[go: up one dir, main page]

WO2018101196A1 - 重合性液晶組成物、光学異方性膜、光学フィルム、偏光板、画像表示装置および有機エレクトロルミネッセンス表示装置 - Google Patents

重合性液晶組成物、光学異方性膜、光学フィルム、偏光板、画像表示装置および有機エレクトロルミネッセンス表示装置 Download PDF

Info

Publication number
WO2018101196A1
WO2018101196A1 PCT/JP2017/042362 JP2017042362W WO2018101196A1 WO 2018101196 A1 WO2018101196 A1 WO 2018101196A1 JP 2017042362 W JP2017042362 W JP 2017042362W WO 2018101196 A1 WO2018101196 A1 WO 2018101196A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
carbon atoms
polymerizable liquid
ring
Prior art date
Application number
PCT/JP2017/042362
Other languages
English (en)
French (fr)
Inventor
慶太 高橋
真裕美 野尻
彩子 村松
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201780073825.8A priority Critical patent/CN110023347B/zh
Priority to KR1020197014754A priority patent/KR102210179B1/ko
Priority to JP2018553830A priority patent/JP6754845B2/ja
Publication of WO2018101196A1 publication Critical patent/WO2018101196A1/ja
Priority to US16/407,703 priority patent/US11332669B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/38Esters containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3804Polymers with mesogenic groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3804Polymers with mesogenic groups in the main chain
    • C09K19/3823Polymers with mesogenic groups in the main chain containing heterocycles having at least one nitrogen as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/16Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms condensed with carbocyclic rings or ring systems
    • C07D249/18Benzotriazoles
    • C07D249/20Benzotriazoles with aryl radicals directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/16Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to only one ring carbon atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K2019/523Organic solid particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2219/00Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used
    • C09K2219/03Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used in the form of films, e.g. films after polymerisation of LC precursor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to a polymerizable liquid crystal composition, an optically anisotropic film, an optical film, a polarizing plate, an image display device, and an organic electroluminescence display device.
  • a polymerizable compound exhibiting reverse wavelength dispersion has features such as being able to accurately convert the light wavelength in a wide wavelength range and being able to reduce the thickness of the retardation film because it has a high refractive index. Therefore, it has been actively researched.
  • T-type molecular design guidelines have been adopted for polymerizable compounds exhibiting reverse wavelength dispersion, and the wavelength of the major axis is shortened and the wavelength of the minor axis located at the center of the molecule is lengthened. Is required to do.
  • the inventors of the present invention have studied the polymerizable liquid crystal composition containing the polymerizable compound described in Patent Documents 1 to 5, and found that the type of the polymerizable compound and the blending conditions of the additive (for example, an ultraviolet absorber, etc.) It was clarified that the light resistance of the formed optically anisotropic film is inferior depending on the case.
  • the additive for example, an ultraviolet absorber, etc.
  • the present invention provides a polymerizable liquid crystal composition capable of producing an optically anisotropic film excellent in light resistance, an optically anisotropic film, an optical film, a polarizing plate, an image display device using the same, and It is an object to provide an organic electroluminescence display device.
  • the present inventors have a predetermined structure together with a polymerizable liquid crystal compound exhibiting reverse wavelength dispersion, and the relationship with the maximum absorption wavelength of the polymerizable liquid crystal compound.
  • the inventors have found that the light resistance of the formed optically anisotropic film is improved by using a predetermined amount of an ultraviolet absorber satisfying a predetermined relationship, and the present invention has been completed. That is, it has been found that the above-described problem can be achieved by the following configuration.
  • the maximum absorption wavelength A of the polymerizable liquid crystal compound and the maximum absorption wavelength B of the ultraviolet absorber satisfy the following formula (2),
  • Ar represents an optionally substituted aromatic hydrocarbon ring or aromatic heterocyclic ring
  • X represents a carbon atom or a nitrogen atom
  • Y represents an oxygen atom or nitrogen
  • Z represents an oxygen atom or a nitrogen atom
  • X, Y, and Z may each have a substituent
  • the substituent that X has and the substituent that Y has A ring containing X and Y may be formed.
  • the bond form between X and Y may be a double bond or a triple bond depending on the presence or absence of the substituent of Y.
  • a polarizing plate comprising the optical film according to any one of [5] to [7] and a polarizer.
  • An image display device comprising the optical film according to any one of [5] to [7] or the polarizing plate according to [8].
  • An organic electroluminescence display device comprising an organic electroluminescence display panel and a circularly polarizing plate disposed on the organic electroluminescence display panel, An organic electroluminescence display device, wherein the circularly polarizing plate includes a polarizer and the optical film according to [7].
  • a polymerizable liquid crystal composition capable of producing an optically anisotropic film excellent in light resistance, an optically anisotropic film, an optical film, a polarizing plate, an image display device using the same, and An organic electroluminescence display device can be provided.
  • FIG. 1A is an example of a spectrum for explaining the definition of the maximum absorption wavelength.
  • FIG. 1B is another example of a spectrum for explaining the definition of the maximum absorption wavelength.
  • FIG. 2A is a schematic cross-sectional view showing an example of the optical film of the present invention.
  • FIG. 2B is a schematic cross-sectional view showing an example of the optical film of the present invention.
  • FIG. 2C is a schematic cross-sectional view showing an example of the optical film of the present invention.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • a divalent group expressed (e.g., -CO-O-) bond direction is not particularly limited, for example, D 1 in the formula (I) to be described later -CO-O- In this case, assuming that the position bonded to the Ar side is * 1, and the position bonded to the G 1 side is * 2, D 1 may be * 1-CO—O— * 2. * 1-O-CO- * 2 may also be used.
  • the polymerizable liquid crystal composition of the present invention contains a polymerizable liquid crystal compound having reverse wavelength dispersion (hereinafter sometimes abbreviated as “reverse dispersion”) and an ultraviolet absorber represented by the following formula (1).
  • the maximum absorption wavelength A of the polymerizable liquid crystal compound and the maximum absorption wavelength B of the ultraviolet absorber satisfy the following formula (2).
  • the maximum absorption wavelength refers to the absorption wavelength on the longest wavelength side of the peak existing in the wavelength region of 300 to 400 nm. For example, as shown in FIG. 1A and FIG. When a peak of peak is shown, the absorption on the long wavelength side is set as the maximum absorption wavelength.
  • the content of the ultraviolet absorber is 1 to 20% by mass with respect to the content of the polymerizable liquid crystal compound.
  • Ar represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring which may have a substituent
  • X represents a carbon atom or a nitrogen atom
  • Y represents Represents an oxygen atom or a nitrogen atom
  • Z represents an oxygen atom or a nitrogen atom
  • X, Y, and Z each may have a substituent
  • the substituent that X has and the substituent that Y has They may combine with each other to form a ring containing X and Y.
  • the bond form between X and Y may be a double bond or a triple bond depending on the presence or absence of the substituent of Y.
  • the present invention as described above, it is formed by using a reverse wavelength dispersible polymerizable liquid crystal compound and an ultraviolet absorber represented by the above formula (1) and satisfying the relational expression of the above formula (2).
  • the light resistance of the optically anisotropic film is improved.
  • the present inventors presume as follows. That is, when the maximum absorption wavelength A of the polymerizable liquid crystal compound and the maximum absorption wavelength B of the ultraviolet absorber satisfy the above formula (2), there are many regions where the absorption wavelengths of the polymerizable liquid crystal compound and the ultraviolet absorber overlap. Thus, it is presumed that energy transfer from the polymerizable liquid crystal compound to the ultraviolet absorber is likely to occur.
  • the polymerizable liquid crystal composition of the present invention contains a polymerizable liquid crystal compound having reverse wavelength dispersion.
  • the “reverse wavelength dispersion” polymerizable liquid crystal compound means an in-plane retardation (Re) value at a specific wavelength (visible light range) of a retardation film produced using the same. When the measurement is performed, the Re value becomes equal or higher as the measurement wavelength increases.
  • the “polymerizable liquid crystal compound” refers to a liquid crystal compound having a polymerizable group.
  • polymeric group which a polymeric liquid crystal compound has is not restrict
  • the kind in particular of the said polymeric liquid crystal compound is not restrict
  • Polymer generally refers to a polymer having a degree of polymerization of 100 or more (Polymer Physics / Phase Transition Dynamics, Masao Doi, 2 pages, Iwanami Shoten, 1992). In the present invention, any liquid crystal compound can be used. Two or more rod-like liquid crystal compounds, two or more disc-like liquid crystal compounds, or a mixture of a rod-like liquid crystal compound and a disc-like liquid crystal compound may be used. Among these, it is preferable to use a rod-like liquid crystal compound. This is because by aligning the rod-like liquid crystal compound homogeneously (horizontal), it is easy to make the formed retardation film function as a positive A plate.
  • the polymerizable liquid crystal compound is not particularly limited as long as it can form a reverse wavelength dispersive film as described above.
  • the polymerizable liquid crystal compound is represented by the general formula (I) described in JP 2008-297210 A.
  • the liquid crystal compound represented by the formula (I) described later can be used.
  • the polymerizable liquid crystal compound is preferably a liquid crystal compound represented by the following formula (I) from the viewpoint of being excellent in reverse wavelength dispersion.
  • D 1 , D 2 , D 3 and D 4 are each independently a single bond, —CO—O—, —C ( ⁇ S) O—, —CR 1 R 2 —, — CR 1 R 2 —CR 3 R 4 —, —O—CR 1 R 2 —, —CR 1 R 2 —O—CR 3 R 4 —, —CO—O—CR 1 R 2 —, —O—CO— CR 1 R 2 —, —CR 1 R 2 —O—CO—CR 3 R 4 —, —CR 1 R 2 —CO—O—CR 3 R 4 —, —NR 1 —CR 2 R 3 —, or —CO—NR 1 — is represented.
  • R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom, a fluorine atom or an alkyl group having 1 to 4 carbon atoms.
  • G 1 and G 2 each independently represent a divalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, and —CH 2 constituting the alicyclic hydrocarbon group. One or more of — may be substituted with —O—, —S— or —NH—.
  • a 1 and A 2 each independently represents an aromatic ring having 6 or more carbon atoms or a cycloalkylene ring having 6 or more carbon atoms.
  • SP 1 and SP 2 are each independently a single bond, a linear or branched alkylene group having 1 to 12 carbon atoms, or a straight chain having 1 to 12 carbon atoms. Or a divalent linkage in which one or more of —CH 2 — constituting a branched alkylene group is substituted with —O—, —S—, —NH—, —N (Q) —, or —CO—. Represents a group, Q represents a substituent.
  • L 1 and L 2 each independently represent a monovalent organic group, and at least one of L 1 and L 2 represents a polymerizable group.
  • Ar is an aromatic ring represented by the following formula (Ar-3)
  • at least one of L 1 and L 2 and L 3 and L 4 in the following formula (Ar-3) is a polymerizable group Represents.
  • the divalent alicyclic hydrocarbon group having 5 to 8 carbon atoms represented by G 1 and G 2 is preferably a 5-membered ring or a 6-membered ring.
  • the alicyclic hydrocarbon group may be saturated or unsaturated, but is preferably a saturated alicyclic hydrocarbon group.
  • the divalent alicyclic hydrocarbon group represented by G 1 and G 2 for example, the description in paragraph 0078 of JP2012-21068A can be referred to, and the contents thereof are incorporated in the present specification.
  • examples of the aromatic ring having 6 or more carbon atoms represented by A 1 and A 2 include aromatic hydrocarbon rings such as benzene ring, naphthalene ring, anthracene ring, phenanthrolin ring, etc .; furan ring , Aromatic heterocyclic rings such as pyrrole ring, thiophene ring, pyridine ring, thiazole ring and benzothiazole ring. Of these, a benzene ring (for example, a 1,4-phenyl group and the like) is preferable.
  • examples of the cycloalkylene ring having 6 or more carbon atoms represented by A 1 and A 2 include a cyclohexane ring and a cyclohexene ring.
  • a cyclohexane ring for example, cyclohexane-1 , 4-diyl group, etc. are preferred.
  • preferred examples of the linear or branched alkylene group having 1 to 12 carbon atoms represented by SP 1 and SP 2 include a methylene group, an ethylene group, a propylene group, and a butylene group. It is done.
  • the polymerizable group represented by at least one of L 1 and L 2 is not particularly limited, but is preferably a polymerizable group capable of radical polymerization or cationic polymerization.
  • a generally known radical polymerizable group can be used, and preferable examples include an acryloyl group or a methacryloyl group. In this case, it is known that the acryloyl group is generally fast in the polymerization rate, and the acryloyl group is preferable from the viewpoint of productivity improvement. Can do.
  • cationic polymerizable group generally known cationic polymerizable can be used, and specifically, an alicyclic ether group, a cyclic acetal group, a cyclic lactone group, a cyclic thioether group, a spiro orthoester group, and And vinyloxy groups.
  • an alicyclic ether group or a vinyloxy group is preferable, and an epoxy group, an oxetanyl group, or a vinyloxy group is particularly preferable.
  • particularly preferred polymerizable groups include the following.
  • Ar represents any aromatic ring selected from the group consisting of groups represented by the following formulas (Ar-1) to (Ar-5).
  • * 1 represents a bonding position with D 1
  • * 2 represents a bonding position with D 2 .
  • Q 1 represents N or CH
  • Q 2 represents —S—, —O—, or —N (R 5 ) —
  • R 5 represents Y 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • Y 1 may have a substituent, an aromatic hydrocarbon group having 6 to 12 carbon atoms, or an aromatic complex having 3 to 12 carbon atoms Represents a cyclic group.
  • alkyl group having 1 to 6 carbon atoms represented by R 5 include, for example, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, and tert-butyl. Group, n-pentyl group, n-hexyl group and the like.
  • aromatic hydrocarbon group having 6 to 12 carbon atoms represented by Y 1 include aryl groups such as a phenyl group, a 2,6-diethylphenyl group, and a naphthyl group.
  • Examples of the aromatic heterocyclic group having 3 to 12 carbon atoms represented by Y 1 include heteroaryl groups such as thienyl group, thiazolyl group, furyl group, and pyridyl group.
  • Examples of the substituent that Y 1 may have include an alkyl group, an alkoxy group, and a halogen atom.
  • As the alkyl group for example, a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 8 carbon atoms (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group).
  • an alkoxy group for example, an alkoxy group having 1 to 18 carbon atoms is preferable, an alkoxy group having 1 to 8 carbon atoms (for example, a methoxy group, an ethoxy group, an n-butoxy group, a methoxyethoxy group, etc.) is more preferable.
  • An alkoxy group having a number of 1 to 4 is more preferable, and a methoxy group or an ethoxy group is particularly preferable.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Among them, a fluorine atom and a chlorine atom are preferable.
  • Z 1 , Z 2 and Z 3 are each independently a hydrogen atom, a monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms, carbon A monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms, a monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms, a halogen atom, a cyano group, a nitro group, —NR 6 R 7 , or —SR 8 R 6 to R 8 each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and Z 1 and Z 2 may be bonded to each other to form an aromatic ring.
  • the monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms is preferably an alkyl group having 1 to 15 carbon atoms, more preferably an alkyl group having 1 to 8 carbon atoms, specifically, a methyl group or an ethyl group.
  • Isopropyl group, tert-pentyl group (1,1-dimethylpropyl group), tert-butyl group, 1,1-dimethyl-3,3-dimethyl-butyl group are more preferable, methyl group, ethyl group, tert-butyl group
  • the group is particularly preferred.
  • Examples of the monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclodecyl group, methylcyclohexyl group, and ethylcyclohexyl.
  • Monocyclic saturated hydrocarbon groups such as cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclooctenyl, cyclodecenyl, cyclopentadienyl, cyclohexadienyl, cyclooctadienyl, cyclodecadienyl
  • Monocyclic unsaturated hydrocarbon groups such as dienes; bicyclo [2.2.1] heptyl group, bicyclo [2.2.2] octyl group, tricyclo [5.2.1.0 2,6 ] decyl group, Tricyclo [3.3.1.1 3,7 ] decyl group, tetracyclo [6.2.1.
  • dodecyl group polycyclic saturated hydrocarbon group such as adamantyl group, and the like.
  • the monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms include a phenyl group, a 2,6-diethylphenyl group, a naphthyl group, a biphenyl group, and the like.
  • the aryl group (particularly a phenyl group) include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Among these, a fluorine atom, a chlorine atom, and a bromine atom are preferable.
  • the alkyl group having 1 to 6 carbon atoms represented by R 6 to R 8 specifically includes, for example, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group. Group, tert-butyl group, n-pentyl group, n-hexyl group and the like.
  • a 3 and A 4 are each independently from —O—, —N (R 9 ) —, —S—, and —CO—.
  • R 9 represents a hydrogen atom or a substituent. Examples of the substituent represented by R 9 include the same substituents that Y 1 in the above formula (Ar-1) may have.
  • X represents a hydrogen atom or a non-metal atom of Groups 14 to 16 to which a substituent may be bonded.
  • Examples of the non-metal atoms of Group 14 to 16 represented by X include an oxygen atom, a sulfur atom, a nitrogen atom having a substituent, and a carbon atom having a substituent.
  • substituents include Is, for example, an alkyl group, an alkoxy group, an alkyl-substituted alkoxy group, a cyclic alkyl group, an aryl group (eg, a phenyl group, a naphthyl group, etc.), a cyano group, an amino group, a nitro group, an alkylcarbonyl group, a sulfo group, a hydroxyl group, etc. Is mentioned.
  • D 5 and D 6 are each independently a single bond, —CO—O—, —C ( ⁇ S) O—, —CR 1 R 2 —, —CR 1.
  • R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom, a fluorine atom or an alkyl group having 1 to 4 carbon atoms.
  • each of SP 3 and SP 4 independently represents a single bond, a linear or branched alkylene group having 1 to 12 carbon atoms, or a straight chain having 1 to 12 carbon atoms.
  • Q represents a substituent. Examples of the substituent include the same substituents as those which Y 1 in formula (Ar-1) may have.
  • L 3 and L 4 each independently represent a monovalent organic group, and at least one of L 3 and L 4 and L 1 and L 2 in the above formula (I) Represents a polymerizable group.
  • Ax has at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring, and has 2 to 30 carbon atoms.
  • Ay represents a hydrogen atom, an optionally substituted alkyl group having 1 to 6 carbon atoms, or an aromatic hydrocarbon ring and aromatic group.
  • the aromatic ring in Ax and Ay may have a substituent, and Ax and Ay may combine to form a ring.
  • Q 3 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent.
  • Ax and Ay include those described in paragraphs [0039] to [0095] of Patent Document 3 (International Publication No. 2014/010325).
  • Specific examples of the alkyl group having 1 to 6 carbon atoms represented by Q 3 include, for example, methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert, -Butyl group, n-pentyl group, n-hexyl group, and the like.
  • the substituent include those similar to the substituent that Y 1 in the above formula (Ar-1) may have. Can be mentioned.
  • liquid crystal compound represented by the above formula (I) are shown below, but are not limited to these liquid crystal compounds. Note that all 1,4-cyclohexylene groups in the following formulas are trans-1,4-cyclohexylene groups.
  • the group adjacent to the acryloyloxy group represents a propylene group (a group in which a methyl group is substituted with an ethylene group), and is a regioisomer having a different methyl group position. Represents a mixture of bodies.
  • the polymerizable liquid crystal composition of the present invention contains a liquid crystal compound having forward wavelength dispersion (hereinafter sometimes abbreviated as “forward dispersion”) in addition to the above-described reverse wavelength dispersion polymerizable liquid crystal compound.
  • forward dispersion a liquid crystal compound having forward wavelength dispersion
  • “forward wavelength dispersive” liquid crystal compound is used to measure the in-plane retardation (Re) value at a specific wavelength (visible light range) of a retardation film produced using the compound. In this case, the Re value decreases as the measurement wavelength increases.
  • the content in the case of containing the liquid crystalline compound exhibiting the forward wavelength dispersibility is not particularly limited. Is preferably 1 to 40 parts by mass, and more preferably 10 to 30 parts by mass.
  • the polymerizable liquid crystal composition of the present invention contains an ultraviolet absorber represented by the following formula (1).
  • Ar represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring which may have a substituent.
  • the aromatic hydrocarbon ring include aryl groups such as a phenyl group, a 2,6-diethylphenyl group, and a naphthyl group.
  • heteroaryl groups such as a thienyl group, a thiazolyl group, a furyl group, a pyridyl group, are mentioned, for example.
  • substituent that Ar may have include an alkyl group, an alkoxy group, and a halogen atom.
  • alkyl group for example, a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 8 carbon atoms (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group).
  • N-butyl group, isobutyl group, sec-butyl group, t-butyl group, cyclohexyl group, etc.) more preferably an alkyl group having 1 to 4 carbon atoms, and a methyl group or an ethyl group. Is particularly preferred.
  • an alkoxy group having 1 to 18 carbon atoms is preferable, an alkoxy group having 1 to 8 carbon atoms (for example, a methoxy group, an ethoxy group, an n-butoxy group, a methoxyethoxy group, etc.) is more preferable.
  • An alkoxy group having a number of 1 to 4 is more preferable, and a methoxy group or an ethoxy group is particularly preferable.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Among them, a fluorine atom and a chlorine atom are preferable.
  • X represents a carbon atom or a nitrogen atom
  • Y represents an oxygen atom or a nitrogen atom
  • Z represents an oxygen atom or a nitrogen atom
  • X, Y, and Z are respectively It may have a substituent, and the substituent which X has and the substituent which Y has may combine with each other to form a ring containing X and Y.
  • the bond form between X and Y may be a double bond or a triple bond depending on the presence or absence of the substituent of Y.
  • substituent that X, Y, and Z may have include the same substituents that Ar may have.
  • Examples of the ultraviolet absorber represented by the above formula (1) include the compounds described in paragraphs [0018] to [0031] of JP-A-2007-72163, and specifically, Examples include the compounds described in paragraphs [0055] to [0105].
  • examples of the ultraviolet absorber represented by the above formula (1) include triazine compounds described in paragraphs [0011] to [0041] of JP2013-82707A.
  • Tinuvin 400, Tinuvin 405, Tinuvin 460, Tinuvin 477, Tinuvin 479, Tinuvin 1577 (all manufactured by BASF) and the like can be used as commercially available products.
  • the ultraviolet absorber represented by the above formula (1) is represented by the following formula (1-1) or the following formula (1-) because it has absorption at a long wavelength and has better light resistance. It is preferable that it is a compound represented by 2).
  • R 11 represents a halogen atom, a nitro group, a cyano group, a sulfo group, an alkyl group, an alkenyl group, an aromatic hydrocarbon ring, an aromatic heterocyclic ring, —O—R, —S—R, —CO—R, —CO—O—R, —O—CO—R, —SO—R, —SO 2 —R, —NR 2 , —NH—CO—R , —NH—SO 2 —R, —CO—NR 2 , —SO 2 —NR 2 , —NH—CO—O—R, or —NH—CO—NR 2 , where R is a hydrogen atom, alkyl Represents a group, an alkenyl group, an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and R may further have a substituent.
  • n represents an integer of 0 to 4.
  • a plurality of R 11 may each have the same or different and also, optionally bonded to each other to form a ring Also good.
  • the aromatic hydrocarbon ring and aromatic heterocyclic ring represented by R 11 and the substituent that may be included, the same as those in Ar in the above formula (1) may be mentioned.
  • R 12 and R 13 each independently represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring which may have a substituent.
  • aromatic hydrocarbon ring and aromatic heterocyclic ring represented by R 12 and R 13 and the substituent which may be present, both are the same as Ar in the above formula (1). Can be mentioned.
  • each R 14 independently represents a hydrogen atom, an alkyl group, an alkoxyl group, a hydroxyl group, an amino group or an amide group.
  • Examples of the compound represented by the above formula (1-1) include compounds described in paragraphs [0030] to [0031] of JP-A-2007-72163, and specifically, Examples include the compounds described in paragraphs [0065] to [0105].
  • Specific examples of the compound represented by the above formula (1-2) include compounds described in paragraphs [0024] to [0034] of JP-A No. 2014-032386.
  • a compound in which the maximum absorption wavelength A of the polymerizable liquid crystal compound described above and the maximum absorption wavelength B of the ultraviolet absorber described above satisfy the following formula (2) is appropriately selected and used. It is preferable to select and use one that satisfies -1), and it is more preferable to select and use one that satisfies the following formula (2-2). 0 nm ⁇ AB ⁇ 24 nm (2) 0 nm ⁇ AB ⁇ 20 nm (2-1) 0 nm ⁇ AB ⁇ 18 nm (2-2)
  • the content of the ultraviolet absorber represented by the above formula (1) is 1 to 20% by mass with respect to the content of the polymerizable liquid crystal compound described above, and 5 to 20% by mass. It is preferably 5 to 15% by mass.
  • the polymerizable liquid crystal composition of the present invention preferably contains a polymerization initiator.
  • the polymerization initiator to be used is preferably a photopolymerization initiator capable of initiating a polymerization reaction by ultraviolet irradiation.
  • Examples of the photopolymerization initiator include ⁇ -carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ether (described in US Pat. No. 2,448,828), ⁇ -hydrocarbon substituted aromatics, and the like.
  • Group acyloin compounds described in US Pat. No. 2,722,512
  • polynuclear quinone compounds described in US Pat. Nos.
  • the polymerizable liquid crystal composition of the present invention preferably contains a solvent from the viewpoint of workability for forming an optically anisotropic film.
  • the solvent include ketones (eg, acetone, 2-butanone, methyl isobutyl ketone, cyclohexanone, etc.), ethers (eg, dioxane, tetrahydrofuran, etc.), aliphatic hydrocarbons (eg, hexane) ), Alicyclic hydrocarbons (eg, cyclohexane, etc.), aromatic hydrocarbons (eg, toluene, xylene, trimethylbenzene, etc.), halogenated carbons (eg, dichloromethane, dichloroethane, dichlorobenzene, chlorotoluene, etc.) ), Esters (eg, methyl acetate, ethyl acetate, butyl acetate, etc.), water, alcohols
  • the optically anisotropic film of the present invention is an optically anisotropic film obtained by polymerizing the polymerizable liquid crystal composition of the present invention described above.
  • Examples of the method for forming the optically anisotropic film include a method in which the polymerizable liquid crystal composition of the present invention described above is used to obtain a desired alignment state and then fixed by polymerization.
  • the polymerization conditions are not particularly limited, but it is preferable to use ultraviolet rays in polymerization by light irradiation.
  • the irradiation amount is preferably 10 mJ / cm 2 to 50 J / cm 2 , more preferably 20 mJ / cm 2 to 5 J / cm 2 , and still more preferably 30 mJ / cm 2 to 3 J / cm 2. 50 to 1000 mJ / cm 2 is particularly preferable.
  • the optically anisotropic film can be formed on any support in the optical film of the present invention described later or on the polarizer in the polarizing plate of the present invention described later.
  • the optical film of the present invention is an optical film having the optical anisotropic film of the present invention.
  • 2A, FIG. 2B, and FIG. 2C are schematic cross-sectional views showing examples of the optical film of the present invention.
  • FIG. 2 is a schematic diagram, and the thickness relationship and positional relationship of each layer do not necessarily match the actual ones, and the support, alignment film, and hard coat layer shown in FIG. It is a member.
  • the optical film 10 shown in FIG. 2 has a support 16, an alignment film 14, and an optical anisotropic film 12 in this order. Moreover, as shown in FIG.
  • the optical film 10 may have a hard coat layer 18 on the side opposite to the side on which the alignment film 14 of the support 16 is provided.
  • the optically anisotropic film 12 may have a hard coat layer 18 on the side opposite to the side where the alignment film 14 is provided.
  • optically anisotropic film included in the optical film of the present invention is the optically anisotropic film of the present invention described above.
  • the thickness of the optically anisotropic film is not particularly limited, but is preferably 0.1 to 10 ⁇ m, and more preferably 0.5 to 5 ⁇ m.
  • the optically anisotropic film of the present invention described above is preferably a positive A plate or a positive C plate from the viewpoint of optical design.
  • a plates there are two types of A plates, a positive A plate (positive A plate) and a negative A plate (negative A plate).
  • the slow axis direction in the film plane (the refractive index in the plane is maximum).
  • the refractive index in the direction) is nx
  • the refractive index in the direction perpendicular to the in-plane slow axis is ny
  • the refractive index in the thickness direction is nz
  • the positive A plate has the relationship of formula (A1)
  • the negative A plate satisfies the relationship of formula (A2).
  • the positive A plate shows a positive value for Rth
  • the negative A plate shows a negative value for Rth.
  • C plates there are two types, a positive C plate (positive C plate) and a negative C plate (negative C plate), and the positive C plate satisfies the relationship of the formula (C1).
  • the plate satisfies the relationship of the formula (C2).
  • the positive C plate shows a negative value for Rth
  • the negative C plate shows a positive value for Rth.
  • Formula (C1) nz> nx ⁇ ny
  • Formula (C2) nz ⁇ nx ⁇ ny
  • includes not only the case where both are completely the same, but also the case where both are substantially the same.
