[go: up one dir, main page]

WO2018107565A1 - Vr运动控制方法、多维运动平台及推力万向关节轴承 - Google Patents

Vr运动控制方法、多维运动平台及推力万向关节轴承 Download PDF

Info

Publication number
WO2018107565A1
WO2018107565A1 PCT/CN2017/072459 CN2017072459W WO2018107565A1 WO 2018107565 A1 WO2018107565 A1 WO 2018107565A1 CN 2017072459 W CN2017072459 W CN 2017072459W WO 2018107565 A1 WO2018107565 A1 WO 2018107565A1
Authority
WO
WIPO (PCT)
Prior art keywords
traction
platform
bearing
angle
universal joint
Prior art date
Application number
PCT/CN2017/072459
Other languages
English (en)
French (fr)
Inventor
钟伟
林莹
刘恒科
王璐
Original Assignee
西安可视可觉网络科技有限公司
佛山市丽江椅业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201611156037.9A external-priority patent/CN108227902B/zh
Priority claimed from CN201611156032.6A external-priority patent/CN106763168A/zh
Priority claimed from CN201611155026.9A external-priority patent/CN106774447B/zh
Priority claimed from CN201611154622.5A external-priority patent/CN106647820B/zh
Application filed by 西安可视可觉网络科技有限公司, 佛山市丽江椅业有限公司 filed Critical 西安可视可觉网络科技有限公司
Priority to US16/468,117 priority Critical patent/US11007430B2/en
Priority to EP17881063.6A priority patent/EP3557374A4/en
Priority to KR1020197016722A priority patent/KR102750573B1/ko
Priority to JP2019552320A priority patent/JP6895534B2/ja
Publication of WO2018107565A1 publication Critical patent/WO2018107565A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/017Gesture based interaction, e.g. based on a set of recognized hand gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/20Input arrangements for video game devices
    • A63F13/22Setup operations, e.g. calibration, key configuration or button assignment
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/20Input arrangements for video game devices
    • A63F13/21Input arrangements for video game devices characterised by their sensors, purposes or types
    • A63F13/211Input arrangements for video game devices characterised by their sensors, purposes or types using inertial sensors, e.g. accelerometers or gyroscopes
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/25Output arrangements for video game devices
    • A63F13/26Output arrangements for video game devices having at least one additional display device, e.g. on the game controller or outside a game booth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/02Sliding-contact bearings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0346Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/038Control and interface arrangements therefor, e.g. drivers or device-embedded control circuitry
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/80Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game specially adapted for executing a specific type of game
    • A63F2300/8082Virtual reality

