[go: up one dir, main page]

WO2018105481A1 - Method for producing positive electrode active material for lithium secondary batteries - Google Patents

Method for producing positive electrode active material for lithium secondary batteries Download PDF

Info

Publication number
WO2018105481A1
WO2018105481A1 PCT/JP2017/043044 JP2017043044W WO2018105481A1 WO 2018105481 A1 WO2018105481 A1 WO 2018105481A1 JP 2017043044 W JP2017043044 W JP 2017043044W WO 2018105481 A1 WO2018105481 A1 WO 2018105481A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
lithium secondary
lithium
Prior art date
Application number
PCT/JP2017/043044
Other languages
French (fr)
Japanese (ja)
Inventor
雄大 秋山
佳世 松本
Original Assignee
住友化学株式会社
株式会社田中化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, 株式会社田中化学研究所 filed Critical 住友化学株式会社
Priority to CN201780075462.1A priority Critical patent/CN110036512B/en
Priority to KR1020197015922A priority patent/KR102413743B1/en
Priority to JP2018554959A priority patent/JP7002469B2/en
Publication of WO2018105481A1 publication Critical patent/WO2018105481A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Complex oxides containing nickel and at least one other metal element
    • C01G53/42Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2
    • C01G53/44Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a positive electrode active material for a lithium secondary battery.
  • the lithium composite oxide is used as a positive electrode active material for a lithium secondary battery.
  • Lithium secondary batteries have already been put into practical use not only for small power sources for mobile phones and notebook computers, but also for medium and large power sources for automobiles and power storage.
  • Patent Document 1 describes a technique of adding an alkaline solution in which a tungsten compound is dissolved after primary firing of a lithium composite metal compound.
  • Patent Document 2 describes a method of dry-adding tungsten oxide to a precursor of a lithium composite metal compound.
  • Patent Document 3 describes a method of preparing a slurry solution containing a precursor of a lithium composite metal compound and tungsten oxide and spray drying the slurry solution.
  • the present invention includes the following [1] to [6].
  • [1] A method for producing a positive electrode active material for a lithium secondary battery containing a lithium composite metal compound, comprising heating a composite metal compound powder containing nickel, cobalt and manganese, and an alkaline solution in which a tungsten compound is dissolved Spraying the composite metal compound powder to produce a mixed powder by mixing the composite metal compound powder and the tungsten compound, and then cooling the mixed powder; and a lithium salt; And a step of mixing the mixed powder and firing to produce a lithium composite metal compound, and a method for producing a positive electrode active material for a lithium secondary battery.
  • the method for producing a positive electrode active material for a lithium secondary battery according to the present embodiment includes heating a composite metal compound powder containing nickel, cobalt, and manganese, and converting the alkaline solution in which the tungsten compound is dissolved into the composite metal compound powder. Spraying and mixing the composite metal compound powder and the tungsten compound to produce a mixed powder, and thereafter cooling the mixed powder; a lithium salt; and the mixture powder. Mixing and firing to produce a lithium composite metal compound.
  • a metal other than lithium that is, an essential metal composed of Ni, Co, and Mn, and Fe, Cr, Cu, Ti, B, Mg, Al , W, Mo, Nb, Zn, Sn, Zr, Ga, and V
  • a composite metal compound containing any one or more arbitrary metals and to fire the composite metal compound with an appropriate lithium salt .
  • the composite metal compound is preferably a composite metal hydroxide or a composite metal oxide.
  • the manufacturing method of the positive electrode active material for lithium secondary batteries of this embodiment is equipped with the manufacturing process of the composite metal compound which has the said spray mixing process, and the manufacturing process of lithium metal complex oxide.
  • each process of the manufacturing method of the positive electrode active material for lithium secondary batteries of this embodiment is demonstrated.
  • the manufacturing process of the composite metal compound includes metals other than lithium, that is, essential metals composed of Ni, Co, and Mn, and Fe, Cr, Cu, Ti, B, Mg, Al, W, Mo, Nb, Zn , Sn, Zr, Ga and V, a step of preparing a composite metal compound containing any one or more arbitrary metals.
  • the composite metal compound can be produced by a generally known batch coprecipitation method or continuous coprecipitation method.
  • the manufacturing method will be described in detail by taking a composite metal hydroxide containing nickel, cobalt and manganese as an example.
  • a nickel salt solution, a cobalt salt solution, a manganese salt solution, and a complexing agent are reacted by a coprecipitation method, in particular, a continuous method described in JP-A-2002-201028, and Ni x Co y Mn z (OH) 2
  • a composite metal hydroxide represented by the formula (where x + y + z 1) is produced.
  • nickel salt which is the solute of the said nickel salt solution For example, any one of nickel sulfate, nickel nitrate, nickel chloride, and nickel acetate can be used.
  • cobalt salt that is a solute of the cobalt salt solution for example, any one of cobalt sulfate, cobalt nitrate, and cobalt chloride can be used.
  • manganese salt that is a solute of the manganese salt solution for example, any one of manganese sulfate, manganese nitrate, and manganese chloride can be used.
  • the above metal salt is used in a proportion corresponding to the composition ratio of Ni x Co y Mn z (OH) 2 . That is, the amount of each metal salt is defined so that the molar ratio of nickel, cobalt, and manganese in the mixed solution containing the metal salt is x: y: z.
  • water is used as a solvent.
  • the complexing agent is capable of forming a complex with nickel, cobalt, and manganese ions in an aqueous solution.
  • an ammonium ion supplier (ammonium sulfate, ammonium chloride, ammonium carbonate, ammonium fluoride, etc.), hydrazine, Examples include ethylenediaminetetraacetic acid, nitrilotriacetic acid, uracil diacetic acid, and glycine.
  • the complexing agent may not be contained.
  • the amount of the complexing agent contained in the mixed solution containing the nickel salt solution, the cobalt salt solution, the manganese salt solution and the complexing agent is, for example, The molar ratio with respect to the total number of moles of the metal salt is greater than 0 and 2.0 or less.
  • an alkali metal hydroxide for example, sodium hydroxide or potassium hydroxide
  • an alkali metal hydroxide for example, sodium hydroxide or potassium hydroxide
  • the temperature of the reaction vessel is controlled within a range of, for example, 20 ° C. to 80 ° C., preferably 30 to 70 ° C.
  • the pH value in the reaction vessel is controlled, for example, within the range of pH 9 to pH 13, preferably pH 11-13.
  • the substance in the reaction vessel is appropriately stirred.
  • the inside of the reaction tank may be an inert atmosphere.
  • the inert atmosphere When the inert atmosphere is used, it is possible to suppress aggregation of elements that are more easily oxidized than nickel and to obtain a uniform composite metal hydroxide.
  • the inside of the reaction vessel may be in an appropriate oxygen-containing atmosphere or in the presence of an oxidizing agent while maintaining an inert atmosphere.
  • an oxidizing agent By moderately oxidizing the transition metal, the form of the composite metal hydroxide is controlled, and the size and dispersion of the voids inside the secondary particles in the positive electrode material produced using the composite metal hydroxide are controlled. It becomes possible.
  • the oxygen and the oxidizing agent in the oxygen-containing gas need only have sufficient oxygen atoms to oxidize the transition metal.
  • an inert atmosphere in the reaction tank can be maintained.
  • an oxygen-containing gas may be introduced into the reaction tank.
  • the oxygen concentration (volume%) with respect to the volume of the oxygen-containing gas in the oxygen-containing gas is preferably 1 or more and 15 or less.
  • an oxygen-containing gas may be bubbled.
  • the oxygen-containing gas include oxygen gas, air, or a mixed gas of these and an oxygen-free gas such as nitrogen gas. From the viewpoint of easy adjustment of the oxygen concentration in the oxygen-containing gas, a mixed gas is preferable among the above.
  • an oxidizing agent may be added to the reaction vessel.
  • the oxidizing agent include hydrogen peroxide, chlorate, hypochlorite, perchlorate, and permanganate. Hydrogen peroxide is preferably used from the viewpoint of hardly bringing impurities into the reaction system.
  • nickel cobalt manganese composite hydroxide is manufactured, but nickel cobalt manganese composite oxide may be prepared.
  • a step of bringing the coprecipitate slurry into contact with an oxidizing agent or a step of heat treating the nickel cobalt manganese composite hydroxide may be performed.
  • the BET specific surface area of the obtained composite metal compound powder containing nickel, cobalt, and manganese is preferably 15 to 90 m 2 / g, and the average particle size is preferably 2.0 to 15 ⁇ m.
  • the BET specific surface area was determined by drying 1 g of a composite metal compound powder containing nickel, cobalt, and manganese in a nitrogen atmosphere at 105 ° C. for 30 minutes, and then a BET specific surface area meter (Macsorb (registered trademark) manufactured by Mountec). It is the value measured using.
  • the average particle diameter is a value measured by the following method.
  • a laser diffraction particle size distribution analyzer LA-950, manufactured by HORIBA, Ltd.
  • 0.1 g of a composite metal compound powder containing nickel, cobalt, and manganese was put into 50 ml of a 0.2 mass% sodium hexametaphosphate aqueous solution, A dispersion in which the powder is dispersed is obtained.
  • the particle size distribution of the obtained dispersion is measured to obtain a volume-based cumulative particle size distribution curve.
  • the value of the particle diameter (D 50 ) viewed from the fine particle side when 50% is accumulated is defined as the average particle diameter of the composite metal compound containing nickel, cobalt, and manganese.
  • the composite metal compound powder containing nickel, cobalt, and manganese obtained in the above process is heated, and an alkali solution in which a tungsten compound is dissolved is sprayed on the composite metal compound powder, and the composite metal is sprayed.
  • a compound powder and a tungsten compound are mixed to produce a mixed powder. Thereafter, the mixed powder is cooled.
  • the tungsten compound is dissolved in an alkaline solution.
  • the dissolution method is not particularly limited, and for example, a tungsten compound may be added and dissolved while stirring the solution using a reaction vessel equipped with a stirring device. From the viewpoint of suppressing the generation of tungsten-derived foreign matter, the tungsten compound is preferably completely dissolved in an alkaline solution and uniformly dispersed.
  • the foreign substance derived from tungsten in this specification is an aggregate of tungsten produced by segregation of the tungsten compound when the tungsten compound is added to the composite metal compound.
  • the concentration of the tungsten compound in the alkaline solution is preferably 0.5 to 15% by mass, and more preferably 2.0 to 6.0% by mass with respect to the total mass of the alkaline solution. If the concentration of the tungsten compound is 15% by mass or more, the tungsten compound may be left undissolved. When the concentration of the tungsten compound is 15% by mass or less, the tungsten compound can be completely dissolved in the alkaline solution and uniformly dispersed.
  • the composite metal compound powder containing nickel, cobalt, and manganese obtained in the above step is heated, and an alkaline solution in which a tungsten compound is dissolved is sprayed on the composite metal compound powder, and the nickel, cobalt, and manganese are added.
  • the mixed metal compound powder and the tungsten compound are mixed to produce a mixed powder. That is, while heating and stirring the composite metal compound powder containing nickel, cobalt, and manganese obtained in the above step, an alkaline solution in which a tungsten compound is dissolved is sprayed on the composite metal compound powder, and the nickel, cobalt, and A mixed powder is produced by mixing a composite metal compound powder containing manganese and a tungsten compound.
  • the composite metal compound powder is preferably heated to a temperature higher than the temperature at which the solvent of the alkaline solution evaporates.
  • the temperature at which the composite metal compound powder is heated is appropriately set according to the boiling point of the solvent of the alkaline solution contained in the alkaline solution and the spraying conditions of the alkaline solution.
  • the lower limit of the temperature of the composite metal compound powder is preferably 100 ° C. or higher, and more preferably 105 ° C. or higher.
  • the upper limit of the temperature of a composite metal compound powder is not specifically limited, For example, 150 degrees C or less, 130 degrees C or less, 120 degrees C or less is mentioned.
  • the upper limit value and the lower limit value can be arbitrarily combined.
  • the temperature of the composite metal compound powder is preferably 100 ° C. or higher and 150 ° C. or lower, and more preferably 105 ° C. or higher and 150 ° C. or lower.
  • an alkaline solution in which a tungsten compound is dissolved is sprayed on the heated composite metal compound powder to mix the composite metal compound and the tungsten compound.
  • the supply amount (L / min) at the time of spraying the alkaline solution, the discharge pressure (MPa), the nozzle diameter of the nozzle that discharges the alkaline solution, and the like are appropriately set depending on the specifications of the heating spray device used.
  • the supply amount during spraying of the alkaline solution is 1.0 to 3.0 L / h
  • the discharge pressure is 0.05 MPa to 1.0 MPa
  • the nozzle diameter is 30 to 200 ⁇ m, and about 10 to 600 minutes.
  • Spray mixing is preferred.
  • the temperature of the alkaline solution in the spraying process is preferably 20 to 90 ° C.
  • the tungsten compound used in the spray mixing step is not particularly limited as long as it is soluble in an alkaline solution, and tungsten oxide, ammonium tungstate, sodium tungstate, and lithium tungstate can be used. In the present embodiment, it is particularly preferable to use tungsten oxide.
  • the above tungsten compound is dissolved in an alkaline solution and used.
  • an alkaline solute used in the alkaline solution ammonia or lithium hydroxide can be used.
  • the solvent used in the alkaline solution may be any liquid that dissolves the solute, and includes water.
  • the mixed powder is cooled to about room temperature (for example, 25 ° C.).
  • a composite metal compound that is a precursor of a positive electrode active material for a lithium secondary battery is heated, and an alkali solution in which a tungsten compound is dissolved is spray mixed.
  • the alkaline solution adheres to the surface of the composite metal compound, and at the same time, the solvent of the alkaline solution evaporates instantly and can be mixed with the composite metal compound without aggregation of tungsten particles. For this reason, the positive electrode active material for lithium secondary batteries in which the generation of foreign substances derived from tungsten is suppressed can be produced.
  • a mixed powder of the composite metal compound and the tungsten compound (hereinafter referred to as “mixed powder”) is mixed with a lithium salt.
  • a lithium salt any one of lithium carbonate, lithium nitrate, lithium acetate, lithium hydroxide, lithium hydroxide hydrate, lithium oxide, or a mixture of two or more can be used.
  • the lithium salt and the mixed powder are used in consideration of the composition ratio of the final target product.
  • the amount of lithium charged (added amount) is the total amount of lithium in the lithium hydroxide used in the spray mixing step and the lithium salt.
  • the lithium salt and the mixed powder have a molar ratio (Li / Me) of lithium in the lithium compound to all transition metal elements (Me) in the mixed powder containing nickel exceeding 1. May be mixed.
  • a lithium-tungsten-nickel cobalt manganese composite oxide is obtained by firing a mixture of a lithium salt and the mixed powder.
  • dry air, an oxygen atmosphere, an inert atmosphere, or the like is used according to a desired composition, and a plurality of heating steps are performed if necessary.
  • a calcination temperature of the said mixed powder and lithium compounds such as lithium hydroxide and lithium carbonate
  • it is 600 degreeC or more and 1100 degrees C or less, and it is 750 degreeC or more and 1050 degrees C or less. More preferably, it is 800 ° C. or higher and 1025 ° C. or lower.
  • Calcination time is preferably 3 hours to 50 hours.
  • the battery performance tends to be substantially inferior due to volatilization of lithium. That is, when the firing time is 50 hours or less, lithium can be prevented from volatilizing.
  • the firing time is less than 3 hours, the crystal growth is poor and the battery performance tends to be poor. That is, when the firing time is 3 hours or more, the crystal development is good and the battery performance is good.
  • it is also effective to perform temporary baking before the above baking.
  • the temperature for such preliminary firing is preferably in the range of 300 to 850 ° C. for 1 to 10 hours.
  • the time from the start of temperature rise to the firing temperature is preferably 0.5 hours or more and 20 hours or less.
  • a more uniform lithium-tungsten-nickelcobalt-manganese composite oxide can be obtained when the time from the start of temperature rise to the firing temperature is within this range.
  • it is preferable that the time from reaching the firing temperature to the end of the temperature holding is 0.5 hours or more and 20 hours or less. When the time from reaching the firing temperature to the end of the temperature holding is within this range, the development of crystals progresses better, and the battery performance can be further improved.
  • the lithium metal composite oxide obtained by firing is appropriately classified after pulverization, and is used as a positive electrode active material applicable to a lithium secondary battery.
  • the positive electrode active material for lithium secondary batteries to be produced contains a compound represented by the following composition formula (I).
  • the positive electrode active material for a lithium secondary battery produced is composed of only the lithium composite metal compound represented by the composition formula (I), it is represented by M in the composition formula (I). Of these metals, W (tungsten) must be included.
  • the produced positive electrode active material for a lithium secondary battery is a lithium composite metal compound represented by the above composition formula (I), and the metal represented by M in the composition formula (I) Among these, when the lithium composite metal compound not containing W (tungsten) is included, the lithium composite metal compound represented by the composition formula (I) and the tungsten compound are included.
  • the tungsten content contained in the positive electrode active material for a lithium secondary battery is preferably 0.01 mol% or more and 1.0 mol% or less with respect to the total molar amount of the transition metal, 0.1 mol% It is more preferably 0.9 mol% or less and particularly preferably 0.2 mol% or more and 0.8 mol% or less.
  • the tungsten content contained in the positive electrode active material for a lithium secondary battery is 0.01 mol% or more and 1.0 mol% or less, a reduction in battery resistance is expected.
  • x in the composition formula (I) is preferably more than 0, more preferably 0.01 or more, and 0.02 or more. More preferably. Further, from the viewpoint of obtaining a positive electrode active material for a lithium secondary battery having higher initial Coulomb efficiency, x in the composition formula (I) is preferably 0.1 or less, and more preferably 0.08 or less. More preferably, it is 0.06 or less.
  • the upper limit value and the lower limit value of x can be arbitrarily combined. For example, x exceeds 0 and is preferably 0.1 or less, more preferably 0.01 or more and 0.08 or less, and further preferably 0.02 or more and 0.06 or less.
  • “high cycle characteristics” means that the discharge capacity retention ratio is high.
  • y in the composition formula (I) is preferably 0.10 or more, more preferably 0.20 or more, and 0 More preferably, it is 30 or more. Further, from the viewpoint of obtaining a positive electrode active material for a lithium secondary battery having high thermal stability, y in the composition formula (I) is preferably 0.49 or less, and more preferably 0.48 or less. More preferably, it is 0.47 or less. The upper limit value and the lower limit value of y can be arbitrarily combined. For example, y is preferably 0.10 or more and 0.49 or less, more preferably 0.20 or more and 0.48 or less, and further preferably 0.30 or more and 0.47 or less.
  • z in the composition formula (I) is preferably 0.05 or more, and preferably 0.10 or more. More preferably, it is more preferably 0.20 or more. Further, from the viewpoint of obtaining a positive electrode active material for a lithium secondary battery having a high discharge capacity, z in the composition formula (I) is preferably 0.35 or less, more preferably 0.30 or less, and 0 More preferably, it is .25 or less.
  • the upper limit value and lower limit value of z can be arbitrarily combined. For example, z is preferably 0.05 or more and 0.35 or less, more preferably 0.10 or more and 0.30 or less, and further preferably 0.20 or more and 0.25 or less.
  • w in the composition formula (I) is preferably 0.01 or more, more preferably 0.03 or more, and 0 More preferably, it is 0.05 or more. Further, from the viewpoint of obtaining a positive electrode active material for a lithium secondary battery having high storage characteristics at a high temperature (for example, in an environment of 60 ° C.), w in the composition formula (I) is preferably 0.09 or less. It is more preferably 08 or less, and further preferably 0.07 or less. The upper limit value and the lower limit value of w can be arbitrarily combined. For example, w is preferably 0.01 or more and 0.09 or less, more preferably 0.03 or more and 0.08 or less, and further preferably 0.05 or more and 0.07 or less.
  • M in the composition formula (I) represents one or more metals selected from the group consisting of Fe, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga, and V. .
  • M in the composition formula (I) is one or more selected from the group consisting of Ti, B, Mg, Al, W, and Zr. From the viewpoint of obtaining a positive electrode active material for a lithium secondary battery having high thermal stability, it is at least one metal selected from the group consisting of B, Al, W, and Zr. It is preferable.
  • the BET specific surface area (m 2 / g) of the positive electrode active material is 0.1 m 2 / g or more. Is preferably 0.5 m 2 / g or more, and more preferably 1.0 m 2 / g or more. Further, from the viewpoint of reducing the hygroscopicity of the positive electrode active material, the BET specific surface area (m 2 / g) of the positive electrode active material is preferably 4.0 m 2 / g or less, preferably 3.8 m 2 / g or less.
  • the BET specific surface area (m 2 / g) of the positive electrode active material can be arbitrarily combined.
  • the BET specific surface area (m 2 / g) is preferably 0.1 m 2 / g or more and 4.0 m 2 / g or less, and is 0.5 m 2 / g or more and 3.8 m 2 / g or less. Is more preferably 1.05 m 2 / g or more and 2.6 m 2 / g or less.
  • the BET specific surface area in the present embodiment is measured using a Macsorb (registered trademark) manufactured by Mountec Co., Ltd. after drying 1 g of the positive electrode active material powder in a nitrogen atmosphere at 105 ° C. for 30 minutes.
  • the crystal structure of the positive electrode active material is a layered structure, and more preferably a hexagonal crystal structure or a monoclinic crystal structure.
  • the hexagonal crystal structures are P3, P3 1 , P3 2 , R3, P-3, R-3, P312, P321, P3 1 12, P3 1 21, P3 2 12, P3 2 21, R32, P3m1, P31m, P3c1, P31c, R3m, R3c, P-31m, P-31c, P-3m1, P-3c1, R-3m, R-3c, P6, P6 1 , P6 5 , P6 2 , P6 4 , P6 3 , P-6, P6 / m, P6 3 / m, P622, P6 1 22, P6 5 22, P6 2 22, P6 4 22, P6 3 22, P6 mm, P6 cc, P6 3 cm, P6 3 mc, P- It belongs to any one space group selected from the group consisting of 6m2, P-6c2, P-62m, P-62c, P6 / mmm, P6 / mcc, P6 3 / mcm, P-
  • Monoclinic crystal structures are P2, P2 1 , C2, Pm, Pc, Cm, Cc, P2 / m, P2 1 / m, C2 / m, P2 / c, P2 1 / c, and C2. It belongs to any one space group selected from the group consisting of / c.
  • the crystal structure is a hexagonal crystal structure belonging to the space group R-3m or a single crystal belonging to C2 / m. Particularly preferred is an oblique crystal structure.
  • Lithium secondary battery> a positive electrode using the positive electrode active material for a lithium secondary battery of the present embodiment as a positive electrode active material of the lithium secondary battery, and a lithium secondary battery having the positive electrode explain.
  • An example of the lithium secondary battery of the present embodiment includes a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and an electrolytic solution disposed between the positive electrode and the negative electrode.
  • FIG. 1A and 1B are schematic views showing an example of a lithium secondary battery of the present embodiment.
  • the cylindrical lithium secondary battery 10 of this embodiment is manufactured as follows.
  • a pair of separators 1 having a strip shape, a strip-like positive electrode 2 having a positive electrode lead 21 at one end, and a strip-like negative electrode 3 having a negative electrode lead 31 at one end, a separator 1, a positive electrode 2, and a separator 1 and negative electrode 3 are laminated in this order and wound to form electrode group 4.
  • the lithium secondary battery 10 can be manufactured by sealing the upper part of the battery can 5 with the top insulator 7 and the sealing body 8.
  • a columnar shape in which the cross-sectional shape when the electrode group 4 is cut in a direction perpendicular to the winding axis is a circle, an ellipse, a rectangle, or a rectangle with rounded corners. Can be mentioned.
  • a shape of the lithium secondary battery having such an electrode group 4 a shape defined by IEC 60086 or JIS C 8500 which is a standard for a battery defined by the International Electrotechnical Commission (IEC) can be adopted. .
  • IEC 60086 or JIS C 8500 which is a standard for a battery defined by the International Electrotechnical Commission (IEC)
  • cylindrical shape, square shape, etc. can be mentioned.
  • the lithium secondary battery is not limited to the above-described wound type configuration, and may have a stacked type configuration in which a stacked structure of a positive electrode, a separator, a negative electrode, and a separator is repeatedly stacked.
  • Examples of the stacked lithium secondary battery include so-called coin-type batteries, button-type batteries, and paper-type (or sheet-type) batteries.
  • the positive electrode of this embodiment can be manufactured by first adjusting a positive electrode mixture containing a positive electrode active material, a conductive material and a binder, and supporting the positive electrode mixture on a positive electrode current collector.
  • a carbon material As the conductive material included in the positive electrode of the present embodiment, a carbon material can be used.
  • the carbon material include graphite powder, carbon black (for example, acetylene black), and a fibrous carbon material. Since carbon black is fine and has a large surface area, by adding a small amount to the positive electrode mixture, the conductivity inside the positive electrode can be improved and the charge / discharge efficiency and output characteristics can be improved. Both the binding force between the positive electrode mixture and the positive electrode current collector and the binding force inside the positive electrode mixture are reduced, which causes an increase in internal resistance.
  • the proportion of the conductive material in the positive electrode mixture is preferably 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the positive electrode active material.
  • a fibrous carbon material such as graphitized carbon fiber or carbon nanotube is used as the conductive material, this ratio can be lowered.
  • thermoplastic resin As the binder included in the positive electrode of the present embodiment, a thermoplastic resin can be used. This thermoplastic resin is sometimes referred to as polyvinylidene fluoride (hereinafter referred to as PVdF). ), Polytetrafluoroethylene (hereinafter sometimes referred to as PTFE), tetrafluoroethylene / hexafluoropropylene / vinylidene fluoride copolymer, propylene hexafluoride / vinylidene fluoride copolymer, tetrafluoroethylene Fluorine resins such as fluorinated ethylene / perfluorovinyl ether copolymers; Polyolefin resins such as polyethylene and polypropylene.
  • PVdF polyvinylidene fluoride
  • PTFE Polytetrafluoroethylene
  • PTFE Polytetrafluoroethylene / hexafluoropropylene / vinylidene fluoride cop
  • thermoplastic resins may be used as a mixture of two or more.
  • a fluororesin and a polyolefin resin as a binder, the ratio of the fluororesin to the total mass of the positive electrode mixture is 1% by mass to 10% by mass, and the ratio of the polyolefin resin is 0.1% by mass to 2% by mass
  • a positive electrode mixture having both high adhesion to the positive electrode current collector and high bonding strength inside the positive electrode mixture can be obtained.
  • a band-shaped member made of a metal material such as Al, Ni, and stainless steel can be used as the positive electrode current collector included in the positive electrode of the present embodiment.
  • a material that is made of Al and formed into a thin film is preferable because it is easy to process and inexpensive.
  • Examples of the method of supporting the positive electrode mixture on the positive electrode current collector include a method of pressure-molding the positive electrode mixture on the positive electrode current collector. Also, the positive electrode mixture is made into a paste using an organic solvent, and the resulting positive electrode mixture paste is applied to at least one surface side of the positive electrode current collector, dried, pressed and fixed, whereby the positive electrode current collector is bonded to the positive electrode current collector. A mixture may be supported.
  • usable organic solvents include amine solvents such as N, N-dimethylaminopropylamine and diethylenetriamine; ether solvents such as tetrahydrofuran; ketone solvents such as methyl ethyl ketone; methyl acetate And amide solvents such as dimethylacetamide and N-methyl-2-pyrrolidone (hereinafter sometimes referred to as NMP).
  • amine solvents such as N, N-dimethylaminopropylamine and diethylenetriamine
  • ether solvents such as tetrahydrofuran
  • ketone solvents such as methyl ethyl ketone
  • amide solvents such as dimethylacetamide and N-methyl-2-pyrrolidone (hereinafter sometimes referred to as NMP).
  • Examples of the method of applying the positive electrode mixture paste to the positive electrode current collector include a slit die coating method, a screen coating method, a curtain coating method, a knife coating method, a gravure coating method, and an electrostatic spray method.
  • a positive electrode can be manufactured by the method mentioned above.
  • the negative electrode included in the lithium secondary battery of this embodiment is only required to be able to dope and dedope lithium ions at a lower potential than the positive electrode, and the negative electrode mixture containing the negative electrode active material is supported on the negative electrode current collector. And an electrode composed of the negative electrode active material alone.
  • Negative electrode active material examples of the negative electrode active material possessed by the negative electrode include carbon materials, chalcogen compounds (oxides, sulfides, etc.), nitrides, metals, and alloys that can be doped and dedoped with lithium ions at a lower potential than the positive electrode. It is done.
  • Examples of carbon materials that can be used as the negative electrode active material include graphite such as natural graphite and artificial graphite, cokes, carbon black, pyrolytic carbons, carbon fibers, and organic polymer compound fired bodies.
  • the oxide can be used as an anode active material, (wherein, x represents a positive real number) SiO 2, SiO, etc. formula SiO x oxides of silicon represented by; TiO 2, TiO, etc. formula TiO x (wherein , X is a positive real number); oxide of titanium represented by formula VO x (where x is a positive real number) such as V 2 O 5 and VO 2 ; Fe 3 O 4 , Fe 2 O 3 , FeO, etc. Iron oxide represented by the formula FeO x (where x is a positive real number); SnO 2 , SnO, etc.
  • Examples of sulfides that can be used as the negative electrode active material include titanium sulfides represented by the formula TiS x (where x is a positive real number) such as Ti 2 S 3 , TiS 2 , and TiS; V 3 S 4 , VS 2, VS and other vanadium sulfides represented by the formula VS x (where x is a positive real number); Fe 3 S 4 , FeS 2 , FeS and other formulas FeS x (where x is a positive real number) Iron sulfide represented; Mo 2 S 3 , MoS 2 and the like MoS x (where x is a positive real number) Molybdenum sulfide; SnS 2, SnS and other formula SnS x (where, a sulfide of tin represented by x is a positive real number; a sulfide of tungsten represented by a formula WS x (where x is a positive real number) such as WS 2
  • Examples of the nitride that can be used as the negative electrode active material include Li 3 N and Li 3-x A x N (where A is one or both of Ni and Co, and 0 ⁇ x ⁇ 3). And lithium-containing nitrides.
  • These carbon materials, oxides, sulfides and nitrides may be used alone or in combination of two or more. These carbon materials, oxides, sulfides and nitrides may be crystalline or amorphous.
  • examples of the metal that can be used as the negative electrode active material include lithium metal, silicon metal, and tin metal.
  • Alloys that can be used as the negative electrode active material include lithium alloys such as Li—Al, Li—Ni, Li—Si, Li—Sn, and Li—Sn—Ni; silicon alloys such as Si—Zn; Sn—Mn, Sn -Tin alloys such as Co, Sn-Ni, Sn-Cu, Sn-La; alloys such as Cu 2 Sb, La 3 Ni 2 Sn 7 ;
  • These metals and alloys are mainly used alone as electrodes after being processed into a foil shape, for example.
  • carbon materials containing graphite as a main component such as natural graphite and artificial graphite, are preferably used.
  • the shape of the carbon material may be any of a flake shape such as natural graphite, a spherical shape such as mesocarbon microbeads, a fibrous shape such as graphitized carbon fiber, or an aggregate of fine powder.
  • the negative electrode mixture may contain a binder as necessary.
  • the binder include thermoplastic resins, and specific examples include PVdF, thermoplastic polyimide, carboxymethyl cellulose, polyethylene, and polypropylene.
  • the negative electrode current collector of the negative electrode examples include a band-shaped member made of a metal material such as Cu, Ni, and stainless steel. In particular, it is preferable to use Cu as a forming material and process it into a thin film from the viewpoint that it is difficult to make an alloy with lithium and it is easy to process.
  • Examples of the separator included in the lithium secondary battery of the present embodiment include a porous film, a nonwoven fabric, a woven fabric, and the like made of a material such as a polyolefin resin such as polyethylene and polypropylene, a fluororesin, and a nitrogen-containing aromatic polymer. A material having the following can be used. Moreover, a separator may be formed by using two or more of these materials, or a separator may be formed by laminating these materials.
  • the separator allows the electrolyte to permeate well when the battery is used (during charging / discharging). Therefore, the air resistance according to the Gurley method defined in JIS P 8117 is 50 seconds / 100 cc or more, 300 seconds / 100 cc. Or less, more preferably 50 seconds / 100 cc or more and 200 seconds / 100 cc or less.
  • the porosity of the separator is preferably 30% by volume or more and 80% by volume or less, more preferably 40% by volume or more and 70% by volume or less with respect to the volume of the separator.
  • the separator may be a laminate of separators having different porosity.
  • the electrolyte solution included in the lithium secondary battery of this embodiment contains an electrolyte and an organic solvent.
  • the electrolyte contained in the electrolyte includes LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (COCF 3 ), Li (C 4 F 9 SO 3 ), LiC (SO 2 CF 3 ) 3 , Li 2 B 10 Cl 10 , LiBOB (where BOB is bis (oxalato) borate LiFSI (here, FSI is bis (fluorosulfonyl) imide), lithium salt such as lower aliphatic carboxylic acid lithium salt, LiAlCl 4, and a mixture of two or more of these May be used.
  • BOB bis (oxalato) borate LiFSI (here, FSI is bis (fluorosulfonyl) imide)
  • lithium salt such as lower aliphatic
  • the electrolyte at least selected from the group consisting of LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 and LiC (SO 2 CF 3 ) 3 containing fluorine. It is preferable to use one containing one kind.
  • Examples of the organic solvent contained in the electrolyte include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 4-trifluoromethyl-1,3-dioxolan-2-one, and 1,2-di- Carbonates such as (methoxycarbonyloxy) ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropyl methyl ether, 2,2,3,3-tetrafluoropropyl difluoromethyl ether, tetrahydrofuran, 2- Ethers such as methyltetrahydrofuran; Esters such as methyl formate, methyl acetate and ⁇ -butyrolactone; Nitriles such as acetonitrile and butyronitrile; N, N-dimethylformamide, N, N-dimethyla Amides such as toamide; carbamates such as 3-methyl-2-oxazolidone;
  • a mixed solvent containing carbonates is preferable, and a mixed solvent of cyclic carbonate and acyclic carbonate and a mixed solvent of cyclic carbonate and ethers are more preferable.
  • a mixed solvent of a cyclic carbonate and an acyclic carbonate a mixed solvent containing ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate is preferable.
  • the electrolyte using such a mixed solvent has a wide operating temperature range, hardly deteriorates even when charged and discharged at a high current rate, hardly deteriorates even when used for a long time, and natural graphite as an active material of the negative electrode. Even when a graphite material such as artificial graphite is used, it has many features that it is hardly decomposable.
  • an electrolytic solution containing a lithium salt containing fluorine such as LiPF 6 and an organic solvent having a fluorine substituent because the safety of the obtained lithium secondary battery is increased.
  • a mixed solvent containing ethers having fluorine substituents such as pentafluoropropyl methyl ether and 2,2,3,3-tetrafluoropropyl difluoromethyl ether and dimethyl carbonate is capable of capacity even when charging / discharging at a high current rate. Since the maintenance rate is high, it is more preferable.
  • a solid electrolyte may be used instead of the above electrolytic solution.
  • the solid electrolyte for example, an organic polymer electrolyte such as a polyethylene oxide polymer compound, a polymer compound containing at least one of a polyorganosiloxane chain or a polyoxyalkylene chain can be used.
  • maintained the non-aqueous electrolyte in the high molecular compound can also be used.
  • Li 2 S—SiS 2 , Li 2 S—GeS 2 , Li 2 S—P 2 S 5 , Li 2 S—B 2 S 3 , Li 2 S—SiS 2 —Li 3 PO 4 , Li 2 S—SiS 2 -Li 2 SO 4, Li 2 S-GeS 2 -P 2 S 5 inorganic solid electrolytes containing a sulfide, and the like, may be used a mixture of two or more thereof. By using these solid electrolytes, the safety of the lithium secondary battery may be further improved.
  • the solid electrolyte when a solid electrolyte is used, the solid electrolyte may serve as a separator, and in that case, the separator may not be required.
  • the life of the lithium secondary battery using the positive electrode active material can be extended.
  • the positive electrode having the above-described configuration has the above-described positive electrode active material for a lithium secondary battery according to this embodiment, the life of the lithium secondary battery can be extended.
  • the lithium secondary battery having the above-described configuration has the above-described positive electrode, it becomes a lithium secondary battery having a longer life than before.
  • evaluation of the positive electrode active material for a lithium secondary battery was performed as follows.
  • the average particle diameter was measured by using a laser diffraction particle size distribution analyzer (LA-950, manufactured by Horiba, Ltd.), 0.2 g by mass of 0.1 g of a positive electrode active material powder or a composite metal compound powder for a lithium secondary battery.
  • the solution was poured into 50 ml of an aqueous sodium hexametaphosphate solution to obtain a dispersion in which the powder was dispersed.
  • the particle size distribution of the obtained dispersion was measured to obtain a volume-based cumulative particle size distribution curve.
  • the value of the particle diameter (D 50 ) viewed from the fine particle side at 50% accumulation was taken as the average particle diameter of the positive electrode active material for lithium secondary batteries.
  • composition analysis The composition analysis of the lithium metal composite oxide powder produced by the method described below is performed by dissolving the obtained lithium metal composite oxide powder in hydrochloric acid and then using an inductively coupled plasma emission spectrometer (SII Nanotechnology, Inc.). Manufactured by SPS3000).
  • Example 1 ⁇ Manufacture of positive electrode active material 1 for lithium secondary battery ⁇ [Production method of spray liquid] After water was put in a tank equipped with a stirrer, an aqueous lithium hydroxide solution and tungsten oxide were added to obtain an alkaline aqueous solution in which tungsten oxide was dissolved. At this time, the tungsten oxide concentration in the alkaline aqueous solution was 2.8% by mass with respect to the mass of the entire alkaline aqueous solution.
  • Nickel cobalt manganese composite metal hydroxide powder Ni 0.55 Co 0.21 Mn 0.24 (OH) 2
  • BET specific surface area 86.3 m 2 / g, D 50 : 3.4 ⁇ m
  • an alkaline aqueous solution in which the tungsten compound obtained above was dissolved was sprayed for 1 hour. Thereafter, the mixture was cooled to obtain a mixed powder 1.
  • the spraying conditions at this time are as follows.
  • the positive electrode active material 1 for a lithium secondary battery had a BET specific surface area of 3.8 m 2 / g and D 50 of 2.7 ⁇ m.
  • Example 2 ⁇ Manufacture of positive electrode active material 2 for lithium secondary battery ⁇ [Production method of spray liquid] After water was put in a tank equipped with a stirrer, an aqueous lithium hydroxide solution and tungsten oxide were added to obtain an alkaline aqueous solution in which tungsten oxide was dissolved. The tungsten oxide concentration in the alkaline aqueous solution at this time was 5.6% by mass with respect to the total mass of the alkaline aqueous solution.
  • Nickel cobalt manganese composite metal hydroxide powder Ni 0.31 Co 0.33 Mn 0.36 (OH) 2
  • BET specific surface area 37.2 m 2 / g, D 50 : 4.0 ⁇ m
  • an alkaline aqueous solution in which the tungsten compound obtained above was dissolved was sprayed for 0.5 hour. Thereafter, the mixture was cooled to obtain a mixed powder 2.
  • the spraying conditions at this time are as follows.
  • the spraying conditions at this time are as follows.
  • Discharge pressure 0.6 MPaG
  • Flow rate 1.9L / h
  • Nickel cobalt manganese composite metal hydroxide powder amount 4100g
  • Alkaline solution amount 950 g
  • the positive electrode active material 2 for a lithium secondary battery had a BET specific surface area of 2.4 m 2 / g and a D 50 of 3.6 ⁇ m.
  • Example 3 ⁇ Manufacture of positive electrode active material 3 for lithium secondary battery ⁇ [Production method of spray liquid] After water was put in a tank equipped with a stirrer, an aqueous lithium hydroxide solution and tungsten oxide were added to obtain an alkaline aqueous solution in which tungsten oxide was dissolved. At this time, the tungsten oxide concentration in the alkaline aqueous solution was 2.8% by mass with respect to the mass of the entire alkaline aqueous solution.
  • Nickel cobalt manganese composite metal hydroxide powder Ni 0.31 Co 0.33 Mn 0.36 (OH) 2
  • BET specific surface area 37.9 m 2 / g, D 50 : 3.3 ⁇ m
  • an alkaline aqueous solution in which the tungsten compound obtained above was dissolved was sprayed for 1 hour. Thereafter, the mixture was cooled to obtain a mixed powder 3.
  • the spraying conditions at this time are as follows.
  • the positive electrode active material 3 for a lithium secondary battery had a BET specific surface area of 2.4 m 2 / g and D 50 of 3.4 ⁇ m.
  • Nickel cobalt manganese composite metal hydroxide powder Ni 0.31 Co 0.33 Mn 0.36 (OH) 2
  • BET specific surface area 29.8 m 2 / g, D 50 : 4.0 ⁇ m
  • an alkaline aqueous solution in which the tungsten compound obtained above was dissolved was sprayed for 1 hour. Thereafter, the mixture was cooled to obtain a mixed powder 4.
  • the spraying conditions at this time are as follows.
  • the positive electrode active material 4 for lithium secondary battery had a BET specific surface area of 1.8 m 2 / g and a D 50 of 3.7 ⁇ m.
  • Nickel cobalt manganese composite metal hydroxide powder Ni 0.87 Co 0.10 Mn 0.02 Al 0.01 (OH) 2
  • BET specific surface area 20.6 m 2 / g, D 50 : 10.4 ⁇ m
  • the spraying conditions at this time are as follows.
  • the positive electrode active material 5 for a lithium secondary battery had a BET specific surface area of 0.26 m 2 / g and a D 50 of 10.9 ⁇ m.
  • the positive electrode active material 6 for a lithium secondary battery had a BET specific surface area of 3.2 m 2 / g and a D 50 of 3.2 ⁇ m.
  • ⁇ Comparative example 2> ⁇ Manufacture of positive electrode active material 7 for lithium secondary battery ⁇ [Production process of composite metal compound] Nickel cobalt manganese composite metal hydroxide powder (Ni 0.31 Co 0.33 Mn 0.36 (OH) 2 ) (BET specific surface area: 37.2 m 2 / g, D 50 : 4.0 ⁇ m), tungsten oxide The powder was weighed so that W per 1 mol of transition metal was 0.005 mol, and dry-mixed for 1 hour to obtain mixed powder 7.
  • the mixed powder 7 obtained in the above process was heat-treated. Specifically, primary firing was performed at 690 ° C. for 5 hours in an air atmosphere, and then secondary firing was performed at 950 ° C. for 6 hours.
  • the target positive electrode active material 7 for lithium secondary batteries was obtained by performing secondary baking for 6 hours at 925 degreeC.
  • the positive electrode active material 7 for a lithium secondary battery had a BET specific surface area of 2.2 m 2 / g and a D 50 of 3.8 ⁇ m.
  • the positive electrode active material 9 for a lithium secondary battery had a BET specific surface area of 3.5 m 2 / g and D 50 of 3.0 ⁇ m.
  • Table 1 summarizes the manufacturing conditions for Examples 1 to 5 and Comparative Examples 1 to 4.
  • W means tungsten.
  • FIG. 2 shows an SEM photograph of the mixed powder after dry mixing in Comparative Example 2
  • FIG. 3 shows an SEM photograph of the mixed powder after spray mixing in Example 3.
  • Comparative Example 2 in which the present invention was not applied, segregated material derived from tungsten was confirmed at the position indicated by reference numeral 20 in FIG.
  • Example 3 in Example 3 to which the present invention was applied, segregated material derived from tungsten was not confirmed after the mixing of tungsten.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