  • substantially the same means, for example, (nx ⁇ ny) ⁇ d (where d is the thickness of the film), but 0 to 10 nm, preferably 0 to 5 nm is also included in “nx ⁇ ny” It is.
  • the optical film of the present invention has two or more optically anisotropic films of the present invention described above from the viewpoint of optical design, at least one layer is a positive A plate, and at least one other layer is positive C. A plate is preferred.
  • the optical film of the present invention may have a support as a base material for forming the optically anisotropic film.
  • a support is preferably transparent, and specifically has a light transmittance of 80% or more.
  • Examples of such a support include a glass substrate and a polymer film, and examples of the material of the polymer film include a cellulose polymer; an acrylic polymer having an acrylate polymer such as a polymethyl methacrylate and a lactone ring-containing polymer.
  • the thickness of the support is not particularly limited, but is preferably 5 to 60 ⁇ m, and more preferably 5 to 30 ⁇ m.
  • the optical film of the present invention has the above-mentioned arbitrary support, it is preferable to have an alignment film between the support and the optically anisotropic film. Note that the above-described support may also serve as an alignment film.
  • the alignment film generally contains a polymer as a main component.
  • the polymer material for alignment film is described in many documents, and many commercially available products can be obtained.
  • the polymer material used in the present invention is preferably polyvinyl alcohol or polyimide, and derivatives thereof. In particular, modified or unmodified polyvinyl alcohol is preferred.
  • a photo-alignment film as the alignment film because it is possible to prevent the deterioration of the surface state by not contacting the alignment film surface when forming the alignment film.
  • the photo-alignment film is not particularly limited, but is a polymer material such as a polyamide compound or a polyimide compound described in paragraphs [0024] to [0043] of International Publication No. 2005/096041; described in JP 2012-155308 A
  • a liquid crystal alignment film formed of a liquid crystal aligning agent having a photo-alignable group, such as trade name LPP-JP265CP manufactured by Rollic Technologies, Inc. can be used.
  • the thickness of the alignment film is not particularly limited. However, from the viewpoint of forming an optically anisotropic film having a uniform thickness by reducing surface irregularities that may exist on the support.
  • the thickness is preferably from 01 to 10 ⁇ m, more preferably from 0.01 to 1 ⁇ m, still more preferably from 0.01 to 0.5 ⁇ m.
  • the optical film of the present invention preferably has a hard coat layer in order to impart the physical strength of the film.
  • the support may have a hard coat layer on the side opposite to the side on which the alignment film is provided (see FIG. 2B), and the side on which the alignment film of the optical anisotropic film is provided; May have a hard coat layer on the opposite side (see FIG. 2C).
  • the hard coat layer those described in paragraphs [0190] to [0196] of JP-A-2009-98658 can be used.
  • optical film of the present invention may have another optical anisotropic film in addition to the optical anisotropic film of the present invention. That is, the optical film of the present invention may have a laminated structure of the optical anisotropic film of the present invention and another optical anisotropic film.
  • Such other optically anisotropic films include an optically anisotropic film obtained by using a composition in which the above-described polymerizable liquid crystal compound and ultraviolet absorber are blended in a relationship not satisfying the above formula (2), If it is an optically anisotropic film obtained using the other polymerizable compound (especially liquid crystal compound), it will not specifically limit.
  • liquid crystal compounds can be classified into a rod type and a disk type from the shape.
  • Polymer generally refers to a polymer having a degree of polymerization of 100 or more (Polymer Physics / Phase Transition Dynamics, Masao Doi, 2 pages, Iwanami Shoten, 1992).
  • any liquid crystal compound can be used, but a rod-like liquid crystal compound or a discotic liquid crystal compound (discotic liquid crystal compound) is preferably used.
  • Two or more kinds of rod-like liquid crystal compounds, two or more kinds of disk-like liquid crystal compounds, or a mixture of a rod-like liquid crystal compound and a disk-like liquid crystal compound may be used.
  • the liquid crystal compound described above it is more preferable to use a rod-like liquid crystal compound or a discotic liquid crystal compound having a polymerizable group, and the liquid crystal compound has two or more polymerizable groups in one molecule. Further preferred. When the liquid crystal compound is a mixture of two or more, it is preferable that at least one liquid crystal compound has two or more polymerizable groups in one molecule.
  • the rod-like liquid crystal compound for example, those described in claim 1 of JP-T-11-53019 and paragraphs [0026] to [0098] of JP-A-2005-289980 can be preferably used.
  • liquid crystal compound for example, those described in paragraphs [0020] to [0067] of JP-A-2007-108732 and paragraphs [0013] to [0108] of JP-A-2010-244038 can be preferably used. However, it is not limited to these.
  • the polarizing plate of the present invention has the above-described optical film of the present invention and a polarizer.
  • the polarizer which the polarizing plate of this invention has is not specifically limited if it is a member which has a function which converts light into specific linearly polarized light,
  • a conventionally well-known absorption type polarizer and reflection type polarizer can be utilized.
  • As the absorption polarizer an iodine polarizer, a dye polarizer using a dichroic dye, a polyene polarizer, and the like are used.
  • Iodine polarizers and dye polarizers include coating polarizers and stretchable polarizers, both of which can be applied. Polarized light produced by adsorbing iodine or dichroic dye to polyvinyl alcohol and stretching. A child is preferred.
  • Patent No. 5048120, Patent No. 5143918, Patent No. 4691205, Patent No. 4751481 and Japanese Patent No. 4751486 can be cited, and known techniques relating to these polarizers can also be preferably used.
  • the reflective polarizer a polarizer in which thin films having different birefringence are stacked, a wire grid polarizer, a polarizer in which a cholesteric liquid crystal having a selective reflection region and a quarter wavelength plate are combined, or the like is used.
  • a polyvinyl alcohol resin (a polymer containing —CH 2 —CHOH— as a repeating unit, particularly at least one selected from the group consisting of polyvinyl alcohol and an ethylene-vinyl alcohol copolymer, in terms of better adhesion.
  • a polyvinyl alcohol resin a polymer containing —CH 2 —CHOH— as a repeating unit, particularly at least one selected from the group consisting of polyvinyl alcohol and an ethylene-vinyl alcohol copolymer, in terms of better adhesion.
  • the thickness of the polarizer is not particularly limited, but is preferably 3 ⁇ m to 60 ⁇ m, more preferably 5 ⁇ m to 30 ⁇ m, and even more preferably 5 ⁇ m to 15 ⁇ m.
  • an adhesive layer may be disposed between the optically anisotropic film and the polarizer in the optical film of the present invention.
  • the adhesive that can be used in the present invention include, but are not limited to, a polyvinyl alcohol-based adhesive.
  • the image display device of the present invention is an image display device having the optical film of the present invention or the polarizing plate of the present invention.
  • the display element used in the image display device of the present invention is not particularly limited, and examples thereof include a liquid crystal cell, an organic electroluminescence (hereinafter abbreviated as “EL”) display panel, a plasma display panel, and the like. Among these, a liquid crystal cell and an organic EL display panel are preferable, and a liquid crystal cell is more preferable. That is, the image display device of the present invention is preferably a liquid crystal display device using a liquid crystal cell as a display element, and an organic EL display device using an organic EL display panel as a display element, and is a liquid crystal display device. More preferred.
  • the liquid crystal display device which is an example of the image display device of the present invention is a liquid crystal display device having the above-described polarizing plate of the present invention and a liquid crystal cell.
  • the polarizing plate of the present invention is preferably used as the polarizing plate on the front side, and the polarizing plate of the present invention is used as the polarizing plate on the front side and the rear side. Is more preferable.
  • the liquid crystal cell which comprises a liquid crystal display device is explained in full detail.
  • the liquid crystal cell used in the liquid crystal display device is preferably in a VA (Vertical Alignment) mode, an OCB (Optically Compensated Bend) mode, an IPS (In-Plane-Switching) mode, or a TN (Twisted Nematic). It is not limited to.
  • a TN mode liquid crystal cell rod-like liquid crystal molecules are substantially horizontally aligned when no voltage is applied, and are twisted and aligned at 60 to 120 °.
  • the TN mode liquid crystal cell is most frequently used as a color TFT liquid crystal display device, and is described in many documents.
  • a VA mode liquid crystal cell rod-like liquid crystalline molecules are aligned substantially vertically when no voltage is applied.
  • the VA mode liquid crystal cell includes: (1) a narrowly defined VA mode liquid crystal cell in which rod-like liquid crystalline molecules are aligned substantially vertically when no voltage is applied, and substantially horizontally when a voltage is applied (Japanese Patent Laid-Open No. Hei 2-). 176625) (2) Liquid crystal cell (SID97, Digest of tech. Papers (Preliminary Proceed) 28 (1997) 845 in which the VA mode is converted into a multi-domain (MVA mode) for widening the viewing angle.
  • VA mode liquid crystal cell includes: (1) a narrowly defined VA mode liquid crystal cell in which rod-like liquid crystalline molecules are aligned substantially vertically when no voltage is applied, and substantially horizontally when a voltage is applied (Japanese Patent Laid-Open No. Hei 2-). 176625) (2) Liquid crystal cell (SID97, Digest of tech. Papers (Preliminary Proceed) 28 (1997) 845 in which the VA mode is converted into a multi-domain (MVA mode) for widening the
  • a liquid crystal cell in which rod-like liquid crystalline molecules are substantially vertically aligned when no voltage is applied and twisted multi-domain alignment is applied when a voltage is applied (Preliminary collections 58-59 of the Japan Liquid Crystal Society) (1998)) and (4) SURVIVAL mode liquid crystal cells (announced at LCD International 98).
  • any of a PVA (Patterned Vertical Alignment) type, a photo-alignment type (Optical Alignment), and a PSA (Polymer-Stained Alignment) may be used. Details of these modes are described in JP-A-2006-215326 and JP-T 2008-538819.
  • JP-A-10-54982, JP-A-11-202323, and JP-A-9-292522 are methods for reducing leakage light during black display in an oblique direction and improving the viewing angle using an optical compensation sheet. No. 11-133408, No. 11-305217, No. 10-307291, and the like.
  • Organic EL display device As an organic EL display device which is an example of the image display device of the present invention, for example, from the viewing side, the polarizing plate of the present invention and a plate having a ⁇ / 4 function (hereinafter also referred to as “ ⁇ / 4 plate”).
  • ⁇ / 4 plate The aspect which has an organic electroluminescent display panel in this order is mentioned suitably.
  • the “plate having a ⁇ / 4 function” refers to a plate having a function of converting linearly polarized light having a specific wavelength into circularly polarized light (or circularly polarized light into linearly polarized light).
  • a ⁇ / 4 plate Specific examples of the embodiment in which is a single layer structure include a stretched polymer film, a retardation film provided with an optically anisotropic film having a ⁇ / 4 function on a support, and the like.
  • the four plates have a multilayer structure, specifically, there is a broadband ⁇ / 4 plate formed by laminating a ⁇ / 4 plate and a ⁇ / 2 plate.
  • the organic EL display panel is a display panel configured using an organic EL element in which an organic light emitting layer (organic electroluminescence layer) is sandwiched between electrodes (between a cathode and an anode).
  • the configuration of the organic EL display panel is not particularly limited, and a known configuration is adopted.
  • the image display device of the present invention is preferably an organic EL display device including an organic EL display panel and a circularly polarizing plate disposed on the organic EL display panel.
  • the circularly polarizing plate is more preferably an embodiment including a polarizer and the above-described optical film of the present invention.
  • the optical film includes at least one layer, at least one layer is a positive A plate, and at least another layer is a positive C plate.
  • Polymerizable liquid crystal compound In preparing the polymerizable liquid crystal composition, the following polymerizable liquid crystal compounds 1 to 6 were prepared.
  • Phenol G can be synthesized with reference to the method described in Justus Liebigs Annalen der Chemie, 726, 103-109 (1969). Under a nitrogen stream, 21.79 g (334 mmol) of 86% potassium hydroxide was dissolved in 70 ml of isopropyl alcohol and 85 ml of water. To this solution, a solution prepared by dissolving 11.03 g (167 mmol) of malononitrile in 12 ml of isopropyl alcohol at an internal temperature of 5 ° C. or less was added with stirring under ice cooling. Next, 13.35 g (175 mmol) of carbon disulfide was added dropwise at an internal temperature of 10 ° C.
  • a forward dispersion liquid crystal 1 represented by the following formula was synthesized according to the method described in Japanese Patent No. 6086884.
  • UV absorber In preparing the polymerizable liquid crystal composition, the following ultraviolet absorbers were prepared.
  • Polymerization initiator As a polymerization initiator, a compound represented by the following formula (Exemplary Compound (A-1) described in JP 2011-158655 A) was prepared.
  • Air interface alignment agent (leveling agent) A compound represented by the following formula (leveling agent T-1 described in JP-A No. 2016-53709) was prepared as an air interface alignment agent.
  • Example 19 Preparation of polymerizable liquid crystal composition
  • Polymerizable liquid crystal compounds, ultraviolet absorbers, polymerization initiators and air interface alignment agents were dissolved in a solvent (chloroform) to prepare respective polymerizable liquid crystal compositions of Examples and Comparative Examples.
  • Example 19 as shown in Table 1 below, the reverse dispersion liquid crystal 4, the reverse dispersion liquid crystal 5 and the forward dispersion liquid crystal 1 are used in combination as the polymerizable liquid crystal compound. 42:42:16.
  • excluding only an additive from the composition of each polymeric liquid crystal composition of an Example and a comparative example was prepared.
  • the composition was prepared with the following compounding quantities for every addition amount (mass% with respect to content of a polymeric liquid crystal compound) of a ultraviolet absorber.
  • a polymerizable liquid crystal composition is prepared by dissolving 0.10 g of a reverse dispersible polymerizable liquid crystal compound, 0.0005 g of a polymerization initiator, 0.0002 g of an air interface alignment agent, and 0.001 g of an ultraviolet absorber in 3.18 g of chloroform. Prepared.
  • a polymerizable liquid crystal composition is prepared by dissolving 0.10 g of a reverse dispersible polymerizable liquid crystal compound, 0.0005 g of a polymerization initiator, 0.0002 g of an air interface aligning agent, and 0.005 g of an ultraviolet absorber in 3.30 g of chloroform. Prepared.
  • ⁇ Addition amount of UV absorber 10% by mass> 0.10 g of a reverse dispersible polymerizable liquid crystal compound, 0.0005 g of a polymerization initiator, 0.0002 g of an air interface alignment agent, and 0.010 g of an ultraviolet absorber are dissolved in 3.46 g of chloroform to obtain a polymerizable liquid crystal composition.
  • ⁇ Addition amount of UV absorber 20% by mass>
  • a polymerizable liquid crystal composition is prepared by dissolving 0.10 g of a reverse dispersible polymerizable liquid crystal compound, 0.0005 g of a polymerization initiator, 0.0002 g of an air interface alignment agent, and 0.020 g of an ultraviolet absorber in 3.77 g of chloroform. Prepared.
  • the polymerizable liquid crystal composition is applied onto a glass substrate (Eagle XG manufactured by Corning) cut to 2.5 ⁇ 3.0 cm by spin coating (application amount of polymerizable liquid crystal composition: 80 ⁇ L, rotation speed: 1500 rpm). And the coating film was produced on the glass substrate by making it dry. Next, while heating the coating film to 160 ° C. on a hot plate, a cured film was produced at an irradiation amount of 500 mJ using an ultraviolet irradiation device (manufactured by Nippon Bunka Seiko Co., Ltd.).
  • the absorbance A (absorbance of the cured film before the light resistance test) at the absorption maximum wavelength of the cured film was measured using an ultraviolet-visible measuring device (trade name “UV-3150”, manufactured by Shimadzu Corporation). Specifically, after performing baseline correction using the glass substrate on which the polymerizable liquid crystal composition was not applied, the absorbance A at the absorption maximum wavelength of the cured film was measured.
  • a glass substrate is set in a xenon irradiation machine (SX75 manufactured by Suga Test Instruments Co., Ltd.) so that a cured film of the polymerizable liquid crystal composition becomes an irradiation surface, and a sample is 290 mm from a light source using a # 275 filter. Separated and irradiated for 2 hours under the condition of 150 W / m 2 . In this way, a cured film after the light resistance test was obtained.
  • the absorbance B at the absorption maximum wavelength of the cured film after the light resistance test is measured using an ultraviolet-visible measuring device (trade name “UV-3150”, manufactured by Shimadzu Corporation). did.
  • Light resistance improvement rate (%) light resistance remaining rate Y ⁇ light resistance remaining rate X
  • composition for photo-alignment film A polymer, a low molecular compound, a crosslinking agent and a crosslinking catalyst were synthesized or prepared by the method described later.
  • the organic phase is taken out, washed with 0.2% by mass ammonium nitrate aqueous solution until the water after washing becomes neutral, and then the solvent and water are distilled off under reduced pressure to obtain an epoxy-containing polyorganosiloxane. Obtained as a viscous clear liquid.
  • the epoxy-containing polyorganosiloxane had a weight average molecular weight Mw of 2,200 and an epoxy equivalent of 186 g / mol.
  • acrylic group-containing carboxylic acid (trade name “Aronix M-5300”, manufactured by Toagosei Co., Ltd., acrylic acid ⁇ -carboxyl) was added to a 100 mL three-necked flask.
  • ⁇ Low molecular compound> A low molecular compound represented by the following formula B (Nomcoat TAB, manufactured by Nisshin Orio Co., Ltd.) was used.
  • ⁇ Crosslinking agent> A polyfunctional epoxy compound (Epolide GT401, manufactured by Daicel Corporation) was used as a cross-linking agent.
  • ⁇ Crosslinking catalyst> For the purpose of promoting crosslinking, a thermal acid generator (Sun-Aid SI-60, Sanshin Chemical Industry Co., Ltd.) was used as a crosslinking catalyst.
  • composition for photo-alignment film For 100 parts by mass of butyl acetate, 4.6 parts by mass of the polymer described above, 0.8 parts by mass of the low molecular compound described above, 0.8 parts by mass of the crosslinking agent described above, and 0.8 parts by mass of the crosslinking catalyst described above. After adding a part and stirring, it filtered with the filter of the hole diameter of 1 micrometer, and prepared the liquid crystal aligning agent of solid content concentration 7.5 weight%. In addition, in the obtained liquid crystal aligning agent, components, such as a polymer, were fully melt
  • Coating liquid 1 for forming an optically anisotropic film
  • Reverse dispersion liquid crystal 1 95.00 parts by mass Tinuvin-477 5.00 parts by mass Polymerization initiator A-1 below 0.05 parts by mass Leveling agent T-1 below 0.20 parts by mass Cyclopentanone 424. 8 parts by mass ⁇
  • Optically anisotropic film forming coating solution 2
  • Reverse dispersion liquid crystal 2 95.00 parts by mass Tinuvin-477 5.00 parts by mass Polymerization initiator A-1 0.05 parts by mass Leveling agent T-1 0.20 parts by mass Cyclopentanone 424. 8 parts by mass ⁇
  • Coating liquid 3 for forming an optically anisotropic film
  • Reverse dispersion liquid crystal 3 95.00 parts by mass Tinuvin-477 5.00 parts by mass Polymerization initiator A-1 0.05 parts by mass Leveling agent T-1 0.20 parts by mass Cyclopentanone 424. 8 parts by mass ⁇
  • ⁇ Coating liquid 5 for forming an optically anisotropic film ⁇ -Reverse dispersion liquid crystal 1 95.00 parts by mass-Tinuvin-400 5.00 parts by mass-Polymerization initiator A-1 0.50 parts by mass-Leveling agent T-1 0.20 parts by mass-Hisolv MTEM (Toho Chemical) 2.00 parts by mass, NK ester A-200 (manufactured by Shin-Nakamura Chemical Co., Ltd.) 1.00 parts by mass, 424.8 parts by mass of methyl ethyl ketone -------- ⁇
  • Matting agent solution ⁇ Silica particles having an average particle size of 20 nm (AEROSIL R972, manufactured by Nippon Aerosil Co., Ltd.) 2 parts by mass Methylene chloride (first solvent) 76 parts by mass Methanol (second solvent) 11 parts by mass The above core layer cellulose acylate dope 1 mass ⁇
  • the core layer cellulose acylate dope and the outer layer cellulose acylate dope are filtered through a filter paper having an average pore size of 34 ⁇ m and a sintered metal filter having an average pore size of 10 ⁇ m, and then the core layer cellulose acylate dope and the outer layer cellulose acylate dope on both sides thereof 3 layers were simultaneously cast on a drum at 20 ° C. from a casting port (band casting machine).
  • the film was peeled off at a solvent content of about 20% by mass, both ends in the width direction of the film were fixed with tenter clips, and dried while being stretched in the transverse direction at a stretch ratio of 1.1.
  • the resulting cellulose acylate film 1 had a core layer with a thickness of 36 ⁇ m, and the outer layers disposed on both sides of the core layer had a thickness of 2 ⁇ m. Moreover, the in-plane retardation of the obtained cellulose acylate film 1 was 0 nm.
  • the composition for photo-alignment film prepared previously was applied to one surface of the produced cellulose acylate film 1 with a bar coater. After coating, the solvent was removed by drying on a hot plate at 120 ° C. for 1 minute to form a photoisomerized composition layer having a thickness of 0.3 ⁇ m.
  • the obtained photoisomerizable composition layer was irradiated with polarized ultraviolet rays (10 mJ / cm 2 , using an ultrahigh pressure mercury lamp) to form a photo-alignment film.
  • the previously prepared coating solutions 1 to 5 for forming an optically anisotropic film were applied with a bar coater to form a composition layer.
  • the formed composition layer was once heated to 110 ° C. on a hot plate and then cooled to 60 ° C. to stabilize the orientation. Thereafter, the orientation is fixed by ultraviolet irradiation (500 mJ / cm 2 , using an ultrahigh pressure mercury lamp) in a nitrogen atmosphere (oxygen concentration 100 ppm) while maintaining the temperature at 60 ° C., and an optical anisotropic film (positive A) having a thickness of 2.3 ⁇ m. Plates 1 to 5) were formed, and optical films 1 to 5 were produced. The in-plane retardation of the obtained optical film was 140 nm.
  • Light resistance improvement rate (%) light resistance remaining rate Y ⁇ light resistance remaining rate X A: Light resistance improvement rate is 10% or more B: Light resistance remaining rate is more than 5% and less than 10% C: Light resistance improvement rate is more than 0% and less than 5% D: Light resistance improvement rate is 0% or less
  • Example 24 [Preparation of positive C plate 1] As a temporary support, a commercially available triacetyl cellulose film “Z-TAC” (manufactured by FUJIFILM Corporation) [hereinafter abbreviated as “cellulose acylate film 2”]. ] was used. After passing the cellulose acylate film 2 through a dielectric heating roll having a temperature of 60 ° C. and raising the film surface temperature to 40 ° C., the coating amount of an alkali solution having the composition shown below is applied to one side of the film using a bar coater.
  • a coating solution for forming an alignment film having the following composition was continuously applied with a # 8 wire bar.
  • the alignment film was formed by drying with warm air of 60 ° C. for 60 seconds and further with warm air of 100 ° C. for 120 seconds.
  • Alignment film forming coating solution ⁇ Polyvinyl alcohol (manufactured by Kuraray, PVA103) 2.4 parts by mass Isopropyl alcohol 1.6 parts by mass Methanol 36 parts by mass Water 60 parts by mass ⁇ ⁇
  • the following coating liquid N for forming an optically anisotropic film is applied on the cellulose acylate film 2 having an alignment film prepared as described above, and after aging at 60 ° C. for 60 seconds, air cooling of 70 mW / cm 2 is performed under air.
  • Rth was ⁇ 60 nm at a wavelength of 550 nm.
  • Reverse dispersion liquid crystal 1 100 parts by mass Tinuvin-477 5 parts by mass
  • the following vertical alignment agent (S01) 1 part by mass
  • the following vertical alignment agent (S02) 0.5 parts by mass Ethylene oxide modified trimethylolpropane triacrylate (V # 360, Osaka Organics) Chemical Co., Ltd.) 8 parts by mass Irgacure 907 (manufactured by BASF) 3 parts by mass Kayacure DETX (manufactured by Nippon Kayaku Co., Ltd.) 1 part by mass
  • the following compound B03 0.4 parts by mass Methyl ethyl ketone 170 parts by mass Cyclohexanone 30 parts by mass ⁇
  • Example 25 A positive C plate 2 was produced in the same manner as in Example 24 except that the following optical anisotropic film forming coating liquid M was used instead of the optical anisotropic film forming coating liquid N.
  • Rth was ⁇ 60 nm at a wavelength of 550 nm.
  • Reverse dispersion liquid crystal 2 100 parts by mass Tinuvin-477 5 parts by mass vertical alignment agent (S01) 1 part by mass vertical alignment agent (S02) 0.5 parts by mass ethylene oxide modified trimethylolpropane triacrylate (V # 360, Osaka Organic Chemistry ( 8 parts by mass Irgacure 907 (manufactured by BASF) 3 parts by mass Kayacure DETX (manufactured by Nippon Kayaku Co., Ltd.) 1 part by mass Compound B03 0.4 parts by mass Methyl ethyl ketone 170 parts by mass Cyclohexanone 30 parts by mass ⁇
  • Example 26 A positive C plate 3 was produced in the same manner as in Example 24 except that the following optical anisotropic film forming coating solution L was used instead of the optical anisotropic film forming coating solution N.
  • Rth was ⁇ 60 nm at a wavelength of 550 nm.
  • Reverse dispersion liquid crystal 3 100 parts by weight Tinuvin-477 5 parts by weight vertical alignment agent (S01) 1 part by weight vertical alignment agent (S02) 0.5 parts by weight ethylene oxide modified trimethylolpropane triacrylate (V # 360, Osaka Organic Chemistry ( 8 parts by mass Irgacure 907 (manufactured by BASF) 3 parts by mass Kayacure DETX (manufactured by Nippon Kayaku Co., Ltd.) 1 part by mass Compound B03 0.4 parts by mass Methyl ethyl ketone 170 parts by mass Cyclohexanone 30 parts by mass ⁇
  • Example 27 A positive C plate 4 was produced in the same manner as in Example 24 except that the following optical anisotropic film forming coating solution O was used instead of the optical anisotropic film forming coating solution N.
  • Rth was ⁇ 60 nm at a wavelength of 550 nm.
  • Reverse dispersion liquid crystal 4 80 parts by weight Reverse dispersion liquid crystal 5 20 parts by weight Tinuvin-477 5 parts by weight
  • Vertical alignment agent (S01) 1 part by weight vertical alignment agent (S02) 0.5 part by weight Ethylene oxide modified trimethylolpropane triacrylate (V # 360, manufactured by Osaka Organic Chemical Co., Ltd.) 8 parts by mass Irgacure 907 (manufactured by BASF) 3 parts by mass Kayacure DETX (manufactured by Nippon Kayaku Co., Ltd.) 1 part by mass Compound B03 0.4 part by mass methyl ethyl ketone 170 parts by mass cyclohexanone 30 parts by mass ⁇
  • a positive C plate 5 was produced in the same manner as in Example 24 except that the following optical anisotropic film forming coating liquid P was used instead of the optical anisotropic film forming coating liquid N.
  • Rth was ⁇ 60 nm at a wavelength of 550 nm.
  • Reverse dispersion liquid crystal 100 parts by weight Tinuvin-400 5 parts by weight vertical alignment agent (S01) 1 part by weight vertical alignment agent (S02) 0.5 parts by weight ethylene oxide modified trimethylolpropane triacrylate (V # 360, Osaka Organic Chemistry ( 8 parts by mass Irgacure 907 (manufactured by BASF) 3 parts by mass Kayacure DETX (manufactured by Nippon Kayaku Co., Ltd.) 1 part by mass Compound B03 0.4 parts by mass Methyl ethyl ketone 170 parts by mass Cyclohexanone 30 parts by mass ⁇
  • Light resistance improvement rate (%) light resistance remaining rate Y ⁇ light resistance remaining rate X A: Light resistance improvement rate is 10% or more B: Light resistance remaining rate is more than 5% and less than 10% C: Light resistance improvement rate is more than 0% and less than 5% D: Light resistance improvement rate is 0% or less
  • Example 28 [Preparation of antireflection plate (circular polarizing plate) for organic EL display] ⁇ Production of circularly polarizing plate>
  • the positive C plate 1 of Example 24 was transferred to the optical anisotropic film (positive A plate 1) side of the optical film 1 of Example 20 via an adhesive, and the cellulose acylate film 2 was removed. Moreover, a polarizer was bonded to the cellulose acylate film 1 side of the optical film 1 via an adhesive to produce a circularly polarizing plate.
  • the optical film 1 of Example 20 (positive A plate 1) and the positive C plate 1 of Example 24 used for the production of the circularly polarizing plate were both samples after the above-described light resistance evaluation was performed. Was used.
  • Example 29 The same method as in Example 28, except that the optical film 2 of Example 21 was used instead of the optical film 1 of Example 20, and the positive C plate 2 of Example 25 was used instead of the positive C plate 1. Thus, a circularly polarizing plate was produced.
  • Example 30 The same method as in Example 28 except that the optical film 3 of Example 22 was used instead of the optical film 1 of Example 20, and the positive C plate 3 of Example 26 was used instead of the positive C plate 1. Thus, a circularly polarizing plate was produced.
  • Example 31 The same method as in Example 28 except that the optical film 4 of Example 23 was used instead of the optical film 1 of Example 20, and the positive C plate 4 of Example 27 was used instead of the positive C plate 1. Thus, a circularly polarizing plate was produced.
  • Comparative Example 8 The same method as in Example 28, except that the optical film 5 of Comparative Example 6 was used instead of the optical film 1 of Example 20, and the positive C plate 5 of Comparative Example 7 was used instead of the positive C plate 1. Thus, a circularly polarizing plate was produced.
  • the optical film of the present invention particularly, the optically anisotropic film of the present invention has two or more layers, at least one layer is a positive A plate and at least one other layer is a positive C plate. It was found that when an optical film was used for the circularly polarizing plate, the display function of the organic EL display device was improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本発明は、耐光性に優れた光学異方性膜を作製することができる重合性液晶組成物、ならびに、それを用いた光学異方性膜、光学フィルム、偏光板、画像表示装置および有機エレクトロルミネッセンス表示装置を提供することを課題とする。本発明の重合性液晶組成物は、逆波長分散性の重合性液晶化合物と、下記式(1)で表される紫外線吸収剤とを含有し、重合性液晶化合物の極大吸収波長Aと、紫外線吸収剤の極大吸収波長Bとが、下記式(2)を満たし、紫外線吸収剤の含有量が、重合性液晶化合物の含有量に対して1~20質量%である、重合性液晶組成物である。 0nm≦A-B<24nm ・・・(2)

