WO2018116661A1 - Acid-type carboxylated cellulose nanofibers - Google Patents
Acid-type carboxylated cellulose nanofibers Download PDFInfo
- Publication number
- WO2018116661A1 WO2018116661A1 PCT/JP2017/039814 JP2017039814W WO2018116661A1 WO 2018116661 A1 WO2018116661 A1 WO 2018116661A1 JP 2017039814 W JP2017039814 W JP 2017039814W WO 2018116661 A1 WO2018116661 A1 WO 2018116661A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acid
- cellulose
- carboxylated cellulose
- nanofiber
- type
- Prior art date
Links
- 239000001913 cellulose Substances 0.000 title claims abstract description 210
- 229920002678 cellulose Polymers 0.000 title claims abstract description 204
- 239000002121 nanofiber Substances 0.000 title claims abstract description 171
- 239000000835 fiber Substances 0.000 claims abstract description 101
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims abstract description 61
- 239000006185 dispersion Substances 0.000 claims abstract description 53
- 238000000034 method Methods 0.000 claims description 37
- 125000004432 carbon atom Chemical group C* 0.000 claims description 15
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Chemical group OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 9
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 9
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 239000002105 nanoparticle Substances 0.000 claims 2
- 235000010980 cellulose Nutrition 0.000 description 182
- 229920002201 Oxidized cellulose Polymers 0.000 description 109
- 229940107304 oxidized cellulose Drugs 0.000 description 108
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 42
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 39
- 238000006460 hydrolysis reaction Methods 0.000 description 38
- -1 alkali metal salt Chemical class 0.000 description 37
- 230000007062 hydrolysis Effects 0.000 description 37
- 238000006243 chemical reaction Methods 0.000 description 35
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 34
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 33
- 238000007254 oxidation reaction Methods 0.000 description 32
- 239000003729 cation exchange resin Substances 0.000 description 29
- 150000003839 salts Chemical class 0.000 description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 27
- 150000001875 compounds Chemical class 0.000 description 25
- 239000000203 mixture Substances 0.000 description 25
- 239000003513 alkali Substances 0.000 description 24
- 229920001296 polysiloxane Polymers 0.000 description 23
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 22
- 239000002994 raw material Substances 0.000 description 22
- 239000002253 acid Substances 0.000 description 21
- 238000011033 desalting Methods 0.000 description 21
- 239000000243 solution Substances 0.000 description 20
- 230000003647 oxidation Effects 0.000 description 17
- 235000014113 dietary fatty acids Nutrition 0.000 description 15
- 239000000194 fatty acid Substances 0.000 description 15
- 229930195729 fatty acid Natural products 0.000 description 15
- 239000007800 oxidant agent Substances 0.000 description 15
- 239000007864 aqueous solution Substances 0.000 description 14
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- 239000007921 spray Substances 0.000 description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 11
- 239000004166 Lanolin Substances 0.000 description 10
- 235000019388 lanolin Nutrition 0.000 description 10
- 229940039717 lanolin Drugs 0.000 description 10
- 239000003921 oil Substances 0.000 description 10
- 239000002002 slurry Substances 0.000 description 10
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 10
- 239000000706 filtrate Substances 0.000 description 9
- 235000019198 oils Nutrition 0.000 description 9
- 239000011347 resin Substances 0.000 description 9
- 229920005989 resin Polymers 0.000 description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 8
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 8
- GDOPTJXRTPNYNR-UHFFFAOYSA-N methyl-cyclopentane Natural products CC1CCCC1 GDOPTJXRTPNYNR-UHFFFAOYSA-N 0.000 description 8
- 239000005708 Sodium hypochlorite Substances 0.000 description 7
- 239000012670 alkaline solution Substances 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 150000004665 fatty acids Chemical class 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 230000001678 irradiating effect Effects 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 238000004904 shortening Methods 0.000 description 7
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 7
- 238000005903 acid hydrolysis reaction Methods 0.000 description 6
- PRAKJMSDJKAYCZ-UHFFFAOYSA-N dodecahydrosqualene Natural products CC(C)CCCC(C)CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C PRAKJMSDJKAYCZ-UHFFFAOYSA-N 0.000 description 6
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 6
- 239000010419 fine particle Substances 0.000 description 6
- 230000003301 hydrolyzing effect Effects 0.000 description 6
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical compound Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 125000000962 organic group Chemical group 0.000 description 6
- 229920003124 powdered cellulose Polymers 0.000 description 6
- 235000019814 powdered cellulose Nutrition 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000006467 substitution reaction Methods 0.000 description 6
- UZFMOKQJFYMBGY-UHFFFAOYSA-N 4-hydroxy-TEMPO Chemical compound CC1(C)CC(O)CC(C)(C)N1[O] UZFMOKQJFYMBGY-UHFFFAOYSA-N 0.000 description 5
- 229920003043 Cellulose fiber Polymers 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 5
- 239000003929 acidic solution Substances 0.000 description 5
- 238000005904 alkaline hydrolysis reaction Methods 0.000 description 5
- 125000000217 alkyl group Chemical group 0.000 description 5
- 239000003638 chemical reducing agent Substances 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 5
- 239000003456 ion exchange resin Substances 0.000 description 5
- 229920003303 ion-exchange polymer Polymers 0.000 description 5
- 239000010445 mica Substances 0.000 description 5
- 229910052618 mica group Inorganic materials 0.000 description 5
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 5
- 230000001590 oxidative effect Effects 0.000 description 5
- 239000011122 softwood Substances 0.000 description 5
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 4
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 4
- 206010061592 cardiac fibrillation Diseases 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 239000002781 deodorant agent Substances 0.000 description 4
- OSVXSBDYLRYLIG-UHFFFAOYSA-N dioxidochlorine(.) Chemical compound O=Cl=O OSVXSBDYLRYLIG-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000002600 fibrillogenic effect Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 150000002430 hydrocarbons Chemical group 0.000 description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 4
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 230000035484 reaction time Effects 0.000 description 4
- 159000000000 sodium salts Chemical group 0.000 description 4
- 239000002562 thickening agent Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 229920002488 Hemicellulose Polymers 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 229920001131 Pulp (paper) Polymers 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 239000007844 bleaching agent Substances 0.000 description 3
- 239000004359 castor oil Substances 0.000 description 3
- 235000019438 castor oil Nutrition 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 239000002537 cosmetic Substances 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000003205 fragrance Substances 0.000 description 3
- 239000013538 functional additive Substances 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 3
- 239000002655 kraft paper Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 210000001724 microfibril Anatomy 0.000 description 3
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 238000006864 oxidative decomposition reaction Methods 0.000 description 3
- 238000007539 photo-oxidation reaction Methods 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 239000005060 rubber Substances 0.000 description 3
- 238000007086 side reaction Methods 0.000 description 3
- XMGQYMWWDOXHJM-JTQLQIEISA-N (+)-α-limonene Chemical compound CC(=C)[C@@H]1CCC(C)=CC1 XMGQYMWWDOXHJM-JTQLQIEISA-N 0.000 description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- YYGNTYWPHWGJRM-UHFFFAOYSA-N (6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene Chemical compound CC(C)=CCCC(C)=CCCC(C)=CCCC=C(C)CCC=C(C)CCC=C(C)C YYGNTYWPHWGJRM-UHFFFAOYSA-N 0.000 description 2
- XDOFQFKRPWOURC-UHFFFAOYSA-N 16-methylheptadecanoic acid Chemical compound CC(C)CCCCCCCCCCCCCCC(O)=O XDOFQFKRPWOURC-UHFFFAOYSA-N 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000004155 Chlorine dioxide Substances 0.000 description 2
- 241000254173 Coleoptera Species 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 2
- 108010035532 Collagen Proteins 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 108010009736 Protein Hydrolysates Proteins 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- BHEOSNUKNHRBNM-UHFFFAOYSA-N Tetramethylsqualene Natural products CC(=C)C(C)CCC(=C)C(C)CCC(C)=CCCC=C(C)CCC(C)C(=C)CCC(C)C(C)=C BHEOSNUKNHRBNM-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 238000010306 acid treatment Methods 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000005215 alkyl ethers Chemical class 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 239000012752 auxiliary agent Substances 0.000 description 2
- 235000013871 bee wax Nutrition 0.000 description 2
- 239000012166 beeswax Substances 0.000 description 2
- 229940092738 beeswax Drugs 0.000 description 2
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 2
- 238000007068 beta-elimination reaction Methods 0.000 description 2
- 235000013361 beverage Nutrition 0.000 description 2
- 238000004061 bleaching Methods 0.000 description 2
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 235000019398 chlorine dioxide Nutrition 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 229920001436 collagen Polymers 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 description 2
- KSMVZQYAVGTKIV-UHFFFAOYSA-N decanal Chemical compound CCCCCCCCCC=O KSMVZQYAVGTKIV-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- NOPFSRXAKWQILS-UHFFFAOYSA-N docosan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCCCCCO NOPFSRXAKWQILS-UHFFFAOYSA-N 0.000 description 2
- UKMSUNONTOPOIO-UHFFFAOYSA-N docosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- RRAFCDWBNXTKKO-UHFFFAOYSA-N eugenol Chemical compound COC1=CC(CC=C)=CC=C1O RRAFCDWBNXTKKO-UHFFFAOYSA-N 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N formaldehyde Natural products O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- 239000003906 humectant Substances 0.000 description 2
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical class C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 229940127554 medical product Drugs 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 2
- 239000008108 microcrystalline cellulose Substances 0.000 description 2
- 229940016286 microcrystalline cellulose Drugs 0.000 description 2
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- JXTPJDDICSTXJX-UHFFFAOYSA-N n-Triacontane Natural products CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC JXTPJDDICSTXJX-UHFFFAOYSA-N 0.000 description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 239000000123 paper Substances 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 235000019271 petrolatum Nutrition 0.000 description 2
- 150000004714 phosphonium salts Chemical class 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 235000013772 propylene glycol Nutrition 0.000 description 2
- 229960004063 propylene glycol Drugs 0.000 description 2
- 239000012429 reaction media Substances 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 239000012779 reinforcing material Substances 0.000 description 2
- 239000006254 rheological additive Substances 0.000 description 2
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 229940032094 squalane Drugs 0.000 description 2
- 229940031439 squalene Drugs 0.000 description 2
- TUHBEKDERLKLEC-UHFFFAOYSA-N squalene Natural products CC(=CCCC(=CCCC(=CCCC=C(/C)CCC=C(/C)CC=C(C)C)C)C)C TUHBEKDERLKLEC-UHFFFAOYSA-N 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- RSNQKPMXXVDJFG-UHFFFAOYSA-N tetrasiloxane Chemical compound [SiH3]O[SiH2]O[SiH2]O[SiH3] RSNQKPMXXVDJFG-UHFFFAOYSA-N 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 description 1
- NFLGAXVYCFJBMK-RKDXNWHRSA-N (+)-isomenthone Natural products CC(C)[C@H]1CC[C@@H](C)CC1=O NFLGAXVYCFJBMK-RKDXNWHRSA-N 0.000 description 1
- NZGWDASTMWDZIW-MRVPVSSYSA-N (+)-pulegone Chemical compound C[C@@H]1CCC(=C(C)C)C(=O)C1 NZGWDASTMWDZIW-MRVPVSSYSA-N 0.000 description 1
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- DSEKYWAQQVUQTP-XEWMWGOFSA-N (2r,4r,4as,6as,6as,6br,8ar,12ar,14as,14bs)-2-hydroxy-4,4a,6a,6b,8a,11,11,14a-octamethyl-2,4,5,6,6a,7,8,9,10,12,12a,13,14,14b-tetradecahydro-1h-picen-3-one Chemical compound C([C@H]1[C@]2(C)CC[C@@]34C)C(C)(C)CC[C@]1(C)CC[C@]2(C)[C@H]4CC[C@@]1(C)[C@H]3C[C@@H](O)C(=O)[C@@H]1C DSEKYWAQQVUQTP-XEWMWGOFSA-N 0.000 description 1
- LGQKSQQRKHFMLI-SJYYZXOBSA-N (2s,3r,4s,5r)-2-[(3r,4r,5r,6r)-4,5,6-trihydroxyoxan-3-yl]oxyoxane-3,4,5-triol Chemical compound O[C@@H]1[C@@H](O)[C@H](O)CO[C@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O)OC1 LGQKSQQRKHFMLI-SJYYZXOBSA-N 0.000 description 1
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- KJPRLNWUNMBNBZ-QPJJXVBHSA-N (E)-cinnamaldehyde Chemical compound O=C\C=C\C1=CC=CC=C1 KJPRLNWUNMBNBZ-QPJJXVBHSA-N 0.000 description 1
- 229940058015 1,3-butylene glycol Drugs 0.000 description 1
- AZNRMKYTAHHKAC-UHFFFAOYSA-N 1,3-dihydroxypropan-2-yl 2-ethylhexanoate Chemical compound CCCCC(CC)C(=O)OC(CO)CO AZNRMKYTAHHKAC-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- FRPZMMHWLSIFAZ-UHFFFAOYSA-N 10-undecenoic acid Chemical compound OC(=O)CCCCCCCCC=C FRPZMMHWLSIFAZ-UHFFFAOYSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- DJCYDDALXPHSHR-UHFFFAOYSA-N 2-(2-propoxyethoxy)ethanol Chemical compound CCCOCCOCCO DJCYDDALXPHSHR-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- MSWZFWKMSRAUBD-IVMDWMLBSA-N 2-amino-2-deoxy-D-glucopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 description 1
- KHPFIDDXCRYEHS-UHFFFAOYSA-N 2-butyloctadecanoic acid Chemical compound CCCCCCCCCCCCCCCCC(C(O)=O)CCCC KHPFIDDXCRYEHS-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- LEACJMVNYZDSKR-UHFFFAOYSA-N 2-octyldodecan-1-ol Chemical compound CCCCCCCCCCC(CO)CCCCCCCC LEACJMVNYZDSKR-UHFFFAOYSA-N 0.000 description 1
- AHDXKQAZDADIGD-UHFFFAOYSA-N 2-propan-2-ylhexadecanoic acid Chemical compound CCCCCCCCCCCCCCC(C(C)C)C(O)=O AHDXKQAZDADIGD-UHFFFAOYSA-N 0.000 description 1
- QUJHRAJAGNMYKJ-UHFFFAOYSA-N 2-propan-2-yloctadecanoic acid Chemical compound CCCCCCCCCCCCCCCCC(C(C)C)C(O)=O QUJHRAJAGNMYKJ-UHFFFAOYSA-N 0.000 description 1
- CKPOABDCSSXDCY-UHFFFAOYSA-N 2-propan-2-yltetradecanoic acid Chemical compound CCCCCCCCCCCCC(C(C)C)C(O)=O CKPOABDCSSXDCY-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- LGQKSQQRKHFMLI-UHFFFAOYSA-N 4-O-beta-D-xylopyranosyl-beta-D-xylopyranose Natural products OC1C(O)C(O)COC1OC1C(O)C(O)C(O)OC1 LGQKSQQRKHFMLI-UHFFFAOYSA-N 0.000 description 1
- XUXUHDYTLNCYQQ-UHFFFAOYSA-N 4-amino-TEMPO Chemical compound CC1(C)CC(N)CC(C)(C)N1[O] XUXUHDYTLNCYQQ-UHFFFAOYSA-N 0.000 description 1
- UWDMKTDPDJCJOP-UHFFFAOYSA-N 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-ium-4-carboxylate Chemical compound CC1(C)CC(O)(C(O)=O)CC(C)(C)N1 UWDMKTDPDJCJOP-UHFFFAOYSA-N 0.000 description 1
- SQDAZGGFXASXDW-UHFFFAOYSA-N 5-bromo-2-(trifluoromethoxy)pyridine Chemical compound FC(F)(F)OC1=CC=C(Br)C=N1 SQDAZGGFXASXDW-UHFFFAOYSA-N 0.000 description 1
- ODHCTXKNWHHXJC-VKHMYHEASA-M 5-oxo-L-prolinate Chemical compound [O-]C(=O)[C@@H]1CCC(=O)N1 ODHCTXKNWHHXJC-VKHMYHEASA-M 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 1
- 235000019489 Almond oil Nutrition 0.000 description 1
- 241001116389 Aloe Species 0.000 description 1
- 241000609240 Ambelania acida Species 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 235000005638 Austrian pine Nutrition 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 235000021357 Behenic acid Nutrition 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 240000001548 Camellia japonica Species 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 235000014653 Carica parviflora Nutrition 0.000 description 1
- 244000132059 Carica parviflora Species 0.000 description 1
- 241000283153 Cetacea Species 0.000 description 1
- NPBVQXIMTZKSBA-UHFFFAOYSA-N Chavibetol Natural products COC1=CC=C(CC=C)C=C1O NPBVQXIMTZKSBA-UHFFFAOYSA-N 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- 229920001287 Chondroitin sulfate Polymers 0.000 description 1
- 241001481833 Coryphaena hippurus Species 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- SQNRKWHRVIAKLP-UHFFFAOYSA-N D-xylobiose Natural products O=CC(O)C(O)C(CO)OC1OCC(O)C(O)C1O SQNRKWHRVIAKLP-UHFFFAOYSA-N 0.000 description 1
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 1
- 235000018782 Dacrydium cupressinum Nutrition 0.000 description 1
- 240000006055 Dacrydium cupressinum Species 0.000 description 1
- XMSXQFUHVRWGNA-UHFFFAOYSA-N Decamethylcyclopentasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 XMSXQFUHVRWGNA-UHFFFAOYSA-N 0.000 description 1
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- 229920002943 EPDM rubber Polymers 0.000 description 1
- 102000002322 Egg Proteins Human genes 0.000 description 1
- 108010000912 Egg Proteins Proteins 0.000 description 1
- 102000016942 Elastin Human genes 0.000 description 1
- 108010014258 Elastin Proteins 0.000 description 1
- 239000005770 Eugenol Substances 0.000 description 1
- 241000555682 Forsythia x intermedia Species 0.000 description 1
- 235000011201 Ginkgo Nutrition 0.000 description 1
- 235000008100 Ginkgo biloba Nutrition 0.000 description 1
- 244000194101 Ginkgo biloba Species 0.000 description 1
- 241000282816 Giraffa camelopardalis Species 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 229920002683 Glycosaminoglycan Polymers 0.000 description 1
- 240000000797 Hibiscus cannabinus Species 0.000 description 1
- 241000209035 Ilex Species 0.000 description 1
- 235000003332 Ilex aquifolium Nutrition 0.000 description 1
- 235000002296 Ilex sandwicensis Nutrition 0.000 description 1
- 235000002294 Ilex volkensiana Nutrition 0.000 description 1
- 102000011782 Keratins Human genes 0.000 description 1
- 108010076876 Keratins Proteins 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- 241000218652 Larix Species 0.000 description 1
- 235000005590 Larix decidua Nutrition 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- 235000019501 Lemon oil Nutrition 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 235000018330 Macadamia integrifolia Nutrition 0.000 description 1
- 235000003800 Macadamia tetraphylla Nutrition 0.000 description 1
- 240000000912 Macadamia tetraphylla Species 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- NFLGAXVYCFJBMK-UHFFFAOYSA-N Menthone Chemical compound CC(C)C1CCC(C)CC1=O NFLGAXVYCFJBMK-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 241000772415 Neovison vison Species 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 235000019502 Orange oil Nutrition 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 239000004264 Petrolatum Substances 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 235000008565 Pinus banksiana Nutrition 0.000 description 1
- 244000019397 Pinus jeffreyi Species 0.000 description 1
- 235000013264 Pinus jeffreyi Nutrition 0.000 description 1
- 235000013697 Pinus resinosa Nutrition 0.000 description 1
- 235000008578 Pinus strobus Nutrition 0.000 description 1
- 235000008585 Pinus thunbergii Nutrition 0.000 description 1
- 235000014030 Podocarpus spicatus Nutrition 0.000 description 1
- 208000000474 Poliomyelitis Diseases 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical group CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- UVMRYBDEERADNV-UHFFFAOYSA-N Pseudoeugenol Natural products COC1=CC(C(C)=C)=CC=C1O UVMRYBDEERADNV-UHFFFAOYSA-N 0.000 description 1
- NZGWDASTMWDZIW-UHFFFAOYSA-N Pulegone Natural products CC1CCC(=C(C)C)C(=O)C1 NZGWDASTMWDZIW-UHFFFAOYSA-N 0.000 description 1
- 235000019484 Rapeseed oil Nutrition 0.000 description 1
- 235000019774 Rice Bran oil Nutrition 0.000 description 1
- 235000019485 Safflower oil Nutrition 0.000 description 1
- 108010013296 Sericins Proteins 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 229920002385 Sodium hyaluronate Polymers 0.000 description 1
- 229920002197 Sodium polyaspartate Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- 235000004338 Syringa vulgaris Nutrition 0.000 description 1
- 244000297179 Syringa vulgaris Species 0.000 description 1
- 244000299461 Theobroma cacao Species 0.000 description 1
- 235000005764 Theobroma cacao ssp. cacao Nutrition 0.000 description 1
- 235000005767 Theobroma cacao ssp. sphaerocarpum Nutrition 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 description 1
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 229910001513 alkali metal bromide Inorganic materials 0.000 description 1
- 229910001516 alkali metal iodide Inorganic materials 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 239000008168 almond oil Substances 0.000 description 1
- 235000011399 aloe vera Nutrition 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 1
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 1
- USMNOWBWPHYOEA-UHFFFAOYSA-N alpha-thujone Natural products CC1C(=O)CC2(C(C)C)C1C2 USMNOWBWPHYOEA-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229960000510 ammonia Drugs 0.000 description 1
- 230000001166 anti-perspirative effect Effects 0.000 description 1
- 239000003213 antiperspirant Substances 0.000 description 1
- BTFJIXJJCSYFAL-UHFFFAOYSA-N arachidyl alcohol Natural products CCCCCCCCCCCCCCCCCCCCO BTFJIXJJCSYFAL-UHFFFAOYSA-N 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 235000021302 avocado oil Nutrition 0.000 description 1
- 239000008163 avocado oil Substances 0.000 description 1
- 239000010905 bagasse Substances 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 229940116226 behenic acid Drugs 0.000 description 1
- 229940095076 benzaldehyde Drugs 0.000 description 1
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000001046 cacaotero Nutrition 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 239000004204 candelilla wax Substances 0.000 description 1
- 235000013868 candelilla wax Nutrition 0.000 description 1
- 229940073532 candelilla wax Drugs 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- KHAVLLBUVKBTBG-UHFFFAOYSA-N caproleic acid Natural products OC(=O)CCCCCCCC=C KHAVLLBUVKBTBG-UHFFFAOYSA-N 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 230000021523 carboxylation Effects 0.000 description 1
- 238000006473 carboxylation reaction Methods 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000004203 carnauba wax Substances 0.000 description 1
- 235000013869 carnauba wax Nutrition 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 229940082500 cetostearyl alcohol Drugs 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 229920001429 chelating resin Polymers 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 229940059329 chondroitin sulfate Drugs 0.000 description 1
- KJPRLNWUNMBNBZ-UHFFFAOYSA-N cinnamic aldehyde Natural products O=CC=CC1=CC=CC=C1 KJPRLNWUNMBNBZ-UHFFFAOYSA-N 0.000 description 1
- 229940117916 cinnamic aldehyde Drugs 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 235000018597 common camellia Nutrition 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 229940109239 creatinine Drugs 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000001877 deodorizing effect Effects 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 235000013325 dietary fiber Nutrition 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- VTIIJXUACCWYHX-UHFFFAOYSA-L disodium;carboxylatooxy carbonate Chemical compound [Na+].[Na+].[O-]C(=O)OOC([O-])=O VTIIJXUACCWYHX-UHFFFAOYSA-L 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- GRWZHXKQBITJKP-UHFFFAOYSA-L dithionite(2-) Chemical compound [O-]S(=O)S([O-])=O GRWZHXKQBITJKP-UHFFFAOYSA-L 0.000 description 1
- 229960000735 docosanol Drugs 0.000 description 1
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 235000013345 egg yolk Nutrition 0.000 description 1
- 210000002969 egg yolk Anatomy 0.000 description 1
- 229920002549 elastin Polymers 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000006266 etherification reaction Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229960001617 ethyl hydroxybenzoate Drugs 0.000 description 1
- FMMOOAYVCKXGMF-MURFETPASA-N ethyl linoleate Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(=O)OCC FMMOOAYVCKXGMF-MURFETPASA-N 0.000 description 1
- 229940031016 ethyl linoleate Drugs 0.000 description 1
- 239000004403 ethyl p-hydroxybenzoate Substances 0.000 description 1
- 235000010228 ethyl p-hydroxybenzoate Nutrition 0.000 description 1
- NUVBSKCKDOMJSU-UHFFFAOYSA-N ethylparaben Chemical compound CCOC(=O)C1=CC=C(O)C=C1 NUVBSKCKDOMJSU-UHFFFAOYSA-N 0.000 description 1
- 229960002217 eugenol Drugs 0.000 description 1
- 235000008524 evening primrose extract Nutrition 0.000 description 1
- 239000010475 evening primrose oil Substances 0.000 description 1
- 229940089020 evening primrose oil Drugs 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 229960002442 glucosamine Drugs 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229930182478 glucoside Natural products 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 229960005150 glycerol Drugs 0.000 description 1
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 229910052811 halogen oxide Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- IUJAMGNYPWYUPM-UHFFFAOYSA-N hentriacontane Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC IUJAMGNYPWYUPM-UHFFFAOYSA-N 0.000 description 1
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 1
- SFFVATKALSIZGN-UHFFFAOYSA-N hexadecan-7-ol Chemical compound CCCCCCCCCC(O)CCCCCC SFFVATKALSIZGN-UHFFFAOYSA-N 0.000 description 1
- 235000012907 honey Nutrition 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- VLHZUYUOEGBBJB-UHFFFAOYSA-N hydroxy stearic acid Natural products OCCCCCCCCCCCCCCCCCC(O)=O VLHZUYUOEGBBJB-UHFFFAOYSA-N 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- YETXGSGCWODRAA-UHFFFAOYSA-N isopropyl palmitic acid Natural products CC(C)CCCCCCCCCCCCCCCC(O)=O YETXGSGCWODRAA-UHFFFAOYSA-N 0.000 description 1
- 229940119170 jojoba wax Drugs 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 239000010501 lemon oil Substances 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- FMMOOAYVCKXGMF-UHFFFAOYSA-N linoleic acid ethyl ester Natural products CCCCCC=CCC=CCCCCCCCC(=O)OCC FMMOOAYVCKXGMF-UHFFFAOYSA-N 0.000 description 1
- 229960004488 linolenic acid Drugs 0.000 description 1
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 239000000845 maltitol Substances 0.000 description 1
- VQHSOMBJVWLPSR-WUJBLJFYSA-N maltitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-WUJBLJFYSA-N 0.000 description 1
- 235000010449 maltitol Nutrition 0.000 description 1
- 229940035436 maltitol Drugs 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012567 medical material Substances 0.000 description 1
- 239000001525 mentha piperita l. herb oil Substances 0.000 description 1
- 229940041616 menthol Drugs 0.000 description 1
- 229930007503 menthone Natural products 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 229960002216 methylparaben Drugs 0.000 description 1
- 239000004200 microcrystalline wax Substances 0.000 description 1
- 235000019808 microcrystalline wax Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 235000013379 molasses Nutrition 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 239000010466 nut oil Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- HMMGMWAXVFQUOA-UHFFFAOYSA-N octamethylcyclotetrasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 HMMGMWAXVFQUOA-UHFFFAOYSA-N 0.000 description 1
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 1
- 229940060184 oil ingredients Drugs 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 239000010502 orange oil Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000012860 organic pigment Substances 0.000 description 1
- 125000006353 oxyethylene group Chemical group 0.000 description 1
- 229930007459 p-menth-8-en-3-one Natural products 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 239000003346 palm kernel oil Substances 0.000 description 1
- 235000019865 palm kernel oil Nutrition 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 235000019809 paraffin wax Nutrition 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 235000019477 peppermint oil Nutrition 0.000 description 1
- 150000004968 peroxymonosulfuric acids Chemical class 0.000 description 1
- 229940066842 petrolatum Drugs 0.000 description 1
- 239000000419 plant extract Substances 0.000 description 1
- 239000003495 polar organic solvent Substances 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 229940071139 pyrrolidone carboxylate Drugs 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000008165 rice bran oil Substances 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 235000017985 rocky mountain lodgepole pine Nutrition 0.000 description 1
- 235000005713 safflower oil Nutrition 0.000 description 1
- 239000003813 safflower oil Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 229910021647 smectite Inorganic materials 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- UKLNMMHNWFDKNT-UHFFFAOYSA-M sodium chlorite Chemical compound [Na+].[O-]Cl=O UKLNMMHNWFDKNT-UHFFFAOYSA-M 0.000 description 1
- 229960002218 sodium chlorite Drugs 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 229940010747 sodium hyaluronate Drugs 0.000 description 1
- 229960001922 sodium perborate Drugs 0.000 description 1
- 229940045872 sodium percarbonate Drugs 0.000 description 1
- YWIVKILSMZOHHF-QJZPQSOGSA-N sodium;(2s,3s,4s,5r,6r)-6-[(2s,3r,4r,5s,6r)-3-acetamido-2-[(2s,3s,4r,5r,6r)-6-[(2r,3r,4r,5s,6r)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2- Chemical compound [Na+].CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 YWIVKILSMZOHHF-QJZPQSOGSA-N 0.000 description 1
- YKLJGMBLPUQQOI-UHFFFAOYSA-M sodium;oxidooxy(oxo)borane Chemical compound [Na+].[O-]OB=O YKLJGMBLPUQQOI-UHFFFAOYSA-M 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 229960002920 sorbitol Drugs 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- OULAJFUGPPVRBK-UHFFFAOYSA-N tetratriacontyl alcohol Natural products CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCO OULAJFUGPPVRBK-UHFFFAOYSA-N 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 1
- QPQANCNBWQXGTQ-UHFFFAOYSA-N trihydroxy(trimethylsilylperoxy)silane Chemical compound C[Si](C)(C)OO[Si](O)(O)O QPQANCNBWQXGTQ-UHFFFAOYSA-N 0.000 description 1
- VLPFTAMPNXLGLX-UHFFFAOYSA-N trioctanoin Chemical compound CCCCCCCC(=O)OCC(OC(=O)CCCCCCC)COC(=O)CCCCCCC VLPFTAMPNXLGLX-UHFFFAOYSA-N 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 229960002703 undecylenic acid Drugs 0.000 description 1
- 229940045136 urea Drugs 0.000 description 1
- 229940116269 uric acid Drugs 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 235000019871 vegetable fat Nutrition 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B15/00—Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
- C08B15/02—Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
- C08B15/04—Carboxycellulose, e.g. prepared by oxidation with nitrogen dioxide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L1/00—Compositions of cellulose, modified cellulose or cellulose derivatives
- C08L1/02—Cellulose; Modified cellulose
- C08L1/04—Oxycellulose; Hydrocellulose, e.g. microcrystalline cellulose
Definitions
- the present invention relates to an acid-type carboxylated cellulose nanofiber.
- cellulose raw material When cellulose raw material is treated in the presence of 2,2,6,6-tetramethyl-1-piperidine-N-oxy radical (hereinafter also referred to as “TEMPO”) and an inexpensive oxidizing agent, sodium hypochlorite
- TEMPO 2,2,6,6-tetramethyl-1-piperidine-N-oxy radical
- carboxyl groups can be efficiently introduced onto the surface of cellulose microfibrils.
- cellulose introduced with a carboxyl group When cellulose introduced with a carboxyl group is treated in water with a mixer or the like, a highly viscous and transparent aqueous dispersion of cellulose nanofibers is obtained.
- cellulose nanofiber since a carboxyl group is introduced on the surface of the cellulose nanofiber, it can be freely modified starting from the carboxyl group.
- the cellulose nanofiber since the cellulose nanofiber is in the form of a dispersion, it can be blended with a water-soluble polymer or can be modified by being combined with an organic or inorganic pigment.
- cellulose nanofibers can be formed into sheets or fibers. Due to such characteristics, development of new high-functional products in which cellulose nanofibers are applied to high-functional packaging materials, transparent organic substrate members, high-functional fibers, separation membranes, regenerative medical materials, and the like has been studied.
- Patent Document 1 proposes a spray composition containing carboxylated cellulose fibers and water. Since the carboxylated cellulose fiber contained in the spray composition described in Patent Document 1 has not undergone a desalting step, it is presumed that it is a sodium salt type from the production procedure.
- JP 2010-37200 International Publication No. 2013/137140 JP 2012-214717 A
- Patent Document 1 describes that there is an additive whose function is lowered in the presence of salts. Therefore, when using the carboxylated cellulose fiber for a spray composition, the carboxylated cellulose fiber is preferably desalted and converted into an acid form.
- acid-type carboxylated cellulose nanofibers obtained by acid-treating carboxylated cellulose fibers with a mineral acid such as hydrochloric acid, in a region where the shear rate is low (hereinafter also referred to as “low shear region”), The viscosity tended to be low. For this reason, when used in a spray composition, a thickener may be added to prevent dripping. Accordingly, development of acid-type carboxylated cellulose nanofibers having a high viscosity in a low shear region is desired.
- the obtained carboxylated cellulose nanofiber is an alkali metal salt type.
- acid-type carboxylated cellulose nanofibers could not be isolated.
- the present inventors examined the reason why acid-type carboxylated cellulose nanofibers cannot be isolated. After producing alkali-hydrolyzed carboxylated cellulose nanofibers by defibration, nanofibers having extremely short fiber lengths were obtained. It turns out that the ratio increases.
- the first object of the present invention is to provide an acid-type carboxylated cellulose nanofiber having a high viscosity in a low shear region.
- a second object of the present invention is to provide an acid-type carboxylated cellulose nanofiber having an extremely short fiber length.
- Carboxylated cellulose nanofiber having a carboxyl group in at least a part of the constituent units constituting the cellulose molecular chain, the viscosity of the aqueous dispersion having a content of 0.95 to 1.05 mass% is 30 Acid-type carboxylated cellulose nanofibers (hereinafter also referred to as “nanofiber A”) having a shear rate of 400 Pa ⁇ s or more at 0.003 to 0.01 s ⁇ 1 at 0 ° C.
- nanofiber B Acid-type carboxylated cellulose nanofiber
- the acid-type carboxylated cellulose nanofiber according to the above [2] having an average fiber diameter of 2 to 50 nm.
- the acid-type carboxylated cellulose nanofiber according to the above [2] having an average fiber diameter of 2 to 30 nm.
- an acid-type carboxylated cellulose nanofiber having a high viscosity in a low shear region can be provided.
- an acid-type carboxylated cellulose nanofiber having an extremely short fiber length can be provided.
- FIG. 1 is a graph showing the fiber length distribution of acid-type carboxylated cellulose nanofibers of Examples 1 and 5.
- the “acid-type carboxylated cellulose nanofiber” refers to a carboxylated cellulose nanofiber obtained by desalting a metal salt such as a sodium salt to convert it into an acid form.
- Nanofiber A of the present invention is acid-type carboxylated cellulose nanofiber.
- the nanofiber A of the present invention has a carboxyl group in at least a part of the constituent units constituting the cellulose molecular chain, and the viscosity of the aqueous dispersion having a content of 0.95 to 1.05% by mass is It is 400 Pa ⁇ s or more at a shear rate of 0.003 to 0.01 s ⁇ 1 at 30 ° C. Therefore, when the nanofiber A of the present invention is used in, for example, a spray composition, other thickeners are not used, or even if other thickeners are used, dripping can be prevented in a small amount. it can.
- the lower limit of the viscosity in an aqueous dispersion having a content of 0.95 to 1.05 mass% is 400 Pa at a shear rate of 30 ° C. and 0.003 to 0.01 s ⁇ 1.
- ⁇ S or more preferably 500 Pa ⁇ s or more, and 925 Pa ⁇ s. More preferably, it is more than 930 Pa.s. More preferably, it is s or more, and even more preferably 950 Pa ⁇ s or more.
- the upper limit is 100,000 Pa.s. s or less, preferably 50,000 Pa.s. s or less, more preferably 25,000 Pa.s. More preferably, it is s or less.
- the viscosity is 0.95 to 1.05% by weight of an aqueous dispersion prepared by adding water to the nanofiber A, and the aqueous dispersion is obtained from a viscoelastic rheometer (for example, “MCR301”). , Manufactured by Anton Paar) and measured at a predetermined shear rate.
- a viscoelastic rheometer for example, “MCR301”. , Manufactured by Anton Paar
- the nanofiber A of the present invention preferably has an average fiber length of 200 to 2000 nm, more preferably 250 to 1500 nm, further preferably 300 to 1000 nm, and further preferably 550 to 1000 nm. More preferred. Further, the nanofiber A of the present invention preferably has an average fiber diameter of 1.50 to 1000 nm, more preferably 2.00 to 750 nm, and further preferably 2.50 to 500 nm. Even more preferably, it is 2.85 to 500 nm.
- Nanofiber B of the present invention is acid-type carboxylated cellulose nanofiber. Further, the nanofiber B of the present invention has a carboxyl group in at least a part of the constituent units constituting the cellulose molecular chain, the average fiber length is 50 to 500 nm, and the ratio of fibers having a fiber length of 300 nm or less Is 50% or more. After subjecting the oxidized cellulose to an alkali hydrolysis treatment, the nanofiber B satisfying the above two fiber length requirements can be isolated and obtained by desalting using a cation exchange resin.
- the nanofiber B of the present invention has an average fiber length of 50 to 500 nm, preferably 100 to 400 nm. Moreover, the ratio of the fiber which has a fiber length of 300 nm or less is 50% or more, and it is preferable that it is 60% or more. Furthermore, the proportion of fibers having a fiber length of 600 nm or more is preferably less than 20%, more preferably less than 15%, and even more preferably less than 10%.
- the nanofiber B satisfying such a condition converges in a region where the fiber length distribution is short, and can be particularly expected to be used as a composite material with a resin or rubber, or as an additive to a coating material.
- the nanofiber B of the present invention preferably has an average fiber diameter of 2.0 to 50 nm, 2.0 to 40 nm, 2.0 to 30 nm, 2.5 to 30 nm, 3.0 to 30 nm, 3.0 More preferably, it is ⁇ 20 nm, and further preferably 3.0 ⁇ 15 nm.