This method for producing a positive electrode active material for lithium secondary batteries produces a positive electrode active material for lithium secondary batteries, which contains a lithium composite metal compound. This method comprises: a spray mixing step which includes heating of a composite metal compound powder that contains nickel, cobalt and manganese, the production of a mixed powder by spraying an alkaline solution, in which a tungsten compound is dissolved, onto the composite metal compound powder, thereby mixing the composite metal compound powder with the tungsten compound, and subsequent cooling of the mixed powder; and a step wherein a lithium salt and the mixed powder are mixed with each other and then fired, thereby producing a lithium composite metal compound.

Description

リチウム二次電池用正極活物質の製造方法Method for producing positive electrode active material for lithium secondary battery
 本発明は、リチウム二次電池用正極活物質の製造方法に関する。
 本願は、2016年12月7日に、日本に出願された特願2016-237694号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for producing a positive electrode active material for a lithium secondary battery.
This application claims priority based on Japanese Patent Application No. 2016-237694 filed in Japan on December 7, 2016, the contents of which are incorporated herein by reference.
 リチウム複合酸化物は、リチウム二次電池用正極活物質として用いられている。リチウム二次電池は、既に携帯電話用途やノートパソコン用途などの小型電源だけでなく、自動車用途や電力貯蔵用途などの中型及び大型電源においても、実用化が進んでいる。 The lithium composite oxide is used as a positive electrode active material for a lithium secondary battery. Lithium secondary batteries have already been put into practical use not only for small power sources for mobile phones and notebook computers, but also for medium and large power sources for automobiles and power storage.
 電池容量等のリチウム二次電池の性能を向上させるために、リチウム二次電池用正極活物質には、リチウム、ニッケル、コバルト及びマンガンを含むリチウム複合金属化合物が用いられる。さらに、電池の低抵抗化及び長寿命化を達成するために、リチウム二次電池用正極活物質にタングステンを含有させることが有用である。例えば特許文献1には、リチウム複合金属化合物の一次焼成後にタングステン化合物を溶解させたアルカリ溶液を添加する技術が記載されている。また、特許文献2には、リチウム複合金属化合物の前駆体に、酸化タングステンを乾式添加する方法が記載されている。また、特許文献3には、リチウム複合金属化合物の前駆体と、酸化タングステンとを含むスラリー溶液を調製し、このスラリー溶液をスプレードライする方法が記載されている。 In order to improve the performance of the lithium secondary battery such as battery capacity, a lithium composite metal compound containing lithium, nickel, cobalt, and manganese is used as the positive electrode active material for the lithium secondary battery. Furthermore, in order to achieve low battery resistance and long life, it is useful to contain tungsten in the positive electrode active material for a lithium secondary battery. For example, Patent Document 1 describes a technique of adding an alkaline solution in which a tungsten compound is dissolved after primary firing of a lithium composite metal compound. Patent Document 2 describes a method of dry-adding tungsten oxide to a precursor of a lithium composite metal compound. Patent Document 3 describes a method of preparing a slurry solution containing a precursor of a lithium composite metal compound and tungsten oxide and spray drying the slurry solution.
特開2012-79464号公報JP 2012-79464 A 特開2014-197556号公報JP 2014-197556 A 特開2011-228292号公報JP 2011-228292 A
 電池の低抵抗化及び長寿命化を達成するために、リチウム二次電池用正極活物質にタングステンを含有させることは有用である。しかし、特許文献1~3に記載の方法では、タングステンを添加する際に、タングステンが凝集して偏析し、タングステン由来の異物が生じてしまうという課題がある。
 本発明は上記事情に鑑みてなされたものであって、タングステンの偏析が抑制された、リチウム二次電池用正極活物質の製造方法を提供することを課題とする。
In order to achieve low battery resistance and long life, it is useful to include tungsten in the positive electrode active material for a lithium secondary battery. However, the methods described in Patent Documents 1 to 3 have a problem in that when tungsten is added, the tungsten aggregates and segregates, resulting in a foreign substance derived from tungsten.
This invention is made | formed in view of the said situation, Comprising: It aims at providing the manufacturing method of the positive electrode active material for lithium secondary batteries by which segregation of tungsten was suppressed.
 すなわち、本発明は、下記[1]~[6]の発明を包含する。
[1]リチウム複合金属化合物を含むリチウム二次電池用正極活物質の製造方法であって、ニッケル、コバルト、マンガンを含む複合金属化合物粉末を加熱することと、タングステン化合物を溶解させたアルカリ溶液を前記複合金属化合物粉末に噴霧し、前記複合金属化合物粉末と前記タングステン化合物とを混合して混合粉末を製造することと、その後、前記混合粉末を冷却することを含む噴霧混合工程と、リチウム塩と、前記混合粉末とを混合し、焼成してリチウム複合金属化合物を製造する工程と、を有するリチウム二次電池用正極活物質の製造方法。
[2]前記リチウム複合金属化合物が、以下の組成式(I)で表される、[1]に記載のリチウム二次電池用正極活物質の製造方法。
  Li[Lix(Ni(1-y-z-w)CoyMnzMw)1-x]O ・・・(I)
(組成式(I)中、-0.1≦x≦0.2、0<y≦0.5、0<z≦0.8、0≦w≦0.1、y+z+w<1、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の金属を表す。)
[3]前記リチウム二次電池用正極活物質に含まれるタングステン含有量が遷移金属の全モル量に対して1.0mol%以下である[1]又は[2]に記載のリチウム二次電池用正極活物質の製造方法。
[4]前記噴霧混合工程において、前記タングステン化合物が酸化タングステンである[1]~[3]のいずれか1つに記載のリチウム二次電池用正極活物質の製造方法。
[5]前記噴霧混合工程において、前記アルカリ溶液が水酸化リチウムを含む[1]~[4]のいずれか1つに記載のリチウム二次電池用正極活物質の製造方法。
[6]前記噴霧混合工程において、前記アルカリ溶液を噴霧するときの複合金属化合物粉末の温度が100℃以上である[1]~[5]のいずれか1つに記載のリチウム二次電池用正極活物質の製造方法。
That is, the present invention includes the following [1] to [6].
[1] A method for producing a positive electrode active material for a lithium secondary battery containing a lithium composite metal compound, comprising heating a composite metal compound powder containing nickel, cobalt and manganese, and an alkaline solution in which a tungsten compound is dissolved Spraying the composite metal compound powder to produce a mixed powder by mixing the composite metal compound powder and the tungsten compound, and then cooling the mixed powder; and a lithium salt; And a step of mixing the mixed powder and firing to produce a lithium composite metal compound, and a method for producing a positive electrode active material for a lithium secondary battery.
[2] The method for producing a positive electrode active material for a lithium secondary battery according to [1], wherein the lithium composite metal compound is represented by the following composition formula (I).
Li [Lix (Ni (1-yzw) CoyMnzMw) 1-x] O 2 (I)
(In the composition formula (I), −0.1 ≦ x ≦ 0.2, 0 <y ≦ 0.5, 0 <z ≦ 0.8, 0 ≦ w ≦ 0.1, y + z + w <1, M is Fe , Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga, and V represent one or more metals selected from the group.
[3] The lithium secondary battery according to [1] or [2], wherein the content of tungsten contained in the positive electrode active material for a lithium secondary battery is 1.0 mol% or less with respect to the total molar amount of the transition metal. A method for producing a positive electrode active material.
[4] The method for producing a positive electrode active material for a lithium secondary battery according to any one of [1] to [3], wherein in the spray mixing step, the tungsten compound is tungsten oxide.
[5] The method for producing a positive electrode active material for a lithium secondary battery according to any one of [1] to [4], wherein in the spray mixing step, the alkaline solution contains lithium hydroxide.
[6] The positive electrode for a lithium secondary battery according to any one of [1] to [5], wherein the temperature of the composite metal compound powder when spraying the alkaline solution in the spray mixing step is 100 ° C. or higher. A method for producing an active material.
 本発明によれば、タングステンの偏析が抑制された、リチウム二次電池用正極活物質の製造方法を提供することができる。 According to the present invention, it is possible to provide a method for producing a positive electrode active material for a lithium secondary battery in which segregation of tungsten is suppressed.
リチウムイオン二次電池の一例を示す概略構成図である。It is a schematic block diagram which shows an example of a lithium ion secondary battery. リチウムイオン二次電池の一例を示す概略構成図である。It is a schematic block diagram which shows an example of a lithium ion secondary battery. 比較例2の、乾式混合後の混合粉末のSEM画像である。It is a SEM image of the mixed powder after the dry mixing of the comparative example 2. 実施例3の、噴霧混合後の混合粉末のSEM画像である。It is a SEM image of the mixed powder after spray mixing of Example 3.
<リチウム二次電池用正極活物質の製造方法>
 本実施形態のリチウム二次電池用正極活物質の製造方法は、ニッケル、コバルト、及びマンガンを含む複合金属化合物粉末を加熱することと、タングステン化合物を溶解させたアルカリ溶液を前記複合金属化合物粉末に噴霧し、前記複合金属化合物粉末と前記タングステン化合物とを混合して混合粉末を製造することと、その後、前記混合粉末を冷却することを含む噴霧混合工程と、リチウム塩と、前記混合物粉末とを混合し、焼成してリチウム複合金属化合物を製造する工程と、を有する。
 リチウム二次電池用正極活物質の製造方法においては、まず、リチウム以外の金属、すなわち、Ni、Co及びMnから構成される必須金属、並びに、Fe、Cr、Cu、Ti、B、Mg、Al、W、Mo、Nb、Zn、Sn、Zr、Ga及びVのうちいずれか1種以上の任意金属を含む複合金属化合物を調製し、当該複合金属化合物を適当なリチウム塩と焼成することが好ましい。複合金属化合物としては、複合金属水酸化物又は複合金属酸化物が好ましい。
 より詳細には、本実施形態のリチウム二次電池用正極活物質の製造方法は、前記噴霧混合工程を有する複合金属化合物の製造工程と、リチウム金属複合酸化物の製造工程と、を備える。
 以下、本実施形態のリチウム二次電池用正極活物質の製造方法の各工程について説明する。
<Method for producing positive electrode active material for lithium secondary battery>
The method for producing a positive electrode active material for a lithium secondary battery according to the present embodiment includes heating a composite metal compound powder containing nickel, cobalt, and manganese, and converting the alkaline solution in which the tungsten compound is dissolved into the composite metal compound powder. Spraying and mixing the composite metal compound powder and the tungsten compound to produce a mixed powder, and thereafter cooling the mixed powder; a lithium salt; and the mixture powder. Mixing and firing to produce a lithium composite metal compound.
In the method for producing a positive electrode active material for a lithium secondary battery, first, a metal other than lithium, that is, an essential metal composed of Ni, Co, and Mn, and Fe, Cr, Cu, Ti, B, Mg, Al , W, Mo, Nb, Zn, Sn, Zr, Ga, and V, it is preferable to prepare a composite metal compound containing any one or more arbitrary metals, and to fire the composite metal compound with an appropriate lithium salt . The composite metal compound is preferably a composite metal hydroxide or a composite metal oxide.
In more detail, the manufacturing method of the positive electrode active material for lithium secondary batteries of this embodiment is equipped with the manufacturing process of the composite metal compound which has the said spray mixing process, and the manufacturing process of lithium metal complex oxide.
Hereinafter, each process of the manufacturing method of the positive electrode active material for lithium secondary batteries of this embodiment is demonstrated.
[複合金属化合物の製造工程]
 複合金属化合物の製造工程は、リチウム以外の金属、すなわち、Ni、Co及びMnから構成される必須金属、並びに、Fe、Cr、Cu、Ti、B、Mg、Al、W、Mo、Nb、Zn、Sn、Zr、Ga及びVのうちいずれか1種以上の任意金属を含む複合金属化合物を調製する工程である。
[Production process of composite metal compound]
The manufacturing process of the composite metal compound includes metals other than lithium, that is, essential metals composed of Ni, Co, and Mn, and Fe, Cr, Cu, Ti, B, Mg, Al, W, Mo, Nb, Zn , Sn, Zr, Ga and V, a step of preparing a composite metal compound containing any one or more arbitrary metals.
 複合金属化合物は、通常公知のバッチ共沈殿法又は連続共沈殿法により製造することが可能である。以下、金属として、ニッケル、コバルト及びマンガンを含む複合金属水酸化物を例に、その製造方法を詳述する。 The composite metal compound can be produced by a generally known batch coprecipitation method or continuous coprecipitation method. Hereinafter, the manufacturing method will be described in detail by taking a composite metal hydroxide containing nickel, cobalt and manganese as an example.
 まず共沈殿法、特に特開2002-201028号公報に記載された連続法により、ニッケル塩溶液、コバルト塩溶液、マンガン塩溶液、及び錯化剤を反応させ、NiCoMn(OH)(式中、x+y+z=1)で表される複合金属水酸化物を製造する。 First, a nickel salt solution, a cobalt salt solution, a manganese salt solution, and a complexing agent are reacted by a coprecipitation method, in particular, a continuous method described in JP-A-2002-201028, and Ni x Co y Mn z (OH) 2 A composite metal hydroxide represented by the formula (where x + y + z = 1) is produced.
 上記ニッケル塩溶液の溶質であるニッケル塩としては、特に限定されないが、例えば硫酸ニッケル、硝酸ニッケル、塩化ニッケル及び酢酸ニッケルのうちの何れかを使用することができる。上記コバルト塩溶液の溶質であるコバルト塩としては、例えば硫酸コバルト、硝酸コバルト、及び塩化コバルトのうちの何れかを使用することができる。上記マンガン塩溶液の溶質であるマンガン塩としては、例えば硫酸マンガン、硝酸マンガン、及び塩化マンガンのうちの何れかを使用することができる。以上の金属塩は、上記NiCoMn(OH)の組成比に対応する割合で用いられる。すなわち、上記金属塩を含む混合溶液中におけるニッケル、コバルト、マンガンのモル比がx:y:zとなるよう各金属塩の量を規定する。また、溶媒として水が使用される。 Although it does not specifically limit as nickel salt which is the solute of the said nickel salt solution, For example, any one of nickel sulfate, nickel nitrate, nickel chloride, and nickel acetate can be used. As the cobalt salt that is a solute of the cobalt salt solution, for example, any one of cobalt sulfate, cobalt nitrate, and cobalt chloride can be used. As the manganese salt that is a solute of the manganese salt solution, for example, any one of manganese sulfate, manganese nitrate, and manganese chloride can be used. The above metal salt is used in a proportion corresponding to the composition ratio of Ni x Co y Mn z (OH) 2 . That is, the amount of each metal salt is defined so that the molar ratio of nickel, cobalt, and manganese in the mixed solution containing the metal salt is x: y: z. Moreover, water is used as a solvent.
 錯化剤としては、水溶液中で、ニッケル、コバルト、及びマンガンのイオンと錯体を形成可能なものであり、例えばアンモニウムイオン供給体(硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、弗化アンモニウム等)、ヒドラジン、エチレンジアミン四酢酸、ニトリロ三酢酸、ウラシル二酢酸、及びグリシンが挙げられる。 The complexing agent is capable of forming a complex with nickel, cobalt, and manganese ions in an aqueous solution. For example, an ammonium ion supplier (ammonium sulfate, ammonium chloride, ammonium carbonate, ammonium fluoride, etc.), hydrazine, Examples include ethylenediaminetetraacetic acid, nitrilotriacetic acid, uracil diacetic acid, and glycine.
 錯化剤は含まれていなくてもよく、錯化剤が含まれる場合、ニッケル塩溶液、コバルト塩溶液、マンガン塩溶液及び錯化剤を含む混合液に含まれる錯化剤の量は、例えば金属塩のモル数の合計に対するモル比が0より大きく2.0以下である。 The complexing agent may not be contained. When the complexing agent is contained, the amount of the complexing agent contained in the mixed solution containing the nickel salt solution, the cobalt salt solution, the manganese salt solution and the complexing agent is, for example, The molar ratio with respect to the total number of moles of the metal salt is greater than 0 and 2.0 or less.
 沈殿に際しては、水溶液のpH値を調整するため、必要ならばアルカリ金属水酸化物(例えば水酸化ナトリウム、水酸化カリウム)を添加する。 During the precipitation, an alkali metal hydroxide (for example, sodium hydroxide or potassium hydroxide) is added if necessary to adjust the pH value of the aqueous solution.
 上記ニッケル塩溶液、コバルト塩溶液、及びマンガン塩溶液のほか、錯化剤を反応槽に連続して供給させると、ニッケル、コバルト、及びマンガンが反応し、NiCoMn(OH)が製造される。反応に際しては、反応槽の温度が例えば20℃以上80℃以下、好ましくは30~70℃の範囲内で制御される。反応槽内のpH値(40℃測定時)は、例えばpH9以上pH13以下、好ましくはpH11~13の範囲内で制御される。反応槽内の物質は、適宜撹拌される。 When the complexing agent is continuously supplied to the reaction vessel in addition to the nickel salt solution, the cobalt salt solution, and the manganese salt solution, nickel, cobalt, and manganese react to form Ni x Co y Mn z (OH) 2. Is manufactured. During the reaction, the temperature of the reaction vessel is controlled within a range of, for example, 20 ° C. to 80 ° C., preferably 30 to 70 ° C. The pH value in the reaction vessel (when measured at 40 ° C.) is controlled, for example, within the range of pH 9 to pH 13, preferably pH 11-13. The substance in the reaction vessel is appropriately stirred.
 反応槽内は、不活性雰囲気であってもよい。不活性雰囲気であると、ニッケルよりも酸化されやすい元素が凝集してしまうことを抑制し、均一な複合金属水酸化物を得ることができる。 The inside of the reaction tank may be an inert atmosphere. When the inert atmosphere is used, it is possible to suppress aggregation of elements that are more easily oxidized than nickel and to obtain a uniform composite metal hydroxide.
 また、反応槽内は、不活性雰囲気を保ちつつも、適度な酸素含有雰囲気又は酸化剤存在下であってもよい。遷移金属を適度に酸化させることで、複合金属水酸化物の形態を制御し、該複合金属水酸化物を用いて作製した正極材における二次粒子内部の空隙の大きさ、分散度を制御することが可能となる。このとき、酸素含有ガス中の酸素や酸化剤は、遷移金属を酸化させるために十分な酸素原子があればよい。反応槽内に適度な酸素原子を導入することにより、反応槽内の不活性雰囲気を保つことができる。 Also, the inside of the reaction vessel may be in an appropriate oxygen-containing atmosphere or in the presence of an oxidizing agent while maintaining an inert atmosphere. By moderately oxidizing the transition metal, the form of the composite metal hydroxide is controlled, and the size and dispersion of the voids inside the secondary particles in the positive electrode material produced using the composite metal hydroxide are controlled. It becomes possible. At this time, the oxygen and the oxidizing agent in the oxygen-containing gas need only have sufficient oxygen atoms to oxidize the transition metal. By introducing appropriate oxygen atoms into the reaction tank, an inert atmosphere in the reaction tank can be maintained.
 反応槽内を酸素含有雰囲気とするには、反応槽内に酸素含有ガスを導入すればよい。酸素含有ガス中の酸素含有ガスの体積に対する酸素濃度(体積%)が1以上15以下であることが好ましい。反応槽内の溶液の均一性を高めるために、酸素含有ガスをバブリングさせてもよい。酸素含有ガスとしては、酸素ガス、空気、又はこれらと窒素ガスなどの酸素非含有ガスとの混合ガスが挙げられる。酸素含有ガス中の酸素濃度を調整しやすい観点から、上記の中でも混合ガスであることが好ましい。 In order to create an oxygen-containing atmosphere in the reaction tank, an oxygen-containing gas may be introduced into the reaction tank. The oxygen concentration (volume%) with respect to the volume of the oxygen-containing gas in the oxygen-containing gas is preferably 1 or more and 15 or less. In order to improve the uniformity of the solution in the reaction vessel, an oxygen-containing gas may be bubbled. Examples of the oxygen-containing gas include oxygen gas, air, or a mixed gas of these and an oxygen-free gas such as nitrogen gas. From the viewpoint of easy adjustment of the oxygen concentration in the oxygen-containing gas, a mixed gas is preferable among the above.
 反応槽内を酸化剤存在下とするには、反応槽内に酸化剤を添加すればよい。酸化剤としては過酸化水素、塩素酸塩、次亜塩素酸塩、過塩素酸塩、過マンガン酸塩などを挙げることができる。反応系内に不純物を持ち込みにくい観点から過酸化水素が好ましく用いられる。 In order to bring the inside of the reaction vessel into the presence of an oxidizing agent, an oxidizing agent may be added to the reaction vessel. Examples of the oxidizing agent include hydrogen peroxide, chlorate, hypochlorite, perchlorate, and permanganate. Hydrogen peroxide is preferably used from the viewpoint of hardly bringing impurities into the reaction system.
 以上の反応後、得られた反応沈殿物を水で洗浄した後、乾燥し、ニッケル、コバルト、及びマンガンを含む複合金属化合物としてのニッケルコバルトマンガン水酸化物を単離する。また、必要に応じて弱酸水や、水酸化ナトリウムや水酸化カリウムを含むアルカリ溶液で洗浄しても良い。なお、上記の例では、ニッケルコバルトマンガン複合水酸化物を製造しているが、ニッケルコバルトマンガン複合酸化物を調製しても良い。ニッケルコバルトマンガン複合酸化物を調製する場合は、例えば、前記共沈物スラリーと酸化剤を接触させる工程や、ニッケルコバルトマンガン複合水酸化物を熱処理する工程を行えばよい。 After the above reaction, the obtained reaction precipitate is washed with water and then dried to isolate nickel cobalt manganese hydroxide as a composite metal compound containing nickel, cobalt and manganese. Moreover, you may wash | clean with the weak acid water and the alkaline solution containing sodium hydroxide and potassium hydroxide as needed. In the above example, nickel cobalt manganese composite hydroxide is manufactured, but nickel cobalt manganese composite oxide may be prepared. In preparing the nickel cobalt manganese composite oxide, for example, a step of bringing the coprecipitate slurry into contact with an oxidizing agent or a step of heat treating the nickel cobalt manganese composite hydroxide may be performed.
 得られたニッケル、コバルト、及びマンガンを含む複合金属化合物の粉末のBET比表面積は、15~90m/gであることが好ましく、平均粒子径は、2.0~15μmであることが好ましい。
 ここで、BET比表面積は、ニッケル、コバルト、及びマンガンを含む複合金属化合物粉末1gを窒素雰囲気中、105℃で30分間乾燥させた後、BET比表面積計(マウンテック社製Macsorb(登録商標))を用いて測定した値である。
 また、平均粒子径は、以下の方法により測定される値である。レーザー回折粒度分布計(株式会社堀場製作所製、LA-950)を用い、ニッケル、コバルト、及びマンガンを含む複合金属化合物粉末0.1gを、0.2質量%ヘキサメタリン酸ナトリウム水溶液50mlに投入し、該粉末を分散させた分散液を得る。得られた分散液について粒度分布を測定し、体積基準の累積粒度分布曲線を得る。得られた累積粒度分布曲線において、50%累積時の微小粒子側から見た粒子径(D50)の値を、ニッケル、コバルト、及びマンガンを含む複合金属化合物の平均粒子径とする。
The BET specific surface area of the obtained composite metal compound powder containing nickel, cobalt, and manganese is preferably 15 to 90 m 2 / g, and the average particle size is preferably 2.0 to 15 μm.
Here, the BET specific surface area was determined by drying 1 g of a composite metal compound powder containing nickel, cobalt, and manganese in a nitrogen atmosphere at 105 ° C. for 30 minutes, and then a BET specific surface area meter (Macsorb (registered trademark) manufactured by Mountec). It is the value measured using.