Description

重合性液晶組成物、光学異方性膜、光学フィルム、偏光板、画像表示装置および有機エレクトロルミネッセンス表示装置
 本発明は、重合性液晶組成物、光学異方性膜、光学フィルム、偏光板、画像表示装置および有機エレクトロルミネッセンス表示装置に関する。
 逆波長分散性を示す重合性化合物は、広い波長範囲での正確な光線波長の変換が可能になること、および、高い屈折率を有するために位相差フィルムを薄膜化できること、などの特徴を有しているため、盛んに研究されている。
 また、逆波長分散性を示す重合性化合物としては、一般にT型の分子設計指針が取られており、分子長軸の波長を短波長化し、分子中央に位置する短軸の波長を長波長化することが要求されている。
 そのため、分子中央に位置する短軸の骨格(以下、「逆波長分散発現部」ともいう。)と、分子長軸との連結には、吸収波長のないシクロアルキレン骨格を利用することが知られている(例えば、特許文献1~5参照)。
特開2008-273925号公報 特開2010-031223号公報 国際公開第2014/010325号 特開2016-081035号公報 国際公開第2016/114346号
 本発明者らは、特許文献1~5に記載された重合性化合物を含有する重合性液晶組成物について検討したところ、重合性化合物の種類および添加剤(例えば、紫外線吸収剤など)の配合条件によっては、形成される光学異方性膜の耐光性が劣ることを明らかとした。
 そこで、本発明は、耐光性に優れた光学異方性膜を作製することができる重合性液晶組成物、ならびに、それを用いた光学異方性膜、光学フィルム、偏光板、画像表示装置および有機エレクトロルミネッセンス表示装置を提供することを課題とする。
 本発明者らは、上記課題を達成すべく鋭意検討した結果、逆波長分散性を示す重合性液晶化合物とともに、所定の構造を有し、かつ、重合性液晶化合物の極大吸収波長との関係が所定の関係を満たす紫外線吸収剤を所定量用いることにより、形成される光学異方性膜の耐光性が良好となることを見出し、本発明を完成させた。
 すなわち、以下の構成により上記課題を達成することができることを見出した。
 [1] 逆波長分散性の重合性液晶化合物と、下記式(1)で表される紫外線吸収剤とを含有し、
 重合性液晶化合物の極大吸収波長Aと、紫外線吸収剤の極大吸収波長Bとが、下記式(2)を満たし、
 紫外線吸収剤の含有量が、重合性液晶化合物の含有量に対して1~20質量%である、重合性液晶組成物。
Figure JPOXMLDOC01-appb-C000004