Definitions

  • the invention relates to a VR motion control method, a multi-dimensional motion platform and a thrust universal joint bearing, in particular to a VR motion control method, a motion platform capable of realizing rotation and free swing, and a thrust force which can be used for multi-dimensional motion platform bearing capacity Directional bearing.
  • a motion platform is a device that can simulate the motion state of a manned device, such as a simulated car, boat, aircraft, etc.
  • a manned device such as a simulated car, boat, aircraft, etc.
  • the transmission technology of the existing device is a combination mechanism of a linear motor, which controls a one-dimensional telescopic movement by a motor to form a multi-degree-of-freedom movement of the platform, which utilizes the power of the transmission structure itself to bear the weight on the platform and lift the platform. Exercise.
  • the existing three-degree-of-freedom motion platform utilizes a three-point support platform, and the support rod can perform linear motion.
  • the control movements of the front, back, left and right, and upper and lower dimensions are realized, and the visual effect is matched.
  • the purpose of simulating motion can be achieved.
  • the three-degree-of-freedom sports platform has been widely used in many fields such as theaters, games, and playgrounds.
  • the platform itself is bulky and heavy, and is not convenient for transportation, installation and maintenance.
  • the platform needs to be equipped with large seats and other equipment, and the overall height and floor space are relatively high.
  • the current VR sports platform is based on 4d/5d and other theater seat technology modification.
  • the main structure is three electric cylinders, double electric cylinders or six electric cylinders as the motion platform.
  • the six electric cylinders are high in cost and relatively rare.
  • the pre-recorded electric cylinder coordinate record is read by special software to control the movement of the electric cylinder to realize multiple self- Controlled by the degree of motion. Because it is an electric cylinder support structure, except for the six-cylinder platform that can rotate a small amplitude (not more than 30°), the three- or double-electric cylinder structure cannot rotate.
  • the solution is responsible for the load-bearing by the electric cylinder, resulting in a large overall weight, resulting in an overall power of up to kilowatts to work properly, and high environmental requirements.
  • One of the objects of the present invention is to provide a VR motion control method that realizes the specific function of the seat automatically following the rotation by recognizing the movement of the operator's head, and combines the unique motion platform design to combine the rotation and sway effects. To achieve a new VR sports experience.
  • the second object of the present invention is to provide a multi-dimensional motion platform capable of achieving self-rotation and free-swing based on support bearing or lifting load-bearing under the premise of ensuring multiple dimensions of motion.
  • the third object of the present invention is to provide a thrust universal joint bearing, which realizes the multi-dimensional motion platform to realize the swinging and rotating functions in all directions without burden.
  • a VR motion control method includes the following steps:
  • the multi-dimensional motion platform is capable of realizing rotation and freedom a rocking motion platform;
  • the maximum value is a maximum value of an absolute value;
  • the angular velocity sensor and the acceleration sensor built-in or external to the head-mounted display device respectively output the integrated value of the angular velocity and the accumulated value of the acceleration;
  • the controller receives the head-mounted display device tracking data packet and/or the motion control data packet;
  • Extracting the information header if it is the head-mounted display device tracking data, proceeding to step 6, if it is the action parameter data, proceeding to step 7, if not, then discarding the data packet;
  • the first step of step 6 in the upper motion control method is as follows:
  • step 6.3) Compare the dead zone angle with the real-time angle difference. If the real-time angle difference is smaller than the dead zone angle, return to step 6.2. If the real-time angle difference is greater than or equal to the dead zone angle, subtract the dead zone angle from the absolute value of the real-time angular difference. , to obtain a control angle difference;
  • the second step of step 6 in the above motion control method is as follows:
  • New real-time angle difference (real-time angle difference / maximum value of head rotation angle coefficient) ⁇ 90 degrees
  • the third step of step 6 in the upper motion control method is as follows:
  • step 6.3) Compare the dead zone angle with the real-time angle difference. If the real-time angle difference is smaller than the dead zone angle, return to step 6.2. If the real-time angle difference is greater than or equal to the dead zone angle, subtract the dead zone angle from the absolute value of the real-time angular difference. , to obtain a control angle difference;
  • New real-time angle difference (real-time angle difference / maximum value of head rotation angle coefficient) ⁇ 90 degrees
  • the above motion control method further includes a built-in display device according to the head-mounted display device. Or an external magnetic sensor to perform the path correction step.
  • the above information header preferably identifies the ID
  • the above-mentioned current state calculation difference is preferably sent to the motion control system at a transmission rate of more than 10 packets/second.
  • the multi-dimensional motion platform in the above motion control method includes a support unit and a traction unit, and the support unit includes a motion platform, a thrust universal joint bearing, a load bearing platform, a motion rotary drawbar, and a load bearing bracket;
  • the thrust universal joint The bearing includes a shaft ring and a race; the upper end of the moving rotary drawbar is fixed in a shaft ring of the thrust universal joint bearing; the lower bottom surface of the motion platform is fixedly connected to the upper end surface of the joint joint of the thrust universal joint bearing;
  • the bearing of the thrust universal joint bearing is fixedly connected with the bearing platform;
  • the load bearing platform is disposed on the bearing foundation through the bearing bracket;
  • the traction unit comprises a universal joint, a rotating electric machine, a traction platform and at least one traction component;
  • the lower end of the moving rotary drawbar is connected to the output end of the rotary electric machine through a universal joint; the rotary electric machine is fixed on the traction platform; one end of the traction assembly is connected
  • the above traction assembly has two different types:
  • the number of traction components of the traction unit is one, two or three;
  • the traction assembly comprises a traction motor, a ball screw pair;
  • the traction motor is articulated with the load bearing bracket, and the traction motor output shaft and the ball screw pair
  • the lead screw is fixedly connected;
  • the nut of the ball screw pair is hinged to the traction platform; when the traction assembly is two, the projection direction of the traction direction or the traction direction of the two traction assemblies is at an angle of 90°; when the traction component is At three o'clock, the angle between the traction directions of any two traction units is equal.
  • the number of traction components of the traction unit is one or two; when the number of traction components is one, the traction component is a motorized screw slide rail, and the slide rail is fixed on the load-bearing bracket or the load-bearing foundation, and the slider and the traction platform Fixed; when the number of traction components is two, the first traction component is a motor screw slide rail, and the slide rail is fixed on the load-bearing bracket or the load-bearing foundation; the second traction component is an electric screw slide rail, which is slippery The rail is fixed on the slider of the first traction assembly, and the slider is fixed to the traction platform; the angle between the two electric screw slides is 90°.
  • a multi-dimensional motion platform comprising a support unit and a traction unit, the special feature being: the support The unit includes a motion platform, a thrust universal joint bearing, a load bearing platform, a moving rotary drawbar and a load bearing bracket; the thrust universal joint bearing includes a shaft ring and a race; the upper end of the moving rotary drawbar is fixed to the thrust universal joint The bottom surface of the moving platform is fixedly connected with the upper end surface of the joint shaft of the thrust universal joint bearing; the seat of the thrust universal joint bearing is fixedly connected with the bearing platform; the bearing platform is set by the bearing bracket
  • the traction unit comprises a universal joint, a rotary electric machine, a traction platform and at least one traction assembly; the lower end of the movable rotary drawbar is connected to the output end of the rotary electric machine through a universal joint The rotating electric machine is fixed on the traction platform; one end of the traction assembly is connected to the traction platform, and the other end is connected to the bearing bracket for adjusting the inclination of the
  • the traction assembly includes a traction motor and a ball screw pair; the traction motor is hinged to the load bearing bracket, and the traction motor output shaft is fixed to the screw of the ball screw pair; the ball screw pair The nut is hinged to the traction platform.
  • the above traction assembly may be one.
  • the above traction components may be two or three;
  • the projection of the traction direction or the traction direction of the two traction assemblies is at an angle of 90°.
  • the number of traction components of the traction unit is one or two; when the number of traction components of the traction unit is one, the traction component is a motorized screw slide rail, and the slide rail is fixed on the load-bearing bracket or the bearing. Based on the slider, the slider is fixed to the traction platform.
  • the first traction component is a motor screw slide rail, and the slide rail is fixed on the load-bearing bracket or the load-bearing foundation;
  • the second traction component is an electric screw slide rail, which slides The rail is fixed on the slider of the first traction assembly, and the slider is fixed to the traction platform; the angle between the two electric screw slides is 90°.
  • the thrust universal joint bearing has three unique configurations:
  • the thrust universal joint bearing further includes a planar thrust bearing assembly
  • the planar thrust bearing assembly comprises a ball and a cage, an underpad, an upper rail disposed on a lower bottom surface of the thrust universal joint bearing race, and a lower rail disposed on a bottom surface of the lower cushion;
  • the lower bottom surface of the lower pad of the planar thrust bearing assembly is fixedly coupled to the load bearing platform.
  • the thrust universal joint bearing further includes a ball assembly
  • the inner side surface of the seat of the thrust universal joint bearing is a polygonal pyramid surface
  • the ball assembly includes a ball pit disposed on each face of the polygonal pyramid surface, and a ball disposed in each of the ball pockets;
  • the plurality of balls are located on the same plane and are respectively in contact with the outer spherical surface of the collar of the thrust universal joint bearing.
  • the thrust universal joint bearing further includes a roller assembly planar thrust bearing assembly
  • the inner side surface of the seat of the thrust universal joint bearing is a polygonal pyramid surface
  • the ball assembly includes a roller pit disposed on each face of the polygonal pyramid surface, and a roller disposed in each roller pit;
  • the plurality of rollers are located on the same plane, are laterally arranged and respectively contact with the outer spherical surface of the axial ring of the thrust universal joint bearing;
  • the planar thrust bearing assembly comprises a ball and a cage, an underpad, an upper rail disposed on a lower bottom surface of the thrust universal joint bearing race, and a lower rail disposed on a bottom surface of the lower cushion;
  • the lower bottom surface of the lower pad of the planar thrust bearing assembly is fixedly coupled to the load bearing platform.
  • a multi-dimensional motion platform comprising a supporting unit and a traction unit, wherein the supporting unit comprises: a moving platform, a thrust universal joint bearing, a bearing platform, a moving rotating drawbar and a bearing bracket; the thrust universal joint
  • the bearing includes a shaft ring and a race; the upper end of the moving rotary drawbar is fixed to the upper surface of the moving platform after being fixed to the axial joint of the thrust universal joint bearing; the upper surface of the moving platform and the thrust universal joint bearing joint
  • the upper end surface of the shaft ring is fixedly connected;
  • the seat of the thrust universal joint bearing is fixedly connected with the load-bearing platform;
  • the load-bearing platform is disposed on the bearing foundation or the suspended rail through the load-bearing support hanger;
  • the traction unit comprises a universal joint Shaft, rotating electric machine, traction platform and at least one traction group
  • the upper end of the moving rotary drawbar is connected to the output end of the rotary electric machine through a universal joint; the rotary
  • the traction assembly includes a traction motor and a ball screw pair; the traction motor is hinged to the load bearing bracket, and the traction motor output shaft is fixed to the screw of the ball screw pair; the ball screw pair The nut is hinged to the traction platform.
  • the above traction assembly may be one.
  • the above traction components may be two or three;
  • the projection of the traction direction or the traction direction of the two traction assemblies is at an angle of 90°.
  • the number of traction components of the traction unit is one or two; when the number of traction components of the traction unit is one, the traction component is a motorized screw slide rail, and the slide rail is fixed on the load-bearing bracket or the bearing. Based on the slider, the slider is fixed to the traction platform.
  • the first traction component is a motor screw slide rail, and the slide rail is fixed on the load-bearing bracket or the load-bearing foundation;
  • the second traction component is an electric screw slide rail, which slides The rail is fixed on the slider of the first traction assembly, and the slider is fixed to the traction platform; the angle between the two electric screw slides is 90°.
  • the thrust universal joint bearing has three unique configurations:
  • the thrust universal joint bearing further includes a planar thrust bearing assembly
  • the planar thrust bearing assembly comprises a ball and a cage, an underpad, an upper rail disposed on a lower bottom surface of the thrust universal joint bearing race, and a lower rail disposed on a bottom surface of the lower cushion;
  • the lower bottom surface of the lower pad of the planar thrust bearing assembly is fixedly coupled to the load bearing platform.
  • the thrust universal joint bearing further includes a ball assembly
  • the inner side surface of the seat of the thrust universal joint bearing is a polygonal pyramid surface
  • the ball assembly includes a ball pit disposed on each face of the polygonal pyramid surface, and a ball disposed in each of the ball pockets;
  • the plurality of balls are located on the same plane and are respectively in contact with the outer spherical surface of the collar of the thrust universal joint bearing.
  • the thrust universal joint bearing further includes a roller assembly planar thrust bearing assembly
  • the inner side surface of the seat of the thrust universal joint bearing is a polygonal pyramid surface
  • the ball assembly includes a roller pit disposed on each face of the polygonal pyramid surface, and a roller disposed in each roller pit;
  • the plurality of rollers are located on the same plane, are laterally arranged and respectively contact with the outer spherical surface of the axial ring of the thrust universal joint bearing;
  • the planar thrust bearing assembly comprises a ball and a cage, an underpad, an upper rail disposed on a lower bottom surface of the thrust universal joint bearing race, and a lower rail disposed on a bottom surface of the lower cushion;
  • the lower bottom surface of the lower pad of the planar thrust bearing assembly is fixedly coupled to the load bearing platform.
  • the first type of thrust universal joint bearing includes a shaft ring and a race; and is special in that it further includes a planar thrust bearing assembly; the planar thrust bearing assembly includes a ball and a cage, a lower pad, and is disposed on the thrust universal joint An upper rail of the lower bottom surface of the bearing race, a lower rail disposed on the bottom surface of the lower cushion; and a lower bottom surface of the lower cushion of the planar thrust bearing assembly is fixedly connected to the bearing platform.
  • the second thrust universal joint bearing may further include a ball assembly on the structure of the first thrust universal joint bearing; the inner side of the seat of the thrust universal joint bearing is a polygonal pyramid surface
  • the ball assembly includes a ball pit disposed on each face of the polygonal pyramid surface, and a ball disposed in each of the ball pockets; the plurality of balls are located on the same plane and are respectively in contact with the outer spherical surface of the axial joint of the thrust universal joint bearing .
  • the third thrust universal joint bearing may further include a roller assembly on the structure of the first thrust universal joint bearing; the inner side of the seat of the thrust universal joint bearing is a polygonal pyramid
  • the ball assembly includes a roller pit disposed on each face of the polygonal pyramid surface, and a roller disposed in each roller pit; the plurality of rollers are located on the same plane, and are laterally arranged and respectively associated with the thrust universal joint
  • the outer spherical surface of the bearing's collar is in contact.
  • the fourth thrust universal joint bearing includes a shaft ring and a race; the special feature is: further comprising a ball assembly; the inner side of the seat of the thrust universal joint bearing is a polygonal pyramid; the ball assembly includes a setting Ball pockets on each of the polygonal pyramid faces, balls disposed in each of the ball pockets; the plurality of balls are located on the same plane and are in contact with the outer spherical surfaces of the thrust collar of the thrust universal joint bearing, respectively.
  • the prior art controls the external device by two hands to achieve motion control.
  • the method of the invention liberates the hands of the experiencer and directly controls the motion platform through the sensor.
  • the method of the invention prevents the malfunction of the platform by setting the dead zone angle, and the dead zone angle can be set at the factory, or can be set by the experiencer.
  • the method of the invention has a sensor, which avoids the incompatibility between the motion platform and the headwear device.
  • the method of the present invention can also adopt a sinusoidal motion mode, which greatly improves the experience of the experiencer, the motion state is smoother, the transition is more gradual, and the acceleration experience is more realistic.
  • the method of the invention limits the maximum speed of rotation through the sinusoidal value method, and avoids the safety hazard caused by the excessive speed of the motion platform.
  • the motion platform of the present invention adopts single-point load-bearing or single-point hoisting load-bearing (that is, the weight of all objects on the motion platform, all of which are loaded by one structure of the present invention, and the gravity is shared to other structures) and the lever-traction transmission.
  • the swinging and rotating functions in various directions can be realized, and the load of the motor can be reduced, thereby reducing the power of the motor, miniaturizing the device, and finally reducing the cost of materials, manufacturing, transportation, and the like.
  • the thrust universal joint bearing of the invention combines an ordinary thrust universal joint bearing and a planar thrust bearing, and simultaneously increases the ball component or the roller component, thereby realizing the bearing capacity of the multi-dimensional motion platform under large load conditions, avoiding multi-dimensional motion.
  • the platform realizes the swinging and rotating functions in all directions, it also needs to drive the technical problem of the load. Now the load of the motor is reduced, thereby reducing the power of the motor, miniaturizing the equipment, and ultimately reducing the cost of materials, manufacturing, transportation and the like.
  • 1 is a flow chart of a direction parameter acquisition step of the method of the present invention; wherein the wireless transmission may adopt a 2.4-2.5 g wireless communication protocol;
  • FIG. 2 is a flow chart showing steps of obtaining an action parameter of the method of the present invention
  • Figure 3 is a flow chart of the rotation or sway control of the method of the present invention.
  • Figure 4 is a flow chart of the rotation control with dead zone control of the method of the present invention.
  • Figure 5 is a flow chart of the rotation control with curve control of the method of the present invention.
  • Figure 6 is a sinusoidal response curve used in the method of the present invention for calculating the speed coefficient
  • Figure 7 is a response line taken by the method of the present invention for calculating a speed coefficient
  • the X axis of FIGS. 6 and 7 is the rotation angle difference
  • X is the maximum value of the dead zone
  • the Y axis is the speed coefficient
  • the coefficient corresponding to the highest point of the curve is 1.
  • FIG. 8 is a schematic structural view of a load-bearing multi-dimensional motion platform of a triangular push rod scheme adopted by the present invention.
  • FIG. 9 is a schematic structural view of a load-bearing multi-dimensional motion platform of a one-way pusher scheme adopted by the present invention.
  • FIG. 10 is a schematic structural view of a load-bearing multi-dimensional motion platform using two electric screw slide rails according to the present invention.
  • FIG. 11 is a schematic structural view of a hoisting multi-dimensional motion platform of a triangular push rod scheme adopted by the present invention.
  • FIG. 12 is a schematic structural view of a hoisting multi-dimensional motion platform using two electric screw slide rails according to the present invention.
  • Figure 13 is a schematic view of the universal joint coupling, the rotary electric machine and the traction platform of the present invention.
  • Figure 14 is a schematic view of a traction assembly of the present invention using a ball screw pair structure
  • Figure 15 is a schematic structural view of a rotary electric machine and a universal joint coupling according to the present invention.
  • 16 is a schematic structural view of two electric screw slide rails, a traction platform and a universal joint coupling according to the present invention
  • Figure 17 is a schematic structural view of a load-bearing bracket of the present invention.
  • FIG. 18 is a schematic structural view of a thrust universal joint bearing, a load bearing platform and a moving rotary drawbar according to the present invention
  • Figure 19 is an outline view of the first and second thrust universal joint bearings of the present invention.
  • Figure 20 is an exploded cross-sectional view showing the first thrust universal joint bearing of the present invention.
  • Figure 21 is an exploded cross-sectional view showing a second thrust universal joint bearing of the present invention.
  • Figure 22 is an outline view of a third type of thrust universal joint bearing of the present invention.
  • Figure 23 is an exploded view of Figure 22
  • Figure 24 is a cross-sectional view showing a third type of thrust universal joint bearing of the present invention.
  • Figure 25 is a perspective view of a fourth thrust universal joint bearing of the present invention.