The average particle diameter is a value measured by the following method. Using a laser diffraction particle size distribution analyzer (LA-950, manufactured by HORIBA, Ltd.), 0.1 g of a composite metal compound powder containing nickel, cobalt, and manganese was put into 50 ml of a 0.2 mass% sodium hexametaphosphate aqueous solution, A dispersion in which the powder is dispersed is obtained. The particle size distribution of the obtained dispersion is measured to obtain a volume-based cumulative particle size distribution curve. In the obtained cumulative particle size distribution curve, the value of the particle diameter (D 50 ) viewed from the fine particle side when 50% is accumulated is defined as the average particle diameter of the composite metal compound containing nickel, cobalt, and manganese.
・噴霧混合工程
 噴霧混合工程では、上記工程で得たニッケル、コバルト、及びマンガンを含む複合金属化合物粉末を加熱し、タングステン化合物を溶解させたアルカリ溶液を前記複合金属化合物粉末に噴霧し、複合金属化合物粉末とタングステン化合物とを混合して混合粉末を製造する。その後、前記混合粉末を冷却する。
-Spray mixing process In the spray mixing process, the composite metal compound powder containing nickel, cobalt, and manganese obtained in the above process is heated, and an alkali solution in which a tungsten compound is dissolved is sprayed on the composite metal compound powder, and the composite metal is sprayed. A compound powder and a tungsten compound are mixed to produce a mixed powder. Thereafter, the mixed powder is cooled.
 噴霧混合工程では、タングステン化合物をアルカリ溶液に溶解する。溶解方法は特に限定されず、例えば、撹拌装置付きの反応槽を用いて、溶液を撹拌しながらタングステン化合物を添加して溶解すればよい。タングステン由来の異物発生を抑制する観点から、タングステン化合物は、アルカリ溶液に完全に溶解させ、均一に分散させることが好ましい。 In the spray mixing process, the tungsten compound is dissolved in an alkaline solution. The dissolution method is not particularly limited, and for example, a tungsten compound may be added and dissolved while stirring the solution using a reaction vessel equipped with a stirring device. From the viewpoint of suppressing the generation of tungsten-derived foreign matter, the tungsten compound is preferably completely dissolved in an alkaline solution and uniformly dispersed.
 本明細書におけるタングステン由来の異物とは、複合金属化合物にタングステン化合物を添加した際、タングステン化合物が偏析して生じるタングステンの凝集物である。 The foreign substance derived from tungsten in this specification is an aggregate of tungsten produced by segregation of the tungsten compound when the tungsten compound is added to the composite metal compound.
 アルカリ溶液におけるタングステン化合物の濃度は、アルカリ溶液全質量に対し、0.5~15質量%であることが好ましく、2.0~6.0質量%であることがさらに好ましい。タングステン化合物の濃度が15質量%以上であると、タングステン化合物の溶け残りが発生する可能性がある。タングステン化合物の濃度が15質量%以下であると、タングステン化合物は、アルカリ溶液に完全に溶解させ、均一に分散させることができる。 The concentration of the tungsten compound in the alkaline solution is preferably 0.5 to 15% by mass, and more preferably 2.0 to 6.0% by mass with respect to the total mass of the alkaline solution. If the concentration of the tungsten compound is 15% by mass or more, the tungsten compound may be left undissolved. When the concentration of the tungsten compound is 15% by mass or less, the tungsten compound can be completely dissolved in the alkaline solution and uniformly dispersed.
 次に、上記工程で得たニッケル、コバルト、及びマンガンを含む複合金属化合物粉末を加熱し、タングステン化合物を溶解させたアルカリ溶液を前記複合金属化合物粉末に噴霧し、前記ニッケル、コバルト、及びマンガンを含む複合金属化合物粉末とタングステン化合物とを混合して混合粉末を製造する。即ち、上記工程で得たニッケル、コバルト、及びマンガンを含む複合金属化合物粉末を加熱かつ撹拌しながら、タングステン化合物を溶解させたアルカリ溶液を前記複合金属化合物粉末に噴霧し、前記ニッケル、コバルト、及びマンガンを含む複合金属化合物粉末とタングステン化合物とを混合して混合粉末を製造する。
 複合金属化合物粉末は、アルカリ溶液の溶媒が蒸発する温度以上に加熱することが好ましい。具体的には、複合金属化合物粉末を加熱する温度は、アルカリ溶液に含まれるアルカリ溶液の溶媒の沸点及びアルカリ溶液の噴霧条件に合わせて適宜設定される。
 より具体的には、複合金属化合物粉末の温度の下限値は100℃以上が好ましく、105℃以上がより好ましい。複合金属化合物粉末の温度の上限値は特に限定されず、例えば、150℃以下、130℃以下、120℃以下が挙げられる。
 上記上限値と下限値は任意に組み合わせることができる。例えば、複合金属化合物粉末の温度は、100℃以上150℃以下が好ましく、105℃以上150℃以下がより好ましい。
Next, the composite metal compound powder containing nickel, cobalt, and manganese obtained in the above step is heated, and an alkaline solution in which a tungsten compound is dissolved is sprayed on the composite metal compound powder, and the nickel, cobalt, and manganese are added. The mixed metal compound powder and the tungsten compound are mixed to produce a mixed powder. That is, while heating and stirring the composite metal compound powder containing nickel, cobalt, and manganese obtained in the above step, an alkaline solution in which a tungsten compound is dissolved is sprayed on the composite metal compound powder, and the nickel, cobalt, and A mixed powder is produced by mixing a composite metal compound powder containing manganese and a tungsten compound.
The composite metal compound powder is preferably heated to a temperature higher than the temperature at which the solvent of the alkaline solution evaporates. Specifically, the temperature at which the composite metal compound powder is heated is appropriately set according to the boiling point of the solvent of the alkaline solution contained in the alkaline solution and the spraying conditions of the alkaline solution.
More specifically, the lower limit of the temperature of the composite metal compound powder is preferably 100 ° C. or higher, and more preferably 105 ° C. or higher. The upper limit of the temperature of a composite metal compound powder is not specifically limited, For example, 150 degrees C or less, 130 degrees C or less, 120 degrees C or less is mentioned.
The upper limit value and the lower limit value can be arbitrarily combined. For example, the temperature of the composite metal compound powder is preferably 100 ° C. or higher and 150 ° C. or lower, and more preferably 105 ° C. or higher and 150 ° C. or lower.
 噴霧混合工程では、加熱した複合金属化合物粉末に、タングステン化合物を溶解させたアルカリ溶液を噴霧し、複合金属化合物とタングステン化合物とを混合する。アルカリ溶液の噴霧時の供給量(L/min)、吐出圧(MPa)、及びアルカリ溶液を吐出するノズルのノズル径等は、用いる加熱噴霧装置の仕様等によって適宜設定される。
 一例を挙げると、アルカリ溶液の噴霧時の供給量は1.0~3.0L/h、吐出圧力は0.05MPa~1.0MPaで、ノズル径は30~200μm、及び10分間~600分間程度噴霧混合することが好ましい。
 また、噴霧工程におけるアルカリ溶液の温度は、20~90℃であることが好ましい。
In the spray mixing step, an alkaline solution in which a tungsten compound is dissolved is sprayed on the heated composite metal compound powder to mix the composite metal compound and the tungsten compound. The supply amount (L / min) at the time of spraying the alkaline solution, the discharge pressure (MPa), the nozzle diameter of the nozzle that discharges the alkaline solution, and the like are appropriately set depending on the specifications of the heating spray device used.
For example, the supply amount during spraying of the alkaline solution is 1.0 to 3.0 L / h, the discharge pressure is 0.05 MPa to 1.0 MPa, the nozzle diameter is 30 to 200 μm, and about 10 to 600 minutes. Spray mixing is preferred.
The temperature of the alkaline solution in the spraying process is preferably 20 to 90 ° C.
 噴霧混合工程で用いるタングステン化合物は、アルカリ溶液に対して可溶であれば特に限定されず、酸化タングステン、タングステン酸アンモニウム、タングステン酸ナトリウム、タングステン酸リチウムを用いることができる。本実施形態においては、中でも、酸化タングステンを用いることが好ましい。 The tungsten compound used in the spray mixing step is not particularly limited as long as it is soluble in an alkaline solution, and tungsten oxide, ammonium tungstate, sodium tungstate, and lithium tungstate can be used. In the present embodiment, it is particularly preferable to use tungsten oxide.
 噴霧混合工程においては、上記のタングステン化合物をアルカリ溶液に溶解させて用いる。アルカリ溶液に用いるアルカリ性の溶質としては、アンモニア、水酸化リチウムを用いることができる。本実施形態においては、水酸化リチウムを用いることが好ましい。アルカリ溶液に用いる溶媒としては、上記溶質が溶解する液体であればよく、水が挙げられる。 In the spray mixing process, the above tungsten compound is dissolved in an alkaline solution and used. As the alkaline solute used in the alkaline solution, ammonia or lithium hydroxide can be used. In this embodiment, it is preferable to use lithium hydroxide. The solvent used in the alkaline solution may be any liquid that dissolves the solute, and includes water.
 上記の各条件で噴霧混合した後、室温(例えば25℃)程度にまで混合粉末を冷却する。 After spray mixing under the above conditions, the mixed powder is cooled to about room temperature (for example, 25 ° C.).
 本実施形態のリチウム二次電池用正極活物質の製造方法は、リチウム二次電池用正極活物質の前駆体である複合金属化合物を加熱し、タングステン化合物を溶解させたアルカリ溶液を噴霧混合する。この工程により、アルカリ溶液が複合金属化合物の表面に付着すると同時にアルカリ溶液の溶媒が瞬時に蒸発し、タングステン粒子が凝集することなく、複合金属化合物と混合することができる。このため、タングステン由来の異物発生が抑制された、リチウム二次電池用正極活物質を製造することができる。 In the method for producing a positive electrode active material for a lithium secondary battery according to this embodiment, a composite metal compound that is a precursor of a positive electrode active material for a lithium secondary battery is heated, and an alkali solution in which a tungsten compound is dissolved is spray mixed. By this step, the alkaline solution adheres to the surface of the composite metal compound, and at the same time, the solvent of the alkaline solution evaporates instantly and can be mixed with the composite metal compound without aggregation of tungsten particles. For this reason, the positive electrode active material for lithium secondary batteries in which the generation of foreign substances derived from tungsten is suppressed can be produced.
[リチウム複合金属酸化物を製造する工程]
 上記複合金属化合物とタングステン化合物との混合粉末(以下、「混合粉末」と記載する)を、リチウム塩と混合する。リチウム塩としては、炭酸リチウム、硝酸リチウム、酢酸リチウム、水酸化リチウム、水酸化リチウム水和物、酸化リチウムのうち何れか一つ、又は、二つ以上を混合して使用することができる。
[Process for producing lithium composite metal oxide]
A mixed powder of the composite metal compound and the tungsten compound (hereinafter referred to as “mixed powder”) is mixed with a lithium salt. As the lithium salt, any one of lithium carbonate, lithium nitrate, lithium acetate, lithium hydroxide, lithium hydroxide hydrate, lithium oxide, or a mixture of two or more can be used.
 以上のリチウム塩と混合粉末とは、最終目的物の組成比を勘案して用いられる。前記噴霧混合工程において、アルカリ溶液として水酸化リチウム水溶液を使用する場合、リチウム仕込み量(添加量)は、前記噴霧混合工程において使用した水酸化リチウム中のリチウム量と、リチウム塩との合計量とする。例えば、ニッケルコバルトマンガン複合水酸化物を用いる場合、リチウム塩と当該混合粉末は、LiNiCoMn(式中、x+y+z=1)の組成比に対応する割合で用いられる。
 また、リチウム塩と当該混合粉末は、リチウム化合物中のリチウムと、ニッケルを含む混合粉末中の総ての遷移金属元素(Me)とのモル比(Li/Me)が1を超える比率となるように混合してもよい。
The lithium salt and the mixed powder are used in consideration of the composition ratio of the final target product. In the spray mixing step, when a lithium hydroxide aqueous solution is used as the alkaline solution, the amount of lithium charged (added amount) is the total amount of lithium in the lithium hydroxide used in the spray mixing step and the lithium salt. To do. For example, when nickel-cobalt-manganese composite hydroxide is used, the lithium salt and the mixed powder are used at a ratio corresponding to the composition ratio of LiNi x Co y Mn z O 2 (where x + y + z = 1).
The lithium salt and the mixed powder have a molar ratio (Li / Me) of lithium in the lithium compound to all transition metal elements (Me) in the mixed powder containing nickel exceeding 1. May be mixed.
 リチウム塩と前記混合粉末の混合物を焼成することによって、リチウム-タングステン-ニッケルコバルトマンガン複合酸化物が得られる。なお、焼成には、所望の組成に応じて乾燥空気、酸素雰囲気、不活性雰囲気等が用いられ、必要ならば複数の加熱工程が実施される。 A lithium-tungsten-nickel cobalt manganese composite oxide is obtained by firing a mixture of a lithium salt and the mixed powder. For the firing, dry air, an oxygen atmosphere, an inert atmosphere, or the like is used according to a desired composition, and a plurality of heating steps are performed if necessary.
 上記混合粉末と、水酸化リチウム、炭酸リチウム等のリチウム化合物との焼成温度としては、特に制限はないが、600℃以上1100℃以下であることが好ましく、750℃以上1050℃以下であることがより好ましく、800℃以上1025℃以下がさらに好ましい。焼成温度を600℃以上とすることによって、充電容量を高めることができる。焼成温度を1100℃以下とすることによって、Liの揮発を防止でき、目標とする組成のリチウム-タングステン-ニッケルコバルトマンガン複合酸化物を得ることができる。 Although there is no restriction | limiting in particular as a calcination temperature of the said mixed powder and lithium compounds, such as lithium hydroxide and lithium carbonate, It is preferable that it is 600 degreeC or more and 1100 degrees C or less, and it is 750 degreeC or more and 1050 degrees C or less. More preferably, it is 800 ° C. or higher and 1025 ° C. or lower. By setting the firing temperature to 600 ° C. or higher, the charge capacity can be increased. By setting the firing temperature to 1100 ° C. or lower, Li volatilization can be prevented, and a lithium-tungsten-nickel cobalt manganese composite oxide having a target composition can be obtained.
 焼成時間は、3時間~50時間が好ましい。焼成時間が50時間を超えると、リチウムの揮発によって実質的に電池性能に劣る傾向となる。つまり、焼成時間が50時間以下であると、リチウムが揮発することを防止することができる。焼成時間が3時間より少ないと、結晶の発達が悪く、電池性能が悪くなる傾向となる。つまり、焼成時間が3時間以上であると、結晶の発達が良く、電池性能が良好となる。なお、上記の焼成の前に、仮焼成を行うことも有効である。この様な仮焼成の温度は、300~850℃の範囲で、1~10時間行うことが好ましい。 Calcination time is preferably 3 hours to 50 hours. When the firing time exceeds 50 hours, the battery performance tends to be substantially inferior due to volatilization of lithium. That is, when the firing time is 50 hours or less, lithium can be prevented from volatilizing. If the firing time is less than 3 hours, the crystal growth is poor and the battery performance tends to be poor. That is, when the firing time is 3 hours or more, the crystal development is good and the battery performance is good. In addition, it is also effective to perform temporary baking before the above baking. The temperature for such preliminary firing is preferably in the range of 300 to 850 ° C. for 1 to 10 hours.
 昇温開始から焼成温度に達するまでの時間は、0.5時間以上20時間以下であることが好ましい。昇温開始から焼成温度に達するまでの時間がこの範囲であると、より均一なリチウム-タングステン-ニッケルコバルトマンガン複合酸化物を得ることができる。また、焼成温度に達してから温度保持が終了するまでの時間は、0.5時間以上20時間以下であることが好ましい。焼成温度に達してから温度保持が終了するまでの時間がこの範囲であると、結晶の発達がより良好に進行し、電池性能をより向上させることができる。 The time from the start of temperature rise to the firing temperature is preferably 0.5 hours or more and 20 hours or less. A more uniform lithium-tungsten-nickelcobalt-manganese composite oxide can be obtained when the time from the start of temperature rise to the firing temperature is within this range. Moreover, it is preferable that the time from reaching the firing temperature to the end of the temperature holding is 0.5 hours or more and 20 hours or less. When the time from reaching the firing temperature to the end of the temperature holding is within this range, the development of crystals progresses better, and the battery performance can be further improved.
 焼成によって得たリチウム金属複合酸化物は、粉砕後に適宜分級され、リチウム二次電池に適用可能な正極活物質とされる。 The lithium metal composite oxide obtained by firing is appropriately classified after pulverization, and is used as a positive electrode active material applicable to a lithium secondary battery.
<リチウム二次電池用正極活物質>
 本実施形態において、製造されるリチウム二次電池用正極活物質は下記組成式(I)で表される化合物を含むことが好ましい。
 Li[Lix(Ni(1-y-z-w)CoyMnzMw)1-x]O ・・・(I)
(組成式(I)中、-0.1≦x≦0.2、0<y≦0.5、0<z≦0.8、0≦w≦0.1、y+z+w<1、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の金属を表す。)
<Positive electrode active material for lithium secondary battery>
In this embodiment, it is preferable that the positive electrode active material for lithium secondary batteries to be produced contains a compound represented by the following composition formula (I).
Li [Lix (Ni (1-yzw) CoyMnzMw) 1-x] O 2 (I)
(In the composition formula (I), −0.1 ≦ x ≦ 0.2, 0 <y ≦ 0.5, 0 <z ≦ 0.8, 0 ≦ w ≦ 0.1, y + z + w <1, M is Fe , Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga, and V represent one or more metals selected from the group.
 本実施形態において、製造されるリチウム二次電池用正極活物質が、上記組成式(I)で表されるリチウム複合金属化合物のみからなる場合には、組成式(I)中、Mで表される金属のうち、W(タングステン)を必ず含むものとする。
 本実施形態において、製造されるリチウム二次電池用正極活物質が、上記組成式(I)で表されるリチウム複合金属化合物であって、組成式(I)中、Mで表される金属のうち、W(タングステン)を含まないリチウム複合金属化合物を含む場合には、上記組成式(I)で表されるリチウム複合金属化合物と、タングステン化合物を含むものとする。
In the present embodiment, when the positive electrode active material for a lithium secondary battery produced is composed of only the lithium composite metal compound represented by the composition formula (I), it is represented by M in the composition formula (I). Of these metals, W (tungsten) must be included.
In the present embodiment, the produced positive electrode active material for a lithium secondary battery is a lithium composite metal compound represented by the above composition formula (I), and the metal represented by M in the composition formula (I) Among these, when the lithium composite metal compound not containing W (tungsten) is included, the lithium composite metal compound represented by the composition formula (I) and the tungsten compound are included.
 本実施形態において、リチウム二次電池用正極活物質に含まれるタングステン含有量は、遷移金属の全モル量に対して0.01mol%以上1.0mol%以下であることが好ましく、0.1mol%以上0.9mol%以下であることがより好ましく、0.2mol%以上0.8mol%以下であることが特に好ましい。リチウム二次電池用正極活物質に含まれるタングステン含有量が0.01mol%以上1.0mol%以下であると、電池の抵抗低減が期待される。 In the present embodiment, the tungsten content contained in the positive electrode active material for a lithium secondary battery is preferably 0.01 mol% or more and 1.0 mol% or less with respect to the total molar amount of the transition metal, 0.1 mol% It is more preferably 0.9 mol% or less and particularly preferably 0.2 mol% or more and 0.8 mol% or less. When the tungsten content contained in the positive electrode active material for a lithium secondary battery is 0.01 mol% or more and 1.0 mol% or less, a reduction in battery resistance is expected.
 サイクル特性が高いリチウム二次電池用正極活物質を得る観点から、前記組成式(I)におけるxは0を超えることが好ましく、0.01以上であることがより好ましく、0.02以上であることがさらに好ましい。また、初回クーロン効率がより高いリチウム二次電池用正極活物質を得る観点から、前記組成式(I)におけるxは0.1以下であることが好ましく、0.08以下であることがより好ましく、0.06以下であることがさらに好ましい。
 xの上限値と下限値は任意に組み合わせることができる。例えば、xは0を超えかつ0.1以下であることが好ましく、0.01以上0.08以下であることがより好ましく、0.02以上0.06以下であることがさらに好ましい。
 本明細書において、「サイクル特性が高い」とは、放電容量維持率が高いことを意味する。
From the viewpoint of obtaining a positive electrode active material for a lithium secondary battery having high cycle characteristics, x in the composition formula (I) is preferably more than 0, more preferably 0.01 or more, and 0.02 or more. More preferably. Further, from the viewpoint of obtaining a positive electrode active material for a lithium secondary battery having higher initial Coulomb efficiency, x in the composition formula (I) is preferably 0.1 or less, and more preferably 0.08 or less. More preferably, it is 0.06 or less.
The upper limit value and the lower limit value of x can be arbitrarily combined. For example, x exceeds 0 and is preferably 0.1 or less, more preferably 0.01 or more and 0.08 or less, and further preferably 0.02 or more and 0.06 or less.
In the present specification, “high cycle characteristics” means that the discharge capacity retention ratio is high.
 また、放電容量が高いリチウム二次電池用正極活物質を得る観点から、前記組成式(I)におけるyは0.10以上であることが好ましく、0.20以上であることがより好ましく、0.30以上であることがさらに好ましい。また、熱的安定性が高いリチウム二次電池用正極活物質を得る観点から、前記組成式(I)におけるyは0.49以下であることが好ましく、0.48以下であることがより好ましく、0.47以下であることがさらに好ましい。
 yの上限値と下限値は任意に組み合わせることができる。例えば、yは0.10以上0.49以下であることが好ましく、0.20以上0.48以下であることがより好ましく、0.30以上0.47以下であることがさらに好ましい。
Further, from the viewpoint of obtaining a positive electrode active material for a lithium secondary battery having a high discharge capacity, y in the composition formula (I) is preferably 0.10 or more, more preferably 0.20 or more, and 0 More preferably, it is 30 or more. Further, from the viewpoint of obtaining a positive electrode active material for a lithium secondary battery having high thermal stability, y in the composition formula (I) is preferably 0.49 or less, and more preferably 0.48 or less. More preferably, it is 0.47 or less.
The upper limit value and the lower limit value of y can be arbitrarily combined. For example, y is preferably 0.10 or more and 0.49 or less, more preferably 0.20 or more and 0.48 or less, and further preferably 0.30 or more and 0.47 or less.
 また、高い電流レートにおける放電容量が高いリチウム二次電池用正極活物質を得る観点から、前記組成式(I)におけるzは0.05以上であることが好ましく、0.10以上であることがより好ましく、0.20以上であることがさらに好ましい。また、放電容量が高いリチウム二次電池用正極活物質を得る観点から、前記組成式(I)におけるzは0.35以下であることが好ましく、0.30以下であることがより好ましく、0.25以下であることがさらに好ましい。
  zの上限値と下限値は任意に組み合わせることができる。例えば、zは0.05以上0.35以下であることが好ましく、0.10以上0.30以下であることがより好ましく、0.20以上0.25以下であることがさらに好ましい。
From the viewpoint of obtaining a positive electrode active material for a lithium secondary battery having a high discharge capacity at a high current rate, z in the composition formula (I) is preferably 0.05 or more, and preferably 0.10 or more. More preferably, it is more preferably 0.20 or more. Further, from the viewpoint of obtaining a positive electrode active material for a lithium secondary battery having a high discharge capacity, z in the composition formula (I) is preferably 0.35 or less, more preferably 0.30 or less, and 0 More preferably, it is .25 or less.
The upper limit value and lower limit value of z can be arbitrarily combined. For example, z is preferably 0.05 or more and 0.35 or less, more preferably 0.10 or more and 0.30 or less, and further preferably 0.20 or more and 0.25 or less.