- the average fiber length of carboxylated cellulose nanofibers can be calculated as follows.
- Carboxylated cellulose nanofibers can be fixed on a mica section, 200 fiber lengths can be measured using an atomic force microscope (AFM), and a length (weighted) average fiber length can be calculated.
- AFM atomic force microscope
- the measurement of fiber length is performed in the range of arbitrary length using image analysis software WinROOF (made by Mitani Corporation).
- the ratio of fibers having a fiber length of 300 nm or less or 600 nm or more can be calculated as the ratio of carboxylated cellulose nanofibers of 300 nm or less or 600 nm or more of all measured fibers.
- the average fiber diameter of carboxylated cellulose nanofiber can be calculated as follows.
- An aqueous dispersion of carboxylated cellulose nanofibers diluted to have a concentration of carboxylated cellulose nanofibers of 0.001% by mass is prepared.
- This diluted dispersion is thinly spread on a mica sample stage and dried by heating at 50 ° C. to prepare an observation sample.
- the cross-sectional height of the shape image observed with an atomic force microscope (AFM) can be measured to calculate the weighted average fiber diameter.
- a cellulose molecular chain is composed of a structural unit having a carboxyl group in which a carbon atom having a primary hydroxyl group at the C6 position of a glucopyranose unit is selectively oxidized. It is preferred that a cellulose molecular chain may be comprised only by the structural unit which has the carboxyl group in which the carbon atom which has C1-position primary hydroxyl group of the glucopyranose unit was selectively oxidized.
- the glucopyranose unit refers to a structural unit represented by the following formula (0).
- the carboxyl group amount is preferably 0.6 to 2.0 mmol / g with respect to the absolutely dry mass of the carboxylated cellulose nanofiber, and 0.8 to 2 It is more preferably 0.0 mmol / g, further preferably 1.2 to 2.0 mmol / g, and still more preferably 1.4 to 1.8 mmol / g.
- the carboxyl group amount is 0.6 mmol / g or more, a carboxyl group is introduced to the surface of the cellulose molecular chain and can have an electrostatic repulsion effect, and nanofibers can be produced by defibration. .
- the carboxyl group amount is 0.8 mmol / g or more
- the carboxyl group is sufficiently introduced to the surface of the cellulose molecular chain, and can have an electrostatic repulsion action.
- the amount of carboxyl groups can be measured as follows. 60 ml of a 0.5% by weight slurry (aqueous dispersion) of carboxylated cellulose is prepared. A 0.1 M hydrochloric acid aqueous solution is added to the prepared slurry to adjust the pH to 2.5, and then 0.05 N sodium hydroxide aqueous solution is dropped to measure the electric conductivity until the pH becomes 11.
- the carboxylated cellulose nanofiber can be produced, for example, as follows.
- the cellulose raw material is oxidized to prepare oxidized cellulose (hereinafter also referred to as “oxidation treatment”), the prepared oxidized cellulose is defibrated (hereinafter also referred to as “defibration treatment”), and the fibrillated oxidized cellulose is converted into a cation.
- Nanofiber A can be manufactured by desalting with an exchange resin (hereinafter also referred to as “desalting”).
- nanofiber B can be manufactured by using oxidized cellulose obtained by alkaline hydrolysis (hereinafter, also referred to as “alkaline hydrolysis treatment”) of oxidized cellulose after oxidization treatment and before defibration treatment.
- the acid-type carboxylated cellulose nanofibers can also be produced by subjecting the prepared oxidized cellulose or hydrolyzed oxidized cellulose to a desalting treatment with a cation exchange resin, followed by a fibrillation treatment.
- a case where acid-type carboxylated cellulose nanofibers are produced by desalting with a cation exchange resin after defibration will be described.
- the oxidation treatment is a treatment for preparing oxidized cellulose by oxidizing a cellulose raw material.
- the oxidation method is not particularly limited, but a method using an oxidizing agent in the presence of an N-oxyl compound and bromide, iodide or a mixture thereof is preferable.
- a structural unit having a carboxyl group in which a carbon atom having a primary hydroxyl group at the C6 position of a glucopyranose unit constituting a cellulose molecular chain is selectively oxidized can be obtained.
- the partial structure of oxidized cellulose obtained by this method is shown in the following general formula (1).
- M 1 represents a cation salt.
- examples of the cation salt represented as M 1 include alkali metal salts such as sodium salt and potassium salt, phosphonium salt, imidazolinium salt, ammonium salt and sulfonium salt.
- Natural cellulose has a microfibril structure in which a large number of linear cellulose molecular chains are converged by hydrogen bonds.
- a carbon atom having a primary hydroxyl group at the C6 position of a glucopyranose unit constituting a cellulose molecular chain is selectively oxidized to a carboxyl group via an aldehyde group as described above. . Therefore, carboxyl groups are introduced at a high density on the surface of the microfibril structure.
- the introduced carboxyl group has a repulsive action, and cellulose nanofibers separated one by one by defibration can be obtained.
- the cellulose raw material includes wood-derived kraft pulp or sulfite pulp, powdered cellulose obtained by pulverizing them with a high-pressure homogenizer, a mill, or the like, or microcrystalline cellulose powder obtained by purifying them by chemical treatment such as acid hydrolysis.
- plant-derived cellulose raw materials such as kenaf, hemp, rice, bagasse and bamboo can also be used.
- powdered cellulose, microcrystalline cellulose powder, or chemical pulp such as kraft pulp or sulfite pulp.
- chemical pulp it is preferable to perform a known bleaching treatment to remove lignin.
- the bleached pulp for example, bleached kraft pulp or bleached sulfite pulp having a whiteness (ISO 2470) of 80% or more can be used.
- Powdered cellulose is rod-like particles made of microcrystalline or crystalline cellulose obtained by removing the non-crystalline portion of wood pulp by acid hydrolysis, and then pulverizing and sieving.
- the degree of polymerization of cellulose is about 100 to 500
- the degree of crystallinity of powdered cellulose by X-ray diffraction is 70 to 90%
- the volume average particle size by a laser diffraction type particle size distribution device is usually 100 ⁇ m or less. Preferably, it is 50 ⁇ m or less.
- Such powdered cellulose may be prepared by purifying and drying an undegraded residue obtained after acid hydrolysis of a selected pulp, pulverizing and sieving, or KC Flock (registered trademark) (Nippon Paper Industries Co., Ltd.). Manufactured products), Theolas (registered trademark) (manufactured by Asahi Kasei Chemicals), Avicel (registered trademark) (manufactured by FMC), and the like may be used.
- Bleaching methods include chlorination (C), chlorine dioxide bleach (D), alkali extraction (E), hypochlorite bleach (H), hydrogen peroxide bleach (P), alkaline hydrogen peroxide treatment stage ( Ep), alkaline hydrogen peroxide / oxygen treatment stage (Eop), ozone treatment (Z), chelate treatment (Q) and the like can be performed in combination.
- C / D-EHD, ZEDP, Z / D-Ep-D, Z / D-Ep-DP, D-Ep-D, D-Ep-D- P, D-Ep-PD, Z-Eop-DD, Z / D-Eop-D, Z / D-Eop-DED, etc. can be used. Note that “/” in the sequence means that the processes before and after “/” are continuously performed without cleaning.
- the above cellulose raw material that has been refined by a high-speed rotating type, colloid mill type, high-pressure type, roll mill type, ultrasonic type dispersing device, wet high-pressure or ultra-high pressure homogenizer, etc. should be used as the cellulose raw material. You can also.
- N-oxyl compound is a compound capable of generating a nitroxy radical.
- any compound can be used as long as it is a compound that performs the target oxidation reaction.
- Examples of the N-oxyl compound include compounds represented by the following general formulas (2) to (5) and (7) and compounds represented by the following formula (6).
- R 1 - R 4 are the same or different optionally 1 carbon atoms even if 1-4 alkyl group, R 5 represents a hydrogen atom or a hydroxyl group.
- R 6 represents a linear or branched hydrocarbon group having 1 to 4 carbon atoms.
- R 7 ⁇ R 8 denote the same or may be different, a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms.
- examples of the alkyl group having 1 to 4 carbon atoms represented by R 1 to R 4 include a methyl group, an ethyl group, a propyl group, and a butyl group. Of these, a methyl group or an ethyl group is preferable.
- examples of the linear or branched hydrocarbon group having 1 to 4 carbon atoms represented by R 6 include a methyl group, an ethyl group, an n-propyl group, Examples include isopropyl group, n-butyl group, s-butyl group, and t-butyl group. Of these, a methyl group or an ethyl group is preferable.
- examples of the linear or branched alkyl group having 1 to 6 carbon atoms represented by R 7 to R 8 include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group.
- a methyl group or an ethyl group is preferable.
- Examples of the compound represented by the general formula (2) include 2,2,6,6-tetramethyl-1-piperidine-N-oxy radical (hereinafter also referred to as “TEMPO”), or 4-hydroxy-2 2,6,6-tetramethyl-1-piperidine-N-oxy radical (hereinafter also referred to as “4-hydroxy TEMPO”).
- the N-oxyl compound may be TEMPO or a derivative of 4-hydroxy TEMPO.
- a derivative of 4-hydroxy TEMPO for example, a compound represented by the general formula (3), that is, a hydroxyl group of 4-hydroxy TEMPO has a linear or branched hydrocarbon group having 4 or less carbon atoms.
- Derivatives obtained by etherification with alcohol and compounds represented by general formula (4) or (5), that is, derivatives obtained by esterification with carboxylic acid or sulfonic acid can be mentioned.
- 4-hydroxy TEMPO is etherified, if an alcohol having 4 or less carbon atoms is used, the resulting derivative becomes water-soluble regardless of the presence or absence of saturated or unsaturated bonds in the alcohol, and is a good oxidation catalyst. To work.
- the N-oxyl compound is a compound represented by the formula (6), that is, a compound in which the amino group of 4-amino TEMPO is acetylated, moderate hydrophobicity is imparted, and it is inexpensive and uniform oxidation. Since cellulose can be obtained, it is preferable.
- the N-oxyl compound is preferably a compound represented by the general formula (7), that is, an azaadamantane-type nitroxy radical, because uniform oxidized cellulose can be obtained in a short time.
- the amount of the N-oxyl compound used is not particularly limited as long as it is a catalytic amount that can oxidize the cellulose raw material sufficiently to make the obtained oxidized cellulose nanofiber.
- the amount is preferably 0.01 to 10 mmol, more preferably 0.01 to 1 mmol, and still more preferably 0.01 to 0.5 mmol with respect to 1 g of the absolutely dry cellulose raw material.
- the bromide used in the oxidation of the cellulose raw material is a compound containing bromine, and examples thereof include an alkali metal bromide that can be dissociated and ionized in water.
- an iodide is a compound containing iodine, and examples thereof include alkali metal iodide.
- the amount of bromide or iodide used can be adjusted as long as the target oxidation reaction can be promoted.
- the total amount of bromide and iodide is, for example, preferably 0.1 to 100 mmol, more preferably 0.1 to 10 mmol, and still more preferably 0.5 to 5 mmol with respect to 1 g of the absolutely dry cellulose raw material.
- the oxidizing agent for example, known oxidizing agents such as halogen, hypohalous acid, halous acid, perhalogen acid or salts thereof, halogen oxide, peroxide, and the like can be used. Of these, sodium hypochlorite is preferable because it is inexpensive and has a low environmental impact.
- the amount of the oxidizing agent used may be any amount that allows an oxidation reaction. For example, the amount is preferably 0.5 to 500 mmol, more preferably 0.5 to 50 mmol, and still more preferably 2 with respect to 1 g of cellulose raw material. .5-25 mmol.
- the reaction temperature may be about 15 to 30 ° C.
- carboxyl groups are generated in the cellulose, so that the pH value of the reaction solution decreases.
- an alkaline solution such as an aqueous sodium hydroxide solution is added to the reaction system in a timely manner so that the pH value of the reaction solution is maintained at 9 to 12, preferably about 10 to 11. preferable.
- the reaction medium is preferably water because it is easy to handle and hardly causes side reactions.
- the reaction time in the oxidation reaction can be appropriately set according to the progress of oxidation, and is usually about 0.5 to 6 hours, preferably about 0.5 to 4 hours.
- the oxidation reaction may be carried out in two stages. For example, by oxidizing the cationic salt of oxidized cellulose obtained by filtration after completion of the first-stage reaction again under the same or different reaction conditions, the reaction is inhibited by the salt produced as a by-product in the first-stage reaction. And a carboxyl group can be efficiently introduced into the cellulose raw material.
- the carboxyl group introduced into the cellulose raw material is usually an alkyl metal salt such as a sodium salt.
- the alkali metal salt of oxidized cellulose may be replaced with another cation salt such as a phosphonium salt, an imidazolinium salt, an ammonium salt, or a sulfonium salt. The substitution can be performed by a known method.
- a method of oxidizing by contacting a gas containing ozone and a cellulose raw material can be mentioned.
- the carbon atom having at least the 2-position and 6-position hydroxyl groups of the glucopyranose ring is oxidized and the cellulose chain is decomposed.
- the ozone concentration in the gas containing ozone is preferably 50 to 250 g / m 3 , more preferably 50 to 220 g / m 3 .
- the amount of ozone added to the cellulose raw material is preferably 0.1 to 30 parts by mass, and more preferably 5 to 30 parts by mass, when the solid content of the cellulose raw material is 100 parts by mass.
- the ozone treatment temperature is preferably 0 to 50 ° C., and more preferably 20 to 50 ° C.
- the ozone treatment time is not particularly limited, but is usually about 1 to 360 minutes, and preferably about 30 to 360 minutes. When the conditions for the ozone treatment are within these ranges, the cellulose can be prevented from being excessively oxidized and decomposed, and the yield of oxidized cellulose is improved.
- an additional oxidation treatment may be performed using an oxidizing agent.
- the oxidizing agent used for the additional oxidation treatment is not particularly limited, and examples thereof include chlorine compounds such as chlorine dioxide and sodium chlorite, oxygen, hydrogen peroxide, persulfuric acid, peracetic acid and the like.
- these oxidizing agents can be dissolved in a polar organic solvent such as water or alcohol to prepare an oxidizing agent solution, and a cellulose raw material can be immersed in the solution for additional oxidation treatment.
- the oxidized cellulose obtained by the oxidation treatment is preferably washed before being subjected to the following alkaline hydrolysis treatment from the viewpoint of avoiding side reactions.
- the washing method is not particularly limited, and can be performed by a known method.
- the defibrating process is a process of defibrating oxidized cellulose or oxidized cellulose subjected to alkali hydrolysis treatment. Since the carboxyl group is introduced into the oxidized cellulose or the oxidized cellulose subjected to the alkali hydrolysis treatment by the oxidation treatment, it can be easily made into nanofibers by the fibrillation treatment.
- the oxidized cellulose or the oxidized cellulose subjected to the alkali hydrolysis treatment can be sufficiently washed with water and then used using a known apparatus such as a high-speed shear mixer or a high-pressure homogenizer.
- a known apparatus such as a high-speed shear mixer or a high-pressure homogenizer.
- the type of defibrating apparatus include a high-speed rotation type, a colloid mill type, a high-pressure type, a roll mill type, and an ultrasonic type. These devices may be used alone or in combination of two or more.
- the shear rate is preferably 1000 sec ⁇ 1 or more. When the shear rate is 1000 sec ⁇ 1 or more, there are few aggregated structures, and nanofibers can be formed uniformly.
- the applied pressure is preferably 50 MPa or more, more preferably 100 MPa or more, and further preferably 140 MPa or more. When treated with a wet high-pressure or ultrahigh-pressure homogenizer at the pressure, nanofibrosis proceeds efficiently, and carboxylated cellulose nanofibers can be obtained efficiently.
- the oxidized cellulose or the oxidized cellulose subjected to the alkali hydrolysis treatment is subjected to a defibrating treatment as an aqueous dispersion such as water. If the concentration of oxidized cellulose or oxidized cellulose subjected to alkali hydrolysis treatment in the aqueous dispersion is high, the viscosity may increase excessively during the defibrating process and may not be defibrated uniformly or the device may stop. . Therefore, the concentration of the oxidized cellulose or the oxidized cellulose subjected to the alkali hydrolysis treatment needs to be appropriately set according to the processing conditions of the oxidized cellulose or the oxidized cellulose subjected to the alkali hydrolysis treatment.
- the concentration of oxidized cellulose or oxidized cellulose subjected to alkali hydrolysis treatment is preferably 0.3 to 50% (w / v), more preferably 0.5 to 10% (w / v), and 1.0 to 5% (w / v) is more preferable.
- the alkali hydrolysis treatment is a treatment for preparing hydrolyzed oxidized cellulose by hydrolyzing the oxidized cellulose obtained by the above-described oxidation treatment in an alkaline solution.
- the acid-type carboxylation obtained by obtaining the treatment The cellulose nanofiber is Nanofiber B.
- the reaction medium for the hydrolysis treatment is preferably water from the viewpoint of suppressing side reactions.
- a carboxyl group is interspersed in an amorphous region of oxidized cellulose oxidized with an N-oxyl compound, and an electron is attracted to the hydrogen atom at the C5 position adjacent to the carboxyl group by the carboxyl group. So it is in a state of lack of charge. Therefore, under alkaline conditions of pH 8 to 14, the hydrogen atom is easily extracted with hydroxide ions, and the glucoside bond is cleaved by ⁇ elimination reaction. As a result, oxidized cellulose is shortened, and the proportion of carboxylated cellulose nanofibers having a short fiber length is also increased.
- the pH value of the reaction solution in the reaction is preferably 8 to 14, more preferably 9 to 13, and further preferably 10 to 12.
- the pH value is less than 8, sufficient hydrolysis does not occur, and shortening of oxidized cellulose may be insufficient.
- the pH value exceeds 14 hydrolysis proceeds, but the oxidized cellulose after hydrolysis is colored, and the resulting cellulose nanofiber is also colored, so that the transparency is lowered and the application technique is limited. May arise.
- the alkali used for adjusting the pH value may be water-soluble, and sodium hydroxide is preferable from the viewpoint of production cost.
- Hydrolysis of oxidized cellulose in an alkaline solution may cause the oxidized cellulose to be colored yellow due to the formation of double bonds during ⁇ elimination. Therefore, the obtained cellulose nanofibers are also colored and the transparency is lowered, and the application technique may be limited. Therefore, it is preferable to perform a hydrolysis process using an oxidizing agent or a reducing agent as an adjuvant, in order to suppress the production
- an oxidizing agent or a reducing agent is used in the hydrolysis treatment in an alkaline solution having a pH value of 8 to 14, the oxidized cellulose can be shortened while oxidizing or reducing the double bond.
- the oxidizing agent or reducing agent those having activity in the alkaline region can be used.
- the amount of the auxiliary added is preferably 0.1 to 10% by mass, more preferably 0.3 to 5% by mass, and 0.5 to 2% by mass with respect to the absolutely dry oxidized cellulose. Further preferred.
- the oxidizing agent examples include oxygen, ozone, hydrogen peroxide, and hypochlorite. Among them, the oxidizing agent is less likely to generate radicals, and oxygen, hydrogen peroxide, and hypochlorite are preferable, and hydrogen peroxide is more preferable. In addition, an oxidizing agent may be used individually by 1 type, and may be used in combination of 2 or more type.
- reducing agent examples include sodium borohydride, hydrosulfite, and sulfite.
- a reducing agent may be used individually by 1 type, and may be used in combination of 2 or more type.
- the hydrolysis reaction temperature is preferably 40 to 120 ° C, more preferably 50 to 100 ° C, and further preferably 60 to 90 ° C.
- the temperature is low, sufficient hydrolysis does not occur, and shortening of oxidized cellulose or carboxylated cellulose nanofibers may be insufficient.
- the temperature is high, hydrolysis proceeds, but the oxidized cellulose after hydrolysis may be colored.
- the reaction time for hydrolysis is preferably 0.5 to 24 hours, more preferably 1 to 10 hours, and further preferably 2 to 6 hours.
- the concentration of oxidized cellulose in the alkaline solution is preferably 1 to 20% by mass, more preferably 3 to 15% by mass, and even more preferably 5 to 10% by mass.
- the desalting treatment is a treatment for desalting the fibrillated oxidized cellulose or the alkali hydrolyzed oxidized cellulose (carboxylated cellulose nanofiber salt) with a cation exchange resin.
- the cationic salt of oxidized cellulose that has been fibrillated by the treatment or oxidized cellulose that has been subjected to alkali hydrolysis can be substituted with protons to obtain acid-type carboxylated cellulose nanofibers. Since a cation exchange resin is used, unnecessary by-products such as sodium chloride are not generated, and after desalting with the cation exchange resin, the cation exchange resin is removed by filtration through a metal mesh or the like. As a result, an aqueous dispersion of acid-substituted carboxylated cellulose nanofibers with proton substitution can be obtained as a filtrate.
- An object to be removed as a filtrate by a metal mesh or the like is a cation exchange resin, and carboxylated cellulose nanofibers are hardly removed by the diameter of the metal mesh or the like, and almost the entire amount is contained in the filtrate. Therefore, the yield reduction is extremely small.
- the filtrate contains a large amount of carboxylated cellulose nanofibers having a short fiber length. Further, since the filtrate does not have to be washed or dehydrated, the acid-type carboxylated cellulose nanofibers are hardly aggregated. Therefore, when the alkali hydrolysis treatment is not obtained, it is presumed that the dispersion of carboxylated cellulose nanofibers has a high viscosity in the low shear region. In addition, when an alkali hydrolysis treatment is obtained, an acid-type carboxylated cellulose nanofiber having an extremely short fiber length can be isolated.
- the carboxylated cellulose nanofiber salt can be directly used in the desalting step with the aqueous dispersion obtained in the defibrating step. If necessary, water can be added to lower the concentration.
- any of strong acid ion exchange resin and weak acid ion exchange resin can be used as long as the counter ion is H + .
- the strong acid ion exchange resin and the weak acid ion exchange resin include those obtained by introducing a sulfonic acid group or a carboxyl group into a styrene resin or an acrylic resin.
- the shape of the cation exchange resin is not particularly limited, and various shapes such as fine particles (particles), membranes, and fibers can be used.
- a commercial item can be used as such a cation exchange resin.
- Commercially available products include, for example, AmberJet 1020, 1024, 1060, 1220 (above, Organo), Amberlite IR-200C, IR-120B (above, Tokyo Organic Chemical Co.), Lebatit SP 112 S100 (manufactured by Bayer), GEL CK08P (manufactured by Mitsubishi Chemical), Dowex 50W-X8 (manufactured by Dow Chemical) and the like.
- the desalting treatment is performed, for example, by mixing a granular cation exchange resin and an aqueous dispersion of carboxylated cellulose nanofiber salt, and stirring and shaking as necessary to obtain a carboxylated cellulose nanofiber salt and a cation. After the contact with the exchange resin for a certain time, the cation exchange resin and the aqueous dispersion can be separated.
- the concentration of the aqueous dispersion and the ratio with the cation exchange resin are not particularly limited, and those skilled in the art can appropriately set from the viewpoint of efficiently performing proton substitution.
- the concentration of the aqueous dispersion is preferably 0.05 to 10% by mass. If the concentration of the aqueous dispersion is less than 0.05% by mass, it may take too much time for proton substitution. If the concentration of the aqueous dispersion is more than 10% by mass, sufficient proton substitution effect may not be obtained.
- the contact time is also not particularly limited, and those skilled in the art can appropriately set from the viewpoint of efficiently performing proton substitution. For example, the contact can be performed for 0.2 to 4 hours.
- the carboxylated cellulose nanofiber salt or oxidized cellulose is contacted for a sufficient time using an appropriate amount of the cation exchange resin, and then the cation exchange resin is removed as a filtrate with a metal mesh or the like, thereby removing the cation exchange resin.
- Salt treatment can be performed.
- the fiber shortening treatment refers to a treatment for appropriately shortening the fiber by appropriately cutting the cellulose chain of oxidized cellulose or oxidized cellulose subjected to alkali hydrolysis treatment.
- ultraviolet irradiation treatment, oxidative decomposition treatment, acid hydrolysis treatment and the like can be mentioned.
- acid hydrolysis treatment is preferable.
- said process may be 1 type of single process, and may combine 2 or more types of processes.
- the acid hydrolysis treatment is a treatment for hydrolyzing oxidized cellulose or oxidized cellulose subjected to alkali hydrolysis treatment in an acidic solution.
- Carboxylated cellulose nanofibers can be shortened by hydrolysis in an acidic aqueous solution. The reason is presumed as follows. A carboxyl group is localized on the surface of the cellulose raw material oxidized using the N-oxyl compound, and a hydrated layer is formed. For this reason, the oxidized celluloses are close to each other and form a network. When an acid is added to the oxidized cellulose for hydrolysis, the balance of charges in the network is lost, and a strong network of cellulose molecules is lost.
- a mineral acid such as sulfuric acid, hydrochloric acid, nitric acid, or phosphoric acid
- a dispersion liquid in which oxidized cellulose is dispersed in a dispersion medium such as water.
- the conditions for the hydrolysis in the acidic solution may be any conditions that allow the acid to act on the amorphous part of cellulose.
- the amount of acid added is preferably 0.01 to 0.5% by mass, more preferably 0.1 to 0.5% by mass, based on the absolutely dry mass of oxidized cellulose.
- the amount of acid added is 0.01% by mass or more, since hydrolysis of cellulose proceeds and the treatment efficiency in the defibrating process is improved. Moreover, the excessive hydrolysis of a cellulose can be prevented as the addition amount is 0.5 mass% or less, and the fall of the yield of a cellulose nanofiber can be prevented.
- the pH value of the reaction solution in the reaction is preferably 2.0 to 4.0, more preferably 2.0 or more and less than 3.0.
- the reaction temperature is preferably 70 to 120 ° C. and the reaction time is preferably 1 to 10 hours.
- the ultraviolet irradiation treatment is a treatment for irradiating ultraviolet rays to oxidized cellulose or oxidized cellulose subjected to alkali hydrolysis treatment.
- carboxylated cellulose nanofibers can be shortened. The reason is presumed as follows. Ultraviolet rays can directly act on cellulose and hemicellulose to lower the molecular weight, and shorten the cellulose chain in oxidized cellulose. Therefore, the proportion of carboxylated cellulose nanofibers with a short fiber length also increases.
- the wavelength of ultraviolet rays used is preferably 100 to 400 nm, more preferably 100 to 300 nm.
- ultraviolet rays having a wavelength of 135 to 260 nm are preferable because they can directly act on cellulose and hemicellulose to cause low molecular weight and shorten the cellulose chain in oxidized cellulose.
- a light source for irradiating ultraviolet rays a light source using light in a wavelength region of 100 to 400 nm can be used.
- a xenon short arc lamp, an ultra high pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a deuterium lamp, and a metal halide lamp can be used.
- these light sources may be used individually by 1 type, and may be used in combination of 2 or more types arbitrarily. It is preferable to use a combination of a plurality of light sources having different wavelength characteristics, because ultraviolet rays having different wavelengths are simultaneously irradiated to increase the number of cut sites in the cellulose chain and hemicellulose chain, thereby promoting shortening of the fiber.
- the container for containing oxidized cellulose when performing ultraviolet irradiation for example, when ultraviolet rays of 300 to 400 nm are used, a container made of hard glass can be used. When ultraviolet rays having a wavelength shorter than 300 nm are used, it is preferable to use a quartz glass container that transmits ultraviolet rays more. In addition, what is necessary is just to select appropriately about the material of the part which does not participate in the light transmission reaction of a container from materials with little deterioration with respect to the wavelength of the ultraviolet-ray used.
- the concentration of oxidized cellulose upon irradiation with ultraviolet rays is preferably 0.1 to 12% by mass, more preferably 0.5 to 5% by mass, and still more preferably 1 to 3% by mass. It is preferable that the concentration of oxidized cellulose is 0.1% by mass or more because energy efficiency is increased. It is preferable that the concentration of the oxidized cellulose is 12% by mass or less because the flowability of the oxidized cellulose in the ultraviolet irradiation device is good and the reaction efficiency is increased.
- the temperature at the time of irradiation with ultraviolet rays is preferably 20 to 95 ° C., more preferably 20 to 80 ° C., and further preferably 20 to 50 ° C.
- a temperature of 20 ° C. or higher is preferable because the efficiency of the photooxidation reaction is increased.
- the temperature is 95 ° C. or lower, there is no possibility of adverse effects such as deterioration of the quality of oxidized cellulose, and there is no possibility that the pressure in the reaction apparatus exceeds atmospheric pressure, and it is necessary to design an apparatus that takes pressure resistance into consideration. Since it disappears, it is preferable.
- the pH value when irradiating with ultraviolet rays is not particularly limited, but considering the simplification of the process, the neutral value, for example, the pH value is preferably about 6.0 to 8.0.
- the degree of irradiation received by oxidized cellulose during ultraviolet irradiation can be arbitrarily set by adjusting the residence time of oxidized cellulose in the irradiation reaction apparatus, adjusting the amount of energy of the irradiation light source, or the like.
- the concentration of oxidized cellulose in the irradiation apparatus can be adjusted by dilution with water, or the concentration of oxidized cellulose can be adjusted by blowing an inert gas such as air or nitrogen into the oxidized cellulose. It is possible to arbitrarily control the irradiation amount of ultraviolet rays received by oxidized cellulose.
- These conditions such as residence time and concentration can be appropriately set according to the target quality of oxidized cellulose (fiber length, cellulose polymerization degree, etc.) after ultraviolet irradiation.
- the ultraviolet irradiation treatment is performed in the presence of an auxiliary agent such as oxygen, ozone, peroxide (hydrogen peroxide, peracetic acid, sodium percarbonate, sodium perborate, etc.), the efficiency of the photooxidation reaction is increased. preferable.
- an auxiliary agent such as oxygen, ozone, peroxide (hydrogen peroxide, peracetic acid, sodium percarbonate, sodium perborate, etc.)
- ozone is generated from the air present in the gas phase around the light source. While continuously supplying air to the periphery of the light source, the generated ozone is continuously extracted, and this extracted ozone is injected into the oxidized cellulose, so that light can be supplied without supplying ozone from outside the system. Ozone can also be used as an auxiliary for the oxidation reaction. Further, by supplying oxygen to the gas phase around the light source, a larger amount of ozone can be generated in the system, and the generated ozone can also be used as an auxiliary agent for the photooxidation reaction. In this way, ozone generated secondary by the ultraviolet irradiation reactor can also be used.
- the ultraviolet irradiation treatment may be repeated a plurality of times.
- the number of repetitions is not particularly limited, but can be appropriately set according to the relationship such as the target quality of oxidized cellulose.
- the target quality of oxidized cellulose For example, preferably 100 to 400 nm, more preferably 135 to 260 nm, preferably 1 to 10 times, more preferably 2 to 5 times, as an irradiation time per time, preferably 0.5 to 10 hours, More preferably, it can be carried out by irradiating with ultraviolet rays for 0.5 to 3 hours.
- Ozone can be generated by a known method using an ozone generator using air or oxygen as a raw material.
- the amount of ozone added (in terms of mass) is preferably 0.1 to 3 times, more preferably 0.3 to 2.5 times, and more preferably 0.5 to 1.5 times the absolute dry mass of oxidized cellulose. Further preferred.
- the amount of ozone added is at least 0.1 times the absolute dry mass of oxidized cellulose, the amorphous part of cellulose can be sufficiently decomposed.
- the amount of ozone added is 3 times or less of the absolutely dry mass of oxidized cellulose, excessive decomposition of cellulose can be suppressed, and a decrease in the yield of oxidized cellulose can be prevented.
- the amount of hydrogen peroxide added (in terms of mass) is preferably 0.001 to 1.5 times, more preferably 0.1 to 1.0 times the absolute dry mass of oxidized cellulose.
- the added amount of hydrogen peroxide is 0.001 times or more of the absolutely dry mass of oxidized cellulose, the synergistic effect of ozone and hydrogen peroxide is exhibited.
- the oxidized cellulose is decomposed, it is sufficient that the amount of hydrogen peroxide added is not more than 1.5 times that of oxidized cellulose, and adding more than 1.5 times is not preferable because it leads to an increase in cost.
- the pH value is preferably 2 to 12, more preferably 4 to 10, more preferably 6 to 8, and the temperature is preferably 10 to 90 ° C.
- the reaction efficiency is preferably 20 to 70 ° C., more preferably 30 to 50 ° C.
- the reaction time is preferably 1 to 20 hours, more preferably 2 to 10 hours, and further preferably 3 to 6 hours. From the viewpoint of
- the apparatus for performing the treatment with ozone and hydrogen peroxide is not particularly limited, and a known apparatus can be used.
- a normal reactor equipped with a reaction chamber, a stirrer, a chemical injection device, a heater, and a pH electrode can be used.
- Ozone and hydrogen peroxide remaining in the aqueous solution after the treatment with ozone and hydrogen peroxide act effectively in the defibrating process, and can further promote the lowering of the viscosity of the dispersion of carboxylated cellulose nanofibers.
- the nanofiber A of the present invention can be used for spray compositions, rubber reinforcing materials, resin reinforcing materials, cosmetics, medical products, foods, beverages, paints, and the like. Especially, it is preferable to use for the composition for sprays which utilizes the characteristic that it is a high viscosity in a low shear area
- the composition for spraying contains the nanofiber A and water.
- the spray composition may contain a functional additive. Since the nanofiber A has a high viscosity in the low shear region, the spray composition can prevent dripping with no additional thickener or a small amount.
- the functional additive examples include surfactants, oils, humectants, organic fine particles, inorganic fine particles, preservatives, deodorants, fragrances, organic solvents and the like. These can be selected depending on the application of the spray composition.
- a functional additive may be used individually by 1 type, and may be used in combination of 2 or more type.
- nonionic surfactant examples include propylene glycol fatty acid ester, glycerin fatty acid ester, polyoxyethylene glycerin fatty acid ester, polyglycerin fatty acid ester sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbit fatty acid ester, Polyethylene glycol fatty acid ester, polyoxyethylene castor oil, polyoxyethylene hydrogenated castor oil, polyoxyethylene alkyl ether, polyoxyethylene phytosterol, polyoxyethylene polyoxypropylene alkyl ether, polyoxyethylene alkylphenyl ether, polyoxyethylene lanolin, polyoxy Ethylene lanolin alcohol, polyoxyethylene beeswax derivative, polio Shi polyoxyethylene alkyl amines, polyoxyethylene fatty acid amides, polyoxyethylene alkylphenyl formaldehyde condensates and the like.
- oils examples include jojoba oil, macadamia nut oil, avocado oil, evening primrose oil, mink oil, rapeseed oil, castor oil, sunflower oil, corn oil, cacao oil, coconut oil, rice bran oil, olive oil, almond oil, sesame oil, safflower oil.
- Natural animal and vegetable fats and oils such as flower oil, soybean oil, cocoon oil, persic oil, cottonseed oil, molasses, palm oil, palm kernel oil, egg yolk oil, lanolin, squalene; synthetic triglyceride, squalane, liquid paraffin, petrolatum, ceresin, microcrystalline wax , Hydrocarbons such as isoparaffin; waxes such as carnauba wax, paraffin wax, whale wax, beeswax, candelilla wax, lanolin; higher alcohols (cetanol, stearyl alcohol, lauryl alcohol, cetostearyl alcohol, olei Alcohol, behenyl alcohol, lanolin alcohol, hydrogenated lanolin alcohol, hexyl decanol, octyldodecanol, etc.); lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, isostearic acid, oleic acid, linolenic acid,
- silicones dimethylpolysiloxane, methylphenylpolysiloxane, methylpolysiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexanesiloxane, methylcyclopolysiloxane, octamethyltrisiloxane, decamethyl.
- Tetrasiloxane polyoxyethylene / methylpolysiloxane copolymer, polyoxypropylene / methylpolysiloxane copolymer, poly (oxyethylene / oxypropylene) methylpolysiloxane copolymer, methylhydrogenpolysiloxane, tetrahydrotetramethylcyclo Tetrasiloxane, stearoxymethyl polysiloxane, cetoxymethyl polysiloxane, methyl polysiloxane emulsion, highly polymerized methyl poly Rokisan, trimethylsiloxy silicic acid, crosslinked methylpolysiloxane, a crosslinked methylphenyl polysiloxane.
- humectants include polyhydric alcohols such as glyceryl trioctanoate, maltitol, sorbitol, glycerin, propylene glycol, 1,3-butylene glycol, polyethylene glycol, glycol; organic acids such as pyrrolidone carboxylate soda, lactate soda, and sodium citrate And its salts; hyaluronic acid and its salts such as sodium hyaluronate; hydrolyzate of yeast and yeast extract; fermentation metabolites such as yeast culture and lactic acid bacteria culture; water-soluble proteins such as collagen, elastin, keratin and sericin; collagen Peptides such as hydrolysates, casein hydrolysates, silk hydrolysates, sodium polyaspartate and their salts; saccharides / polysaccharides such as trehalose, xylobiose, maltose, sucrose, glucose, vegetable viscous polysaccharides and the like Guidance Glyco
- examples of the organic fine particles include latex emulsions obtained by emulsion polymerization such as styrene-butadiene copolymer latex and acrylic emulsion, and polyurethane water dispersions.
- examples of the inorganic fine particles include inorganic fine particles such as zeolite, montmorillonite, asbestos, smectite, mica, fumed silica, colloidal silica, and titanium oxide.
- Examples of the preservative include methyl paraben and ethyl paraben.
- Deodorants and fragrances include D-limonene, decylaldehyde, menthone, pulegone, eugenol, cinnamaldehyde, benzaldehyde, menthol, peppermint oil, lemon oil, orange oil, and a deodorizing active ingredient extracted from each organ of plants (for example, Deodorant active ingredient extracted from each organ of water, hydrophilic, organic solvent, honey beetle, dolphin, moth, ginkgo, black pine, larch, red pine, giraffe, holly mushroom, lilac, beetle, coral, camellia, forsythia ) Etc.
- organic solvent examples include water-soluble alcohols (methanol, ethanol, isopropanol, isobutanol, sec-butanol, tert-butanol, methyl cellosolve, ethyl cellosolve, ethylene glycol, glycerin, etc.), ethers (ethylene glycol dimethyl ether, 1,4-dioxane, tetrahydrofuran, etc.), ketones (acetone, methyl ethyl ketone), N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide and the like.