  • Figure 26 is an exploded view of Figure 25;
  • Figure 27 is a cross-sectional view showing a fourth thrust universal joint bearing of the present invention.
  • Figure 28 is an exploded cross-sectional view showing a fourth thrust universal joint bearing of the present invention.
  • 1-motion platform 2-bearing platform; 3-motion rotary drawbar; 4-bearing bracket; 5-bearing foundation; 6-traction motor; 7-rotary motor; 8-ball screw pair; 81-nut; 82-screw; 9-universal telescopic coupling; 10- traction platform; 11-electric screw slide; 12-slider; 13-slide; 14-thrust universal joint bearing; 15-seat; 16-axis ring; 17-first ball; 18-cage; 19-under pad; 20-lower track; 21-upper track; 22-polygonal pyramid; 23-second ball; 24-roller.
  • the invention provides a VR motion control method, comprising the following steps:
  • the angular velocity sensor and the acceleration sensor respectively output an integrated value of angular velocity and acceleration;
  • the angular velocity sensor and the acceleration sensor herein may be an inherent sensor of the head mounted display device, or may be an external external sensor;
  • the controller receives the tracking data packet of the head-mounted display device by wirelessly, and receives the action control data packet through the 485 bus mode;
  • Extracting the information header if it is the head-mounted display device tracking data, proceeding to step 6, if it is the action parameter data, proceeding to step 7, otherwise discarding the data;
  • the feed rate is preferably greater than 10 packets per second for jitter free control.
  • Step 6 has multiple implementations.
  • the first implementation does not use curve control, as follows:
  • step 6.3) Compare the dead zone angle with the real-time angle difference. If the real-time angle difference is smaller than the dead zone angle, return to step 6.2. If the real-time angle difference is greater than or equal to the dead zone angle, subtract the dead zone angle from the absolute value of the real-time angular difference. , to obtain a control angle difference;
  • step 6 does not apply to dead zone control, as follows:
  • New real-time angle difference (real-time angle difference / maximum value of head rotation angle coefficient) ⁇ 90 degrees
  • step 6 adopts integrated control of dead zone and curve, as follows:
  • step 6.3) Compare the dead zone angle with the real-time angle difference. If the real-time angle difference is smaller than the dead zone angle, return to step 6.2. If the real-time angle difference is greater than or equal to the dead zone angle, subtract the dead zone angle from the absolute value of the real-time angular difference. , to obtain a control angle difference;
  • New real-time angle difference (real-time angle difference / maximum value of head rotation angle coefficient) ⁇ 90 degrees
  • the data collected by an inductive device can be attached to the operator's head by a device containing a 9-axis sensor module.
  • a 3-axis accelerometer is used to calculate the head pose
  • a 3-axis gyroscope is used to calculate the real-time rotation angle of the recognition head
  • a 3-axis magnetic sensor is used to calculate the corrected offset.
  • the actual spatial state vector is calculated, that is, the human head.
  • the data and device ID are sent to the control system via wireless or wired.
  • the control system can receive a plurality of control signals, and when the head is actually oriented, the orientation is compared with the orientation of the base, and if the degree is greater than a predetermined dead zone size, the rotating motor is driven to perform rotation compensation until the The declination is smaller than the dead zone angle (the dead zone angle means that the system does not react when the rotation angle is less than a certain angle)
  • the selection-to-compensation here is calculated by various algorithms to achieve gentle rotation to prevent vertigo, and the rotation angle is compared with the preset maximum value, and the maximum angle is determined first, and the maximum angle is greater than the maximum angle.
  • the angle is calculated to ensure that the maximum speed can be moved at a constant speed, and then the calculated interval angle is expanded to a range of -90 to 90 degrees, and the response curves are shown in FIGS. 6 and 7.
  • the first algorithm which uses a sinusoidal curve, yields a parabolic curve of -1 to 1, multiplied by the set number of motor rotation pulses to obtain the number of pulses that actually drive the motor to rotate.
  • the second algorithm uses a uniform linear acceleration to calculate a straight line segment from -1 to 1, and multiplies the set number of motor rotation pulses to calculate the actual number of pulses.
  • the system In addition to controlling the rotation of the head, the system also supports simultaneous or independent movement with the motion platform.
  • the motion platform is controlled by the motion platform control signals received by the control system.
  • the motion signal is a direction, elevation angle and
  • the vector of the rotation angle is different from the traditional motion platform (the traditional motion platform uses the displacement component data of each electric cylinder.
  • the disadvantage of this data is that the motion platform of different structures has its own independent data rules and structures). It is a sports platform that can adapt to any structure in the future.
  • the rotation angle data therein can be selected and calculated with the above-mentioned control of the head rotation data to achieve the effect of the common control.
  • the head control and the motion platform can be operated independently or separately, and the head tracking control can be used alone, or only the motion platform can be used, or a combination of the two can be used.
  • the above motion control method further includes the step of performing trajectory correction according to a magnetic sensor built in or external to the head mounted display device.
  • the above-mentioned information header preferably identifies the ID; in order to prevent jitter, the transmission rate of the current state calculation difference sent to the motion control system is preferably greater than 10 packets/second.
  • the multi-dimensional motion platform in the motion control method includes a support unit and a traction unit, and the support unit includes a motion platform 1, a thrust universal joint bearing 14, a load bearing platform 2, and a motion rotary traction a rod 3 and a bearing bracket 4;
  • the thrust universal joint bearing 14 includes a shaft ring and a race;
  • the upper end of the moving rotary drawbar is fixed in a shaft ring of the thrust universal joint bearing;
  • the upper end surface of the joint joint shaft of the universal joint bearing is fixedly connected;
  • the seat of the thrust universal joint bearing is fixedly connected with the bearing platform;
  • the load bearing platform is disposed on the bearing foundation 5 through the bearing bracket;
  • the traction unit comprises a universal joint a coupling, a rotating electrical machine 7, a traction platform 10 and at least one traction assembly;
  • the lower end of the moving rotary drawbar is connected to the output end of the rotary electric machine through a universal telescopic coupling;
  • the number of traction components of the traction unit is one, two or three;
  • the traction assembly comprises a traction motor 6, a ball screw pair 8;
  • the traction motor is articulated with a load bearing bracket, the traction motor output shaft and the ball screw
  • the auxiliary screw is fixed;
  • the nut of the ball screw pair is hinged to the traction platform;
  • the traction assembly is two, the projection of the traction direction or the traction direction of the two traction assemblies is at an angle of 90°;
  • the angle between the traction directions of any two traction units is equal.
  • the number of traction components of the traction unit is one or two; when the number of traction components is one, the traction assembly is a motorized screw slide rail 11 whose slide rail is fixed on a load-bearing bracket or a load-bearing foundation, and the slider and the traction The platform is fixed; when the number of traction components is two, the first traction component is a motor screw slide rail, and the slide rail is fixed on the load-bearing bracket or the load-bearing foundation; the second traction component is a electric screw slide rail, The slide rail is fixed on the slider of the first traction assembly, and the slider is fixed to the traction platform; the angle between the two electric screw slide rails is 90°.
  • the multi-dimensional motion platform of the invention comprises a support unit and a traction unit.
  • the support unit comprises a motion platform 1, a thrust universal joint bearing 14, a load bearing platform 2, a moving rotary drawbar 3 and a load bearing bracket 4;
  • the traction unit comprises a universal joint coupling 9, a rotating electrical machine 7, a traction platform 10 and at least one traction Component
  • Thrust universal joint bearings have at least five structures:
  • the first type is a conventional thrust universal joint bearing, which generally includes a collar 16 and a race 15.
  • the second to fifth types are thrust universal joint bearings 14 peculiar to the present invention, wherein:
  • FIG 20 it is a second thrust universal joint bearing, including a bearing housing, a shaft ring 16, a race 15.
  • Planar thrust bearing assembly the shaft ring 16 is a hemispherical shaft ring, and the plane thrust bearing assembly comprises a first ball 17 and a retainer 18, a lower pad 19, an upper rail 21 disposed on the lower bottom surface of the thrust universal joint bearing race, and a setting The lower rail 20 on the bottom surface of the lower pad; the lower bottom surface of the lower pad of the planar thrust bearing assembly is fixedly connected to the load-bearing platform 2.
  • the third type of thrust universal joint bearing differs from the second type in that the collar 16 is a multi-spherical shaft ring.
  • the fourth thrust universal joint bearing includes a shaft ring 16, a race 15 roller assembly and a planar thrust bearing assembly; the inner side of the race 15 of the thrust universal joint bearing 14 is a pyramid surface 22; the roller assembly includes roller pits disposed on each face of the polygonal pyramid surface, rollers disposed in each roller pit; the plurality of rollers are located in the same plane, are laterally aligned, and are respectively associated with the thrust universal
  • the outer spherical surface of the shaft of the joint bearing is in contact.
  • the planar thrust bearing assembly has the same structure as the planar thrust bearing assembly of the first thrust universal joint bearing.
  • the fifth type is a thrust universal joint bearing including a shaft ring 16, a race 15 and a ball assembly; the inner side of the seat of the thrust universal joint bearing is a polygonal pyramid 22
  • the ball assembly includes a ball pit disposed on each face of the polygonal pyramid 22, and a first ball 17 disposed in each of the ball pockets; the plurality of balls are located on the same plane and respectively outside the collar of the thrust universal joint bearing Spherical contact.
  • the upper end of the moving rotary drawbar 3 is fixed in the axial ring of the thrust universal joint bearing 14, and the lower bottom surface of the movable platform 1 is fixedly connected to the upper end surface of the joint joint of the thrust universal joint bearing 14; the thrust universal joint
  • the race 15 or the lower pad 19 or the bearing housing of the bearing is fixedly connected to the load-bearing platform 2.
  • the load-bearing platform 2 is disposed on the load-bearing foundation 5 via the load-bearing bracket 4, and the lower end of the movable rotary drawbar 3 is connected to the output end of the rotary electric machine 7 through the universal joint 9; the rotary motor 7 is fixed on the traction platform 10; One end is connected to the traction platform 10, and the other end is connected to the load-bearing bracket 4 for adjusting the inclination of the traction platform 10.
  • the first solution uses an electric ball screw pair 8, including one or two or three traction assemblies.
  • the projection directions of the traction directions or the traction directions of the two traction assemblies are at an angle of 90°;
  • three traction assemblies are used, the angle between the traction directions of any two traction units is equal or the angle between the projections of the traction directions is 120°.
  • the traction assembly includes a traction motor 6 and a ball screw pair 8; the traction motor 6 is hinged to the load-bearing bracket 4, the output shaft of the traction motor 6 is fixed to the lead screw of the ball screw pair 8; the nut 81 of the ball screw pair and the traction platform 10 Hinged.
  • the second option uses a motorized screw slide that includes two configurations:
  • the traction assembly is the electric screw slide rail 11, and the slide rail is fixed on the load-bearing bracket 4 or the load-bearing foundation 5, and the slider 12 is fixed to the traction platform 10.
  • the slide rails 13 of the first electric screw slide rails are fixed on the load-bearing bracket 4 or the load-bearing foundation 5; the slide of the second electric screw slide rails
  • the rail 13 is fixed to the slider 12 of the first traction assembly, and the slider 12 is fixed to the traction platform, and the angle between the two electric screw slide rails is 90°.
  • the universal joint coupling 9 includes an inner shaft and a casing, the upper end of the outer casing is fixedly coupled to the moving rotary drawbar 3, the lower end of the inner shaft is connected to the output end of the rotary electric machine 7, and the lower end surface of the outer casing is provided with a polygon.
  • the concave hole, the upper end of the inner shaft is a polygonal cylinder, the polygonal cylinder is matched with the polygonal concave hole, and the polygonal cylinder can slide freely in the polygonal concave hole.
  • the multi-dimensional motion platform of the invention comprises a support unit and a traction unit.
  • the support unit comprises a motion platform 1, a thrust universal joint bearing 14, a load bearing platform 2, a moving rotary drawbar 3 and a load bearing bracket 4;
  • the traction unit comprises a universal joint coupling 9, a rotating electrical machine 7, a traction platform 10 and at least one traction Component
  • Thrust universal joint bearings have at least five structures:
  • the first type is a conventional thrust universal joint bearing, which generally includes a collar 16 and a race 15.
  • the second to fifth types are thrust universal joint bearings unique to the present invention, wherein:
  • the second thrust universal joint bearing includes a bearing seat, a shaft ring 16, a race 15, and a planar thrust bearing assembly;
  • the collar 16 is a hemispherical shaft ring, and
  • the planar thrust bearing assembly includes a first ball 23 and The holder 18, the lower pad 19, the upper rail 21 disposed on the lower bottom surface of the thrust universal joint bearing race, and the lower rail 20 disposed on the bottom surface of the lower pad; the lower bottom surface of the lower pad of the planar thrust bearing assembly is fixedly coupled to the load-bearing platform 2.
  • the third type of thrust universal joint bearing differs from the second type in that the collar 16 is a multi-spherical shaft ring.
  • the fourth thrust universal joint bearing includes a shaft ring 16, a race 15 roller assembly and a plane thrust bearing assembly; the inner side of the race 15 of the thrust universal joint bearing 14 is a polygonal pyramid 22; the roller assembly includes a roller pit disposed on each face of the polygonal pyramid surface, and a roller disposed in each roller pit; the plurality of rollers are located in the same plane, are laterally arranged, and are respectively associated with the thrust Contact the outer spherical surface of the shaft ring of the joint bearing.
  • the planar thrust bearing assembly has the same structure as the planar thrust bearing assembly of the first thrust universal joint bearing.
  • the fifth thrust universal joint bearing includes a shaft ring 16, a race 15 and a ball assembly; the inner side of the race of the thrust universal joint bearing is a polygonal pyramid surface 22;
  • the ball assembly includes a ball pit disposed on each face of the polygonal pyramid 22, and a first ball 17 disposed in each of the ball pockets; the plurality of balls are located on the same plane and respectively correspond to the outer spherical surface of the axial joint of the thrust universal joint bearing contact.
  • the lower end of the moving rotary drawbar 3 is fixed in the shaft ring of the thrust universal joint bearing 14, and the upper bottom surface of the moving platform 1 is fixedly connected with the lower end surface of the thrust universal joint bearing joint shaft; the thrust universal joint bearing
  • the seat or lower pad or bearing housing of the 14 is fixed to the load-bearing platform 2.
  • the load-bearing platform 2 is arranged on the upper load-bearing foundation 5 or the suspended rail by the load-bearing hanger 4, and the upper end of the movable rotary drawbar 3 is connected to the output end of the rotary electric machine 7 through the universal joint 9; the rotary motor 7 is fixed at On the traction platform 10; one end of the traction assembly is connected to the traction platform 10, and the other end is connected to the load-bearing hanger 4 for adjusting the inclination of the traction platform.
  • the first solution uses an electric ball screw pair, including one or two or three traction assemblies.
  • the projection directions of the traction directions or the traction directions of the two traction assemblies are at an angle of 90°; In the case of three traction assemblies, the angle between the traction directions of any two traction units is equal or the angle between the projections of the traction directions is 120°.
  • the traction assembly includes a traction motor 6 and a ball screw pair 8; the traction motor 6 is hinged to the load-bearing hanger 4, and the traction motor output shaft is fixed to the screw of the ball screw pair; the ball screw pair Snail The female 81 is hinged to the traction platform 10.
  • the second option uses a motorized screw slide that includes two configurations:
  • the traction component is a electric screw slide rail
  • the slide rail 13 is fixed on the load-bearing bracket or the load-bearing foundation, and the slider is fixed to the traction platform.
  • the slide rail 13 of the first electric screw slide rail is fixed on the load-bearing bracket or the load-bearing foundation; the slide rail of the second electric screw slide rail is fixed on the first traction assembly On the slider 12, the slider is fixed to the traction platform, and the angle between the two electric screw slides is 90°.
  • the universal telescopic coupling comprises an inner shaft and an outer sleeve, the upper end of the outer sleeve is fixedly connected with the output end of the rotating rotary drawing rod rotating motor, the lower end of the inner shaft is connected with the output end of the rotating rotary drawing rod rotating motor, and the lower end surface of the outer sleeve is provided with a polygon
  • the concave hole, the upper end of the inner shaft is a polygonal cylinder, the polygonal cylinder is matched with the polygonal concave hole, and the polygonal cylinder can slide freely in the polygonal concave hole.
  • Thrust universal joint bearings have four configurations:
  • the first thrust universal joint bearing includes a bearing housing, a shaft ring 16, a race 15, and a planar thrust bearing assembly;
  • the shaft ring is a hemispherical shaft ring, and the planar thrust bearing assembly includes a first ball 17 and is held.
  • the second type of thrust universal joint bearing differs from the first one in that the shaft ring is a multi-spherical shaft ring.
  • the third type of thrust universal joint bearing includes a shaft ring 16, a race 15, a roller assembly, and a planar thrust bearing assembly;
  • the inner side of the seat of the thrust universal joint bearing is a polygonal pyramid Face 22;
  • the roller assembly includes roller pits disposed on each face of the polygonal pyramid surface, rollers disposed in each roller pit; the plurality of rollers are located in the same plane, are laterally aligned, and are respectively associated with the thrust universal joint
  • the outer spherical surface of the bearing's collar is in contact.
  • the planar thrust bearing assembly has the same structure as the planar thrust bearing assembly of the first thrust universal joint bearing.
  • the fourth type of thrust universal joint bearing includes a shaft ring 16, a race 15 and a ball assembly; the inner side of the seat of the thrust universal joint bearing is a polygonal pyramid 22; The assembly includes a ball pocket disposed on each face of the polygonal pyramid 22, and a first ball 17 disposed in each of the ball pockets; the plurality of balls are located in the same plane and are in contact with the outer spherical surface of the collar of the thrust universal joint bearing, respectively .
  • the multi-dimensional motion platform to which the present invention is applied includes a support unit and a traction unit.
  • the support unit comprises a motion platform 1, a thrust universal joint bearing 14, a load bearing platform 2, a moving rotary drawbar 3 and a load bearing bracket 4;
  • the traction unit comprises a universal joint coupling 9, a rotating electrical machine 7, a traction platform 10 and at least one traction Component
  • the upper end of the moving rotary drawbar 3 is fixed in the collar 16 of the thrust universal joint bearing 14, and the lower bottom surface of the movable platform 1 is fixedly connected with the upper end surface of the thrust universal joint bearing joint shaft; the seat of the thrust universal joint bearing or the lower
  • the pad or bearing housing is fixed to the load bearing platform.
  • the load-bearing platform 2 is disposed on the load-bearing foundation through the load-bearing bracket 4, and the lower end of the movable rotary drawbar is connected to the output end of the rotary electric machine through the universal telescopic coupling; the rotary electric motor is fixed on the traction platform; one end of the traction assembly is connected to the traction platform The other end is connected to the load-bearing bracket for adjusting the inclination of the traction platform.
  • the first solution uses an electric ball screw pair, including one or two or three traction assemblies.
  • the projection directions of the traction directions or the traction directions of the two traction assemblies are at an angle of 90°; In the case of three traction assemblies, the angle between the traction directions of any two traction units is equal or the angle between the projections of the traction directions is 120°.
  • the traction assembly includes a traction motor 6 and a ball screw pair 8; the traction motor is hinged with the load bearing bracket, and the traction motor output shaft is fixedly connected with the ball screw of the ball screw pair; the nut of the ball screw pair is hinged to the traction platform.
  • the second option uses a motorized screw slide that includes two configurations:
  • the traction assembly is the electric screw slide rail 11, and the slide rail 13 is fixed on the load-bearing bracket or the load-bearing foundation, and the slider 12 is fixed to the traction platform.
  • the slide rail of the first electric screw slide rail is fixed on the load-bearing bracket or the load-bearing foundation; the slide rail of the second electric screw slide rail is fixed on the first traction component On the slider, the slider is fixed to the traction platform, and the angle between the two electric screw slides is 90°.
  • the universal telescopic coupling comprises an inner shaft and an outer sleeve, the upper end of the outer sleeve is fixedly connected with the moving rotary drawbar, the lower end of the inner shaft is connected with the output end of the rotary electric machine, and the lower end surface of the outer sleeve is provided with a polygonal concave hole, and the upper end portion of the inner shaft is The polygonal cylinder, the polygonal cylinder is matched with the polygonal concave hole, and the polygonal cylinder can slide freely in the polygonal concave hole.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Support Of The Bearing (AREA)
  • Rolling Contact Bearings (AREA)
  • Position Input By Displaying (AREA)
  • User Interface Of Digital Computer (AREA)
  • Rehabilitation Tools (AREA)