 また、サイクル特性が高いリチウム二次電池用正極活物質を得る観点から、前記組成式(I)におけるwは0.01以上であることが好ましく、0.03以上であることがより好ましく、0.05以上であることがさらに好ましい。また、高温(例えば60℃環境下)での保存特性が高いリチウム二次電池用正極活物質を得る観点から、前記組成式(I)におけるwは0.09以下であることが好ましく、0.08以下であることがより好ましく、0.07以下であることがさらに好ましい。
  wの上限値と下限値は任意に組み合わせることができる。例えば、wは0.01以上0.09以下であることが好ましく、0.03以上0.08以下であることがより好ましく、0.05以上0.07以下であることがさらに好ましい。
Further, from the viewpoint of obtaining a positive electrode active material for a lithium secondary battery having high cycle characteristics, w in the composition formula (I) is preferably 0.01 or more, more preferably 0.03 or more, and 0 More preferably, it is 0.05 or more. Further, from the viewpoint of obtaining a positive electrode active material for a lithium secondary battery having high storage characteristics at a high temperature (for example, in an environment of 60 ° C.), w in the composition formula (I) is preferably 0.09 or less. It is more preferably 08 or less, and further preferably 0.07 or less.
The upper limit value and the lower limit value of w can be arbitrarily combined. For example, w is preferably 0.01 or more and 0.09 or less, more preferably 0.03 or more and 0.08 or less, and further preferably 0.05 or more and 0.07 or less.
 前記組成式(I)におけるMはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の金属を表す。 M in the composition formula (I) represents one or more metals selected from the group consisting of Fe, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga, and V. .
 また、サイクル特性が高いリチウム二次電池用正極活物質を得る観点から、組成式(I)におけるMは、Ti、B、Mg、Al、W、及びZrからなる群より選択される1種以上の金属であることが好ましく、熱的安定性が高いリチウム二次電池用正極活物質を得る観点からは、B、Al、W、及びZrからなる群より選択される1種以上の金属であることが好ましい。 Further, from the viewpoint of obtaining a positive electrode active material for a lithium secondary battery with high cycle characteristics, M in the composition formula (I) is one or more selected from the group consisting of Ti, B, Mg, Al, W, and Zr. From the viewpoint of obtaining a positive electrode active material for a lithium secondary battery having high thermal stability, it is at least one metal selected from the group consisting of B, Al, W, and Zr. It is preferable.
(BET比表面積)
 本実施形態において、高い電流レートでの放電容量が高いリチウム二次電池用正極活物質を得る観点から正極活物質のBET比表面積(m/g)は、0.1m/g以上であることが好ましく、0.5m/g以上であることがより好ましく、1.0m/g以上であることがさらに好ましい。また、正極活物質の吸湿性を低くする観点から、正極活物質のBET比表面積(m/g)は、4.0m/g以下であることが好ましく、3.8m/g以下であることがより好ましく、2.6m/g以下であることがさらに好ましい。
 正極活物質のBET比表面積(m/g)の上限値と下限値は任意に組み合わせることができる。例えば、BET比表面積(m/g)は、0.1m/g以上4.0m/g以下であることが好ましく、0.5m/g以上3.8m/g以下であることがより好ましく、1.05m/g以上2.6m/g以下であることがさらに好ましい。
(BET specific surface area)
In the present embodiment, from the viewpoint of obtaining a positive electrode active material for a lithium secondary battery having a high discharge capacity at a high current rate, the BET specific surface area (m 2 / g) of the positive electrode active material is 0.1 m 2 / g or more. Is preferably 0.5 m 2 / g or more, and more preferably 1.0 m 2 / g or more. Further, from the viewpoint of reducing the hygroscopicity of the positive electrode active material, the BET specific surface area (m 2 / g) of the positive electrode active material is preferably 4.0 m 2 / g or less, preferably 3.8 m 2 / g or less. More preferably, it is 2.6 m 2 / g or less.
The upper limit value and the lower limit value of the BET specific surface area (m 2 / g) of the positive electrode active material can be arbitrarily combined. For example, the BET specific surface area (m 2 / g) is preferably 0.1 m 2 / g or more and 4.0 m 2 / g or less, and is 0.5 m 2 / g or more and 3.8 m 2 / g or less. Is more preferably 1.05 m 2 / g or more and 2.6 m 2 / g or less.
 本実施形態におけるBET比表面積は、正極活物質の粉末1gを窒素雰囲気中、105℃で30分間乾燥させた後、マウンテック社製Macsorb(登録商標)を用いて測定される。 The BET specific surface area in the present embodiment is measured using a Macsorb (registered trademark) manufactured by Mountec Co., Ltd. after drying 1 g of the positive electrode active material powder in a nitrogen atmosphere at 105 ° C. for 30 minutes.
(層状構造)
 正極活物質の結晶構造は、層状構造であり、六方晶型の結晶構造又は単斜晶型の結晶構造であることがより好ましい。
(Layered structure)
The crystal structure of the positive electrode active material is a layered structure, and more preferably a hexagonal crystal structure or a monoclinic crystal structure.
 六方晶型の結晶構造は、P3、P3、P3、R3、P-3、R-3、P312、P321、P312、P321、P312、P321、R32、P3m1、P31m、P3c1、P31c、R3m、R3c、P-31m、P-31c、P-3m1、P-3c1、R-3m、R-3c、P6、P6、P6、P6、P6、P6、P-6、P6/m、P6/m、P622、P622、P622、P622、P622、P622、P6mm、P6cc、P6cm、P6mc、P-6m2、P-6c2、P-62m、P-62c、P6/mmm、P6/mcc、P6/mcm、及びP6/mmcからなる群から選ばれるいずれか一つの空間群に帰属される。 The hexagonal crystal structures are P3, P3 1 , P3 2 , R3, P-3, R-3, P312, P321, P3 1 12, P3 1 21, P3 2 12, P3 2 21, R32, P3m1, P31m, P3c1, P31c, R3m, R3c, P-31m, P-31c, P-3m1, P-3c1, R-3m, R-3c, P6, P6 1 , P6 5 , P6 2 , P6 4 , P6 3 , P-6, P6 / m, P6 3 / m, P622, P6 1 22, P6 5 22, P6 2 22, P6 4 22, P6 3 22, P6 mm, P6 cc, P6 3 cm, P6 3 mc, P- It belongs to any one space group selected from the group consisting of 6m2, P-6c2, P-62m, P-62c, P6 / mmm, P6 / mcc, P6 3 / mcm, and P6 3 / mmc.
 また、単斜晶型の結晶構造は、P2、P2、C2、Pm、Pc、Cm、Cc、P2/m、P2/m、C2/m、P2/c、P2/c、及びC2/cからなる群から選ばれるいずれか一つの空間群に帰属される。 Monoclinic crystal structures are P2, P2 1 , C2, Pm, Pc, Cm, Cc, P2 / m, P2 1 / m, C2 / m, P2 / c, P2 1 / c, and C2. It belongs to any one space group selected from the group consisting of / c.
 これらのうち、放電容量が高いリチウム二次電池用正極活物質を得る観点から、結晶構造は、空間群R-3mに帰属される六方晶型の結晶構造、又はC2/mに帰属される単斜晶型の結晶構造であることが特に好ましい。 Among these, from the viewpoint of obtaining a positive electrode active material for a lithium secondary battery having a high discharge capacity, the crystal structure is a hexagonal crystal structure belonging to the space group R-3m or a single crystal belonging to C2 / m. Particularly preferred is an oblique crystal structure.
<リチウム二次電池>
 次いで、リチウム二次電池の構成を説明しながら、本実施形態のリチウム二次電池用正極活物質を、リチウム二次電池の正極活物質として用いた正極、及びこの正極を有するリチウム二次電池について説明する。
<Lithium secondary battery>
Next, while explaining the configuration of the lithium secondary battery, a positive electrode using the positive electrode active material for a lithium secondary battery of the present embodiment as a positive electrode active material of the lithium secondary battery, and a lithium secondary battery having the positive electrode explain.
 本実施形態のリチウム二次電池の一例は、正極及び負極、正極と負極との間に挟持されるセパレータ、正極と負極との間に配置される電解液を有する。 An example of the lithium secondary battery of the present embodiment includes a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and an electrolytic solution disposed between the positive electrode and the negative electrode.
 図1A及び1Bは、本実施形態のリチウム二次電池の一例を示す模式図である。本実施形態の円筒型のリチウム二次電池10は、次のようにして製造する。 1A and 1B are schematic views showing an example of a lithium secondary battery of the present embodiment. The cylindrical lithium secondary battery 10 of this embodiment is manufactured as follows.
 まず、図1Aに示すように、帯状を呈する一対のセパレータ1、一端に正極リード21を有する帯状の正極2、及び一端に負極リード31を有する帯状の負極3を、セパレータ1、正極2、セパレータ1、負極3の順に積層し、巻回することにより電極群4とする。 First, as shown in FIG. 1A, a pair of separators 1 having a strip shape, a strip-like positive electrode 2 having a positive electrode lead 21 at one end, and a strip-like negative electrode 3 having a negative electrode lead 31 at one end, a separator 1, a positive electrode 2, and a separator 1 and negative electrode 3 are laminated in this order and wound to form electrode group 4.
 次いで、図1Bに示すように、電池缶5に電極群4及び不図示のインシュレーターを収容した後、缶底を封止し、電極群4に電解液6を含浸させ、正極2と負極3との間に電解質を配置する。さらに、電池缶5の上部をトップインシュレーター7及び封口体8で封止することで、リチウム二次電池10を製造することができる。 Next, as shown in FIG. 1B, after the electrode group 4 and an insulator (not shown) are accommodated in the battery can 5, the bottom of the can is sealed, the electrode group 4 is impregnated with the electrolytic solution 6, the positive electrode 2, the negative electrode 3, An electrolyte is placed between the two. Furthermore, the lithium secondary battery 10 can be manufactured by sealing the upper part of the battery can 5 with the top insulator 7 and the sealing body 8.
 電極群4の形状としては、例えば、電極群4を巻回の軸に対して垂直方向に切断したときの断面形状が、円、楕円、長方形、角を丸めた長方形となるような柱状の形状を挙げることができる。 As the shape of the electrode group 4, for example, a columnar shape in which the cross-sectional shape when the electrode group 4 is cut in a direction perpendicular to the winding axis is a circle, an ellipse, a rectangle, or a rectangle with rounded corners. Can be mentioned.
 また、このような電極群4を有するリチウム二次電池の形状としては、国際電気標準会議(IEC)が定めた電池に対する規格であるIEC60086、又はJIS C 8500で定められる形状を採用することができる。例えば、円筒型、角型などの形状を挙げることができる。 Moreover, as a shape of the lithium secondary battery having such an electrode group 4, a shape defined by IEC 60086 or JIS C 8500 which is a standard for a battery defined by the International Electrotechnical Commission (IEC) can be adopted. . For example, cylindrical shape, square shape, etc. can be mentioned.
 さらに、リチウム二次電池は、上記巻回型の構成に限らず、正極、セパレータ、負極、セパレータの積層構造を繰り返し重ねた積層型の構成であってもよい。積層型のリチウム二次電池としては、いわゆるコイン型電池、ボタン型電池、ペーパー型(又はシート型)電池を例示することができる。 Further, the lithium secondary battery is not limited to the above-described wound type configuration, and may have a stacked type configuration in which a stacked structure of a positive electrode, a separator, a negative electrode, and a separator is repeatedly stacked. Examples of the stacked lithium secondary battery include so-called coin-type batteries, button-type batteries, and paper-type (or sheet-type) batteries.
 以下、各構成について順に説明する。
(正極)
 本実施形態の正極は、まず正極活物質、導電材及びバインダーを含む正極合剤を調整し、正極合剤を正極集電体に担持させることで製造することができる。
Hereafter, each structure is demonstrated in order.
(Positive electrode)
The positive electrode of this embodiment can be manufactured by first adjusting a positive electrode mixture containing a positive electrode active material, a conductive material and a binder, and supporting the positive electrode mixture on a positive electrode current collector.
(導電材)
 本実施形態の正極が有する導電材としては、炭素材料を用いることができる。炭素材料として黒鉛粉末、カーボンブラック(例えばアセチレンブラック)、繊維状炭素材料などを挙げることができる。カーボンブラックは、微粒で表面積が大きいため、少量を正極合剤中に添加することにより正極内部の導電性を高め、充放電効率及び出力特性を向上させることができるが、多く入れすぎるとバインダーによる正極合剤と正極集電体との結着力、及び正極合剤内部の結着力がいずれも低下し、かえって内部抵抗を増加させる原因となる。
(Conductive material)
As the conductive material included in the positive electrode of the present embodiment, a carbon material can be used. Examples of the carbon material include graphite powder, carbon black (for example, acetylene black), and a fibrous carbon material. Since carbon black is fine and has a large surface area, by adding a small amount to the positive electrode mixture, the conductivity inside the positive electrode can be improved and the charge / discharge efficiency and output characteristics can be improved. Both the binding force between the positive electrode mixture and the positive electrode current collector and the binding force inside the positive electrode mixture are reduced, which causes an increase in internal resistance.
 正極合剤中の導電材の割合は、正極活物質100質量部に対して5質量部以上20質量部以下であると好ましい。導電材として黒鉛化炭素繊維、カーボンナノチューブなどの繊維状炭素材料を用いる場合には、この割合を下げることも可能である。 The proportion of the conductive material in the positive electrode mixture is preferably 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the positive electrode active material. When a fibrous carbon material such as graphitized carbon fiber or carbon nanotube is used as the conductive material, this ratio can be lowered.
(バインダー)
 本実施形態の正極が有するバインダーとしては、熱可塑性樹脂を用いることができる。
この熱可塑性樹脂としては、ポリフッ化ビニリデン(以下、PVdFということがある。
)、ポリテトラフルオロエチレン(以下、PTFEということがある。)、四フッ化エチレン・六フッ化プロピレン・フッ化ビニリデン系共重合体、六フッ化プロピレン・フッ化ビニリデン系共重合体、四フッ化エチレン・パーフルオロビニルエーテル系共重合体などのフッ素樹脂;ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂;を挙げることができる。
(binder)
As the binder included in the positive electrode of the present embodiment, a thermoplastic resin can be used.
This thermoplastic resin is sometimes referred to as polyvinylidene fluoride (hereinafter referred to as PVdF).
), Polytetrafluoroethylene (hereinafter sometimes referred to as PTFE), tetrafluoroethylene / hexafluoropropylene / vinylidene fluoride copolymer, propylene hexafluoride / vinylidene fluoride copolymer, tetrafluoroethylene Fluorine resins such as fluorinated ethylene / perfluorovinyl ether copolymers; Polyolefin resins such as polyethylene and polypropylene.
 これらの熱可塑性樹脂は、2種以上を混合して用いてもよい。バインダーとしてフッ素樹脂及びポリオレフィン樹脂を用い、正極合剤全体の質量に対するフッ素樹脂の割合を1質量%以上10質量%以下、ポリオレフィン樹脂の割合を0.1質量%以上2質量%以下とすることによって、正極集電体との密着力及び正極合剤内部の結合力がいずれも高い正極合剤を得ることができる。 These thermoplastic resins may be used as a mixture of two or more. By using a fluororesin and a polyolefin resin as a binder, the ratio of the fluororesin to the total mass of the positive electrode mixture is 1% by mass to 10% by mass, and the ratio of the polyolefin resin is 0.1% by mass to 2% by mass In addition, a positive electrode mixture having both high adhesion to the positive electrode current collector and high bonding strength inside the positive electrode mixture can be obtained.
(正極集電体)
 本実施形態の正極が有する正極集電体としては、Al、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を用いることができる。なかでも、加工しやすく、安価であるという点でAlを形成材料とし、薄膜状に加工したものが好ましい。
(Positive electrode current collector)
As the positive electrode current collector included in the positive electrode of the present embodiment, a band-shaped member made of a metal material such as Al, Ni, and stainless steel can be used. Among these, a material that is made of Al and formed into a thin film is preferable because it is easy to process and inexpensive.
 正極集電体に正極合剤を担持させる方法としては、正極合剤を正極集電体上で加圧成型する方法が挙げられる。また、有機溶媒を用いて正極合剤をペースト化し、得られる正極合剤のペーストを正極集電体の少なくとも一面側に塗布して乾燥させ、プレスし固着することで、正極集電体に正極合剤を担持させてもよい。 Examples of the method of supporting the positive electrode mixture on the positive electrode current collector include a method of pressure-molding the positive electrode mixture on the positive electrode current collector. Also, the positive electrode mixture is made into a paste using an organic solvent, and the resulting positive electrode mixture paste is applied to at least one surface side of the positive electrode current collector, dried, pressed and fixed, whereby the positive electrode current collector is bonded to the positive electrode current collector. A mixture may be supported.
 正極合剤をペースト化する場合、用いることができる有機溶媒としては、N,N―ジメチルアミノプロピルアミン、ジエチレントリアミンなどのアミン系溶媒;テトラヒドロフランなどのエーテル系溶媒;メチルエチルケトンなどのケトン系溶媒;酢酸メチルなどのエステル系溶媒;ジメチルアセトアミド、N-メチル-2-ピロリドン(以下、NMPということがある。)などのアミド系溶媒;が挙げられる。 When the positive electrode mixture is made into a paste, usable organic solvents include amine solvents such as N, N-dimethylaminopropylamine and diethylenetriamine; ether solvents such as tetrahydrofuran; ketone solvents such as methyl ethyl ketone; methyl acetate And amide solvents such as dimethylacetamide and N-methyl-2-pyrrolidone (hereinafter sometimes referred to as NMP).
 正極合剤のペーストを正極集電体へ塗布する方法としては、例えば、スリットダイ塗工法、スクリーン塗工法、カーテン塗工法、ナイフ塗工法、グラビア塗工法及び静電スプレー法が挙げられる。 Examples of the method of applying the positive electrode mixture paste to the positive electrode current collector include a slit die coating method, a screen coating method, a curtain coating method, a knife coating method, a gravure coating method, and an electrostatic spray method.
 以上に挙げられた方法により、正極を製造することができる。
(負極)
 本実施形態のリチウム二次電池が有する負極は、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能であればよく、負極活物質を含む負極合剤が負極集電体に担持されてなる電極、及び負極活物質単独からなる電極を挙げることができる。
A positive electrode can be manufactured by the method mentioned above.
(Negative electrode)
The negative electrode included in the lithium secondary battery of this embodiment is only required to be able to dope and dedope lithium ions at a lower potential than the positive electrode, and the negative electrode mixture containing the negative electrode active material is supported on the negative electrode current collector. And an electrode composed of the negative electrode active material alone.
(負極活物質)
 負極が有する負極活物質としては、炭素材料、カルコゲン化合物(酸化物、硫化物など)、窒化物、金属又は合金で、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能な材料が挙げられる。
(Negative electrode active material)
Examples of the negative electrode active material possessed by the negative electrode include carbon materials, chalcogen compounds (oxides, sulfides, etc.), nitrides, metals, and alloys that can be doped and dedoped with lithium ions at a lower potential than the positive electrode. It is done.
 負極活物質として使用可能な炭素材料としては、天然黒鉛、人造黒鉛などの黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維及び有機高分子化合物焼成体を挙げることができる。 Examples of carbon materials that can be used as the negative electrode active material include graphite such as natural graphite and artificial graphite, cokes, carbon black, pyrolytic carbons, carbon fibers, and organic polymer compound fired bodies.
 負極活物質として使用可能な酸化物としては、SiO、SiOなど式SiO(ここで、xは正の実数)で表されるケイ素の酸化物;TiO、TiOなど式TiO(ここで、xは正の実数)で表されるチタンの酸化物;V、VOなど式VO(ここで、xは正の実数)で表されるバナジウムの酸化物;Fe、Fe、FeOなど式FeO(ここで、xは正の実数)で表される鉄の酸化物;SnO、SnOなど式SnO(ここで、xは正の実数)で表されるスズの酸化物;WO、WOなど一般式WO(ここで、xは正の実数)で表されるタングステンの酸化物;LiTi12、LiVOなどのリチウムとチタン又はバナジウムとを含有する複合金属酸化物;を挙げることができる。 The oxide can be used as an anode active material, (wherein, x represents a positive real number) SiO 2, SiO, etc. formula SiO x oxides of silicon represented by; TiO 2, TiO, etc. formula TiO x (wherein , X is a positive real number); oxide of titanium represented by formula VO x (where x is a positive real number) such as V 2 O 5 and VO 2 ; Fe 3 O 4 , Fe 2 O 3 , FeO, etc. Iron oxide represented by the formula FeO x (where x is a positive real number); SnO 2 , SnO, etc. represented by the formula SnO x (where x is a positive real number) Oxide of tin; tungsten oxide represented by general formula WO x (where x is a positive real number) such as WO 3 and WO 2 ; lithium and titanium such as Li 4 Ti 5 O 12 and LiVO 2 Or a composite metal oxide containing vanadium; It is possible.
 負極活物質として使用可能な硫化物としては、Ti、TiS、TiSなど式TiS(ここで、xは正の実数)で表されるチタンの硫化物;V、VS2、VSなど式VS(ここで、xは正の実数)で表されるバナジウムの硫化物;Fe、FeS、FeSなど式FeS(ここで、xは正の実数)で表される鉄の硫化物;Mo、MoSなど式MoS(ここで、xは正の実数)で表されるモリブデンの硫化物;SnS2、SnSなど式SnS(ここで、xは正の実数)で表されるスズの硫化物;WSなど式WS(ここで、xは正の実数)で表されるタングステンの硫化物;Sbなど式SbS(ここで、xは正の実数)で表されるアンチモンの硫化物;Se、SeS、SeSなど式SeS(ここで、xは正の実数)で表されるセレンの硫化物;を挙げることができる。 Examples of sulfides that can be used as the negative electrode active material include titanium sulfides represented by the formula TiS x (where x is a positive real number) such as Ti 2 S 3 , TiS 2 , and TiS; V 3 S 4 , VS 2, VS and other vanadium sulfides represented by the formula VS x (where x is a positive real number); Fe 3 S 4 , FeS 2 , FeS and other formulas FeS x (where x is a positive real number) Iron sulfide represented; Mo 2 S 3 , MoS 2 and the like MoS x (where x is a positive real number) Molybdenum sulfide; SnS 2, SnS and other formula SnS x (where, a sulfide of tin represented by x is a positive real number; a sulfide of tungsten represented by a formula WS x (where x is a positive real number) such as WS 2 ; a formula SbS x such as Sb 2 S 3 (here And x is a positive real number) antimony sulfide; Se 5 S 3 , selenium sulfide represented by the formula SeS x (where x is a positive real number) such as SeS 2 and SeS.
 負極活物質として使用可能な窒化物としては、LiN、Li3-xN(ここで、AはNi及びCoのいずれか一方又は両方であり、0<x<3である。)などのリチウム含有窒化物を挙げることができる。 Examples of the nitride that can be used as the negative electrode active material include Li 3 N and Li 3-x A x N (where A is one or both of Ni and Co, and 0 <x <3). And lithium-containing nitrides.
 これらの炭素材料、酸化物、硫化物、窒化物は、1種のみ用いてもよく2種以上を併用して用いてもよい。また、これらの炭素材料、酸化物、硫化物、窒化物は、結晶質又は非晶質のいずれでもよい。 These carbon materials, oxides, sulfides and nitrides may be used alone or in combination of two or more. These carbon materials, oxides, sulfides and nitrides may be crystalline or amorphous.
 また、負極活物質として使用可能な金属としては、リチウム金属、シリコン金属及びスズ金属などを挙げることができる。 Further, examples of the metal that can be used as the negative electrode active material include lithium metal, silicon metal, and tin metal.