 0nm≦A-B<24nm ・・・(2)
 式(1)中、Arは、置換基を有していてもよい、芳香族炭化水素環または芳香族複素環を表し、Xは、炭素原子または窒素原子を表し、Yは、酸素原子または窒素原子を表し、Zは、酸素原子または窒素原子を表し、X、YおよびZは、それぞれ置換基を有していてもよく、Xが有する置換基とYが有する置換基とが互いに結合してXおよびYを含む環を形成していてもよい。ただし、XとYとの結合形式は、Yの置換基の有無により、二重結合であっても三重結合であってもよい。
 [2] 重合性液晶化合物が、後述する式(I)で表される液晶化合物である、[1]に記載の重合性液晶組成物。
 [3] 紫外線吸収剤が、後述する式(1-1)または後述する式(1-2)で表される化合物である、[1]または[2]に記載の重合性液晶組成物。
 [4] [1]~[3]のいずれかに記載の重合性液晶組成物を重合して得られる光学異方性膜。
 [5] [4]に記載の光学異方性膜を有する光学フィルム。
 [6] 光学異方性膜が、ポジティブAプレートまたはポジティブCプレートである、[5]に記載の光学フィルム。
 [7] 光学異方性膜を2層以上有し、少なくとも1層がポジティブAプレートであり、少なくとも他の1層がポジティブCプレートである、[5]または[6]に記載の光学フィルム。
 [8] [5]~[7]のいずれかに記載の光学フィルムと、偏光子とを有する、偏光板。
 [9] [5]~[7]のいずれかに記載の光学フィルム、または、[8]に記載の偏光板を有する、画像表示装置。
 [10] 有機エレクトロルミネッセンス表示パネルと、有機エレクトロルミネッセンス表示パネル上に配置された円偏光板と、を含む有機エレクトロルミネッセンス表示装置であって、
 円偏光板が、偏光子と、[7]に記載の光学フィルムとを含む、有機エレクトロルミネッセンス表示装置。
 本発明によれば、耐光性に優れた光学異方性膜を作製することができる重合性液晶組成物、ならびに、それを用いた光学異方性膜、光学フィルム、偏光板、画像表示装置および有機エレクトロルミネッセンス表示装置を提供することができる。
図1Aは、極大吸収波長の定義を説明するためのスペクトルの一例である。 図1Bは、極大吸収波長の定義を説明するためのスペクトルの他の一例である。 図2Aは、本発明の光学フィルムの一例を示す模式的な断面図である。 図2Bは、本発明の光学フィルムの一例を示す模式的な断面図である。 図2Cは、本発明の光学フィルムの一例を示す模式的な断面図である。
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 また、本明細書において、表記される2価の基(例えば、-CO-O-)の結合方向は特に制限されず、例えば、後述する式(I)中のD1が-CO-O-である場合、Ar側に結合している位置を*1、G1側に結合している位置を*2とすると、D1は、*1-CO-O-*2であってもよく、*1-O-CO-*2であってもよい。
[重合性液晶組成物]
 本発明の重合性液晶組成物は、逆波長分散性(以下、「逆分散」と略す場合がある。)の重合性液晶化合物と、下記式(1)で表される紫外線吸収剤とを含有する。
 本発明においては、重合性液晶化合物の極大吸収波長Aと、紫外線吸収剤の極大吸収波長Bとが、下記式(2)を満たす。なお、本明細書においては、極大吸収波長は、300~400nmの波長領域に存在するピークの最も長波長側の吸収波長をいい、例えば、図1Aおよび図1Bに示すように、吸収スペクトルが双峰性のピークを示す場合には、長波長側の吸収を極大吸収波長とする。
 また、本発明においては、紫外線吸収剤の含有量は、重合性液晶化合物の含有量に対して1~20質量%である。
Figure JPOXMLDOC01-appb-C000005

 0nm≦A-B<24nm ・・・(2)
 ここで、上記式(1)中、Arは、置換基を有していてもよい、芳香族炭化水素環または芳香族複素環を表し、Xは、炭素原子または窒素原子を表し、Yは、酸素原子または窒素原子を表し、Zは、酸素原子または窒素原子を表し、X、YおよびZは、それぞれ置換基を有していてもよく、Xが有する置換基とYが有する置換基とが互いに結合してXおよびYを含む環を形成していてもよい。ただし、XとYとの結合形式は、Yの置換基の有無により、二重結合であっても三重結合であってもよい。
 本発明においては、上述した通り、逆波長分散性の重合性液晶化合物と、上記式(1)で表され、上記式(2)の関係式を満たす紫外線吸収剤とを用いることにより、形成される光学異方性膜の耐光性が良好となる。
 これは、詳細には明らかではないが、本発明者らは以下のように推測している。
 すなわち、重合性液晶化合物の極大吸収波長Aと、紫外線吸収剤の極大吸収波長Bとが、上記式(2)を満たすことにより、重合性液晶化合物および紫外線吸収剤の吸収波長が重なる領域が多くなり、重合性液晶化合物から紫外線吸収剤へのエネルギー移動が起こりやすくなったと推測される。その結果、重合性液晶化合物の分解が抑制されて、光学異方性膜の耐光性が向上すると推測される。
 以下、本発明の重合性液晶組成物の各成分について詳細に説明する。
 〔重合性液晶化合物〕
 本発明の重合性液晶組成物は、逆波長分散性の重合性液晶化合物を含有する。
 ここで、本明細書において「逆波長分散性」の重合性液晶化合物とは、これを用いて作製された位相差フィルムの特定波長(可視光範囲)における面内のレターデーション(Re)値を測定した際に、測定波長が大きくなるにつれてRe値が同等または高くなるものをいう。
 また、本明細書において「重合性液晶化合物」とは、重合性基を有する液晶化合物のことをいう。なお、重合性液晶化合物が有する重合性基の種類は特に制限されず、例えば、アクリロイル基、メタクリロイル基、ビニル基、スチリル基、および、アリル基などが挙げられる。
 上記重合性液晶化合物の種類は特に制限されないが、その形状から、棒状タイプ(棒状液晶化合物)と円盤状タイプ(円盤状液晶化合物)に分類できる。さらにそれぞれ低分子タイプと高分子タイプがある。高分子とは一般に重合度が100以上のものを指す(高分子物理・相転移ダイナミクス,土井 正男 著,2頁,岩波書店,1992)。本発明では、いずれの液晶化合物を用いることもできる。2種以上の棒状液晶化合物、2種以上の円盤状液晶化合物、または、棒状液晶化合物と円盤状液晶化合物との混合物を用いてもよい。
 これらの中でも、棒状液晶化合物を用いることが好ましい。棒状液晶化合物をホモジニアス(水平)配向させることで、形成される位相差フィルムをポジティブAプレートとして機能させることが容易になるという利点があるためである。
 上記重合性液晶化合物は、上記のように逆波長分散性のフィルムを形成できるものであれば特に限定されず、例えば、特開2008-297210号公報に記載の一般式(I)で表される化合物(特に、段落番号[0034]~[0039]に記載の化合物)、特開2010-84032号公報に記載の一般式(1)で表される化合物(特に、段落番号[0067]~[0073]に記載の化合物)、および、後述する式(I)で表される液晶化合物等を用いることができる。
 本発明においては、上記重合性液晶化合物は、逆波長分散性により優れるという観点から、下記式(I)で表される液晶化合物であることが好ましい。
 L1-SP1-A1-D3-G1-D1-Ar-D2-G2-D4-A2-SP2-L2  ・・・(I)
 上記式(I)中、D1、D2、D3およびD4は、それぞれ独立に、単結合、-CO-O-、-C(=S)O-、-CR12-、-CR12-CR34-、-O-CR12-、-CR12-O-CR34-、-CO-O-CR12-、-O-CO-CR12-、-CR12-O-CO-CR34-、-CR12-CO-O-CR34-、-NR1-CR23-、または、-CO-NR1-を表す。R1、R2、R3およびR4は、それぞれ独立に、水素原子、フッ素原子、または、炭素数1~4のアルキル基を表す。
 また、上記式(I)中、G1およびG2は、それぞれ独立に、炭素数5~8の2価の脂環式炭化水素基を表し、脂環式炭化水素基を構成する-CH2-の1個以上が-O-、-S-または-NH-で置換されていてもよい。
 また、上記式(I)中、A1およびA2は、それぞれ独立に、炭素数6以上の芳香環、または、炭素数6以上のシクロアルキレン環を表す。
 また、上記式(I)中、SP1およびSP2は、それぞれ独立に、単結合、炭素数1~12の直鎖状もしくは分岐状のアルキレン基、または、炭素数1~12の直鎖状もしくは分岐状のアルキレン基を構成する-CH2-の1個以上が-O-、-S-、-NH-、-N(Q)-、もしくは、-CO-に置換された2価の連結基を表し、Qは、置換基を表す。
 また、上記式(I)中、L1およびL2は、それぞれ独立に1価の有機基を表し、L1およびL2の少なくとも一方は重合性基を表す。ただし、Arが、下記式(Ar-3)で表される芳香環である場合は、L1およびL2ならびに下記式(Ar-3)中のL3およびL4の少なくとも1つが重合性基を表す。
 上記式(I)中、G1およびG2が示す炭素数5~8の2価の脂環式炭化水素基としては、5員環又は6員環であることが好ましい。また、脂環式炭化水素基は、飽和でも不飽和でもよいが飽和脂環式炭化水素基が好ましい。G1およびG2で表される2価の脂環式炭化水素基としては、例えば、特開2012-21068号公報の段落0078の記載を参酌でき、この内容は本願明細書に組み込まれる。
 上記式(I)中、A1およびA2が示す炭素数6以上の芳香環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナンスロリン環等などの芳香族炭化水素環;フラン環、ピロール環、チオフェン環、ピリジン環、チアゾール環、ベンゾチアゾール環等の芳香族複素環;が挙げられる。なかでも、ベンゼン環(例えば、1,4-フェニル基など)が好ましい。
 また、上記式(I)中、A1およびA2が示す炭素数6以上のシクロアルキレン環としては、例えば、シクロヘキサン環、シクロヘキセン環などが挙げられ、なかでも、シクロヘキサン環(例えば、シクロヘキサン-1,4-ジイル基など)が好ましい。
 上記式(I)中、SP1およびSP2が示す炭素数1~12の直鎖状もしくは分岐状のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基等が好適に挙げられる。
 上記式(I)中、L1およびL2の少なくとも一方が示す重合性基は、特に限定されないが、ラジカル重合またはカチオン重合可能な重合性基が好ましい。
 ラジカル重合性基としては、一般に知られているラジカル重合性基を用いることができ、好適なものとして、アクリロイル基またはメタクリロイル基を挙げることができる。この場合、重合速度はアクリロイル基が一般的に速いことが知られており、生産性向上の観点からアクリロイル基が好ましいが、メタクリロイル基も高複屈折性液晶の重合性基として同様に使用することができる。
 カチオン重合性基としては、一般に知られているカチオン重合性を用いることができ、具体的には、脂環式エーテル基、環状アセタール基、環状ラクトン基、環状チオエーテル基、スピロオルソエステル基、および、ビニルオキシ基などを挙げることができる。中でも、脂環式エーテル基、または、ビニルオキシ基が好適であり、エポキシ基、オキセタニル基、または、ビニルオキシ基が特に好ましい。
 特に好ましい重合性基の例としては下記が挙げられる。
Figure JPOXMLDOC01-appb-C000006
 一方、上記式(I)中、Arは、下記式(Ar-1)~(Ar-5)で表される基からなる群から選択されるいずれかの芳香環を表す。なお、下記式(Ar-1)~(Ar-5)中、*1はD1との結合位置を表し、*2はD2との結合位置を表す。
Figure JPOXMLDOC01-appb-C000007
 ここで、上記式(Ar-1)中、Q1は、NまたはCHを表し、Q2は、-S-、-O-、または、-N(R5)-を表し、R5は、水素原子または炭素数1~6のアルキル基を表し、Y1は、置換基を有してもよい、炭素数6~12の芳香族炭化水素基、または、炭素数3~12の芳香族複素環基を表す。
 R5が示す炭素数1~6のアルキル基としては、具体的には、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、および、n-ヘキシル基などが挙げられる。
 Y1が示す炭素数6~12の芳香族炭化水素基としては、例えば、フェニル基、2,6-ジエチルフェニル基、ナフチル基などのアリール基が挙げられる。
 Y1が示す炭素数3~12の芳香族複素環基としては、例えば、チエニル基、チアゾリル基、フリル基、ピリジル基などのヘテロアリール基が挙げられる。
 また、Y1が有していてもよい置換基としては、例えば、アルキル基、アルコキシ基、ハロゲン原子などが挙げられる。
 アルキル基としては、例えば、炭素数1~18の直鎖状、分岐鎖状または環状のアルキル基が好ましく、炭素数1~8のアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、シクロヘキシル基等)がより好ましく、炭素数1~4のアルキル基であることが更に好ましく、メチル基またはエチル基であるのが特に好ましい。
 アルコキシ基としては、例えば、炭素数1~18のアルコキシ基が好ましく、炭素数1~8のアルコキシ基(例えば、メトキシ基、エトキシ基、n-ブトキシ基、メトキシエトキシ基等)がより好ましく、炭素数1~4のアルコキシ基であることが更に好ましく、メトキシ基またはエトキシ基であるのが特に好ましい。
 ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、中でも、フッ素原子、塩素原子であるのが好ましい。
 また、上記式(Ar-1)~(Ar-5)中、Z1、Z2およびZ3は、それぞれ独立に、水素原子、炭素数1~20の1価の脂肪族炭化水素基、炭素数3~20の1価の脂環式炭化水素基、炭素数6~20の1価の芳香族炭化水素基、ハロゲン原子、シアノ基、ニトロ基、-NR67、または、-SR8を表し、R6~R8は、それぞれ独立に、水素原子または炭素数1~6のアルキル基を表し、Z1およびZ2は、互いに結合して芳香環を形成してもよい。
 炭素数1~20の1価の脂肪族炭化水素基としては、炭素数1~15のアルキル基が好ましく、炭素数1~8のアルキル基がより好ましく、具体的には、メチル基、エチル基、イソプロピル基、tert-ペンチル基(1,1-ジメチルプロピル基)、tert-ブチル基、1,1-ジメチル-3,3-ジメチル-ブチル基が更に好ましく、メチル基、エチル基、tert-ブチル基が特に好ましい。
 炭素数3~20の1価の脂環式炭化水素基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロデシル基、メチルシクロヘキシル基、エチルシクロヘキシル基等の単環式飽和炭化水素基;シクロブテニル基、シクロペンテニル基、シクロヘキセニル基、シクロヘプテニル基、シクロオクテニル基、シクロデセニル基、シクロペンタジエニル基、シクロヘキサジエニル基、シクロオクタジエニル基、シクロデカジエン等の単環式不飽和炭化水素基;ビシクロ[2.2.1]ヘプチル基、ビシクロ[2.2.2]オクチル基、トリシクロ[5.2.1.02,6]デシル基、トリシクロ[3.3.1.13,7]デシル基、テトラシクロ[6.2.1.13,6.02,7]ドデシル基、アダマンチル基等の多環式飽和炭化水素基;等が挙げられる。
 炭素数6~20の1価の芳香族炭化水素基としては、具体的には、例えば、フェニル基、2,6-ジエチルフェニル基、ナフチル基、ビフェニル基などが挙げられ、炭素数6~12のアリール基(特にフェニル基)が好ましい。
 ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、中でも、フッ素原子、塩素原子、臭素原子であるのが好ましい。
 一方、R6~R8が示す炭素数1~6のアルキル基としては、具体的には、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、および、n-ヘキシル基などが挙げられる。
 また、上記式(Ar-2)および(Ar-3)中、A3およびA4は、それぞれ独立に、-O-、-N(R9)-、-S-、および、-CO-からなる群から選択される基を表し、R9は、水素原子または置換基を表す。
 R9が示す置換基としては、上記式(Ar-1)中のY1が有していてもよい置換基と同様のものが挙げられる。
 また、上記式(Ar-2)中、Xは、水素原子または置換基が結合していてもよい第14~16族の非金属原子を表す。
 また、Xが示す第14~16族の非金属原子としては、例えば、酸素原子、硫黄原子、置換基を有する窒素原子、置換基を有する炭素原子が挙げられ、置換基としては、具体的には、例えば、アルキル基、アルコキシ基、アルキル置換アルコキシ基、環状アルキル基、アリール基(例えば、フェニル基、ナフチル基など)、シアノ基、アミノ基、ニトロ基、アルキルカルボニル基、スルホ基、水酸基等が挙げられる。
 また、上記式(Ar-3)中、D5およびD6は、それぞれ独立に、単結合、-CO-O-、-C(=S)O-、-CR12-、-CR12-CR34-、-O-CR12-、-CR12-O-CR34-、-CO-O-CR12-、-O-CO-CR12-、-CR12-O-CO-CR34-、-CR12-CO-O-CR34-、-NR1-CR23-、または、-CO-NR1-を表す。R1、R2、R3およびR4は、それぞれ独立に、水素原子、フッ素原子、または、炭素数1~4のアルキル基を表す。
 また、上記式(Ar-3)中、SP3およびSP4は、それぞれ独立に、単結合、炭素数1~12の直鎖状もしくは分岐状のアルキレン基、または、炭素数1~12の直鎖状もしくは分岐状のアルキレン基を構成する-CH2-の1個以上が-O-、-S-、-NH-、-N(Q)-、もしくは、-CO-に置換された2価の連結基を表し、Qは、置換基を表す。置換基としては、上記式(Ar-1)中のYが有していてもよい置換基と同様のものが挙げられる。
 また、上記式(Ar-3)中、L3およびL4は、それぞれ独立に1価の有機基を表し、L3およびL4ならびに上記式(I)中のL1およびL2の少なくとも1つが重合性基を表す。
 また、上記式(Ar-4)~(Ar-5)中、Axは、芳香族炭化水素環および芳香族複素環からなる群から選ばれる少なくとも1つの芳香環を有する、炭素数2~30の有機基を表す。
 また、上記式(Ar-4)~(Ar-5)中、Ayは、水素原子、置換基を有していてもよい炭素数1~6のアルキル基、または、芳香族炭化水素環および芳香族複素環からなる群から選択される少なくとも1つの芳香環を有する、炭素数2~30の有機基を表す。
 ここで、AxおよびAyにおける芳香環は、置換基を有していてもよく、AxとAyとが結合して環を形成していてもよい。
 また、Q3は、水素原子、または、置換基を有していてもよい炭素数1~6のアルキル基を表す。
 AxおよびAyとしては、特許文献3(国際公開第2014/010325号)の[0039]~[0095]段落に記載されたものが挙げられる。
 また、Q3が示す炭素数1~6のアルキル基としては、具体的には、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、および、n-ヘキシル基などが挙げられ、置換基としては、上記式(Ar-1)中のY1が有していてもよい置換基と同様のものが挙げられる。
 上記式(I)で表される液晶化合物の好ましい例を以下に示すが、これらの液晶化合物に限定されるものではない。なお、下記式中の1,4-シクロヘキシレン基は、いずれもトランス-1,4-シクロヘキシレン基である。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010