Abstract

一种VR运动控制方法、多维运动平台及推力万向关节轴承(14)。VR运动控制方法包括以下步骤:设置参数;校准设备;参数获取;接收头戴显示设备追踪数据包和/或动作控制数据包;判断实时角度差是否大于设定的死区角度;计算出头戴显示设备当前角度与多维运动平台的当前状态的差值,送入多维运动平台的动作控制系统以消除差值。多维运动平台,采用单点承重或单点吊装承重和杠杆牵引式传动,由此可实现各个方向摆动及旋转功能。推力万向关节轴承(14),将普通的推力万向关节轴承和平面推力轴承相结合,同时增加滚珠组件或滚柱组件,从而实现了大负重条件下多维运动平台的承重。

Description

VR运动控制方法、多维运动平台及推力万向关节轴承 技术领域
本发明涉及一种VR运动控制方法、多维运动平台及推力万向关节轴承,尤其涉及VR运动控制方法,一种可实现自转及自由摇摆的运动平台,一种可用于多维运动平台承重的推力万向关节轴承。
背景技术
运动平台是一种可以模拟载人设备运动状态的一种装置,例如模拟汽车、船、飞行器等,目前市场上已有多个设备解决方案。
现有装置的传动技术是利用直线电机的组合机构,通过一个电机控制一个维度的伸缩运动,形成平台的多自由度运动,其利用传动结构本身的力量,来承受平台上的重量,托起平台进行运动。
现有的三自由度运动平台利用三点支撑平台,支撑杆可做直线运动,通过控制三个支撑杆之间配合运动,来实现前后、左右、上下三个维度的控制化运动,配合视觉效果可以达到模拟运动的目的。
三自由度运动平台已在影院、游戏、游乐场等多种领域广泛使用。
三自由度运动平台的主要缺点:
1.平台自身体积、重量大,不便于运输、安装及维护。
2.平台需配备大型座椅等设备,整体高度及占地面积都比较高。
3.主要实现前后左右两个轴向的运动,上下幅度很小,且无法实现平台旋转功能。
4.因为需要附加高功率驱动从而会带来较大的机械噪音。
目前已有六自由度平台,其能够实现更加精细的运动控制,以及少量的轴向转动。但现阶段的这种六自由度运动平台都是大型笨重的设备,各方面成本很高,不利于个人使用或个性化定制,对运动模拟设备的多领域普及产生了一定的制约。
目前的VR运动平台均是基于4d/5d等影院座椅技术改装的,主要结构为三电缸,双电缸或六电缸作为运动平台驱动,其中六电缸成本高,较为少见。使用时通过专用软件读取事先录好的电缸坐标记录,控制电缸运动,实现多个自 由度的运动控制。由于是电缸支撑结构,除六电缸平台能进行较小幅度旋转外(不大于30°),三或双电缸结构均无法旋转运动。除此之外,该方案由电缸负责承重,致使整体重量较大,导致整体功率要达到上千瓦才能正常工作,对环境要求较高。
尤其对于需要固定吊装或者在轨道下吊装且移动的场合来说,现有六自由度平台根本无法实现。为此,急需一种吊装结构的运动平台。
若需要多维运动平台上所有物体的重量,全部由一处结构来负重,则需要一种特殊的推力万向关节轴承,将重力分担给其他结构,这样才能实现各个方向摆动及旋转功能。
发明内容
本发明目的之一是提供VR运动控制方法,其通过识别操作者头部旋转的动作,实现座椅自动跟进旋转的具体功能,同时结合独有的运动平台设计,将旋转和晃动效果有机结合,实现全新的VR运动体验。
本发明目的之二是提供一种在保证多种维度的运动前提下,实现小型化、降低成本的基于支架承重或吊装承重的可实现自转及自由摇摆的多维运动平台。
本发明目的之三是提供一种推力万向关节轴承,实现多维运动平台实现各个方向摆动及旋转功能的同时且不负重。
本发明的技术解决方案是:
一种VR运动控制方法,包括以下步骤:
1)设置头戴显示设备相对于多维运动平台的死区角度,设置头部旋转角度系数的最值,设置多维运动平台自转速度参数和摇摆行程参数;所述多维运动平台为可实现自转和自由摇摆的运动平台;所述最值为绝对值的最大值;
2)校准多维运动平台与头戴显示设备,获取多维运动平台的水平方向角度和最大摇摆角度;
3)参数获取:
3.1)方向参数获取:
3.1.1)头戴显示设备内置或外置的角速度传感器和加速度传感器分别输出角速度的累计值与加速度的累计值;
3.1.2)根据积分获得头部加速度的瞬时值与头部角速度的瞬时值;
3.1.3)根据瞬时值计算头戴显示设备绝对方向向量;
3.1.4)将信息头和绝对方向向量封装成头戴显示设备追踪数据包;
3.2)动作参数获取:
3.2.1)根据VR游戏的状态获取被控物体的瞬时状态参数;或者直接获取视频中指定场景的预设动作参数;
3.2.2)将信息头和瞬时状态参数或者信息头和预设动作参数封装成动作控制数据包;
4)控制器接收头戴显示设备追踪数据包和/或动作控制数据包;
5)判断:
提取信息头,如是头戴显示设备追踪数据则进入步骤6,如是动作参数数据则进入步骤7,如都不是则丢弃该数据包;
6)根据数据包中的绝对方向向量计算出头戴显示设备当前偏转角度,再根据该角度与多维运动平台当前偏转角度计算实时角度差,并实时判断该实时角度差是否大于设定的死区角度;若是,则输出瞬时旋转脉冲,送入多维运动平台的旋转电机;若否,则根据下一个头戴显示设备追踪数据包继续计算实时角度差;
7)根据瞬时状态参数或预设动作参数,计算出头戴显示设备当前角度与多维运动平台的当前状态的差值,送入多维运动平台的动作控制系统以消除差值。
上运动控制方法中步骤6的第一种步骤具体如下:
6.1)提取所设定的死区角度;
6.2)从数据包中的绝对方向向量中提取的头戴显示设备当前偏转角度,根据其与多维运动平台当前偏转角度计算实时角度差;
6.3)将死区角度与实时角度差进行对比,若实时角度差小于死区角度,则返回步骤6.2;若实时角度差大于等于死区角度,则用实时角度差的绝对值减去死区角度,得出控制角度差;
6.4)判断控制角度差是否大于头部旋转角度系数的最值,若大于则固定为头部旋转角度系数的最值;
6.5)按下式计算实际旋转速度:
实际旋转速度=(控制角度差/头部旋转角度系数的最值)×自转速度参数;
6.6)将实际旋转速度转换为瞬时旋转脉冲,送入多维运动平台的旋转电机。
上述运动控制方法中步骤6的第二种步骤具体如下:
6.1)提取头戴显示设备当前偏转角度与平台当前偏转角度,得到实时角度差;
6.2)判断实时角度差是否大于头部旋转角度系数的最值,若大于则固定为头部旋转角度系数的最值,并进行以下计算:
新的实时角度差=(实时角度差/头部旋转角度系数的最值)×90度
6.3)以该实时角度差的正弦值作为速度系数;
6.4)按下式计算实际旋转速度:
实际旋转速度=速度系数×自转速度参数;
6.5)将实际旋转速度转换为瞬时旋转脉冲,送入多维运动平台的旋转电机。
上运动控制方法中步骤6的第三种步骤具体如下:
6.1)提取所设定的死区角度;
6.2)提取头戴显示设备当前偏转角度与多维运动平台当前偏转角度,得到实时角度差;
6.3)将死区角度与实时角度差进行对比,若实时角度差小于死区角度,则返回步骤6.2;若实时角度差大于等于死区角度,则用实时角度差的绝对值减去死区角度,得出控制角度差;
6.4)判断实时角度差是否大于头部旋转角度系数的最值,若大于则固定为头部旋转角度系数的最值,并进行以下计算:
新的实时角度差=(实时角度差/头部旋转角度系数的最值)×90度
6.5)以该实时角度差的正弦值作为速度系数;
6.6)按下式计算实际旋转速度:
实际旋转速度=速度系数×自转速度参数;
6.7)将实际旋转速度转换为瞬时旋转脉冲,送入多维运动平台的旋转电机。
为了提高控制精度,上述运动控制方法中,还包括根据头戴显示设备内置 或外置的磁力传感器进行轨迹矫正的步骤。
为了防止误动作,上述述信息头优选设备识别ID;
为了防止抖动,上述当前状态计算差值送入动作控制系统的发送速率最好大于10数据包/秒。
上述运动控制方法中的多维运动平台,具体结构包括支撑单元和牵引单元,所述支撑单元包括运动平台、推力万向关节轴承、承重平台、运动旋转牵引杆及承重支架;所述推力万向关节轴承包括轴圈和座圈;所述运动旋转牵引杆的上端固定于推力万向关节轴承的轴圈内;所述运动平台下底面与推力万向关节轴承关节轴圈上端面固连;所述推力万向关节轴承的座圈与承重平台固连;所述承重平台通过承重支架设置在承重基础上;所述牵引单元包括万向伸缩联轴器、旋转电机、牵引平台以及至少一个牵引组件;所述运动旋转牵引杆的下端通过万向伸缩联轴器与旋转电机的输出端连接;所述旋转电机固定在牵引平台上;所述牵引组件的一端连接在牵引平台上,另一端连接在承重支架上,用于调整牵引平台的倾角。
上述的牵引组件有两钟不同类型:
其一,滚珠丝杠副类型。牵引单元的牵引组件的数量为一个、两个或三个;所述牵引组件包括牵引电机、滚珠丝杠副;所述牵引电机与承重支架铰接,所述牵引电机输出轴与滚珠丝杠副的丝杠固连;所述滚珠丝杠副的螺母与牵引平台铰接;当牵引组件为两个时,所述两个牵引组件的牵引方向或牵引方向的投影呈90°夹角;当牵引组件为三个时,任意两个牵引单元的牵引方向之间的夹角相等。
其二,电动丝杆滑轨型。牵引单元的牵引组件数量为一个或两个;当牵引组件的数量为一个时,所述牵引组件为电动丝杆滑轨,其滑轨固定在承重支架或承重基础上,其滑块与牵引平台固定;当牵引组件的数量为二个时,第一个牵引组件为电动丝杆滑轨,其滑轨固定在承重支架或承重基础上;第二个牵引组件为电动丝杆滑轨,其滑轨固定在第一个牵引组件的滑块上,其滑块与牵引平台固定;所述两个电动丝杆滑轨的夹角为90°。
一种多维运动平台,包括支撑单元和牵引单元,其特殊之处是:所述支撑 单元包括运动平台、推力万向关节轴承、承重平台、运动旋转牵引杆及承重支架;所述推力万向关节轴承包括轴圈和座圈;所述运动旋转牵引杆的上端固定于推力万向关节轴承的轴圈内;所述运动平台下底面与推力万向关节轴承关节轴圈上端面固连;所述推力万向关节轴承的座圈与承重平台固连;所述承重平台通过承重支架设置在承重基础上;所述牵引单元包括万向伸缩联轴器、旋转电机、牵引平台以及至少一个牵引组件;所述运动旋转牵引杆的下端通过万向伸缩联轴器与旋转电机的输出端连接;所述旋转电机固定在牵引平台上;所述牵引组件的一端连接在牵引平台上,另一端连接在承重支架上,用于调整牵引平台的倾角。
上述牵引组件有两种类型,
第一种类型,上述牵引组件包括牵引电机、滚珠丝杠副;所述牵引电机与承重支架铰接,所述牵引电机输出轴与滚珠丝杠副的丝杠固连;所述滚珠丝杠副的螺母与牵引平台铰接。
若只需要左右摇摆,上述牵引组件可以为一个。
若需要自由摇摆,
上述牵引组件可以为两个,也可以为三个;
当牵引组件为两个时,所述两个牵引组件的牵引方向或牵引方向的投影呈90°夹角。
当牵引组件为三个时,任意两个牵引单元的牵引方向之间的夹角相等。
第二种类型,上述牵引单元的牵引组件数量为一个或两个;当牵引单元的牵引组件的数量为一个时,所述牵引组件为电动丝杆滑轨,其滑轨固定在承重支架或承重基础上,其滑块与牵引平台固定。
当牵引单元的牵引组件数量为两个时;第一个牵引组件为电动丝杆滑轨,其滑轨固定在承重支架或承重基础上;第二个牵引组件为电动丝杆滑轨,其滑轨固定在第一个牵引组件的滑块上,其滑块与牵引平台固定;所述两个电动丝杆滑轨的夹角为90°。
作为本发明的一部分,上述推力万向关节轴承还有三种独特的结构:
第一种,推力万向关节轴承还包括平面推力轴承组件;
所述平面推力轴承组件包括滚珠及保持架、下垫、设置在推力万向关节轴承座圈下底面的上轨道、设置在下垫上底面的下轨道;
所述平面推力轴承组件的下垫的下底面与承重平台固连。
第二种,推力万向关节轴承还包括滚珠组件;
所述推力万向关节轴承的座圈内侧面为多棱锥面;
所述滚珠组件包括设置在多棱锥面的每个面上的滚珠坑、设置在每个滚珠坑内的滚珠;
多个滚珠位于同一平面且分别与推力万向关节轴承的轴圈的外球面接触。
第三种,推力万向关节轴承还包括滚柱组件平面推力轴承组件;
所述推力万向关节轴承的座圈内侧面为多棱锥面;
所述滚珠组件包括设置在多棱锥面的每个面上的滚柱坑、设置在每个滚柱坑内的滚柱;
多个滚柱位于同一平面,横向排列且分别与推力万向关节轴承的轴圈的外球面接触;
所述平面推力轴承组件包括滚珠及保持架、下垫、设置在推力万向关节轴承座圈下底面的上轨道、设置在下垫上底面的下轨道;
所述平面推力轴承组件的下垫的下底面与承重平台固连。
一种多维运动平台,包括支撑单元和牵引单元,其特殊之处是:所述支撑单元包括运动平台、推力万向关节轴承、承重平台、运动旋转牵引杆及承重支架;所述推力万向关节轴承包括轴圈和座圈;所述运动旋转牵引杆的上端穿过固定于推力万向关节轴承的轴圈后与运动平台上底面固连;所述运动平台上底面与推力万向关节轴承关节轴圈上端面固连;所述推力万向关节轴承的座圈与承重平台固连;所述承重平台通过承重支吊架设置在承重基础或悬空轨道上;所述牵引单元包括万向伸缩联轴器、旋转电机、牵引平台以及至少一个牵引组 件;所述运动旋转牵引杆的上端通过万向伸缩联轴器与旋转电机的输出端连接;所述旋转电机固定在牵引平台上;所述牵引组件的一端连接在牵引平台上,另一端连接在承重支架上,用于调整牵引平台的倾角。