 負極活物質として使用可能な合金としては、Li-Al、Li-Ni、Li-Si、Li-Sn、Li-Sn-Niなどのリチウム合金;Si-Znなどのシリコン合金;Sn-Mn、Sn-Co、Sn-Ni、Sn-Cu、Sn-Laなどのスズ合金;CuSb、LaNiSnなどの合金;を挙げることもできる。 Alloys that can be used as the negative electrode active material include lithium alloys such as Li—Al, Li—Ni, Li—Si, Li—Sn, and Li—Sn—Ni; silicon alloys such as Si—Zn; Sn—Mn, Sn -Tin alloys such as Co, Sn-Ni, Sn-Cu, Sn-La; alloys such as Cu 2 Sb, La 3 Ni 2 Sn 7 ;
 これらの金属や合金は、例えば箔状に加工された後、主に単独で電極として用いられる。 These metals and alloys are mainly used alone as electrodes after being processed into a foil shape, for example.
 上記負極活物質の中では、充電時に未充電状態から満充電状態にかけて負極の電位がほとんど変化しない(電位平坦性がよい)、平均放電電位が低い、繰り返し充放電させたときの容量維持率が高い(サイクル特性がよい)などの理由から、天然黒鉛、人造黒鉛などの黒鉛を主成分とする炭素材料が好ましく用いられる。炭素材料の形状としては、例えば天然黒鉛のような薄片状、メソカーボンマイクロビーズのような球状、黒鉛化炭素繊維のような繊維状、又は微粉末の凝集体などのいずれでもよい。 Among the negative electrode active materials, the potential of the negative electrode hardly changes from the uncharged state to the fully charged state at the time of charging (potential flatness is good), the average discharge potential is low, and the capacity retention rate when repeatedly charged and discharged is For reasons such as high (good cycle characteristics), carbon materials containing graphite as a main component, such as natural graphite and artificial graphite, are preferably used. The shape of the carbon material may be any of a flake shape such as natural graphite, a spherical shape such as mesocarbon microbeads, a fibrous shape such as graphitized carbon fiber, or an aggregate of fine powder.
 前記の負極合剤は、必要に応じて、バインダーを含有してもよい。バインダーとしては、熱可塑性樹脂を挙げることができ、具体的には、PVdF、熱可塑性ポリイミド、カルボキシメチルセルロース、ポリエチレン及びポリプロピレンを挙げることができる。 The negative electrode mixture may contain a binder as necessary. Examples of the binder include thermoplastic resins, and specific examples include PVdF, thermoplastic polyimide, carboxymethyl cellulose, polyethylene, and polypropylene.
(負極集電体)
 負極が有する負極集電体としては、Cu、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を挙げることができる。なかでも、リチウムと合金を作り難く、加工しやすいという点で、Cuを形成材料とし、薄膜状に加工したものが好ましい。
(Negative electrode current collector)
Examples of the negative electrode current collector of the negative electrode include a band-shaped member made of a metal material such as Cu, Ni, and stainless steel. In particular, it is preferable to use Cu as a forming material and process it into a thin film from the viewpoint that it is difficult to make an alloy with lithium and it is easy to process.
 このような負極集電体に負極合剤を担持させる方法としては、正極の場合と同様に、加圧成型による方法、溶媒などを用いてペースト化し負極集電体上に塗布、乾燥後プレスし圧着する方法が挙げられる。 As a method of supporting the negative electrode mixture on such a negative electrode current collector, as in the case of the positive electrode, a method using pressure molding, pasting with a solvent, etc., applying to the negative electrode current collector, drying and pressing. The method of crimping is mentioned.
(セパレータ)
 本実施形態のリチウム二次電池が有するセパレータとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、フッ素樹脂、含窒素芳香族重合体などの材質からなる、多孔質膜、不織布、織布などの形態を有する材料を用いることができる。また、これらの材質を2種以上用いてセパレータを形成してもよいし、これらの材料を積層してセパレータを形成してもよい。
(Separator)
Examples of the separator included in the lithium secondary battery of the present embodiment include a porous film, a nonwoven fabric, a woven fabric, and the like made of a material such as a polyolefin resin such as polyethylene and polypropylene, a fluororesin, and a nitrogen-containing aromatic polymer. A material having the following can be used. Moreover, a separator may be formed by using two or more of these materials, or a separator may be formed by laminating these materials.
 本実施形態において、セパレータは、電池使用時(充放電時)に電解質を良好に透過させるため、JIS P 8117で定められるガーレー法による透気抵抗度が、50秒/100cc以上、300秒/100cc以下であることが好ましく、50秒/100cc以上、200秒/100cc以下であることがより好ましい。 In the present embodiment, the separator allows the electrolyte to permeate well when the battery is used (during charging / discharging). Therefore, the air resistance according to the Gurley method defined in JIS P 8117 is 50 seconds / 100 cc or more, 300 seconds / 100 cc. Or less, more preferably 50 seconds / 100 cc or more and 200 seconds / 100 cc or less.
 また、セパレータの空孔率は、セパレータの体積に対して好ましくは30体積%以上80体積%以下、より好ましくは40体積%以上70体積%以下である。セパレータは空孔率の異なるセパレータを積層したものであってもよい。 Further, the porosity of the separator is preferably 30% by volume or more and 80% by volume or less, more preferably 40% by volume or more and 70% by volume or less with respect to the volume of the separator. The separator may be a laminate of separators having different porosity.
(電解液)
 本実施形態のリチウム二次電池が有する電解液は、電解質及び有機溶媒を含有する。
(Electrolyte)
The electrolyte solution included in the lithium secondary battery of this embodiment contains an electrolyte and an organic solvent.
 電解液に含まれる電解質としては、LiClO、LiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCF、LiN(SO、LiN(SOCF)(COCF)、Li(CSO)、LiC(SOCF、Li10Cl10、LiBOB(ここで、BOBは、bis(oxalato)borateのことである。)、LiFSI(ここで、FSIはbis(fluorosulfonyl)imideのことである)、低級脂肪族カルボン酸リチウム塩、LiAlClなどのリチウム塩が挙げられ、これらの2種以上の混合物を使用してもよい。なかでも電解質としては、フッ素を含むLiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(SOCF及びLiC(SOCFからなる群より選ばれる少なくとも1種を含むものを用いることが好ましい。 The electrolyte contained in the electrolyte includes LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (COCF 3 ), Li (C 4 F 9 SO 3 ), LiC (SO 2 CF 3 ) 3 , Li 2 B 10 Cl 10 , LiBOB (where BOB is bis (oxalato) borate LiFSI (here, FSI is bis (fluorosulfonyl) imide), lithium salt such as lower aliphatic carboxylic acid lithium salt, LiAlCl 4, and a mixture of two or more of these May be used. Among them, as the electrolyte, at least selected from the group consisting of LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 and LiC (SO 2 CF 3 ) 3 containing fluorine. It is preferable to use one containing one kind.
 また前記電解液に含まれる有機溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、4-トリフルオロメチル-1,3-ジオキソラン-2-オン、1,2-ジ(メトキシカルボニルオキシ)エタンなどのカーボネート類;1,2-ジメトキシエタン、1,3-ジメトキシプロパン、ペンタフルオロプロピルメチルエーテル、2,2,3,3-テトラフルオロプロピルジフルオロメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフランなどのエーテル類;ギ酸メチル、酢酸メチル、γ-ブチロラクトンなどのエステル類;アセトニトリル、ブチロニトリルなどのニトリル類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのアミド類;3-メチル-2-オキサゾリドンなどのカーバメート類;スルホラン、ジメチルスルホキシド、1,3-プロパンサルトンなどの含硫黄化合物、又はこれらの有機溶媒にさらにフルオロ基を導入したもの(有機溶媒が有する水素原子のうち1以上をフッ素原子で置換したもの)を用いることができる。 Examples of the organic solvent contained in the electrolyte include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 4-trifluoromethyl-1,3-dioxolan-2-one, and 1,2-di- Carbonates such as (methoxycarbonyloxy) ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropyl methyl ether, 2,2,3,3-tetrafluoropropyl difluoromethyl ether, tetrahydrofuran, 2- Ethers such as methyltetrahydrofuran; Esters such as methyl formate, methyl acetate and γ-butyrolactone; Nitriles such as acetonitrile and butyronitrile; N, N-dimethylformamide, N, N-dimethyla Amides such as toamide; carbamates such as 3-methyl-2-oxazolidone; sulfur-containing compounds such as sulfolane, dimethyl sulfoxide and 1,3-propane sultone, or those obtained by further introducing a fluoro group into these organic solvents ( One obtained by substituting one or more hydrogen atoms in the organic solvent with fluorine atoms can be used.
 有機溶媒としては、これらのうちの2種以上を混合して用いることが好ましい。中でもカーボネート類を含む混合溶媒が好ましく、環状カーボネートと非環状カーボネートとの混合溶媒及び環状カーボネートとエーテル類との混合溶媒がさらに好ましい。環状カーボネートと非環状カーボネートとの混合溶媒としては、エチレンカーボネート、ジメチルカーボネート及びエチルメチルカーボネートを含む混合溶媒が好ましい。このような混合溶媒を用いた電解液は、動作温度範囲が広く、高い電流レートにおける充放電を行っても劣化し難く、長時間使用しても劣化し難く、かつ負極の活物質として天然黒鉛、人造黒鉛などの黒鉛材料を用いた場合でも難分解性であるという多くの特長を有する。 It is preferable to use a mixture of two or more of these as the organic solvent. Of these, a mixed solvent containing carbonates is preferable, and a mixed solvent of cyclic carbonate and acyclic carbonate and a mixed solvent of cyclic carbonate and ethers are more preferable. As a mixed solvent of a cyclic carbonate and an acyclic carbonate, a mixed solvent containing ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate is preferable. The electrolyte using such a mixed solvent has a wide operating temperature range, hardly deteriorates even when charged and discharged at a high current rate, hardly deteriorates even when used for a long time, and natural graphite as an active material of the negative electrode. Even when a graphite material such as artificial graphite is used, it has many features that it is hardly decomposable.
 また、電解液としては、得られるリチウム二次電池の安全性が高まるため、LiPFなどのフッ素を含むリチウム塩及びフッ素置換基を有する有機溶媒を含む電解液を用いることが好ましい。ペンタフルオロプロピルメチルエーテル、2,2,3,3-テトラフルオロプロピルジフルオロメチルエーテルなどのフッ素置換基を有するエーテル類とジメチルカーボネートとを含む混合溶媒は、高い電流レートにおける充放電を行っても容量維持率が高いため、さらに好ましい。 Further, as the electrolytic solution, it is preferable to use an electrolytic solution containing a lithium salt containing fluorine such as LiPF 6 and an organic solvent having a fluorine substituent because the safety of the obtained lithium secondary battery is increased. A mixed solvent containing ethers having fluorine substituents such as pentafluoropropyl methyl ether and 2,2,3,3-tetrafluoropropyl difluoromethyl ether and dimethyl carbonate is capable of capacity even when charging / discharging at a high current rate. Since the maintenance rate is high, it is more preferable.
 上記の電解液の代わりに固体電解質を用いてもよい。固体電解質としては、例えばポリエチレンオキサイド系の高分子化合物、ポリオルガノシロキサン鎖又はポリオキシアルキレン鎖の少なくとも一種以上を含む高分子化合物などの有機系高分子電解質を用いることができる。また、高分子化合物に非水電解液を保持させた、いわゆるゲルタイプのものを用いることもできる。またLiS-SiS、LiS-GeS、LiS-P、LiS-B、LiS-SiS-LiPO、LiS-SiS-LiSO、LiS-GeS-Pなどの硫化物を含む無機系固体電解質が挙げられ、これらの2種以上の混合物を用いてもよい。これら固体電解質を用いることで、リチウム二次電池の安全性をより高めることができることがある。 A solid electrolyte may be used instead of the above electrolytic solution. As the solid electrolyte, for example, an organic polymer electrolyte such as a polyethylene oxide polymer compound, a polymer compound containing at least one of a polyorganosiloxane chain or a polyoxyalkylene chain can be used. Moreover, what is called a gel type which hold | maintained the non-aqueous electrolyte in the high molecular compound can also be used. Also Li 2 S—SiS 2 , Li 2 S—GeS 2 , Li 2 S—P 2 S 5 , Li 2 S—B 2 S 3 , Li 2 S—SiS 2 —Li 3 PO 4 , Li 2 S—SiS 2 -Li 2 SO 4, Li 2 S-GeS 2 -P 2 S 5 inorganic solid electrolytes containing a sulfide, and the like, may be used a mixture of two or more thereof. By using these solid electrolytes, the safety of the lithium secondary battery may be further improved.
 また、本実施形態のリチウム二次電池において、固体電解質を用いる場合には、固体電解質がセパレータの役割を果たす場合もあり、その場合には、セパレータを必要としないこともある。 In the lithium secondary battery of this embodiment, when a solid electrolyte is used, the solid electrolyte may serve as a separator, and in that case, the separator may not be required.
 以上のような構成の正極活物質は、上述した本実施形態のリチウム含有複合金属酸化物を用いているため、正極活物質を用いたリチウム二次電池の寿命を延ばすことができる。 Since the positive electrode active material having the above-described configuration uses the above-described lithium-containing composite metal oxide of the present embodiment, the life of the lithium secondary battery using the positive electrode active material can be extended.
 また、以上のような構成の正極は、上述した本実施形態のリチウム二次電池用正極活物質を有するため、リチウム二次電池の寿命を延ばすことができる。 Moreover, since the positive electrode having the above-described configuration has the above-described positive electrode active material for a lithium secondary battery according to this embodiment, the life of the lithium secondary battery can be extended.
 さらに、以上のような構成のリチウム二次電池は、上述した正極を有するため、従来よりも寿命の長いリチウム二次電池となる。 Furthermore, since the lithium secondary battery having the above-described configuration has the above-described positive electrode, it becomes a lithium secondary battery having a longer life than before.
  次に、本発明の態様を実施例によりさらに詳細に説明する。 Next, the embodiment of the present invention will be described in more detail with reference to examples.
 本実施例においては、リチウム二次電池用正極活物質の評価を、次のようにして行った。 In this example, evaluation of the positive electrode active material for a lithium secondary battery was performed as follows.
[タングステンの偏析の評価]
 リチウム二次電池用正極活物質粉末を3g採取し、電界放出形走査電子顕微鏡(ZEISS社製ULTRA PLUS)を用いてリチウムイオン二次電池用正極活物質の反射電子像の測定を行った。加速電圧15kV、倍率500で異なる10個の視野の画像を取得し、得られた画像にて活物質とはコントラストの異なる粒子をタングステンの偏析と見なし、タングステンの偏析の有無を評価した。
[Evaluation of segregation of tungsten]
3 g of a positive electrode active material powder for a lithium secondary battery was sampled, and a reflection electron image of the positive electrode active material for a lithium ion secondary battery was measured using a field emission scanning electron microscope (ULTRA PLUS manufactured by ZEISS). Images of 10 different fields of view were obtained at an acceleration voltage of 15 kV and a magnification of 500. In the obtained image, particles having a contrast different from that of the active material were regarded as segregation of tungsten, and the presence or absence of segregation of tungsten was evaluated.
 [BET比表面積測定]
 リチウム二次電池用正極活物質粉末又はニッケルコバルトマンガン複合金属水酸化物粉末1gを窒素雰囲気中、105℃で30分間乾燥させた後、BET比表面積計(マウンテック社製Macsorb(登録商標))を用いて測定した。
[BET specific surface area measurement]
After 1 g of the positive electrode active material powder for lithium secondary battery or nickel cobalt manganese composite metal hydroxide powder was dried at 105 ° C. for 30 minutes in a nitrogen atmosphere, a BET specific surface area meter (Macsorb (registered trademark) manufactured by Mountec Co., Ltd.) was used. And measured.
 [平均粒子径の測定]
 平均粒子径の測定は、レーザー回折粒度分布計(株式会社堀場製作所製、LA-950)を用い、リチウム二次電池用正極活物質粉末又は複合金属化合物粉末0.1gを、0.2質量%ヘキサメタリン酸ナトリウム水溶液50mlに投入し、該粉末を分散させた分散液を得た。得られた分散液について粒度分布を測定し、体積基準の累積粒度分布曲線を得た。得られた累積粒度分布曲線において、50%累積時の微小粒子側から見た粒子径(D50)の値を、リチウム二次電池用正極活物質の平均粒子径とした。
[Measurement of average particle size]
The average particle diameter was measured by using a laser diffraction particle size distribution analyzer (LA-950, manufactured by Horiba, Ltd.), 0.2 g by mass of 0.1 g of a positive electrode active material powder or a composite metal compound powder for a lithium secondary battery. The solution was poured into 50 ml of an aqueous sodium hexametaphosphate solution to obtain a dispersion in which the powder was dispersed. The particle size distribution of the obtained dispersion was measured to obtain a volume-based cumulative particle size distribution curve. In the obtained cumulative particle size distribution curve, the value of the particle diameter (D 50 ) viewed from the fine particle side at 50% accumulation was taken as the average particle diameter of the positive electrode active material for lithium secondary batteries.
 [組成分析]
 後述の方法で製造されるリチウム金属複合酸化物粉末の組成分析は、得られたリチウム金属複合酸化物の粉末を塩酸に溶解させた後、誘導結合プラズマ発光分析装置(エスアイアイ・ナノテクノロジー株式会社製、SPS3000)を用いて行った。
[Composition analysis]
The composition analysis of the lithium metal composite oxide powder produced by the method described below is performed by dissolving the obtained lithium metal composite oxide powder in hydrochloric acid and then using an inductively coupled plasma emission spectrometer (SII Nanotechnology, Inc.). Manufactured by SPS3000).
<実施例1>
≪リチウム二次電池用正極活物質1の製造≫
[噴霧液の製造方法]
 攪拌機を備えた槽内に水を入れた後、水酸化リチウム水溶液と、酸化タングステンを添加し、酸化タングステンを溶解させたアルカリ水溶液を得た。この時のアルカリ水溶液中の酸化タングステン濃度は、アルカリ水溶液全体の質量に対して2.8質量%であった。
<Example 1>
≪Manufacture of positive electrode active material 1 for lithium secondary battery≫
[Production method of spray liquid]
After water was put in a tank equipped with a stirrer, an aqueous lithium hydroxide solution and tungsten oxide were added to obtain an alkaline aqueous solution in which tungsten oxide was dissolved. At this time, the tungsten oxide concentration in the alkaline aqueous solution was 2.8% by mass with respect to the mass of the entire alkaline aqueous solution.
 ・噴霧混合工程
 ニッケルコバルトマンガン複合金属水酸化物粉末(Ni0.55Co0.21Mn0.24(OH))(BET比表面積:86.3m/g、D50:3.4μm)を105℃に加熱かつ混合しながら、前記で得たタングステン化合物を溶解させたアルカリ水溶液を1時間噴霧した。その後冷却し、混合粉末1を得た。この時の噴霧条件は下記の通りである。
 {噴霧条件}
  ノズル径:45μm
  吐出圧 :0.6MPaG
  流量  :1.9L/h
  ニッケルコバルトマンガン複合金属水酸化物粉末量:4100g
  アルカリ水溶液量:1850g
Spray mixing step Nickel cobalt manganese composite metal hydroxide powder (Ni 0.55 Co 0.21 Mn 0.24 (OH) 2 ) (BET specific surface area: 86.3 m 2 / g, D 50 : 3.4 μm) While being heated and mixed at 105 ° C., an alkaline aqueous solution in which the tungsten compound obtained above was dissolved was sprayed for 1 hour. Thereafter, the mixture was cooled to obtain a mixed powder 1. The spraying conditions at this time are as follows.
{Spraying conditions}
Nozzle diameter: 45 μm
Discharge pressure: 0.6 MPaG
Flow rate: 1.9L / h
Nickel cobalt manganese composite metal hydroxide powder amount: 4100g
Alkaline aqueous solution amount: 1850 g
[リチウム複合金属酸化物の製造工程]
 混合粉末1と、炭酸リチウム粉末とを、Li/(Ni+Co+Mn)=1.07となるように秤量して混合した後、大気雰囲気下760℃で5時間の一次焼成を行い、さらに、大気雰囲気下850℃で10時間の二次焼成をして、目的のリチウム二次電池用正極活物質1を得た。このリチウム二次電池用正極活物質1のBET比表面積は、3.8m/gであり、D50は2.7μmであった。
[Production process of lithium composite metal oxide]
The mixed powder 1 and the lithium carbonate powder were weighed and mixed so that Li / (Ni + Co + Mn) = 1.07, and then subjected to primary firing at 760 ° C. for 5 hours in an air atmosphere. Secondary firing was performed at 850 ° C. for 10 hours to obtain a target positive electrode active material 1 for a lithium secondary battery. The positive electrode active material 1 for a lithium secondary battery had a BET specific surface area of 3.8 m 2 / g and D 50 of 2.7 μm.
≪リチウム二次電池用正極活物質1の評価≫
 得られたリチウム二次電池用正極活物質1の組成分析を行ったところ、モル比でLi:Ni:Co:Mn:W=1.07:0.55:0.21:0.24:0.005であった。
 さらに、リチウム二次電池用正極活物質1には偏析物が見られず、タングステン由来の異物は確認されなかった。
≪Evaluation of cathode active material 1 for lithium secondary battery≫
When the composition analysis of the obtained positive electrode active material 1 for lithium secondary batteries was performed, it was Li: Ni: Co: Mn: W by molar ratio = 1.07: 0.55: 0.21: 0.24: 0. 0.005.
Furthermore, no segregated material was observed in the positive electrode active material 1 for lithium secondary batteries, and no foreign substance derived from tungsten was observed.
<実施例2>
≪リチウム二次電池用正極活物質2の製造≫
[噴霧液の製造方法]
 攪拌機を備えた槽内に水を入れた後、水酸化リチウム水溶液と、酸化タングステンを添加し、酸化タングステンを溶解させたアルカリ水溶液を得た。この時のアルカリ水溶液中の酸化タングステン濃度は、アルカリ水溶液全体の質量に対して5.6質量%であった。
<Example 2>
≪Manufacture of positive electrode active material 2 for lithium secondary battery≫
[Production method of spray liquid]
After water was put in a tank equipped with a stirrer, an aqueous lithium hydroxide solution and tungsten oxide were added to obtain an alkaline aqueous solution in which tungsten oxide was dissolved. The tungsten oxide concentration in the alkaline aqueous solution at this time was 5.6% by mass with respect to the total mass of the alkaline aqueous solution.
 ・噴霧混合工程
 ニッケルコバルトマンガン複合金属水酸化物粉末(Ni0.31Co0.33Mn0.36(OH))(BET比表面積:37.2m/g、D50:4.0μm)を105℃に加熱し、混合しながら、前記で得たタングステン化合物を溶解させたアルカリ水溶液を0.5時間噴霧した。その後冷却し、混合粉末2を得た。この時の噴霧条件は下記の通りである。
 この時の噴霧条件は下記の通りである。
 {噴霧条件}
  ノズル径:45μm
  吐出圧 :0.6MPaG
  流量  :1.9L/h
  ニッケルコバルトマンガン複合金属水酸化物粉末量:4100g
  アルカリ溶液量:950g
Spray mixing step Nickel cobalt manganese composite metal hydroxide powder (Ni 0.31 Co 0.33 Mn 0.36 (OH) 2 ) (BET specific surface area: 37.2 m 2 / g, D 50 : 4.0 μm) While being heated to 105 ° C. and mixed, an alkaline aqueous solution in which the tungsten compound obtained above was dissolved was sprayed for 0.5 hour. Thereafter, the mixture was cooled to obtain a mixed powder 2. The spraying conditions at this time are as follows.
The spraying conditions at this time are as follows.
{Spraying conditions}
Nozzle diameter: 45 μm
Discharge pressure: 0.6 MPaG
Flow rate: 1.9L / h
Nickel cobalt manganese composite metal hydroxide powder amount: 4100g
Alkaline solution amount: 950 g
[リチウム複合金属酸化物の製造工程]
 混合粉末2と、炭酸リチウム粉末とを、Li/(Ni+Co+Mn)=1.10となるように秤量して混合した後、大気雰囲気下690℃で5時間の一次焼成をし、さらに、大気雰囲気下950℃で6時間の二次焼成をして、目的のリチウム二次電池用正極活物質2を得た。このリチウム二次電池用正極活物質2のBET比表面積は、2.4m/gであり、D50は3.6μmであった。
[Production process of lithium composite metal oxide]
The mixed powder 2 and the lithium carbonate powder were weighed and mixed so that Li / (Ni + Co + Mn) = 1.10, and then subjected to primary firing at 690 ° C. for 5 hours in an air atmosphere. Secondary firing was performed at 950 ° C. for 6 hours to obtain the target positive electrode active material 2 for a lithium secondary battery. The positive electrode active material 2 for a lithium secondary battery had a BET specific surface area of 2.4 m 2 / g and a D 50 of 3.6 μm.