 なお、上記式中、「*」は結合位置を表す。
Figure JPOXMLDOC01-appb-C000011

 なお、上記式II-2-8およびII-2-9中のアクリロイルオキシ基に隣接する基は、プロピレン基(メチル基がエチレン基に置換した基)を表し、メチル基の位置が異なる位置異性体の混合物を表す。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 本発明の重合性液晶組成物は、上述した逆波長分散性の重合性液晶化合物以外に、順波長分散性(以下、「順分散」と略す場合がある。)の液晶性化合物を含有していてもよい。
 ここで、本明細書において「順波長分散性」の液晶性化合物とは、これを用いて作製された位相差フィルムの特定波長(可視光範囲)における面内のレターデーション(Re)値を測定した際に、測定波長が大きくなるにつれてRe値が小さくなるものをいう。
 本発明においては、上記順波長分散性を示す液晶性化合物を含有する場合の含有量は特に限定されないが、上述した逆波長分散性の重合性液晶化合物および上記順波長分散性を示す液晶性化合物の合計100質量部において、1~40質量部であるのが好ましく、10~30質量部であるのがより好ましい。
 〔紫外線吸収剤〕
 本発明の重合性液晶組成物は、下記式(1)で表される紫外線吸収剤を含有する。
Figure JPOXMLDOC01-appb-C000018
 上記式(1)中、Arは、置換基を有していてもよい、芳香族炭化水素環または芳香族複素環を表す。
 ここで、芳香族炭化水素環としては、例えば、フェニル基、2,6-ジエチルフェニル基、ナフチル基などのアリール基が挙げられる。
 また、芳香族複素環としては、例えば、チエニル基、チアゾリル基、フリル基、ピリジル基などのヘテロアリール基が挙げられる。
 また、Arが有していてもよい置換基としては、例えば、アルキル基、アルコキシ基、ハロゲン原子などが挙げられる。
 アルキル基としては、例えば、炭素数1~18の直鎖状、分岐鎖状または環状のアルキル基が好ましく、炭素数1~8のアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、シクロヘキシル基等)がより好ましく、炭素数1~4のアルキル基であることが更に好ましく、メチル基またはエチル基であるのが特に好ましい。
 アルコキシ基としては、例えば、炭素数1~18のアルコキシ基が好ましく、炭素数1~8のアルコキシ基(例えば、メトキシ基、エトキシ基、n-ブトキシ基、メトキシエトキシ基等)がより好ましく、炭素数1~4のアルコキシ基であることが更に好ましく、メトキシ基またはエトキシ基であるのが特に好ましい。
 ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、中でも、フッ素原子、塩素原子であるのが好ましい。
 また、上記式(1)中、Xは、炭素原子または窒素原子を表し、Yは、酸素原子または窒素原子を表し、Zは、酸素原子または窒素原子を表し、X、YおよびZは、それぞれ置換基を有していてもよく、Xが有する置換基とYが有する置換基とが互いに結合してXおよびYを含む環を形成していてもよい。ただし、XとYとの結合形式は、Yの置換基の有無により、二重結合であっても三重結合であってもよい。
 X、YおよびZが有していてもよい置換基としては、Arが有していてもよい置換基と同様のものが挙げられる。
 上記式(1)で表される紫外線吸収剤としては、例えば、特開2007-72163号公報の[0018]~[0031]段落に記載された化合物が挙げられ、具体的には、同公報の[0055]~[0105]段落に記載された化合物が挙げられる。
 その他、上記式(1)で表される紫外線吸収剤としては、例えば、特開2013-82707号公報の[0011]~[0041]段落に記載されたトリアジン系化合物も挙げられる。
 また、上記式(1)で表される紫外線吸収剤としては、市販品として、Tinuvin400、Tinuvin405、Tinuvin460、Tinuvin477、Tinuvin479、および、Tinuvin1577(いずれもBASF社製)等を用いることができる。
 本発明においては、長波長に吸収を有し、耐光性がより良好となる理由から、上記式(1)で表される紫外線吸収剤が、下記式(1-1)または下記式(1-2)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000019
 上記式(1-1)および上記式(1-2)中、R11は、ハロゲン原子、ニトロ基、シアノ基、スルホ基、アルキル基、アルケニル基、芳香族炭化水素環、芳香族複素環、-O-R、-S-R、-CO-R、-CO-O-R、-O-CO-R、-SO-R、-SO2-R、-NR2、-NH-CO-R、-NH-SO2-R、-CO-NR2、-SO2-NR2、-NH-CO-O-R、または、-NH-CO-NR2を表し、Rは、水素原子、アルキル基、アルケニル基、芳香族炭化水素環または芳香族複素環を表し、Rは、さらに置換基を有していてもよい。また、mは、0~4の整数を表し、R11が複数ある場合、複数のR11は、それぞれ同一であっても異なっていてもよく、また、互いに結合して環を形成していてもよい。
 ここで、R11が示す芳香族炭化水素環および芳香族複素環、ならびに、有していてもよい置換基としては、いずれも、上記式(1)中のArと同様のものが挙げられる。
 また、上記式(1-1)中、R12およびR13は、それぞれ独立に、置換基を有していてもよい、芳香族炭化水素環または芳香族複素環を表す。
 ここで、R12およびR13が示す芳香族炭化水素環および芳香族複素環、ならびに、有していてもよい置換基としては、いずれも、上記式(1)中のArと同様のものが挙げられる。
 また、上記式(1-2)中、R14は、それぞれ独立に、水素原子、アルキル基、アルコキシル基、水酸基、アミノ基またはアミド基を表す。
 上記式(1-1)で表される化合物としては、例えば、特開2007-72163号公報の[0030]~[0031]段落に記載された化合物が挙げられ、具体的には、同公報の[0065]~[0105]段落に記載された化合物が挙げられる。
 また、上記式(1-2)で表される化合物としては、具体的には、例えば、特開2014-032386号公報の[0024]~[0034]段落に記載された化合物が挙げられる。
 本発明においては、上述した重合性液晶化合物の極大吸収波長Aと、上述した紫外線吸収剤の極大吸収波長Bとが、下記式(2)を満たすものを適宜選択して用い、下記式(2-1)を満たすものを適宜選択して用いることが好ましく、下記式(2-2)を満たすものを適宜選択して用いることがより好ましい。
 0nm≦A-B<24nm ・・・(2)
 0nm≦A-B<20nm ・・・(2-1)
 0nm≦A-B≦18nm ・・・(2-2)
 また、本発明においては、上記式(1)で表される紫外線吸収剤の含有量は、上述した重合性液晶化合物の含有量に対して1~20質量%であり、5~20質量%であることが好ましく、5~15質量%であることがより好ましい。
 〔重合開始剤〕
 本発明の重合性液晶組成物は、重合開始剤を含有していることが好ましい。
 使用する重合開始剤は、紫外線照射によって重合反応を開始可能な光重合開始剤であるのが好ましい。
 光重合開始剤としては、例えば、α-カルボニル化合物(米国特許第2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許第2448828号明細書記載)、α-炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書記載)、多核キノン化合物(米国特許第3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書記載)、アクリジンおよびフェナジン化合物(特開昭60-105667号公報、米国特許第4239850号明細書記載)およびオキサジアゾール化合物(米国特許第4212970号明細書記載)、アシルフォスフィンオキシド化合物(特公昭63-40799号公報、特公平5-29234号公報、特開平10-95788号公報、特開平10-29997号公報記載)等が挙げられる。
 〔溶媒〕
 本発明の重合性液晶組成物は、光学異方性膜を形成する作業性等の観点から、溶媒を含有するのが好ましい。
 溶媒としては、具体的には、例えば、ケトン類(例えば、アセトン、2-ブタノン、メチルイソブチルケトン、シクロヘキサノンなど)、エーテル類(例えば、ジオキサン、テトラヒドロフランなど)、脂肪族炭化水素類(例えば、ヘキサンなど)、脂環式炭化水素類(例えば、シクロヘキサンなど)、芳香族炭化水素類(例えば、トルエン、キシレン、トリメチルベンゼンなど)、ハロゲン化炭素類(例えば、ジクロロメタン、ジクロロエタン、ジクロロベンゼン、クロロトルエンなど)、エステル類(例えば、酢酸メチル、酢酸エチル、酢酸ブチルなど)、水、アルコール類(例えば、エタノール、イソプロパノール、ブタノール、シクロヘキサノールなど)、セロソルブ類(例えば、メチルセロソルブ、エチルセロソルブなど)、セロソルブアセテート類、スルホキシド類(例えば、ジメチルスルホキシドなど)、アミド類(例えば、ジメチルホルムアミド、ジメチルアセトアミドなど)等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
[光学異方性膜]
 本発明の光学異方性膜は、上述した本発明の重合性液晶組成物を重合して得られる光学異方性膜である。
 光学異方性膜の形成方法としては、例えば、上述した本発明の重合性液晶組成物を用いて、所望の配向状態とした後に、重合により固定化する方法などが挙げられる。
 ここで、重合条件は特に限定されないが、光照射による重合においては、紫外線を用いることが好ましい。照射量は、10mJ/cm2~50J/cm2であることが好ましく、20mJ/cm2~5J/cm2であることがより好ましく、30mJ/cm2~3J/cm2であることが更に好ましく、50~1000mJ/cm2であることが特に好ましい。また、重合反応を促進するため、加熱条件下で実施してもよい。
 なお、本発明においては、光学異方性膜は、後述する本発明の光学フィルムにおける任意の支持体上や、後述する本発明の偏光板における偏光子上に形成することができる。
[光学フィルム]
 本発明の光学フィルムは、本発明の光学異方性膜を有する光学フィルムである。
 図2A、図2Bおよび図2C(以下、これらの図面を特に区別を要しない場合は「図2」と略す。)は、それぞれ本発明の光学フィルムの一例を示す模式的な断面図である。
 なお、図2は模式図であり、各層の厚みの関係や位置関係などは必ずしも実際のものとは一致せず、図2に示す支持体、配向膜およびハードコート層は、いずれも任意の構成部材である。
 図2に示す光学フィルム10は、支持体16と、配向膜14と、光学異方性膜12とをこの順で有する。
 また、光学フィルム10は、図2Bに示すように、支持体16の配向膜14が設けられた側とは反対側にハードコート層18を有していてもよく、図2Cに示すように、光学異方性膜12の配向膜14が設けられた側とは反対側にハードコート層18を有していてもよい。
 以下、本発明の光学フィルムに用いられる種々の部材について詳細に説明する。
 〔光学異方性膜〕
 本発明の光学フィルムが有する光学異方性膜は、上述した本発明の光学異方性膜である。
 本発明の光学フィルムにおいては、上記光学異方性膜の厚みについては特に限定されないが、0.1~10μmであるのが好ましく、0.5~5μmであるのがより好ましい。
 本発明の光学フィルムにおいては、光学設計上の観点から、上述した本発明の光学異方性膜が、ポジティブAプレートまたはポジティブCプレートであることが好ましい。
 ここで、Aプレートは、ポジティブAプレート(正のAプレート)とネガティブAプレート(負のAプレート)との2種があり、フィルム面内の遅相軸方向(面内での屈折率が最大となる方向)の屈折率をnx、面内の遅相軸と面内で直交する方向の屈折率をny、厚み方向の屈折率をnzとしたとき、ポジティブAプレートは式(A1)の関係を満たすものであり、ネガティブAプレートは式(A2)の関係を満たすものである。なお、ポジティブAプレートはRthが正の値を示し、ネガティブAプレートはRthが負の値を示す。
 式(A1)  nx>ny≒nz
 式(A2)  ny<nx≒nz
 なお、上記「≒」とは、両者が完全に同一である場合だけでなく、両者が実質的に同一である場合も包含する。「実質的に同一」とは、例えば、(ny-nz)×d(ただし、dはフィルムの厚みである)が、-10~10nm、好ましくは-5~5nmの場合も「ny≒nz」に含まれ、(nx-nz)×dが、-10~10nm、好ましくは-5~5nmの場合も「nx≒nz」に含まれる。
 また、Cプレートは、ポジティブCプレート(正のCプレート)とネガティブCプレート(負のCプレート)との2種があり、ポジティブCプレートは式(C1)の関係を満たすものであり、ネガティブCプレートは式(C2)の関係を満たすものである。なお、ポジティブCプレートはRthが負の値を示し、ネガティブCプレートはRthが正の値を示す。
 式(C1)  nz>nx≒ny
 式(C2)  nz<nx≒ny
 なお、上記「≒」とは、両者が完全に同一である場合だけでなく、両者が実質的に同一である場合も包含する。「実質的に同一」とは、例えば、(nx-ny)×d(ただし、dはフィルムの厚みである)が、0~10nm、好ましくは0~5nmの場合も「nx≒ny」に含まれる。
 本発明の光学フィルムにおいては、光学設計上の観点から、上述した本発明の光学異方性膜を2層以上有し、少なくとも1層がポジティブAプレートであり、少なくとも他の1層がポジティブCプレートであることが好ましい。
 〔支持体〕
 本発明の光学フィルムは、上述したように、光学異方性膜を形成するための基材として支持体を有していてもよい。
 このような支持体は、透明であるのが好ましく、具体的には、光透過率が80%以上であるのが好ましい。
 このような支持体としては、例えば、ガラス基板やポリマーフィルムが挙げられ、ポリマーフィルムの材料としては、セルロース系ポリマー;ポリメチルメタクリレート、ラクトン環含有重合体等のアクリル酸エステル重合体を有するアクリル系ポリマー;熱可塑性ノルボルネン系ポリマー;ポリカーボネート系ポリマー;ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系ポリマー;ポリスチレン、アクリロニトリル・スチレン共重合体(AS樹脂)等のスチレン系ポリマー;ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体等のポリオレフィン系ポリマー;、塩化ビニル系ポリマー;ナイロン、芳香族ポリアミド等のアミド系ポリマー;イミド系ポリマー;スルホン系ポリマー;ポリエーテルスルホン系ポリマー;ポリエーテルエーテルケトン系ポリマー;ポリフェニレンスルフィド系ポリマー;塩化ビニリデン系ポリマー;ビニルアルコール系ポリマー;ビニルブチラール系ポリマー;アリレート系ポリマー;ポリオキシメチレン系ポリマー;エポキシ系ポリマー;またはこれらのポリマーを混合したポリマーが挙げられる。
 また、後述する偏光子がこのような支持体を兼ねる態様であってもよい。
 本発明においては、上記支持体の厚みについては特に限定されないが、5~60μmであるのが好ましく、5~30μmであるのがより好ましい。
 〔配向膜〕
 本発明の光学フィルムは、上述した任意の支持体を有する場合、支持体と光学異方性膜との間に、配向膜を有しているのが好ましい。なお、上述した支持体が配向膜を兼ねる態様であってもよい。
 配向膜は、一般的にはポリマーを主成分とする。配向膜用ポリマー材料としては、多数の文献に記載があり、多数の市販品を入手することができる。
 本発明において利用されるポリマー材料は、ポリビニルアルコール又はポリイミド、及びその誘導体が好ましい。特に変性又は未変性のポリビニルアルコールが好ましい。
 本発明に使用可能な配向膜については、例えば、国際公開第01/88574号の43頁24行~49頁8行に記載された配向膜;特許第3907735号公報の段落[0071]~[0095]に記載の変性ポリビニルアルコール;特開2012-155308号公報に記載された液晶配向剤により形成される液晶配向膜;等が挙げられる。
 本発明においては、配向膜の形成時に配向膜表面に接触しないことで面状悪化を防ぐことが可能となる理由から、配向膜としては光配向膜を利用することも好ましい。
 光配向膜としては特に限定はされないが、国際公開第2005/096041号の段落[0024]~[0043]に記載されたポリアミド化合物やポリイミド化合物などのポリマー材料;特開2012-155308号公報に記載された光配向性基を有する液晶配向剤により形成される液晶配向膜;Rolic Technologies社製の商品名LPP-JP265CPなどを用いることができる。
 また、本発明においては、上記配向膜の厚さは特に限定されないが、支持体に存在しうる表面凹凸を緩和して均一な膜厚の光学異方性膜を形成するという観点から、0.01~10μmであることが好ましく、0.01~1μmであることがより好ましく、0.01~0.5μmであることがさらに好ましい。
 〔ハードコート層〕
 本発明の光学フィルムは、フィルムの物理的強度を付与するために、ハードコート層を有しているのが好ましい。具体的には、支持体の配向膜が設けられた側とは反対側にハードコート層を有していてもよく(図2B参照)、光学異方性膜の配向膜が設けられた側とは反対側にハードコート層を有していてもよい(図2C参照)。
 ハードコート層としては特開2009-98658号公報の段落[0190]~[0196]に記載のものを使用することができる。
 〔他の光学異方性膜〕
 本発明の光学フィルムは、本発明の光学異方性膜とは別に、他の光学異方性膜を有していてもよい。
 すなわち、本発明の光学フィルムは、本発明の光学異方性膜と他の光学異方性膜との積層構造を有していてもよい。
 このような他の光学異方性膜は、上述した重合性液晶化合物および紫外線吸収剤を上記式(2)を満たさない関係で配合した組成物を用いて得られる光学異方性膜や、上述した他の重合性化合物(特に、液晶化合物)を用いて得られる光学異方性膜であれば特に限定されない。
 ここで、一般的に、液晶化合物はその形状から、棒状タイプと円盤状タイプに分類できる。さらにそれぞれ低分子と高分子タイプがある。高分子とは一般に重合度が100以上のものを指す(高分子物理・相転移ダイナミクス,土井 正男 著,2頁,岩波書店,1992)。本発明では、いずれの液晶化合物を用いることもできるが、棒状液晶化合物またはディスコティック液晶化合物(円盤状液晶化合物)を用いるのが好ましい。2種以上の棒状液晶化合物、2種以上の円盤状液晶化合物、または棒状液晶化合物と円盤状液晶化合物との混合物を用いてもよい。上述の液晶化合物の固定化のために、重合性基を有する棒状液晶化合物または円盤状液晶化合物を用いて形成することがより好ましく、液晶化合物が1分子中に重合性基を2以上有することがさらに好ましい。液晶化合物が二種類以上の混合物の場合には、少なくとも1種類の液晶化合物が1分子中に2以上の重合性基を有していることが好ましい。
 棒状液晶化合物としては、例えば、特表平11-513019号公報の請求項1や特開2005-289980号公報の段落[0026]~[0098]に記載のものを好ましく用いることができ、ディスコティック液晶化合物としては、例えば、特開2007-108732号公報の段落[0020]~[0067]や特開2010-244038号公報の段落[0013]~[0108]に記載のものを好ましく用いることができるが、これらに限定されない。
[偏光板]
 本発明の偏光板は、上述した本発明の光学フィルムと、偏光子とを有するものである。
 〔偏光子〕
 本発明の偏光板が有する偏光子は、光を特定の直線偏光に変換する機能を有する部材であれば特に限定されず、従来公知の吸収型偏光子および反射型偏光子を利用することができる。
 吸収型偏光子としては、ヨウ素系偏光子、二色性染料を利用した染料系偏光子、およびポリエン系偏光子などが用いられる。ヨウ素系偏光子および染料系偏光子には、塗布型偏光子と延伸型偏光子があり、いずれも適用できるが、ポリビニルアルコールにヨウ素または二色性染料を吸着させ、延伸して作製される偏光子が好ましい。
 また、基材上にポリビニルアルコール層を形成した積層フィルムの状態で延伸および染色を施すことで偏光子を得る方法として、特許第5048120号公報、特許第5143918号公報、特許第4691205号公報、特許第4751481号公報、特許第4751486号公報を挙げることができ、これらの偏光子に関する公知の技術も好ましく利用することができる。
 反射型偏光子としては、複屈折の異なる薄膜を積層した偏光子、ワイヤーグリッド型偏光子、選択反射域を有するコレステリック液晶と1/4波長板とを組み合わせた偏光子などが用いられる。
 なかでも、密着性がより優れる点で、ポリビニルアルコール系樹脂(-CH-CHOH-を繰り返し単位として含むポリマー。特に、ポリビニルアルコールおよびエチレン-ビニルアルコール共重合体からなる群から選択される少なくとも1つ)を含む偏光子であることが好ましい。
 本発明においては、偏光子の厚みは特に限定されないが、3μm~60μmであるのが好ましく、5μm~30μmであるのがより好ましく、5μm~15μmであるのが更に好ましい。
 〔粘着剤層〕
 本発明の偏光板は、本発明の光学フィルムにおける光学異方性膜と、偏光子との間に、粘着剤層が配置されていてもよい。
 光学異方性膜と偏光子との積層のために用いられる粘着剤層としては、例えば、動的粘弾性測定装置で測定した貯蔵弾性率G’と損失弾性率G”との比(tanδ=G”/G’)が0.001~1.5である物質のことを表し、いわゆる、粘着剤やクリープしやすい物質等が含まれる。本発明に用いることのできる粘着剤としては、例えば、ポリビニルアルコール系粘着剤が挙げられるが、これに限定されない。
[画像表示装置]
 本発明の画像表示装置は、本発明の光学フィルムまたは本発明の偏光板を有する、画像表示装置である。
 本発明の画像表示装置に用いられる表示素子は特に限定されず、例えば、液晶セル、有機エレクトロルミネッセンス(以下、「EL」と略す。)表示パネル、プラズマディスプレイパネル等が挙げられる。
 これらのうち、液晶セル、有機EL表示パネルであるのが好ましく、液晶セルであるのがより好ましい。すなわち、本発明の画像表示装置としては、表示素子として液晶セルを用いた液晶表示装置、表示素子として有機EL表示パネルを用いた有機EL表示装置であるのが好ましく、液晶表示装置であるのがより好ましい。
 〔液晶表示装置〕
 本発明の画像表示装置の一例である液晶表示装置は、上述した本発明の偏光板と、液晶セルとを有する液晶表示装置である。
 なお、本発明においては、液晶セルの両側に設けられる偏光板のうち、フロント側の偏光板として本発明の偏光板を用いるのが好ましく、フロント側およびリア側の偏光板として本発明の偏光板を用いるのがより好ましい。
 以下に、液晶表示装置を構成する液晶セルについて詳述する。
 <液晶セル>
 液晶表示装置に利用される液晶セルは、VA(Vertical Alignment)モード、OCB(Optically Compensated Bend)モード、IPS(In-Plane-Switching)モード、又はTN(Twisted Nematic)であることが好ましいが、これらに限定されるものではない。
 TNモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に水平配向し、更に60~120゜にねじれ配向している。TNモードの液晶セルは、カラーTFT液晶表示装置として最も多く利用されており、多数の文献に記載がある。
 VAモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に垂直に配向している。VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2-176625号公報記載)に加えて、(2)視野角拡大のため、VAモードをマルチドメイン化した(MVAモードの)液晶セル(SID97、Digest of tech.Papers(予稿集)28(1997)845記載)、(3)棒状液晶性分子を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n-ASMモード)の液晶セル(日本液晶討論会の予稿集58~59(1998)記載)及び(4)SURVIVALモードの液晶セル(LCDインターナショナル98で発表)が含まれる。また、PVA(Patterned Vertical Alignment)型、光配向型(Optical Alignment)、及びPSA(Polymer-Sustained Alignment)のいずれであってもよい。これらのモードの詳細については、特開2006-215326号公報、及び特表2008-538819号公報に詳細な記載がある。
 IPSモードの液晶セルは、棒状液晶分子が基板に対して実質的に平行に配向しており、基板面に平行な電界が印加することで液晶分子が平面的に応答する。IPSモードは電界無印加状態で黒表示となり、上下一対の偏光板の吸収軸は直交している。光学補償シートを用いて、斜め方向での黒表示時の漏れ光を低減させ、視野角を改良する方法が、特開平10-54982号公報、特開平11-202323号公報、特開平9-292522号公報、特開平11-133408号公報、特開平11-305217号公報、特開平10-307291号公報などに開示されている。
 〔有機EL表示装置〕
 本発明の画像表示装置の一例である有機EL表示装置としては、例えば、視認側から、本発明の偏光板と、λ/4機能を有する板(以下、「λ/4板」ともいう。)と、有機EL表示パネルとをこの順で有する態様が好適に挙げられる。
 ここで、「λ/4機能を有する板」とは、ある特定の波長の直線偏光を円偏光に(または円偏光を直線偏光に)変換する機能を有する板をいい、例えば、λ/4板が単層構造である態様としては、具体的には、延伸ポリマーフィルムや、支持体上にλ/4機能を有する光学異方性膜を設けた位相差フィルム等が挙げられ、また、λ/4板が複層構造である態様としては、具体的には、λ/4板とλ/2板とを積層してなる広帯域λ/4板が挙げられる。
 また、有機EL表示パネルは、電極間(陰極および陽極間)に有機発光層(有機エレクトロルミネッセンス層)を挟持してなる有機EL素子を用いて構成された表示パネルである。有機EL表示パネルの構成は特に制限されず、公知の構成が採用される。
 本発明の画像表示装置は、有機EL表示パネルと、有機EL表示パネル上に配置された円偏光板と、を含む有機EL表示装置であることが好ましい。
 特に、本発明においては、円偏光板が、偏光子と、上述した本発明の光学フィルムとを含む態様であることがより好ましく、偏光子と、上述した本発明の光学異方性膜を2層以上有し、少なくとも1層がポジティブAプレートであり、少なくとも他の1層がポジティブCプレートである光学フィルムとを含む態様であることが更に好ましい。
 以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
 〔重合性液晶化合物〕
 重合性液晶組成物の調製にあたって、以下の重合性液晶化合物1~6を準備した。
 <重合性液晶化合物1(逆分散液晶1)の合成>
 以下のスキームに従い、下記式A~Cで表される化合物(以下、それぞれ化合物A~Cと略す。)を合成した。
Figure JPOXMLDOC01-appb-C000020
 (化合物Aの合成)
 化合物Aの合成は、“Journal of Organic Chemistry”(2004);69(6);p.2164-2177.に記載の方法で行った。
 (化合物Bの合成)
 化合物A30.0g(0.0916mol)、メルドラム酸19.8g(0.137mol)、および、N-メチル-2-ピロリドン(NMP)200mLを混合し、55℃で2時間撹拌した。
 その後、室温まで冷却し、混合物に水200mLを加え、析出した結晶をろ過した。
 得られた結晶を、水とNMPとを1対1で混合した混合溶液で洗浄することで、化合物Bを28.4g(0.0870mol)得た(収率95%)。
 (化合物C)
 化合物B51.5g(0.158mol)、および、THF315mLを混合し、氷冷下で2Mの水酸化ナトリウム水溶液395mL(0.789mol)を滴下した。
 次いで、室温まで昇温し、2時間攪拌した後、3N塩酸水263mL(0.789mol)を氷冷下で滴下した。
 次いで、水300mL、イソプロピルアルコール(IPA)180mLを加え、析出した固体をろ過した。
 得られた固体をアセトニトリルで攪拌し、懸濁した後、ろ過することで、化合物Cを25g(0.0868mol)得た(収率55%)。
 次いで、下記スキームに従い、下記式Dで表される化合物Dを合成した。
Figure JPOXMLDOC01-appb-C000021