上述牵引组件有两种类型,
第一种类型,上述牵引组件包括牵引电机、滚珠丝杠副;所述牵引电机与承重支架铰接,所述牵引电机输出轴与滚珠丝杠副的丝杠固连;所述滚珠丝杠副的螺母与牵引平台铰接。
若只需要左右摇摆,上述牵引组件可以为一个。
若需要自由摇摆,
上述牵引组件可以为两个,也可以为三个;
当牵引组件为两个时,所述两个牵引组件的牵引方向或牵引方向的投影呈90°夹角。
当牵引组件为三个时,任意两个牵引单元的牵引方向之间的夹角相等。
第二种类型,上述牵引单元的牵引组件数量为一个或两个;当牵引单元的牵引组件的数量为一个时,所述牵引组件为电动丝杆滑轨,其滑轨固定在承重支架或承重基础上,其滑块与牵引平台固定。
当牵引单元的牵引组件数量为两个时;第一个牵引组件为电动丝杆滑轨,其滑轨固定在承重支架或承重基础上;第二个牵引组件为电动丝杆滑轨,其滑轨固定在第一个牵引组件的滑块上,其滑块与牵引平台固定;所述两个电动丝杆滑轨的夹角为90°。
作为本发明的一部分,上述推力万向关节轴承还有三种独特的结构:
第一种,推力万向关节轴承还包括平面推力轴承组件;
所述平面推力轴承组件包括滚珠及保持架、下垫、设置在推力万向关节轴承座圈下底面的上轨道、设置在下垫上底面的下轨道;
所述平面推力轴承组件的下垫的下底面与承重平台固连。
第二种,推力万向关节轴承还包括滚珠组件;
所述推力万向关节轴承的座圈内侧面为多棱锥面;
所述滚珠组件包括设置在多棱锥面的每个面上的滚珠坑、设置在每个滚珠坑内的滚珠;
多个滚珠位于同一平面且分别与推力万向关节轴承的轴圈的外球面接触。
第三种,推力万向关节轴承还包括滚柱组件平面推力轴承组件;
所述推力万向关节轴承的座圈内侧面为多棱锥面;
所述滚珠组件包括设置在多棱锥面的每个面上的滚柱坑、设置在每个滚柱坑内的滚柱;
多个滚柱位于同一平面,横向排列且分别与推力万向关节轴承的轴圈的外球面接触;
所述平面推力轴承组件包括滚珠及保持架、下垫、设置在推力万向关节轴承座圈下底面的上轨道、设置在下垫上底面的下轨道;
所述平面推力轴承组件的下垫的下底面与承重平台固连。
第一种推力万向关节轴承,包括轴圈和座圈;其特殊之处是,还包括平面推力轴承组件;所述平面推力轴承组件包括滚珠及保持架、下垫、设置在推力万向关节轴承座圈下底面的上轨道、设置在下垫上底面的下轨道;所述平面推力轴承组件的下垫的下底面与承重平台固连。
为减小摩擦力,第二种推力万向关节轴承,在第一种推力万向关节轴承的结构上,还可包括滚珠组件;所述推力万向关节轴承的座圈内侧面为多棱锥面;所述滚珠组件包括设置在多棱锥面的每个面上的滚珠坑、设置在每个滚珠坑内的滚珠;多个滚珠位于同一平面且分别与推力万向关节轴承的轴圈的外球面接触。
为减小摩擦力,第三种推力万向关节轴承,在第一种推力万向关节轴承的结构上,还可包括滚柱组件;所述推力万向关节轴承的座圈内侧面为多棱锥面;所述滚珠组件包括设置在多棱锥面的每个面上的滚柱坑、设置在每个滚柱坑内的滚柱;多个滚柱位于同一平面,横向排列且分别与推力万向关节轴承的轴圈的外球面接触。
第四种推力万向关节轴承,包括轴圈和座圈;其特殊之处是:还包括滚珠组件;所述推力万向关节轴承的座圈内侧面为多棱锥面;所述滚珠组件包括设置在多棱锥面的每个面上的滚珠坑、设置在每个滚珠坑内的滚珠;多个滚珠位于同一平面且分别与推力万向关节轴承的轴圈的外球面接触。
本发明的优点:
1、现有技术是通过双手控制外接设备从而达到运动控制。本发明方法解放了体验者的双手,直接通过传感器达成运动平台控制。
2、本发明方法通过设置死区角度,防止平台的误动作,死区角度可出厂设定,也可体验者自行设定。
3、本发明方法自带传感器,避免了运动平台与头戴设备的不兼容问题。
4、本发明方法还可采用正弦曲线的运动方式,极大了提升了体验者的体验度,运动状态更加平滑,过度更加平缓,加速度体验更真实。
5、本发明方法通过正弦曲线取值方法限定了旋转最大速度,避免运动平台转速过快带来的安全隐患。
6、本发明运动平台通过采用单点承重或单点吊装承重(即运动平台上所有物体的重量,全部由本发明中一处结构来负重,并将重力分担给其他结构)和杠杆牵引式传动,由此可实现各个方向摆动及旋转功能,实现减小电机的负重,从而降低电机功率,使设备小型化,最终降低材料、制造、运输等各方面成本。
7、本发明推力万向关节轴承,将普通的推力万向关节轴承和平面推力轴承相结合,同时增加滚珠组件或滚柱组件,从而实现了大负重条件下多维运动平台的承重,避免多维运动平台实现各个方向摆动及旋转功能的同时还需驱动负重的技术问题,现减小电机的负重,从而降低电机功率,使设备小型化,最终降低材料、制造、运输等各方面成本。
附图说明
图1是本发明方法的方向参数获取步骤流程图;其中的无线发送可采用2.4-2.5g无线通讯协议;
图2是本发明方法的动作参数获取步骤流程图;
图3是本发明方法的旋转或摇摆控制流程图;
图4是本发明方法的带死区控制的旋转控制流程图;
图5是本发明方法的带曲线控制的旋转控制流程图;
图6是本发明方法计算速度系数所采用的正弦响应曲线;
图7是本发明方法计算速度系数所采用的响应直线;
其中,图6和图7的X轴为旋转角度差,X为死区的最值,Y轴为速度系数,对应曲线最高处的系数为1。
图8是本发明采用的三角推杆方案的承重式多维运动平台的结构示意图;
图9是本发明采用的单向推杆方案的承重式多维运动平台的结构示意图;
图10是本发明采用两个电动丝杠滑轨的承重式多维运动平台的结构示意图;
图11是本发明采用的三角推杆方案的吊装式多维运动平台的结构示意图;
图12是本发明采用两个电动丝杠滑轨的吊装式多维运动平台的结构示意图;
图13是本发明万向伸缩联轴器、旋转电机及牵引平台的示意图;
图14是本发明采用滚珠丝杠副结构的牵引组件示意图;
图15是本发明旋转电机及万向伸缩联轴器的结构示意图;
图16是本发明两个电动丝杠滑轨、牵引平台及万向伸缩联轴器的结构示意图;
图17是本发明承重支架的结构示意图;
图18是本发明推力万向关节轴承、承重平台、运动旋转牵引杆的结构示意图;
图19是本发明第一种及第二种推力万向关节轴承的外形图;
图20是本发明第一种推力万向关节轴承的分解剖视图;
图21是本发明第二种推力万向关节轴承的分解剖视图;
图22是本发明第三种推力万向关节轴承的外形图;
图23是图22的分解图
图24是本发明第三种推力万向关节轴承的剖视图;
图25是本发明第四种推力万向关节轴承的立体图;
图26是图25的分解图;
图27是本发明第四种推力万向关节轴承的剖视图;
图28是本发明第四种推力万向关节轴承的分解剖视图;
其中:1-运动平台;2-承重平台;3-运动旋转牵引杆;4-承重支架;5-承重基础;6-牵引电机;7-旋转电机;8-滚珠丝杠副;81-螺母;82-丝杠;9-万向伸缩联轴器;10-牵引平台;11-电动丝杆滑轨;12-滑块;13-滑轨;14-推力万向关节轴承;15-座圈;16-轴圈;17-第一滚珠;18-保持架;19-下垫;20-下轨道;21-上轨道;22-多棱锥面;23-第二滚珠;24-滚柱。
具体实施方式
本发明提供VR运动控制方法,包括以下步骤:
1)设置头戴显示设备相对于多维运动平台的死区角度,设置头部旋转角度系数的最值,设置多维运动平台自转速度参数和摇摆行程参数;当校准多维运动平台的座椅与头盔角度时,座椅零位为值;
2)校准多维运动平台与头戴显示设备,获取多维运动平台的水平方向角度和最大摇摆角度;
3)参数获取:
3.1)方向参数获取:
3.1.1)角速度传感器和加速度传感器分别输出角速度与加速度的累计值;此处的角速度传感器和加速度传感器可以采用头戴显示设备的固有传感器,也可以是独立外置的传感器;
3.1.2)根据积分获得头部加速度与头部角速度的瞬时值,并进行滤波、增稳;
3.1.3)根据瞬时值计算绝对方向向量;
3.1.4)将信息头和绝对方向向量封装成头戴显示设备追踪数据包;此处可将设备识别ID作为信息头;
3.2)动作参数获取:
3.2.1)根据随动游戏的状态,获取被控物体的瞬时状态参数;或者通过动作文件播放器获取指定场景的预设动作参数;
3.2.2)将信息头和瞬时状态参数或者信息头和预设动作参数封装成动作控制数据包;
4)控制器通过无线方式接收头戴显示设备追踪数据包,同时通过485总线方式接收动作控制数据包;
5)判断:
提取信息头,如为头戴显示设备追踪数据则进入步骤6,如为动作参数数据则进入步骤7,否则丢弃该数据;
6)根据头戴显示设备当前头部方向的偏转角度与多维运动平台当前偏转角度计算实时角度差,并实时判断该角度差是否大于设定的死区角度,若是,则输出瞬时旋转脉冲,送入多维运动平台的旋转电机;若否,则继续计算实时角度差;
7)根据动作参数的当前角度与运动平台的当前状态计算位移差值,得出瞬时控制脉冲,送入动作控制系统的牵引电机。送入的速率最好大于10数据包/秒,以实现无抖动控制。
其中的步骤6有多种实现方式,第一种实现方式不使用曲线控制,具体如下:
6.1)提取所设定的死区角度;
6.2)提取头戴显示设备当前偏转角度与多维运动平台当前偏转角度,得到实时角度差;
6.3)将死区角度与实时角度差进行对比,若实时角度差小于死区角度,则返回步骤6.2;若实时角度差大于等于死区角度,则用实时角度差的绝对值减去死区角度,得出控制角度差;
6.4)判断控制角度差是否大于头部旋转角度系数的最值,若大于则固定为头部旋转角度系数的最值;
6.5)按下式计算实际旋转速度:
实际旋转速度=(控制角度差/头部旋转角度系数的最值)×自转速度参数;
6.6)将实际旋转速度转换为瞬时旋转脉冲,送入多维运动平台的旋转电机。
其中步骤6的第二种实现方式不适用死区控制,具体如下:
6.1)提取头戴显示设备当前偏转角度与平台当前偏转角度,得到实时角度差;
6.2)判断实时角度差是否大于头部旋转角度系数的最值,若大于则固定为头部旋转角度系数的最值,并进行以下计算:
新的实时角度差=(实时角度差/头部旋转角度系数的最值)×90度
6.3)以该实时角度差的正弦值作为速度系数;
6.4)按下式计算实际旋转速度:
实际旋转速度=速度系数×自转速度参数;
6.5)将实际旋转速度转换为瞬时旋转脉冲,送入多维运动平台的旋转电机。
其中步骤6的第三种实现方式采用死区和曲线综合控制,具体如下:
6.1)提取所设定的死区角度;
6.2)提取头戴显示设备当前偏转角度与多维运动平台当前偏转角度,得到实时角度差;
6.3)将死区角度与实时角度差进行对比,若实时角度差小于死区角度,则返回步骤6.2;若实时角度差大于等于死区角度,则用实时角度差的绝对值减去死区角度,得出控制角度差;
6.4)判断实时角度差是否大于头部旋转角度系数的最值,若大于则固定为头部旋转角度系数的最值,并进行以下计算:
新的实时角度差=(实时角度差/头部旋转角度系数的最值)×90度
6.5)以该实时角度差的正弦值作为速度系数;
6.6)按下式计算实际旋转速度:
实际旋转速度=速度系数×自转速度参数;
6.7)将实际旋转速度转换为瞬时旋转脉冲,送入多维运动平台的旋转电机。
本发明方法的原理:
通过将一个包含有9轴传感器模块的设备固定在操作者头部的感应设备(例如3轴陀螺仪+3轴加速度计,必要时还可以增加3轴磁感应计)所采集的数据通过一定算法(3轴加速度计用于计算确定头部姿态,3轴陀螺仪用于计算识别头部实时旋转角度,3轴磁感应计用于计算纠正偏移量)计算出实际空间状态向量,也就是人头部的实际朝向。并将该数据与设备ID通过无线或有线发送给控制系统。
控制系统可以接收多种控制信号,当接收到头部实际朝向信号后,将该朝向与自身底座朝向进行比较,如果度数大于事先设定的死区大小,则驱动旋转电机进行旋转补偿,直到该偏角小于死区角度(死区角度是指:旋转角度小于一定角度时系统不做反应)
此处的选择转补偿通过多种算法进行计算,以达到平缓的旋转,防止产生眩晕,将旋转角与事先设定的最值进行比较,先确定最大角度,大于该最大角度的,均按最大角度进行计算,以保证达到最大速度后能够匀速运动,然后将计算的区间角伸缩到-90到90度的范围区间,响应曲线见图6和图7。
将以上数据代入算法,目前考虑两种算法:
第一种算法,使用正弦曲线进行计算,得到-1至1的抛物线曲线,再乘以设定的电机旋转脉冲数,得到实际驱动电机旋转的脉冲数。