≪リチウム二次電池用正極活物質2の評価≫
 得られたリチウム二次電池用正極活物質2の組成分析を行ったところ、モル比でLi:Ni:Co:Mn:W=1.10:0.32:0.33:0.35:0.005であった。
 さらに、リチウム二次電池用正極活物質2には偏析物が見られず、タングステン由来の異物は確認されなかった。
≪Evaluation of cathode active material 2 for lithium secondary battery≫
When the composition analysis of the obtained positive electrode active material 2 for lithium secondary batteries was performed, it was Li: Ni: Co: Mn: W by molar ratio = 1.10: 0.32: 0.33: 0.35: 0. 0.005.
Furthermore, no segregated material was observed in the positive electrode active material 2 for a lithium secondary battery, and no foreign substance derived from tungsten was confirmed.
<実施例3>
≪リチウム二次電池用正極活物質3の製造≫
[噴霧液の製造方法]
 攪拌機を備えた槽内に水を入れた後、水酸化リチウム水溶液と、酸化タングステンを添加し、酸化タングステンを溶解させたアルカリ水溶液を得た。この時のアルカリ水溶液中の酸化タングステン濃度は、アルカリ水溶液全体の質量に対して2.8質量%であった。
<Example 3>
≪Manufacture of positive electrode active material 3 for lithium secondary battery≫
[Production method of spray liquid]
After water was put in a tank equipped with a stirrer, an aqueous lithium hydroxide solution and tungsten oxide were added to obtain an alkaline aqueous solution in which tungsten oxide was dissolved. At this time, the tungsten oxide concentration in the alkaline aqueous solution was 2.8% by mass with respect to the mass of the entire alkaline aqueous solution.
 ・噴霧混合工程
 ニッケルコバルトマンガン複合金属水酸化物粉末(Ni0.31Co0.33Mn0.36(OH))(BET比表面積:37.9m/g、D50:3.3μm)を105℃に加熱し、混合しながら、前記で得たタングステン化合物を溶解させたアルカリ水溶液を1時間噴霧した。その後冷却し、混合粉末3を得た。この時の噴霧条件は下記の通りである。
 {噴霧条件}
  ノズル径:45μm
  吐出圧 :0.6MPaG
  流量  :1.9L/h
  ニッケルコバルトマンガン複合金属水酸化物粉末量:4100g
  アルカリ水溶液量:1900g
Spray mixing step Nickel cobalt manganese composite metal hydroxide powder (Ni 0.31 Co 0.33 Mn 0.36 (OH) 2 ) (BET specific surface area: 37.9 m 2 / g, D 50 : 3.3 μm) While being heated to 105 ° C. and mixed, an alkaline aqueous solution in which the tungsten compound obtained above was dissolved was sprayed for 1 hour. Thereafter, the mixture was cooled to obtain a mixed powder 3. The spraying conditions at this time are as follows.
{Spraying conditions}
Nozzle diameter: 45 μm
Discharge pressure: 0.6 MPaG
Flow rate: 1.9L / h
Nickel cobalt manganese composite metal hydroxide powder amount: 4100g
Alkaline aqueous solution amount: 1900g
[リチウム複合金属酸化物の製造工程]
 混合粉末3と、炭酸リチウム粉末とを、Li/(Ni+Co+Mn)=1.10となるように秤量して混合した後、大気雰囲気下690℃で5時間の一次焼成を行い、さらに、大気雰囲気下950℃で6時間の二次焼成をして、目的のリチウム二次電池用正極活物質3を得た。このリチウム二次電池用正極活物質3のBET比表面積は、2.4m/gであり、D50は3.4μmであった。
[Production process of lithium composite metal oxide]
The mixed powder 3 and the lithium carbonate powder were weighed and mixed so that Li / (Ni + Co + Mn) = 1.10, and then subjected to primary firing at 690 ° C. for 5 hours in an air atmosphere. Secondary firing was performed at 950 ° C. for 6 hours to obtain the target positive electrode active material 3 for a lithium secondary battery. The positive electrode active material 3 for a lithium secondary battery had a BET specific surface area of 2.4 m 2 / g and D 50 of 3.4 μm.
≪リチウム二次電池用正極活物質3の評価≫
 得られたリチウム二次電池用正極活物質3の組成分析を行ったところ、モル比でLi:Ni:Co:Mn:W=1.10:0.32:0.33:0.36:0.005であった。
 さらに、リチウム二次電池用正極活物質3には偏析物が見られず、タングステン由来の異物は確認されなかった。
≪Evaluation of positive electrode active material 3 for lithium secondary battery≫
When the composition analysis of the obtained positive electrode active material 3 for lithium secondary batteries was performed, it was Li: Ni: Co: Mn: W by molar ratio = 1.10: 0.32: 0.33: 0.36: 0. 0.005.
Furthermore, no segregated material was observed in the positive electrode active material 3 for lithium secondary batteries, and no foreign substance derived from tungsten was observed.
<実施例4>
≪リチウム二次電池用正極活物質4の製造≫
[噴霧液の製造方法]
 攪拌機を備えた槽内に水を入れた後、水酸化リチウム水溶液と、酸化タングステンを添加し、酸化タングステンを溶解させたアルカリ水溶液を得た。この時のアルカリ水溶液中の酸化タングステン濃度は、アルカリ水溶液全体の質量に対して2.8質量%であった。
<Example 4>
<< Manufacture of cathode active material 4 for lithium secondary battery >>
[Production method of spray liquid]
After water was put in a tank equipped with a stirrer, an aqueous lithium hydroxide solution and tungsten oxide were added to obtain an alkaline aqueous solution in which tungsten oxide was dissolved. At this time, the tungsten oxide concentration in the alkaline aqueous solution was 2.8% by mass with respect to the mass of the entire alkaline aqueous solution.
 ・噴霧混合工程
 ニッケルコバルトマンガン複合金属水酸化物粉末(Ni0.31Co0.33Mn0.36(OH))(BET比表面積:29.8m/g、D50:4.0μm)を105℃に加熱し、混合しながら、前記で得たタングステン化合物を溶解させたアルカリ水溶液を1時間噴霧した。その後冷却し、混合粉末4を得た。この時の噴霧条件は下記の通りである。
 {噴霧条件}
  ノズル径:45μm
  吐出圧 :0.6MPaG
  流量  :1.9L/h
  ニッケルコバルトマンガン複合金属水酸化物粉末量:4100g
  アルカリ水溶液量:1900g
Spray mixing step Nickel cobalt manganese composite metal hydroxide powder (Ni 0.31 Co 0.33 Mn 0.36 (OH) 2 ) (BET specific surface area: 29.8 m 2 / g, D 50 : 4.0 μm) While being heated to 105 ° C. and mixed, an alkaline aqueous solution in which the tungsten compound obtained above was dissolved was sprayed for 1 hour. Thereafter, the mixture was cooled to obtain a mixed powder 4. The spraying conditions at this time are as follows.
{Spraying conditions}
Nozzle diameter: 45 μm
Discharge pressure: 0.6 MPaG
Flow rate: 1.9L / h
Nickel cobalt manganese composite metal hydroxide powder amount: 4100g
Alkaline aqueous solution amount: 1900g
[リチウム複合金属酸化物の製造工程]
 混合粉末4と、炭酸リチウム粉末とを、Li/(Ni+Co+Mn)=1.10となるように秤量して混合した後、大気雰囲気下690℃で4時間を行い、連続して、955℃で6時間焼成をして、目的のリチウム二次電池用正極活物質4を得た。このリチウム二次電池用正極活物質4のBET比表面積は、1.8m/gであり、D50は3.7μmであった。
[Production process of lithium composite metal oxide]
After the mixed powder 4 and the lithium carbonate powder were weighed and mixed so that Li / (Ni + Co + Mn) = 1.10, the mixture was performed at 690 ° C. for 4 hours in an air atmosphere and continuously at 955 ° C. for 6 hours. Time firing was performed to obtain the target positive electrode active material 4 for a lithium secondary battery. The positive electrode active material 4 for lithium secondary battery had a BET specific surface area of 1.8 m 2 / g and a D 50 of 3.7 μm.
≪リチウム二次電池用正極活物質4の評価≫
 得られたリチウム二次電池用正極活物質4の組成分析を行ったところ、モル比でLi:Ni:Co:Mn:W=1.11:0.32:0.33:0.35:0.005であった。
 さらに、リチウム二次電池用正極活物質4には偏析物が見られず、タングステン由来の異物は確認されなかった。
<< Evaluation of Positive Electrode Active Material 4 for Lithium Secondary Battery >>
When the composition analysis of the obtained positive electrode active material 4 for lithium secondary batteries was performed, it was Li: Ni: Co: Mn: W at a molar ratio of 1.11: 0.32: 0.33: 0.35: 0. 0.005.
Furthermore, no segregated material was observed in the positive electrode active material 4 for lithium secondary batteries, and no foreign substance derived from tungsten was observed.
<実施例5>
≪リチウム二次電池用正極活物質5の製造≫
[噴霧液の製造方法]
 攪拌機を備えた槽内に水を入れた後、水酸化リチウム水溶液と、酸化タングステンを添加し、酸化タングステンを溶解させたアルカリ水溶液を得た。この時のアルカリ水溶液中の酸化タングステン濃度は、アルカリ水溶液全体の質量に対して2.3質量%であった。
<Example 5>
<< Manufacture of cathode active material 5 for lithium secondary battery >>
[Production method of spray liquid]
After water was put in a tank equipped with a stirrer, an aqueous lithium hydroxide solution and tungsten oxide were added to obtain an alkaline aqueous solution in which tungsten oxide was dissolved. The tungsten oxide concentration in the alkaline aqueous solution at this time was 2.3% by mass with respect to the mass of the entire alkaline aqueous solution.
 ・噴霧混合工程
 ニッケルコバルトマンガン複合金属水酸化物粉末(Ni0.87Co0.10Mn0.02Al0.01(OH))(BET比表面積:20.6m/g、D50:10.4μm)を105℃に加熱し、混合しながら、前記で得たタングステン化合物を溶解させたアルカリ水溶液を2.5時間噴霧した。その後冷却し、混合粉末5を得た。この時の噴霧条件は下記の通りである。
 {噴霧条件}
  ノズル径:45μm
  吐出圧 :0.6MPaG
  流量  :1.9L/h
  ニッケルコバルトマンガン複合金属水酸化物粉末量:9000g
  アルカリ水溶液量:4700g
Spray mixing step Nickel cobalt manganese composite metal hydroxide powder (Ni 0.87 Co 0.10 Mn 0.02 Al 0.01 (OH) 2 ) (BET specific surface area: 20.6 m 2 / g, D 50 : 10.4 μm) was heated to 105 ° C. and mixed with an alkaline aqueous solution in which the tungsten compound obtained above was dissolved for 2.5 hours. Thereafter, the mixture was cooled to obtain a mixed powder 5. The spraying conditions at this time are as follows.
{Spraying conditions}
Nozzle diameter: 45 μm
Discharge pressure: 0.6 MPaG
Flow rate: 1.9L / h
Nickel cobalt manganese composite metal hydroxide powder amount: 9000 g
Alkaline aqueous solution amount: 4700 g
[リチウム複合金属酸化物の製造工程]
 混合粉末5と、炭酸リチウム粉末とを、Li/(Ni+Co+Mn)=1.02となるように秤量して混合した後、酸素雰囲気下、760℃で5時間の一次焼成を行い、その後、酸素雰囲気下、760℃で10時間の二次焼成し、目的のリチウム二次電池用正極活物質5を得た。このリチウム二次電池用正極活物質5のBET比表面積は、0.26m/gであり、D50は10.9μmであった。
[Production process of lithium composite metal oxide]
The mixed powder 5 and the lithium carbonate powder were weighed and mixed so that Li / (Ni + Co + Mn) = 1.02, then subjected to primary firing at 760 ° C. for 5 hours in an oxygen atmosphere, and then an oxygen atmosphere Then, secondary firing was performed at 760 ° C. for 10 hours to obtain a target positive electrode active material 5 for a lithium secondary battery. The positive electrode active material 5 for a lithium secondary battery had a BET specific surface area of 0.26 m 2 / g and a D 50 of 10.9 μm.
≪リチウム二次電池用正極活物質5の評価≫
 得られたリチウム二次電池用正極活物質5の組成分析を行ったところ、モル比でLi:Ni:Co:Mn:Al:W=0.99:0.89:0.09:0.02:0.02:0.004であった。
 さらに、リチウム二次電池用正極活物質5には偏析物が見られず、タングステン由来の異物は確認されなかった。
≪Evaluation of cathode active material 5 for lithium secondary battery≫
When the composition analysis of the obtained positive electrode active material 5 for lithium secondary batteries was conducted, it was Li: Ni: Co: Mn: Al: W by molar ratio = 0.99: 0.89: 0.09: 0.02. : 0.02: 0.004.
Furthermore, no segregated material was observed in the positive electrode active material 5 for lithium secondary batteries, and no foreign substance derived from tungsten was confirmed.
<比較例1>
≪リチウム二次電池用正極活物質6の製造≫
 ニッケルコバルトマンガン複合金属水酸化物粉末(Ni0.55Co0.21Mn0.24(OH))(BET比表面積:82.6m/g、D50:3.6μm)と、酸化タングステン粉末を、遷移金属1molあたりのWが0.005molとなるように秤量し、1時間乾式混合し、混合粉末6を得た。
<Comparative Example 1>
<< Manufacture of cathode active material 6 for lithium secondary battery >>
Nickel cobalt manganese composite metal hydroxide powder (Ni 0.55 Co 0.21 Mn 0.24 (OH) 2 ) (BET specific surface area: 82.6 m 2 / g, D 50 : 3.6 μm) and tungsten oxide The powder was weighed so that W per 1 mol of transition metal was 0.005 mol, and dry-mixed for 1 hour to obtain mixed powder 6.
 混合粉末6と、炭酸リチウム粉末とを、Li/(Ni+Co+Mn)=1.07となるように秤量して混合した後、大気雰囲気下、760℃で5時間の一次焼成を行い、その後、大気雰囲気下、850℃で10時間の二次焼成して、目的のリチウム二次電池用正極活物質6を得た。このリチウム二次電池用正極活物質6のBET比表面積は、3.2m/gであり、D50は3.2μmであった。 After the mixed powder 6 and the lithium carbonate powder were weighed and mixed so that Li / (Ni + Co + Mn) = 1.07, primary firing was performed at 760 ° C. for 5 hours in an air atmosphere, and then the air atmosphere Then, secondary firing was performed at 850 ° C. for 10 hours to obtain a target positive electrode active material 6 for a lithium secondary battery. The positive electrode active material 6 for a lithium secondary battery had a BET specific surface area of 3.2 m 2 / g and a D 50 of 3.2 μm.
≪リチウム二次電池用正極活物質6の評価≫
 得られたリチウム二次電池用正極活物質6の組成分析を行ったところ、モル比でLi:Ni:Co:Mn:W=1.07:0.55:0.21:0.24:0.005であった。
 さらに、リチウム二次電池用正極活物質6には、偏析物が見られ、タングステン由来の異物が確認された。
≪Evaluation of cathode active material 6 for lithium secondary battery≫
When the composition analysis of the obtained positive electrode active material 6 for lithium secondary batteries was performed, it was Li: Ni: Co: Mn: W at a molar ratio of 1.07: 0.55: 0.21: 0.24: 0. 0.005.
Furthermore, segregated material was observed in the positive electrode active material 6 for lithium secondary batteries, and foreign substances derived from tungsten were confirmed.
<比較例2>
≪リチウム二次電池用正極活物質7の製造≫
[複合金属化合物の製造工程]
 ニッケルコバルトマンガン複合金属水酸化物粉末(Ni0.31Co0.33Mn0.36(OH))(BET比表面積:37.2m/g、D50:4.0μm)と、酸化タングステン粉末を、遷移金属1molあたりのWが0.005molとなるように秤量し、を1時間乾式混合し、混合粉末7を得た。
<Comparative example 2>
≪Manufacture of positive electrode active material 7 for lithium secondary battery≫
[Production process of composite metal compound]
Nickel cobalt manganese composite metal hydroxide powder (Ni 0.31 Co 0.33 Mn 0.36 (OH) 2 ) (BET specific surface area: 37.2 m 2 / g, D 50 : 4.0 μm), tungsten oxide The powder was weighed so that W per 1 mol of transition metal was 0.005 mol, and dry-mixed for 1 hour to obtain mixed powder 7.
[リチウム複合金属酸化物の製造工程]
 上記工程で得た、混合粉末7を熱処理した。具体的には、大気雰囲気下、690℃で5時間の一次焼成を行い、その後、大気雰囲気化、950℃で6時間の二次焼成を行った。
[Production process of lithium composite metal oxide]
The mixed powder 7 obtained in the above process was heat-treated. Specifically, primary firing was performed at 690 ° C. for 5 hours in an air atmosphere, and then secondary firing was performed at 950 ° C. for 6 hours.
 混合粉末7と、炭酸リチウム粉末とを、Li/(Ni+Co+Mn)=1.10となるように秤量して混合した後、大気雰囲気下690℃で5時間の一次焼成を行い、さらに、大気雰囲気下925℃で6時間の二次焼成を行うことで、目的のリチウム二次電池用正極活物質7を得た。このリチウム二次電池用正極活物質7のBET比表面積は、2.2m/gであり、D50は3.8μmであった。 The mixed powder 7 and the lithium carbonate powder were weighed and mixed so that Li / (Ni + Co + Mn) = 1.10, and then subjected to primary firing at 690 ° C. for 5 hours in an air atmosphere. The target positive electrode active material 7 for lithium secondary batteries was obtained by performing secondary baking for 6 hours at 925 degreeC. The positive electrode active material 7 for a lithium secondary battery had a BET specific surface area of 2.2 m 2 / g and a D 50 of 3.8 μm.
≪リチウム二次電池用正極活物質7の評価≫
 得られたリチウム二次電池用正極活物質7の組成分析を行ったところ、モル比でLi:Ni:Co:Mn:W=1.10:0.32:0.33:0.35:0.005であった。
 さらに、リチウム二次電池用正極活物質7には、偏析物が見られ、タングステン由来の異物が確認された。
≪Evaluation of positive electrode active material 7 for lithium secondary battery≫
When the composition analysis of the obtained positive electrode active material 7 for lithium secondary batteries was conducted, it was Li: Ni: Co: Mn: W by molar ratio = 1.10: 0.32: 0.33: 0.35: 0. 0.005.
Furthermore, segregated material was observed in the positive electrode active material 7 for the lithium secondary battery, and foreign substances derived from tungsten were confirmed.
<比較例3>
≪リチウム二次電池用正極活物質8の製造≫
 ニッケルコバルトマンガン複合金属水酸化物粉末(Ni0.87Co0.10Mn0.02Al0.01(OH))(BET比表面積:20.6m/g、D50:10.4μm)と、酸化タングステン粉末を、遷移金属1molあたりのWが0.004molとなるように秤量し、1時間乾式混合し、混合粉末8を得た。
<Comparative Example 3>
<< Manufacture of cathode active material 8 for lithium secondary battery >>
Nickel cobalt manganese composite metal hydroxide powder (Ni 0.87 Co 0.10 Mn 0.02 Al 0.01 (OH) 2 ) (BET specific surface area: 20.6 m 2 / g, D 50 : 10.4 μm) The tungsten oxide powder was weighed so that W per 1 mol of the transition metal was 0.004 mol, and dry-mixed for 1 hour to obtain a mixed powder 8.
[リチウム複合金属酸化物の製造工程]
 混合粉末8と、炭酸リチウム粉末とを、Li/(Ni+Co+Mn)=1.02となるように秤量して混合した後、酸素雰囲気下、760℃で5時間の一次焼成を行い、その後、酸素雰囲気下、760℃で10時間の二次焼成して、目的のリチウム二次電池用正極活物質8を得た。このリチウム二次電池用正極活物質8のBET比表面積は、0.28m/gであり、D50は10.6μmであった。
[Production process of lithium composite metal oxide]
The mixed powder 8 and the lithium carbonate powder were weighed and mixed so that Li / (Ni + Co + Mn) = 1.02, then subjected to primary firing at 760 ° C. for 5 hours in an oxygen atmosphere, and then an oxygen atmosphere Then, secondary firing was performed at 760 ° C. for 10 hours to obtain a target positive electrode active material 8 for a lithium secondary battery. The BET specific surface area of the positive electrode active material 8 for a lithium secondary battery was 0.28 m 2 / g, and D 50 was 10.6 μm.
≪リチウム二次電池用正極活物質8の評価≫
 得られたリチウム二次電池用正極活物質8の組成分析を行ったところ、モル比でLi:Ni:Co:Mn:Al:W=0.99:0.89:0.09:0.02:0.02:0.004であった。
 さらに、リチウム二次電池用正極活物質8には、偏析物が見られ、タングステン由来の異物が確認された。
≪Evaluation of cathode active material 8 for lithium secondary battery≫
When composition analysis of the obtained positive electrode active material 8 for lithium secondary batteries was conducted, Li: Ni: Co: Mn: Al: W in molar ratio was 0.99: 0.89: 0.09: 0.02. : 0.02: 0.004.
Furthermore, segregated material was observed in the positive electrode active material 8 for the lithium secondary battery, and foreign substances derived from tungsten were confirmed.
<比較例4>
≪リチウム二次電池用正極活物質9の製造≫
 ニッケルコバルトマンガン複合金属水酸化物粉末(Ni0.55Co0.21Mn0.24(OH))(BET比表面積:84.0m/g、D50:3.5μm)と、炭酸リチウム粉末とを、Li/(Ni+Co+Mn)=1.07となるように秤量して混合した後、空気雰囲気下、760℃で10時間の一次焼成を行い、得た複合金属化合物粉末9と、酸化タングステン粉末とを1時間乾式混合した。その後、酸素雰囲気化、850℃で10時間の二次焼成を行い、目的のリチウム二次電池用正極活物質9を得た。このリチウム二次電池用正極活物質9のBET比表面積は、3.5m/gであり、D50は3.0μmであった。
<Comparative example 4>
≪Production of positive electrode active material 9 for lithium secondary battery≫
Nickel cobalt manganese composite metal hydroxide powder (Ni 0.55 Co 0.21 Mn 0.24 (OH) 2 ) (BET specific surface area: 84.0 m 2 / g, D 50 : 3.5 μm), lithium carbonate The powder was weighed and mixed so that Li / (Ni + Co + Mn) = 1.07, and then subjected to primary firing at 760 ° C. for 10 hours in an air atmosphere. The obtained composite metal compound powder 9 and tungsten oxide The powder was dry mixed for 1 hour. Then, secondary firing was performed at 850 ° C. for 10 hours in an oxygen atmosphere to obtain the target positive electrode active material 9 for a lithium secondary battery. The positive electrode active material 9 for a lithium secondary battery had a BET specific surface area of 3.5 m 2 / g and D 50 of 3.0 μm.
≪リチウム二次電池用正極活物質9の評価≫
 得られたリチウム二次電池用正極活物質9の組成分析を行ったところ、モル比でLi:Ni:Co:Mn:W=1.07:0.56:0.21:0.24:0.005であった。
 さらに、リチウム二次電池用正極活物質9には、偏析物が見られ、タングステン由来の異物が確認された。
≪Evaluation of cathode active material 9 for lithium secondary battery≫
When the composition analysis of the obtained positive electrode active material 9 for lithium secondary batteries was performed, it was Li: Ni: Co: Mn: W at a molar ratio of 1.07: 0.56: 0.21: 0.24: 0. 0.005.
Furthermore, segregated material was observed in the positive electrode active material 9 for lithium secondary batteries, and foreign substances derived from tungsten were confirmed.
 実施例1~5、比較例1~4について、製造条件等を表1にまとめて記載する。下記表1中、「W」はタングステンを意味する。 Table 1 summarizes the manufacturing conditions for Examples 1 to 5 and Comparative Examples 1 to 4. In Table 1 below, “W” means tungsten.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記結果に記載した通り、本発明を適用した実施例1~5は、タングステン由来の偏析物が見られず、異物の発生を抑制することができた。これに対し、本発明を適用しない比較例1~4は、タングステン由来の偏析物が見られ、異物が発生してしまった。 As described in the above results, in Examples 1 to 5 to which the present invention was applied, no segregated material derived from tungsten was observed, and the generation of foreign matters could be suppressed. On the other hand, in Comparative Examples 1 to 4 to which the present invention was not applied, segregated materials derived from tungsten were observed, and foreign matters were generated.
 図2に、比較例2の、乾式混合後の混合粉末のSEM写真を、図3に実施例3の、噴霧混合後の混合粉末のSEM写真を記載する。本発明を適用しない、比較例2では、図2の符号20に示す箇所に、タングステン由来の偏析物が確認された。これに対し、本発明を適用した実施例3は、タングステンの混合後にタングステン由来の偏析物が確認されなかった。 FIG. 2 shows an SEM photograph of the mixed powder after dry mixing in Comparative Example 2, and FIG. 3 shows an SEM photograph of the mixed powder after spray mixing in Example 3. In Comparative Example 2 in which the present invention was not applied, segregated material derived from tungsten was confirmed at the position indicated by reference numeral 20 in FIG. On the other hand, in Example 3 to which the present invention was applied, segregated material derived from tungsten was not confirmed after the mixing of tungsten.
 本発明によれば、タングステンの偏析が抑制された、リチウム二次電池用正極活物質の製造方法を提供することができる。 According to the present invention, it is possible to provide a method for producing a positive electrode active material for a lithium secondary battery in which segregation of tungsten is suppressed.
 1…セパレータ、2…正極、3…負極、4…電極群、5…電池缶、6…電解液、7…トップインシュレーター、8…封口体、10…リチウム二次電池、21…正極リード、31…負極リード DESCRIPTION OF SYMBOLS 1 ... Separator, 2 ... Positive electrode, 3 ... Negative electrode, 4 ... Electrode group, 5 ... Battery can, 6 ... Electrolyte solution, 7 ... Top insulator, 8 ... Sealing body, 10 ... Lithium secondary battery, 21 ... Positive electrode lead, 31 ... Negative electrode lead