 (化合物Dの合成)
 化合物C50g(0.175mol)、BHT(1.9g,8.74mmol)、THF300mL、および、N、N-ジメチルアセトアミド(DMAc)150mLを混合し、氷冷下で塩化チオニル87.3g(0.734mol)を滴下した。
 次いで、氷冷下で2時間攪拌した後、4-ヒドロキシブチルアクリル酸エステル126g(0.874mol)を滴下した。
 次いで、室温まで昇温し、2時間攪拌した後、5%食塩水400mL、酢酸エチル100mL、テトラヒドロフラン(THF)200mLを加えて抽出した。
 有機層を10%食塩水200mLで2回洗浄した後、有機層を硫酸マグネシウムで乾燥し、溶媒を減圧留去した。得られた粗体をアセトニトリルで攪拌し、懸濁し、濾過することで、化合物Dを57g(0.107mol)得た(収率61%)。
 (逆分散液晶1の合成)
 下記スキームに従い、下記式Eで表される化合物E22.1g(0.0928mol)のトルエン40ml溶液に塩化チオニル12.7g(0.107mmol)を加え、触媒量のN,N-ジメチルホルムアミドを加えた。そのまま65℃まで昇温し、2時間攪拌後、溶媒を留去した。
 次いで、化合物D25g(0.0464mol)、BHT(0.51g、2.32mmol)、および、THF(125mL)を添加し、氷冷下でトリエチルアミン10.3g(0.102mol)を滴下した。
 次いで、室温まで昇温し、2時間攪拌した後、1M塩酸水100ml、酢酸エチル40mlを加え抽出した。
 有機層を10%食塩水で洗浄した後、有機層にメタノール400mlを加え、析出した固体をろ過することで、下記式1で表される逆分散液晶1を38g(0.0389mol)得た(収率84%)。
Figure JPOXMLDOC01-appb-C000022
 <重合性液晶化合物2(逆分散液晶2)の合成>
 特開2011-207765号公報の[0462]~[0477]段落に記載された方法に従い、下記式2で表される逆分散液晶2を合成した。
Figure JPOXMLDOC01-appb-C000023
 <重合性液晶化合物3(逆分散液晶3)の合成>
 国際公開第2014/010325号の[0205]~[0217]段落に記載された方法に従い、下記式3で表される逆分散液晶3を合成した。
Figure JPOXMLDOC01-appb-C000024
 <重合性液晶化合物4(逆分散液晶4)の合成>
 下記式Fで表される側鎖カルボン酸Fと、下記式Gで表されるフェノールGとを合成し、以下のルートで、下記式4で表される逆分散液晶4を合成した。
Figure JPOXMLDOC01-appb-C000025
 (側鎖カルボン酸Fの合成)
 特開2016-81035号公報に記載された化合物(I-4C)に倣って、逆分散液晶4の側鎖カルボン酸Fを合成した。
 得られた側鎖カルボン酸FのH-NMR(Nuclear Magnetic Resonance)を以下に示す。
 H-NMR(溶媒:CDCl)δ(ppm):
 [Major Isomer]
 1.27(d,3H),1.45-1.73(m,4H),2.10-2.32(m,4H),2.32-2.45(m,1H),2.48-2.70(m,1H),2.62(s,4H),2.93(t,2H),4.15(dd,1H),4.25(dd,1H),4.29(t,2H),5.20(m,1H),5.85(dd,1H),6.13(dd,1H),6.42(dd,1H),6.95-7.06(m,2H),7.16-7.25(m,2H)
 [Minor Isomer]
 1.29(d,3H),1.45-1.73(m,4H),2.10-2.32(m,4H),2.32-2.45(m,1H),2.48-2.70(m,1H),2.62(s,4H),2.93(t,2H),4.13(dd,1H),4.22(dd,1H),4.29(t,2H),5.20(m,1H),5.84(dd,1H),6.11(dd,1H),6.41(dd,1H),6.95-7.06(m,2H),7.16-7.25(m,2H)
 (フェノールGの合成)
 フェノールGの合成は、Justus Liebigs Annalen der Chemie, 726, 103-109 (1969) に記載の方法を参考に行うことができる。
 窒素気流下、86%含率の水酸化カリウム21.79g(334mmol)をイソプロピルアルコール70mlおよび水85mlに溶解した。この溶液に、氷冷攪拌下、内温5℃以下で、マロノニトリル11.03g(167mmol)をイソプロピルアルコール12mlに溶解した溶液を添加した。
 次いで、内温10℃以下で二硫化炭素13.35g(175mmol)を滴下した後、氷冷下で30分間攪拌を行った。この反応液に、1,4-ベンゾキノン36.46g(338mmol)、酢酸21.96ml(384mmol)およびアセトン200mlの混合溶液を、内温を2℃以下に保ちながらゆっくりと滴下した。同温度で30分攪拌した後、25℃に昇温し、水365mlを添加した。
 次いで、析出した結晶をろ取し、水835ml、続いて、水/アセトン(90ml/90ml)混合溶液で洗浄して、粗体を得た。
 次いで、窒素気流下、粗体とTHF100mlとを混合撹拌し、40℃に昇温した後に、水150mlを40℃で滴下した。
 その後、5℃まで冷却して結晶を析出させ、5℃で1時間撹拌した。析出した結晶をろ取し、THF/水(40ml/120ml)の混合溶液で掛け洗いした後に、60℃で減圧乾燥することで、淡黄色固体としてフェノールGを31.3g(収率75%)得た。
 得られたフェノールGのH-NMRを以下に示す。
 H-NMR(DMSO-d)δ(ppm):6.80(s,2H),10.51(s,2H)
 (逆分散液晶4の合成)
 特開2016-81035号公報に記載された化合物(I-4)に倣って、逆分散液晶4を合成した。
 得られた逆分散液晶4のH-NMRを以下に示す。
 H-NMR(溶媒:CDCl)δ(ppm):
 [Major Isomer]
 1.27(d,6H),1.56-1.79(m,8H),2.22-2.40(m,8H),2.55-2.75(m,4H),2.62(s,8H),2.94(t,4H),4.15(dd,2H),4.25(dd,2H),4.28(t,4H),5.20(m,2H),5.86(dd,2H),6.13(dd,2H),6.43(dd,2H),6.99-7.06(m,4H),7.20-7.25(m,4H),7.32(s,2H)
 [Minor Isomer]
 1.29(d,6H),1.56-1.79(m,8H),2.22-2.40(m,8H),2.55-2.75(m,4H),2.62(s,8H),2.94(t,4H),4.12(dd,2H),4.22(dd,2H),4.28(t,4H),5.20(m,2H),5.84(dd,2H),6.11(dd,2H),6.41(dd,2H),6.99-7.06(m,4H),7.20-7.25(m,4H),7.32(s,2H)
 <重合性液晶化合物5(逆分散液晶5)の合成>
 下記式Fで表される側鎖カルボン酸Fと、下記式Hで表されるフェノールHとを合成し、以下のルートで、下記式5で表される逆分散液晶5を合成した。
Figure JPOXMLDOC01-appb-C000026
 (フェノールHの合成)
 窒素気流下、86%含率の水酸化カリウム19.57g(300mmol)をイソプロピルアルコール60mlおよび水75mlに溶解した。この溶液に、氷冷攪拌下、内温5℃以下でマロノニトリル9.91g(150mmol)をイソプロピルアルコール10.5mlに溶解した溶液を添加した。
 次いで、内温10℃以下で二硫化炭素11.42g(150mmol)を滴下した後、氷冷下で30分間攪拌を行った。続いて、酢酸2.57ml(45mmol)を添加して反応液pHを6に調整した。この反応液に、p-トルキノン36.26g(298mmol)、酢酸16.98ml(298mmol)およびアセトン150mlの混合溶液を、内温を5℃以下に保ちながらゆっくりと滴下した。同温度で30分攪拌した後、50℃に昇温し、水395mlを添加した。
 30分撹拌した後に、15℃に降温し、析出した結晶をろ取し、水790mlで洗浄して、粗体を得た。
 次いで、窒素気流下、粗体とアセトニトリル155ml、水155mlを混合し、室温にて1時間撹拌した後に、5℃まで冷却してさらに30分撹拌した。析出した結晶をろ取し、氷冷しておいたアセトニトリル/水(50ml/60ml)の混合溶液で掛け洗いした後に、60℃で減圧乾燥することで、黄色固体としてフェノールHを32.6g(収率83%)得た。
 得られたフェノールHのH-NMRを以下に示す。
 H-NMR(溶媒:DMSO-d)δ(ppm):2.19(s,3H),6.71(s,1H),9.60(br s,1H),10.55(br s,1H)
 (逆分散液晶5の合成)
 特開2016-81035号公報に記載された化合物(IV-4)に倣って、逆分散液晶5を合成した。
 得られた逆分散液晶5のH-NMRを以下に示す。
 H-NMR(溶媒:CDCl)δ(ppm):
 [Major Isomer]
 1.27(d,6H),1.56-1.79(m,8H),2.22(s,3H),2.22-2.40(m,8H),2.55-2.75(m,4H),2.62(s,8H),2.94(t,4H),4.15(dd,2H),4.25(dd,2H),4.28(t,4H),5.20(m,2H),5.86(dd,2H),6.13(dd,2H),6.43(dd,2H),6.99-7.06(m,4H),7.20-7.25(m,4H),7.25(s,1H)
 [Minor Isomer]
 1.29(d,6H),1.56-1.79(m,8H),2.22(s,3H),2.22-2.40(m,8H),2.55-2.75(m,4H),2.62(s,8H),2.94(t,4H),4.12(dd,2H),4.22(dd,2H),4.28(t,4H),5.20(m,2H),5.84(dd,2H),6.11(dd,2H),6.41(dd,2H),6.99-7.06(m,4H),7.20-7.25(m,4H),7.25(s,1H)
 <重合性液晶化合物6(順分散液晶1)の合成>
 特許第6086884号に記載された方法に従って、下記式で表される順分散液晶1を合成した。
Figure JPOXMLDOC01-appb-C000027
 〔紫外線吸収剤〕
 重合性液晶組成物の調製にあたって、以下の紫外線吸収剤を準備した。
Figure JPOXMLDOC01-appb-C000028

