magnetized in such a direction). The magnet 304 is embedded in the auxiliary pole portion 302 such that, for example, the N pole is disposed on the radially inner side of the auxiliary pole portion 302 and the S pole is disposed on the radially outer side thereof. The magnet 304 has a function of suppressing magnetic flux leakage between the salient pole portions 48 across the stator 24 side and the rotor 26 side.
かかる回転電機300の構造においては、補助極部302に設けられた磁石304により、磁束が突極部48(主磁極)を経由せずにステータ24とロータ26との間で流れるのを抑えることができる。従って、回転電機300によれば、界磁極に流れる磁束を主磁極に効率良く通すことができ、効果的に界磁電流を得ることができる。
In the structure of the rotating electric machine 300, the magnet 304 provided in the auxiliary pole portion 302 suppresses the magnetic flux from flowing between the stator 24 and the rotor 26 without passing through the salient pole portion 48 (main magnetic pole). Can do. Therefore, according to the rotating electrical machine 300, the magnetic flux flowing through the field pole can be efficiently passed through the main pole, and a field current can be obtained effectively.
尚、磁石304は、永久磁石でもよいが、電磁石により構成されてもよい。この場合、補助極部302に、ステータ24からロータ26への漏れ磁束を打ち消す方向の磁束を発生する巻線が設けられている。
The magnet 304 may be a permanent magnet, but may be an electromagnet. In this case, the auxiliary pole portion 302 is provided with a winding that generates a magnetic flux in a direction that cancels out the leakage magnetic flux from the stator 24 to the rotor 26.
[変形形態2]
上記の実施形態や変形形態においては、ロータ界磁巻線44の直列接続される複数の界磁巻線部が突極部48の径方向に並んで配置される。しかし、本発明はこれに限定されるものではなく、ロータ界磁巻線44の直列接続される複数の界磁巻線部が突極部48の周方向に並んで配置されてもよい。すなわち、この第2変形形態に係る回転電機400においては、図24に示す如く、整流素子52のカソード端子とコンデンサ54の他端との間に接続されている第1界磁巻線部44-1が、周方向においてロータコア42の突極部48に近い側に配置されると共に、コンデンサ54に並列に接続されている第2界磁巻線部44-2が、周方向においてロータコア42の突極部48から遠い側に配置されてもよい。すなわち、第1界磁巻線部44-1が、第2界磁巻線部44-2に比してロータコア42の突極部48に近い側に配置されてもよい。尚、図24において、上記第1実施形態において用いた構成部分と同一の構成部分については、同一の符号を付してその説明を省略又は簡略する。 [Modification 2]
In the above-described embodiments and modifications, a plurality of field winding portions connected in series with the rotor field winding 44 are arranged side by side in the radial direction of thesalient pole portion 48. However, the present invention is not limited to this, and a plurality of field winding portions connected in series with the rotor field winding 44 may be arranged side by side in the circumferential direction of the salient pole portion 48. That is, in the rotating electrical machine 400 according to the second modification, as shown in FIG. 24, the first field winding portion 44- connected between the cathode terminal of the rectifying element 52 and the other end of the capacitor 54. 1 is disposed on the side close to the salient pole portion 48 of the rotor core 42 in the circumferential direction, and the second field winding portion 44-2 connected in parallel to the capacitor 54 has a projection of the rotor core 42 in the circumferential direction. It may be arranged on the side far from the pole part 48. That is, the first field winding portion 44-1 may be disposed closer to the salient pole portion 48 of the rotor core 42 than the second field winding portion 44-2. In FIG. 24, the same components as those used in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted or simplified.
上記の実施形態や変形形態においては、ロータ界磁巻線44の直列接続される複数の界磁巻線部が突極部48の径方向に並んで配置される。しかし、本発明はこれに限定されるものではなく、ロータ界磁巻線44の直列接続される複数の界磁巻線部が突極部48の周方向に並んで配置されてもよい。すなわち、この第2変形形態に係る回転電機400においては、図24に示す如く、整流素子52のカソード端子とコンデンサ54の他端との間に接続されている第1界磁巻線部44-1が、周方向においてロータコア42の突極部48に近い側に配置されると共に、コンデンサ54に並列に接続されている第2界磁巻線部44-2が、周方向においてロータコア42の突極部48から遠い側に配置されてもよい。すなわち、第1界磁巻線部44-1が、第2界磁巻線部44-2に比してロータコア42の突極部48に近い側に配置されてもよい。尚、図24において、上記第1実施形態において用いた構成部分と同一の構成部分については、同一の符号を付してその説明を省略又は簡略する。 [Modification 2]
In the above-described embodiments and modifications, a plurality of field winding portions connected in series with the rotor field winding 44 are arranged side by side in the radial direction of the
これらの第1界磁巻線部44-1及び第2界磁巻線部44-2の配置は、例えば、ロータコア42の突極部48に第1界磁巻線部44-1を巻装した後にその第1界磁巻線部44-1の周方向外側に第2界磁巻線部44-2を巻装することにより実現されるものであってよい。また、第1界磁巻線部44-1及び第2界磁巻線部44-2は、一本の巻線をコンデンサ54の他端との接続位置を境界にして分けたものであってもよく、また、二本の別々の巻線をコンデンサ54の他端との接続位置で繋げたものであってもよい。
The arrangement of the first field winding portion 44-1 and the second field winding portion 44-2 is, for example, that the first field winding portion 44-1 is wound around the salient pole portion 48 of the rotor core 42. Then, the second field winding portion 44-2 may be wound around the outer side in the circumferential direction of the first field winding portion 44-1. The first field winding portion 44-1 and the second field winding portion 44-2 are obtained by dividing one winding with the connection position of the other end of the capacitor 54 as a boundary. Alternatively, two separate windings may be connected at the connection position with the other end of the capacitor 54.