Claims (6)

  1.  リチウム複合金属化合物を含むリチウム二次電池用正極活物質の製造方法であって、
     ニッケル、コバルト、及びマンガンを含む複合金属化合物粉末を加熱することと、タングステン化合物のアルカリ溶液を前記複合金属化合物粉末に噴霧し、前記複合金属化合物粉末と前記タングステン化合物とを混合して混合粉末を製造することと、その後、前記混合粉末を冷却することを含む噴霧混合工程と、
     リチウム塩と、前記混合粉末とを混合し、焼成してリチウム複合金属化合物を製造する工程と、
     を有するリチウム二次電池用正極活物質の製造方法。
    A method for producing a positive electrode active material for a lithium secondary battery comprising a lithium composite metal compound,
    Heating a composite metal compound powder containing nickel, cobalt, and manganese, spraying an alkaline solution of a tungsten compound on the composite metal compound powder, mixing the composite metal compound powder and the tungsten compound, and mixing powder A spray mixing step comprising producing and then cooling the mixed powder;
    A step of mixing a lithium salt and the mixed powder and baking to produce a lithium composite metal compound;
    The manufacturing method of the positive electrode active material for lithium secondary batteries which has this.
  2.  前記リチウム複合金属化合物が、以下の組成式(I)で表される、請求項1に記載のリチウム二次電池用正極活物質の製造方法。
      Li[Lix(Ni(1-y-z-w)CoyMnzMw)1-x]O ・・・(I)
    (組成式(I)中、-0.1≦x≦0.2、0<y≦0.5、0<z≦0.8、0≦w≦0.1、y+z+w<1、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の金属を表す。)
    The method for producing a positive electrode active material for a lithium secondary battery according to claim 1, wherein the lithium composite metal compound is represented by the following composition formula (I).
    Li [Lix (Ni (1-yzw) CoyMnzMw) 1-x] O 2 (I)
    (In the composition formula (I), −0.1 ≦ x ≦ 0.2, 0 <y ≦ 0.5, 0 <z ≦ 0.8, 0 ≦ w ≦ 0.1, y + z + w <1, M is Fe , Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga, and V represent one or more metals selected from the group.
  3.  前記リチウム二次電池用正極活物質に含まれるタングステン含有量が遷移金属の全モル量に対して1.0mol%以下である請求項1又は2に記載のリチウム二次電池用正極活物質の製造方法。 The production of a positive electrode active material for a lithium secondary battery according to claim 1 or 2, wherein the tungsten content contained in the positive electrode active material for a lithium secondary battery is 1.0 mol% or less with respect to the total molar amount of the transition metal. Method.
  4.  前記噴霧混合工程において、前記タングステン化合物が酸化タングステンである請求項1~3のいずれか1項に記載のリチウム二次電池用正極活物質の製造方法。 The method for producing a positive electrode active material for a lithium secondary battery according to any one of claims 1 to 3, wherein the tungsten compound is tungsten oxide in the spray mixing step.
  5.  前記噴霧混合工程において、前記アルカリ溶液が水酸化リチウムを含む請求項1~4のいずれか1項に記載のリチウム二次電池用正極活物質の製造方法。 The method for producing a positive electrode active material for a lithium secondary battery according to any one of claims 1 to 4, wherein in the spray mixing step, the alkaline solution contains lithium hydroxide.
  6.  前記噴霧混合工程において、前記アルカリ溶液を噴霧するときの複合金属化合物粉末の温度が100℃以上である請求項1~5のいずれか1項に記載のリチウム二次電池用正極活物質の製造方法。 The method for producing a positive electrode active material for a lithium secondary battery according to any one of claims 1 to 5, wherein in the spray mixing step, a temperature of the composite metal compound powder when spraying the alkaline solution is 100 ° C or higher. .
PCT/JP2017/043044 2016-12-07 2017-11-30 Method for producing positive electrode active material for lithium secondary batteries WO2018105481A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780075462.1A CN110036512B (en) 2016-12-07 2017-11-30 Manufacturing method of positive electrode active material for lithium secondary battery
KR1020197015922A KR102413743B1 (en) 2016-12-07 2017-11-30 Manufacturing method of positive electrode active material for lithium secondary battery
JP2018554959A JP7002469B2 (en) 2016-12-07 2017-11-30 Manufacturing method of positive electrode active material for lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-237694 2016-12-07
JP2016237694 2016-12-07