第二种算法,使用匀速直线加速进行计算,得到从-1至1的直线段,同样乘以设定的电机旋转脉冲数计算实际脉冲数。
除了通过控制着头部控制旋转外,本系统还支持同时或独立的与运动平台的运动进行结合,运动平台通过控制系统接收的运动平台控制信号进行控制,运动信号是一个包含了方向、仰角和旋转角度的向量,与传统的运动平台不同(传统的运动平台使用的是每个电缸位移分量数据,该数据的缺点是不同结构的运动平台都有其自身独立的数据规则和结构)其优点是可适应未来任何结构的运动平台。而其中的旋转角数据,可以选择与上文中的控制着头部旋转数据进行和计算,来实现共同控制的效果。
当然,整个系统中,头部控制与运动平台是可以各自独立或分拆工作,既可以单独使用头部追踪控制,也可以仅使用运动平台,也可以两者结合使用。
为了提高控制精度,上述运动控制方法中,还包括根据头戴显示设备内置或外置的磁力传感器进行轨迹矫正的步骤。为了防止误动作,上述述信息头优选设备识别ID;为了防止抖动,上述当前状态计算差值送入动作控制系统的发送速率最好大于10数据包/秒。
运动控制方法中的多维运动平台,具体结构包括支撑单元和牵引单元,所述支撑单元包括运动平台1、推力万向关节轴承14、承重平台2、运动旋转牵引 杆3及承重支架4;所述推力万向关节轴承14包括轴圈和座圈;所述运动旋转牵引杆的上端固定于推力万向关节轴承的轴圈内;所述运动平台下底面与推力万向关节轴承关节轴圈上端面固连;所述推力万向关节轴承的座圈与承重平台固连;所述承重平台通过承重支架设置在承重基础5上;所述牵引单元包括万向伸缩联轴器、旋转电机7、牵引平台10以及至少一个牵引组件;所述运动旋转牵引杆的下端通过万向伸缩联轴器与旋转电机的输出端连接;所述旋转电机固定在牵引平台上;所述牵引组件的一端连接在牵引平台上,另一端连接在承重支架上,用于调整牵引平台的倾角。
上述的牵引组件有两种不同类型:
其一,滚珠丝杠副类型。牵引单元的牵引组件的数量为一个、两个或三个;所述牵引组件包括牵引电机6、滚珠丝杠副8;所述牵引电机与承重支架铰接,所述牵引电机输出轴与滚珠丝杠副的丝杠固连;所述滚珠丝杠副的螺母与牵引平台铰接;当牵引组件为两个时,所述两个牵引组件的牵引方向或牵引方向的投影呈90°夹角;当牵引组件为三个时,任意两个牵引单元的牵引方向之间的夹角相等。
其二,电动丝杆滑轨型。牵引单元的牵引组件数量为一个或两个;当牵引组件的数量为一个时,所述牵引组件为电动丝杆滑轨11,其滑轨固定在承重支架或承重基础上,其滑块与牵引平台固定;当牵引组件的数量为二个时,第一个牵引组件为电动丝杆滑轨,其滑轨固定在承重支架或承重基础上;第二个牵引组件为电动丝杆滑轨,其滑轨固定在第一个牵引组件的滑块上,其滑块与牵引平台固定;所述两个电动丝杆滑轨的夹角为90°。
本发明多维运动平台,包括支撑单元和牵引单元。支撑单元包括运动平台1、推力万向关节轴承14、承重平台2、运动旋转牵引杆3及承重支架4;牵引单元包括万向伸缩联轴器9、旋转电机7、牵引平台10以及至少一个牵引组件;
推力万向关节轴承至少有5种结构:
第一种是普通的推力万向关节轴承,一般包括轴圈16和座圈15。
第二至第五种是本发明所特有的推力万向关节轴承14,其中:
如图20所示,为第二种推力万向关节轴承,包括轴承座、轴圈16、座圈 15、平面推力轴承组件;轴圈16为半球面轴圈,平面推力轴承组件包括第一滚珠17及保持架18、下垫19、设置在推力万向关节轴承座圈下底面的上轨道21、设置在下垫上底面的下轨道20;平面推力轴承组件的下垫的下底面与承重平台2固连。
如图21所示,第三种推力万向关节轴承与第二种的区别是轴圈16为多半球面轴圈。
如图22、图23及24所示,第四种推力万向关节轴承包括轴圈16、座圈15滚柱组件及平面推力轴承组件;推力万向关节轴承14的座圈15内侧面为多棱锥面22;滚柱组件包括设置在多棱锥面的每个面上的滚柱坑、设置在每个滚柱坑内的滚柱;多个滚柱位于同一平面、横向排列且分别与推力万向关节轴承的轴圈的外球面接触。平面推力轴承组件与第一种推力万向关节轴承的平面推力轴承组件结构相同。
如图25、图26、图27、及图28,第五种是推力万向关节轴承包括轴圈16、座圈15及滚珠组件;推力万向关节轴承的座圈内侧面为多棱锥面22;滚珠组件包括设置在多棱锥面22的每个面上的滚珠坑、设置在每个滚珠坑内的第一滚珠17;多个滚珠位于同一平面且分别与推力万向关节轴承的轴圈的外球面接触。
如图18所示,运动旋转牵引杆3的上端固定于推力万向关节轴承14的轴圈内,运动平台1下底面与推力万向关节轴承14关节轴圈上端面固连;推力万向关节轴承的座圈15或者下垫19或者轴承座与承重平台2固连。
承重平台2通过承重支架4设置在承重基础5上,运动旋转牵引杆3的下端通过万向伸缩联轴器9与旋转电机7的输出端连接;旋转电机7固定在牵引平台10上;牵引组件的一端连接在牵引平台10上,另一端连接在承重支架4上,用于调整牵引平台10的倾角。
牵引组件有两种不同方案。
第一种方案采用电动滚珠丝杠副8,包括一个或两个或三个牵引组件,当采用两个牵引组件时,两个牵引组件的牵引方向或牵引方向的投影呈90°夹角; 当采用三个牵引组件时,任意两个牵引单元的牵引方向之间的夹角相等或者牵引方向投影之间的夹角为120°。
牵引组件包括牵引电机6、滚珠丝杠副8;牵引电机6与承重支架4铰接,牵引电机6输出轴与滚珠丝杠副8的丝杠固连;滚珠丝杠副的螺母81与牵引平台10铰接。
第二种方案采用电动丝杆滑轨,包括两种结构:
当电动丝杆滑轨为一个时,牵引组件为电动丝杆滑轨11,其滑轨固定在承重支架4或承重基础5上,其滑块12与牵引平台10固定。
如图16所示,当电动丝杆滑轨为两个时,第一个电动丝杆滑轨的滑轨13固定在承重支架4或承重基础5上;第二个电动丝杆滑轨的滑轨13固定在第一个牵引组件的滑块12上,其滑块12与牵引平台固定,该两个电动丝杆滑轨的夹角为90°。
如图13所示,万向伸缩联轴器9包括内轴和外套,外套的上端与运动旋转牵引杆3固连,内轴的下端与旋转电机7的输出端连接,外套下端面设置有多边形凹孔,内轴的上端部为多边形柱体,多边形柱体与多边形凹孔相匹配,多边形柱体可在多边形凹孔内自由滑动。
本发明多维运动平台,包括支撑单元和牵引单元。支撑单元包括运动平台1、推力万向关节轴承14、承重平台2、运动旋转牵引杆3及承重支架4;牵引单元包括万向伸缩联轴器9、旋转电机7、牵引平台10以及至少一个牵引组件;
推力万向关节轴承至少有5种结构:
第一种是普通的推力万向关节轴承,一般包括轴圈16和座圈15。
第二至第五种是本发明所特有的推力万向关节轴承,其中:
如图20所示,第二种推力万向关节轴承包括轴承座、轴圈16、座圈15、平面推力轴承组件;轴圈16为半球面轴圈,平面推力轴承组件包括第一滚珠23及保持架18、下垫19、设置在推力万向关节轴承座圈下底面的上轨道21、设置在下垫上底面的下轨道20;平面推力轴承组件的下垫的下底面与承重平台2固连。
如图21,第三种推力万向关节轴承与第二种的区别是轴圈16为多半球面轴圈。
如图22、图23、图24所示,第四种推力万向关节轴承包括轴圈16、座圈15滚柱组件及平面推力轴承组件;推力万向关节轴承14的座圈15内侧面为多棱锥面22;滚柱组件包括设置在多棱锥面的每个面上的滚柱坑、设置在每个滚柱坑内的滚柱;多个滚柱位于同一平面、横向排列且分别与推力万向关节轴承的轴圈的外球面接触。平面推力轴承组件与第一种推力万向关节轴承的平面推力轴承组件结构相同。
如图25、图26、图27、及图28,第五种推力万向关节轴承包括轴圈16、座圈15及滚珠组件;推力万向关节轴承的座圈内侧面为多棱锥面22;滚珠组件包括设置在多棱锥面22的每个面上的滚珠坑、设置在每个滚珠坑内的第一滚珠17;多个滚珠位于同一平面且分别与推力万向关节轴承的轴圈的外球面接触。
如图11所示,运动旋转牵引杆3的下端固定于推力万向关节轴承14的轴圈内,运动平台1上底面与推力万向关节轴承关节轴圈下端面固连;推力万向关节轴承14的座圈或者下垫或者轴承座与承重平台2固连。
承重平台2通过承重支吊架4设置在上方的承重基础5或悬空轨道上,运动旋转牵引杆3的上端通过万向伸缩联轴器9与旋转电机7的输出端连接;旋转电机7固定在牵引平台10上;牵引组件的一端连接在牵引平台10上,另一端连接在承重支吊架4上,用于调整牵引平台的倾角。
牵引组件有两种不同方案。
第一种方案采用电动滚珠丝杠副,包括一个或两个或三个牵引组件,当采用两个牵引组件时,两个牵引组件的牵引方向或牵引方向的投影呈90°夹角;当采用三个牵引组件时,任意两个牵引单元的牵引方向之间的夹角相等或者牵引方向投影之间的夹角为120°。
如图14所示,牵引组件包括牵引电机6、滚珠丝杠副8;牵引电机6与承重支吊架4铰接,牵引电机输出轴与滚珠丝杠副的丝杠固连;滚珠丝杠副的螺 母81与牵引平台10铰接。
第二种方案采用电动丝杆滑轨,包括两种结构:
当电动丝杆滑轨为一个时,牵引组件为电动丝杆滑轨,其滑轨13固定在承重支架或承重基础上,其滑块与牵引平台固定。
当电动丝杆滑轨为两个时,第一个电动丝杆滑轨的滑轨13固定在承重支架或承重基础上;第二个电动丝杆滑轨的滑轨固定在第一个牵引组件的滑块12上,其滑块与牵引平台固定,该两个电动丝杆滑轨的夹角为90°。
万向伸缩联轴器包括内轴和外套,外套的上端与运动旋转牵引杆旋转电机的输出端固连,内轴的下端与运动旋转牵引杆旋转电机的输出端连接,外套下端面设置有多边形凹孔,内轴的上端部为多边形柱体,多边形柱体与多边形凹孔相匹配,多边形柱体可在多边形凹孔内自由滑动。
推力万向关节轴承有四种结构:
如图20所示,第一种推力万向关节轴承包括轴承座、轴圈16、座圈15、平面推力轴承组件;轴圈为半球面轴圈,平面推力轴承组件包括第一滚珠17及保持架18、下垫19、设置在推力万向关节轴承座圈下底面的上轨道21、设置在下垫上底面的下轨道20;平面推力轴承组件的下垫19的下底面与承重平台2固连。
如图21,第二种推力万向关节轴承与第一种的区别是轴圈为多半球面轴圈。
如图22、图23、和图24,第三种推力万向关节轴承包括轴圈16、座圈15、滚柱组件及平面推力轴承组件;推力万向关节轴承的座圈内侧面为多棱锥面22;滚柱组件包括设置在多棱锥面的每个面上的滚柱坑、设置在每个滚柱坑内的滚柱;多个滚柱位于同一平面、横向排列且分别与推力万向关节轴承的轴圈的外球面接触。平面推力轴承组件与第一种推力万向关节轴承的平面推力轴承组件结构相同。
如图25、图26、图27和图28,第四种推力万向关节轴承包括轴圈16、座圈15及滚珠组件;推力万向关节轴承的座圈内侧面为多棱锥面22;滚珠组件包括设置在多棱锥面22的每个面上的滚珠坑、设置在每个滚珠坑内的第一滚珠17;多个滚珠位于同一平面且分别与推力万向关节轴承的轴圈的外球面接触。
本发明所应用的多维运动平台,包括支撑单元和牵引单元。支撑单元包括运动平台1、推力万向关节轴承14、承重平台2、运动旋转牵引杆3及承重支架4;牵引单元包括万向伸缩联轴器9、旋转电机7、牵引平台10以及至少一个牵引组件;
运动旋转牵引杆3的上端固定于推力万向关节轴承14的轴圈16内,运动平台1下底面与推力万向关节轴承关节轴圈上端面固连;推力万向关节轴承的座圈或者下垫或者轴承座与承重平台固连。
承重平台2通过承重支架4设置在承重基础上,运动旋转牵引杆的下端通过万向伸缩联轴器与旋转电机的输出端连接;旋转电机固定在牵引平台上;牵引组件的一端连接在牵引平台上,另一端连接在承重支架上,用于调整牵引平台的倾角。
牵引组件有两种不同方案。
第一种方案采用电动滚珠丝杠副,包括一个或两个或三个牵引组件,当采用两个牵引组件时,两个牵引组件的牵引方向或牵引方向的投影呈90°夹角;当采用三个牵引组件时,任意两个牵引单元的牵引方向之间的夹角相等或者牵引方向投影之间的夹角为120°。
牵引组件包括牵引电机6、滚珠丝杠副8;牵引电机与承重支架铰接,牵引电机输出轴与滚珠丝杠副的丝杠固连;滚珠丝杠副的螺母与牵引平台铰接。
第二种方案采用电动丝杆滑轨,包括两种结构:
当电动丝杆滑轨为一个时,牵引组件为电动丝杆滑轨11,其滑轨13固定在承重支架或承重基础上,其滑块12与牵引平台固定。
当电动丝杆滑轨为两个个时,第一个电动丝杆滑轨的滑轨固定在承重支架或承重基础上;第二个电动丝杆滑轨的滑轨固定在第一个牵引组件的滑块上,其滑块与牵引平台固定,该两个电动丝杆滑轨的夹角为90°。
万向伸缩联轴器包括内轴和外套,外套的上端与运动旋转牵引杆固连,内轴的下端与旋转电机的输出端连接,外套下端面设置有多边形凹孔,内轴的上端部为多边形柱体,多边形柱体与多边形凹孔相匹配,多边形柱体可在多边形凹孔内自由滑动。