Figure JPOXMLDOC01-appb-I000029

Figure JPOXMLDOC01-appb-I000030

Figure JPOXMLDOC01-appb-I000031
 〔重合開始剤〕
 重合開始剤として、下記式で表される化合物(特開2011-158655号公報に記載の例示化合物(A-1))を準備した。
Figure JPOXMLDOC01-appb-C000032
 〔空気界面配向剤(レベリング剤)〕
 空気界面配向剤として、下記式で表される化合物(特開2016-53709号公報に記載のレベリング剤T-1)を準備した。
Figure JPOXMLDOC01-appb-C000033
 〔溶媒〕
 溶媒として、クロロホルムを準備した。
[実施例1~19および比較例1~5]
 〔重合性液晶組成物の調製〕
 重合性液晶化合物、紫外線吸収剤、重合開始剤および空気界面配向剤を溶媒(クロロホルム)に溶解させて、実施例および比較例の各重合性液晶組成物を調製した。なお、実施例19は、下記表1に示す通り、重合性液晶化合物として、逆分散液晶4、逆分散液晶5および順分散液晶1を併用しているが、これらの添加量は、質量比で42:42:16である。
 また、実施例および比較例の各重合性液晶組成物の組成から、添加剤のみを除いた基準用の各重合性液晶組成物を準備した。
 なお、各成分の配合量について、紫外線吸収剤の添加量(重合性液晶化合物の含有量に対する質量%)ごとに、以下の配合量で組成物を調製した。
 <紫外線吸収剤の添加量:1質量%>
 逆分散性の重合性液晶化合物0.10g、重合開始剤0.0005g、空気界面配向剤0.0002g、および、紫外線吸収剤0.001gをクロロホルム3.18gに溶解させ、重合性液晶組成物を調製した。
 <紫外線吸収剤の添加量:5質量%>
 逆分散性の重合性液晶化合物0.10g、重合開始剤0.0005g、空気界面配向剤0.0002g、および、紫外線吸収剤0.005gをクロロホルム3.30gに溶解させ、重合性液晶組成物を調製した。
 <紫外線吸収剤の添加量:10質量%>
 逆分散性の重合性液晶化合物0.10g、重合開始剤0.0005g、空気界面配向剤0.0002g、および、紫外線吸収剤0.010gをクロロホルム3.46gに溶解させ、重合性液晶組成物を調製した。
 <紫外線吸収剤の添加量:20質量%>
 逆分散性の重合性液晶化合物0.10g、重合開始剤0.0005g、空気界面配向剤0.0002g、および、紫外線吸収剤0.020gをクロロホルム3.77gに溶解させ、重合性液晶組成物を調製した。
 〔耐光性試験〕
 <サンプルの作製>
 スピンコート法(重合性液晶組成物の塗布量:80μL、回転数:1500rpm)によって、2.5×3.0cmにカットしたガラス基板(コーニング社製 イーグルXG)上に重合性液晶組成物を塗布して、乾燥させることで、ガラス基板上に塗布膜を作製した。
 次いで、塗布膜をホットプレート上で160℃に加温しながら、紫外線照射装置(日本文化精工株式会社社製)によって照射量500mJにて硬化膜を作製した。
 <耐光性試験前の硬化膜の吸光度測定>
 紫外可視測定機(商品名「UV-3150」、島津社製)を用いて、硬化膜の吸収極大波長における吸光度A(耐光性試験前の硬化膜の吸光度)を測定した。具体的には、重合性液晶組成物の塗布を行っていない上記ガラス基板を用いてベースライン補正を行った後、硬化膜の吸収極大波長における吸光度Aを測定した。
 <耐光性試験後の硬化膜の吸光度測定>
 まず、重合性液晶組成物の硬化膜が照射面となるように、ガラス基板をキセノン照射機(スガ試験機株式会社製 SX75)にセットして、#275フィルターを用いて、光源からサンプルを290mm離して150W/mの条件にて2時間照射した。このようにして、耐光性試験後の硬化膜を得た。
 次いで、紫外可視測定機(商品名「UV-3150」、島津社製)を用いて、耐光性試験後の硬化膜の吸収極大波長における吸光度B(耐光性試験後の塗布膜の吸光度)を測定した。
 <耐光性の評価>
 基準用の各重合性液晶組成物(添加剤を含有しないもの)の硬化膜を用いて、上述した吸光度Aおよび吸光度Bを測定し、下記式により耐光性残存率X(%)を算出した。
 同様に、実施例および比較例の各重合性液晶組成物の塗布膜を用いて、上述した吸光度Aおよび吸光度Bを測定し、下記式により耐光性残存率Y(%)を算出した。
  耐光性残存率(%)=(吸光度B/吸光度A)×100
 このようにして得られた耐光性残存率Xおよび耐光性残存率Yの値から、下記式により耐光性改善率を算出し、以下の評価基準により耐光性の評価を行った。
  耐光性改善率(%)=耐光性残存率Y-耐光性残存率X
A: 耐光性改善率が10%以上
B: 耐光性残存率が5%超10%未満
C: 耐光性改善率が0%超5%以下
D: 耐光性改善率が0%以下
 <評価結果>
 以上の評価試験の結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000034
 表1に示す結果から、逆波長分散性の重合性液晶化合物の極大吸収波長Aと、紫外線吸収剤の極大吸収波長Bとの差が24nm以上であると、紫外線吸収剤を含有しない重合性液晶組成物と比べても、耐光性の改善効果が殆ど見られないことが分かった(比較例1~5)。
 これに対し、逆波長分散性の重合性液晶化合物の極大吸収波長Aと、紫外線吸収剤の極大吸収波長Bとの差が0nm以上24nm未満の範囲であると、耐光性に優れた光学異方性膜を作製することができることが分かった(実施例1~19)。
 〔光配向膜用組成物の調製〕
 後述する方法により、重合体、低分子化合物、架橋剤および架橋触媒を合成または準備した。
 <重合体の合成>
 撹拌機、温度計、滴下漏斗および還流冷却管を備えた反応容器に、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン100.0質量部、メチルイソブチルケトン500質量部、および、トリエチルアミン10.0質量部を仕込み、室温で混合した。次いで、脱イオン水100質量部を滴下漏斗より30分かけて滴下した後、還流下で混合しつつ、80℃で6時間反応させた。反応終了後、有機相を取り出し、0.2質量%硝酸アンモニウム水溶液により洗浄後の水が中性になるまで洗浄した後、減圧下で溶媒および水を留去することにより、エポキシ含有ポリオルガノシロキサンを粘調な透明液体として得た。
 このエポキシ含有ポリオルガノシロキサンについて、H-NMR分析を行ったところ、化学シフト(δ)=3.2ppm付近にオキシラニル基に基づくピークが理論強度どおりに得られ、反応中にエポキシ基の副反応が起こっていないことが確認された。このエポキシ含有ポリオルガノシロキサンの重量平均分子量Mwは2,200、エポキシ当量は186g/モルであった。
 次に、100mLの三口フラスコに、上記で得たエポキシ含有ポリオルガノシロキサン10.5質量部、アクリル基含有カルボン酸(東亞合成株式会社製、商品名「アロニックスM-5300」、アクリル酸ω-カルボキシポリカプロラクトン(重合度n≒2))0.4質量部、酢酸ブチル20質量部、特開2015-26050号公報の合成例1の方法で得られた桂皮酸誘導体0.5質量部、テトラヒドロ焦性粘液酸(和光純薬工業株式会社製)0.5質量部、および、テトラブチルアンモニウムブロミド0.3質量部を仕込み、90℃で12時間撹拌した。反応終了後、反応溶液と等量(質量)の酢酸ブチルで希釈し、3回水洗した。この溶液を濃縮し、酢酸ブチルで希釈する操作を2回繰り返し、最終的に、光配向性基を有するポリオルガノシロキサン(重合体)を含む溶液を得た。この重合体の重量平均分子量Mwは10,000であった。
 <低分子化合物>
 下記式Bで表される低分子化合物(ノムコートTAB,日清オリイオ社製)を用いた。
Figure JPOXMLDOC01-appb-C000035
 <架橋剤>
 架橋剤として、多官能エポキシ化合物(エポリードGT401,ダイセル社製)を用いた。
 <架橋触媒>
 架橋促進を目的とし、架橋触媒として熱酸発生剤(サンエイドSI-60、三新化学工業株式会社)を用いた。
 <光配向膜用組成物の調製>
 酢酸ブチル100質量部に対して、上述した重合体4.6質量部、上述した低分子化合物0.8質量部、上述した架橋剤0.8質量部、および、上述した架橋触媒0.8質量部を添加し、攪拌した後、孔径1μmのフィルターでろ過することにより、固形分濃度7.5重量%の液晶配向剤を調製した。なお、得られた液晶配向剤では、重合体などの成分は添加した量どおりに溶媒に十分に溶解していた。
[実施例20~23および比較例6]
 〔光学異方性膜形成用塗布液の調製〕
 下記組成の光学異方性膜形成用塗布液1~5を調製した。
――――――――――――――――――――――――――――――――
光学異方性膜形成用塗布液1
――――――――――――――――――――――――――――――――
・逆分散液晶1                 95.00質量部
・Tinuvin-477             5.00質量部
・下記重合開始剤A-1              0.05質量部
・下記レベリング剤T-1             0.20質量部
・シクロペンタノン               424.8質量部
――――――――――――――――――――――――――――――――
 重合開始剤A-1
Figure JPOXMLDOC01-appb-C000036
 レベリング剤T-1
Figure JPOXMLDOC01-appb-C000037
――――――――――――――――――――――――――――――――
光学異方性膜形成用塗布液2
――――――――――――――――――――――――――――――――
・逆分散液晶2                 95.00質量部
・Tinuvin-477             5.00質量部
・上記重合開始剤A-1              0.05質量部
・上記レベリング剤T-1             0.20質量部
・シクロペンタノン               424.8質量部
――――――――――――――――――――――――――――――――
――――――――――――――――――――――――――――――――
光学異方性膜形成用塗布液3
――――――――――――――――――――――――――――――――
・逆分散液晶3                 95.00質量部
・Tinuvin-477             5.00質量部
・上記重合開始剤A-1              0.05質量部
・上記レベリング剤T-1             0.20質量部
・シクロペンタノン               424.8質量部
――――――――――――――――――――――――――――――――
――――――――――――――――――――――――――――――――
光学異方性膜形成用塗布液4
――――――――――――――――――――――――――――――――
・逆分散液晶4                 40.00質量部
・逆分散液晶5                 40.00質量部
・順分散液晶1                 15.00質量部
・Tinuvin-477             5.00質量部
・上記重合開始剤A-1              0.50質量部
・上記レベリング剤T-1             0.20質量部
・ハイソルブMTEM(東邦化学工業社製)     2.00質量部
・NKエステルA-200(新中村化学工業社製)  1.00質量部
・メチルエチルケトン              424.8質量部
――――――――――――――――――――――――――――――――
――――――――――――――――――――――――――――――――
光学異方性膜形成用塗布液5
――――――――――――――――――――――――――――――――
・逆分散液晶1                 95.00質量部
・Tinuvin-400             5.00質量部
・上記重合開始剤A-1              0.50質量部
・上記レベリング剤T-1             0.20質量部
・ハイソルブMTEM(東邦化学工業社製)     2.00質量部
・NKエステルA-200(新中村化学工業社製)  1.00質量部
・メチルエチルケトン              424.8質量部
――――――――――――――――――――――――――――――――
 〔セルロースアシレートフィルム1の作製〕
 <コア層セルロースアシレートドープの作製>
 下記の組成物をミキシングタンクに投入し、攪拌して、各成分を溶解し、コア層セルロースアシレートドープとして用いるセルロースアセテート溶液を調製した。
――――――――――――――――――――――――――――――――
コア層セルロースアシレートドープ
――――――――――――――――――――――――――――――――
アセチル置換度2.88のセルロースアセテート    100質量部
特開2015-227955号公報の実施例に
記載されたポリエステル化合物B            12質量部
下記の化合物F                     2質量部
メチレンクロライド(第1溶媒)           430質量部
メタノール(第2溶剤)                64質量部
────────────────────────────────
 化合物F
Figure JPOXMLDOC01-appb-C000038
 <外層セルロースアシレートドープの作製>
 上記のコア層セルロースアシレートドープ90質量部に下記のマット剤溶液を10質量部加え、外層セルロースアシレートドープとして用いるセルロースアセテート溶液を調製した。
――――――――――――――――――――――――――――――――
マット剤溶液
――――――――――――――――――――――――――――――――
平均粒子サイズ20nmのシリカ粒子
(AEROSIL R972、日本アエロジル(株)製)   2質量部
メチレンクロライド(第1溶媒)            76質量部
メタノール(第2溶剤)                11質量部
上記のコア層セルロースアシレートドープ         1質量部
────────────────────────────────
 <セルロースアシレートフィルム1の作製>
 上記コア層セルロースアシレートドープと上記外層セルロースアシレートドープを平均孔径34μmのろ紙および平均孔径10μmの焼結金属フィルターでろ過した後、上記コア層セルロースアシレートドープとその両側に外層セルロースアシレートドープとを3層同時に流延口から20℃のドラム上に流延した(バンド流延機)。
 溶剤含有率略20質量%の状態で剥ぎ取り、フィルムの幅方向の両端をテンタークリップで固定し、横方向に延伸倍率1.1倍で延伸しつつ乾燥した。
 その後、熱処理装置のロール間を搬送することにより、さらに乾燥し、厚み40μmのセルロースアシレートフィルム1を作製した。
 得られたセルロースアシレートフィルム1のコア層は厚みが36μmであり、コア層の両側に配置された外層はそれぞれ厚みが2μmであった。
 また、得られたセルロースアシレートフィルム1の面内レターデーションは0nmであった。
 〔光学フィルムの作製〕
 作製したセルロースアシレートフィルム1の片側の面に、先に調製した光配向膜用組成物をバーコーターで塗布した。
 塗布後、120℃のホットプレート上で1分間乾燥して溶剤を除去し、厚さ0.3μmの光異性化組成物層を形成した。
 得られた光異性化組成物層を偏光紫外線照射(10mJ/cm、超高圧水銀ランプ使用)することで、光配向膜を形成した。
 次いで、光配向膜上に、先に調製した光学異方性膜形成用塗布液1~5をバーコーターで塗布し、組成物層を形成した。
 形成した組成物層をホットプレート上でいったん110℃まで加熱した後、60℃に冷却させて配向を安定化させた。
 その後、60℃に保ち、窒素雰囲気下(酸素濃度100ppm)で紫外線照射(500mJ/cm、超高圧水銀ランプ使用)によって配向を固定化し、厚さ2.3μmの光学異方性膜(ポジティブAプレート1~5)を形成し、光学フィルム1~5を作製した。
 得られた光学フィルムの面内レターデーションは140nmであった。
 〔耐光性の評価〕
 光学異方性膜(ポジティブAプレート)の硬化膜が照射面となるように、ガラス基板をキセノン照射機(スガ試験機株式会社製 SX75)にセットして、#275フィルターを用いて、光源からサンプルを290mm離して150W/mの条件にて2時間照射した。このようにして、耐光性試験後の硬化膜を得、残存レターデーションを測定した。
 上述の試験前の初期レターデーション(140nm)および残存レターデーションから、下記式により耐光性残存率X(%)を算出した。
 同様に、実施例および比較例の各重合性液晶組成物の硬化膜を用いて、下記式により耐光性残存率Y(%)を算出した。
  耐光性残存率(%)=(残存レターデーション/初期レターデーション)×100
 このようにして得られた耐光性残存率Xおよび耐光性残存率Yの値から、下記式により耐光性改善率を算出し、以下の評価基準により耐光性の評価を行った。結果を下記表2に示す。
  耐光性改善率(%)=耐光性残存率Y-耐光性残存率X
A: 耐光性改善率が10%以上
B: 耐光性残存率が5%超10%未満
C: 耐光性改善率が0%超5%以下
D: 耐光性改善率が0%以下
Figure JPOXMLDOC01-appb-T000039
[実施例24]
 〔ポジティブCプレート1の作製〕
 仮支持体として、市販されているトリアセチルセルロースフィルム「Z-TAC」(富士フイルム社製)〔以下、「セルロースアシレートフィルム2」と略す。〕を用いた。
 セルロースアシレートフィルム2を温度60℃の誘電式加熱ロールを通過させ、フィルム表面温度を40℃に昇温した後に、フィルムの片面に下記に示す組成のアルカリ溶液を、バーコーターを用いて塗布量14ml/mで塗布し、110℃に加熱し、(株)ノリタケカンパニーリミテド製のスチーム式遠赤外ヒーターの下に、10秒間搬送した。続いて、同じくバーコーターを用いて、純水を3ml/m塗布した。
 次いで、ファウンテンコーターによる水洗とエアナイフによる水切りを3回繰り返した後に、70℃の乾燥ゾーンに10秒間搬送して乾燥し、アルカリ鹸化処理したセルロースアシレートフィルム2を作製した。
――――――――――――――――――――――――――――――――
アルカリ溶液
――――――――――――――――――――――――――――――――
水酸化カリウム                   4.7質量部
水                        15.8質量部
イソプロパノール                 63.7質量部
含フッ素界面活性剤SF-1
 (C1429O(CHCHO)20H)       1.0質量部
プロピレングリコール               14.8質量部
─────────────────────────────────
 上記アルカリ鹸化処理されたセルロースアシレートフィルム2を用い、下記の組成の配向膜形成用塗布液を#8のワイヤーバーで連続的に塗布した。60℃の温風で60秒、さらに100℃の温風で120秒乾燥し、配向膜を形成した。
――――――――――――――――――――――――――――――――
配向膜形成用塗布液
――――――――――――――――――――――――――――――――
ポリビニルアルコール(クラレ製、PVA103)   2.4質量部
イソプロピルアルコール               1.6質量部
メタノール                      36質量部
水                          60質量部
────────────────────────────────
 上記で作成した配向膜を有するセルロースアシレートフィルム2上に、下記光学異方性膜形成用塗布液Nを塗布し、60℃60秒間熟成させた後に、空気下にて70mW/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて1000mJ/cmの紫外線を照射して、その配向状態を固定化することにより、重合性棒状液晶化合物を垂直配向させ、ポジティブCプレート1を作製した。波長550nmにおいてRthが-60nmであった。
――――――――――――――――――――――――――――――――
光学異方性膜形成用塗布液N
――――――――――――――――――――――――――――――――
逆分散液晶1                    100質量部
Tinuvin-477                 5質量部
下記垂直配向剤(S01)                1質量部
下記垂直配向剤(S02)              0.5質量部
エチレンオキサイド変成トリメチロールプロパントリアクリレート
 (V#360、大阪有機化学(株)製)         8質量部
イルガキュアー907(BASF製)           3質量部
カヤキュアーDETX(日本化薬(株)製)        1質量部
下記化合物B03                  0.4質量部
メチルエチルケトン                 170質量部
シクロヘキサノン                   30質量部
────────────────────────────────
Figure JPOXMLDOC01-appb-C000040

Figure JPOXMLDOC01-appb-I000041

Figure JPOXMLDOC01-appb-I000042

(上記化合物B03の式中、a=90であり、b=10である。)
[実施例25]
 光学異方性膜形成用塗布液Nに代えて、下記光学異方性膜形成用塗布液Mを用いた以外は、実施例24と同様の方法で、ポジティブCプレート2を作製した。波長550nmにおいてRthが-60nmであった。
――――――――――――――――――――――――――――――――
光学異方性膜形成用塗布液M
――――――――――――――――――――――――――――――――
逆分散液晶2                    100質量部
Tinuvin-477                 5質量部
垂直配向剤(S01)                  1質量部
垂直配向剤(S02)                0.5質量部
エチレンオキサイド変成トリメチロールプロパントリアクリレート
 (V#360、大阪有機化学(株)製)         8質量部
イルガキュアー907(BASF製)           3質量部
カヤキュアーDETX(日本化薬(株)製)        1質量部
化合物B03                    0.4質量部
メチルエチルケトン                 170質量部
シクロヘキサノン                   30質量部
────────────────────────────────
[実施例26]
 光学異方性膜形成用塗布液Nに代えて、下記光学異方性膜形成用塗布液Lを用いた以外は、実施例24と同様の方法で、ポジティブCプレート3を作製した。波長550nmにおいてRthが-60nmであった。
――――――――――――――――――――――――――――――――
光学異方性膜形成用塗布液L
――――――――――――――――――――――――――――――――
逆分散液晶3                    100質量部
Tinuvin-477                 5質量部
垂直配向剤(S01)                  1質量部
垂直配向剤(S02)                0.5質量部
エチレンオキサイド変成トリメチロールプロパントリアクリレート
 (V#360、大阪有機化学(株)製)         8質量部
イルガキュアー907(BASF製)           3質量部
カヤキュアーDETX(日本化薬(株)製)        1質量部
化合物B03                    0.4質量部
メチルエチルケトン                 170質量部
シクロヘキサノン                   30質量部
────────────────────────────────
[実施例27]
 光学異方性膜形成用塗布液Nに代えて、下記光学異方性膜形成用塗布液Oを用いた以外は、実施例24と同様の方法で、ポジティブCプレート4を作製した。波長550nmにおいてRthが-60nmであった。
――――――――――――――――――――――――――――――――
光学異方性膜形成用塗布液O
――――――――――――――――――――――――――――――――
逆分散液晶4                     80質量部
逆分散液晶5                     20質量部
Tinuvin-477                 5質量部
垂直配向剤(S01)                  1質量部
垂直配向剤(S02)                0.5質量部
エチレンオキサイド変成トリメチロールプロパントリアクリレート
 (V#360、大阪有機化学(株)製)         8質量部
イルガキュアー907(BASF製)           3質量部
カヤキュアーDETX(日本化薬(株)製)        1質量部
化合物B03                    0.4質量部
メチルエチルケトン                 170質量部
シクロヘキサノン                   30質量部
────────────────────────────────
[比較例7]
 光学異方性膜形成用塗布液Nに代えて、下記光学異方性膜形成用塗布液Pを用いた以外は、実施例24と同様の方法で、ポジティブCプレート5を作製した。波長550nmにおいてRthが-60nmであった。
――――――――――――――――――――――――――――――――
光学異方性膜形成用塗布液P
――――――――――――――――――――――――――――――――
逆分散液晶1                    100質量部
Tinuvin-400                 5質量部
垂直配向剤(S01)                  1質量部
垂直配向剤(S02)                0.5質量部
エチレンオキサイド変成トリメチロールプロパントリアクリレート
 (V#360、大阪有機化学(株)製)         8質量部
イルガキュアー907(BASF製)           3質量部
カヤキュアーDETX(日本化薬(株)製)        1質量部
化合物B03                    0.4質量部
メチルエチルケトン                 170質量部
シクロヘキサノン                   30質量部
────────────────────────────────
 〔耐光性の評価〕
 ポジティブCプレートの硬化膜が照射面となるように、ガラス基板をキセノン照射機(スガ試験機株式会社製 SX75)にセットして、#275フィルターを用いて、光源からサンプルを290mm離して150W/mの条件にて2時間照射した。このようにして、耐光性試験後の硬化膜を得、残存Rthを測定した。
 上述の試験前の初期Rth(60nm)および残存Rthから、下記式により耐光性残存率X(%)を算出した。
 同様に、実施例および比較例の各重合性液晶組成物の硬化膜を用いて、下記式により耐光性残存率Y(%)を算出した。
  耐光性残存率(%)=(残存Rth/初期Rth)×100
 このようにして得られた耐光性残存率Xおよび耐光性残存率Yの値から、下記式により耐光性改善率を算出し、以下の評価基準により耐光性の評価を行った。結果を下記表3に示す。
  耐光性改善率(%)=耐光性残存率Y-耐光性残存率X
A: 耐光性改善率が10%以上
B: 耐光性残存率が5%超10%未満
C: 耐光性改善率が0%超5%以下
D: 耐光性改善率が0%以下
Figure JPOXMLDOC01-appb-T000043
[実施例28]
 〔有機EL表示装置用反射防止板(円偏光板)の作製〕
 <円偏光板の作製>
 実施例20の光学フィルム1の光学異方性膜(ポジティブAプレート1)側に、粘着剤を介して実施例24のポジティブCプレート1を転写し、セルロースアシレートフィルム2は除去した。また、光学フィルム1のセルロースアシレートフィルム1側に粘着剤を介して偏光子を貼り合わせて円偏光板を作製した。
 なお、円偏光板の作製に用いた実施例20の光学フィルム1(ポジティブAプレート1)、および、実施例24のポジティブCプレート1は、いずれも上述した耐光性の評価を行った後のサンプルを用いた。
[実施例29]
 実施例20の光学フィルム1に代えて、実施例21の光学フィルム2を用い、ポジティブCプレート1に代えて、実施例25のポジティブCプレート2を用いた以外は、実施例28と同様の方法で、円偏光板を作製した。
[実施例30]
 実施例20の光学フィルム1に代えて、実施例22の光学フィルム3を用い、ポジティブCプレート1に代えて、実施例26のポジティブCプレート3を用いた以外は、実施例28と同様の方法で、円偏光板を作製した。
[実施例31]
 実施例20の光学フィルム1に代えて、実施例23の光学フィルム4を用い、ポジティブCプレート1に代えて、実施例27のポジティブCプレート4を用いた以外は、実施例28と同様の方法で、円偏光板を作製した。
[比較例8]
 実施例20の光学フィルム1に代えて、比較例6の光学フィルム5を用い、ポジティブCプレート1に代えて、比較例7のポジティブCプレート5を用いた以外は、実施例28と同様の方法で、円偏光板を作製した。
 〔有機ELパネルへの実装および評価〕
 有機ELパネル搭載のSAMSUNG社製GALAXY SIIを分解し、円偏光板を剥離して、上記で作製した円偏光板のポジティブCプレート側がパネル側となるよう粘着剤を介して貼合し、表示装置を作製した。
 表示装置に白表示、黒表示、画像表示をして、極角60度から蛍光灯を映し込んだときの反射光を観察して、表示品位を下記の基準で評価した。
 A:黒浮きが全く視認されない(優良)。
 B:黒浮きがごくわずかに視認されるが許容できる(許容)。
 C:黒浮きが明確に視認できる。
Figure JPOXMLDOC01-appb-T000044
 表4に示す結果から、本発明の光学フィルム、特に、本発明の光学異方性膜を2層以上有し、少なくとも1層がポジティブAプレートであり、少なくとも他の1層がポジティブCプレートである光学フィルムを円偏光板に用いると、有機EL表示装置の表示機能が良好となることが分かった。
 10 光学フィルム
 12 光学異方性膜
 14 配向膜
 16 支持体
 18 ハードコート層

Claims (10)

  1.  逆波長分散性の重合性液晶化合物と、下記式(1)で表される紫外線吸収剤とを含有し、
     前記重合性液晶化合物の極大吸収波長Aと、前記紫外線吸収剤の極大吸収波長Bとが、下記式(2)を満たし、
     前記紫外線吸収剤の含有量が、前記重合性液晶化合物の含有量に対して1~20質量%である、重合性液晶組成物。
    Figure JPOXMLDOC01-appb-C000001
     0nm≦A-B<24nm ・・・(2)
     前記式(1)中、Arは、置換基を有していてもよい、芳香族炭化水素環または芳香族複素環を表し、Xは、炭素原子または窒素原子を表し、Yは、酸素原子または窒素原子を表し、Zは、酸素原子または窒素原子を表し、X、YおよびZは、それぞれ置換基を有していてもよく、Xが有する置換基とYが有する置換基とが互いに結合してXおよびYを含む環を形成していてもよい。ただし、XとYとの結合形式は、Yの置換基の有無により、二重結合であっても三重結合であってもよい。
  2.  前記重合性液晶化合物が、下記式(I)で表される液晶化合物である、請求項1に記載の重合性液晶組成物。
     L1-SP1-A1-D3-G1-D1-Ar-D2-G2-D4-A2-SP2-L2  ・・・(I)
     前記式(I)中、D1、D2、D3およびD4は、それぞれ独立に、単結合、-CO-O-、-C(=S)O-、-CR12-、-CR12-CR34-、-O-CR12-、-CR12-O-CR34-、-CO-O-CR12-、-O-CO-CR12-、-CR12-O-CO-CR34-、-CR12-CO-O-CR34-、-NR1-CR23-、または、-CO-NR1-を表す。R1、R2、R3およびR4は、それぞれ独立に、水素原子、フッ素原子、または、炭素数1~4のアルキル基を表す。
     G1およびG2は、それぞれ独立に、炭素数5~8の2価の脂環式炭化水素基を表し、前記脂環式炭化水素基を構成する-CH2-の1個以上が-O-、-S-または-NH-で置換されていてもよい。
     A1およびA2は、それぞれ独立に、炭素数6以上の芳香環、または、炭素数6以上のシクロアルキレン環を表す。
     SP1およびSP2は、それぞれ独立に、単結合、炭素数1~12の直鎖状もしくは分岐状のアルキレン基、または、炭素数1~12の直鎖状もしくは分岐状のアルキレン基を構成する-CH2-の1個以上が-O-、-S-、-NH-、-N(Q)-、もしくは、-CO-に置換された2価の連結基を表し、Qは、置換基を表す。
     L1およびL2は、それぞれ独立に1価の有機基を表し、L1およびL2の少なくとも一方は重合性基を表す。ただし、Arが、下記式(Ar-3)で表される芳香環である場合は、L1およびL2ならびに下記式(Ar-3)中のL3およびL4の少なくとも1つが重合性基を表す。
     Arは、下記式(Ar-1)~(Ar-5)で表される基からなる群から選択されるいずれかの芳香環を表す。
    Figure JPOXMLDOC01-appb-C000002