Publications (1)

Publication Number Publication Date
WO2018105481A1 true WO2018105481A1 (en) 2018-06-14

Family

ID=62491031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043044 WO2018105481A1 (en) 2016-12-07 2017-11-30 Method for producing positive electrode active material for lithium secondary batteries

Country Status (4)

Country Link
JP (1) JP7002469B2 (en)
KR (1) KR102413743B1 (en)
CN (1) CN110036512B (en)
WO (1) WO2018105481A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019245286A1 (en) * 2018-06-20 2019-12-26 주식회사 엘지화학 Cathode active material for lithium secondary battery and lithium secondary battery
JP2020064799A (en) * 2018-10-18 2020-04-23 Jx金属株式会社 Method for manufacturing positive electrode for all-solid-state lithium-ion battery and method for manufacturing all-solid-state lithium-ion battery
WO2021235470A1 (en) 2020-05-22 2021-11-25 Basf戸田バッテリーマテリアルズ合同会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
US12283690B2 (en) 2018-06-20 2025-04-22 Lg Chem, Ltd. Positive electrode active material for lithium secondary battery and lithium secondary battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114656000B (en) * 2022-03-31 2024-03-19 天津巴莫科技有限责任公司 Nickel cobalt lithium manganate material, preparation method thereof, positive electrode material and lithium ion battery
CN117293308A (en) * 2023-09-28 2023-12-26 深圳市贝特瑞纳米科技有限公司 Positive electrode material, preparation method thereof and battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165654A1 (en) * 2011-05-30 2012-12-06 住友金属鉱山株式会社 Positive electrode active material for nonaqueous secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery using positive electrode active material
JP2015043335A (en) * 2014-10-24 2015-03-05 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery arranged by use thereof
WO2016017093A1 (en) * 2014-07-30 2016-02-04 三洋電機株式会社 Positive electrode active material for non-aqueous electrolyte secondary batteries
JP2017117700A (en) * 2015-12-25 2017-06-29 住友金属鉱山株式会社 Method for producing positive electrode active material for nonaqueous electrolyte secondary battery

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101212046B (en) * 2006-12-30 2011-08-17 比亚迪股份有限公司 Method for encapsulating active material for anode of Li-ion secondary battery
JP4873000B2 (en) * 2008-12-05 2012-02-08 ソニー株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN101707248B (en) * 2009-10-29 2011-10-12 重庆特瑞电池材料有限公司 Method for preparing positive electrode material of anion-cation multi-component compound lithium battery
KR101858763B1 (en) 2010-04-01 2018-05-16 미쯔비시 케미컬 주식회사 Positive electrode material for lithium secondary battery, method for producing the same, positive electrode for lithium secondary battery, and lithium secondary battery
JP5035712B2 (en) * 2010-09-30 2012-09-26 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP2012170927A (en) * 2011-02-23 2012-09-10 Toyota Motor Corp Apparatus and method for coating active material for battery
JP5776996B2 (en) 2011-05-30 2015-09-09 住友金属鉱山株式会社 Non-aqueous secondary battery positive electrode active material and non-aqueous electrolyte secondary battery using the positive electrode active material
WO2012176903A1 (en) * 2011-06-24 2012-12-27 旭硝子株式会社 Method for producing positive electrode active material for lithium ion secondary batteries
JP5858279B2 (en) * 2011-12-05 2016-02-10 トヨタ自動車株式会社 Lithium ion secondary battery
JP5822708B2 (en) * 2011-12-16 2015-11-24 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP5772626B2 (en) * 2012-01-25 2015-09-02 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP5962956B2 (en) * 2012-02-03 2016-08-03 トヨタ自動車株式会社 Lithium secondary battery
JP6286855B2 (en) * 2012-04-18 2018-03-07 日亜化学工業株式会社 Positive electrode composition for non-aqueous electrolyte secondary battery
JP2014220139A (en) * 2013-05-09 2014-11-20 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP6210439B2 (en) * 2014-12-26 2017-10-11 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the cathode active material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165654A1 (en) * 2011-05-30 2012-12-06 住友金属鉱山株式会社 Positive electrode active material for nonaqueous secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery using positive electrode active material
WO2016017093A1 (en) * 2014-07-30 2016-02-04 三洋電機株式会社 Positive electrode active material for non-aqueous electrolyte secondary batteries
JP2015043335A (en) * 2014-10-24 2015-03-05 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery arranged by use thereof
JP2017117700A (en) * 2015-12-25 2017-06-29 住友金属鉱山株式会社 Method for producing positive electrode active material for nonaqueous electrolyte secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019245286A1 (en) * 2018-06-20 2019-12-26 주식회사 엘지화학 Cathode active material for lithium secondary battery and lithium secondary battery
KR20190143292A (en) * 2018-06-20 2019-12-30 주식회사 엘지화학 Positive electrode active material for lithium secondary battery and lithium secondary battery
CN112204777A (en) * 2018-06-20 2021-01-08 株式会社Lg化学 Positive electrode active material for lithium secondary battery and lithium secondary battery
KR102288293B1 (en) * 2018-06-20 2021-08-10 주식회사 엘지화학 Positive electrode active material for lithium secondary battery and lithium secondary battery
US12211997B2 (en) 2018-06-20 2025-01-28 Lg Chem, Ltd. Positive electrode active material for lithium secondary battery and lithium secondary battery
US12283690B2 (en) 2018-06-20 2025-04-22 Lg Chem, Ltd. Positive electrode active material for lithium secondary battery and lithium secondary battery
JP2020064799A (en) * 2018-10-18 2020-04-23 Jx金属株式会社 Method for manufacturing positive electrode for all-solid-state lithium-ion battery and method for manufacturing all-solid-state lithium-ion battery
JP7109334B2 (en) 2018-10-18 2022-07-29 Jx金属株式会社 Method for manufacturing positive electrode for all-solid-state lithium-ion battery and method for manufacturing all-solid-state lithium-ion battery
WO2021235470A1 (en) 2020-05-22 2021-11-25 Basf戸田バッテリーマテリアルズ合同会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
KR102413743B1 (en) 2022-06-27
JP7002469B2 (en) 2022-01-20
CN110036512B (en) 2022-11-04
KR20190086692A (en) 2019-07-23
CN110036512A (en) 2019-07-19
JPWO2018105481A1 (en) 2019-10-24

Similar Documents

Publication Publication Date Title
US11365130B2 (en) Positive electrode active material precursor for lithium secondary battery, and method for manufacturing positive electrode active material for lithium secondary battery
JP6343753B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP6256956B1 (en) Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP6337360B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2015182665A1 (en) Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
WO2016060105A1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
CN110692154B (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
CN109716565B (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP7002469B2 (en) Manufacturing method of positive electrode active material for lithium secondary battery
WO2018181530A1 (en) Production method for lithium metal complex oxide
JP6929682B2 (en) Method for producing lithium nickel composite oxide
WO2018079821A1 (en) Lithium secondary battery positive electrode and lithium secondary battery
JP6388978B1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2017078136A1 (en) Positive electrode active material for lithium secondary batteries, method for producing positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
WO2019177023A1 (en) Lithium metal composite oxide powder, positive electrode active material for lithium secondary batteries, positive electrode, and lithium secondary battery
WO2018021453A1 (en) Method for producing lithium nickel composite oxide
JP2018081937A (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP6843732B2 (en) Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP2018098217A (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2018079826A1 (en) Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17877691

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018554959

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197015922

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17877691

Country of ref document: EP

Kind code of ref document: A1