このため、回転電機400の構造においては、ロータ界磁巻線44の突極部48に近い側(すなわち主磁極側)と遠い側(すなわち主磁極間側)とで生じる磁束量の差の分だけコンデンサ54に蓄えるエネルギを大きくすることができ、効果的に界磁電流を得ることができる。
For this reason, in the structure of the rotating electric machine 400, the difference in the amount of magnetic flux generated between the side close to the salient pole portion 48 of the rotor field winding 44 (ie, the main magnetic pole side) and the side far away (ie, the side between the main magnetic poles). As a result, the energy stored in the capacitor 54 can be increased, and a field current can be obtained effectively.
尚、この第2変形形態においては、第1界磁巻線部44-1が、第2界磁巻線部44-2に比してロータコア42の突極部48に近い側に配置される。しかし、本発明はこれに限定されるものではなく、逆に、第1界磁巻線部44-1が周方向においてロータコア42の突極部48から遠い側に配置されると共に、第2界磁巻線部44-2が周方向においてロータコア42の突極部48に近い側に配置されるものであってもよい。すなわち、第1界磁巻線部44-1が第2界磁巻線部44-2に比してロータコア42の突極部48から遠い側に配置されていてもよい。
In the second modification, the first field winding portion 44-1 is disposed closer to the salient pole portion 48 of the rotor core 42 than the second field winding portion 44-2. . However, the present invention is not limited to this, and conversely, the first field winding portion 44-1 is disposed on the side far from the salient pole portion 48 of the rotor core 42 in the circumferential direction, and the second field The magnetic winding portion 44-2 may be disposed on the side close to the salient pole portion 48 of the rotor core 42 in the circumferential direction. That is, the first field winding portion 44-1 may be arranged on the side farther from the salient pole portion 48 of the rotor core 42 than the second field winding portion 44-2.
[変形形態3]
また、上記の第2変形形態においては、上記第1変形形態で示した補助極部及びその補助極部に設けられた磁石が設けられていない。これに対して、第3変形形態に係る回転電機500においては、ロータコア42が、図25に示す如く、上記第1変形形態の補助極部302と同様の補助極部502、及び、上記第1変形形態の磁石304と同様の磁石504を有するものとしてもよい。尚、図25において、上記第1実施形態において用いた構成部分と同一の構成部分については、同一の符号を付してその説明を省略又は簡略する。この構造においては、補助極部502に設けられた磁石504により、磁束が突極部48(主磁極)を経由せずにステータ24とロータ26との間で流れるのを抑えることができるので、界磁極に流れる磁束を主磁極に効率良く通すことができ、効果的に界磁電流を得ることができる。 [Modification 3]
Moreover, in said 2nd modification, the magnet provided in the auxiliary pole part and its auxiliary pole part which were shown in the said 1st modification is not provided. On the other hand, in the rotatingelectrical machine 500 according to the third modified embodiment, the rotor core 42 includes the auxiliary pole portion 502 similar to the auxiliary pole portion 302 of the first modified embodiment, and the first It is good also as what has the magnet 504 similar to the magnet 304 of a deformation | transformation form. In FIG. 25, the same components as those used in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted or simplified. In this structure, the magnet 504 provided in the auxiliary pole portion 502 can suppress the magnetic flux from flowing between the stator 24 and the rotor 26 without passing through the salient pole portion 48 (main magnetic pole). The magnetic flux flowing through the field pole can be efficiently passed through the main pole, and a field current can be obtained effectively.
また、上記の第2変形形態においては、上記第1変形形態で示した補助極部及びその補助極部に設けられた磁石が設けられていない。これに対して、第3変形形態に係る回転電機500においては、ロータコア42が、図25に示す如く、上記第1変形形態の補助極部302と同様の補助極部502、及び、上記第1変形形態の磁石304と同様の磁石504を有するものとしてもよい。尚、図25において、上記第1実施形態において用いた構成部分と同一の構成部分については、同一の符号を付してその説明を省略又は簡略する。この構造においては、補助極部502に設けられた磁石504により、磁束が突極部48(主磁極)を経由せずにステータ24とロータ26との間で流れるのを抑えることができるので、界磁極に流れる磁束を主磁極に効率良く通すことができ、効果的に界磁電流を得ることができる。 [Modification 3]
Moreover, in said 2nd modification, the magnet provided in the auxiliary pole part and its auxiliary pole part which were shown in the said 1st modification is not provided. On the other hand, in the rotating
尚、磁石504は、永久磁石でもよいが、電磁石により構成されてもよい。この場合、補助極部502に、ステータ24からロータ26への漏れ磁束を打ち消す方向の磁束を発生する巻線が設けられている。
The magnet 504 may be a permanent magnet or an electromagnet. In this case, the auxiliary pole portion 502 is provided with a winding that generates a magnetic flux in a direction that cancels out the leakage magnetic flux from the stator 24 to the rotor 26.
[変形形態4]
上記の実施形態や変形形態においては、回転電機20が備える整流素子52に並列に何らコンデンサが接続されていない。これに対して、第4変形形態に係る回転電機600においては、図26に示す如く、整流素子52に並列にコンデンサ602が接続されている。尚、図26において、上記第1実施形態において用いた構成部分と同一の構成部分については、同一の符号を付してその説明を省略又は簡略する。コンデンサ602は、ロータ界磁巻線44に誘起されかつ整流素子52により半波整流された交流電圧を平滑化して、脈動を低減する機能を有する。かかるコンデンサ602が設けられた回転電機600によれば、整流素子52により半波整流された交流電圧を平滑化することができ、その脈動を低減することができる。 [Modification 4]
In the above-described embodiments and modifications, no capacitor is connected in parallel to the rectifyingelement 52 provided in the rotating electrical machine 20. On the other hand, in the rotating electrical machine 600 according to the fourth modification, a capacitor 602 is connected in parallel to the rectifying element 52 as shown in FIG. In FIG. 26, the same components as those used in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted or simplified. Capacitor 602 has a function of smoothing the AC voltage induced in rotor field winding 44 and half-wave rectified by rectifying element 52 to reduce pulsation. According to the rotating electric machine 600 provided with the capacitor 602, the AC voltage half-wave rectified by the rectifying element 52 can be smoothed, and the pulsation can be reduced.