     ここで、前記式(Ar-1)~(Ar-5)中、*1は、D1との結合位置を表し、*2は、D2との結合位置を表す。
     また、Q1は、NまたはCHを表す。
     また、Q2は、-S-、-O-、または、-N(R5)-を表し、R5は、水素原子または炭素数1~6のアルキル基を表す。
     また、Y1は、置換基を有してもよい、炭素数6~12の芳香族炭化水素基、または、炭素数3~12の芳香族複素環基を表す。
     また、Z1、Z2およびZ3は、それぞれ独立に、水素原子、炭素数1~20の1価の脂肪族炭化水素基、炭素数3~20の1価の脂環式炭化水素基、炭素数6~20の1価の芳香族炭化水素基、ハロゲン原子、シアノ基、ニトロ基、-NR67、または、-SR8を表し、R6~R8は、それぞれ独立に、水素原子または炭素数1~6のアルキル基を表し、Z1およびZ2は、互いに結合して芳香環を形成してもよい。
     また、A3およびA4は、それぞれ独立に、-O-、-N(R9)-、-S-、および、-CO-からなる群から選択される基を表し、R9は、水素原子または置換基を表す。
     また、Xは、水素原子または置換基が結合していてもよい第14~16族の非金属原子を表す。
     また、D5およびD6は、それぞれ独立に、単結合、-CO-O-、-C(=S)O-、-CR12-、-CR12-CR34-、-O-CR12-、-CR12-O-CR34-、-CO-O-CR12-、-O-CO-CR12-、-CR12-O-CO-CR34-、-CR12-CO-O-CR34-、-NR1-CR23-、または、-CO-NR1-を表す。R1、R2、R3およびR4は、それぞれ独立に、水素原子、フッ素原子、または、炭素数1~4のアルキル基を表す。
     また、SP3およびSP4は、それぞれ独立に、単結合、炭素数1~12の直鎖状もしくは分岐状のアルキレン基、または、炭素数1~12の直鎖状もしくは分岐状のアルキレン基を構成する-CH2-の1個以上が-O-、-S-、-NH-、-N(Q)-、もしくは、-CO-に置換された2価の連結基を表し、Qは、置換基を表す。
     また、L3およびL4は、それぞれ独立に1価の有機基を表し、L3およびL4ならびに前記式(I)中のL1およびL2の少なくとも1つが重合性基を表す。
     また、Axは、芳香族炭化水素環および芳香族複素環からなる群から選ばれる少なくとも1つの芳香環を有する、炭素数2~30の有機基を表す。
     また、Ayは、水素原子、置換基を有していてもよい炭素数1~6のアルキル基、または、芳香族炭化水素環および芳香族複素環からなる群から選択される少なくとも1つの芳香環を有する、炭素数2~30の有機基を表す。
     また、AxおよびAyにおける芳香環は、置換基を有していてもよく、AxとAyとが結合して環を形成していてもよい。
     また、Q3は、水素原子、または、置換基を有していてもよい炭素数1~6のアルキル基を表す。
  3.  前記紫外線吸収剤が、下記式(1-1)または下記式(1-2)で表される化合物である、請求項1または2に記載の重合性液晶組成物。
    Figure JPOXMLDOC01-appb-C000003

     前記式(1-1)および前記式(1-2)中、R11は、ハロゲン原子、ニトロ基、シアノ基、スルホ基、アルキル基、アルケニル基、芳香族炭化水素環、芳香族複素環、-O-R、-S-R、-CO-R、-CO-O-R、-O-CO-R、-SO-R、-SO2-R、-NR2、-NH-CO-R、-NH-SO2-R、-CO-NR2、-SO2-NR2、-NH-CO-O-R、または、-NH-CO-NR2を表し、Rは、水素原子、アルキル基、アルケニル基、芳香族炭化水素環または芳香族複素環を表し、Rは、さらに置換基を有していてもよい。また、mは、0~4の整数を表し、R11が複数ある場合、複数のR11は、それぞれ同一であっても異なっていてもよく、また、互いに結合して環を形成していてもよい。
     前記式(1-1)中、R12およびR13は、それぞれ独立に、置換基を有していてもよい、芳香族炭化水素環または芳香族複素環を表す。
     前記式(1-2)中、R14は、それぞれ独立に、水素原子、アルキル基、アルコキシル基、水酸基、アミノ基またはアミド基を表す。
  4.  請求項1~3のいずれか1項に記載の重合性液晶組成物を重合して得られる光学異方性膜。
  5.  請求項4に記載の光学異方性膜を有する光学フィルム。
  6.  前記光学異方性膜が、ポジティブAプレートまたはポジティブCプレートである、請求項5に記載の光学フィルム。
  7.  前記光学異方性膜を2層以上有し、少なくとも1層がポジティブAプレートであり、少なくとも他の1層がポジティブCプレートである、請求項5または6に記載の光学フィルム。
  8.  請求項5~7のいずれか1項に記載の光学フィルムと、偏光子とを有する、偏光板。
  9.  請求項5~7のいずれか1項に記載の光学フィルム、または、請求項8に記載の偏光板を有する、画像表示装置。
  10.  有機エレクトロルミネッセンス表示パネルと、前記有機エレクトロルミネッセンス表示パネル上に配置された円偏光板と、を含む有機エレクトロルミネッセンス表示装置であって、
     前記円偏光板が、偏光子と、請求項7に記載の光学フィルムとを含む、有機エレクトロルミネッセンス表示装置。
PCT/JP2017/042362 2016-11-29 2017-11-27 重合性液晶組成物、光学異方性膜、光学フィルム、偏光板、画像表示装置および有機エレクトロルミネッセンス表示装置 WO2018101196A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780073825.8A CN110023347B (zh) 2016-11-29 2017-11-27 聚合性液晶组合物、光学各向异性膜、光学膜、偏振片、图像显示装置及有机电致发光显示装置
KR1020197014754A KR102210179B1 (ko) 2016-11-29 2017-11-27 중합성 액정 조성물, 광학 이방성막, 광학 필름, 편광판, 화상 표시 장치 및 유기 일렉트로 루미네선스 표시 장치
JP2018553830A JP6754845B2 (ja) 2016-11-29 2017-11-27 重合性液晶組成物、光学異方性膜、光学フィルム、偏光板、画像表示装置および有機エレクトロルミネッセンス表示装置
US16/407,703 US11332669B2 (en) 2016-11-29 2019-05-09 Polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate, image display device, and organic electroluminescent display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-231351 2016-11-29
JP2016231351 2016-11-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/407,703 Continuation US11332669B2 (en) 2016-11-29 2019-05-09 Polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate, image display device, and organic electroluminescent display device

Publications (1)

Publication Number Publication Date
WO2018101196A1 true WO2018101196A1 (ja) 2018-06-07

Family

ID=62241414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042362 WO2018101196A1 (ja) 2016-11-29 2017-11-27 重合性液晶組成物、光学異方性膜、光学フィルム、偏光板、画像表示装置および有機エレクトロルミネッセンス表示装置

Country Status (5)

Country Link
US (1) US11332669B2 (ja)
JP (1) JP6754845B2 (ja)
KR (1) KR102210179B1 (ja)
CN (1) CN110023347B (ja)
WO (1) WO2018101196A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020035400A1 (en) * 2018-08-13 2020-02-20 Merck Patent Gmbh Polymerisable liquid crystal material and polymerised liquid crystal film
WO2020121823A1 (ja) * 2018-12-11 2020-06-18 Dic株式会社 液晶組成物及び表示素子、ならびに化合物
WO2020187810A1 (en) * 2019-03-18 2020-09-24 Merck Patent Gmbh Polymerisable liquid crystal material and polymerised liquid crystal film
CN112585510A (zh) * 2018-11-02 2021-03-30 株式会社Lg化学 偏光板
CN112639000A (zh) * 2018-11-02 2021-04-09 株式会社Lg化学 层合膜
WO2022181725A1 (ja) * 2021-02-25 2022-09-01 富士フイルム株式会社 硬化性樹脂組成物及び接合レンズ
US12187946B2 (en) 2020-11-20 2025-01-07 Merck Patent Gmbh Polymerisable liquid crystal material and polymerised liquid crystal film

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114450607B (zh) * 2019-09-26 2024-09-27 富士胶片株式会社 偏振器及图像显示装置
WO2021060432A1 (ja) 2019-09-27 2021-04-01 富士フイルム株式会社 液晶組成物、光学異方性層、光学フィルム、偏光板および画像表示装置
JP7282190B2 (ja) * 2019-09-27 2023-05-26 富士フイルム株式会社 光学異方性層、光学フィルム、偏光板および画像表示装置
WO2021060423A1 (ja) * 2019-09-27 2021-04-01 富士フイルム株式会社 光学異方性層、光学フィルム、偏光板、画像表示装置
JP7386256B2 (ja) 2019-09-27 2023-11-24 富士フイルム株式会社 重合性液晶組成物、硬化物、光学フィルム、偏光板および画像表示装置
WO2022045243A1 (ja) * 2020-08-28 2022-03-03 富士フイルム株式会社 液晶組成物、液晶硬化層、光学フィルム、偏光板および画像表示装置
KR20240117129A (ko) 2021-12-22 2024-07-31 도소 가부시키가이샤 주쇄형 폴리머, 광학 필름, 그들의 제조 방법, 및 복층막
CN118026954A (zh) * 2024-02-07 2024-05-14 江苏创拓新材料有限公司 聚合性化合物及其在光学各向异性体中的应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356669A (ja) * 2001-05-30 2002-12-13 Fuji Photo Film Co Ltd 紫外線吸収剤前駆体、それを含有する組成物、及び画像形成方法
JP2005010329A (ja) * 2003-06-18 2005-01-13 Sony Chem Corp 偏光板及び液晶表示素子
JP2007072163A (ja) * 2005-09-07 2007-03-22 Fujifilm Corp 光学補償素子及びその製造方法、液晶表示装置及び液晶プロジェクタ
JP2009051992A (ja) * 2007-08-29 2009-03-12 Dainippon Printing Co Ltd 液晶組成物、光学素子、およびこれを用いた液晶表示装置
JP2009075494A (ja) * 2007-09-25 2009-04-09 Fujifilm Corp 液晶組成物及び光学異方性材料
JP2012021068A (ja) * 2010-07-13 2012-02-02 Sumitomo Chemical Co Ltd 組成物及び光学フィルム
JP2016047813A (ja) * 2014-08-27 2016-04-07 Jnc株式会社 液晶性化合物、液晶組成物およびその重合体

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7410677B2 (en) * 2003-12-12 2008-08-12 Chisso Corporation Organosilicon compound-containing polymerizable liquid-crystal composition
JP5401032B2 (ja) 2006-12-15 2014-01-29 富士フイルム株式会社 光学異方性膜、輝度向上フィルム、位相差板および液晶表示装置
JP5391682B2 (ja) 2007-12-28 2014-01-15 住友化学株式会社 化合物、光学フィルム及び光学フィルムの製造方法
WO2013047411A1 (ja) * 2011-09-29 2013-04-04 富士フイルム株式会社 新規なトリアジン誘導体、紫外線吸収剤
CN107253935B (zh) 2012-07-09 2020-10-09 日本瑞翁株式会社 肼化合物、聚合性化合物的制备方法及将肼化合物作为聚合性化合物的制造原料使用的方法
WO2014156304A1 (ja) * 2013-03-29 2014-10-02 リンテック株式会社 光拡散フィルム用組成物および光拡散フィルム
KR101645776B1 (ko) * 2013-07-19 2016-08-04 주식회사 엘지화학 역파장 분산 특성을 갖는 위상차 필름, 이를 포함하는 편광판 및 표시장치
KR20150113886A (ko) * 2014-03-31 2015-10-08 후지필름 가부시키가이샤 광학 필름, 편광판, 및 광학 필름의 제조 방법
JP6363566B2 (ja) 2014-10-21 2018-07-25 富士フイルム株式会社 光学異方性層とその製造方法、積層体、偏光板、表示装置、液晶化合物とその製造方法、カルボン酸化合物
CN107209309B (zh) * 2015-01-16 2020-06-02 Dic株式会社 聚合性组合物和使用该聚合性组合物的光学各向异性体
CN107108775B (zh) * 2015-01-16 2019-12-13 Dic株式会社 聚合性组合物和使用该聚合性组合物的光学各向异性体
KR20170105012A (ko) * 2015-01-16 2017-09-18 디아이씨 가부시끼가이샤 중합성 조성물 및 그것을 사용한 광학 이방체
US10202470B2 (en) * 2015-01-16 2019-02-12 Dic Corporation Polymerizable composition and optically anisotropic body using same
KR20160106513A (ko) 2015-03-02 2016-09-12 제이엔씨 주식회사 중합성 액정 조성물 및 광학 이방성 필름
JP6204420B2 (ja) * 2015-08-07 2017-09-27 株式会社ダイセル 硬化性組成物、及びそれを用いた光学素子
JP6452012B2 (ja) * 2015-11-25 2019-01-16 Dic株式会社 重合性組成物及びそれを用いた光学異方体
KR20170077817A (ko) * 2015-12-28 2017-07-06 스미또모 가가꾸 가부시끼가이샤 광학 적층체

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356669A (ja) * 2001-05-30 2002-12-13 Fuji Photo Film Co Ltd 紫外線吸収剤前駆体、それを含有する組成物、及び画像形成方法
JP2005010329A (ja) * 2003-06-18 2005-01-13 Sony Chem Corp 偏光板及び液晶表示素子
JP2007072163A (ja) * 2005-09-07 2007-03-22 Fujifilm Corp 光学補償素子及びその製造方法、液晶表示装置及び液晶プロジェクタ
JP2009051992A (ja) * 2007-08-29 2009-03-12 Dainippon Printing Co Ltd 液晶組成物、光学素子、およびこれを用いた液晶表示装置
JP2009075494A (ja) * 2007-09-25 2009-04-09 Fujifilm Corp 液晶組成物及び光学異方性材料
JP2012021068A (ja) * 2010-07-13 2012-02-02 Sumitomo Chemical Co Ltd 組成物及び光学フィルム
JP2016047813A (ja) * 2014-08-27 2016-04-07 Jnc株式会社 液晶性化合物、液晶組成物およびその重合体

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021534284A (ja) * 2018-08-13 2021-12-09 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 重合性液晶材料および重合された液晶フィルム
JP7547317B2 (ja) 2018-08-13 2024-09-09 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 重合性液晶材料および重合された液晶フィルム
US11851601B2 (en) 2018-08-13 2023-12-26 Merck Patent Gmbh Polymerisable liquid crystal material and polymerised liquid crystal film
CN112534023A (zh) * 2018-08-13 2021-03-19 默克专利股份有限公司 可聚合液晶材料和聚合的液晶膜
WO2020035400A1 (en) * 2018-08-13 2020-02-20 Merck Patent Gmbh Polymerisable liquid crystal material and polymerised liquid crystal film
EP3875518A4 (en) * 2018-11-02 2021-12-29 LG Chem, Ltd. Laminated film
CN112585510B (zh) * 2018-11-02 2022-11-29 株式会社Lg化学 偏光板和显示装置
JP2021532412A (ja) * 2018-11-02 2021-11-25 エルジー・ケム・リミテッド 偏光板
CN112639000A (zh) * 2018-11-02 2021-04-09 株式会社Lg化学 层合膜
EP3876002A4 (en) * 2018-11-02 2021-12-22 LG Chem, Ltd. POLARIZATION PLATE
CN112585510A (zh) * 2018-11-02 2021-03-30 株式会社Lg化学 偏光板
US11892669B2 (en) 2018-11-02 2024-02-06 Lg Chem, Ltd. Polarizing plate and display device
JP2021532411A (ja) * 2018-11-02 2021-11-25 エルジー・ケム・リミテッド 積層フィルム
JP7205980B2 (ja) 2018-11-02 2023-01-17 エルジー・ケム・リミテッド 積層フィルム
JP7205981B2 (ja) 2018-11-02 2023-01-17 エルジー・ケム・リミテッド 偏光板
CN112639000B (zh) * 2018-11-02 2023-09-05 株式会社Lg化学 层合膜
US11867936B2 (en) 2018-11-02 2024-01-09 Lg Chem, Ltd. Laminate film
WO2020121823A1 (ja) * 2018-12-11 2020-06-18 Dic株式会社 液晶組成物及び表示素子、ならびに化合物
WO2020187810A1 (en) * 2019-03-18 2020-09-24 Merck Patent Gmbh Polymerisable liquid crystal material and polymerised liquid crystal film
US12187946B2 (en) 2020-11-20 2025-01-07 Merck Patent Gmbh Polymerisable liquid crystal material and polymerised liquid crystal film
WO2022181725A1 (ja) * 2021-02-25 2022-09-01 富士フイルム株式会社 硬化性樹脂組成物及び接合レンズ

Also Published As

Publication number Publication date
JP6754845B2 (ja) 2020-09-16
US11332669B2 (en) 2022-05-17
KR102210179B1 (ko) 2021-01-29
CN110023347A (zh) 2019-07-16
CN110023347B (zh) 2021-07-06
KR20190072610A (ko) 2019-06-25
JPWO2018101196A1 (ja) 2019-10-24
US20190264106A1 (en) 2019-08-29

Similar Documents

Publication Publication Date Title
WO2018101196A1 (ja) 重合性液晶組成物、光学異方性膜、光学フィルム、偏光板、画像表示装置および有機エレクトロルミネッセンス表示装置
JP7265024B2 (ja) 液晶組成物、光学異方性層、光学フィルム、偏光板および画像表示装置
WO2019160025A1 (ja) 重合性液晶組成物、重合性液晶組成物の製造方法、光学異方性膜、光学フィルム、偏光板および画像表示装置
JP7182533B2 (ja) 液晶組成物、光学異方性層、光学フィルム、偏光板および画像表示装置
JP2013007809A (ja) ポリマーフィルム、位相差フィルム、偏光板、液晶表示装置、Rth発現剤及びメロシアニン系化合物
JP7386256B2 (ja) 重合性液晶組成物、硬化物、光学フィルム、偏光板および画像表示装置
WO2018155498A1 (ja) 重合性液晶化合物、重合性液晶化合物の製造方法、重合性液晶組成物、光学異方性膜、光学フィルム、偏光板および画像表示装置
JP7282189B2 (ja) 光学異方性層、光学フィルム、偏光板および画像表示装置
WO2019160044A1 (ja) 光学異方性膜、光学フィルム、偏光板および画像表示装置
JP7282190B2 (ja) 光学異方性層、光学フィルム、偏光板および画像表示装置
WO2019160016A1 (ja) 光学フィルム、偏光板および画像表示装置
JP7118153B2 (ja) 重合性液晶組成物、光学異方性膜、光学フィルム、偏光板および画像表示装置
WO2018101207A1 (ja) 重合性液晶組成物、光学異方性膜、光学フィルム、偏光板、画像表示装置および有機エレクトロルミネッセンス表示装置
JP7385669B2 (ja) 光学異方性層、光学フィルム、偏光板、画像表示装置
JP2024103795A (ja) 光学フィルム、光学積層体および画像表示装置
JP2020052327A (ja) 光学積層体、液晶表示装置および有機電界発光装置
WO2019160029A1 (ja) 重合性液晶組成物、光学異方性膜、光学フィルム、偏光板および画像表示装置
WO2019160020A1 (ja) 重合性液晶組成物、光学異方性膜、光学フィルム、偏光板および画像表示装置
WO2024057812A1 (ja) 液晶組成物、液晶硬化層、光学フィルム、偏光板、画像表示装置、単量体および共重合体
JP2024103258A (ja) 液晶組成物、液晶硬化層、光学フィルムおよび画像表示装置
CN115335738A (zh) 聚合性液晶组合物、光学各向异性层、光学膜、偏振片及图像显示装置
JP2020052208A (ja) 光学フィルム、偏光板および画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875448

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018553830

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197014754

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17875448

Country of ref document: EP

Kind code of ref document: A1