- water-soluble alcohols methanol, ethanol, isopropanol, isobutanol, sec-butanol, tert-butanol, methyl cellosolve, ethyl cellosolve, ethylene glycol, glycerin, etc.
- ethers ethylene glycol dimethyl ether, 1,4-dio
- Nanofiber B of the present invention is a composition for spraying; rubber reinforcement such as NR, SBR, EPDM, NBR; resin reinforcement such as polyolefin resin, acrylic resin, urethane resin, PVC resin, polyamide resin, PC resin, etc.
- ingredients creams, lotions, gels, sticks, pump sprays, aerosols, roll-on antiperspirants in the form of epidermis, deodorants, fragrance release gels, lipsticks, lip gloss, liquid cosmetics and other cosmetics; Controlled, sustained or delayed additives, disintegrants for tablets, liquid retainers in wound care products, medical products such as rheology modifiers; rheology modifiers, inhibiting creaming and precipitation in suspensions Stabilizers, foods such as indigestible dietary fiber; beverages; paints; metals unfavorable to the environment contained in soil and wastewater It can be utilized in metal adsorbents.
- the present invention will be described in detail with reference to examples.
- the following examples are for explaining the present invention preferably and are not intended to limit the present invention.
- the measuring methods such as a physical-property value, are the measuring methods described above.
- Viscosity (Pa ⁇ s) Water is added to carboxylated cellulose nanofibers to prepare an aqueous dispersion of 1.95 to 1.05% by mass, and the aqueous dispersion is prepared using a viscoelastic rheometer. And measured at a predetermined shear rate.
- Average fiber length (nm) Carboxylated cellulose nanofibers are fixed on a mica section, the fiber length of 200 fibers is measured using an atomic force microscope (AFM), and the length (weighted) average fiber is measured. The length was calculated. The fiber length was measured using image analysis software WinROOF (Mitani Corporation).
- Average fiber diameter (nm) An aqueous dispersion of carboxylated cellulose nanofibers diluted so that the concentration of carboxylated cellulose nanofibers was 0.001% by mass was prepared. This diluted dispersion was thinly spread on a mica sample stage and heated and dried at 50 ° C. to prepare an observation sample. The cross-sectional height of the shape image observed with an atomic force microscope (AFM) was measured, and the weighted average fiber diameter was calculated.
- AFM atomic force microscope
- Example 1 5 g (absolutely dried) of bleached softwood unbeaten pulp (Nippon Paper Co., Ltd.) was added to 500 ml of an aqueous solution in which 78 mg (0.5 mmol) of TEMPO (manufactured by Sigma Aldrich) and 754 mg (7.4 mmol) of sodium bromide were dissolved. Stir until the pulp is uniformly dispersed. After adding 14 ml of 2M aqueous sodium hypochlorite solution to the reaction system, the pH was adjusted to 10.3 with 0.5N aqueous hydrochloric acid solution to initiate the oxidation reaction.
- TEMPO manufactured by Sigma Aldrich
- the obtained slurry of oxidized cellulose was adjusted to 1% (w / v) with water, treated with an ultra-high pressure homogenizer (20 ° C., 140 MPa) three times, and a transparent gel-like carboxylated cellulose nanofiber salt was obtained. A dispersion (1% (w / v)) was obtained.
- a cation exchange resin (manufactured by Organo Corporation, “Amberjet 1024”) was added to the resulting dispersion of carboxylated cellulose nanofiber salt, and the mixture was stirred at 20 ° C. for 0.3 hours for contact. Thereafter, the cation exchange resin and the aqueous dispersion were separated with a metal mesh (aperture 100 mesh) to obtain an acid-type carboxylated cellulose nanofiber (nanofiber A).
- the viscosity of an aqueous dispersion of 1.00% by mass of the obtained acid-type carboxylated cellulose nanofibers was 925 Pa ⁇ s under the conditions of shear rate (0.00417 s ⁇ 1 , 30 ° C.), and (0.00671 s ⁇ 1 , 30 ° C.), it was 920 Pa ⁇ s.
- the results are shown in Table 1.
- the average fiber length of the obtained acid-type carboxylated cellulose nanofiber is 549 nm
- the average fiber diameter is 2.83 nm
- the proportion of fibers having a fiber length of 300 nm or less is 29.3%.
- the proportion of fibers having a fiber length of 600 nm or more was 23.2%.
- Table 2 The results are shown in Table 2, and the fiber length distribution ratio is shown in FIG.
- the viscosity of an aqueous dispersion of 1.00% by mass of the obtained carboxylated cellulose nanofiber is 336 Pa ⁇ s under the condition of shear rate (0.00417 s ⁇ 1 , 30 ° C.), and (0.00671 s ⁇ 1 , 30 Pa) under the condition of 30 ° C.
- the results are shown in Table 1.
- the average fiber length of the obtained carboxylated cellulose nanofiber was 503 nm, and the average fiber diameter was 2.55 nm.
- Example 2 5 g (absolutely dried) of bleached softwood unbeaten pulp (Nippon Paper Co., Ltd.) was added to 500 ml of an aqueous solution in which 78 mg (0.5 mmol) of TEMPO (manufactured by Sigma Aldrich) and 754 mg (7.4 mmol) of sodium bromide were dissolved. Stir until the pulp is uniformly dispersed. After adding 11 ml of 2M aqueous sodium hypochlorite solution to the reaction system, the pH was adjusted to 10.3 with 0.5N aqueous hydrochloric acid solution to initiate the oxidation reaction.
- TEMPO manufactured by Sigma Aldrich
- the obtained slurry of oxidized cellulose was adjusted to 1% (w / v) with water, treated twice with an ultrahigh pressure homogenizer (20 ° C., 140 MPa), and a transparent gel-like carboxylated cellulose nanofiber salt was obtained.
- a dispersion (1% (w / v)) was obtained.
- a cation exchange resin (manufactured by Organo Corporation, “Amberjet 1024”) was added to the resulting dispersion of carboxylated cellulose nanofiber salt, and the mixture was stirred at 20 ° C. for 0.3 hours for contact. Thereafter, the cation exchange resin and the aqueous dispersion were separated with a metal mesh (aperture 100 mesh) to obtain acid-type carboxylated cellulose nanofibers (nanofibers).
- the viscosity of the 1.00 mass% aqueous dispersion of the obtained acid-type carboxylated cellulose nanofibers was 18300 Pa ⁇ s under the conditions of the shear rate (0.00417 s ⁇ 1 , 30 ° C.), and (0.00671 s -1, under the condition of 30 °C) was 17800Pa ⁇ s.
- the results are shown in Table 1.
- the average fiber length of the obtained acid-type carboxylated cellulose nanofibers was 624 nm, and the average fiber diameter was 3.11 nm.
- Example 3 5 g (absolutely dried) of bleached softwood unbeaten pulp (Nippon Paper Co., Ltd.) was added to 500 ml of an aqueous solution in which 78 mg (0.5 mmol) of TEMPO (manufactured by Sigma Aldrich) and 754 mg (7.4 mmol) of sodium bromide were dissolved. Stir until the pulp is uniformly dispersed. After adding 12 ml of a 2M aqueous sodium hypochlorite solution to the reaction system, the pH was adjusted to 10.3 with a 0.5N aqueous hydrochloric acid solution to initiate the oxidation reaction.
- TEMPO manufactured by Sigma Aldrich
- the obtained slurry of oxidized cellulose was adjusted to 1% (w / v) with water, treated with an ultra-high pressure homogenizer (20 ° C., 140 MPa) three times, and a transparent gel-like carboxylated cellulose nanofiber salt was obtained. A dispersion (1% (w / v)) was obtained.
- a cation exchange resin (manufactured by Organo Corporation, “Amberjet 1024”) was added to the resulting dispersion of carboxylated cellulose nanofiber salt, and the mixture was stirred at 20 ° C. for 0.3 hours for contact. Thereafter, the cation exchange resin and the aqueous dispersion were separated with a metal mesh (aperture 100 mesh) to obtain acid-type carboxylated cellulose nanofibers (nanofibers).
- the viscosity of an aqueous dispersion of 1.00% by mass of the obtained acid-type carboxylated cellulose nanofibers is 995 Pa ⁇ s under the conditions of shear rate (0.00417 s ⁇ 1 , 30 ° C.), and (0.00671 s -1, under the condition of 30 °C) was 970Pa ⁇ s.
- the results are shown in Table 1.
- the obtained acid-type carboxylated cellulose nanofibers had an average fiber length of 570 nm and an average fiber diameter of 2.85 nm.
- Example 4 5 g (absolutely dried) of bleached softwood unbeaten pulp (Nippon Paper Co., Ltd.) was added to 500 ml of an aqueous solution in which 78 mg (0.5 mmol) of TEMPO (manufactured by Sigma Aldrich) and 754 mg (7.4 mmol) of sodium bromide were dissolved. Stir until the pulp is uniformly dispersed. After adding 6 ml of 2M aqueous sodium hypochlorite solution to the reaction system, the pH was adjusted to 10.3 with 0.5N aqueous hydrochloric acid solution to initiate the oxidation reaction.
- TEMPO manufactured by Sigma Aldrich
- the obtained slurry of oxidized cellulose was adjusted to 1% (w / v) with water, treated twice with an ultrahigh pressure homogenizer (20 ° C., 140 MPa), and a transparent gel-like carboxylated cellulose nanofiber salt was obtained.
- a dispersion (1% (w / v)) was obtained.
- a cation exchange resin (manufactured by Organo Corporation, “Amberjet 1024”) was added to the resulting dispersion of carboxylated cellulose nanofiber salt, and the mixture was stirred at 20 ° C. for 0.3 hours for contact. Thereafter, the cation exchange resin and the aqueous dispersion were separated with a metal mesh (aperture 100 mesh) to obtain acid-type carboxylated cellulose nanofibers (nanofibers).
- the viscosity of an aqueous dispersion of 1.00% by mass of the obtained acid-type carboxylated cellulose nanofibers was 24100 Pa ⁇ s under the conditions of shear rate (0.00417 s ⁇ 1 , 30 ° C.), and (0.00671 s ⁇ 1 , 30 ° C.), it was 23300 Pa ⁇ s.
- the results are shown in Table 1.
- the average fiber length of the obtained acid-type carboxylated cellulose nanofibers was 840 nm, and the average fiber diameter was 3.22 nm.
- the acid-type carboxylated cellulose nanofibers prepared by desalting with hydrochloric acid had a low value of 0.00417 or 0.00671 s ⁇ 1 when the amount of carboxyl groups was 1.60 mmol / g as in Example 1.
- the viscosity was as low as 336 or 350 Pa ⁇ s (see Comparative Example 1). From this, it was found that the physical properties of the obtained acid-type carboxylated cellulose nanofibers, particularly the viscosity in the low shear region, differ depending on the process during the desalting treatment. Therefore, acid-type carboxylated cellulose nanofibers can be expected to be widely used by changing the desalting process according to the application.
- Example 5 5 g (absolutely dried) of bleached softwood unbeaten pulp (Nippon Paper Industries Co., Ltd.) was added to 500 ml of an aqueous solution in which 78 mg (0.5 mmol) of TEMPO (Sigma Aldrich) and 754 mg (7.4 mmol) of sodium bromide were dissolved. Stir until the pulp is uniformly dispersed. After adding 16 ml of 2M aqueous sodium hypochlorite solution to the reaction system, the pH was adjusted to 10.3 with 0.5N aqueous hydrochloric acid solution to initiate the oxidation reaction.
- TEMPO Sigma Aldrich
- the hydrolyzed 2% (w / v) oxidized cellulose slurry was treated 5 times with an ultra-high pressure homogenizer (20 ° C., 140 MPa) to obtain a transparent gel-like carboxylated cellulose nanofiber salt dispersion (1% (w / v) v)) was obtained.
- a cation exchange resin (manufactured by Organo Corporation, “Amberjet 1024”) was added to the resulting dispersion of carboxylated cellulose nanofiber salt, and the mixture was stirred at 20 ° C. for 0.3 hours for contact. Thereafter, the cation exchange resin and the aqueous dispersion were separated with a metal mesh (aperture 100 mesh) to obtain acid-type carboxylated cellulose nanofiber (nanofiber B) at a high yield of 92%.
- the obtained acid-type carboxylated cellulose nanofibers have an average fiber length of 311 nm, an average fiber diameter of 5.73 nm, and a ratio of fibers having a fiber length of 300 nm or less is 79.9%, 600 nm or more.
- the proportion of fibers having a fiber length of 1.1% was 1.1%.
- Table 2 The results are shown in Table 2, and the fiber length distribution ratio is shown in FIG.
- carboxylated cellulose nanofibers obtained by hydrolysis treatment have a short average fiber length, a large proportion of 300 nm or less, and a very small proportion of 600 nm or more (Example 1). 5). Therefore, the fiber length has converged to a short region, and application to a field where a short fiber cellulose nanofiber is desired is expected.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Materials Engineering (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
Abstract
The present invention addresses the problem of providing acid-type carboxylated cellulose nanofibers having a high viscosity in a low shear region, or acid-type carboxylated cellulose nanofibers having extremely short fiber lengths. The carboxylated cellulose nanofibers have a carboxyl group on at least a portion of structural units constituting a cellulose molecule chain, wherein: the viscosity of an aqueous dispersion in which the content rate of the acid-type carboxylated cellulose nanofibers is 0.95-1.05 mass%, is 400 Pa·s or higher at 30ºC and a shear rate of 0.003-0.01 s-1; or the average fiber length of the acid-type carboxylated cellulose nanofibers is 50-500 nm, and the proportion of the fibers each having a fiber length of 300 nm or less is 50% or more.
Description
本発明は、酸型カルボキシル化セルロースナノファイバーに関する。
The present invention relates to an acid-type carboxylated cellulose nanofiber.
セルロース原料を2,2,6,6-テトラメチル-1-ピペリジン-N-オキシラジカル(以下、「TEMPO」ともいう)と安価な酸化剤である次亜塩素酸ナトリウムとの共存下で処理すると、セルロースのミクロフィブリルの表面にカルボキシル基を効率よく導入することができる。カルボキシル基を導入したセルロースを水中にてミキサー等で処理すると、高粘度で透明なセルロースナノファイバーの水分散液が得られる。
When cellulose raw material is treated in the presence of 2,2,6,6-tetramethyl-1-piperidine-N-oxy radical (hereinafter also referred to as “TEMPO”) and an inexpensive oxidizing agent, sodium hypochlorite In addition, carboxyl groups can be efficiently introduced onto the surface of cellulose microfibrils. When cellulose introduced with a carboxyl group is treated in water with a mixer or the like, a highly viscous and transparent aqueous dispersion of cellulose nanofibers is obtained.
上記の通り、セルロースナノファイバーの表面には、カルボキシル基が導入されているため、当該カルボキシル基を起点として自由に改質することができる。また、セルロースナノファイバーは分散液の形態なので、水溶性ポリマーとブレンドすることや、有機・無機系顔料と複合化して改質することもできる。さらに、セルロースナノファイバーをシート化又は繊維化することもできる。このような特性により、セルロースナノファイバーを高機能包装材料、透明有機基板部材、高機能繊維、分離膜、再生医療材料等に応用した新規高機能性商品の開発が検討されている。
As described above, since a carboxyl group is introduced on the surface of the cellulose nanofiber, it can be freely modified starting from the carboxyl group. In addition, since the cellulose nanofiber is in the form of a dispersion, it can be blended with a water-soluble polymer or can be modified by being combined with an organic or inorganic pigment. Furthermore, cellulose nanofibers can be formed into sheets or fibers. Due to such characteristics, development of new high-functional products in which cellulose nanofibers are applied to high-functional packaging materials, transparent organic substrate members, high-functional fibers, separation membranes, regenerative medical materials, and the like has been studied.
上記新規高機能性商品の一例として、特許文献1には、カルボキシル化されたセルロース繊維と水とを含有するスプレー用組成物が提案されている。特許文献1に記載のスプレー用組成物に含有されるカルボキシル化されたセルロース繊維は、脱塩工程を経ていないため、製造手順からナトリウム塩型であると推認される。
As an example of the above-mentioned new highly functional product, Patent Document 1 proposes a spray composition containing carboxylated cellulose fibers and water. Since the carboxylated cellulose fiber contained in the spray composition described in Patent Document 1 has not undergone a desalting step, it is presumed that it is a sodium salt type from the production procedure.
また、カルボキシル基を導入したセルロースを解繊する際に要するエネルギー低減を目的として、解繊処理の前に、アルカリ加水分解処理を行うことが提案されている(例えば、特許文献2参照)。また、解繊に要するエネルギーをより低減することを目的として、解繊処理の前に行うアルカリ加水分解処理に加えて、低粘度化処理を行うことが提案されている(例えば、特許文献3参照)。
Further, for the purpose of reducing energy required for defibrating cellulose introduced with a carboxyl group, it has been proposed to perform an alkali hydrolysis treatment before the defibrating treatment (for example, see Patent Document 2). For the purpose of further reducing the energy required for defibration, it has been proposed to perform a viscosity reduction treatment in addition to the alkali hydrolysis treatment performed before the defibration treatment (see, for example, Patent Document 3). ).
特許文献1には、塩類の存在下で機能が低下する添加剤があることが記載されている。そのため、カルボキシル化されたセルロース繊維をスプレー用組成物に使用する場合、カルボキシル化されたセルロース繊維は、脱塩処理して酸型に変換したものが好ましい。
しかしながら、カルボキシル化されたセルロース繊維を、塩酸等の鉱酸で酸処理して得られる酸型のカルボキシル化セルロースナノファイバーは、ずり速度が低い領域(以下、「低ずり領域」ともいう)において、粘度が低くなる傾向にあった。そのため、スプレー用組成物に用いる際、液だれを防止するために増粘剤を添加する場合があった。
従って、低ずり領域で高粘度の酸型のカルボキシル化セルロースナノファイバーの開発が望まれている。 Patent Document 1 describes that there is an additive whose function is lowered in the presence of salts. Therefore, when using the carboxylated cellulose fiber for a spray composition, the carboxylated cellulose fiber is preferably desalted and converted into an acid form.
However, acid-type carboxylated cellulose nanofibers obtained by acid-treating carboxylated cellulose fibers with a mineral acid such as hydrochloric acid, in a region where the shear rate is low (hereinafter also referred to as “low shear region”), The viscosity tended to be low. For this reason, when used in a spray composition, a thickener may be added to prevent dripping.
Accordingly, development of acid-type carboxylated cellulose nanofibers having a high viscosity in a low shear region is desired.
しかしながら、カルボキシル化されたセルロース繊維を、塩酸等の鉱酸で酸処理して得られる酸型のカルボキシル化セルロースナノファイバーは、ずり速度が低い領域(以下、「低ずり領域」ともいう)において、粘度が低くなる傾向にあった。そのため、スプレー用組成物に用いる際、液だれを防止するために増粘剤を添加する場合があった。
従って、低ずり領域で高粘度の酸型のカルボキシル化セルロースナノファイバーの開発が望まれている。 Patent Document 1 describes that there is an additive whose function is lowered in the presence of salts. Therefore, when using the carboxylated cellulose fiber for a spray composition, the carboxylated cellulose fiber is preferably desalted and converted into an acid form.
However, acid-type carboxylated cellulose nanofibers obtained by acid-treating carboxylated cellulose fibers with a mineral acid such as hydrochloric acid, in a region where the shear rate is low (hereinafter also referred to as “low shear region”), The viscosity tended to be low. For this reason, when used in a spray composition, a thickener may be added to prevent dripping.
Accordingly, development of acid-type carboxylated cellulose nanofibers having a high viscosity in a low shear region is desired.
また、特許文献2、3に提案された方法で、カルボキシル基を導入したセルロースを、解繊に先だってアルカリ加水分解する場合、得られるカルボキシル化セルロースナノファイバーはアルカリ金属塩型である。これを酸処理により脱塩処理したところ、酸型のカルボキシル化セルロースナノファイバーを単離することができなかった。
本発明者等は酸型のカルボキシル化セルロースナノファイバーを単離できない理由を検討したところ、アルカリ加水分解した後、解繊によりカルボキシル化セルロースナノファイバーを製造すると、極めて短い繊維長を有するナノファイバーの割合が多くなることがわかった。そのため、酸処理による脱塩処理の後、ろ過を施しても、濾物として単離することができず、濾液中にNaCl等とともに含まれてしまうことがわかった。
新規高機能性商品の中には、極めて短い繊維長を有する酸型のカルボキシル化セルロースナノファイバーが望まれる分野もあるので、これを単離して提供することが好ましい。 Moreover, when the cellulose which introduce | transduced the carboxyl group was alkali-hydrolyzed prior to defibration by the method proposed in Patent Documents 2 and 3, the obtained carboxylated cellulose nanofiber is an alkali metal salt type. When this was desalted by acid treatment, acid-type carboxylated cellulose nanofibers could not be isolated.
The present inventors examined the reason why acid-type carboxylated cellulose nanofibers cannot be isolated. After producing alkali-hydrolyzed carboxylated cellulose nanofibers by defibration, nanofibers having extremely short fiber lengths were obtained. It turns out that the ratio increases. Therefore, even if it filtered after the desalting process by an acid treatment, it could not be isolated as a filtrate and was found to be contained in the filtrate together with NaCl and the like.
Among some new high-performance products, there is a field in which acid-type carboxylated cellulose nanofibers having extremely short fiber lengths are desired, and it is preferable to provide them in isolation.
本発明者等は酸型のカルボキシル化セルロースナノファイバーを単離できない理由を検討したところ、アルカリ加水分解した後、解繊によりカルボキシル化セルロースナノファイバーを製造すると、極めて短い繊維長を有するナノファイバーの割合が多くなることがわかった。そのため、酸処理による脱塩処理の後、ろ過を施しても、濾物として単離することができず、濾液中にNaCl等とともに含まれてしまうことがわかった。
新規高機能性商品の中には、極めて短い繊維長を有する酸型のカルボキシル化セルロースナノファイバーが望まれる分野もあるので、これを単離して提供することが好ましい。 Moreover, when the cellulose which introduce | transduced the carboxyl group was alkali-hydrolyzed prior to defibration by the method proposed in Patent Documents 2 and 3, the obtained carboxylated cellulose nanofiber is an alkali metal salt type. When this was desalted by acid treatment, acid-type carboxylated cellulose nanofibers could not be isolated.
The present inventors examined the reason why acid-type carboxylated cellulose nanofibers cannot be isolated. After producing alkali-hydrolyzed carboxylated cellulose nanofibers by defibration, nanofibers having extremely short fiber lengths were obtained. It turns out that the ratio increases. Therefore, even if it filtered after the desalting process by an acid treatment, it could not be isolated as a filtrate and was found to be contained in the filtrate together with NaCl and the like.
Among some new high-performance products, there is a field in which acid-type carboxylated cellulose nanofibers having extremely short fiber lengths are desired, and it is preferable to provide them in isolation.
本発明の第一の課題は、低ずり領域で高粘度である酸型のカルボキシル化セルロースナノファイバーを提供することである。
また、本発明の第二の課題は、極めて短い繊維長を有する酸型のカルボキシル化セルロースナノファイバーを提供することである。 The first object of the present invention is to provide an acid-type carboxylated cellulose nanofiber having a high viscosity in a low shear region.
A second object of the present invention is to provide an acid-type carboxylated cellulose nanofiber having an extremely short fiber length.
また、本発明の第二の課題は、極めて短い繊維長を有する酸型のカルボキシル化セルロースナノファイバーを提供することである。 The first object of the present invention is to provide an acid-type carboxylated cellulose nanofiber having a high viscosity in a low shear region.
A second object of the present invention is to provide an acid-type carboxylated cellulose nanofiber having an extremely short fiber length.
本発明者らは、上記第一の課題について鋭意検討した結果、陽イオン交換樹脂により脱塩処理して得られる酸型のカルボキシル化セルロースナノファイバーが、上記第一の課題を解決できることを見出し、本発明を完成するに至った。
また、本発明者らは、上記第二の課題について鋭意検討した結果、カルボキシル基を導入した酸化セルロースをアルカリ加水分解処理した後、解繊して得られるカルボキシル化セルロースナノファイバー塩を陽イオン交換樹脂により脱塩処理することで、上記第二の課題を解決できることを見出し、本発明を完成するに至った。
即ち、本発明者らは、下記の〔1〕~〔8〕を提供する。
〔1〕セルロース分子鎖を構成する少なくとも一部の構成単位にカルボキシル基を有するカルボキシル化セルロースナノファイバーであって、含有率が0.95~1.05質量%の水分散体における粘度が、30℃、0.003~0.01s-1のずり速度において400Pa・s以上である酸型カルボキシル化セルロースナノファイバー(以下、「ナノファイバーA」ともいう)。
〔2〕セルロース分子鎖を構成する少なくとも一部の構成単位にカルボキシル基を有するカルボキシル化セルロースナノファイバーであって、平均繊維長が50~500nmであり、300nm以下の繊維長を有する繊維の割合が50%以上である酸型カルボキシル化セルロースナノファイバー(以下、「ナノファイバーB」ともいう)。
〔3〕平均繊維径が2~50nmである上記〔2〕に記載の酸型カルボキシル化セルロースナノファイバー。
〔4〕平均繊維径が2~30nmである上記〔2〕に記載の酸型カルボキシル化セルロースナノファイバー。
〔5〕600nm以上の繊維長を有する繊維の割合が20%未満である上記〔2〕~〔4〕のいずれかに記載の酸型カルボキシル化セルロースナノファイバー。
〔6〕前記セルロース分子鎖の少なくとも一部が、グルコピラノース単位のC6位の1級水酸基を有する炭素原子が選択的に酸化されたカルボキシル基を有する構成単位で構成される上記〔1〕~〔5〕のいずれかに記載の酸型カルボキシル化セルロースナノファイバー。
〔7〕前記カルボキシル基量が、前記カルボキシル化セルロースナノファイバーの絶乾質量に対して、0.6~2.0mmol/gである上記〔1〕~〔6〕のいずれかに記載の酸型カルボキシル化セルロースナノファイバー。
〔8〕前記カルボキシル基量が、前記カルボキシル化セルロースナノファイバーの絶乾質量に対して、0.8~2.0mmol/gである上記〔1〕~〔6〕のいずれかに記載の酸型カルボキシル化セルロースナノファイバー。 As a result of earnestly examining the first problem, the present inventors have found that an acid-type carboxylated cellulose nanofiber obtained by desalting with a cation exchange resin can solve the first problem, The present invention has been completed.
In addition, as a result of intensive studies on the second problem, the present inventors have conducted cation exchange on a carboxylated cellulose nanofiber salt obtained by dehydrofibrating an oxidized cellulose having a carboxyl group introduced therein after alkaline hydrolysis. It discovered that said 2nd subject could be solved by desalinating with resin, and came to complete this invention.
That is, the present inventors provide the following [1] to [8].
[1] Carboxylated cellulose nanofiber having a carboxyl group in at least a part of the constituent units constituting the cellulose molecular chain, the viscosity of the aqueous dispersion having a content of 0.95 to 1.05 mass% is 30 Acid-type carboxylated cellulose nanofibers (hereinafter also referred to as “nanofiber A”) having a shear rate of 400 Pa · s or more at 0.003 to 0.01 s −1 at 0 ° C.
[2] Carboxylated cellulose nanofibers having carboxyl groups in at least some of the constituent units constituting the cellulose molecular chain, the average fiber length is 50 to 500 nm, and the proportion of fibers having a fiber length of 300 nm or less is Acid-type carboxylated cellulose nanofiber (hereinafter also referred to as “nanofiber B”) that is 50% or more.
[3] The acid-type carboxylated cellulose nanofiber according to the above [2], having an average fiber diameter of 2 to 50 nm.
[4] The acid-type carboxylated cellulose nanofiber according to the above [2], having an average fiber diameter of 2 to 30 nm.
[5] The acid-type carboxylated cellulose nanofiber according to any one of the above [2] to [4], wherein the proportion of fibers having a fiber length of 600 nm or more is less than 20%.
[6] At least a part of the cellulose molecular chain is composed of structural units having a carboxyl group in which a carbon atom having a primary hydroxyl group at the C6 position of a glucopyranose unit is selectively oxidized. 5] The acid-type carboxylated cellulose nanofiber according to any one of 5).
[7] The acid form according to any one of [1] to [6], wherein the carboxyl group amount is 0.6 to 2.0 mmol / g based on the absolute dry mass of the carboxylated cellulose nanofiber. Carboxylated cellulose nanofiber.
[8] The acid form according to any one of [1] to [6], wherein the amount of the carboxyl group is 0.8 to 2.0 mmol / g with respect to the absolute dry mass of the carboxylated cellulose nanofiber. Carboxylated cellulose nanofiber.
また、本発明者らは、上記第二の課題について鋭意検討した結果、カルボキシル基を導入した酸化セルロースをアルカリ加水分解処理した後、解繊して得られるカルボキシル化セルロースナノファイバー塩を陽イオン交換樹脂により脱塩処理することで、上記第二の課題を解決できることを見出し、本発明を完成するに至った。
即ち、本発明者らは、下記の〔1〕~〔8〕を提供する。
〔1〕セルロース分子鎖を構成する少なくとも一部の構成単位にカルボキシル基を有するカルボキシル化セルロースナノファイバーであって、含有率が0.95~1.05質量%の水分散体における粘度が、30℃、0.003~0.01s-1のずり速度において400Pa・s以上である酸型カルボキシル化セルロースナノファイバー(以下、「ナノファイバーA」ともいう)。
〔2〕セルロース分子鎖を構成する少なくとも一部の構成単位にカルボキシル基を有するカルボキシル化セルロースナノファイバーであって、平均繊維長が50~500nmであり、300nm以下の繊維長を有する繊維の割合が50%以上である酸型カルボキシル化セルロースナノファイバー(以下、「ナノファイバーB」ともいう)。
〔3〕平均繊維径が2~50nmである上記〔2〕に記載の酸型カルボキシル化セルロースナノファイバー。
〔4〕平均繊維径が2~30nmである上記〔2〕に記載の酸型カルボキシル化セルロースナノファイバー。
〔5〕600nm以上の繊維長を有する繊維の割合が20%未満である上記〔2〕~〔4〕のいずれかに記載の酸型カルボキシル化セルロースナノファイバー。
〔6〕前記セルロース分子鎖の少なくとも一部が、グルコピラノース単位のC6位の1級水酸基を有する炭素原子が選択的に酸化されたカルボキシル基を有する構成単位で構成される上記〔1〕~〔5〕のいずれかに記載の酸型カルボキシル化セルロースナノファイバー。
〔7〕前記カルボキシル基量が、前記カルボキシル化セルロースナノファイバーの絶乾質量に対して、0.6~2.0mmol/gである上記〔1〕~〔6〕のいずれかに記載の酸型カルボキシル化セルロースナノファイバー。
〔8〕前記カルボキシル基量が、前記カルボキシル化セルロースナノファイバーの絶乾質量に対して、0.8~2.0mmol/gである上記〔1〕~〔6〕のいずれかに記載の酸型カルボキシル化セルロースナノファイバー。 As a result of earnestly examining the first problem, the present inventors have found that an acid-type carboxylated cellulose nanofiber obtained by desalting with a cation exchange resin can solve the first problem, The present invention has been completed.
In addition, as a result of intensive studies on the second problem, the present inventors have conducted cation exchange on a carboxylated cellulose nanofiber salt obtained by dehydrofibrating an oxidized cellulose having a carboxyl group introduced therein after alkaline hydrolysis. It discovered that said 2nd subject could be solved by desalinating with resin, and came to complete this invention.
That is, the present inventors provide the following [1] to [8].
[1] Carboxylated cellulose nanofiber having a carboxyl group in at least a part of the constituent units constituting the cellulose molecular chain, the viscosity of the aqueous dispersion having a content of 0.95 to 1.05 mass% is 30 Acid-type carboxylated cellulose nanofibers (hereinafter also referred to as “nanofiber A”) having a shear rate of 400 Pa · s or more at 0.003 to 0.01 s −1 at 0 ° C.
[2] Carboxylated cellulose nanofibers having carboxyl groups in at least some of the constituent units constituting the cellulose molecular chain, the average fiber length is 50 to 500 nm, and the proportion of fibers having a fiber length of 300 nm or less is Acid-type carboxylated cellulose nanofiber (hereinafter also referred to as “nanofiber B”) that is 50% or more.
[3] The acid-type carboxylated cellulose nanofiber according to the above [2], having an average fiber diameter of 2 to 50 nm.
[4] The acid-type carboxylated cellulose nanofiber according to the above [2], having an average fiber diameter of 2 to 30 nm.
[5] The acid-type carboxylated cellulose nanofiber according to any one of the above [2] to [4], wherein the proportion of fibers having a fiber length of 600 nm or more is less than 20%.
[6] At least a part of the cellulose molecular chain is composed of structural units having a carboxyl group in which a carbon atom having a primary hydroxyl group at the C6 position of a glucopyranose unit is selectively oxidized. 5] The acid-type carboxylated cellulose nanofiber according to any one of 5).
[7] The acid form according to any one of [1] to [6], wherein the carboxyl group amount is 0.6 to 2.0 mmol / g based on the absolute dry mass of the carboxylated cellulose nanofiber. Carboxylated cellulose nanofiber.
[8] The acid form according to any one of [1] to [6], wherein the amount of the carboxyl group is 0.8 to 2.0 mmol / g with respect to the absolute dry mass of the carboxylated cellulose nanofiber. Carboxylated cellulose nanofiber.
本発明によれば、低ずり領域で高粘度である酸型のカルボキシル化セルロースナノファイバーを提供することができる。
また、本発明によれば、極めて短い繊維長を有する酸型のカルボキシル化セルロースナノファイバーを提供することができる。 According to the present invention, an acid-type carboxylated cellulose nanofiber having a high viscosity in a low shear region can be provided.
In addition, according to the present invention, an acid-type carboxylated cellulose nanofiber having an extremely short fiber length can be provided.
また、本発明によれば、極めて短い繊維長を有する酸型のカルボキシル化セルロースナノファイバーを提供することができる。 According to the present invention, an acid-type carboxylated cellulose nanofiber having a high viscosity in a low shear region can be provided.
In addition, according to the present invention, an acid-type carboxylated cellulose nanofiber having an extremely short fiber length can be provided.
以下、本発明をその好適な実施形態に即して詳細に説明する。なお、本明細書中、「酸型カルボキシル化セルロースナノファイバー」とは、ナトリウム塩等の金属塩を脱塩処理して、酸型に変換したカルボキシル化セルロースナノファイバーをいう。
Hereinafter, the present invention will be described in detail on the basis of preferred embodiments thereof. In the present specification, the “acid-type carboxylated cellulose nanofiber” refers to a carboxylated cellulose nanofiber obtained by desalting a metal salt such as a sodium salt to convert it into an acid form.
[1.ナノファイバーA]
本発明のナノファイバーAは、酸型カルボキシル化セルロースナノファイバーである。また、本発明のナノファイバーAは、セルロース分子鎖を構成する少なくとも一部の構成単位にカルボキシル基を有し、その含有率が0.95~1.05質量%の水分散体における粘度が、30℃、0.003~0.01s-1のずり速度において400Pa・s以上である。
そのため、本発明のナノファイバーAを、例えば、スプレー用組成物に用いる場合、他の増粘剤を使用しない、或いは他の増粘剤を使用しても少ない量で液だれを防止することができる。 [1. Nanofiber A]
Nanofiber A of the present invention is acid-type carboxylated cellulose nanofiber. In addition, the nanofiber A of the present invention has a carboxyl group in at least a part of the constituent units constituting the cellulose molecular chain, and the viscosity of the aqueous dispersion having a content of 0.95 to 1.05% by mass is It is 400 Pa · s or more at a shear rate of 0.003 to 0.01 s −1 at 30 ° C.
Therefore, when the nanofiber A of the present invention is used in, for example, a spray composition, other thickeners are not used, or even if other thickeners are used, dripping can be prevented in a small amount. it can.
本発明のナノファイバーAは、酸型カルボキシル化セルロースナノファイバーである。また、本発明のナノファイバーAは、セルロース分子鎖を構成する少なくとも一部の構成単位にカルボキシル基を有し、その含有率が0.95~1.05質量%の水分散体における粘度が、30℃、0.003~0.01s-1のずり速度において400Pa・s以上である。
そのため、本発明のナノファイバーAを、例えば、スプレー用組成物に用いる場合、他の増粘剤を使用しない、或いは他の増粘剤を使用しても少ない量で液だれを防止することができる。 [1. Nanofiber A]
Nanofiber A of the present invention is acid-type carboxylated cellulose nanofiber. In addition, the nanofiber A of the present invention has a carboxyl group in at least a part of the constituent units constituting the cellulose molecular chain, and the viscosity of the aqueous dispersion having a content of 0.95 to 1.05% by mass is It is 400 Pa · s or more at a shear rate of 0.003 to 0.01 s −1 at 30 ° C.
Therefore, when the nanofiber A of the present invention is used in, for example, a spray composition, other thickeners are not used, or even if other thickeners are used, dripping can be prevented in a small amount. it can.
本発明のナノファイバーAは、その含有率が0.95~1.05質量%の水分散体における粘度の下限値が、30℃、0.003~0.01s-1のずり速度において、400Pa・s以上であり、500Pa・s以上であることが好ましく、925Pa.s超であることがより好ましく、930Pa.s以上であることがさらに好ましく、950Pa・s以上がであることがさらにより好ましい。また、その上限値は、100,000Pa.s以下であることが好ましく、50,000Pa.s以下であることがより好ましく、25,000Pa.s以下であることがさらに好ましい。
なお、粘度は、例えば、ナノファイバーAに水を添加して、0.95~1.05質量%の水分散体を調製し、当該水分散体を、粘弾性レオメーター(例えば、「MCR301」、アントンパール社製)を用いて、所定のずり速度で測定することができる。 In the nanofiber A of the present invention, the lower limit of the viscosity in an aqueous dispersion having a content of 0.95 to 1.05 mass% is 400 Pa at a shear rate of 30 ° C. and 0.003 to 0.01 s −1. · S or more, preferably 500 Pa · s or more, and 925 Pa · s. More preferably, it is more than 930 Pa.s. More preferably, it is s or more, and even more preferably 950 Pa · s or more. The upper limit is 100,000 Pa.s. s or less, preferably 50,000 Pa.s. s or less, more preferably 25,000 Pa.s. More preferably, it is s or less.