上記の実施形態や変形形態においては、回転電機20が備える整流素子52に並列に何らコンデンサが接続されていない。これに対して、第4変形形態に係る回転電機600においては、図26に示す如く、整流素子52に並列にコンデンサ602が接続されている。尚、図26において、上記第1実施形態において用いた構成部分と同一の構成部分については、同一の符号を付してその説明を省略又は簡略する。コンデンサ602は、ロータ界磁巻線44に誘起されかつ整流素子52により半波整流された交流電圧を平滑化して、脈動を低減する機能を有する。かかるコンデンサ602が設けられた回転電機600によれば、整流素子52により半波整流された交流電圧を平滑化することができ、その脈動を低減することができる。 [Modification 4]
In the above-described embodiments and modifications, no capacitor is connected in parallel to the rectifying
[変形形態5]
上記の実施形態や変形形態においては、一端が整流素子52のアノード端子に接続されていると共に、他端がロータ界磁巻線44の両端の間に接続されているコンデンサ54が設けられている。これに対して、第5変形形態に係る回転電機700は、第1実施形態におけるコンデンサ54に代えて、コンデンサ702を備えている。図27に示す如く、コンデンサ702は、一端が整流素子52のカソード端子に接続されていると共に、他端がロータ界磁巻線44の両端の間に接続されているものである。 [Modification 5]
In the above-described embodiments and variations, acapacitor 54 is provided, one end of which is connected to the anode terminal of the rectifying element 52 and the other end connected between both ends of the rotor field winding 44. . On the other hand, the rotating electrical machine 700 according to the fifth modification includes a capacitor 702 instead of the capacitor 54 in the first embodiment. As shown in FIG. 27, the capacitor 702 has one end connected to the cathode terminal of the rectifying element 52 and the other end connected between both ends of the rotor field winding 44.
上記の実施形態や変形形態においては、一端が整流素子52のアノード端子に接続されていると共に、他端がロータ界磁巻線44の両端の間に接続されているコンデンサ54が設けられている。これに対して、第5変形形態に係る回転電機700は、第1実施形態におけるコンデンサ54に代えて、コンデンサ702を備えている。図27に示す如く、コンデンサ702は、一端が整流素子52のカソード端子に接続されていると共に、他端がロータ界磁巻線44の両端の間に接続されているものである。 [Modification 5]
In the above-described embodiments and variations, a
ロータ界磁巻線44は、整流素子52のアノード端子とコンデンサ702の他端との間に接続されている第1界磁巻線部44-1と、コンデンサ702に並列に接続されている第2界磁巻線部44-2と、を有している。コンデンサ702は、第1界磁巻線部44-1の両端に発生する電圧の方向と第2界磁巻線部44-2の両端に発生する電圧の方向とが互いに逆方向となって両電圧が相互に打ち消し合う方向であるときに、その打ち消し合う電圧分のエネルギを蓄える機能を有している。
The rotor field winding 44 includes a first field winding portion 44-1 connected between the anode terminal of the rectifying element 52 and the other end of the capacitor 702, and a first connected to the capacitor 702 in parallel. 2 field winding portion 44-2. Capacitor 702 is configured such that the direction of the voltage generated at both ends of first field winding portion 44-1 and the direction of the voltage generated at both ends of second field winding portion 44-2 are opposite to each other. When the voltages are in the direction of canceling each other, it has a function of storing energy corresponding to the canceling voltage.
かかる回転電機700においては、第1界磁巻線部44-1と第2界磁巻線部44-2とで電圧方向が互いに逆方向となって両電圧が相互に打ち消し合う方向になると共に、それらの電圧が、各界磁巻線部44-1,44-2を整流素子52との接続部側からコンデンサ702の他端との接続部側へ電流が流れるように印加されている場合(パターン2)、それらの各界磁巻線部44-1,44-2を流れた電流がコンデンサ702に向けて流れる。この場合は、第1界磁巻線部44-1と第2界磁巻線部44-2とで相互に打ち消し合う電圧分の励磁エネルギがコンデンサ702に蓄えられて、コンデンサ702が充電される。
In such a rotating electric machine 700, the first field winding portion 44-1 and the second field winding portion 44-2 have directions in which the directions of voltages are opposite to each other and the two voltages cancel each other. These voltages are applied so that current flows through the field winding portions 44-1 and 44-2 from the connection portion side to the rectifying element 52 to the connection portion side to the other end of the capacitor 702 ( Pattern 2), the current that flows through each of the field winding portions 44-1 and 44-2 flows toward the capacitor 702. In this case, excitation energy corresponding to the voltage canceling each other between the first field winding portion 44-1 and the second field winding portion 44-2 is stored in the capacitor 702, and the capacitor 702 is charged. .