Claims (13)

  1. VR运动控制方法,其特征在于:包括以下步骤:
    1)设置头戴显示设备相对于多维运动平台的死区角度,设置头部旋转角度系数的最值,设置多维运动平台自转速度参数和摇摆行程参数;所述多维运动平台为可实现自转和自由摇摆的运动平台;所述最值为绝对值的最大值;
    2)校准多维运动平台与头戴显示设备,获取多维运动平台的水平方向角度和最大摇摆角度;
    3)参数获取:
    3.1)方向参数获取:
    3.1.1)头戴显示设备内置或外置的角速度传感器和加速度传感器分别输出角速度的累计值与加速度的累计值;
    3.1.2)根据积分获得头部加速度的瞬时值与头部角速度的瞬时值;
    3.1.3)根据瞬时值计算头戴显示设备绝对方向向量;
    3.1.4)将信息头和绝对方向向量封装成头戴显示设备追踪数据包;
    3.2)动作参数获取:
    3.2.1)根据VR游戏的状态获取被控物体的瞬时状态参数;或者直接获取视频中指定场景的预设动作参数;
    3.2.2)将信息头和瞬时状态参数或者信息头和预设动作参数封装成动作控制数据包;
    4)控制器接收头戴显示设备追踪数据包和/或动作控制数据包;
    5)判断:
    提取信息头,如是头戴显示设备追踪数据则进入步骤6,如是动作参数数据则进入步骤7,如都不是则丢弃该数据包;
    6)根据数据包中的绝对方向向量计算出头戴显示设备当前偏转角度,再根据该角度与多维运动平台当前偏转角度计算实时角度差,并实时判断该实时角度差是否大于设定的死区角度;若是,则输出瞬时旋转脉冲,送入多维 运动平台的旋转电机;若否,则根据下一个头戴显示设备追踪数据包继续计算实时角度差;
    7)根据瞬时状态参数或预设动作参数,计算出头戴显示设备当前角度与多维运动平台的当前状态的差值,送入多维运动平台的动作控制系统以消除差值。
  2. 根据权利要求1所述VR运动控制方法,其特征在于:所述步骤6的具体步骤为:
    6.1)提取所设定的死区角度;
    6.2)从数据包中的绝对方向向量中提取的头戴显示设备当前偏转角度,根据其与多维运动平台当前偏转角度计算实时角度差;
    6.3)将死区角度与实时角度差进行对比,若实时角度差小于死区角度,则返回步骤6.2;若实时角度差大于等于死区角度,则用实时角度差的绝对值减去死区角度,得出控制角度差;
    6.4)判断控制角度差是否大于头部旋转角度系数的最值,若大于则固定为头部旋转角度系数的最值;
    6.5)按下式计算实际旋转速度:
    实际旋转速度=(控制角度差/头部旋转角度系数的最值)×自转速度参数;
    6.6)将实际旋转速度转换为瞬时旋转脉冲,送入多维运动平台的旋转电机;
    或者,
    6.1)提取头戴显示设备当前偏转角度与平台当前偏转角度,得到实时角度差;
    6.2)判断实时角度差是否大于头部旋转角度系数的最值,若大于则固定为头部旋转角度系数的最值,并进行以下计算:
    新的实时角度差=(实时角度差/头部旋转角度系数的最值)×90度
    6.3)以该实时角度差的正弦值作为速度系数;
    6.4)按下式计算实际旋转速度:
    实际旋转速度=速度系数×自转速度参数;
    6.5)将实际旋转速度转换为瞬时旋转脉冲,送入多维运动平台的旋转电机;
    或者,
    6.1)提取所设定的死区角度;
    6.2)提取头戴显示设备当前偏转角度与多维运动平台当前偏转角度,得到实时角度差;
    6.3)将死区角度与实时角度差进行对比,若实时角度差小于死区角度,则返回步骤6.2;若实时角度差大于等于死区角度,则用实时角度差的绝对值减去死区角度,得出控制角度差;
    6.4)判断实时角度差是否大于头部旋转角度系数的最值,若大于则固定为头部旋转角度系数的最值,并进行以下计算:
    新的实时角度差=(实时角度差/头部旋转角度系数的最值)×90度
    6.5)以该实时角度差的正弦值作为速度系数;
    6.6)按下式计算实际旋转速度:
    实际旋转速度=速度系数×自转速度参数;
    6.7)将实际旋转速度转换为瞬时旋转脉冲,送入多维运动平台的旋转电机。
  3. 根据权利要求1或2所述VR运动控制方法,其特征在于:
    还包括根据头戴显示设备内置或外置的磁力传感器进行轨迹矫正的步骤;
    所述信息头为设备识别ID;所述当前状态计算差值送入动作控制系统的发送速率大于10数据包/秒。
  4. 一种多维运动平台,包括支撑单元和牵引单元,其特征在于:
    所述支撑单元包括运动平台、推力万向关节轴承、承重平台、运动旋转牵引杆及承重支架;
    所述推力万向关节轴承包括轴圈和座圈;
    所述运动旋转牵引杆的上端固定于推力万向关节轴承的轴圈内;
    所述运动平台下底面与推力万向关节轴承关节轴圈上端面固连;
    所述推力万向关节轴承的座圈与承重平台固连;
    所述承重平台通过承重支架设置在承重基础上;
    所述牵引单元包括万向伸缩联轴器、旋转电机、牵引平台以及至少一个牵引组件;
    所述运动旋转牵引杆的下端通过万向伸缩联轴器与旋转电机的输出端连接;
    所述旋转电机固定在牵引平台上;
    所述牵引组件的一端连接在牵引平台上,另一端连接在承重支架上,用于调整牵引平台的倾角。
  5. 根据权利要求4所述的多维运动平台,其特征在于:
    所述牵引组件包括牵引电机、滚珠丝杠副;
    所述牵引电机与承重支架铰接,所述牵引电机输出轴与滚珠丝杠副的丝杠固连;所述滚珠丝杠副的螺母与牵引平台铰接;
    所述牵引组件为一个、两个或三个;当牵引组件为两个时;所述两个牵引组件的牵引方向或牵引方向的投影呈90°夹角;当牵引组件为三个时;任意两个牵引单元的牵引方向之间的夹角相等。
  6. 根据权利要求4所述的多维运动平台,其特征在于:
    所述牵引单元的牵引组件数量为一个时;
    所述牵引组件为电动丝杆滑轨,其滑轨固定在承重支架或承重基础上,其滑块与牵引平台固定;
    所述牵引单元的牵引组件数量为两个时;
    第一个牵引组件为电动丝杆滑轨,其滑轨固定在承重支架或承重基础上;
    第二个牵引组件为电动丝杆滑轨,其滑轨固定在第一个牵引组件的滑块 上,其滑块与牵引平台固定;
    所述两个电动丝杆滑轨的夹角为90°。
  7. 一种多维运动平台,包括支撑单元和牵引单元,其特征在于:
    所述支撑单元包括运动平台、推力万向关节轴承、承重平台、运动旋转牵引杆及承重支架;
    所述推力万向关节轴承包括轴圈和座圈;
    所述运动旋转牵引杆的下端穿过固定于推力万向关节轴承的轴圈后与运动平台上底面固连;所述运动平台上底面与推力万向关节轴承关节轴圈下端面固连;
    所述推力万向关节轴承的座圈与承重平台固连;
    所述承重平台通过承重支架吊架设置在承重基础或悬空轨道上;
    所述牵引单元包括万向伸缩联轴器、旋转电机、牵引平台以及至少一个牵引组件;
    所述运动旋转牵引杆的上端通过万向伸缩联轴器与旋转电机的输出端连接;
    所述旋转电机固定在牵引平台上;
    所述牵引组件的一端连接在牵引平台上,另一端连接在承重支架上,用于调整牵引平台的倾角。
  8. 根据权利要求7所述的多维运动平台,其特征在于:
    所述牵引组件包括牵引电机、滚珠丝杠副;
    所述牵引电机与承重支架铰接,所述牵引电机输出轴与滚珠丝杠副的丝杠固连;所述滚珠丝杠副的螺母与牵引平台铰接;
    所述牵引组件为一个、两个或三个;当牵引组件为两个时;所述两个牵引组件的牵引方向或牵引方向的投影呈90°夹;角当牵引组件为三个;任意两个牵引单元的牵引方向之间的夹角相等。
  9. 根据权利要求7所述的多维运动平台,其特征在于:
    所述牵引单元的牵引组件数量为一个时;
    所述牵引组件为电动丝杆滑轨,其滑轨固定在承重支架或承重基础上,其滑块与牵引平台固定;
    所述牵引单元的牵引组件数量为两个时;
    第一个牵引组件为电动丝杆滑轨,其滑轨固定在承重支架或承重基础上;
    第二个牵引组件为电动丝杆滑轨,其滑轨固定在第一个牵引组件的滑块上,其滑块与牵引平台固定;
    所述两个电动丝杆滑轨的夹角为90°。
  10. 一种推力万向关节轴承,包括轴圈和座圈;其特征在于:
    还包括平面推力轴承组件;
    所述平面推力轴承组件包括滚珠及保持架、下垫、设置在推力万向关节轴承座圈下底面的上轨道、设置在下垫上底面的下轨道;
    所述平面推力轴承组件的下垫的下底面与承重平台固连。
  11. 根据权利要求10所述推力万向关节轴承,其特征在于:
    还包括滚珠组件;
    所述推力万向关节轴承的座圈内侧面为多棱锥面;
    所述滚珠组件包括设置在多棱锥面的每个面上的滚珠坑、设置在每个滚珠坑内的滚珠;
    多个滚珠位于同一平面且分别与推力万向关节轴承的轴圈的外球面接触。
  12. 根据权利要求10所述推力万向关节轴承,其特征在于:
    还包括滚柱组件;
    所述推力万向关节轴承的座圈内侧面为多棱锥面;
    所述滚珠组件包括设置在多棱锥面的每个面上的滚柱坑、设置在每个滚柱坑内的滚柱;
    多个滚柱位于同一平面,横向排列且分别与推力万向关节轴承的轴圈的外球面接触。
  13. 一种推力万向关节轴承,包括轴圈和座圈;其特征在于:
    还包括滚珠组件;
    所述推力万向关节轴承的座圈内侧面为多棱锥面;
    所述滚珠组件包括设置在多棱锥面的每个面上的滚珠坑、设置在每个滚珠坑内的滚珠;
    多个滚珠位于同一平面且分别与推力万向关节轴承的轴圈的外球面接触。
PCT/CN2017/072459 2016-12-14 2017-01-24 Vr运动控制方法、多维运动平台及推力万向关节轴承 WO2018107565A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/468,117 US11007430B2 (en) 2016-12-14 2017-01-24 VR motion control method, multi-dimensional motion platform and thrust universal spherical plain bearing
EP17881063.6A EP3557374A4 (en) 2016-12-14 2017-01-24 VIRTUAL REALITY MOTION CONTROL PROCESS, MULTIDIMENSIONAL MOVEMENT PLATFORM AND UNIVERSAL JOINT THRUST BEARING
KR1020197016722A KR102750573B1 (ko) 2016-12-14 2017-01-24 Vr 운동 제어 방법, 다차원 모션 플랫폼 및 추력 유니버셜 조인트 베어링
JP2019552320A JP6895534B2 (ja) 2016-12-14 2017-01-24 Vr運動制御方法、多次元運動プラットフォームおよびスラストユニバーサルジョイントベアリング