For example, the viscosity is 0.95 to 1.05% by weight of an aqueous dispersion prepared by adding water to the nanofiber A, and the aqueous dispersion is obtained from a viscoelastic rheometer (for example, “MCR301”). , Manufactured by Anton Paar) and measured at a predetermined shear rate.
なお、粘度は、例えば、ナノファイバーAに水を添加して、0.95~1.05質量%の水分散体を調製し、当該水分散体を、粘弾性レオメーター(例えば、「MCR301」、アントンパール社製)を用いて、所定のずり速度で測定することができる。 In the nanofiber A of the present invention, the lower limit of the viscosity in an aqueous dispersion having a content of 0.95 to 1.05 mass% is 400 Pa at a shear rate of 30 ° C. and 0.003 to 0.01 s −1. · S or more, preferably 500 Pa · s or more, and 925 Pa · s. More preferably, it is more than 930 Pa.s. More preferably, it is s or more, and even more preferably 950 Pa · s or more. The upper limit is 100,000 Pa.s. s or less, preferably 50,000 Pa.s. s or less, more preferably 25,000 Pa.s. More preferably, it is s or less.
For example, the viscosity is 0.95 to 1.05% by weight of an aqueous dispersion prepared by adding water to the nanofiber A, and the aqueous dispersion is obtained from a viscoelastic rheometer (for example, “MCR301”). , Manufactured by Anton Paar) and measured at a predetermined shear rate.
本発明のナノファイバーAは、平均繊維長が、200~2000nmであることが好ましく、250~1500nmであることがより好ましく、300~1000nmであることがさらに好ましく、550~1000nmであることがさらにより好ましい。
また、本発明のナノファイバーAは、平均繊維径が、1.50~1000nmであることが好ましく、2.00~750nmであることがより好ましく、2.50~500nmであることがさらに好ましく、2.85~500nmであることがさらにより好ましい。 The nanofiber A of the present invention preferably has an average fiber length of 200 to 2000 nm, more preferably 250 to 1500 nm, further preferably 300 to 1000 nm, and further preferably 550 to 1000 nm. More preferred.
Further, the nanofiber A of the present invention preferably has an average fiber diameter of 1.50 to 1000 nm, more preferably 2.00 to 750 nm, and further preferably 2.50 to 500 nm. Even more preferably, it is 2.85 to 500 nm.
また、本発明のナノファイバーAは、平均繊維径が、1.50~1000nmであることが好ましく、2.00~750nmであることがより好ましく、2.50~500nmであることがさらに好ましく、2.85~500nmであることがさらにより好ましい。 The nanofiber A of the present invention preferably has an average fiber length of 200 to 2000 nm, more preferably 250 to 1500 nm, further preferably 300 to 1000 nm, and further preferably 550 to 1000 nm. More preferred.
Further, the nanofiber A of the present invention preferably has an average fiber diameter of 1.50 to 1000 nm, more preferably 2.00 to 750 nm, and further preferably 2.50 to 500 nm. Even more preferably, it is 2.85 to 500 nm.
[2.ナノファイバーB]
本発明のナノファイバーBは、酸型カルボキシル化セルロースナノファイバーである。また、本発明のナノファイバーBは、セルロース分子鎖を構成する少なくとも一部の構成単位にカルボキシル基を有し、その平均繊維長が50~500nmであり、300nm以下の繊維長を有する繊維の割合が50%以上である。
酸化セルロースをアルカリ加水分解処理した後、陽イオン交換樹脂を用いて脱塩処理することで、上記の2つの繊維長の要件を充足するナノファイバーBを単離して得ることができる。 [2. Nanofiber B]
Nanofiber B of the present invention is acid-type carboxylated cellulose nanofiber. Further, the nanofiber B of the present invention has a carboxyl group in at least a part of the constituent units constituting the cellulose molecular chain, the average fiber length is 50 to 500 nm, and the ratio of fibers having a fiber length of 300 nm or less Is 50% or more.
After subjecting the oxidized cellulose to an alkali hydrolysis treatment, the nanofiber B satisfying the above two fiber length requirements can be isolated and obtained by desalting using a cation exchange resin.
本発明のナノファイバーBは、酸型カルボキシル化セルロースナノファイバーである。また、本発明のナノファイバーBは、セルロース分子鎖を構成する少なくとも一部の構成単位にカルボキシル基を有し、その平均繊維長が50~500nmであり、300nm以下の繊維長を有する繊維の割合が50%以上である。
酸化セルロースをアルカリ加水分解処理した後、陽イオン交換樹脂を用いて脱塩処理することで、上記の2つの繊維長の要件を充足するナノファイバーBを単離して得ることができる。 [2. Nanofiber B]
Nanofiber B of the present invention is acid-type carboxylated cellulose nanofiber. Further, the nanofiber B of the present invention has a carboxyl group in at least a part of the constituent units constituting the cellulose molecular chain, the average fiber length is 50 to 500 nm, and the ratio of fibers having a fiber length of 300 nm or less Is 50% or more.
After subjecting the oxidized cellulose to an alkali hydrolysis treatment, the nanofiber B satisfying the above two fiber length requirements can be isolated and obtained by desalting using a cation exchange resin.
本発明のナノファイバーBは、平均繊維長が50~500nmであり、100~400nmであることが好ましい。また、300nm以下の繊維長を有する繊維の割合は50%以上であり、60%以上であることが好ましい。さらに、600nm以上の繊維長を有する繊維の割合は20%未満であることが好ましく、15%未満であることがより好ましく、10%未満であることがさらに好ましい。このような条件を満たすナノファイバーBは、繊維長分布が短い領域に収束しており、樹脂やゴムとの複合材料として、或いは塗料材料への添加剤としての利用を特に期待し得る。
本発明のナノファイバーBは、平均繊維径が2.0~50nm、2.0~40nm、2.0~30nmであることが好ましく、2.5~30nm、3.0~30nm、3.0~20nmであることがより好ましく、3.0~15nmがさらに好ましい。 The nanofiber B of the present invention has an average fiber length of 50 to 500 nm, preferably 100 to 400 nm. Moreover, the ratio of the fiber which has a fiber length of 300 nm or less is 50% or more, and it is preferable that it is 60% or more. Furthermore, the proportion of fibers having a fiber length of 600 nm or more is preferably less than 20%, more preferably less than 15%, and even more preferably less than 10%. The nanofiber B satisfying such a condition converges in a region where the fiber length distribution is short, and can be particularly expected to be used as a composite material with a resin or rubber, or as an additive to a coating material.
The nanofiber B of the present invention preferably has an average fiber diameter of 2.0 to 50 nm, 2.0 to 40 nm, 2.0 to 30 nm, 2.5 to 30 nm, 3.0 to 30 nm, 3.0 More preferably, it is ˜20 nm, and further preferably 3.0˜15 nm.
本発明のナノファイバーBは、平均繊維径が2.0~50nm、2.0~40nm、2.0~30nmであることが好ましく、2.5~30nm、3.0~30nm、3.0~20nmであることがより好ましく、3.0~15nmがさらに好ましい。 The nanofiber B of the present invention has an average fiber length of 50 to 500 nm, preferably 100 to 400 nm. Moreover, the ratio of the fiber which has a fiber length of 300 nm or less is 50% or more, and it is preferable that it is 60% or more. Furthermore, the proportion of fibers having a fiber length of 600 nm or more is preferably less than 20%, more preferably less than 15%, and even more preferably less than 10%. The nanofiber B satisfying such a condition converges in a region where the fiber length distribution is short, and can be particularly expected to be used as a composite material with a resin or rubber, or as an additive to a coating material.
The nanofiber B of the present invention preferably has an average fiber diameter of 2.0 to 50 nm, 2.0 to 40 nm, 2.0 to 30 nm, 2.5 to 30 nm, 3.0 to 30 nm, 3.0 More preferably, it is ˜20 nm, and further preferably 3.0˜15 nm.
カルボキシル化セルロースナノファイバーの平均繊維長は、以下のようにして算出することができる。カルボキシル化セルロースナノファイバーをマイカ切片上に固定し、原子間力顕微鏡(AFM)を用いて200本の繊維長を測定し、長さ(加重)平均繊維長を算出することができる。なお、繊維長の測定は、画像解析ソフトWinROOF(三谷商事社製)を用いて、任意の長さの範囲で行う。また、300nm以下又は600nm以上の繊維長を有する繊維の割合は、測定した全繊維のうち300nm以下又は600nm以上のカルボキシル化セルロースナノファイバーの割合として算出することができる。
また、カルボキシル化セルロースナノファイバーの平均繊維径は、以下のようにして算出することができる。カルボキシル化セルロースナノファイバーの濃度が0.001質量%となるように希釈したカルボキシル化セルロースナノファイバー水分散液を調製する。この希釈分散液をマイカ製試料台に薄く延ばし、50℃で加熱乾燥させて観察用試料を作製する。原子間力顕微鏡(AFM)にて観察した形状像の断面高さを計測し、加重平均繊維径を算出することができる。 The average fiber length of carboxylated cellulose nanofibers can be calculated as follows. Carboxylated cellulose nanofibers can be fixed on a mica section, 200 fiber lengths can be measured using an atomic force microscope (AFM), and a length (weighted) average fiber length can be calculated. In addition, the measurement of fiber length is performed in the range of arbitrary length using image analysis software WinROOF (made by Mitani Corporation). The ratio of fibers having a fiber length of 300 nm or less or 600 nm or more can be calculated as the ratio of carboxylated cellulose nanofibers of 300 nm or less or 600 nm or more of all measured fibers.
Moreover, the average fiber diameter of carboxylated cellulose nanofiber can be calculated as follows. An aqueous dispersion of carboxylated cellulose nanofibers diluted to have a concentration of carboxylated cellulose nanofibers of 0.001% by mass is prepared. This diluted dispersion is thinly spread on a mica sample stage and dried by heating at 50 ° C. to prepare an observation sample. The cross-sectional height of the shape image observed with an atomic force microscope (AFM) can be measured to calculate the weighted average fiber diameter.
また、カルボキシル化セルロースナノファイバーの平均繊維径は、以下のようにして算出することができる。カルボキシル化セルロースナノファイバーの濃度が0.001質量%となるように希釈したカルボキシル化セルロースナノファイバー水分散液を調製する。この希釈分散液をマイカ製試料台に薄く延ばし、50℃で加熱乾燥させて観察用試料を作製する。原子間力顕微鏡(AFM)にて観察した形状像の断面高さを計測し、加重平均繊維径を算出することができる。 The average fiber length of carboxylated cellulose nanofibers can be calculated as follows. Carboxylated cellulose nanofibers can be fixed on a mica section, 200 fiber lengths can be measured using an atomic force microscope (AFM), and a length (weighted) average fiber length can be calculated. In addition, the measurement of fiber length is performed in the range of arbitrary length using image analysis software WinROOF (made by Mitani Corporation). The ratio of fibers having a fiber length of 300 nm or less or 600 nm or more can be calculated as the ratio of carboxylated cellulose nanofibers of 300 nm or less or 600 nm or more of all measured fibers.
Moreover, the average fiber diameter of carboxylated cellulose nanofiber can be calculated as follows. An aqueous dispersion of carboxylated cellulose nanofibers diluted to have a concentration of carboxylated cellulose nanofibers of 0.001% by mass is prepared. This diluted dispersion is thinly spread on a mica sample stage and dried by heating at 50 ° C. to prepare an observation sample. The cross-sectional height of the shape image observed with an atomic force microscope (AFM) can be measured to calculate the weighted average fiber diameter.
本発明のナノファイバーA及びナノファイバーBは、セルロース分子鎖の少なくとも一部が、グルコピラノース単位のC6位の1級水酸基を有する炭素原子が選択的に酸化されたカルボキシル基を有する構成単位で構成されることが好ましい。なお、セルロース分子鎖は、グルコピラノース単位のC6位の1級水酸基を有する炭素原子が選択的に酸化されたカルボキシル基を有する構成単位のみで構成されてもよい。
ここで、グルコピラノース単位とは、下記式(0)で表される構成単位をいう。 In the nanofiber A and nanofiber B of the present invention, at least a part of a cellulose molecular chain is composed of a structural unit having a carboxyl group in which a carbon atom having a primary hydroxyl group at the C6 position of a glucopyranose unit is selectively oxidized. It is preferred that In addition, a cellulose molecular chain may be comprised only by the structural unit which has the carboxyl group in which the carbon atom which has C1-position primary hydroxyl group of the glucopyranose unit was selectively oxidized.
Here, the glucopyranose unit refers to a structural unit represented by the following formula (0).
ここで、グルコピラノース単位とは、下記式(0)で表される構成単位をいう。 In the nanofiber A and nanofiber B of the present invention, at least a part of a cellulose molecular chain is composed of a structural unit having a carboxyl group in which a carbon atom having a primary hydroxyl group at the C6 position of a glucopyranose unit is selectively oxidized. It is preferred that In addition, a cellulose molecular chain may be comprised only by the structural unit which has the carboxyl group in which the carbon atom which has C1-position primary hydroxyl group of the glucopyranose unit was selectively oxidized.
Here, the glucopyranose unit refers to a structural unit represented by the following formula (0).
本発明のナノファイバーA及びナノファイバーBは、カルボキシル基量が、カルボキシル化セルロースナノファイバーの絶乾質量に対して、0.6~2.0mmol/gであることが好ましく、0.8~2.0mmol/gであることがより好ましく、1.2~2.0mmol/gであることがさらに好ましく、1.4~1.8mmol/gであることがさらにより好ましい。カルボキシル基量が0.6mmol/g以上であると、セルロース分子鎖の表面にカルボキシル基が導入され、静電的な反発作用を持たせることができ、解繊によりナノファイバーを作製することができる。また、カルボキシル基量が0.8mmol/g以上であると、セルロース分子鎖の表面にカルボキシル基が十分導入され、静電的な反発作用を持たせることができ、解繊により容易にナノファイバーを作製することができる。
カルボキシル基量は以下のようにして測定することができる。カルボキシル化セルロースの0.5質量%スラリー(水分散液)60mlを調製する。調製したスラリーに0.1M塩酸水溶液を加えてpH2.5に調整した後、0.05Nの水酸化ナトリウム水溶液を滴下してpHが11になるまで電気伝導度を測定する。電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(a)から、下式を用いてカルボキシル基量を算出することができる:
カルボキシル基量〔mmol/gカルボキシル化セルロース〕=a〔ml〕×0.05/カルボキシル化セルロース質量〔g〕
なお、カルボキシル化セルロースナノファイバーのカルボキシル基量と、カルボキシル化セルロースのカルボキシル基量は、通常、同値である。 In the nanofiber A and nanofiber B of the present invention, the carboxyl group amount is preferably 0.6 to 2.0 mmol / g with respect to the absolutely dry mass of the carboxylated cellulose nanofiber, and 0.8 to 2 It is more preferably 0.0 mmol / g, further preferably 1.2 to 2.0 mmol / g, and still more preferably 1.4 to 1.8 mmol / g. When the carboxyl group amount is 0.6 mmol / g or more, a carboxyl group is introduced to the surface of the cellulose molecular chain and can have an electrostatic repulsion effect, and nanofibers can be produced by defibration. . In addition, when the carboxyl group amount is 0.8 mmol / g or more, the carboxyl group is sufficiently introduced to the surface of the cellulose molecular chain, and can have an electrostatic repulsion action. Can be produced.
The amount of carboxyl groups can be measured as follows. 60 ml of a 0.5% by weight slurry (aqueous dispersion) of carboxylated cellulose is prepared. A 0.1 M hydrochloric acid aqueous solution is added to the prepared slurry to adjust the pH to 2.5, and then 0.05 N sodium hydroxide aqueous solution is dropped to measure the electric conductivity until the pH becomes 11. The amount of carboxyl groups can be calculated from the amount of sodium hydroxide consumed (a) in the neutralization step of the weak acid with a gradual change in electrical conductivity using the following formula:
Amount of carboxyl group [mmol / g carboxylated cellulose] = a [ml] × 0.05 / carboxylated cellulose mass [g]
In addition, the carboxyl group amount of carboxylated cellulose nanofiber and the carboxyl group amount of carboxylated cellulose are usually the same value.
カルボキシル基量は以下のようにして測定することができる。カルボキシル化セルロースの0.5質量%スラリー(水分散液)60mlを調製する。調製したスラリーに0.1M塩酸水溶液を加えてpH2.5に調整した後、0.05Nの水酸化ナトリウム水溶液を滴下してpHが11になるまで電気伝導度を測定する。電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(a)から、下式を用いてカルボキシル基量を算出することができる:
カルボキシル基量〔mmol/gカルボキシル化セルロース〕=a〔ml〕×0.05/カルボキシル化セルロース質量〔g〕
なお、カルボキシル化セルロースナノファイバーのカルボキシル基量と、カルボキシル化セルロースのカルボキシル基量は、通常、同値である。 In the nanofiber A and nanofiber B of the present invention, the carboxyl group amount is preferably 0.6 to 2.0 mmol / g with respect to the absolutely dry mass of the carboxylated cellulose nanofiber, and 0.8 to 2 It is more preferably 0.0 mmol / g, further preferably 1.2 to 2.0 mmol / g, and still more preferably 1.4 to 1.8 mmol / g. When the carboxyl group amount is 0.6 mmol / g or more, a carboxyl group is introduced to the surface of the cellulose molecular chain and can have an electrostatic repulsion effect, and nanofibers can be produced by defibration. . In addition, when the carboxyl group amount is 0.8 mmol / g or more, the carboxyl group is sufficiently introduced to the surface of the cellulose molecular chain, and can have an electrostatic repulsion action. Can be produced.
The amount of carboxyl groups can be measured as follows. 60 ml of a 0.5% by weight slurry (aqueous dispersion) of carboxylated cellulose is prepared. A 0.1 M hydrochloric acid aqueous solution is added to the prepared slurry to adjust the pH to 2.5, and then 0.05 N sodium hydroxide aqueous solution is dropped to measure the electric conductivity until the pH becomes 11. The amount of carboxyl groups can be calculated from the amount of sodium hydroxide consumed (a) in the neutralization step of the weak acid with a gradual change in electrical conductivity using the following formula:
Amount of carboxyl group [mmol / g carboxylated cellulose] = a [ml] × 0.05 / carboxylated cellulose mass [g]
In addition, the carboxyl group amount of carboxylated cellulose nanofiber and the carboxyl group amount of carboxylated cellulose are usually the same value.
[3.製造方法]
カルボキシル化セルロースナノファイバーは、例えば、以下のようにして製造することができる。セルロース原料を酸化して酸化セルロースを調製し(以下、「酸化処理」ともいう)、調製した酸化セルロースを解繊し(以下、「解繊処理」ともいう)、解繊した酸化セルロースを陽イオン交換樹脂により脱塩処理する(以下、「脱塩処理」ともいう)ことで、ナノファイバーAを製造することができる。また、酸化処理の後、解繊処理の前に酸化セルロースをアルカリ加水分解(以下、「アルカリ加水分解処理」ともいう)した酸化セルロースを用いることで、ナノファイバーBを製造することができる。
なお、調製した酸化セルロース又は加水分解した酸化セルロースを陽イオン交換樹脂により脱塩処理した後、解繊処理することでも酸型のカルボキシル化セルロースナノファイバーを製造することができる。以下の説明では、解繊の後に陽イオン交換樹脂により脱塩を行って酸型のカルボキシル化セルロースナノファイバーを製造する場合について説明する。 [3. Production method]
The carboxylated cellulose nanofiber can be produced, for example, as follows. The cellulose raw material is oxidized to prepare oxidized cellulose (hereinafter also referred to as “oxidation treatment”), the prepared oxidized cellulose is defibrated (hereinafter also referred to as “defibration treatment”), and the fibrillated oxidized cellulose is converted into a cation. Nanofiber A can be manufactured by desalting with an exchange resin (hereinafter also referred to as “desalting”). In addition, nanofiber B can be manufactured by using oxidized cellulose obtained by alkaline hydrolysis (hereinafter, also referred to as “alkaline hydrolysis treatment”) of oxidized cellulose after oxidization treatment and before defibration treatment.
The acid-type carboxylated cellulose nanofibers can also be produced by subjecting the prepared oxidized cellulose or hydrolyzed oxidized cellulose to a desalting treatment with a cation exchange resin, followed by a fibrillation treatment. In the following description, a case where acid-type carboxylated cellulose nanofibers are produced by desalting with a cation exchange resin after defibration will be described.
カルボキシル化セルロースナノファイバーは、例えば、以下のようにして製造することができる。セルロース原料を酸化して酸化セルロースを調製し(以下、「酸化処理」ともいう)、調製した酸化セルロースを解繊し(以下、「解繊処理」ともいう)、解繊した酸化セルロースを陽イオン交換樹脂により脱塩処理する(以下、「脱塩処理」ともいう)ことで、ナノファイバーAを製造することができる。また、酸化処理の後、解繊処理の前に酸化セルロースをアルカリ加水分解(以下、「アルカリ加水分解処理」ともいう)した酸化セルロースを用いることで、ナノファイバーBを製造することができる。
なお、調製した酸化セルロース又は加水分解した酸化セルロースを陽イオン交換樹脂により脱塩処理した後、解繊処理することでも酸型のカルボキシル化セルロースナノファイバーを製造することができる。以下の説明では、解繊の後に陽イオン交換樹脂により脱塩を行って酸型のカルボキシル化セルロースナノファイバーを製造する場合について説明する。 [3. Production method]
The carboxylated cellulose nanofiber can be produced, for example, as follows. The cellulose raw material is oxidized to prepare oxidized cellulose (hereinafter also referred to as “oxidation treatment”), the prepared oxidized cellulose is defibrated (hereinafter also referred to as “defibration treatment”), and the fibrillated oxidized cellulose is converted into a cation. Nanofiber A can be manufactured by desalting with an exchange resin (hereinafter also referred to as “desalting”). In addition, nanofiber B can be manufactured by using oxidized cellulose obtained by alkaline hydrolysis (hereinafter, also referred to as “alkaline hydrolysis treatment”) of oxidized cellulose after oxidization treatment and before defibration treatment.
The acid-type carboxylated cellulose nanofibers can also be produced by subjecting the prepared oxidized cellulose or hydrolyzed oxidized cellulose to a desalting treatment with a cation exchange resin, followed by a fibrillation treatment. In the following description, a case where acid-type carboxylated cellulose nanofibers are produced by desalting with a cation exchange resin after defibration will be described.
[3-1.酸化処理]
酸化処理は、セルロース原料を酸化して酸化セルロースを調製する処理である。酸化方法は、特に限定されないが、N-オキシル化合物と、臭化物、ヨウ化物又はこれらの混合物と、の存在下で酸化剤を用いる方法が好ましい。当該方法によりセルロース原料を酸化すると、セルロース分子鎖を構成するグルコピラノース単位のC6位の1級水酸基を有する炭素原子が選択的に酸化されたカルボキシル基を有する構成単位を得ることができる。
当該方法により得られる酸化セルロースの部分構造を下記一般式(1)に示す。 [3-1. Oxidation treatment]
The oxidation treatment is a treatment for preparing oxidized cellulose by oxidizing a cellulose raw material. The oxidation method is not particularly limited, but a method using an oxidizing agent in the presence of an N-oxyl compound and bromide, iodide or a mixture thereof is preferable. When the cellulose raw material is oxidized by this method, a structural unit having a carboxyl group in which a carbon atom having a primary hydroxyl group at the C6 position of a glucopyranose unit constituting a cellulose molecular chain is selectively oxidized can be obtained.
The partial structure of oxidized cellulose obtained by this method is shown in the following general formula (1).
酸化処理は、セルロース原料を酸化して酸化セルロースを調製する処理である。酸化方法は、特に限定されないが、N-オキシル化合物と、臭化物、ヨウ化物又はこれらの混合物と、の存在下で酸化剤を用いる方法が好ましい。当該方法によりセルロース原料を酸化すると、セルロース分子鎖を構成するグルコピラノース単位のC6位の1級水酸基を有する炭素原子が選択的に酸化されたカルボキシル基を有する構成単位を得ることができる。
当該方法により得られる酸化セルロースの部分構造を下記一般式(1)に示す。 [3-1. Oxidation treatment]
The oxidation treatment is a treatment for preparing oxidized cellulose by oxidizing a cellulose raw material. The oxidation method is not particularly limited, but a method using an oxidizing agent in the presence of an N-oxyl compound and bromide, iodide or a mixture thereof is preferable. When the cellulose raw material is oxidized by this method, a structural unit having a carboxyl group in which a carbon atom having a primary hydroxyl group at the C6 position of a glucopyranose unit constituting a cellulose molecular chain is selectively oxidized can be obtained.
The partial structure of oxidized cellulose obtained by this method is shown in the following general formula (1).
一般式(1)中、M1として表されるカチオン塩としては、例えば、ナトリウム塩、カリウム塩等のアルカリ金属塩、ホスホニウム塩、イミダゾリニウム塩、アンモニウム塩、スルホニウム塩が挙げられる。
In the general formula (1), examples of the cation salt represented as M 1 include alkali metal salts such as sodium salt and potassium salt, phosphonium salt, imidazolinium salt, ammonium salt and sulfonium salt.
天然のセルロースは、直鎖上のセルロース分子鎖が水素結合により多数収束したミクロフィブリル構造を有している。N-オキシル化合物を用いてセルロースを酸化すると、上記の通り、セルロース分子鎖を構成するグルコピラノース単位のC6位の1級水酸基を有する炭素原子が選択的にアルデヒド基を経てカルボキシル基に酸化される。そのため、ミクロフィブリル構造の表面に高密度でカルボキシル基が導入される。導入されたカルボキシル基は反発作用を有し、解繊により一本一本が分離したセルロースナノファイバーを得ることができる。
Natural cellulose has a microfibril structure in which a large number of linear cellulose molecular chains are converged by hydrogen bonds. When cellulose is oxidized using an N-oxyl compound, a carbon atom having a primary hydroxyl group at the C6 position of a glucopyranose unit constituting a cellulose molecular chain is selectively oxidized to a carboxyl group via an aldehyde group as described above. . Therefore, carboxyl groups are introduced at a high density on the surface of the microfibril structure. The introduced carboxyl group has a repulsive action, and cellulose nanofibers separated one by one by defibration can be obtained.
セルロース原料は、木材由来のクラフトパルプ又はサルファイトパルプ、それらを高圧ホモジナイザーやミル等で粉砕した粉末セルロース、或いはそれらを酸加水分解等の化学処理により精製した微結晶セルロース粉末等を含む。この他に、ケナフ、麻、イネ、バガス、竹等の植物由来のセルロース原料も使用できる。量産化やコストの観点からは、粉末セルロース、微結晶セルロース粉末、或いはクラフトパルプ又はサルファイトパルプのような化学パルプを用いることが好ましい。化学パルプを用いる場合は、公知の漂白処理を施してリグニンを除去することが好ましい。漂白済みパルプとしては、例えば、白色度(ISO 2470)が80%以上の漂白済みクラフトパルプ又は漂白済みサルファイトパルプを用いることができる。
The cellulose raw material includes wood-derived kraft pulp or sulfite pulp, powdered cellulose obtained by pulverizing them with a high-pressure homogenizer, a mill, or the like, or microcrystalline cellulose powder obtained by purifying them by chemical treatment such as acid hydrolysis. In addition, plant-derived cellulose raw materials such as kenaf, hemp, rice, bagasse and bamboo can also be used. From the viewpoint of mass production and cost, it is preferable to use powdered cellulose, microcrystalline cellulose powder, or chemical pulp such as kraft pulp or sulfite pulp. When using chemical pulp, it is preferable to perform a known bleaching treatment to remove lignin. As the bleached pulp, for example, bleached kraft pulp or bleached sulfite pulp having a whiteness (ISO 2470) of 80% or more can be used.
粉末セルロースは、木材パルプの非結晶部分を酸加水分解により除去した後、粉砕及び篩い分けすることで得られる微結晶性又は結晶性セルロースからなる棒軸状粒子である。粉末セルロースにおいて、セルロースの重合度は100~500程度であり、X線回折法による粉末セルロースの結晶化度は70~90%であり、レーザー回折式粒度分布装置による体積平均粒子径は通常100μm以下であり、好ましくは50μm以下である。そのような粉末セルロースは、精選パルプを酸加水分解した後に得られる未分解残渣を精製及び乾燥し、粉砕及び篩い分けすることにより調製してもよいし、KCフロック(登録商標)(日本製紙社製)、セオラス(登録商標)(旭化成ケミカルズ社製)、アビセル(登録商標)(FMC社製)等の市販品を用いてもよい。
Powdered cellulose is rod-like particles made of microcrystalline or crystalline cellulose obtained by removing the non-crystalline portion of wood pulp by acid hydrolysis, and then pulverizing and sieving. In powdered cellulose, the degree of polymerization of cellulose is about 100 to 500, the degree of crystallinity of powdered cellulose by X-ray diffraction is 70 to 90%, and the volume average particle size by a laser diffraction type particle size distribution device is usually 100 μm or less. Preferably, it is 50 μm or less. Such powdered cellulose may be prepared by purifying and drying an undegraded residue obtained after acid hydrolysis of a selected pulp, pulverizing and sieving, or KC Flock (registered trademark) (Nippon Paper Industries Co., Ltd.). Manufactured products), Theolas (registered trademark) (manufactured by Asahi Kasei Chemicals), Avicel (registered trademark) (manufactured by FMC), and the like may be used.
漂白処理方法としては、塩素処理(C)、二酸化塩素漂白(D)、アルカリ抽出(E)、次亜塩素酸塩漂白(H)、過酸化水素漂白(P)、アルカリ性過酸化水素処理段(Ep)、アルカリ性過酸化水素・酸素処理段(Eop)、オゾン処理(Z)、キレート処理(Q)等を組合せて行うことができる。例えば、C/D-E-H-D、Z-E-D-P、Z/D-Ep-D、Z/D-Ep-D-P、D-Ep-D、D-Ep-D-P、D-Ep-P-D、Z-Eop-D-D、Z/D-Eop-D、Z/D-Eop-D-E-D等のシーケンスで行なうことができる。なお、シーケンス中の「/」は、「/」の前後の処理を洗浄なしで連続して行なうことを意味する。
Bleaching methods include chlorination (C), chlorine dioxide bleach (D), alkali extraction (E), hypochlorite bleach (H), hydrogen peroxide bleach (P), alkaline hydrogen peroxide treatment stage ( Ep), alkaline hydrogen peroxide / oxygen treatment stage (Eop), ozone treatment (Z), chelate treatment (Q) and the like can be performed in combination. For example, C / D-EHD, ZEDP, Z / D-Ep-D, Z / D-Ep-DP, D-Ep-D, D-Ep-D- P, D-Ep-PD, Z-Eop-DD, Z / D-Eop-D, Z / D-Eop-DED, etc. can be used. Note that “/” in the sequence means that the processes before and after “/” are continuously performed without cleaning.
また、上記したセルロース原料を高速回転式、コロイドミル式、高圧式、ロールミル式、超音波式等の分散装置や、湿式の高圧又は超高圧ホモジナイザー等で微細化したものをセルロース原料として使用することもできる。
In addition, the above cellulose raw material that has been refined by a high-speed rotating type, colloid mill type, high-pressure type, roll mill type, ultrasonic type dispersing device, wet high-pressure or ultra-high pressure homogenizer, etc. should be used as the cellulose raw material. You can also.
N-オキシル化合物は、ニトロキシラジカルを発生し得る化合物である。N-オキシル化合物としては、目的の酸化反応を行う化合物であれば、いずれの化合物も使用できる。N-オキシル化合物としては、例えば、下記一般式(2)~(5)、(7)で表される化合物や下記式(6)で表される化合物が挙げられる。
An N-oxyl compound is a compound capable of generating a nitroxy radical. As the N-oxyl compound, any compound can be used as long as it is a compound that performs the target oxidation reaction. Examples of the N-oxyl compound include compounds represented by the following general formulas (2) to (5) and (7) and compounds represented by the following formula (6).
一般式(2)中、R1~R4で表される炭素原子数1~4のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基が挙げられる。中でも、メチル基又はエチル基が好ましい。
一般式(3)~(5)中、R6で表される炭素原子数1~4の直鎖状又は分岐状の炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、t-ブチル基が挙げられる。中でも、メチル基又はエチル基が好ましい。
一般式(7)中、R7~R8で表される炭素原子数1~6の直鎖状又は分岐状のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基が挙げられる。中でも、メチル基又はエチル基が好ましい。 In the general formula (2), examples of the alkyl group having 1 to 4 carbon atoms represented by R 1 to R 4 include a methyl group, an ethyl group, a propyl group, and a butyl group. Of these, a methyl group or an ethyl group is preferable.
In the general formulas (3) to (5), examples of the linear or branched hydrocarbon group having 1 to 4 carbon atoms represented by R 6 include a methyl group, an ethyl group, an n-propyl group, Examples include isopropyl group, n-butyl group, s-butyl group, and t-butyl group. Of these, a methyl group or an ethyl group is preferable.
In the general formula (7), examples of the linear or branched alkyl group having 1 to 6 carbon atoms represented by R 7 to R 8 include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group. N-butyl group, s-butyl group, t-butyl group, n-pentyl group and n-hexyl group. Of these, a methyl group or an ethyl group is preferable.
一般式(3)~(5)中、R6で表される炭素原子数1~4の直鎖状又は分岐状の炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、t-ブチル基が挙げられる。中でも、メチル基又はエチル基が好ましい。
一般式(7)中、R7~R8で表される炭素原子数1~6の直鎖状又は分岐状のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基が挙げられる。中でも、メチル基又はエチル基が好ましい。 In the general formula (2), examples of the alkyl group having 1 to 4 carbon atoms represented by R 1 to R 4 include a methyl group, an ethyl group, a propyl group, and a butyl group. Of these, a methyl group or an ethyl group is preferable.
In the general formulas (3) to (5), examples of the linear or branched hydrocarbon group having 1 to 4 carbon atoms represented by R 6 include a methyl group, an ethyl group, an n-propyl group, Examples include isopropyl group, n-butyl group, s-butyl group, and t-butyl group. Of these, a methyl group or an ethyl group is preferable.
In the general formula (7), examples of the linear or branched alkyl group having 1 to 6 carbon atoms represented by R 7 to R 8 include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group. N-butyl group, s-butyl group, t-butyl group, n-pentyl group and n-hexyl group. Of these, a methyl group or an ethyl group is preferable.
一般式(2)で表される化合物としては、例えば、2,2,6,6-テトラメチル-1-ピペリジン-N-オキシラジカル(以下、「TEMPO」ともいう)、又は4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジン-N-オキシラジカル(以下、「4-ヒドロキシTEMPO」ともいう)が挙げられる。
N-オキシル化合物は、TEMPO又は4-ヒドロキシTEMPOの誘導体であってもよい。4-ヒドロキシTEMPOの誘導体としては、例えば、一般式(3)で表される化合物、即ち、4-ヒドロキシTEMPOの水酸基を、炭素原子数4以下の直鎖状又は分岐状の炭化水素基を有するアルコールでエーテル化して得られる誘導体や、一般式(4)又は(5)で表される化合物、即ち、カルボン酸又はスルホン酸でエステル化して得られる誘導体が挙げられる。
4-ヒドロキシTEMPOをエーテル化する際には、炭素原子数が4以下のアルコールを用いれば、アルコール中の飽和、不飽和結合の有無に関わらず、得られる誘導体が水溶性となり、酸化触媒として良好に機能する。 Examples of the compound represented by the general formula (2) include 2,2,6,6-tetramethyl-1-piperidine-N-oxy radical (hereinafter also referred to as “TEMPO”), or 4-hydroxy-2 2,6,6-tetramethyl-1-piperidine-N-oxy radical (hereinafter also referred to as “4-hydroxy TEMPO”).
The N-oxyl compound may be TEMPO or a derivative of 4-hydroxy TEMPO. As a derivative of 4-hydroxy TEMPO, for example, a compound represented by the general formula (3), that is, a hydroxyl group of 4-hydroxy TEMPO has a linear or branched hydrocarbon group having 4 or less carbon atoms. Derivatives obtained by etherification with alcohol and compounds represented by general formula (4) or (5), that is, derivatives obtained by esterification with carboxylic acid or sulfonic acid can be mentioned.
When 4-hydroxy TEMPO is etherified, if an alcohol having 4 or less carbon atoms is used, the resulting derivative becomes water-soluble regardless of the presence or absence of saturated or unsaturated bonds in the alcohol, and is a good oxidation catalyst. To work.
N-オキシル化合物は、TEMPO又は4-ヒドロキシTEMPOの誘導体であってもよい。4-ヒドロキシTEMPOの誘導体としては、例えば、一般式(3)で表される化合物、即ち、4-ヒドロキシTEMPOの水酸基を、炭素原子数4以下の直鎖状又は分岐状の炭化水素基を有するアルコールでエーテル化して得られる誘導体や、一般式(4)又は(5)で表される化合物、即ち、カルボン酸又はスルホン酸でエステル化して得られる誘導体が挙げられる。
4-ヒドロキシTEMPOをエーテル化する際には、炭素原子数が4以下のアルコールを用いれば、アルコール中の飽和、不飽和結合の有無に関わらず、得られる誘導体が水溶性となり、酸化触媒として良好に機能する。 Examples of the compound represented by the general formula (2) include 2,2,6,6-tetramethyl-1-piperidine-N-oxy radical (hereinafter also referred to as “TEMPO”), or 4-hydroxy-2 2,6,6-tetramethyl-1-piperidine-N-oxy radical (hereinafter also referred to as “4-hydroxy TEMPO”).
The N-oxyl compound may be TEMPO or a derivative of 4-hydroxy TEMPO. As a derivative of 4-hydroxy TEMPO, for example, a compound represented by the general formula (3), that is, a hydroxyl group of 4-hydroxy TEMPO has a linear or branched hydrocarbon group having 4 or less carbon atoms. Derivatives obtained by etherification with alcohol and compounds represented by general formula (4) or (5), that is, derivatives obtained by esterification with carboxylic acid or sulfonic acid can be mentioned.
When 4-hydroxy TEMPO is etherified, if an alcohol having 4 or less carbon atoms is used, the resulting derivative becomes water-soluble regardless of the presence or absence of saturated or unsaturated bonds in the alcohol, and is a good oxidation catalyst. To work.