上記したコンデンサ702の充電後、第1界磁巻線部44-1の電圧方向と第2界磁巻線部44-2の電圧方向とが切り替わって、それらの電圧が、相互に打ち消し合う方向で、各界磁巻線部44-1,44-2をコンデンサ702の他端との接続部側から整流素子52との接続部側へ電流が流れるように印加される場合(パターン3)、コンデンサ702側から各界磁巻線部44-1,44-2に電流が流れる。この場合は、コンデンサ702に蓄えられていたエネルギが各界磁巻線部44-1,44-2へ放出されて、コンデンサ702が放電される。そして、コンデンサ702の充電と放電とが繰り返される。
After the capacitor 702 is charged, the voltage direction of the first field winding portion 44-1 and the voltage direction of the second field winding portion 44-2 are switched, and these voltages cancel each other out. When the field winding portions 44-1 and 44-2 are applied so that current flows from the connection portion side to the other end of the capacitor 702 to the connection portion side to the rectifying element 52 (pattern 3), the capacitor A current flows from the 702 side to each of the field winding portions 44-1 and 44-2. In this case, the energy stored in the capacitor 702 is discharged to the field winding portions 44-1 and 44-2, and the capacitor 702 is discharged. Then, charging and discharging of the capacitor 702 are repeated.
従って、回転電機700においても、ロータ界磁巻線44の各界磁巻線部44-1,44-2に相互に打ち消し合う方向の電圧が発生するとき、ロータ界磁巻線44で発生した励磁エネルギを効率良く励磁電流に変換することで、界磁電流を確保することができる。このため、ロータ界磁巻線44の各界磁巻線部44-1,44-2に相互に打ち消し合う方向の電圧が発生するときの励磁電流の減少に伴う励磁エネルギ損失の発生を防止することができ、それらの電圧が相互に打ち消し合う事態が生じても、ロータコア42を効率良く励磁することができるので、上記の実施形態1と同様の効果を得ることができる。
Therefore, also in the rotating electrical machine 700, when a voltage in a direction canceling each other is generated in each field winding portion 44-1 and 44-2 of the rotor field winding 44, the excitation generated in the rotor field winding 44 is generated. A field current can be secured by efficiently converting energy into an excitation current. For this reason, it is possible to prevent the occurrence of excitation energy loss due to a decrease in excitation current when a voltage in a direction canceling each other is generated in each field winding portion 44-1 and 44-2 of the rotor field winding 44. Thus, even if the voltages cancel each other, the rotor core 42 can be excited efficiently, and the same effect as in the first embodiment can be obtained.
また、この第5変形形態の構成は、第2実施形態の図20に示す回転電機100や第3実施形態の図22に示す回転電機200にも適用できる。すなわち、回転電機100,200の各コンデンサ部は、一端が整流素子52のカソード端子に接続されていると共に、他端がロータ界磁巻線44の両端の間に接続されていてもよい。
Further, the configuration of the fifth modification can also be applied to the rotating electrical machine 100 shown in FIG. 20 of the second embodiment and the rotating electrical machine 200 shown in FIG. 22 of the third embodiment. That is, one end of each capacitor portion of the rotating electrical machines 100 and 200 may be connected to the cathode terminal of the rectifying element 52, and the other end may be connected between both ends of the rotor field winding 44.
尚、上記の第2及び第3実施形態や各変形形態においても、上記の第1実施形態と同様に、基本波成分に重畳される高調波成分の周波数が、回転電機の低回転から高回転まで、共振周波数を含む所定周波数範囲内にあることが、ロータ界磁巻線に得られる励磁電流や回転電機のトルクを所定値以上とするうえで望ましい。また、この場合において、矩形波制御領域で高調波成分を生成してロータ界磁巻線に励磁電流を誘起するうえでは、上記の第1実施形と同様に、隣接二相で正負電圧パルス対を印加する高調波生成処理を実行すればよい。
In the second and third embodiments and the modifications described above, the frequency of the harmonic component superimposed on the fundamental wave component is changed from low to high rotation of the rotating electrical machine, as in the first embodiment. Thus, it is desirable that the excitation current obtained in the rotor field winding and the torque of the rotating electrical machine be equal to or greater than a predetermined value to be within a predetermined frequency range including the resonance frequency. Further, in this case, in order to generate a harmonic component in the rectangular wave control region and induce an exciting current in the rotor field winding, a positive / negative voltage pulse pair in adjacent two phases as in the first embodiment. What is necessary is just to perform the harmonic generation process which applies.
更に、上記の実施形態や変形形態においては、ロータ界磁巻線44が突極部48ごとに集中的に巻かれている。しかし、本発明はこれに限定されるものではなく、ロータ界磁巻線44が幾つかの突極部48に分布して巻かれたものに適用することとしてもよい。
Furthermore, in the above-described embodiments and modifications, the rotor field winding 44 is intensively wound for each salient pole portion 48. However, the present invention is not limited to this, and may be applied to a structure in which the rotor field winding 44 is distributed and wound around several salient pole portions 48.
また、上記の実施形態や変形形態において、コンデンサは、複数のコンデンサを直列、並列、又は直列及び並列の双方に接続させたものを用いたものであってよい。なお、コンデンサには、セラミックコンデンサが好適である。
Further, in the above-described embodiments and modifications, the capacitor may be a capacitor in which a plurality of capacitors are connected in series, in parallel, or in both series and parallel. A ceramic capacitor is suitable for the capacitor.
尚、本発明は、上述した実施形態や変形例に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更を施すことが可能である。
Note that the present invention is not limited to the above-described embodiments and modifications, and various modifications can be made without departing from the spirit of the present invention.