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201611156037.9A CN108227902B (zh) 2016-12-14 2016-12-14 实现头戴显示设备与多维运动平台联动的运动控制方法
CN201611156032.6A CN106763168A (zh) 2016-12-14 2016-12-14 一种推力万向关节轴承
CN201611155026.9A CN106774447B (zh) 2016-12-14 2016-12-14 基于支架承重的可实现自转及自由摇摆的运动平台
CN201611154622.5 2016-12-14
CN201611155026.9 2016-12-14
CN201611156032.6 2016-12-14
CN201611154622.5A CN106647820B (zh) 2016-12-14 2016-12-14 基于吊装承重的可实现自转及自由摇摆的运动平台
CN201611156037.9 2016-12-14

Publications (1)

Publication Number Publication Date
WO2018107565A1 true WO2018107565A1 (zh) 2018-06-21

Family

ID=62557715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072459 WO2018107565A1 (zh) 2016-12-14 2017-01-24 Vr运动控制方法、多维运动平台及推力万向关节轴承

Country Status (5)

Country Link
US (1) US11007430B2 (zh)
EP (1) EP3557374A4 (zh)
JP (1) JP6895534B2 (zh)
KR (1) KR102750573B1 (zh)
WO (1) WO2018107565A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111805492A (zh) * 2020-07-29 2020-10-23 沈阳中德新松教育科技集团有限公司 一种六自由度调整平台

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110422549A (zh) * 2019-09-03 2019-11-08 安徽艾克森机械设备有限公司 一种可旋转式滚珠滑动上料装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11201150A (ja) * 1998-01-12 1999-07-27 Nippon Seiko Kk ころ軸受
US20020055086A1 (en) * 2000-01-20 2002-05-09 Hodgetts Graham L. Flight simulators
KR20070021467A (ko) * 2005-08-18 2007-02-23 주식회사 에어젠 고속 회전체용 베어링 조립체
US20110170945A1 (en) * 2008-10-11 2011-07-14 D-Box Technologies Inc. Link member for motion-enabled movie theatre chair
CN203176163U (zh) * 2013-01-30 2013-09-04 宁波三泰轴承有限公司 组合球轴承
CN103388619A (zh) * 2012-05-13 2013-11-13 芜湖市宝艺游乐科技设备有限公司 滚动式关节轴承
CN203670483U (zh) * 2014-01-20 2014-06-25 台州宝马轴承制造有限公司 高速推力球轴承
CN204175791U (zh) * 2014-07-07 2015-02-25 浙江方圆检测集团股份有限公司 平面万向座
CN104759095A (zh) * 2015-04-24 2015-07-08 吴展雄 一种虚拟现实头戴显示系统
CN105903190A (zh) * 2016-06-30 2016-08-31 昝建超 一种动感座椅

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0760290B2 (ja) * 1989-06-23 1995-06-28 科学技術庁航空宇宙技術研究所長 多軸モーションシミュレータ
US5366375A (en) * 1992-05-11 1994-11-22 Sarnicola John F Motion simulator
US5374879A (en) * 1992-11-04 1994-12-20 Martin Marietta Energy Systems, Inc. Omni-directional and holonomic rolling platform with decoupled rotational and translational degrees of freedom
JP3254810B2 (ja) * 1993-05-25 2002-02-12 株式会社セガ ゲーム機
JPH09146446A (ja) * 1995-11-20 1997-06-06 Sega Enterp Ltd 座席動揺装置
JP2001109366A (ja) * 1999-10-05 2001-04-20 Tsubakimoto Chain Co 運動シミュレータ
JP2004056272A (ja) * 2002-07-17 2004-02-19 Japan Aviation Electronics Industry Ltd 全周映像表示装置及びそれに用いるヘッドトラッカーの磁気補正方法
JP2006126411A (ja) * 2004-10-28 2006-05-18 Advanced Telecommunication Research Institute International 回転感覚呈示装置
US20060213306A1 (en) * 2005-03-14 2006-09-28 Hayes Matthew J D Apparatus for multi-axis rotation and translation
US7900874B2 (en) * 2008-01-22 2011-03-08 Harvey Emanuel Fiala Device to move an object back and forth
US8066226B2 (en) * 2008-01-22 2011-11-29 Fiala Harvey E Inertial propulsion device to move an object up and down
JP2010231290A (ja) * 2009-03-26 2010-10-14 National Institute Of Advanced Industrial Science & Technology 頭部運動による入力装置及び方法
US8641540B2 (en) * 2011-07-13 2014-02-04 Roland Feuer Inverted simulation attraction
KR101198255B1 (ko) * 2012-04-12 2012-11-07 주식회사 모션디바이스 모션 시뮬레이터
KR101377594B1 (ko) * 2013-02-20 2014-03-25 주식회사 모션디바이스 모션 시뮬레이터
KR20150005805A (ko) * 2013-07-05 2015-01-15 삼성전자주식회사 가상 하이킹 시스템 및 방법
JP6396027B2 (ja) * 2014-02-12 2018-09-26 株式会社バンダイナムコエンターテインメント プログラムおよびゲーム装置
US9662526B2 (en) * 2014-04-21 2017-05-30 The Trustees Of Columbia University In The City Of New York Active movement training devices, methods, and systems
EP2993658B1 (en) * 2014-09-03 2018-09-19 ETS Elettronica S.r.L. Simulator device of a sailing boat
US20160195923A1 (en) * 2014-12-26 2016-07-07 Krush Technologies, Llc Gyroscopic chair for virtual reality simulation
BR202015008770Y1 (pt) * 2015-04-17 2020-12-01 Motion Sphere Desenvolvimento De Tecnologia E Locações Ltda - Epp disposições aplicadas em simulador esférico de acelerações virtuais

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11201150A (ja) * 1998-01-12 1999-07-27 Nippon Seiko Kk ころ軸受
US20020055086A1 (en) * 2000-01-20 2002-05-09 Hodgetts Graham L. Flight simulators
KR20070021467A (ko) * 2005-08-18 2007-02-23 주식회사 에어젠 고속 회전체용 베어링 조립체
US20110170945A1 (en) * 2008-10-11 2011-07-14 D-Box Technologies Inc. Link member for motion-enabled movie theatre chair
CN103388619A (zh) * 2012-05-13 2013-11-13 芜湖市宝艺游乐科技设备有限公司 滚动式关节轴承
CN203176163U (zh) * 2013-01-30 2013-09-04 宁波三泰轴承有限公司 组合球轴承
CN203670483U (zh) * 2014-01-20 2014-06-25 台州宝马轴承制造有限公司 高速推力球轴承
CN204175791U (zh) * 2014-07-07 2015-02-25 浙江方圆检测集团股份有限公司 平面万向座
CN104759095A (zh) * 2015-04-24 2015-07-08 吴展雄 一种虚拟现实头戴显示系统
CN105903190A (zh) * 2016-06-30 2016-08-31 昝建超 一种动感座椅

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3557374A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111805492A (zh) * 2020-07-29 2020-10-23 沈阳中德新松教育科技集团有限公司 一种六自由度调整平台

Also Published As

Publication number Publication date
US20200070045A1 (en) 2020-03-05
EP3557374A4 (en) 2020-11-18
EP3557374A1 (en) 2019-10-23
JP2020513636A (ja) 2020-05-14
KR20190095284A (ko) 2019-08-14
US11007430B2 (en) 2021-05-18
JP6895534B2 (ja) 2021-06-30
KR102750573B1 (ko) 2025-01-06

Similar Documents

Publication Publication Date Title
CN108227902B (zh) 实现头戴显示设备与多维运动平台联动的运动控制方法
CN104048141B (zh) 一种仿颈椎式云台机构
CN105276348B (zh) 并联增稳全向移动平台
KR101992674B1 (ko) 6자유도 운동 및 360도 무한회전이 가능한 모션 플랫폼
CN107063570B (zh) 可全方位倾斜的运动测试台及控制方法
CN205137003U (zh) 并联增稳全向移动平台
CN104656684A (zh) 一种用单一imu传感器实现三轴无刷电机增稳云台控制的方法
WO2016180332A1 (zh) 智能摇臂摄像机器人
CN105387314A (zh) 智能轨道摄像机器人系统
CN208426624U (zh) 一种vr体感装置
WO2018107565A1 (zh) Vr运动控制方法、多维运动平台及推力万向关节轴承
CN206202711U (zh) 一种云台及无人机
CN206648781U (zh) 可全方位倾斜的运动测试台
CN113612982A (zh) 用于中小型场景的环形三维影像采集装置及实景建模方法
CN110884586B (zh) 一种旅游陪伴的智能仿生机器人
CN102263893A (zh) 一种多轴直线电机驱动的仿生视觉平台
CN106671101A (zh) 一种智能拍摄机器人
CN106313064A (zh) 一种企鹅仿生机器人
CN110587618B (zh) 一种双球轮驱动的自平衡运动平台
CN107803026B (zh) 用于虚拟现实的智能万向轮滑鞋及其控制方法
CN218536180U (zh) 一种构筑物
CN209043242U (zh) 一种环绕多方位刺梨检测系统
CN214986131U (zh) 一种无人机测绘用摄像机安装结构
CN206998977U (zh) 一种轮式机器人双目视觉云台
CN215420559U (zh) 一种用于中小型场景的环形三维影像采集装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17881063

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197016722

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2019552320

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017881063

Country of ref document: EP

Effective date: 20190715