N-オキシル化合物は、式(6)で表される化合物、即ち、4-アミノTEMPOのアミノ基がアセチル化された化合物であると、適度な疎水性が付与され、安価であり、均一な酸化セルロースを得ることができるので好ましい。また、N-オキシル化合物は、一般式(7)で表される化合物、即ち、アザアダマンタン型ニトロキシラジカルであると、短時間で、均一な酸化セルロースを得ることができるので好ましい。
When the N-oxyl compound is a compound represented by the formula (6), that is, a compound in which the amino group of 4-amino TEMPO is acetylated, moderate hydrophobicity is imparted, and it is inexpensive and uniform oxidation. Since cellulose can be obtained, it is preferable. The N-oxyl compound is preferably a compound represented by the general formula (7), that is, an azaadamantane-type nitroxy radical, because uniform oxidized cellulose can be obtained in a short time.
N-オキシル化合物の使用量は、得られる酸化セルロースをナノファイバー化できる程度に十分にセルロース原料を酸化できる触媒量であれば特に限定されない。例えば、絶乾1gのセルロース原料に対して、好ましくは0.01~10mmol、より好ましくは0.01~1mmol、さらに好ましくは0.01~0.5mmolである。
The amount of the N-oxyl compound used is not particularly limited as long as it is a catalytic amount that can oxidize the cellulose raw material sufficiently to make the obtained oxidized cellulose nanofiber. For example, the amount is preferably 0.01 to 10 mmol, more preferably 0.01 to 1 mmol, and still more preferably 0.01 to 0.5 mmol with respect to 1 g of the absolutely dry cellulose raw material.
セルロース原料の酸化の際に用いられる臭化物とは臭素を含む化合物であり、その例には、水中で解離してイオン化可能な臭化アルカリ金属が含まれる。また、ヨウ化物とはヨウ素を含む化合物であり、その例には、ヨウ化アルカリ金属が含まれる。
臭化物又はヨウ化物の使用量は、目的の酸化反応を促進できる範囲で調整し得る。臭化物及びヨウ化物の合計量は、例えば、絶乾1gのセルロース原料に対して、好ましくは0.1~100mmol、より好ましくは0.1~10mmol、さらに好ましくは0.5~5mmolである。 The bromide used in the oxidation of the cellulose raw material is a compound containing bromine, and examples thereof include an alkali metal bromide that can be dissociated and ionized in water. Further, an iodide is a compound containing iodine, and examples thereof include alkali metal iodide.
The amount of bromide or iodide used can be adjusted as long as the target oxidation reaction can be promoted. The total amount of bromide and iodide is, for example, preferably 0.1 to 100 mmol, more preferably 0.1 to 10 mmol, and still more preferably 0.5 to 5 mmol with respect to 1 g of the absolutely dry cellulose raw material.
臭化物又はヨウ化物の使用量は、目的の酸化反応を促進できる範囲で調整し得る。臭化物及びヨウ化物の合計量は、例えば、絶乾1gのセルロース原料に対して、好ましくは0.1~100mmol、より好ましくは0.1~10mmol、さらに好ましくは0.5~5mmolである。 The bromide used in the oxidation of the cellulose raw material is a compound containing bromine, and examples thereof include an alkali metal bromide that can be dissociated and ionized in water. Further, an iodide is a compound containing iodine, and examples thereof include alkali metal iodide.
The amount of bromide or iodide used can be adjusted as long as the target oxidation reaction can be promoted. The total amount of bromide and iodide is, for example, preferably 0.1 to 100 mmol, more preferably 0.1 to 10 mmol, and still more preferably 0.5 to 5 mmol with respect to 1 g of the absolutely dry cellulose raw material.
酸化剤としては、例えば、ハロゲン、次亜ハロゲン酸、亜ハロゲン酸、過ハロゲン酸又はそれらの塩、ハロゲン酸化物、過酸化物等の公知の酸化剤を使用することができる。中でも、安価で環境負荷の少ない次亜塩素酸ナトリウムが好ましい。
酸化剤の使用量は、酸化反応を行う量であればよく、例えば、絶乾1gのセルロース原料に対して、好ましくは0.5~500mmol、より好ましくは0.5~50mmol、さらに好ましくは2.5~25mmolである。 As the oxidizing agent, for example, known oxidizing agents such as halogen, hypohalous acid, halous acid, perhalogen acid or salts thereof, halogen oxide, peroxide, and the like can be used. Of these, sodium hypochlorite is preferable because it is inexpensive and has a low environmental impact.
The amount of the oxidizing agent used may be any amount that allows an oxidation reaction. For example, the amount is preferably 0.5 to 500 mmol, more preferably 0.5 to 50 mmol, and still more preferably 2 with respect to 1 g of cellulose raw material. .5-25 mmol.
酸化剤の使用量は、酸化反応を行う量であればよく、例えば、絶乾1gのセルロース原料に対して、好ましくは0.5~500mmol、より好ましくは0.5~50mmol、さらに好ましくは2.5~25mmolである。 As the oxidizing agent, for example, known oxidizing agents such as halogen, hypohalous acid, halous acid, perhalogen acid or salts thereof, halogen oxide, peroxide, and the like can be used. Of these, sodium hypochlorite is preferable because it is inexpensive and has a low environmental impact.
The amount of the oxidizing agent used may be any amount that allows an oxidation reaction. For example, the amount is preferably 0.5 to 500 mmol, more preferably 0.5 to 50 mmol, and still more preferably 2 with respect to 1 g of cellulose raw material. .5-25 mmol.
セルロース原料の酸化反応は、比較的温和な条件であっても反応が効率よく進行するので、反応温度は、15~30℃程度の室温であってもよい。反応の進行に伴ってセルロース中にカルボキシル基が生成するため、反応液のpH値が低下する。酸化反応を効率よく進行させるために、水酸化ナトリウム水溶液等のアルカリ性溶液を適時反応系中に添加して、反応液のpH値を9~12に、好ましくは10~11程度に維持することが好ましい。反応媒体は、取扱い性の容易さや、副反応が生じ難いこと等から、水が好ましい。
Since the oxidation reaction of the cellulose raw material proceeds efficiently even under relatively mild conditions, the reaction temperature may be about 15 to 30 ° C. As the reaction proceeds, carboxyl groups are generated in the cellulose, so that the pH value of the reaction solution decreases. In order to allow the oxidation reaction to proceed efficiently, an alkaline solution such as an aqueous sodium hydroxide solution is added to the reaction system in a timely manner so that the pH value of the reaction solution is maintained at 9 to 12, preferably about 10 to 11. preferable. The reaction medium is preferably water because it is easy to handle and hardly causes side reactions.
酸化反応における反応時間は、酸化の進行の程度に従って適宜設定することができ、通常、0.5~6時間程度であり、好ましくは0.5~4時間程度である。
The reaction time in the oxidation reaction can be appropriately set according to the progress of oxidation, and is usually about 0.5 to 6 hours, preferably about 0.5 to 4 hours.
また、酸化反応は、2段階に分けて実施してもよい。例えば、1段目の反応終了後に濾別して得られた酸化セルロースのカチオン塩を、再度、同一又は異なる反応条件で酸化させることにより、1段目の反応で副生する塩による反応阻害を受けることなく、セルロース原料に効率よくカルボキシル基を導入することができる。
Moreover, the oxidation reaction may be carried out in two stages. For example, by oxidizing the cationic salt of oxidized cellulose obtained by filtration after completion of the first-stage reaction again under the same or different reaction conditions, the reaction is inhibited by the salt produced as a by-product in the first-stage reaction. And a carboxyl group can be efficiently introduced into the cellulose raw material.
上記の工程で得られる酸化セルロースにおいて、セルロース原料に導入したカルボキシル基は、通常、ナトリウム塩等のアルキル金属塩である。下記の脱塩処理や解繊処理の前に、酸化セルロースのアルカリ金属塩を、ホスホニウム塩、イミダゾリニウム塩、アンモニウム塩、スルホニウム塩等の他のカチオン塩に置換してもよい。置換は、公知の方法で行うことができる。
In the oxidized cellulose obtained in the above step, the carboxyl group introduced into the cellulose raw material is usually an alkyl metal salt such as a sodium salt. Prior to the desalting or defibrating treatment described below, the alkali metal salt of oxidized cellulose may be replaced with another cation salt such as a phosphonium salt, an imidazolinium salt, an ammonium salt, or a sulfonium salt. The substitution can be performed by a known method.
酸化方法の他の例として、オゾンを含む気体とセルロース原料を接触させることにより酸化する方法を挙げることができる。この酸化反応により、グルコピラノース環の少なくとも2位及び6位の水酸基を有する炭素原子が酸化されると共に、セルロース鎖の分解が起こる。
As another example of the oxidation method, a method of oxidizing by contacting a gas containing ozone and a cellulose raw material can be mentioned. By this oxidation reaction, the carbon atom having at least the 2-position and 6-position hydroxyl groups of the glucopyranose ring is oxidized and the cellulose chain is decomposed.
オゾンを含む気体中のオゾン濃度は、50~250g/m3であることが好ましく、50~220g/m3であることがより好ましい。セルロース原料に対するオゾン添加量は、セルロース原料の固形分を100質量部とした際に、0.1~30質量部であることが好ましく、5~30質量部であることがより好ましい。オゾン処理温度は、0~50℃であることが好ましく、20~50℃であることがより好ましい。オゾン処理時間は、特に限定されないが、通常、1~360分程度であり、30~360分程度が好ましい。オゾン処理の条件がこれらの範囲内であると、セルロースが過度に酸化及び分解されることを防ぐことができ、酸化セルロースの収率が良好となる。
The ozone concentration in the gas containing ozone is preferably 50 to 250 g / m 3 , more preferably 50 to 220 g / m 3 . The amount of ozone added to the cellulose raw material is preferably 0.1 to 30 parts by mass, and more preferably 5 to 30 parts by mass, when the solid content of the cellulose raw material is 100 parts by mass. The ozone treatment temperature is preferably 0 to 50 ° C., and more preferably 20 to 50 ° C. The ozone treatment time is not particularly limited, but is usually about 1 to 360 minutes, and preferably about 30 to 360 minutes. When the conditions for the ozone treatment are within these ranges, the cellulose can be prevented from being excessively oxidized and decomposed, and the yield of oxidized cellulose is improved.
オゾン処理を施した後に、酸化剤を用いて、追酸化処理を行ってもよい。追酸化処理に用いる酸化剤は、特に限定されないが、二酸化塩素、亜塩素酸ナトリウム等の塩素系化合物や、酸素、過酸化水素、過硫酸、過酢酸等が挙げられる。例えば、これらの酸化剤を水又はアルコール等の極性有機溶媒中に溶解して酸化剤溶液を作製し、溶液中にセルロース原料を浸漬させることにより追酸化処理を行うことができる。
After the ozone treatment, an additional oxidation treatment may be performed using an oxidizing agent. The oxidizing agent used for the additional oxidation treatment is not particularly limited, and examples thereof include chlorine compounds such as chlorine dioxide and sodium chlorite, oxygen, hydrogen peroxide, persulfuric acid, peracetic acid and the like. For example, these oxidizing agents can be dissolved in a polar organic solvent such as water or alcohol to prepare an oxidizing agent solution, and a cellulose raw material can be immersed in the solution for additional oxidation treatment.
酸化処理で得られた酸化セルロースは、副反応を避ける観点から、下記のアルカリ加水分解処理に供する前に、洗浄することが好ましい。洗浄方法は特に限定されず、公知の方法で行うことができる。
The oxidized cellulose obtained by the oxidation treatment is preferably washed before being subjected to the following alkaline hydrolysis treatment from the viewpoint of avoiding side reactions. The washing method is not particularly limited, and can be performed by a known method.
[3-2.解繊処理]
解繊処理は、酸化セルロース又はアルカリ加水分解処理した酸化セルロースを解繊する処理である。酸化セルロース又はアルカリ加水分解処理した酸化セルロースは、酸化処理によりカルボキシル基が導入されているので、解繊処理により簡単にナノファイバー化することができる。 [3-2. Defibration treatment]
The defibrating process is a process of defibrating oxidized cellulose or oxidized cellulose subjected to alkali hydrolysis treatment. Since the carboxyl group is introduced into the oxidized cellulose or the oxidized cellulose subjected to the alkali hydrolysis treatment by the oxidation treatment, it can be easily made into nanofibers by the fibrillation treatment.
解繊処理は、酸化セルロース又はアルカリ加水分解処理した酸化セルロースを解繊する処理である。酸化セルロース又はアルカリ加水分解処理した酸化セルロースは、酸化処理によりカルボキシル基が導入されているので、解繊処理により簡単にナノファイバー化することができる。 [3-2. Defibration treatment]
The defibrating process is a process of defibrating oxidized cellulose or oxidized cellulose subjected to alkali hydrolysis treatment. Since the carboxyl group is introduced into the oxidized cellulose or the oxidized cellulose subjected to the alkali hydrolysis treatment by the oxidation treatment, it can be easily made into nanofibers by the fibrillation treatment.
解繊処理としては、例えば、酸化セルロース又はアルカリ加水分解処理した酸化セルロースを十分に水洗した後、高速せん断ミキサーや高圧ホモジナイザー等の公知の装置を用いて行うことができる。解繊装置の種類としては、例えば、高速回転式、コロイドミル式、高圧式、ロールミル式、超音波式が挙げられる。これらの装置は単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
As the fibrillation treatment, for example, the oxidized cellulose or the oxidized cellulose subjected to the alkali hydrolysis treatment can be sufficiently washed with water and then used using a known apparatus such as a high-speed shear mixer or a high-pressure homogenizer. Examples of the type of defibrating apparatus include a high-speed rotation type, a colloid mill type, a high-pressure type, a roll mill type, and an ultrasonic type. These devices may be used alone or in combination of two or more.
高速せん断ミキサーを用いる場合、せん断速度は1000sec-1以上が好ましい。せん断速度が1000sec-1以上であると、凝集構造が少なく、均一にナノファイバー化することができる。
高圧ホモジナイザーを用いる場合、印加する圧力は、50MPa以上が好ましく、100MPa以上がより好ましく、140MPa以上がさらに好ましい。当該圧力の湿式の高圧又は超高圧ホモジナイザーで処理すると、ナノファイバー化が効率よく進行し、カルボキシル化セルロースナノファイバーを効率よく得ることができる。 When a high-speed shear mixer is used, the shear rate is preferably 1000 sec −1 or more. When the shear rate is 1000 sec −1 or more, there are few aggregated structures, and nanofibers can be formed uniformly.
When using a high-pressure homogenizer, the applied pressure is preferably 50 MPa or more, more preferably 100 MPa or more, and further preferably 140 MPa or more. When treated with a wet high-pressure or ultrahigh-pressure homogenizer at the pressure, nanofibrosis proceeds efficiently, and carboxylated cellulose nanofibers can be obtained efficiently.
高圧ホモジナイザーを用いる場合、印加する圧力は、50MPa以上が好ましく、100MPa以上がより好ましく、140MPa以上がさらに好ましい。当該圧力の湿式の高圧又は超高圧ホモジナイザーで処理すると、ナノファイバー化が効率よく進行し、カルボキシル化セルロースナノファイバーを効率よく得ることができる。 When a high-speed shear mixer is used, the shear rate is preferably 1000 sec −1 or more. When the shear rate is 1000 sec −1 or more, there are few aggregated structures, and nanofibers can be formed uniformly.
When using a high-pressure homogenizer, the applied pressure is preferably 50 MPa or more, more preferably 100 MPa or more, and further preferably 140 MPa or more. When treated with a wet high-pressure or ultrahigh-pressure homogenizer at the pressure, nanofibrosis proceeds efficiently, and carboxylated cellulose nanofibers can be obtained efficiently.
酸化セルロース又はアルカリ加水分解処理した酸化セルロースは、水等の水分散液として解繊処理に供する。水分散液中の酸化セルロース又はアルカリ加水分解処理した酸化セルロースの濃度が高いと、解繊処理の途中で粘度が過度に増大して均一に解繊できない場合や、装置が停止するという場合がある。従って、酸化セルロース又はアルカリ加水分解処理した酸化セルロースの濃度は、酸化セルロース又はアルカリ加水分解処理した酸化セルロースの処理条件に応じて適宣設定する必要がある。一例として、酸化セルロース又はアルカリ加水分解処理した酸化セルロースの濃度は、0.3~50%(w/v)が好ましく、0.5~10%(w/v)がより好ましく、1.0~5%(w/v)がさらに好ましい。
The oxidized cellulose or the oxidized cellulose subjected to the alkali hydrolysis treatment is subjected to a defibrating treatment as an aqueous dispersion such as water. If the concentration of oxidized cellulose or oxidized cellulose subjected to alkali hydrolysis treatment in the aqueous dispersion is high, the viscosity may increase excessively during the defibrating process and may not be defibrated uniformly or the device may stop. . Therefore, the concentration of the oxidized cellulose or the oxidized cellulose subjected to the alkali hydrolysis treatment needs to be appropriately set according to the processing conditions of the oxidized cellulose or the oxidized cellulose subjected to the alkali hydrolysis treatment. As an example, the concentration of oxidized cellulose or oxidized cellulose subjected to alkali hydrolysis treatment is preferably 0.3 to 50% (w / v), more preferably 0.5 to 10% (w / v), and 1.0 to 5% (w / v) is more preferable.
[3-3.アルカリ加水分解処理]
アルカリ加水分解処理は、上記の酸化処理により得られた酸化セルロースをアルカリ性溶液中で加水分解して加水分解された酸化セルロースを調製する処理であり、当該処理を得て得られる酸型のカルボキシル化セルロースナノファイバーはナノファイバーBである。加水分解処理の反応媒体は、副反応を抑制する観点から水が好ましい。
アルカリ性溶液中で加水分解することにより、ナノファイバーBは、短繊維化されて本願で規定する数値範囲を充足するものとなる。この理由は次のように推察される。N-オキシル化合物を用いて酸化した酸化セルロースの非晶質領域にはカルボキシル基が散在しており、当該カルボキシル基に隣接しているC5位の水素原子は、カルボキシル基により電子が吸引されているので電荷が欠乏している状態にある。そのため、pH8~14のアルカリ性条件下では当該水素原子が水酸化物イオンで容易に引き抜かれ、β脱離反応によりグルコシド結合の開裂が生じる。その結果、酸化セルロースが短繊維化されるので、繊維長が短いカルボキシル化セルロースナノファイバーの割合も多くなる。 [3-3. Alkaline hydrolysis treatment]
The alkali hydrolysis treatment is a treatment for preparing hydrolyzed oxidized cellulose by hydrolyzing the oxidized cellulose obtained by the above-described oxidation treatment in an alkaline solution. The acid-type carboxylation obtained by obtaining the treatment The cellulose nanofiber is Nanofiber B. The reaction medium for the hydrolysis treatment is preferably water from the viewpoint of suppressing side reactions.
By hydrolyzing in an alkaline solution, the nanofiber B is shortened to satisfy the numerical range defined in the present application. The reason is presumed as follows. A carboxyl group is interspersed in an amorphous region of oxidized cellulose oxidized with an N-oxyl compound, and an electron is attracted to the hydrogen atom at the C5 position adjacent to the carboxyl group by the carboxyl group. So it is in a state of lack of charge. Therefore, under alkaline conditions of pH 8 to 14, the hydrogen atom is easily extracted with hydroxide ions, and the glucoside bond is cleaved by β elimination reaction. As a result, oxidized cellulose is shortened, and the proportion of carboxylated cellulose nanofibers having a short fiber length is also increased.
アルカリ加水分解処理は、上記の酸化処理により得られた酸化セルロースをアルカリ性溶液中で加水分解して加水分解された酸化セルロースを調製する処理であり、当該処理を得て得られる酸型のカルボキシル化セルロースナノファイバーはナノファイバーBである。加水分解処理の反応媒体は、副反応を抑制する観点から水が好ましい。
アルカリ性溶液中で加水分解することにより、ナノファイバーBは、短繊維化されて本願で規定する数値範囲を充足するものとなる。この理由は次のように推察される。N-オキシル化合物を用いて酸化した酸化セルロースの非晶質領域にはカルボキシル基が散在しており、当該カルボキシル基に隣接しているC5位の水素原子は、カルボキシル基により電子が吸引されているので電荷が欠乏している状態にある。そのため、pH8~14のアルカリ性条件下では当該水素原子が水酸化物イオンで容易に引き抜かれ、β脱離反応によりグルコシド結合の開裂が生じる。その結果、酸化セルロースが短繊維化されるので、繊維長が短いカルボキシル化セルロースナノファイバーの割合も多くなる。 [3-3. Alkaline hydrolysis treatment]
The alkali hydrolysis treatment is a treatment for preparing hydrolyzed oxidized cellulose by hydrolyzing the oxidized cellulose obtained by the above-described oxidation treatment in an alkaline solution. The acid-type carboxylation obtained by obtaining the treatment The cellulose nanofiber is Nanofiber B. The reaction medium for the hydrolysis treatment is preferably water from the viewpoint of suppressing side reactions.
By hydrolyzing in an alkaline solution, the nanofiber B is shortened to satisfy the numerical range defined in the present application. The reason is presumed as follows. A carboxyl group is interspersed in an amorphous region of oxidized cellulose oxidized with an N-oxyl compound, and an electron is attracted to the hydrogen atom at the C5 position adjacent to the carboxyl group by the carboxyl group. So it is in a state of lack of charge. Therefore, under alkaline conditions of pH 8 to 14, the hydrogen atom is easily extracted with hydroxide ions, and the glucoside bond is cleaved by β elimination reaction. As a result, oxidized cellulose is shortened, and the proportion of carboxylated cellulose nanofibers having a short fiber length is also increased.
アルカリ性溶液中で加水分解する場合、反応における反応液のpH値は、8~14が好ましく、9~13がより好ましく、10~12がさらに好ましい。pH値が8未満であると、十分な加水分解が起こらず、酸化セルロースの短繊維化が不十分な場合がある。一方、pH値が14超であると、加水分解は進行するが、加水分解後の酸化セルロースが着色し、得られるセルロースナノファイバーも着色するので、透明性が低下し、適用技術が制限されるという問題が生じる場合がある。pH値の調整に用いるアルカリは水溶性であればよく、製造コストの観点から、水酸化ナトリウムが好ましい。
When hydrolyzing in an alkaline solution, the pH value of the reaction solution in the reaction is preferably 8 to 14, more preferably 9 to 13, and further preferably 10 to 12. When the pH value is less than 8, sufficient hydrolysis does not occur, and shortening of oxidized cellulose may be insufficient. On the other hand, when the pH value exceeds 14, hydrolysis proceeds, but the oxidized cellulose after hydrolysis is colored, and the resulting cellulose nanofiber is also colored, so that the transparency is lowered and the application technique is limited. May arise. The alkali used for adjusting the pH value may be water-soluble, and sodium hydroxide is preferable from the viewpoint of production cost.
アルカリ性溶液中で酸化セルロースを加水分解すると、β脱離の際に二重結合が生成することに起因して、酸化セルロースが黄色に着色する場合がある。そのため、得られるセルロースナノファイバーも着色して透明性が低下し、適用技術が制限される場合がある。そのため、加水分解工程は、二重結合の生成を抑制するために、助剤として酸化剤又は還元剤を用いて行うことが好ましい。pH値が8~14のアルカリ性溶液中で加水分解処理する際に、酸化剤や還元剤を用いると、二重結合を酸化又は還元しつつ、酸化セルロースを短繊維化することができる。酸化剤又は還元剤としては、アルカリ性領域で活性を有するものを使用できる。
助剤の添加量は、反応効率の観点から、絶乾した酸化セルロースに対して0.1~10質量%が好ましく、0.3~5質量%がより好ましく、0.5~2質量%がさらに好ましい。 Hydrolysis of oxidized cellulose in an alkaline solution may cause the oxidized cellulose to be colored yellow due to the formation of double bonds during β elimination. Therefore, the obtained cellulose nanofibers are also colored and the transparency is lowered, and the application technique may be limited. Therefore, it is preferable to perform a hydrolysis process using an oxidizing agent or a reducing agent as an adjuvant, in order to suppress the production | generation of a double bond. When an oxidizing agent or a reducing agent is used in the hydrolysis treatment in an alkaline solution having a pH value of 8 to 14, the oxidized cellulose can be shortened while oxidizing or reducing the double bond. As the oxidizing agent or reducing agent, those having activity in the alkaline region can be used.
From the viewpoint of reaction efficiency, the amount of the auxiliary added is preferably 0.1 to 10% by mass, more preferably 0.3 to 5% by mass, and 0.5 to 2% by mass with respect to the absolutely dry oxidized cellulose. Further preferred.
助剤の添加量は、反応効率の観点から、絶乾した酸化セルロースに対して0.1~10質量%が好ましく、0.3~5質量%がより好ましく、0.5~2質量%がさらに好ましい。 Hydrolysis of oxidized cellulose in an alkaline solution may cause the oxidized cellulose to be colored yellow due to the formation of double bonds during β elimination. Therefore, the obtained cellulose nanofibers are also colored and the transparency is lowered, and the application technique may be limited. Therefore, it is preferable to perform a hydrolysis process using an oxidizing agent or a reducing agent as an adjuvant, in order to suppress the production | generation of a double bond. When an oxidizing agent or a reducing agent is used in the hydrolysis treatment in an alkaline solution having a pH value of 8 to 14, the oxidized cellulose can be shortened while oxidizing or reducing the double bond. As the oxidizing agent or reducing agent, those having activity in the alkaline region can be used.
From the viewpoint of reaction efficiency, the amount of the auxiliary added is preferably 0.1 to 10% by mass, more preferably 0.3 to 5% by mass, and 0.5 to 2% by mass with respect to the absolutely dry oxidized cellulose. Further preferred.
酸化剤としては、例えば、酸素、オゾン、過酸化水素、次亜塩素酸塩が挙げられる。中でも、酸化剤は、ラジカルを発生し難い、酸素、過酸化水素、次亜塩素酸塩が好ましく、過酸化水素がより好ましい。
なお、酸化剤は1種単独で用いてもよく、2種以上を組み合わせて使用してもよい。 Examples of the oxidizing agent include oxygen, ozone, hydrogen peroxide, and hypochlorite. Among them, the oxidizing agent is less likely to generate radicals, and oxygen, hydrogen peroxide, and hypochlorite are preferable, and hydrogen peroxide is more preferable.
In addition, an oxidizing agent may be used individually by 1 type, and may be used in combination of 2 or more type.
なお、酸化剤は1種単独で用いてもよく、2種以上を組み合わせて使用してもよい。 Examples of the oxidizing agent include oxygen, ozone, hydrogen peroxide, and hypochlorite. Among them, the oxidizing agent is less likely to generate radicals, and oxygen, hydrogen peroxide, and hypochlorite are preferable, and hydrogen peroxide is more preferable.
In addition, an oxidizing agent may be used individually by 1 type, and may be used in combination of 2 or more type.
還元剤としては、例えば、水素化ホウ素ナトリウム、ハイドロサルファイト、亜硫酸塩が挙げられる。
なお、還元剤は1種単独で用いてもよく、2種以上を組み合わせて使用してもよい。 Examples of the reducing agent include sodium borohydride, hydrosulfite, and sulfite.
In addition, a reducing agent may be used individually by 1 type, and may be used in combination of 2 or more type.
なお、還元剤は1種単独で用いてもよく、2種以上を組み合わせて使用してもよい。 Examples of the reducing agent include sodium borohydride, hydrosulfite, and sulfite.
In addition, a reducing agent may be used individually by 1 type, and may be used in combination of 2 or more type.
加水分解の反応温度は、反応効率の観点から、40~120℃が好ましく、50~100℃がより好ましく、60~90℃がさらに好ましい。温度が低いと、十分な加水分解が起こらず、酸化セルロースやカルボキシル化セルロースナノファイバーの短繊維化が不十分な場合がある。一方、温度が高いと加水分解は進行するが、加水分解後の酸化セルロースが着色する場合がある。
加水分解の反応時間は、0.5~24時間が好ましく、1~10時間がより好ましく、2~6時間がさらに好ましい。
反応効率の観点から、アルカリ性溶液中の酸化セルロースの濃度は、1~20質量%が好ましく、3~15質量%がより好ましく、5~10質量%がさらに好ましい。 From the viewpoint of reaction efficiency, the hydrolysis reaction temperature is preferably 40 to 120 ° C, more preferably 50 to 100 ° C, and further preferably 60 to 90 ° C. When the temperature is low, sufficient hydrolysis does not occur, and shortening of oxidized cellulose or carboxylated cellulose nanofibers may be insufficient. On the other hand, when the temperature is high, hydrolysis proceeds, but the oxidized cellulose after hydrolysis may be colored.
The reaction time for hydrolysis is preferably 0.5 to 24 hours, more preferably 1 to 10 hours, and further preferably 2 to 6 hours.
From the viewpoint of reaction efficiency, the concentration of oxidized cellulose in the alkaline solution is preferably 1 to 20% by mass, more preferably 3 to 15% by mass, and even more preferably 5 to 10% by mass.
加水分解の反応時間は、0.5~24時間が好ましく、1~10時間がより好ましく、2~6時間がさらに好ましい。
反応効率の観点から、アルカリ性溶液中の酸化セルロースの濃度は、1~20質量%が好ましく、3~15質量%がより好ましく、5~10質量%がさらに好ましい。 From the viewpoint of reaction efficiency, the hydrolysis reaction temperature is preferably 40 to 120 ° C, more preferably 50 to 100 ° C, and further preferably 60 to 90 ° C. When the temperature is low, sufficient hydrolysis does not occur, and shortening of oxidized cellulose or carboxylated cellulose nanofibers may be insufficient. On the other hand, when the temperature is high, hydrolysis proceeds, but the oxidized cellulose after hydrolysis may be colored.
The reaction time for hydrolysis is preferably 0.5 to 24 hours, more preferably 1 to 10 hours, and further preferably 2 to 6 hours.
From the viewpoint of reaction efficiency, the concentration of oxidized cellulose in the alkaline solution is preferably 1 to 20% by mass, more preferably 3 to 15% by mass, and even more preferably 5 to 10% by mass.
[3-4.脱塩処理]
脱塩処理は、解繊処理した酸化セルロース又はアルカリ加水分解処理した酸化セルロース(カルボキシル化セルロースナノファイバー塩)を陽イオン交換樹脂により脱塩する処理である。当該処理により解繊処理した酸化セルロース又はアルカリ加水分解処理した酸化セルロースのカチオン塩がプロトンに置換されて酸型のカルボキシル化セルロースナノファイバーを得ることができる。陽イオン交換樹脂を用いるので、不要な塩化ナトリウム等の副生成物が生成せず、陽イオン交換樹脂を用いて脱塩処理した後は、陽イオン交換樹脂を金属メッシュ等により濾過して除去するだけで、濾液としてプロトン置換された酸型のカルボキシル化セルロースナノファイバーの水分散体が得られる。 [3-4. Desalination treatment]
The desalting treatment is a treatment for desalting the fibrillated oxidized cellulose or the alkali hydrolyzed oxidized cellulose (carboxylated cellulose nanofiber salt) with a cation exchange resin. The cationic salt of oxidized cellulose that has been fibrillated by the treatment or oxidized cellulose that has been subjected to alkali hydrolysis can be substituted with protons to obtain acid-type carboxylated cellulose nanofibers. Since a cation exchange resin is used, unnecessary by-products such as sodium chloride are not generated, and after desalting with the cation exchange resin, the cation exchange resin is removed by filtration through a metal mesh or the like. As a result, an aqueous dispersion of acid-substituted carboxylated cellulose nanofibers with proton substitution can be obtained as a filtrate.
脱塩処理は、解繊処理した酸化セルロース又はアルカリ加水分解処理した酸化セルロース(カルボキシル化セルロースナノファイバー塩)を陽イオン交換樹脂により脱塩する処理である。当該処理により解繊処理した酸化セルロース又はアルカリ加水分解処理した酸化セルロースのカチオン塩がプロトンに置換されて酸型のカルボキシル化セルロースナノファイバーを得ることができる。陽イオン交換樹脂を用いるので、不要な塩化ナトリウム等の副生成物が生成せず、陽イオン交換樹脂を用いて脱塩処理した後は、陽イオン交換樹脂を金属メッシュ等により濾過して除去するだけで、濾液としてプロトン置換された酸型のカルボキシル化セルロースナノファイバーの水分散体が得られる。 [3-4. Desalination treatment]
The desalting treatment is a treatment for desalting the fibrillated oxidized cellulose or the alkali hydrolyzed oxidized cellulose (carboxylated cellulose nanofiber salt) with a cation exchange resin. The cationic salt of oxidized cellulose that has been fibrillated by the treatment or oxidized cellulose that has been subjected to alkali hydrolysis can be substituted with protons to obtain acid-type carboxylated cellulose nanofibers. Since a cation exchange resin is used, unnecessary by-products such as sodium chloride are not generated, and after desalting with the cation exchange resin, the cation exchange resin is removed by filtration through a metal mesh or the like. As a result, an aqueous dispersion of acid-substituted carboxylated cellulose nanofibers with proton substitution can be obtained as a filtrate.
金属メッシュ等により濾物として除去する対象は陽イオン交換樹脂であり、カルボキシル化セルロースナノファイバーは、金属メッシュ等の径では除去され難く、ほぼ全量が濾液中に含まれる。そのため、収率の低下が極めて少なくなる。
濾液には繊維長の短い、カルボキシル化セルロースナノファイバーが多量に含まれている。また、濾液を洗浄や脱水せずともよいので、酸型のカルボキシル化セルロースナノファイバーが凝集され難い。従って、アルカリ加水分解処理を得ていない場合、カルボキシル化セルロースナノファイバーの分散液は、低ずり領域で高粘度になると推察される。また、アルカリ加水分解処理を得た場合、極めて短い繊維長を有する酸型のカルボキシル化セルロースナノファイバーを単離することができる。 An object to be removed as a filtrate by a metal mesh or the like is a cation exchange resin, and carboxylated cellulose nanofibers are hardly removed by the diameter of the metal mesh or the like, and almost the entire amount is contained in the filtrate. Therefore, the yield reduction is extremely small.
The filtrate contains a large amount of carboxylated cellulose nanofibers having a short fiber length. Further, since the filtrate does not have to be washed or dehydrated, the acid-type carboxylated cellulose nanofibers are hardly aggregated. Therefore, when the alkali hydrolysis treatment is not obtained, it is presumed that the dispersion of carboxylated cellulose nanofibers has a high viscosity in the low shear region. In addition, when an alkali hydrolysis treatment is obtained, an acid-type carboxylated cellulose nanofiber having an extremely short fiber length can be isolated.
濾液には繊維長の短い、カルボキシル化セルロースナノファイバーが多量に含まれている。また、濾液を洗浄や脱水せずともよいので、酸型のカルボキシル化セルロースナノファイバーが凝集され難い。従って、アルカリ加水分解処理を得ていない場合、カルボキシル化セルロースナノファイバーの分散液は、低ずり領域で高粘度になると推察される。また、アルカリ加水分解処理を得た場合、極めて短い繊維長を有する酸型のカルボキシル化セルロースナノファイバーを単離することができる。 An object to be removed as a filtrate by a metal mesh or the like is a cation exchange resin, and carboxylated cellulose nanofibers are hardly removed by the diameter of the metal mesh or the like, and almost the entire amount is contained in the filtrate. Therefore, the yield reduction is extremely small.
The filtrate contains a large amount of carboxylated cellulose nanofibers having a short fiber length. Further, since the filtrate does not have to be washed or dehydrated, the acid-type carboxylated cellulose nanofibers are hardly aggregated. Therefore, when the alkali hydrolysis treatment is not obtained, it is presumed that the dispersion of carboxylated cellulose nanofibers has a high viscosity in the low shear region. In addition, when an alkali hydrolysis treatment is obtained, an acid-type carboxylated cellulose nanofiber having an extremely short fiber length can be isolated.
カルボキシル化セルロースナノファイバー塩は、解繊工程で得られた水分散液を脱塩工程にそのまま供することができる。なお、必要に応じて水を添加して濃度を低くすることもできる。
The carboxylated cellulose nanofiber salt can be directly used in the desalting step with the aqueous dispersion obtained in the defibrating step. If necessary, water can be added to lower the concentration.
陽イオン交換樹脂としては、対イオンがH+である限り、強酸性イオン交換樹脂及び弱酸性イオン交換樹脂のいずれも用いることができる。中でも、強酸性イオン交換樹脂を用いることが好ましい。強酸性イオン交換樹脂及び弱酸性イオン交換樹脂としては、例えば、スチレン系樹脂或いはアクリル系樹脂にスルホン酸基或いはカルボキシル基を導入したものが挙げられる。
陽イオン交換樹脂の形状は、特に限定されず、細粒(粒状)、膜状、繊維等、種々の形状のものを用いることができる。中でも、カルボキシル化セルロースナノファイバー塩を効率よく脱塩処理し、脱塩処理後の分離が容易であるとの観点から、粒状が好ましい。このような陽イオン交換樹脂としては市販品を用いることができる。市販品としては、例えば、アンバージェット1020、同1024、同1060、同1220(以上、オルガノ社製)、アンバーライトIR-200C、同IR-120B(以上、東京有機化学社製)、レバチットSP 112、同S100(以上、バイエル社製)、GEL CK08P(三菱化学社製)、Dowex 50W-X8(ダウ・ケミカル社製)等が挙げられる。 As the cation exchange resin, any of strong acid ion exchange resin and weak acid ion exchange resin can be used as long as the counter ion is H + . Among these, it is preferable to use a strongly acidic ion exchange resin. Examples of the strong acid ion exchange resin and the weak acid ion exchange resin include those obtained by introducing a sulfonic acid group or a carboxyl group into a styrene resin or an acrylic resin.
The shape of the cation exchange resin is not particularly limited, and various shapes such as fine particles (particles), membranes, and fibers can be used. Among these, granular is preferable from the viewpoint that the carboxylated cellulose nanofiber salt is efficiently desalted and separation after the desalting is easy. A commercial item can be used as such a cation exchange resin. Commercially available products include, for example, AmberJet 1020, 1024, 1060, 1220 (above, Organo), Amberlite IR-200C, IR-120B (above, Tokyo Organic Chemical Co.), Lebatit SP 112 S100 (manufactured by Bayer), GEL CK08P (manufactured by Mitsubishi Chemical), Dowex 50W-X8 (manufactured by Dow Chemical) and the like.