20,100,200,300,400,500,600,700:界磁巻線型回転電機、24:ステータ、26:ロータ、32:ステータコア、34:ステータ電機子巻線、42:ロータコア、44:ロータ界磁巻線、44-1:第1界磁巻線部、44-2:第2界磁巻線部、44-3:第3界磁巻線部、52:整流素子、54:コンデンサ、54-1:第1コンデンサ部、54-2:第2コンデンサ部、60:インバータ回路、72:制御回路、80,82,102,104,106,108:共振回路、L1,L2,L3:インダクタンス、C,C1,C2:容量。
20, 100, 200, 300, 400, 500, 600, 700: Field winding type rotating electrical machine, 24: Stator, 26: Rotor, 32: Stator core, 34: Stator armature winding, 42: Rotor core, 44: Rotor Field winding, 44-1: first field winding section, 44-2: second field winding section, 44-3: third field winding section, 52: rectifying element, 54: capacitor, 54-1: first capacitor unit, 54-2: second capacitor unit, 60: inverter circuit, 72: control circuit, 80, 82, 102, 104, 106, 108: resonance circuit, L1, L2, L3: inductance , C, C1, C2: capacity.
Claims (15)
- ステータコア(32)に巻装されたステータ電機子巻線(34)と、
ロータコア(42)に巻装されたロータ界磁巻線(44,44-1,44-2,44-3)と、
前記ロータ界磁巻線の両端に接続された整流素子(52)と、
一端が前記整流素子の一端に接続され、他端が前記ロータ界磁巻線の両端の間に接続されたコンデンサ(54,54-1,54-2)と、
前記ステータ電機子巻線に回転トルクを発生させるための基本波成分と前記基本波成分に比して周期が短い高調波成分とを重畳した電流を流すことにより、前記ロータ界磁巻線に励磁電流を誘起する制御回路(72)と、
を備え、
前記ロータ界磁巻線のインダクタンス及び前記コンデンサの容量は、前記高調波成分の周波数に対して共振関係にある、界磁巻線型回転電機。 A stator armature winding (34) wound around the stator core (32);
Rotor field windings (44, 44-1, 44-2, 44-3) wound around the rotor core (42);
A rectifying element (52) connected to both ends of the rotor field winding;
A capacitor (54, 54-1, 54-2) having one end connected to one end of the rectifying element and the other end connected between both ends of the rotor field winding;
The rotor field winding is excited by flowing a current in which a fundamental wave component for generating rotational torque in the stator armature winding and a harmonic component having a cycle shorter than that of the fundamental wave component are passed. A control circuit (72) for inducing current;
With
The field winding type rotary electric machine, wherein the inductance of the rotor field winding and the capacitance of the capacitor are in a resonance relationship with the frequency of the harmonic component. - 前記高調波成分は、前記基本波成分に対して1/2周期を有する定在波を包絡線として振幅調整されている、請求項1記載の界磁巻線型回転電機。 2. The field winding type rotating electrical machine according to claim 1, wherein the harmonic component is amplitude-adjusted using a standing wave having a half cycle with respect to the fundamental component as an envelope.
- 前記ロータ界磁巻線は、前記コンデンサの他端と前記整流素子の他端との間に接続されている第1界磁巻線部(44-1)と、前記コンデンサに並列に接続されている第2界磁巻線部(44-2)と、を有し、
前記第1界磁巻線部のインダクタンス及び前記コンデンサの容量に基づく第1共振周波数、及び、前記第2界磁巻線部のインダクタンス及び前記コンデンサの容量に基づく第2共振周波数の少なくとも一方は、前記高調波成分の周波数を含む所定周波数範囲内にある、又は、前記高調波成分の周波数は、前記第1共振周波数と前記第2共振周波数との間にある、請求項1又は2記載の界磁巻線型回転電機。 The rotor field winding is connected in parallel to the capacitor and a first field winding portion (44-1) connected between the other end of the capacitor and the other end of the rectifying element. A second field winding portion (44-2),
At least one of the first resonance frequency based on the inductance of the first field winding portion and the capacitance of the capacitor, and at least one of the second resonance frequency based on the inductance of the second field winding portion and the capacitance of the capacitor, The field according to claim 1 or 2, wherein the field is within a predetermined frequency range including the frequency of the harmonic component, or the frequency of the harmonic component is between the first resonance frequency and the second resonance frequency. Magnetic winding type rotating electrical machine. - 前記ロータ界磁巻線は、直列接続された複数の界磁巻線部(44-1,44-2,44-3)を有し、
前記コンデンサは、それぞれ一端が前記整流素子の一端に接続され、他端が前記界磁巻線部同士の接続点のうちの対応する1つに接続された複数のコンデンサ部(54-1,54-2)を有し、
複数の前記界磁巻線部と複数の前記コンデンサ部とにより複数の共振回路(102,104,106,108)が設けられており、
前記共振回路の共振周波数の少なくとも何れか一つは、前記高調波成分の周波数を含む所定周波数範囲内にある、又は、前記高調波成分の周波数は、何れか2つの前記共振回路の共振周波数の間にある、請求項1又は2記載の界磁巻線型回転電機。 The rotor field winding has a plurality of field winding portions (44-1, 44-2, 44-3) connected in series,
Each of the capacitors has a plurality of capacitor portions (54-1, 54) each having one end connected to one end of the rectifying element and the other end connected to a corresponding one of the connection points of the field winding portions. -2)
A plurality of resonant circuits (102, 104, 106, 108) are provided by the plurality of field winding portions and the plurality of capacitor portions,
At least one of the resonance frequencies of the resonance circuit is within a predetermined frequency range including the frequency of the harmonic component, or the frequency of the harmonic component is the resonance frequency of any two of the resonance circuits. The field winding type rotating electrical machine according to claim 1 or 2, which is in between. - 前記共振回路ごとの共振周波数は、互いに異なる、請求項4記載の界磁巻線型回転電機。 The field winding type rotary electric machine according to claim 4, wherein the resonance frequencies of the resonance circuits are different from each other.
- 前記基本波成分に重畳される前記高調波成分の周波数は、低回転から高回転まで、前記ロータ界磁巻線のインダクタンス及び前記コンデンサの容量に基づく共振周波数を含む所定周波数範囲内にある、請求項1乃至5の何れか一項記載の界磁巻線型回転電機。 The frequency of the harmonic component superimposed on the fundamental wave component is within a predetermined frequency range including a resonance frequency based on an inductance of the rotor field winding and a capacitance of the capacitor from a low rotation to a high rotation. Item 6. The field winding rotary electric machine according to any one of Items 1 to 5.
- 前記所定周波数範囲は、前記ロータ界磁巻線に誘起される励磁電流又はトルクが所定値以上となる範囲である、請求項6記載の界磁巻線型回転電機。 The field winding type rotating electric machine according to claim 6, wherein the predetermined frequency range is a range in which an excitation current or torque induced in the rotor field winding is a predetermined value or more.
- 前記ステータ電機子巻線は、三相の相巻線からなり、
前記制御回路は、矩形波制御領域で前記ロータ界磁巻線に励磁電流を誘起するうえで、一の相巻線に印加する前記基本波成分生成のための矩形波電圧波形のオン期間の中心から電気角30°~60°遅れたタイミングで、他の二相のうち一方の相巻線に印加する前記基本波成分生成のための矩形波電圧波形のオン期間に所定期間だけオフするための第1負電圧パルスを付加すると共に、他の二相のうち他方の相巻線に印加する前記基本波成分生成のための矩形波電圧波形のオフ期間に前記第1負電圧パルスと対をなす所定期間だけオンするための第1正電圧パルスを付加し、又は、一の相巻線に印加する前記基本波成分生成のための矩形波電圧波形のオフ期間の中心から電気角30°~60°遅れたタイミングで、他の二相のうち一方の相巻線に印加する前記基本波成分生成のための矩形波電圧波形のオフ期間に所定期間だけオンするための第2正電圧パルスを付加すると共に、他の二相のうち他方の相巻線に印加する前記基本波成分生成のための矩形波電圧波形のオン期間に前記第2正電圧パルスと対をなす所定期間だけオフするための第2負電圧パルスを付加する、請求項6又は7記載の界磁巻線型回転電機。 The stator armature winding is composed of a three-phase phase winding,
The control circuit induces an excitation current in the rotor field winding in a rectangular wave control region, and a center of an on period of the rectangular wave voltage waveform for generating the fundamental wave component applied to one phase winding. For turning off the rectangular wave voltage waveform for generating a fundamental wave component applied to one of the other two phases at a timing delayed by an electrical angle of 30 ° to 60 ° for a predetermined period. A first negative voltage pulse is added and paired with the first negative voltage pulse during an off period of the rectangular wave voltage waveform for generating the fundamental wave component applied to the other phase winding of the other two phases. A first positive voltage pulse for turning on only for a predetermined period is added, or an electrical angle of 30 ° to 60 ° from the center of the off period of the rectangular wave voltage waveform for generating the fundamental wave component applied to one phase winding. One phase winding of the other two phases at a delayed timing The second positive voltage pulse for turning on for a predetermined period is added to the off period of the rectangular wave voltage waveform for generating the fundamental wave component to be applied, and the other two phases are applied to the other phase winding. The field according to claim 6 or 7, wherein a second negative voltage pulse for turning off only for a predetermined period paired with the second positive voltage pulse is added to an on period of a rectangular wave voltage waveform for generating a fundamental wave component. Winding type rotating electrical machine. - 前記制御回路は、一の相巻線を基準とした前記第1負電圧パルス及び前記第1正電圧パルスの付加並びに前記第2正電圧パルス及び前記第2負電圧パルスの付加の双方を他の二相の相巻線を基準とした場合にも行うことにより、前記ロータ界磁巻線による励磁を一制御周期当たり等間隔で6回行い、又は、一の相巻線を基準とした前記第1負電圧パルス及び前記第1正電圧パルスの付加並びに前記第2正電圧パルス及び前記第2負電圧パルスの付加の何れか一方を他の二相の相巻線を基準とした場合にも行うことにより、前記ロータ界磁巻線による励磁を一制御周期当たり等間隔で3回行う、請求項8記載の界磁巻線型回転電機。 The control circuit is configured to add both of the first negative voltage pulse and the first positive voltage pulse and the addition of the second positive voltage pulse and the second negative voltage pulse with reference to one phase winding. When the two-phase winding is used as a reference, the excitation by the rotor field winding is performed six times at regular intervals per control cycle, or the first winding using the one-phase winding as a reference. The addition of one negative voltage pulse and the first positive voltage pulse and the addition of the second positive voltage pulse and the second negative voltage pulse are also performed when the other two-phase phase winding is used as a reference. The field winding type rotating electrical machine according to claim 8, wherein excitation by the rotor field winding is performed three times at regular intervals per control cycle.