陽イオン交換樹脂の形状は、特に限定されず、細粒(粒状)、膜状、繊維等、種々の形状のものを用いることができる。中でも、カルボキシル化セルロースナノファイバー塩を効率よく脱塩処理し、脱塩処理後の分離が容易であるとの観点から、粒状が好ましい。このような陽イオン交換樹脂としては市販品を用いることができる。市販品としては、例えば、アンバージェット1020、同1024、同1060、同1220(以上、オルガノ社製)、アンバーライトIR-200C、同IR-120B(以上、東京有機化学社製)、レバチットSP 112、同S100(以上、バイエル社製)、GEL CK08P(三菱化学社製)、Dowex 50W-X8(ダウ・ケミカル社製)等が挙げられる。 As the cation exchange resin, any of strong acid ion exchange resin and weak acid ion exchange resin can be used as long as the counter ion is H + . Among these, it is preferable to use a strongly acidic ion exchange resin. Examples of the strong acid ion exchange resin and the weak acid ion exchange resin include those obtained by introducing a sulfonic acid group or a carboxyl group into a styrene resin or an acrylic resin.
The shape of the cation exchange resin is not particularly limited, and various shapes such as fine particles (particles), membranes, and fibers can be used. Among these, granular is preferable from the viewpoint that the carboxylated cellulose nanofiber salt is efficiently desalted and separation after the desalting is easy. A commercial item can be used as such a cation exchange resin. Commercially available products include, for example, AmberJet 1020, 1024, 1060, 1220 (above, Organo), Amberlite IR-200C, IR-120B (above, Tokyo Organic Chemical Co.), Lebatit SP 112 S100 (manufactured by Bayer), GEL CK08P (manufactured by Mitsubishi Chemical), Dowex 50W-X8 (manufactured by Dow Chemical) and the like.
脱塩処理は、例えば、粒状の陽イオン交換樹脂と、カルボキシル化セルロースナノファイバー塩の水分散液と、を混合し、必要に応じ攪拌・振とうしながら、カルボキシル化セルロースナノファイバー塩と陽イオン交換樹脂とを一定時間接触させた後、陽イオン交換樹脂と水分散液とを分離することによって行うことができる。
The desalting treatment is performed, for example, by mixing a granular cation exchange resin and an aqueous dispersion of carboxylated cellulose nanofiber salt, and stirring and shaking as necessary to obtain a carboxylated cellulose nanofiber salt and a cation. After the contact with the exchange resin for a certain time, the cation exchange resin and the aqueous dispersion can be separated.
水分散液の濃度や陽イオン交換樹脂との比率は、特に限定されず、当業者であれば、プロトン置換を効率的に行うとの観点から適宜設定し得る。一例として、水分散液の濃度は、0.05~10質量%が好ましい。水分散液の濃度が0.05質量%未満であると、プロトン置換に要する時間がかかりすぎる場合がある。水分散液の濃度が10質量%超であると、十分なプロトン置換の効果が得られない場合がある。
接触時間も特に限定されず、当業者であれば、プロトン置換を効率的に行うとの観点から適宜設定し得る。例えば、0.2~4時間接触させて行うことができる。 The concentration of the aqueous dispersion and the ratio with the cation exchange resin are not particularly limited, and those skilled in the art can appropriately set from the viewpoint of efficiently performing proton substitution. As an example, the concentration of the aqueous dispersion is preferably 0.05 to 10% by mass. If the concentration of the aqueous dispersion is less than 0.05% by mass, it may take too much time for proton substitution. If the concentration of the aqueous dispersion is more than 10% by mass, sufficient proton substitution effect may not be obtained.
The contact time is also not particularly limited, and those skilled in the art can appropriately set from the viewpoint of efficiently performing proton substitution. For example, the contact can be performed for 0.2 to 4 hours.
接触時間も特に限定されず、当業者であれば、プロトン置換を効率的に行うとの観点から適宜設定し得る。例えば、0.2~4時間接触させて行うことができる。 The concentration of the aqueous dispersion and the ratio with the cation exchange resin are not particularly limited, and those skilled in the art can appropriately set from the viewpoint of efficiently performing proton substitution. As an example, the concentration of the aqueous dispersion is preferably 0.05 to 10% by mass. If the concentration of the aqueous dispersion is less than 0.05% by mass, it may take too much time for proton substitution. If the concentration of the aqueous dispersion is more than 10% by mass, sufficient proton substitution effect may not be obtained.
The contact time is also not particularly limited, and those skilled in the art can appropriately set from the viewpoint of efficiently performing proton substitution. For example, the contact can be performed for 0.2 to 4 hours.
この際、適切な量の陽イオン交換樹脂を用いてカルボキシル化セルロースナノファイバー塩又は酸化セルロースを十分な時間接触させた後、陽イオン交換樹脂を金属メッシュ等により濾物として除去することで、脱塩処理を行うことができる。
At this time, the carboxylated cellulose nanofiber salt or oxidized cellulose is contacted for a sufficient time using an appropriate amount of the cation exchange resin, and then the cation exchange resin is removed as a filtrate with a metal mesh or the like, thereby removing the cation exchange resin. Salt treatment can be performed.
[3-5.短繊維化処理]
本発明のナノファイバーBを製造する際、酸化処理又はアルカリ加水分解処理の後、解繊処理の前に短繊維化処理を行ってもよい。斯かる処理を行うことで、より短い繊維長を有するナノファイバーBを製造することができる。
短繊維化処理とは、酸化セルロース又はアルカリ加水分解処理した酸化セルロースのセルロース鎖を適度に切断して、短繊維化する処理をいう。例えば、紫外線照射処理、酸化分解処理、酸加水分解処理等が挙げられる。中でも、酸加水分解処理が好ましい。
なお、上記の処理は、1種単独の処理でもよく、2種以上の処理を組み合わせてもよい。 [3-5. Short fiber treatment]
When manufacturing the nanofiber B of this invention, you may perform a fiber shortening process after an oxidation process or an alkali hydrolysis process and before a fibrillation process. By performing such treatment, nanofiber B having a shorter fiber length can be produced.
The fiber shortening treatment refers to a treatment for appropriately shortening the fiber by appropriately cutting the cellulose chain of oxidized cellulose or oxidized cellulose subjected to alkali hydrolysis treatment. For example, ultraviolet irradiation treatment, oxidative decomposition treatment, acid hydrolysis treatment and the like can be mentioned. Among these, acid hydrolysis treatment is preferable.
In addition, said process may be 1 type of single process, and may combine 2 or more types of processes.
本発明のナノファイバーBを製造する際、酸化処理又はアルカリ加水分解処理の後、解繊処理の前に短繊維化処理を行ってもよい。斯かる処理を行うことで、より短い繊維長を有するナノファイバーBを製造することができる。
短繊維化処理とは、酸化セルロース又はアルカリ加水分解処理した酸化セルロースのセルロース鎖を適度に切断して、短繊維化する処理をいう。例えば、紫外線照射処理、酸化分解処理、酸加水分解処理等が挙げられる。中でも、酸加水分解処理が好ましい。
なお、上記の処理は、1種単独の処理でもよく、2種以上の処理を組み合わせてもよい。 [3-5. Short fiber treatment]
When manufacturing the nanofiber B of this invention, you may perform a fiber shortening process after an oxidation process or an alkali hydrolysis process and before a fibrillation process. By performing such treatment, nanofiber B having a shorter fiber length can be produced.
The fiber shortening treatment refers to a treatment for appropriately shortening the fiber by appropriately cutting the cellulose chain of oxidized cellulose or oxidized cellulose subjected to alkali hydrolysis treatment. For example, ultraviolet irradiation treatment, oxidative decomposition treatment, acid hydrolysis treatment and the like can be mentioned. Among these, acid hydrolysis treatment is preferable.
In addition, said process may be 1 type of single process, and may combine 2 or more types of processes.
酸加水分解処理は、酸性溶液中で酸化セルロース又はアルカリ加水分解処理した酸化セルロースを加水分解する処理である。
酸性水溶液中で加水分解処理することにより、カルボキシル化セルロースナノファイバーを短繊維化することができる。この理由は次のように推察される。N-オキシル化合物を用いて酸化したセルロース原料の表面にはカルボキシル基が局在しており、水和層が形成されている。そのため、酸化セルロース同士は近接して存在し、ネットワークを形成している。当該酸化セルロースに、酸を添加して加水分解を行なうと、ネットワーク中の電荷のバランスが崩れて、セルロース分子の強固なネットワークが崩れる。その結果、当該酸化セルロースの比表面積が増大し、酸化セルロースの短繊維化が促進される。従って、酸化セルロースが短繊維化されるので、繊維長が短いカルボキシル化セルロースナノファイバーの割合も多くなる。 The acid hydrolysis treatment is a treatment for hydrolyzing oxidized cellulose or oxidized cellulose subjected to alkali hydrolysis treatment in an acidic solution.
Carboxylated cellulose nanofibers can be shortened by hydrolysis in an acidic aqueous solution. The reason is presumed as follows. A carboxyl group is localized on the surface of the cellulose raw material oxidized using the N-oxyl compound, and a hydrated layer is formed. For this reason, the oxidized celluloses are close to each other and form a network. When an acid is added to the oxidized cellulose for hydrolysis, the balance of charges in the network is lost, and a strong network of cellulose molecules is lost. As a result, the specific surface area of the oxidized cellulose increases, and shortening of the oxidized cellulose is promoted. Therefore, since oxidized cellulose is shortened, the proportion of carboxylated cellulose nanofibers having a short fiber length also increases.
酸性水溶液中で加水分解処理することにより、カルボキシル化セルロースナノファイバーを短繊維化することができる。この理由は次のように推察される。N-オキシル化合物を用いて酸化したセルロース原料の表面にはカルボキシル基が局在しており、水和層が形成されている。そのため、酸化セルロース同士は近接して存在し、ネットワークを形成している。当該酸化セルロースに、酸を添加して加水分解を行なうと、ネットワーク中の電荷のバランスが崩れて、セルロース分子の強固なネットワークが崩れる。その結果、当該酸化セルロースの比表面積が増大し、酸化セルロースの短繊維化が促進される。従って、酸化セルロースが短繊維化されるので、繊維長が短いカルボキシル化セルロースナノファイバーの割合も多くなる。 The acid hydrolysis treatment is a treatment for hydrolyzing oxidized cellulose or oxidized cellulose subjected to alkali hydrolysis treatment in an acidic solution.
Carboxylated cellulose nanofibers can be shortened by hydrolysis in an acidic aqueous solution. The reason is presumed as follows. A carboxyl group is localized on the surface of the cellulose raw material oxidized using the N-oxyl compound, and a hydrated layer is formed. For this reason, the oxidized celluloses are close to each other and form a network. When an acid is added to the oxidized cellulose for hydrolysis, the balance of charges in the network is lost, and a strong network of cellulose molecules is lost. As a result, the specific surface area of the oxidized cellulose increases, and shortening of the oxidized cellulose is promoted. Therefore, since oxidized cellulose is shortened, the proportion of carboxylated cellulose nanofibers having a short fiber length also increases.
酸性溶液中で加水分解する場合、酸としては、硫酸、塩酸、硝酸、又はリン酸のような鉱酸を使用することが好ましい。また、反応を効率よく行なうために、酸化セルロースを水等の分散媒に分散させた分散液を用いることが好ましい。
酸性溶液中で加水分解する条件としては、酸がセルロースの非晶部に作用するような条件であればよい。例えば、酸の添加量は、酸化セルロースの絶乾質量に対して0.01~0.5質量%が好ましく、0.1~0.5質量%がさらに好ましい。酸の添加量が0.01質量%以上であると、セルロースの加水分解が進行し、解繊工程での処理効率が向上するので好ましい。また、添加量が0.5質量%以下であるとセルロースの過度の加水分解を防ぐことができ、セルロースナノファイバーの収率の低下を防止することができる。 When hydrolyzing in an acidic solution, it is preferable to use a mineral acid such as sulfuric acid, hydrochloric acid, nitric acid, or phosphoric acid as the acid. In order to carry out the reaction efficiently, it is preferable to use a dispersion liquid in which oxidized cellulose is dispersed in a dispersion medium such as water.
The conditions for the hydrolysis in the acidic solution may be any conditions that allow the acid to act on the amorphous part of cellulose. For example, the amount of acid added is preferably 0.01 to 0.5% by mass, more preferably 0.1 to 0.5% by mass, based on the absolutely dry mass of oxidized cellulose. It is preferable for the amount of acid added to be 0.01% by mass or more, since hydrolysis of cellulose proceeds and the treatment efficiency in the defibrating process is improved. Moreover, the excessive hydrolysis of a cellulose can be prevented as the addition amount is 0.5 mass% or less, and the fall of the yield of a cellulose nanofiber can be prevented.
酸性溶液中で加水分解する条件としては、酸がセルロースの非晶部に作用するような条件であればよい。例えば、酸の添加量は、酸化セルロースの絶乾質量に対して0.01~0.5質量%が好ましく、0.1~0.5質量%がさらに好ましい。酸の添加量が0.01質量%以上であると、セルロースの加水分解が進行し、解繊工程での処理効率が向上するので好ましい。また、添加量が0.5質量%以下であるとセルロースの過度の加水分解を防ぐことができ、セルロースナノファイバーの収率の低下を防止することができる。 When hydrolyzing in an acidic solution, it is preferable to use a mineral acid such as sulfuric acid, hydrochloric acid, nitric acid, or phosphoric acid as the acid. In order to carry out the reaction efficiently, it is preferable to use a dispersion liquid in which oxidized cellulose is dispersed in a dispersion medium such as water.
The conditions for the hydrolysis in the acidic solution may be any conditions that allow the acid to act on the amorphous part of cellulose. For example, the amount of acid added is preferably 0.01 to 0.5% by mass, more preferably 0.1 to 0.5% by mass, based on the absolutely dry mass of oxidized cellulose. It is preferable for the amount of acid added to be 0.01% by mass or more, since hydrolysis of cellulose proceeds and the treatment efficiency in the defibrating process is improved. Moreover, the excessive hydrolysis of a cellulose can be prevented as the addition amount is 0.5 mass% or less, and the fall of the yield of a cellulose nanofiber can be prevented.
酸性溶液中で加水分解する場合、反応における反応液のpH値は、2.0~4.0が好ましく、2.0以上3.0未満がより好ましい。反応効率の観点から、反応温度は、70~120℃で、反応時間は1~10時間とすることが好ましい。
When hydrolyzing in an acidic solution, the pH value of the reaction solution in the reaction is preferably 2.0 to 4.0, more preferably 2.0 or more and less than 3.0. From the viewpoint of reaction efficiency, the reaction temperature is preferably 70 to 120 ° C. and the reaction time is preferably 1 to 10 hours.
酸性溶液中で加水分解した場合、解繊工程の処理を効率よく行なうために、通常、水酸化ナトリウム等のアルカリを添加して中和する。
When hydrolyzed in an acidic solution, it is usually neutralized by adding an alkali such as sodium hydroxide in order to efficiently perform the defibration process.
紫外線照射処理は、酸化セルロース又はアルカリ加水分解処理した酸化セルロースに紫外線を照射する処理である。紫外線を照射することにより、カルボキシル化セルロースナノファイバーを短繊維化することができる。この理由は次のように推察される。紫外線は、直接セルロースやヘミセルロースに作用して低分子化を引き起こし、酸化セルロース中のセルロース鎖を短繊維化することができる。そのため、繊維長が短いカルボキシル化セルロースナノファイバーの割合も多くなる。
The ultraviolet irradiation treatment is a treatment for irradiating ultraviolet rays to oxidized cellulose or oxidized cellulose subjected to alkali hydrolysis treatment. By irradiating ultraviolet rays, carboxylated cellulose nanofibers can be shortened. The reason is presumed as follows. Ultraviolet rays can directly act on cellulose and hemicellulose to lower the molecular weight, and shorten the cellulose chain in oxidized cellulose. Therefore, the proportion of carboxylated cellulose nanofibers with a short fiber length also increases.
酸化セルロース又はアルカリ加水分解処理した酸化セルロースに紫外線を照射する場合、用いる紫外線の波長は、好ましくは100~400nm、より好ましくは100~300nmである。このうち、波長135~260nmの紫外線は、直接セルロースやヘミセルロースに作用して低分子化を引き起こし、酸化セルロース中のセルロース鎖を短繊維化することができるので好ましい。
When irradiating ultraviolet rays to oxidized cellulose or oxidized cellulose subjected to alkali hydrolysis treatment, the wavelength of ultraviolet rays used is preferably 100 to 400 nm, more preferably 100 to 300 nm. Among these, ultraviolet rays having a wavelength of 135 to 260 nm are preferable because they can directly act on cellulose and hemicellulose to cause low molecular weight and shorten the cellulose chain in oxidized cellulose.
紫外線を照射する光源としては、100~400nmの波長領域の光を光源とするものを使用することができる。例えば、キセノンショートアークランプ、超高圧水銀ランプ、高圧水銀ランプ、低圧水銀ランプ、重水素ランプ、メタルハライドランプが挙げられる。
なお、これらの光源は、1種単独で用いてもよく、2種以上を任意に組合せて用いてもよい。波長特性の異なる複数の光源を組み合わせて使用すると、異なる波長の紫外線が同時に照射されることによりセルロース鎖やヘミセルロース鎖における切断箇所が増加し、短繊維化が促進されるので好ましい。 As a light source for irradiating ultraviolet rays, a light source using light in a wavelength region of 100 to 400 nm can be used. For example, a xenon short arc lamp, an ultra high pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a deuterium lamp, and a metal halide lamp can be used.
In addition, these light sources may be used individually by 1 type, and may be used in combination of 2 or more types arbitrarily. It is preferable to use a combination of a plurality of light sources having different wavelength characteristics, because ultraviolet rays having different wavelengths are simultaneously irradiated to increase the number of cut sites in the cellulose chain and hemicellulose chain, thereby promoting shortening of the fiber.
なお、これらの光源は、1種単独で用いてもよく、2種以上を任意に組合せて用いてもよい。波長特性の異なる複数の光源を組み合わせて使用すると、異なる波長の紫外線が同時に照射されることによりセルロース鎖やヘミセルロース鎖における切断箇所が増加し、短繊維化が促進されるので好ましい。 As a light source for irradiating ultraviolet rays, a light source using light in a wavelength region of 100 to 400 nm can be used. For example, a xenon short arc lamp, an ultra high pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a deuterium lamp, and a metal halide lamp can be used.
In addition, these light sources may be used individually by 1 type, and may be used in combination of 2 or more types arbitrarily. It is preferable to use a combination of a plurality of light sources having different wavelength characteristics, because ultraviolet rays having different wavelengths are simultaneously irradiated to increase the number of cut sites in the cellulose chain and hemicellulose chain, thereby promoting shortening of the fiber.
紫外線照射を行う際の酸化セルロースを収容する容器としては、例えば、300~400nmの紫外線を用いる場合、硬質ガラス製の容器を用いることができる。300nmより短波長の紫外線を用いる場合、紫外線をより透過させる石英ガラス製の容器を用いることが好ましい。なお、容器の光透過反応に関与しない部分の材質については、用いる紫外線の波長に対して劣化の少ない材質の中から適切な選定すればよい。
As the container for containing oxidized cellulose when performing ultraviolet irradiation, for example, when ultraviolet rays of 300 to 400 nm are used, a container made of hard glass can be used. When ultraviolet rays having a wavelength shorter than 300 nm are used, it is preferable to use a quartz glass container that transmits ultraviolet rays more. In addition, what is necessary is just to select appropriately about the material of the part which does not participate in the light transmission reaction of a container from materials with little deterioration with respect to the wavelength of the ultraviolet-ray used.
紫外線を照射する際の酸化セルロースの濃度は、好ましくは0.1~12質量%、より好ましくは0.5~5質量%、さらに好ましくは1~3質量%である。酸化セルロースの濃度が0.1質量%以上であると、エネルギー効率が高まり好ましい。酸化セルロースの濃度が12質量%以下であると、紫外線照射装置内での酸化セルロースの流動性が良好で、反応効率が高まるので好ましい。
The concentration of oxidized cellulose upon irradiation with ultraviolet rays is preferably 0.1 to 12% by mass, more preferably 0.5 to 5% by mass, and still more preferably 1 to 3% by mass. It is preferable that the concentration of oxidized cellulose is 0.1% by mass or more because energy efficiency is increased. It is preferable that the concentration of the oxidized cellulose is 12% by mass or less because the flowability of the oxidized cellulose in the ultraviolet irradiation device is good and the reaction efficiency is increased.
紫外線を照射する際の温度は、好ましくは20~95℃、より好ましくは20~80℃、さらに好ましくは20~50℃である。温度が20℃以上であると、光酸化反応の効率が高まるため好ましい。温度が95℃以下であると、酸化セルロースの品質の悪化等の悪影響のおそれがなく、また反応装置内の圧力が大気圧を超えるおそれもなくなり、耐圧性を考慮した装置設計を行なう必要性がなくなるため好ましい。
The temperature at the time of irradiation with ultraviolet rays is preferably 20 to 95 ° C., more preferably 20 to 80 ° C., and further preferably 20 to 50 ° C. A temperature of 20 ° C. or higher is preferable because the efficiency of the photooxidation reaction is increased. When the temperature is 95 ° C. or lower, there is no possibility of adverse effects such as deterioration of the quality of oxidized cellulose, and there is no possibility that the pressure in the reaction apparatus exceeds atmospheric pressure, and it is necessary to design an apparatus that takes pressure resistance into consideration. Since it disappears, it is preferable.
紫外線を照射する際のpH値は特に限定されないが、プロセスの簡素化を考えると中性領域、例えば、pH値は6.0~8.0程度が好ましい。
The pH value when irradiating with ultraviolet rays is not particularly limited, but considering the simplification of the process, the neutral value, for example, the pH value is preferably about 6.0 to 8.0.
紫外線照射時に酸化セルロースが受ける照射の程度は、照射反応装置内での酸化セルロースの滞留時間を調節することや、照射光源のエネルギー量を調節すること等により、任意に設定できる。また、照射装置内の酸化セルロースの濃度を水希釈によって調整したり、空気や窒素等の不活性気体を酸化セルロース中に吹き込むことによって酸化セルロースの濃度を調整したりすることにより、照射反応装置内で酸化セルロースが受ける紫外線の照射量を任意に制御することができる。これらの滞留時間や濃度等の条件は、目標とする紫外線照射後の酸化セルロースの品質(繊維長やセルロース重合度等)に応じて、適宜設定することができる。
The degree of irradiation received by oxidized cellulose during ultraviolet irradiation can be arbitrarily set by adjusting the residence time of oxidized cellulose in the irradiation reaction apparatus, adjusting the amount of energy of the irradiation light source, or the like. In addition, the concentration of oxidized cellulose in the irradiation apparatus can be adjusted by dilution with water, or the concentration of oxidized cellulose can be adjusted by blowing an inert gas such as air or nitrogen into the oxidized cellulose. It is possible to arbitrarily control the irradiation amount of ultraviolet rays received by oxidized cellulose. These conditions such as residence time and concentration can be appropriately set according to the target quality of oxidized cellulose (fiber length, cellulose polymerization degree, etc.) after ultraviolet irradiation.
紫外線照射処理は、酸素、オゾン、過酸化物(過酸化水素、過酢酸、過炭酸Na、過ホウ酸Na等)等の助剤の存在下で行なうと、光酸化反応の効率が高まるため、好ましい。
When the ultraviolet irradiation treatment is performed in the presence of an auxiliary agent such as oxygen, ozone, peroxide (hydrogen peroxide, peracetic acid, sodium percarbonate, sodium perborate, etc.), the efficiency of the photooxidation reaction is increased. preferable.
135~242nmの波長領域の紫外線を照射する場合、光源周辺の気相部に存在する空気からオゾンが生成する。この光源周辺部に連続的に空気を供給する一方で、生成するオゾンを連続的に抜き出し、この抜き出したオゾンを酸化セルロースへと注入することにより、系外からオゾンを供給すること無しに、光酸化反応の助剤としてオゾンを利用することもできる。また、光源周辺の気相部に酸素を供給することにより、より大量のオゾンを系内に発生させることができ、発生したオゾンを光酸化反応の助剤として使用することもできる。このように、紫外線照射反応装置で副次的に発生するオゾンを利用することもできる。
When irradiating ultraviolet rays in the wavelength region of 135 to 242 nm, ozone is generated from the air present in the gas phase around the light source. While continuously supplying air to the periphery of the light source, the generated ozone is continuously extracted, and this extracted ozone is injected into the oxidized cellulose, so that light can be supplied without supplying ozone from outside the system. Ozone can also be used as an auxiliary for the oxidation reaction. Further, by supplying oxygen to the gas phase around the light source, a larger amount of ozone can be generated in the system, and the generated ozone can also be used as an auxiliary agent for the photooxidation reaction. In this way, ozone generated secondary by the ultraviolet irradiation reactor can also be used.
紫外線照射処理は、複数回繰り返してもよい。繰り返しの回数は特に制限されないが、目標とする酸化セルロースの品質等の関係に応じて適宜設定できる。例えば、好ましくは100~400nm、より好ましくは135~260nmの紫外線を、好ましくは1~10回、より好ましくは2~5回、1回あたりの照射時間として、好ましくは0.5~10時間、より好ましくは0.5~3時間、紫外線を照射して行うことができる。
The ultraviolet irradiation treatment may be repeated a plurality of times. The number of repetitions is not particularly limited, but can be appropriately set according to the relationship such as the target quality of oxidized cellulose. For example, preferably 100 to 400 nm, more preferably 135 to 260 nm, preferably 1 to 10 times, more preferably 2 to 5 times, as an irradiation time per time, preferably 0.5 to 10 hours, More preferably, it can be carried out by irradiating with ultraviolet rays for 0.5 to 3 hours.
酸化セルロースを酸化分解処理する場合、通常、過酸化水素とオゾンを併用する。
過酸化水素とオゾンを併用することにより、酸化セルロースを効率よく短繊維化できる理由は、以下のように推察される。N-オキシル化合物を用いた酸化により製造された酸化セルロースの表面にはカルボキシル基が局在しており、水和層が形成されている。そのため、酸化セルロースのセルロース鎖同士の間には、カルボキシル基同士の電荷反発力の作用で、通常のセルロースでは見られない微視的隙間が存在すると考えられる。そして、酸化セルロースをオゾン及び過酸化水素で処理すると、オゾン及び過酸化水素から、酸化力に優れるヒドロキシラジカルが発生し、酸化セルロース中のセルロース鎖を効率良く酸化分解し、最終的に酸化セルロースを短繊維化する。そのため、繊維長が短いカルボキシル化セルロースナノファイバーの割合も多くなる。 When oxidized cellulose is subjected to oxidative decomposition treatment, hydrogen peroxide and ozone are usually used in combination.
The reason why the oxidized cellulose can be efficiently shortened by using hydrogen peroxide and ozone together is presumed as follows. Carboxyl groups are localized on the surface of oxidized cellulose produced by oxidation using an N-oxyl compound, and a hydrated layer is formed. Therefore, it is considered that there is a microscopic gap between the cellulose chains of the oxidized cellulose, which is not found in ordinary cellulose, due to the action of the charge repulsion between the carboxyl groups. When the oxidized cellulose is treated with ozone and hydrogen peroxide, hydroxy radicals with excellent oxidizing power are generated from the ozone and hydrogen peroxide, and the cellulose chains in the oxidized cellulose are efficiently oxidized and decomposed. Short fiber. Therefore, the proportion of carboxylated cellulose nanofibers with a short fiber length also increases.
過酸化水素とオゾンを併用することにより、酸化セルロースを効率よく短繊維化できる理由は、以下のように推察される。N-オキシル化合物を用いた酸化により製造された酸化セルロースの表面にはカルボキシル基が局在しており、水和層が形成されている。そのため、酸化セルロースのセルロース鎖同士の間には、カルボキシル基同士の電荷反発力の作用で、通常のセルロースでは見られない微視的隙間が存在すると考えられる。そして、酸化セルロースをオゾン及び過酸化水素で処理すると、オゾン及び過酸化水素から、酸化力に優れるヒドロキシラジカルが発生し、酸化セルロース中のセルロース鎖を効率良く酸化分解し、最終的に酸化セルロースを短繊維化する。そのため、繊維長が短いカルボキシル化セルロースナノファイバーの割合も多くなる。 When oxidized cellulose is subjected to oxidative decomposition treatment, hydrogen peroxide and ozone are usually used in combination.
The reason why the oxidized cellulose can be efficiently shortened by using hydrogen peroxide and ozone together is presumed as follows. Carboxyl groups are localized on the surface of oxidized cellulose produced by oxidation using an N-oxyl compound, and a hydrated layer is formed. Therefore, it is considered that there is a microscopic gap between the cellulose chains of the oxidized cellulose, which is not found in ordinary cellulose, due to the action of the charge repulsion between the carboxyl groups. When the oxidized cellulose is treated with ozone and hydrogen peroxide, hydroxy radicals with excellent oxidizing power are generated from the ozone and hydrogen peroxide, and the cellulose chains in the oxidized cellulose are efficiently oxidized and decomposed. Short fiber. Therefore, the proportion of carboxylated cellulose nanofibers with a short fiber length also increases.
オゾンは、空気又は酸素を原料としてオゾン発生装置を用いて公知の方法で発生させることができる。オゾンの添加量(質量換算)は、酸化セルロースの絶乾質量に対して、0.1~3倍が好ましく、0.3~2.5倍がより好ましく、0.5~1.5倍がさらに好ましい。オゾンの添加量が酸化セルロースの絶乾質量の0.1倍以上であると、セルロースの非晶部を十分に分解することができる。オゾンの添加量が酸化セルロースの絶乾質量の3倍以下であると、セルロースの過度の分解を抑制でき、酸化セルロースの収率の低下を防ぐことができる。
Ozone can be generated by a known method using an ozone generator using air or oxygen as a raw material. The amount of ozone added (in terms of mass) is preferably 0.1 to 3 times, more preferably 0.3 to 2.5 times, and more preferably 0.5 to 1.5 times the absolute dry mass of oxidized cellulose. Further preferred. When the amount of ozone added is at least 0.1 times the absolute dry mass of oxidized cellulose, the amorphous part of cellulose can be sufficiently decomposed. When the amount of ozone added is 3 times or less of the absolutely dry mass of oxidized cellulose, excessive decomposition of cellulose can be suppressed, and a decrease in the yield of oxidized cellulose can be prevented.
過酸化水素の添加量(質量換算)は、酸化セルロースの絶乾質量の0.001~1.5倍が好ましく、0.1~1.0倍がより好ましい。過酸化水素の添加量が酸化セルロースの絶乾質量の0.001倍以上であると、オゾンと過酸化水素との相乗作用が発揮される。また、酸化セルロースの分解に際し、過酸化水素の添加量は、酸化セルロースの1.5倍以下であれば十分であり、1.5倍超添加することはコスト増加につながり好ましくない。
The amount of hydrogen peroxide added (in terms of mass) is preferably 0.001 to 1.5 times, more preferably 0.1 to 1.0 times the absolute dry mass of oxidized cellulose. When the added amount of hydrogen peroxide is 0.001 times or more of the absolutely dry mass of oxidized cellulose, the synergistic effect of ozone and hydrogen peroxide is exhibited. In addition, when the oxidized cellulose is decomposed, it is sufficient that the amount of hydrogen peroxide added is not more than 1.5 times that of oxidized cellulose, and adding more than 1.5 times is not preferable because it leads to an increase in cost.
オゾン及び過酸化水素による酸化分解処理の条件として、pH値は、好ましくは2~12、より好ましくは4~10、さらに好ましくは6~8であり、温度は、好ましくは10~90℃、より好ましくは20~70℃、さらに好ましくは30~50℃であり、反応時間は、好ましくは1~20時間、より好ましくは2~10時間、さらに好ましくは3~6時間であることが、反応効率の観点から好ましい。
As conditions for the oxidative decomposition treatment with ozone and hydrogen peroxide, the pH value is preferably 2 to 12, more preferably 4 to 10, more preferably 6 to 8, and the temperature is preferably 10 to 90 ° C. The reaction efficiency is preferably 20 to 70 ° C., more preferably 30 to 50 ° C., and the reaction time is preferably 1 to 20 hours, more preferably 2 to 10 hours, and further preferably 3 to 6 hours. From the viewpoint of
オゾン及び過酸化水素による処理を行なうための装置は、特に限定されず、公知の装置を用いることができる。例えば、反応室、攪拌機、薬品注入装置、加熱器、及びpH電極を備えた通常の反応器を使用することができる。
The apparatus for performing the treatment with ozone and hydrogen peroxide is not particularly limited, and a known apparatus can be used. For example, a normal reactor equipped with a reaction chamber, a stirrer, a chemical injection device, a heater, and a pH electrode can be used.
オゾン及び過酸化水素による処理後、水溶液中に残留するオゾンや過酸化水素は、解繊工程においても有効に作用し、カルボキシル化セルロースナノファイバーの分散液の低粘度化を一層促進し得る。
Ozone and hydrogen peroxide remaining in the aqueous solution after the treatment with ozone and hydrogen peroxide act effectively in the defibrating process, and can further promote the lowering of the viscosity of the dispersion of carboxylated cellulose nanofibers.
[4.用途]
本発明のナノファイバーAは、スプレー用組成物、ゴム補強材、樹脂補強材料、化粧品、医療品、食品、飲料、塗料等に利用することができる。中でも、低ずり領域で高粘度であるという特性を活かすスプレー用組成物に用いることが好ましい。 [4. Application]
The nanofiber A of the present invention can be used for spray compositions, rubber reinforcing materials, resin reinforcing materials, cosmetics, medical products, foods, beverages, paints, and the like. Especially, it is preferable to use for the composition for sprays which utilizes the characteristic that it is a high viscosity in a low shear area | region.
本発明のナノファイバーAは、スプレー用組成物、ゴム補強材、樹脂補強材料、化粧品、医療品、食品、飲料、塗料等に利用することができる。中でも、低ずり領域で高粘度であるという特性を活かすスプレー用組成物に用いることが好ましい。 [4. Application]
The nanofiber A of the present invention can be used for spray compositions, rubber reinforcing materials, resin reinforcing materials, cosmetics, medical products, foods, beverages, paints, and the like. Especially, it is preferable to use for the composition for sprays which utilizes the characteristic that it is a high viscosity in a low shear area | region.
(スプレー用組成物)
スプレー用組成物は、上記のナノファイバーAと、水と、を含有するものである。また、スプレーの用途に応じて、スプレー用組成物は、機能性添加剤を含有してもよい。
ナノファイバーAが低ずり領域において高粘度であるため、スプレー用組成物は、別途増粘剤を配合しない或いは少量の配合で液だれを防止することができる。 (Spray composition)
The composition for spraying contains the nanofiber A and water. Depending on the application of the spray, the spray composition may contain a functional additive.
Since the nanofiber A has a high viscosity in the low shear region, the spray composition can prevent dripping with no additional thickener or a small amount.
スプレー用組成物は、上記のナノファイバーAと、水と、を含有するものである。また、スプレーの用途に応じて、スプレー用組成物は、機能性添加剤を含有してもよい。
ナノファイバーAが低ずり領域において高粘度であるため、スプレー用組成物は、別途増粘剤を配合しない或いは少量の配合で液だれを防止することができる。 (Spray composition)
The composition for spraying contains the nanofiber A and water. Depending on the application of the spray, the spray composition may contain a functional additive.
Since the nanofiber A has a high viscosity in the low shear region, the spray composition can prevent dripping with no additional thickener or a small amount.
機能性添加剤としては、例えば、界面活性剤、オイル類、保湿剤、有機微粒子、無機微粒子、防腐剤、消臭剤、香料、有機溶媒等があげられる。これらは、スプレー用組成物の用途に応じて選択されうる。
なお、機能性添加剤は1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。 Examples of the functional additive include surfactants, oils, humectants, organic fine particles, inorganic fine particles, preservatives, deodorants, fragrances, organic solvents and the like. These can be selected depending on the application of the spray composition.
In addition, a functional additive may be used individually by 1 type, and may be used in combination of 2 or more type.
なお、機能性添加剤は1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。 Examples of the functional additive include surfactants, oils, humectants, organic fine particles, inorganic fine particles, preservatives, deodorants, fragrances, organic solvents and the like. These can be selected depending on the application of the spray composition.
In addition, a functional additive may be used individually by 1 type, and may be used in combination of 2 or more type.
非イオン性の界面活性剤としては、例えば、プロピレングリコール脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステルソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビット脂肪酸エステル、ポリエチレングリコール脂肪酸エステル、ポリオキシエチレンひまし油、ポリオキシエチレン硬化ひまし油、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンフィトステロール、ポリオキシエチレンポリオキシプロピレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンラノリン、ポリオキシエチレンラノリンアルコール、ポリオキシエチレンミツロウ誘導体、ポリオキシエチレンアルキルアミン、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレンアルキルフェニルホルムアルデヒド縮合体等があげられる。
Examples of the nonionic surfactant include propylene glycol fatty acid ester, glycerin fatty acid ester, polyoxyethylene glycerin fatty acid ester, polyglycerin fatty acid ester sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbit fatty acid ester, Polyethylene glycol fatty acid ester, polyoxyethylene castor oil, polyoxyethylene hydrogenated castor oil, polyoxyethylene alkyl ether, polyoxyethylene phytosterol, polyoxyethylene polyoxypropylene alkyl ether, polyoxyethylene alkylphenyl ether, polyoxyethylene lanolin, polyoxy Ethylene lanolin alcohol, polyoxyethylene beeswax derivative, polio Shi polyoxyethylene alkyl amines, polyoxyethylene fatty acid amides, polyoxyethylene alkylphenyl formaldehyde condensates and the like.