- 前記ステータ電機子巻線は、三相の相巻線からなり、
前記制御回路は、矩形波制御領域で前記ロータ界磁巻線に励磁電流を誘起するうえで、一の相巻線に印加する前記基本波成分生成のための矩形波電圧波形のオン期間の始端に所定期間だけオフするための第1負電圧パルスを付加すると共に、他の何れか一の相巻線に印加する前記基本波成分生成のための矩形波電圧波形のオフ期間に前記第1負電圧パルスと対をなす所定期間だけオンするための第1正電圧パルスを付加し、又は、一の相巻線に印加する前記基本波成分生成のための矩形波電圧波形のオン期間の終端に所定期間だけオン期間を継ぎ足すための第2正電圧パルスを付加すると共に、他の何れか一の相巻線に印加する前記基本波成分生成のための矩形波電圧波形のオン期間に前記第2正電圧パルスと対をなす所定期間だけオフするための第2負電圧パルスを付加する第1高調波生成処理を実行する、請求項6又は7記載の界磁巻線型回転電機。 The stator armature winding is composed of a three-phase phase winding,
The control circuit induces an excitation current in the rotor field winding in a rectangular wave control region, and starts an on period of a rectangular wave voltage waveform for generating the fundamental wave component applied to one phase winding. Is applied with a first negative voltage pulse for turning off for a predetermined period, and the first negative voltage pulse is applied to any one of the other phase windings during the off period of the rectangular wave voltage waveform for generating the fundamental wave component. A first positive voltage pulse for turning on only for a predetermined period paired with the voltage pulse is added, or at the end of an on period of the rectangular wave voltage waveform for generating the fundamental wave component applied to one phase winding. A second positive voltage pulse for adding the ON period for a predetermined period is added, and the second waveform is applied during the ON period of the rectangular wave voltage waveform for generating the fundamental wave component applied to any one of the other phase windings. 2 Turns off for a predetermined period paired with a positive voltage pulse Performing a first harmonic generation process that adds a second negative voltage pulse because, field winding type rotary electric machine according to claim 6 or 7, wherein. - 前記制御回路は、前記第1高調波生成処理を三相の相巻線ごとに矩形波電圧波形のオン期間の始端及び終端の双方のタイミングで行うことにより、前記ロータ界磁巻線による励磁を一制御周期当たり等間隔で6回行う、請求項10記載の界磁巻線型回転電機。 The control circuit performs excitation by the rotor field winding by performing the first harmonic generation process for each of the three-phase windings at both the start and end timings of the on-period of the rectangular wave voltage waveform. The field winding type rotating electrical machine according to claim 10, wherein the field winding type rotating electrical machine is performed six times at equal intervals per control cycle.
- 前記制御回路は、前記第1高調波生成処理を三相の相巻線ごとに矩形波電圧波形のオン期間の始端及び終端の何れか一方のタイミングで行うことにより、前記ロータ界磁巻線による励磁を一制御周期当たり等間隔で3回行う、請求項10記載の界磁巻線型回転電機。 The control circuit performs the first harmonic generation process for each of the three-phase phase windings at the timing of either the start end or the end of the on-period of the rectangular wave voltage waveform. The field winding type rotating electrical machine according to claim 10, wherein excitation is performed three times at regular intervals per control cycle.
- 前記制御回路は、矩形波制御領域で前記ロータ界磁巻線に励磁電流を誘起するうえで、互いに周方向に隣接する二つの相巻線に印加する前記基本波成分生成のための矩形波電圧波形への正負電圧パルス対の付加を一制御周期当たり等間隔で4回行い、一相一制御周期当たりの印加電圧の平均値をゼロとする、請求項8又は10記載の界磁巻線型回転電機。 The control circuit induces an excitation current in the rotor field winding in a rectangular wave control region, and the rectangular wave voltage for generating the fundamental wave component applied to two phase windings adjacent to each other in the circumferential direction. The field winding type rotation according to claim 8 or 10, wherein addition of a positive / negative voltage pulse pair to the waveform is performed four times at equal intervals per control period, and an average value of applied voltage per one phase and one control period is set to zero. Electric.
- 前記制御回路は、前記第1高調波生成処理を所定の相巻線で矩形波電圧波形の始端及び終端の双方のタイミングで行うと共に、前記所定の相巻線における矩形波電圧波形の始端及び終端それぞれのタイミングから電気角90°だけ離間したタイミングで、互いに周方向に隣接する二つの相巻線に印加する前記基本波成分生成のための矩形波電圧波形に正負電圧パルス対を付加する第2高調波生成処理を行うことにより、前記ロータ界磁巻線による励磁を一制御周期当たり等間隔で4回行う、請求項10記載の界磁巻線型回転電機。 The control circuit performs the first harmonic generation process at the timing of both the start and end of the rectangular wave voltage waveform in a predetermined phase winding, and the start and end of the rectangular wave voltage waveform in the predetermined phase winding A second pair of positive and negative voltage pulse pairs is added to the rectangular wave voltage waveform for generating the fundamental wave component applied to the two phase windings adjacent to each other in the circumferential direction at a timing separated from each timing by an electrical angle of 90 °. The field winding type rotating electrical machine according to claim 10, wherein excitation by the rotor field winding is performed four times at regular intervals per control cycle by performing harmonic generation processing.