オイル類としては、例えば、ホホバ油、マカデミアナッツ油、アボガド油、月見草油、ミンク油、ナタネ油、ひまし油、ヒマワリ油、トウモロコシ油、カカオ油、ヤシ油、コメヌカ油、オリーブ油、アーモンド油、ごま油、サフラワー油、大豆油、椿油、パーシック油、綿実油、モクロウ、パーム油、パーム核油、卵黄油、ラノリン、スクワレン等の天然動植物油脂類;合成トリグリセライド、スクワラン、流動パラフィン、ワセリン、セレシン、マイクロクリスタリンワックス、イソパラフィン等の炭化水素類;カルナバウロウ、パラフィンワックス、鯨ロウ、ミツロウ、キャンデリラワックス、ラノリン等のワックス類;高級アルコール類(セタノール、ステアリルアルコール、ラウリルアルコール、セトステアリルアルコール、オレイルアルコール、ベヘニルアルコール、ラノリンアルコール、水添ラノリンアルコール、ヘキシルデカノール、オクチルドデカノール等);ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘニン酸、イソステアリン酸、オレイン酸、リノレン酸、リノール酸、オキシステアリン酸、ウンデシレン酸、ラノリン脂肪酸、硬質ラノリン脂肪酸、軟質ラノリン脂肪酸等の高級脂肪酸類;コレステリル-オクチルドデシル-ベヘニル等のコレステロールおよびその誘導体;イソプロピルミリスチン酸、イソプロピルパルミチン酸、イソプロピルステアリン酸、2エチルヘキサン酸グリセロール、ブチルステアリン酸等のエステル類;ジエチレングリコールモノプロピルエーテル、ポリオキシエチレンポリオキシプロピレンペンタエリトリトールエーテル、ポリオキシプロピレンブチルエーテル、リノール酸エチル等の極性オイル;アミノ変性シリコーン、エポキシ変性シリコーン、カルボキシル変性シリコーン、カルビノール変性シリコーン、メタクリル変性シリコーン、メルカプト変性シリコーン、フェノール変性シリコーン、片末端反応性シリコーン、異種官能基変性シリコーン、ポリエーテル変性シリコーン、メチルスチリル変性シリコーン、アルキル変性シリコーン、高級脂肪酸エステル変性シリコーン、親水性特殊変性シリコーン、高級アルコキシ変性シリコーン、高級脂肪酸含有シリコーン、フッ素変性シリコーン等のシリコーン類等があげられる。
なお、シリコーン類の詳細は、ジメチルポリシロキサン、メチルフェニルポリシロキサン、メチルポリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサンシロキサン、メチルシクロポリシロキサン、オクタメチルトリシロキサン、デカメチルテトラシロキサン、ポリオキシエチレン・メチルポリシロキサン共重合体、ポリオキシプロピレン・メチルポリシロキサン共重合体、ポリ(オキシエチレン・オキシプロピレン)メチルポリシロキサン共重合体、メチルハイドロジェンポリシロキサン、テトラヒドロテトラメチルシクロテトラシロキサン、ステアロキシメチルポリシロキサン、セトキシメチルポリシロキサン、メチルポリシロキサンエマルション、高重合メチルポリシロキサン、トリメチルシロキシケイ酸、架橋型メチルポリシロキサン、架橋型メチルフェニルポリシロキサン等である。 Examples of oils include jojoba oil, macadamia nut oil, avocado oil, evening primrose oil, mink oil, rapeseed oil, castor oil, sunflower oil, corn oil, cacao oil, coconut oil, rice bran oil, olive oil, almond oil, sesame oil, safflower oil. Natural animal and vegetable fats and oils such as flower oil, soybean oil, cocoon oil, persic oil, cottonseed oil, molasses, palm oil, palm kernel oil, egg yolk oil, lanolin, squalene; synthetic triglyceride, squalane, liquid paraffin, petrolatum, ceresin, microcrystalline wax , Hydrocarbons such as isoparaffin; waxes such as carnauba wax, paraffin wax, whale wax, beeswax, candelilla wax, lanolin; higher alcohols (cetanol, stearyl alcohol, lauryl alcohol, cetostearyl alcohol, olei Alcohol, behenyl alcohol, lanolin alcohol, hydrogenated lanolin alcohol, hexyl decanol, octyldodecanol, etc.); lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, isostearic acid, oleic acid, linolenic acid, linoleic acid, oxystearic acid Higher fatty acids such as undecylenic acid, lanolin fatty acid, hard lanolin fatty acid, soft lanolin fatty acid; cholesterol and derivatives thereof such as cholesteryl-octyldodecyl-behenyl; isopropyl myristic acid, isopropyl palmitic acid, isopropyl stearic acid, glycerol 2-ethylhexanoate , Esters such as butyl stearic acid; diethylene glycol monopropyl ether, polyoxyethylene polyoxypropylene pentaerythritol Polar oils such as ether ether, polyoxypropylene butyl ether, ethyl linoleate; amino-modified silicone, epoxy-modified silicone, carboxyl-modified silicone, carbinol-modified silicone, methacryl-modified silicone, mercapto-modified silicone, phenol-modified silicone, one-end reactive silicone, Different functional group-modified silicones, polyether-modified silicones, methylstyryl-modified silicones, alkyl-modified silicones, higher fatty acid ester-modified silicones, hydrophilic specially-modified silicones, higher alkoxy-modified silicones, higher fatty acid-containing silicones, silicones such as fluorine-modified silicones, etc. Is given.
The details of silicones are dimethylpolysiloxane, methylphenylpolysiloxane, methylpolysiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexanesiloxane, methylcyclopolysiloxane, octamethyltrisiloxane, decamethyl. Tetrasiloxane, polyoxyethylene / methylpolysiloxane copolymer, polyoxypropylene / methylpolysiloxane copolymer, poly (oxyethylene / oxypropylene) methylpolysiloxane copolymer, methylhydrogenpolysiloxane, tetrahydrotetramethylcyclo Tetrasiloxane, stearoxymethyl polysiloxane, cetoxymethyl polysiloxane, methyl polysiloxane emulsion, highly polymerized methyl poly Rokisan, trimethylsiloxy silicic acid, crosslinked methylpolysiloxane, a crosslinked methylphenyl polysiloxane.
なお、シリコーン類の詳細は、ジメチルポリシロキサン、メチルフェニルポリシロキサン、メチルポリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサンシロキサン、メチルシクロポリシロキサン、オクタメチルトリシロキサン、デカメチルテトラシロキサン、ポリオキシエチレン・メチルポリシロキサン共重合体、ポリオキシプロピレン・メチルポリシロキサン共重合体、ポリ(オキシエチレン・オキシプロピレン)メチルポリシロキサン共重合体、メチルハイドロジェンポリシロキサン、テトラヒドロテトラメチルシクロテトラシロキサン、ステアロキシメチルポリシロキサン、セトキシメチルポリシロキサン、メチルポリシロキサンエマルション、高重合メチルポリシロキサン、トリメチルシロキシケイ酸、架橋型メチルポリシロキサン、架橋型メチルフェニルポリシロキサン等である。 Examples of oils include jojoba oil, macadamia nut oil, avocado oil, evening primrose oil, mink oil, rapeseed oil, castor oil, sunflower oil, corn oil, cacao oil, coconut oil, rice bran oil, olive oil, almond oil, sesame oil, safflower oil. Natural animal and vegetable fats and oils such as flower oil, soybean oil, cocoon oil, persic oil, cottonseed oil, molasses, palm oil, palm kernel oil, egg yolk oil, lanolin, squalene; synthetic triglyceride, squalane, liquid paraffin, petrolatum, ceresin, microcrystalline wax , Hydrocarbons such as isoparaffin; waxes such as carnauba wax, paraffin wax, whale wax, beeswax, candelilla wax, lanolin; higher alcohols (cetanol, stearyl alcohol, lauryl alcohol, cetostearyl alcohol, olei Alcohol, behenyl alcohol, lanolin alcohol, hydrogenated lanolin alcohol, hexyl decanol, octyldodecanol, etc.); lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, isostearic acid, oleic acid, linolenic acid, linoleic acid, oxystearic acid Higher fatty acids such as undecylenic acid, lanolin fatty acid, hard lanolin fatty acid, soft lanolin fatty acid; cholesterol and derivatives thereof such as cholesteryl-octyldodecyl-behenyl; isopropyl myristic acid, isopropyl palmitic acid, isopropyl stearic acid, glycerol 2-ethylhexanoate , Esters such as butyl stearic acid; diethylene glycol monopropyl ether, polyoxyethylene polyoxypropylene pentaerythritol Polar oils such as ether ether, polyoxypropylene butyl ether, ethyl linoleate; amino-modified silicone, epoxy-modified silicone, carboxyl-modified silicone, carbinol-modified silicone, methacryl-modified silicone, mercapto-modified silicone, phenol-modified silicone, one-end reactive silicone, Different functional group-modified silicones, polyether-modified silicones, methylstyryl-modified silicones, alkyl-modified silicones, higher fatty acid ester-modified silicones, hydrophilic specially-modified silicones, higher alkoxy-modified silicones, higher fatty acid-containing silicones, silicones such as fluorine-modified silicones, etc. Is given.
The details of silicones are dimethylpolysiloxane, methylphenylpolysiloxane, methylpolysiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexanesiloxane, methylcyclopolysiloxane, octamethyltrisiloxane, decamethyl. Tetrasiloxane, polyoxyethylene / methylpolysiloxane copolymer, polyoxypropylene / methylpolysiloxane copolymer, poly (oxyethylene / oxypropylene) methylpolysiloxane copolymer, methylhydrogenpolysiloxane, tetrahydrotetramethylcyclo Tetrasiloxane, stearoxymethyl polysiloxane, cetoxymethyl polysiloxane, methyl polysiloxane emulsion, highly polymerized methyl poly Rokisan, trimethylsiloxy silicic acid, crosslinked methylpolysiloxane, a crosslinked methylphenyl polysiloxane.
保湿剤としては、トリオクタン酸グリセリル、マルチトール、ソルビトール、グリセリン、プロピレングリコール、1,3-ブチレングリコール、ポリエチレングリコール、グリコール等の多価アルコール;ピロリドンカルボン酸ソーダ、乳酸ソーダ、クエン酸ソーダなど有機酸およびその塩;ヒアルロン酸ソーダなどヒアルロン酸およびその塩;酵母および酵母抽出液の加水分解物;酵母培養液、乳酸菌培養液など醗酵代謝産物;コラーゲン、エラスチン、ケラチン、セリシン等の水溶性蛋白;コラーゲン加水分解物、カゼイン加水分解物、シルク加水分解物、ポリアスパラギン酸ナトリウム等のぺプチド類およびその塩;トレハロース、キシロビオース、マルトース、蔗糖、ブドウ糖、植物性粘質多糖等の糖類・多糖類およびその誘導体;水溶性キチン、キトサン、ペクチン、コンドロイチン硫酸およびその塩等のグリコサミノグリカンおよびその塩;グリシン、セリン、スレオニン、アラニン、アスパラギン酸、チロシン、バリン、ロイシン、アルギニン、グルタミン、プロリン酸等のアミノ酸;アミノカルボニル反応物等の糖アミノ酸化合物;アロエ、マロニエ等の植物抽出液、トリメチルグリシン、尿素、尿酸、アンモニア、レシチン、ラノリン、スクワラン、スクワレン、グルコサミン、クレアチニン、DNA、RNA等の核酸関連物質等があげられる。
Examples of humectants include polyhydric alcohols such as glyceryl trioctanoate, maltitol, sorbitol, glycerin, propylene glycol, 1,3-butylene glycol, polyethylene glycol, glycol; organic acids such as pyrrolidone carboxylate soda, lactate soda, and sodium citrate And its salts; hyaluronic acid and its salts such as sodium hyaluronate; hydrolyzate of yeast and yeast extract; fermentation metabolites such as yeast culture and lactic acid bacteria culture; water-soluble proteins such as collagen, elastin, keratin and sericin; collagen Peptides such as hydrolysates, casein hydrolysates, silk hydrolysates, sodium polyaspartate and their salts; saccharides / polysaccharides such as trehalose, xylobiose, maltose, sucrose, glucose, vegetable viscous polysaccharides and the like Guidance Glycosaminoglycans and salts thereof such as water-soluble chitin, chitosan, pectin, chondroitin sulfate and salts thereof; amino acids such as glycine, serine, threonine, alanine, aspartic acid, tyrosine, valine, leucine, arginine, glutamine and prophosphoric acid Sugar-amino acid compounds such as aminocarbonyl reaction products; plant extracts such as aloe and maronier, nucleic acid-related substances such as trimethylglycine, urea, uric acid, ammonia, lecithin, lanolin, squalane, squalene, glucosamine, creatinine, DNA, RNA, etc. Can be given.
有機微粒子としては、例えば、スチレン-ブタジエン共重合系ラテックス、アクリル系エマルジョン等の乳化重合によって得られるラテックス・エマルジョンやポリウレタン水分散体があげられる。
また、無機微粒子としては、例えば、ゼオライト、モンモリロナイト、アスベスト、スメクタイト、マイカ、ヒュームドシリカ、コロイダルシリカ、酸化チタン等の無機微粒子があげられる。 Examples of the organic fine particles include latex emulsions obtained by emulsion polymerization such as styrene-butadiene copolymer latex and acrylic emulsion, and polyurethane water dispersions.
Examples of the inorganic fine particles include inorganic fine particles such as zeolite, montmorillonite, asbestos, smectite, mica, fumed silica, colloidal silica, and titanium oxide.
また、無機微粒子としては、例えば、ゼオライト、モンモリロナイト、アスベスト、スメクタイト、マイカ、ヒュームドシリカ、コロイダルシリカ、酸化チタン等の無機微粒子があげられる。 Examples of the organic fine particles include latex emulsions obtained by emulsion polymerization such as styrene-butadiene copolymer latex and acrylic emulsion, and polyurethane water dispersions.
Examples of the inorganic fine particles include inorganic fine particles such as zeolite, montmorillonite, asbestos, smectite, mica, fumed silica, colloidal silica, and titanium oxide.
防腐剤としては、例えば、メチルパラベン、エチルパラベン等があげられる。
Examples of the preservative include methyl paraben and ethyl paraben.
消臭剤・香料としては、D-リモネン、デシルアルデヒド、メントン、プレゴン、オイゲノール、シンナムアルデヒド、ベンズアルデヒド、メントール、ペパーミント油、レモン油、オレンジ油、植物の各器官より抽出した消臭有効成分(例えば、水や親水性有機溶剤により、カタバミ、ドクダミ、ツガ、イチョウ、クロマツ、カラマツ、アカマツ、キリ、ヒイラギモクセイ、ライラック、キンモクセイ、フキ、ツワブキ、レンギョウの各器官から抽出し得られた消臭有効成分)等があげられる。
Deodorants and fragrances include D-limonene, decylaldehyde, menthone, pulegone, eugenol, cinnamaldehyde, benzaldehyde, menthol, peppermint oil, lemon oil, orange oil, and a deodorizing active ingredient extracted from each organ of plants (for example, Deodorant active ingredient extracted from each organ of water, hydrophilic, organic solvent, honey beetle, dolphin, moth, ginkgo, black pine, larch, red pine, giraffe, holly mushroom, lilac, beetle, coral, camellia, forsythia ) Etc.
有機溶媒としては、水に可溶するアルコール類(メタノール、エタノール、イソプロパノール、イソブタノール、sec-ブタノール、tert-ブタノール、メチルセロソルブ、エチルセロソルブ、エチレングリコール、グリセリン等)、エーテル類(エチレングリコールジメチルエーテル、1,4-ジオキサン、テトラヒドロフラン等)、ケトン類(アセトン、メチルエチルケトン)やN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキサイド等があげられる。
Examples of the organic solvent include water-soluble alcohols (methanol, ethanol, isopropanol, isobutanol, sec-butanol, tert-butanol, methyl cellosolve, ethyl cellosolve, ethylene glycol, glycerin, etc.), ethers (ethylene glycol dimethyl ether, 1,4-dioxane, tetrahydrofuran, etc.), ketones (acetone, methyl ethyl ketone), N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide and the like.
本発明のナノファイバーBは、スプレー用組成物;NR、SBR、EPDM、NBR等のゴム補強材;ポリオレフィン系樹脂、アクリル樹脂、ウレタン樹脂、PVC樹脂、ポリアミド系樹脂、PC系樹脂等の樹脂補強材料;上皮に適用されるクリーム、ローション、ゲル、スティック、ポンプスプレー、エアゾール、ロールオンの形態の発汗抑制剤、デオドラント、芳香放出ゲル、口紅、リップグロス、液体化粧製品等の化粧品;薬品の放出を制御する、持続させる、又は遅延させる添加剤、錠剤用の崩壊剤、傷ケア製品等における液体保持剤、レオロジー修飾剤等の医療品;レオロジー修飾剤、懸濁液でのクリーミングや沈殿を抑制する安定剤、難消化性食物繊維等の食品;飲料;塗料;土壌や排水中に含まれる環境に好ましくない金属の金属吸着剤等に利用することができる。
Nanofiber B of the present invention is a composition for spraying; rubber reinforcement such as NR, SBR, EPDM, NBR; resin reinforcement such as polyolefin resin, acrylic resin, urethane resin, PVC resin, polyamide resin, PC resin, etc. Ingredients; creams, lotions, gels, sticks, pump sprays, aerosols, roll-on antiperspirants in the form of epidermis, deodorants, fragrance release gels, lipsticks, lip gloss, liquid cosmetics and other cosmetics; Controlled, sustained or delayed additives, disintegrants for tablets, liquid retainers in wound care products, medical products such as rheology modifiers; rheology modifiers, inhibiting creaming and precipitation in suspensions Stabilizers, foods such as indigestible dietary fiber; beverages; paints; metals unfavorable to the environment contained in soil and wastewater It can be utilized in metal adsorbents.
以下、本発明を実施例により詳細に説明する。以下の実施例は、本発明を好適に説明するためのものであって、本発明を限定するものではない。なお、物性値等の測定方法は、別途記載がない限り、上記に記載した測定方法である。
Hereinafter, the present invention will be described in detail with reference to examples. The following examples are for explaining the present invention preferably and are not intended to limit the present invention. In addition, unless otherwise indicated, the measuring methods, such as a physical-property value, are the measuring methods described above.
[粘度(Pa・s)]:カルボキシル化セルロースナノファイバーに水を添加して、1.95~1.05質量%の水分散体を調製し、当該水分散体を、粘弾性レオメーターを用いて、所定のずり速度で測定した。
[Viscosity (Pa · s)]: Water is added to carboxylated cellulose nanofibers to prepare an aqueous dispersion of 1.95 to 1.05% by mass, and the aqueous dispersion is prepared using a viscoelastic rheometer. And measured at a predetermined shear rate.
[カルボキシル基量]:カルボキシル基量は以下のようにして測定した。カルボキシル化セルロースの0.5質量%スラリー(水分散液)60mlを調製し、0.1M塩酸水溶液を加えてpH2.5とした後、0.05Nの水酸化ナトリウム水溶液を滴下してpHが11になるまで電気伝導度を測定した。電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(a)から、下式を用いてカルボキシル基量を算出した:
カルボキシル基量〔mmol/gカルボキシル化セルロース〕=a〔ml〕×0.05/カルボキシル化セルロース質量〔g〕 [Amount of carboxyl group]: The amount of carboxyl group was measured as follows. Prepare 60 ml of 0.5% by weight slurry (aqueous dispersion) of carboxylated cellulose, add 0.1 M hydrochloric acid aqueous solution to pH 2.5, then add 0.05 N aqueous sodium hydroxide solution dropwise to adjust the pH to 11 The electrical conductivity was measured until The amount of carboxyl groups was calculated from the amount of sodium hydroxide consumed (a) in the weak acid neutralization stage where the change in electrical conductivity was gradual using the following formula:
Amount of carboxyl group [mmol / g carboxylated cellulose] = a [ml] × 0.05 / carboxylated cellulose mass [g]
カルボキシル基量〔mmol/gカルボキシル化セルロース〕=a〔ml〕×0.05/カルボキシル化セルロース質量〔g〕 [Amount of carboxyl group]: The amount of carboxyl group was measured as follows. Prepare 60 ml of 0.5% by weight slurry (aqueous dispersion) of carboxylated cellulose, add 0.1 M hydrochloric acid aqueous solution to pH 2.5, then add 0.05 N aqueous sodium hydroxide solution dropwise to adjust the pH to 11 The electrical conductivity was measured until The amount of carboxyl groups was calculated from the amount of sodium hydroxide consumed (a) in the weak acid neutralization stage where the change in electrical conductivity was gradual using the following formula:
Amount of carboxyl group [mmol / g carboxylated cellulose] = a [ml] × 0.05 / carboxylated cellulose mass [g]
[平均繊維長(nm)]:カルボキシル化セルロースナノファイバーをマイカ切片上に固定し、原子間力顕微鏡(AFM)を用いて200本の繊維の繊維長を測定し、長さ(加重)平均繊維長を算出した。なお、繊維長の測定は、画像解析ソフトWinROOF(三谷商事社製)を用いて行った。
[Average fiber length (nm)]: Carboxylated cellulose nanofibers are fixed on a mica section, the fiber length of 200 fibers is measured using an atomic force microscope (AFM), and the length (weighted) average fiber is measured. The length was calculated. The fiber length was measured using image analysis software WinROOF (Mitani Corporation).
[平均繊維径(nm)]:カルボキシル化セルロースナノファイバーの濃度が0.001質量%となるように希釈したカルボキシル化セルロースナノファイバー水分散液を調製した。この希釈分散液をマイカ製試料台に薄く延ばし、50℃で加熱乾燥させて観察用試料を作製した。原子間力顕微鏡(AFM)にて観察した形状像の断面高さを計測し、加重平均繊維径を算出した。
[Average fiber diameter (nm)]: An aqueous dispersion of carboxylated cellulose nanofibers diluted so that the concentration of carboxylated cellulose nanofibers was 0.001% by mass was prepared. This diluted dispersion was thinly spread on a mica sample stage and heated and dried at 50 ° C. to prepare an observation sample. The cross-sectional height of the shape image observed with an atomic force microscope (AFM) was measured, and the weighted average fiber diameter was calculated.
[300nm以下又は600nm以上の繊維長を有する繊維の割合(%)]:長さ(加重)平均繊維長を測定したカルボキシル化セルロースナノファイバーのうち繊維長が300nm以下又は600nm以上の繊維の割合を算出した。
[Ratio (%) of fibers having a fiber length of 300 nm or less or 600 nm or more]: The ratio of fibers having a fiber length of 300 nm or less or 600 nm or more among carboxylated cellulose nanofibers whose length (weighted) average fiber length was measured. Calculated.
(実施例1)
漂白済み針葉樹未叩解パルプ(日本製紙社製)5g(絶乾)を、TEMPO(Sigma Aldrich社製)78mg(0.5mmol)と臭化ナトリウム754mg(7.4mmol)を溶解した水溶液500mlに加え、パルプが均一に分散するまで撹拌した。反応系に2M次亜塩素酸ナトリウム水溶液14ml添加した後、0.5N塩酸水溶液でpHを10.3に調整し、酸化反応を開始した。反応中は系内のpHは低下するので、0.5N水酸化ナトリウム水溶液を逐次添加し、pH10に維持した。2時間反応させた後、ガラスフィルターで濾過し、十分に水洗することでカルボキシル基量1.60mmol/gの酸化セルロースを得た。 Example 1
5 g (absolutely dried) of bleached softwood unbeaten pulp (Nippon Paper Co., Ltd.) was added to 500 ml of an aqueous solution in which 78 mg (0.5 mmol) of TEMPO (manufactured by Sigma Aldrich) and 754 mg (7.4 mmol) of sodium bromide were dissolved. Stir until the pulp is uniformly dispersed. After adding 14 ml of 2M aqueous sodium hypochlorite solution to the reaction system, the pH was adjusted to 10.3 with 0.5N aqueous hydrochloric acid solution to initiate the oxidation reaction. Since the pH in the system was lowered during the reaction, a 0.5N sodium hydroxide aqueous solution was sequentially added to maintain the pH at 10. After reacting for 2 hours, the mixture was filtered through a glass filter and washed thoroughly with water to obtain oxidized cellulose having a carboxyl group amount of 1.60 mmol / g.
漂白済み針葉樹未叩解パルプ(日本製紙社製)5g(絶乾)を、TEMPO(Sigma Aldrich社製)78mg(0.5mmol)と臭化ナトリウム754mg(7.4mmol)を溶解した水溶液500mlに加え、パルプが均一に分散するまで撹拌した。反応系に2M次亜塩素酸ナトリウム水溶液14ml添加した後、0.5N塩酸水溶液でpHを10.3に調整し、酸化反応を開始した。反応中は系内のpHは低下するので、0.5N水酸化ナトリウム水溶液を逐次添加し、pH10に維持した。2時間反応させた後、ガラスフィルターで濾過し、十分に水洗することでカルボキシル基量1.60mmol/gの酸化セルロースを得た。 Example 1
5 g (absolutely dried) of bleached softwood unbeaten pulp (Nippon Paper Co., Ltd.) was added to 500 ml of an aqueous solution in which 78 mg (0.5 mmol) of TEMPO (manufactured by Sigma Aldrich) and 754 mg (7.4 mmol) of sodium bromide were dissolved. Stir until the pulp is uniformly dispersed. After adding 14 ml of 2M aqueous sodium hypochlorite solution to the reaction system, the pH was adjusted to 10.3 with 0.5N aqueous hydrochloric acid solution to initiate the oxidation reaction. Since the pH in the system was lowered during the reaction, a 0.5N sodium hydroxide aqueous solution was sequentially added to maintain the pH at 10. After reacting for 2 hours, the mixture was filtered through a glass filter and washed thoroughly with water to obtain oxidized cellulose having a carboxyl group amount of 1.60 mmol / g.
次いで、得られた酸化セルロースのスラリーを水で1%(w/v)に調整し、超高圧ホモジナイザー(20℃、140MPa)で3回処理し、透明なゲル状のカルボキシル化セルロースナノファイバー塩の分散液(1%(w/v))を得た。
Next, the obtained slurry of oxidized cellulose was adjusted to 1% (w / v) with water, treated with an ultra-high pressure homogenizer (20 ° C., 140 MPa) three times, and a transparent gel-like carboxylated cellulose nanofiber salt was obtained. A dispersion (1% (w / v)) was obtained.
得られたカルボキシル化セルロースナノファイバー塩の分散液に陽イオン交換樹脂(オルガノ社製、「アンバージェット1024」)を添加し、20℃で0.3時間撹拌して接触させた。その後、金属メッシュ(目開き100メッシュ)で陽イオン交換樹脂と水分散液を分離して、酸型のカルボキシル化セルロースナノファイバー(ナノファイバーA)を得た。
A cation exchange resin (manufactured by Organo Corporation, “Amberjet 1024”) was added to the resulting dispersion of carboxylated cellulose nanofiber salt, and the mixture was stirred at 20 ° C. for 0.3 hours for contact. Thereafter, the cation exchange resin and the aqueous dispersion were separated with a metal mesh (aperture 100 mesh) to obtain an acid-type carboxylated cellulose nanofiber (nanofiber A).
得られた酸型のカルボキシル化セルロースナノファイバーの1.00質量%の水分散液の粘度は、ずり速度(0.00417s-1、30℃)の条件では925Pa・sであり、(0.00671s-1、30℃)の条件では920Pa・sであった。結果を表1に記す。
また、得られた酸型のカルボキシル化セルロースナノファイバーの平均繊維長は549nmであり、平均繊維径は2.83nmであり、300nm以下の繊維長を有する繊維の割合は29.3%であり、600nm以上の繊維長を有する繊維の割合は23.2%であった。結果を表2に記し、繊維長分布の割合を図1に示す。 The viscosity of an aqueous dispersion of 1.00% by mass of the obtained acid-type carboxylated cellulose nanofibers was 925 Pa · s under the conditions of shear rate (0.00417 s −1 , 30 ° C.), and (0.00671 s −1 , 30 ° C.), it was 920 Pa · s. The results are shown in Table 1.
Moreover, the average fiber length of the obtained acid-type carboxylated cellulose nanofiber is 549 nm, the average fiber diameter is 2.83 nm, and the proportion of fibers having a fiber length of 300 nm or less is 29.3%. The proportion of fibers having a fiber length of 600 nm or more was 23.2%. The results are shown in Table 2, and the fiber length distribution ratio is shown in FIG.
また、得られた酸型のカルボキシル化セルロースナノファイバーの平均繊維長は549nmであり、平均繊維径は2.83nmであり、300nm以下の繊維長を有する繊維の割合は29.3%であり、600nm以上の繊維長を有する繊維の割合は23.2%であった。結果を表2に記し、繊維長分布の割合を図1に示す。 The viscosity of an aqueous dispersion of 1.00% by mass of the obtained acid-type carboxylated cellulose nanofibers was 925 Pa · s under the conditions of shear rate (0.00417 s −1 , 30 ° C.), and (0.00671 s −1 , 30 ° C.), it was 920 Pa · s. The results are shown in Table 1.
Moreover, the average fiber length of the obtained acid-type carboxylated cellulose nanofiber is 549 nm, the average fiber diameter is 2.83 nm, and the proportion of fibers having a fiber length of 300 nm or less is 29.3%. The proportion of fibers having a fiber length of 600 nm or more was 23.2%. The results are shown in Table 2, and the fiber length distribution ratio is shown in FIG.
(比較例1)
脱塩工程を次の通り変更したこと以外は実施例1と同様にして、カルボキシル化セルロースナノファイバーを得た。
カルボキシル化セルロースナノファイバー塩の分散液に10%の塩酸水溶液をpH2.4になるまで添加し、20℃で0.4時間撹拌して接触させた。その後、洗浄と脱水処理を3度繰り返した後、濾過した。濾物に水を添加して1.0%(w/v)に調整し、超高圧ホモジナイザー(20℃、140MPa)で2回処理し、透明なゲル状のH型カルボキシル化セルロースナノファイバーの分散液(1%(w/v))を得た。 (Comparative Example 1)
Carboxylated cellulose nanofibers were obtained in the same manner as in Example 1 except that the desalting step was changed as follows.
A 10% aqueous hydrochloric acid solution was added to the dispersion of the carboxylated cellulose nanofiber salt until the pH reached 2.4, and the mixture was stirred for 0.4 hours at 20 ° C. and contacted. Thereafter, washing and dehydration were repeated three times, followed by filtration. Water is added to the filtrate to adjust to 1.0% (w / v), treated twice with an ultra-high pressure homogenizer (20 ° C., 140 MPa), and dispersion of transparent gel-like H-type carboxylated cellulose nanofibers A liquid (1% (w / v)) was obtained.
脱塩工程を次の通り変更したこと以外は実施例1と同様にして、カルボキシル化セルロースナノファイバーを得た。
カルボキシル化セルロースナノファイバー塩の分散液に10%の塩酸水溶液をpH2.4になるまで添加し、20℃で0.4時間撹拌して接触させた。その後、洗浄と脱水処理を3度繰り返した後、濾過した。濾物に水を添加して1.0%(w/v)に調整し、超高圧ホモジナイザー(20℃、140MPa)で2回処理し、透明なゲル状のH型カルボキシル化セルロースナノファイバーの分散液(1%(w/v))を得た。 (Comparative Example 1)
Carboxylated cellulose nanofibers were obtained in the same manner as in Example 1 except that the desalting step was changed as follows.
A 10% aqueous hydrochloric acid solution was added to the dispersion of the carboxylated cellulose nanofiber salt until the pH reached 2.4, and the mixture was stirred for 0.4 hours at 20 ° C. and contacted. Thereafter, washing and dehydration were repeated three times, followed by filtration. Water is added to the filtrate to adjust to 1.0% (w / v), treated twice with an ultra-high pressure homogenizer (20 ° C., 140 MPa), and dispersion of transparent gel-like H-type carboxylated cellulose nanofibers A liquid (1% (w / v)) was obtained.
得られたカルボキシル化セルロースナノファイバーの1.00質量%の水分散液の粘度は、ずり速度(0.00417s-1、30℃)の条件では336Pa・sであり、(0.00671s-1、30℃)の条件では350Pa・sであった。結果を表1に記す。
また、得られたカルボキシル化セルロースナノファイバーの平均繊維長は503nmであり、平均繊維径は2.55nmであった。 The viscosity of an aqueous dispersion of 1.00% by mass of the obtained carboxylated cellulose nanofiber is 336 Pa · s under the condition of shear rate (0.00417 s −1 , 30 ° C.), and (0.00671 s −1 , 30 Pa) under the condition of 30 ° C. The results are shown in Table 1.
Moreover, the average fiber length of the obtained carboxylated cellulose nanofiber was 503 nm, and the average fiber diameter was 2.55 nm.
また、得られたカルボキシル化セルロースナノファイバーの平均繊維長は503nmであり、平均繊維径は2.55nmであった。 The viscosity of an aqueous dispersion of 1.00% by mass of the obtained carboxylated cellulose nanofiber is 336 Pa · s under the condition of shear rate (0.00417 s −1 , 30 ° C.), and (0.00671 s −1 , 30 Pa) under the condition of 30 ° C. The results are shown in Table 1.
Moreover, the average fiber length of the obtained carboxylated cellulose nanofiber was 503 nm, and the average fiber diameter was 2.55 nm.
(実施例2)
漂白済み針葉樹未叩解パルプ(日本製紙社製)5g(絶乾)を、TEMPO(Sigma Aldrich社製)78mg(0.5mmol)と臭化ナトリウム754mg(7.4mmol)を溶解した水溶液500mlに加え、パルプが均一に分散するまで撹拌した。反応系に2M次亜塩素酸ナトリウム水溶液11ml添加した後、0.5N塩酸水溶液でpHを10.3に調整し、酸化反応を開始した。反応中は系内のpHは低下するので、0.5N水酸化ナトリウム水溶液を逐次添加し、pH10に維持した。1.5時間反応させた後、ガラスフィルターで濾過し、十分に水洗することでカルボキシル基量1.23mmol/gの酸化セルロースを得た。 (Example 2)
5 g (absolutely dried) of bleached softwood unbeaten pulp (Nippon Paper Co., Ltd.) was added to 500 ml of an aqueous solution in which 78 mg (0.5 mmol) of TEMPO (manufactured by Sigma Aldrich) and 754 mg (7.4 mmol) of sodium bromide were dissolved. Stir until the pulp is uniformly dispersed. After adding 11 ml of 2M aqueous sodium hypochlorite solution to the reaction system, the pH was adjusted to 10.3 with 0.5N aqueous hydrochloric acid solution to initiate the oxidation reaction. Since the pH in the system was lowered during the reaction, a 0.5N sodium hydroxide aqueous solution was sequentially added to maintain the pH at 10. After reacting for 1.5 hours, the mixture was filtered through a glass filter and sufficiently washed with water to obtain oxidized cellulose having a carboxyl group amount of 1.23 mmol / g.
漂白済み針葉樹未叩解パルプ(日本製紙社製)5g(絶乾)を、TEMPO(Sigma Aldrich社製)78mg(0.5mmol)と臭化ナトリウム754mg(7.4mmol)を溶解した水溶液500mlに加え、パルプが均一に分散するまで撹拌した。反応系に2M次亜塩素酸ナトリウム水溶液11ml添加した後、0.5N塩酸水溶液でpHを10.3に調整し、酸化反応を開始した。反応中は系内のpHは低下するので、0.5N水酸化ナトリウム水溶液を逐次添加し、pH10に維持した。1.5時間反応させた後、ガラスフィルターで濾過し、十分に水洗することでカルボキシル基量1.23mmol/gの酸化セルロースを得た。 (Example 2)
5 g (absolutely dried) of bleached softwood unbeaten pulp (Nippon Paper Co., Ltd.) was added to 500 ml of an aqueous solution in which 78 mg (0.5 mmol) of TEMPO (manufactured by Sigma Aldrich) and 754 mg (7.4 mmol) of sodium bromide were dissolved. Stir until the pulp is uniformly dispersed. After adding 11 ml of 2M aqueous sodium hypochlorite solution to the reaction system, the pH was adjusted to 10.3 with 0.5N aqueous hydrochloric acid solution to initiate the oxidation reaction. Since the pH in the system was lowered during the reaction, a 0.5N sodium hydroxide aqueous solution was sequentially added to maintain the pH at 10. After reacting for 1.5 hours, the mixture was filtered through a glass filter and sufficiently washed with water to obtain oxidized cellulose having a carboxyl group amount of 1.23 mmol / g.
次いで、得られた酸化セルロースのスラリーを水で1%(w/v)に調整し、超高圧ホモジナイザー(20℃、140MPa)で2回処理し、透明なゲル状のカルボキシル化セルロースナノファイバー塩の分散液(1%(w/v))を得た。
Next, the obtained slurry of oxidized cellulose was adjusted to 1% (w / v) with water, treated twice with an ultrahigh pressure homogenizer (20 ° C., 140 MPa), and a transparent gel-like carboxylated cellulose nanofiber salt was obtained. A dispersion (1% (w / v)) was obtained.
得られたカルボキシル化セルロースナノファイバー塩の分散液に陽イオン交換樹脂(オルガノ社製、「アンバージェット1024」)を添加し、20℃で0.3時間撹拌して接触させた。その後、金属メッシュ(目開き100メッシュ)で陽イオン交換樹脂と水分散液を分離して、酸型のカルボキシル化セルロースナノファイバー(ナノファイバー)を得た。
A cation exchange resin (manufactured by Organo Corporation, “Amberjet 1024”) was added to the resulting dispersion of carboxylated cellulose nanofiber salt, and the mixture was stirred at 20 ° C. for 0.3 hours for contact. Thereafter, the cation exchange resin and the aqueous dispersion were separated with a metal mesh (aperture 100 mesh) to obtain acid-type carboxylated cellulose nanofibers (nanofibers).
得られた酸型のカルボキシル化セルロースナノファイバーの1.00質量%の水分散液の粘度は、ずり速度(0.00417s-1、30℃)の条件では18300Pa・sであり、(0.00671s-1、30℃)の条件では17800Pa・sであった。結果を表1に記す。
また、得られた酸型のカルボキシル化セルロースナノファイバーの平均繊維長は624nmであり、平均繊維径は3.11nmであった。 The viscosity of the 1.00 mass% aqueous dispersion of the obtained acid-type carboxylated cellulose nanofibers was 18300 Pa · s under the conditions of the shear rate (0.00417 s −1 , 30 ° C.), and (0.00671 s -1, under the condition of 30 ℃) was 17800Pa · s. The results are shown in Table 1.
Moreover, the average fiber length of the obtained acid-type carboxylated cellulose nanofibers was 624 nm, and the average fiber diameter was 3.11 nm.