- 前記制御回路による電圧パルスの付加周波数は、前記所定周波数範囲内である、請求項8乃至14の何れか一項記載の界磁巻線型回転電機。 The field winding type rotating electrical machine according to any one of claims 8 to 14, wherein an additional frequency of the voltage pulse by the control circuit is within the predetermined frequency range.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17883754.8A EP3562009B1 (en) | 2016-12-21 | 2017-12-20 | Field-winding type rotating electric machine |
CN201780078930.0A CN110089013B (en) | 2016-12-21 | 2017-12-20 | Field winding type rotating electrical machine |
US16/448,519 US10727773B2 (en) | 2016-12-21 | 2019-06-21 | Field winding type rotating electric machine |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016248515 | 2016-12-21 | ||
JP2016-248515 | 2016-12-21 | ||
JP2017195878A JP6646878B2 (en) | 2016-12-21 | 2017-10-06 | Field winding type rotating machine |
JP2017-195878 | 2017-10-06 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/448,519 Continuation US10727773B2 (en) | 2016-12-21 | 2019-06-21 | Field winding type rotating electric machine |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018117144A1 true WO2018117144A1 (en) | 2018-06-28 |
Family
ID=62626594
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/045685 WO2018117144A1 (en) | 2016-12-21 | 2017-12-20 | Field-winding type rotating electric machine |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018117144A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111987832A (en) * | 2019-05-22 | 2020-11-24 | 株式会社电装 | Exciting coil type rotating electrical machine |
CN112753156A (en) * | 2018-09-25 | 2021-05-04 | 株式会社电装 | Field winding type rotating electrical machine |
CN114865983A (en) * | 2022-06-02 | 2022-08-05 | 南京航空航天大学 | Three-phase alternating current speed regulation system for multiplexing excitation winding |
WO2023189349A1 (en) * | 2022-03-29 | 2023-10-05 | 日本製鉄株式会社 | Processing device, electric vehicle, processing method, and program |
WO2025004660A1 (en) * | 2023-06-27 | 2025-01-02 | 株式会社デンソー | Control device for power converter, and program |
WO2025041527A1 (en) * | 2023-08-24 | 2025-02-27 | 株式会社デンソー | Control device and control program for rotation electric machine |
RU2840717C2 (en) * | 2022-03-29 | 2025-05-28 | Ниппон Стил Корпорейшн | Processing device, electric vehicle, processing method and program |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007185082A (en) | 2005-06-28 | 2007-07-19 | Denso Corp | Field-winding synchronous machine |
JP2008178211A (en) | 2007-01-18 | 2008-07-31 | Denso Corp | Field winding synchronous machine |
JP2013021749A (en) * | 2011-07-07 | 2013-01-31 | Toyota Motor Corp | Rotary electric machine system |
JP2014007837A (en) * | 2012-06-22 | 2014-01-16 | Toyota Motor Corp | Rotary electric machine and system for driving rotary electric machine |
-
2017
- 2017-12-20 WO PCT/JP2017/045685 patent/WO2018117144A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007185082A (en) | 2005-06-28 | 2007-07-19 | Denso Corp | Field-winding synchronous machine |
JP2008178211A (en) | 2007-01-18 | 2008-07-31 | Denso Corp | Field winding synchronous machine |
JP2013021749A (en) * | 2011-07-07 | 2013-01-31 | Toyota Motor Corp | Rotary electric machine system |
JP2014007837A (en) * | 2012-06-22 | 2014-01-16 | Toyota Motor Corp | Rotary electric machine and system for driving rotary electric machine |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112753156A (en) * | 2018-09-25 | 2021-05-04 | 株式会社电装 | Field winding type rotating electrical machine |
CN112753156B (en) * | 2018-09-25 | 2023-12-05 | 株式会社电装 | Excitation winding type rotating electric machine |
CN111987832A (en) * | 2019-05-22 | 2020-11-24 | 株式会社电装 | Exciting coil type rotating electrical machine |
CN111987832B (en) * | 2019-05-22 | 2023-09-01 | 株式会社电装 | Exciting coil type rotary electric machine |
WO2023189349A1 (en) * | 2022-03-29 | 2023-10-05 | 日本製鉄株式会社 | Processing device, electric vehicle, processing method, and program |
JP7522382B2 (en) | 2022-03-29 | 2024-07-25 | 日本製鉄株式会社 | Processing device, electric vehicle, processing method, and program |
TWI876291B (en) * | 2022-03-29 | 2025-03-11 | 日商日本製鐵股份有限公司 | Processing device, electric vehicle, processing method, and excitation waveform generation program |
RU2840717C2 (en) * | 2022-03-29 | 2025-05-28 | Ниппон Стил Корпорейшн | Processing device, electric vehicle, processing method and program |
CN114865983A (en) * | 2022-06-02 | 2022-08-05 | 南京航空航天大学 | Three-phase alternating current speed regulation system for multiplexing excitation winding |
CN114865983B (en) * | 2022-06-02 | 2023-04-18 | 南京航空航天大学 | Three-phase alternating current speed regulation system for multiplexing excitation winding |
WO2025004660A1 (en) * | 2023-06-27 | 2025-01-02 | 株式会社デンソー | Control device for power converter, and program |
WO2025041527A1 (en) * | 2023-08-24 | 2025-02-27 | 株式会社デンソー | Control device and control program for rotation electric machine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6646878B2 (en) | Field winding type rotating machine | |
WO2018117144A1 (en) | Field-winding type rotating electric machine | |
JP5718668B2 (en) | Rotating electric machine drive system | |
RU2313880C1 (en) | Motor with constant magnets | |
JP5827026B2 (en) | Rotating electric machine and rotating electric machine drive system | |
US11050330B2 (en) | Field winding type rotary machine | |
US7358698B2 (en) | Field-winding type of synchronous machine | |
JP5261539B2 (en) | Electromagnetic rotating electric machine | |
US10044298B2 (en) | Rotating electric machine drive system | |
JP2012170256A (en) | Rotary electric machine drive system | |
CN102738995A (en) | Rotary electric machine | |
US8049458B2 (en) | Field winding type of synchronous rotary electric machine | |
US10063127B2 (en) | Multiple-phase AC electric motor whose rotor is equipped with field winding and diode | |
CN110391706B (en) | Rotating electrical machine | |
CN104488186A (en) | Rotary electric machine control system and rotary electric machine control method | |
JP2014007837A (en) | Rotary electric machine and system for driving rotary electric machine | |
JP7477115B2 (en) | Boost converter for pulsed electromechanical control. | |
JP5694062B2 (en) | Electromagnetic rotating electric machine | |
JP5623346B2 (en) | Rotating electric machine drive system | |
US10181809B2 (en) | Rotating electric machine drive system | |
JP5784992B2 (en) | Electromagnetic rotating electric machine | |
Zhan et al. | Active voltage regulation of partitioned stator switched flux permanent magnet generator supplying isolated passive load | |
JP2013110942A (en) | Rotary electric machine and rotary electric machine control system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17883754 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017883754 Country of ref document: EP Effective date: 20190722 |