また、得られた酸型のカルボキシル化セルロースナノファイバーの平均繊維長は624nmであり、平均繊維径は3.11nmであった。 The viscosity of the 1.00 mass% aqueous dispersion of the obtained acid-type carboxylated cellulose nanofibers was 18300 Pa · s under the conditions of the shear rate (0.00417 s −1 , 30 ° C.), and (0.00671 s -1, under the condition of 30 ℃) was 17800Pa · s. The results are shown in Table 1.
Moreover, the average fiber length of the obtained acid-type carboxylated cellulose nanofibers was 624 nm, and the average fiber diameter was 3.11 nm.
(実施例3)
漂白済み針葉樹未叩解パルプ(日本製紙社製)5g(絶乾)を、TEMPO(Sigma Aldrich社製)78mg(0.5mmol)と臭化ナトリウム754mg(7.4mmol)を溶解した水溶液500mlに加え、パルプが均一に分散するまで撹拌した。反応系に2M次亜塩素酸ナトリウム水溶液12ml添加した後、0.5N塩酸水溶液でpHを10.3に調整し、酸化反応を開始した。反応中は系内のpHは低下するので、0.5N水酸化ナトリウム水溶液を逐次添加し、pH10に維持した。2時間反応させた後、ガラスフィルターで濾過し、十分に水洗することでカルボキシル基量1.50mmol/gの酸化セルロースを得た。 (Example 3)
5 g (absolutely dried) of bleached softwood unbeaten pulp (Nippon Paper Co., Ltd.) was added to 500 ml of an aqueous solution in which 78 mg (0.5 mmol) of TEMPO (manufactured by Sigma Aldrich) and 754 mg (7.4 mmol) of sodium bromide were dissolved. Stir until the pulp is uniformly dispersed. After adding 12 ml of a 2M aqueous sodium hypochlorite solution to the reaction system, the pH was adjusted to 10.3 with a 0.5N aqueous hydrochloric acid solution to initiate the oxidation reaction. Since the pH in the system was lowered during the reaction, a 0.5N sodium hydroxide aqueous solution was sequentially added to maintain the pH at 10. After reacting for 2 hours, the mixture was filtered through a glass filter and washed thoroughly with water to obtain oxidized cellulose having a carboxyl group amount of 1.50 mmol / g.
漂白済み針葉樹未叩解パルプ(日本製紙社製)5g(絶乾)を、TEMPO(Sigma Aldrich社製)78mg(0.5mmol)と臭化ナトリウム754mg(7.4mmol)を溶解した水溶液500mlに加え、パルプが均一に分散するまで撹拌した。反応系に2M次亜塩素酸ナトリウム水溶液12ml添加した後、0.5N塩酸水溶液でpHを10.3に調整し、酸化反応を開始した。反応中は系内のpHは低下するので、0.5N水酸化ナトリウム水溶液を逐次添加し、pH10に維持した。2時間反応させた後、ガラスフィルターで濾過し、十分に水洗することでカルボキシル基量1.50mmol/gの酸化セルロースを得た。 (Example 3)
5 g (absolutely dried) of bleached softwood unbeaten pulp (Nippon Paper Co., Ltd.) was added to 500 ml of an aqueous solution in which 78 mg (0.5 mmol) of TEMPO (manufactured by Sigma Aldrich) and 754 mg (7.4 mmol) of sodium bromide were dissolved. Stir until the pulp is uniformly dispersed. After adding 12 ml of a 2M aqueous sodium hypochlorite solution to the reaction system, the pH was adjusted to 10.3 with a 0.5N aqueous hydrochloric acid solution to initiate the oxidation reaction. Since the pH in the system was lowered during the reaction, a 0.5N sodium hydroxide aqueous solution was sequentially added to maintain the pH at 10. After reacting for 2 hours, the mixture was filtered through a glass filter and washed thoroughly with water to obtain oxidized cellulose having a carboxyl group amount of 1.50 mmol / g.
次いで、得られた酸化セルロースのスラリーを水で1%(w/v)に調整し、超高圧ホモジナイザー(20℃、140MPa)で3回処理し、透明なゲル状のカルボキシル化セルロースナノファイバー塩の分散液(1%(w/v))を得た。
Next, the obtained slurry of oxidized cellulose was adjusted to 1% (w / v) with water, treated with an ultra-high pressure homogenizer (20 ° C., 140 MPa) three times, and a transparent gel-like carboxylated cellulose nanofiber salt was obtained. A dispersion (1% (w / v)) was obtained.
得られたカルボキシル化セルロースナノファイバー塩の分散液に陽イオン交換樹脂(オルガノ社製、「アンバージェット1024」)を添加し、20℃で0.3時間撹拌して接触させた。その後、金属メッシュ(目開き100メッシュ)で陽イオン交換樹脂と水分散液を分離して、酸型のカルボキシル化セルロースナノファイバー(ナノファイバー)を得た。
A cation exchange resin (manufactured by Organo Corporation, “Amberjet 1024”) was added to the resulting dispersion of carboxylated cellulose nanofiber salt, and the mixture was stirred at 20 ° C. for 0.3 hours for contact. Thereafter, the cation exchange resin and the aqueous dispersion were separated with a metal mesh (aperture 100 mesh) to obtain acid-type carboxylated cellulose nanofibers (nanofibers).
得られた酸型のカルボキシル化セルロースナノファイバーの1.00質量%の水分散液の粘度は、ずり速度(0.00417s-1、30℃)の条件では995Pa・sであり、(0.00671s-1、30℃)の条件では970Pa・sであった。結果を表1に記す。
また、得られた酸型のカルボキシル化セルロースナノファイバーの平均繊維長は570nmであり、平均繊維径は2.85nmであった。 The viscosity of an aqueous dispersion of 1.00% by mass of the obtained acid-type carboxylated cellulose nanofibers is 995 Pa · s under the conditions of shear rate (0.00417 s −1 , 30 ° C.), and (0.00671 s -1, under the condition of 30 ℃) was 970Pa · s. The results are shown in Table 1.
The obtained acid-type carboxylated cellulose nanofibers had an average fiber length of 570 nm and an average fiber diameter of 2.85 nm.
また、得られた酸型のカルボキシル化セルロースナノファイバーの平均繊維長は570nmであり、平均繊維径は2.85nmであった。 The viscosity of an aqueous dispersion of 1.00% by mass of the obtained acid-type carboxylated cellulose nanofibers is 995 Pa · s under the conditions of shear rate (0.00417 s −1 , 30 ° C.), and (0.00671 s -1, under the condition of 30 ℃) was 970Pa · s. The results are shown in Table 1.
The obtained acid-type carboxylated cellulose nanofibers had an average fiber length of 570 nm and an average fiber diameter of 2.85 nm.
(実施例4)
漂白済み針葉樹未叩解パルプ(日本製紙社製)5g(絶乾)を、TEMPO(Sigma Aldrich社製)78mg(0.5mmol)と臭化ナトリウム754mg(7.4mmol)を溶解した水溶液500mlに加え、パルプが均一に分散するまで撹拌した。反応系に2M次亜塩素酸ナトリウム水溶液6ml添加した後、0.5N塩酸水溶液でpHを10.3に調整し、酸化反応を開始した。反応中は系内のpHは低下するので、0.5N水酸化ナトリウム水溶液を逐次添加し、pH10に維持した。0.5時間反応させた後、ガラスフィルターで濾過し、十分に水洗することでカルボキシル基量0.60mmol/gの酸化セルロースを得た。 Example 4
5 g (absolutely dried) of bleached softwood unbeaten pulp (Nippon Paper Co., Ltd.) was added to 500 ml of an aqueous solution in which 78 mg (0.5 mmol) of TEMPO (manufactured by Sigma Aldrich) and 754 mg (7.4 mmol) of sodium bromide were dissolved. Stir until the pulp is uniformly dispersed. After adding 6 ml of 2M aqueous sodium hypochlorite solution to the reaction system, the pH was adjusted to 10.3 with 0.5N aqueous hydrochloric acid solution to initiate the oxidation reaction. Since the pH in the system was lowered during the reaction, a 0.5N sodium hydroxide aqueous solution was sequentially added to maintain the pH at 10. After reacting for 0.5 hour, the mixture was filtered through a glass filter and sufficiently washed with water to obtain oxidized cellulose having a carboxyl group amount of 0.60 mmol / g.
漂白済み針葉樹未叩解パルプ(日本製紙社製)5g(絶乾)を、TEMPO(Sigma Aldrich社製)78mg(0.5mmol)と臭化ナトリウム754mg(7.4mmol)を溶解した水溶液500mlに加え、パルプが均一に分散するまで撹拌した。反応系に2M次亜塩素酸ナトリウム水溶液6ml添加した後、0.5N塩酸水溶液でpHを10.3に調整し、酸化反応を開始した。反応中は系内のpHは低下するので、0.5N水酸化ナトリウム水溶液を逐次添加し、pH10に維持した。0.5時間反応させた後、ガラスフィルターで濾過し、十分に水洗することでカルボキシル基量0.60mmol/gの酸化セルロースを得た。 Example 4
5 g (absolutely dried) of bleached softwood unbeaten pulp (Nippon Paper Co., Ltd.) was added to 500 ml of an aqueous solution in which 78 mg (0.5 mmol) of TEMPO (manufactured by Sigma Aldrich) and 754 mg (7.4 mmol) of sodium bromide were dissolved. Stir until the pulp is uniformly dispersed. After adding 6 ml of 2M aqueous sodium hypochlorite solution to the reaction system, the pH was adjusted to 10.3 with 0.5N aqueous hydrochloric acid solution to initiate the oxidation reaction. Since the pH in the system was lowered during the reaction, a 0.5N sodium hydroxide aqueous solution was sequentially added to maintain the pH at 10. After reacting for 0.5 hour, the mixture was filtered through a glass filter and sufficiently washed with water to obtain oxidized cellulose having a carboxyl group amount of 0.60 mmol / g.
次いで、得られた酸化セルロースのスラリーを水で1%(w/v)に調整し、超高圧ホモジナイザー(20℃、140MPa)で2回処理し、透明なゲル状のカルボキシル化セルロースナノファイバー塩の分散液(1%(w/v))を得た。
Next, the obtained slurry of oxidized cellulose was adjusted to 1% (w / v) with water, treated twice with an ultrahigh pressure homogenizer (20 ° C., 140 MPa), and a transparent gel-like carboxylated cellulose nanofiber salt was obtained. A dispersion (1% (w / v)) was obtained.
得られたカルボキシル化セルロースナノファイバー塩の分散液に陽イオン交換樹脂(オルガノ社製、「アンバージェット1024」)を添加し、20℃で0.3時間撹拌して接触させた。その後、金属メッシュ(目開き100メッシュ)で陽イオン交換樹脂と水分散液を分離して、酸型のカルボキシル化セルロースナノファイバー(ナノファイバー)を得た。
A cation exchange resin (manufactured by Organo Corporation, “Amberjet 1024”) was added to the resulting dispersion of carboxylated cellulose nanofiber salt, and the mixture was stirred at 20 ° C. for 0.3 hours for contact. Thereafter, the cation exchange resin and the aqueous dispersion were separated with a metal mesh (aperture 100 mesh) to obtain acid-type carboxylated cellulose nanofibers (nanofibers).
得られた酸型のカルボキシル化セルロースナノファイバーの1.00質量%の水分散液の粘度は、ずり速度(0.00417s-1、30℃)の条件では24100Pa・sであり、(0.00671s-1、30℃)の条件では23300Pa・sであった。結果を表1に記す。
また、得られた酸型のカルボキシル化セルロースナノファイバーの平均繊維長は840nmであり、平均繊維径は3.22nmであった。 The viscosity of an aqueous dispersion of 1.00% by mass of the obtained acid-type carboxylated cellulose nanofibers was 24100 Pa · s under the conditions of shear rate (0.00417 s −1 , 30 ° C.), and (0.00671 s −1 , 30 ° C.), it was 23300 Pa · s. The results are shown in Table 1.
Moreover, the average fiber length of the obtained acid-type carboxylated cellulose nanofibers was 840 nm, and the average fiber diameter was 3.22 nm.
また、得られた酸型のカルボキシル化セルロースナノファイバーの平均繊維長は840nmであり、平均繊維径は3.22nmであった。 The viscosity of an aqueous dispersion of 1.00% by mass of the obtained acid-type carboxylated cellulose nanofibers was 24100 Pa · s under the conditions of shear rate (0.00417 s −1 , 30 ° C.), and (0.00671 s −1 , 30 ° C.), it was 23300 Pa · s. The results are shown in Table 1.
Moreover, the average fiber length of the obtained acid-type carboxylated cellulose nanofibers was 840 nm, and the average fiber diameter was 3.22 nm.
表1からわかるように、陽イオン交換樹脂により脱塩処理をして調製した酸型カルボキシル化セルロースナノファイバーにおいて、カルボキシル基量が1.60mmol/gの場合、0.00417又は0.00671s-1の低ずり領域で、925又は920Pa・sであり(実施例1参照)、カルボキシル基量が1.50mmol/gの場合、995又は970Pa・sであり(実施例3参照)、カルボキシル基量が1.23mmol/gの場合、18300又は17800Pa・sであり(実施例2参照)、カルボキシル基量が0.60mmol/gの場合、24100又は23300Pa・sと高粘度であった(実施例4参照)。
As can be seen from Table 1, in an acid-type carboxylated cellulose nanofiber prepared by desalting with a cation exchange resin, when the carboxyl group amount is 1.60 mmol / g, 0.00417 or 0.00671 s −1 925 or 920 Pa · s (see Example 1), and when the carboxyl group amount is 1.50 mmol / g, it is 995 or 970 Pa · s (see Example 3), and the carboxyl group amount is In the case of 1.23 mmol / g, it was 18300 or 17800 Pa · s (see Example 2), and when the carboxyl group amount was 0.60 mmol / g, the viscosity was as high as 24100 or 23300 Pa · s (see Example 4). ).
一方、塩酸により脱塩処理をして調製した酸型カルボキシル化セルロースナノファイバーは、実施例1と同様にカルボキシル基量が1.60mmol/gの場合、0.00417又は0.00671s-1の低ずり領域で、336又は350Pa・sと低粘度であった(比較例1参照)。このことから、脱塩処理の際のプロセスにより、得られる酸型カルボキシル化セルロースナノファイバーの物性、とりわけ低ずり領域での粘度が異なることがわかった。従って、酸型カルボキシル化セルロースナノファイバーは、用途に応じて脱塩処理のプロセスを変更することで、幅広い利用が期待できる。
On the other hand, the acid-type carboxylated cellulose nanofibers prepared by desalting with hydrochloric acid had a low value of 0.00417 or 0.00671 s −1 when the amount of carboxyl groups was 1.60 mmol / g as in Example 1. In the shear region, the viscosity was as low as 336 or 350 Pa · s (see Comparative Example 1). From this, it was found that the physical properties of the obtained acid-type carboxylated cellulose nanofibers, particularly the viscosity in the low shear region, differ depending on the process during the desalting treatment. Therefore, acid-type carboxylated cellulose nanofibers can be expected to be widely used by changing the desalting process according to the application.
(実施例5)
漂白済み針葉樹未叩解パルプ(日本製紙社製)5g(絶乾)を、TEMPO(Sigma Aldrich社)78mg(0.5mmol)と臭化ナトリウム754mg(7.4mmol)とを溶解した水溶液500mlに加え、パルプが均一に分散するまで撹拌した。反応系に2M次亜塩素酸ナトリウム水溶液16ml添加した後、0.5N塩酸水溶液でpHを10.3に調整し、酸化反応を開始した。反応中は系内のpHは低下するが、0.5N水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。2時間反応させた後、ガラスフィルターで濾過し、十分に水洗することでカルボキシル基量1.60mmol/gの酸化セルロースを得た。 (Example 5)
5 g (absolutely dried) of bleached softwood unbeaten pulp (Nippon Paper Industries Co., Ltd.) was added to 500 ml of an aqueous solution in which 78 mg (0.5 mmol) of TEMPO (Sigma Aldrich) and 754 mg (7.4 mmol) of sodium bromide were dissolved. Stir until the pulp is uniformly dispersed. After adding 16 ml of 2M aqueous sodium hypochlorite solution to the reaction system, the pH was adjusted to 10.3 with 0.5N aqueous hydrochloric acid solution to initiate the oxidation reaction. During the reaction, the pH in the system was lowered, but a 0.5N aqueous sodium hydroxide solution was successively added to adjust the pH to 10. After reacting for 2 hours, the mixture was filtered through a glass filter and washed thoroughly with water to obtain oxidized cellulose having a carboxyl group amount of 1.60 mmol / g.
漂白済み針葉樹未叩解パルプ(日本製紙社製)5g(絶乾)を、TEMPO(Sigma Aldrich社)78mg(0.5mmol)と臭化ナトリウム754mg(7.4mmol)とを溶解した水溶液500mlに加え、パルプが均一に分散するまで撹拌した。反応系に2M次亜塩素酸ナトリウム水溶液16ml添加した後、0.5N塩酸水溶液でpHを10.3に調整し、酸化反応を開始した。反応中は系内のpHは低下するが、0.5N水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。2時間反応させた後、ガラスフィルターで濾過し、十分に水洗することでカルボキシル基量1.60mmol/gの酸化セルロースを得た。 (Example 5)
5 g (absolutely dried) of bleached softwood unbeaten pulp (Nippon Paper Industries Co., Ltd.) was added to 500 ml of an aqueous solution in which 78 mg (0.5 mmol) of TEMPO (Sigma Aldrich) and 754 mg (7.4 mmol) of sodium bromide were dissolved. Stir until the pulp is uniformly dispersed. After adding 16 ml of 2M aqueous sodium hypochlorite solution to the reaction system, the pH was adjusted to 10.3 with 0.5N aqueous hydrochloric acid solution to initiate the oxidation reaction. During the reaction, the pH in the system was lowered, but a 0.5N aqueous sodium hydroxide solution was successively added to adjust the pH to 10. After reacting for 2 hours, the mixture was filtered through a glass filter and washed thoroughly with water to obtain oxidized cellulose having a carboxyl group amount of 1.60 mmol / g.
次いで、酸化セルロースの5%(w/v)スラリーに過酸化水素を酸化セルロースに対して1%(w/v)添加し、1M水酸化ナトリウムでpHを12に調整した。このスラリーを80℃で、2時間加水分解処理した。その後、ガラスフィルターで濾過し、十分に水洗した。
Next, 1% (w / v) of hydrogen peroxide was added to 5% (w / v) slurry of oxidized cellulose and the pH was adjusted to 12 with 1M sodium hydroxide. This slurry was hydrolyzed at 80 ° C. for 2 hours. Then, it filtered with the glass filter and washed thoroughly with water.
加水分解した2%(w/v)酸化セルロースのスラリーを超高圧ホモジナイザー(20℃、140MPa)で5回処理し、透明なゲル状のカルボキシル化セルロースナノファイバー塩の分散液(1%(w/v))を得た。
The hydrolyzed 2% (w / v) oxidized cellulose slurry was treated 5 times with an ultra-high pressure homogenizer (20 ° C., 140 MPa) to obtain a transparent gel-like carboxylated cellulose nanofiber salt dispersion (1% (w / v) v)) was obtained.
得られたカルボキシル化セルロースナノファイバー塩の分散液に陽イオン交換樹脂(オルガノ社製、「アンバージェット1024」)を添加し、20℃で0.3時間撹拌して接触させた。その後、金属メッシュ(目開き100メッシュ)で陽イオン交換樹脂と水分散液を分離して、酸型のカルボキシル化セルロースナノファイバー(ナノファイバーB)を92%の高収率で得た。
A cation exchange resin (manufactured by Organo Corporation, “Amberjet 1024”) was added to the resulting dispersion of carboxylated cellulose nanofiber salt, and the mixture was stirred at 20 ° C. for 0.3 hours for contact. Thereafter, the cation exchange resin and the aqueous dispersion were separated with a metal mesh (aperture 100 mesh) to obtain acid-type carboxylated cellulose nanofiber (nanofiber B) at a high yield of 92%.
得られた酸型のカルボキシル化セルロースナノファイバーの平均繊維長は311nmであり、平均繊維径は5.73nmであり、300nm以下の繊維長を有する繊維の割合は79.9%であり、600nm以上の繊維長を有する繊維の割合は1.1%であった。結果を表2に記し、繊維長分布の割合を図1に示す。
The obtained acid-type carboxylated cellulose nanofibers have an average fiber length of 311 nm, an average fiber diameter of 5.73 nm, and a ratio of fibers having a fiber length of 300 nm or less is 79.9%, 600 nm or more. The proportion of fibers having a fiber length of 1.1% was 1.1%. The results are shown in Table 2, and the fiber length distribution ratio is shown in FIG.
表2からわかるように、加水分解処理して得られるカルボキシル化セルロースナノファイバーは平均繊維長が短く、300nm以下の割合が多く、さらには600nm以上の割合が極めて少ないものであった(実施例1、5参照)。そのため、繊維長が短い領域に収束しており、短い繊維のセルロースナノファイバーが望まれる分野への応用が期待される。
As can be seen from Table 2, carboxylated cellulose nanofibers obtained by hydrolysis treatment have a short average fiber length, a large proportion of 300 nm or less, and a very small proportion of 600 nm or more (Example 1). 5). Therefore, the fiber length has converged to a short region, and application to a field where a short fiber cellulose nanofiber is desired is expected.
Claims (8)
- セルロース分子鎖を構成する少なくとも一部の構成単位にカルボキシル基を有するカルボキシル化セルロースナノファイバーであって、
含有率が0.95~1.05質量%の水分散体における粘度が、30℃、0.003~0.01s-1のずり速度において400Pa・s以上である酸型カルボキシル化セルロースナノファイバー。 A carboxylated cellulose nanofiber having a carboxyl group in at least a part of structural units constituting a cellulose molecular chain,
Acid-type carboxylated cellulose nanofibers having a viscosity in an aqueous dispersion having a content of 0.95 to 1.05% by mass of 400 Pa · s or more at 30 ° C. and a shear rate of 0.003 to 0.01 s −1 . - セルロース分子鎖を構成する少なくとも一部の構成単位にカルボキシル基を有するカルボキシル化セルロースナノファイバーであって、
平均繊維長が50~500nmであり、300nm以下の繊維長を有する繊維の割合が50%以上である酸型カルボキシル化セルロースナノファイバー。 A carboxylated cellulose nanofiber having a carboxyl group in at least a part of structural units constituting a cellulose molecular chain,
Acid-type carboxylated cellulose nanofibers having an average fiber length of 50 to 500 nm and a ratio of fibers having a fiber length of 300 nm or less being 50% or more. - 平均繊維径が2~50nmである請求項2に記載の酸型カルボキシル化セルロースナノファイバー。 The acid-type carboxylated cellulose nanofiber according to claim 2, wherein the average fiber diameter is 2 to 50 nm.
- 平均繊維径が2~30nmである請求項2に記載の酸型カルボキシル化セルロースナノファイバー。 The acid-type carboxylated cellulose nanofiber according to claim 2, wherein the average fiber diameter is 2 to 30 nm.
- 600nm以上の繊維長を有する繊維の割合が20%未満である請求項2~4のいずれか1項に記載の酸型カルボキシル化セルロースナノファイバー。 The acid-type carboxylated cellulose nanofiber according to any one of claims 2 to 4, wherein the proportion of fibers having a fiber length of 600 nm or more is less than 20%.
- 前記セルロース分子鎖の少なくとも一部が、グルコピラノース単位のC6位の1級水酸基を有する炭素原子が選択的に酸化されたカルボキシル基を有する構成単位で構成される請求項1~5のいずれか1項に記載の酸型カルボキシル化セルロースナノファイバー。 6. The method according to claim 1, wherein at least a part of the cellulose molecular chain is composed of a structural unit having a carboxyl group in which a carbon atom having a primary hydroxyl group at the C6 position of a glucopyranose unit is selectively oxidized. The acid-type carboxylated cellulose nanofiber according to Item.
- 前記カルボキシル基量が、前記カルボキシル化セルロースナノファイバーの絶乾質量に対して、0.6~2.0mmol/gである請求項1~6のいずれか1項に記載の酸型カルボキシル化セルロースナノファイバー。 The acid-type carboxylated cellulose nanoparticle according to any one of claims 1 to 6, wherein the amount of the carboxyl group is 0.6 to 2.0 mmol / g with respect to the absolutely dry mass of the carboxylated cellulose nanofiber. Fiber.
- 前記カルボキシル基量が、前記カルボキシル化セルロースナノファイバーの絶乾質量に対して、0.8~2.0mmol/gである請求項1~6のいずれか1項に記載の酸型カルボキシル化セルロースナノファイバー。 The acid-type carboxylated cellulose nanoparticle according to any one of claims 1 to 6, wherein the amount of the carboxyl group is 0.8 to 2.0 mmol / g with respect to the absolutely dry mass of the carboxylated cellulose nanofiber. Fiber.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17882768.9A EP3560964A4 (en) | 2016-12-21 | 2017-11-02 | Acid-type carboxylated cellulose nanofibers |
US16/471,798 US11578142B2 (en) | 2016-12-21 | 2017-11-02 | Acid type carboxylated cellulose nanofiber |
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-248433 | 2016-12-21 | ||
JP2016248433A JP6877136B2 (en) | 2016-12-21 | 2016-12-21 | Manufacturing method of carboxylated cellulose nanofibers |
JP2017-021487 | 2017-02-08 | ||
JP2017021487 | 2017-02-08 | ||
JP2017077624 | 2017-04-10 | ||
JP2017-077624 | 2017-04-10 | ||
JP2017-100851 | 2017-05-22 | ||
JP2017100851A JP6229090B1 (en) | 2017-02-08 | 2017-05-22 | H-type carboxylated cellulose nanofiber |
JP2017-201128 | 2017-10-17 | ||
JP2017201128A JP7162422B2 (en) | 2017-02-08 | 2017-10-17 | H-type carboxylated cellulose nanofiber |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018116661A1 true WO2018116661A1 (en) | 2018-06-28 |
Family
ID=62626224
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/039814 WO2018116661A1 (en) | 2016-12-21 | 2017-11-02 | Acid-type carboxylated cellulose nanofibers |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018116661A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112336741A (en) * | 2019-08-09 | 2021-02-09 | 华东师范大学 | A kind of surface carboxylated nanocellulose, pharmaceutical preparation and its application in the treatment of obesity |
JP2021095476A (en) * | 2019-12-16 | 2021-06-24 | ユニ・チャーム株式会社 | Manufacturing method of cellulose nanofiber and cellulose nanofiber |
JP7209914B1 (en) * | 2021-07-28 | 2023-01-20 | 旭化成株式会社 | Cellulose fine fiber and its manufacturing method, nonwoven fabric, and fiber reinforced resin and its manufacturing method |
WO2023008497A1 (en) * | 2021-07-28 | 2023-02-02 | 旭化成株式会社 | Fine cellulose fibers and production method therefor, nonwoven fabric, and fiber-reinforced resin and production method therefor |
CN115803349A (en) * | 2020-07-09 | 2023-03-14 | 东亚合成株式会社 | Oxidized cellulose, nanocellulose, and dispersion thereof |
WO2023110585A1 (en) * | 2021-12-14 | 2023-06-22 | Nutrition & Biosciences Usa 1, Llc | Process for reducing nitrite in microcrystalline cellulose |
Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006124598A (en) * | 2004-11-01 | 2006-05-18 | Toppan Printing Co Ltd | Method for producing water-soluble polyuronic acid |
JP2009057552A (en) * | 2007-08-07 | 2009-03-19 | Kao Corp | Gas barrier materials |
JP2009197122A (en) * | 2008-02-21 | 2009-09-03 | Kao Corp | Resin composition |
JP2010037200A (en) | 2008-07-31 | 2010-02-18 | Dai Ichi Kogyo Seiyaku Co Ltd | Composition for spraying and spraying device using the same |
JP2011140632A (en) * | 2009-12-11 | 2011-07-21 | Kao Corp | Composite material |
JP2012001626A (en) * | 2010-06-16 | 2012-01-05 | Univ Of Tokyo | Physical gel and method of producing the same |
JP2012214717A (en) | 2011-03-30 | 2012-11-08 | Nippon Paper Industries Co Ltd | Method for producing cellulose nanofiber |
JP2013014741A (en) * | 2011-06-07 | 2013-01-24 | Kao Corp | Additive for modifying resin and method for producing the same |
JP2013018918A (en) * | 2011-07-13 | 2013-01-31 | Kao Corp | Rubber composition, and method of manufacturing the same |
WO2013121781A1 (en) * | 2012-02-15 | 2013-08-22 | 凸版印刷株式会社 | Carbon fiber composite, process for producing same, catalyst-carrying body and polymer electrolyte fuel cell |
WO2013137140A1 (en) | 2012-03-14 | 2013-09-19 | 日本製紙株式会社 | Method for producing anion-modified cellulose nanofiber dispersion liquid |
WO2014061485A1 (en) * | 2012-10-16 | 2014-04-24 | 日本製紙株式会社 | Cellulose nanofibers |
JP2014105233A (en) * | 2012-11-26 | 2014-06-09 | Mitsubishi Chemicals Corp | Rubber modifying material, fiber-rubber dispersion and rubber composition |
JP2014114338A (en) * | 2012-12-07 | 2014-06-26 | Nippon Paper Industries Co Ltd | Cellulose-based thickening agent |
JP2014125607A (en) * | 2012-12-27 | 2014-07-07 | Kao Corp | Rubber composition |
WO2015029960A1 (en) * | 2013-08-30 | 2015-03-05 | 第一工業製薬株式会社 | Crude oil recovery additive |
JP2015221845A (en) * | 2014-05-22 | 2015-12-10 | 凸版印刷株式会社 | Method for producing composite, and composite |
JP2016052620A (en) * | 2014-09-03 | 2016-04-14 | 日本製紙株式会社 | Composite of metal-organic framework and cellulose nanofiber |
JP5939695B1 (en) * | 2015-12-16 | 2016-06-22 | 第一工業製薬株式会社 | Viscous aqueous composition and method for producing the same |
JP5944564B1 (en) * | 2015-07-08 | 2016-07-05 | 第一工業製薬株式会社 | Method for producing gel composition and gel composition obtained thereby |
WO2016136453A1 (en) * | 2015-02-26 | 2016-09-01 | 住友ゴム工業株式会社 | Method for producing master batch, master batch obtained by said production method, rubber composition for tire, and pneumatic tire |
JP5996082B1 (en) * | 2015-12-25 | 2016-09-21 | 第一工業製薬株式会社 | Cellulose nanofiber and resin composition |
JP2016183329A (en) * | 2015-03-26 | 2016-10-20 | 花王株式会社 | Viscous aqueous composition |
WO2016186055A1 (en) * | 2015-05-15 | 2016-11-24 | 日本製紙株式会社 | Anion-modified cellulose nanofiber dispersion liquid and composition |
JP6229090B1 (en) * | 2017-02-08 | 2017-11-08 | 日本製紙株式会社 | H-type carboxylated cellulose nanofiber |
-
2017
- 2017-11-02 WO PCT/JP2017/039814 patent/WO2018116661A1/en unknown
Patent Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006124598A (en) * | 2004-11-01 | 2006-05-18 | Toppan Printing Co Ltd | Method for producing water-soluble polyuronic acid |
JP2009057552A (en) * | 2007-08-07 | 2009-03-19 | Kao Corp | Gas barrier materials |
JP2012122077A (en) * | 2007-08-07 | 2012-06-28 | Kao Corp | Method for producing gas barrier material |
JP2009197122A (en) * | 2008-02-21 | 2009-09-03 | Kao Corp | Resin composition |
JP2010037200A (en) | 2008-07-31 | 2010-02-18 | Dai Ichi Kogyo Seiyaku Co Ltd | Composition for spraying and spraying device using the same |
JP2011140632A (en) * | 2009-12-11 | 2011-07-21 | Kao Corp | Composite material |
JP2012001626A (en) * | 2010-06-16 | 2012-01-05 | Univ Of Tokyo | Physical gel and method of producing the same |
JP2012214717A (en) | 2011-03-30 | 2012-11-08 | Nippon Paper Industries Co Ltd | Method for producing cellulose nanofiber |
JP2013014741A (en) * | 2011-06-07 | 2013-01-24 | Kao Corp | Additive for modifying resin and method for producing the same |
JP2013018918A (en) * | 2011-07-13 | 2013-01-31 | Kao Corp | Rubber composition, and method of manufacturing the same |
WO2013121781A1 (en) * | 2012-02-15 | 2013-08-22 | 凸版印刷株式会社 | Carbon fiber composite, process for producing same, catalyst-carrying body and polymer electrolyte fuel cell |
WO2013137140A1 (en) | 2012-03-14 | 2013-09-19 | 日本製紙株式会社 | Method for producing anion-modified cellulose nanofiber dispersion liquid |
WO2014061485A1 (en) * | 2012-10-16 | 2014-04-24 | 日本製紙株式会社 | Cellulose nanofibers |
JP2014105233A (en) * | 2012-11-26 | 2014-06-09 | Mitsubishi Chemicals Corp | Rubber modifying material, fiber-rubber dispersion and rubber composition |
JP2014114338A (en) * | 2012-12-07 | 2014-06-26 | Nippon Paper Industries Co Ltd | Cellulose-based thickening agent |
JP2014125607A (en) * | 2012-12-27 | 2014-07-07 | Kao Corp | Rubber composition |
WO2015029960A1 (en) * | 2013-08-30 | 2015-03-05 | 第一工業製薬株式会社 | Crude oil recovery additive |
JP2015221845A (en) * | 2014-05-22 | 2015-12-10 | 凸版印刷株式会社 | Method for producing composite, and composite |
JP2016052620A (en) * | 2014-09-03 | 2016-04-14 | 日本製紙株式会社 | Composite of metal-organic framework and cellulose nanofiber |
WO2016136453A1 (en) * | 2015-02-26 | 2016-09-01 | 住友ゴム工業株式会社 | Method for producing master batch, master batch obtained by said production method, rubber composition for tire, and pneumatic tire |
JP2016183329A (en) * | 2015-03-26 | 2016-10-20 | 花王株式会社 | Viscous aqueous composition |
WO2016186055A1 (en) * | 2015-05-15 | 2016-11-24 | 日本製紙株式会社 | Anion-modified cellulose nanofiber dispersion liquid and composition |
JP5944564B1 (en) * | 2015-07-08 | 2016-07-05 | 第一工業製薬株式会社 | Method for producing gel composition and gel composition obtained thereby |
JP5939695B1 (en) * | 2015-12-16 | 2016-06-22 | 第一工業製薬株式会社 | Viscous aqueous composition and method for producing the same |
JP5996082B1 (en) * | 2015-12-25 | 2016-09-21 | 第一工業製薬株式会社 | Cellulose nanofiber and resin composition |
JP6229090B1 (en) * | 2017-02-08 | 2017-11-08 | 日本製紙株式会社 | H-type carboxylated cellulose nanofiber |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112336741A (en) * | 2019-08-09 | 2021-02-09 | 华东师范大学 | A kind of surface carboxylated nanocellulose, pharmaceutical preparation and its application in the treatment of obesity |
JP2021095476A (en) * | 2019-12-16 | 2021-06-24 | ユニ・チャーム株式会社 | Manufacturing method of cellulose nanofiber and cellulose nanofiber |
JP7517817B2 (en) | 2019-12-16 | 2024-07-17 | ユニ・チャーム株式会社 | Cellulose nanofiber manufacturing method and cellulose nanofiber |
CN115803349A (en) * | 2020-07-09 | 2023-03-14 | 东亚合成株式会社 | Oxidized cellulose, nanocellulose, and dispersion thereof |
CN115803349B (en) * | 2020-07-09 | 2024-06-07 | 东亚合成株式会社 | Oxidized cellulose, nanocellulose and dispersions thereof |
JP7209914B1 (en) * | 2021-07-28 | 2023-01-20 | 旭化成株式会社 | Cellulose fine fiber and its manufacturing method, nonwoven fabric, and fiber reinforced resin and its manufacturing method |
WO2023008497A1 (en) * | 2021-07-28 | 2023-02-02 | 旭化成株式会社 | Fine cellulose fibers and production method therefor, nonwoven fabric, and fiber-reinforced resin and production method therefor |
US12163287B2 (en) | 2021-07-28 | 2024-12-10 | Asahi Kasei Kabushiki Kaisha | Fine cellulose fibers and production method therefor, nonwoven fabric, and fiber-reinforced resin and production method therefor |
WO2023110585A1 (en) * | 2021-12-14 | 2023-06-22 | Nutrition & Biosciences Usa 1, Llc | Process for reducing nitrite in microcrystalline cellulose |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6229090B1 (en) | H-type carboxylated cellulose nanofiber | |
WO2018116661A1 (en) | Acid-type carboxylated cellulose nanofibers | |
EP3473239B1 (en) | Foamable aerosol composition | |
JP5296445B2 (en) | Gel composition | |
JP5939695B1 (en) | Viscous aqueous composition and method for producing the same | |
JP5502712B2 (en) | Viscous aqueous composition | |
JP6958799B2 (en) | Hydrogel | |
JP6271318B2 (en) | Cellulose-based water-soluble thickener | |
JP6228707B1 (en) | Acid-type carboxymethylated cellulose nanofiber and method for producing the same | |
JP5701570B2 (en) | Viscous aqueous composition and process for producing the same | |
WO2011089709A1 (en) | Viscous composition | |
JP5875833B2 (en) | Manufacturing method of thickening cellulose fiber | |
JP2010037199A (en) | Cosmetic composition | |
JP2010037200A (en) | Composition for spraying and spraying device using the same | |
JP5795094B2 (en) | Thickener composition | |
JP5329279B2 (en) | Method for producing cellulose nanofiber | |
JP2012126786A (en) | Viscous aqueous composition, method for producing the same and cellulose fiber used therefor | |
US11578142B2 (en) | Acid type carboxylated cellulose nanofiber | |
JP2018100383A (en) | Method for producing carboxylated cellulose nanofiber | |
JP6765560B1 (en) | Topical skin agent | |
JP6810817B1 (en) | Hyaluronidase inhibitor | |
WO2019021775A1 (en) | Gelled oil and method for producing same | |
WO2025094461A1 (en) | Cellulose-microfiber-containing additive for antipollution dermatological agent for external use | |
JP7140499B2 (en) | Aqueous composition | |
JP2013127146A (en) | Gel-like composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17882768 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017882768 Country of ref document: EP Effective date: 20190722 |