WO2018093159A1 - Biologically active glass powder, amorphous medical material for substituting biological hard tissue defect using same, artificial bone tissue using same, and method for manufacturing same - Google Patents
Biologically active glass powder, amorphous medical material for substituting biological hard tissue defect using same, artificial bone tissue using same, and method for manufacturing same Download PDFInfo
- Publication number
- WO2018093159A1 WO2018093159A1 PCT/KR2017/012987 KR2017012987W WO2018093159A1 WO 2018093159 A1 WO2018093159 A1 WO 2018093159A1 KR 2017012987 W KR2017012987 W KR 2017012987W WO 2018093159 A1 WO2018093159 A1 WO 2018093159A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bone tissue
- amorphous
- artificial bone
- glass powder
- tissue
- Prior art date
Links
- 210000000988 bone and bone Anatomy 0.000 title claims abstract description 203
- 239000000843 powder Substances 0.000 title claims abstract description 73
- 230000007547 defect Effects 0.000 title claims abstract description 67
- 210000001519 tissue Anatomy 0.000 title claims abstract description 64
- 238000000034 method Methods 0.000 title claims abstract description 51
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 35
- 239000011521 glass Substances 0.000 title claims abstract description 21
- 239000012567 medical material Substances 0.000 title abstract description 10
- 238000012545 processing Methods 0.000 claims description 80
- 239000005313 bioactive glass Substances 0.000 claims description 54
- 239000000463 material Substances 0.000 claims description 48
- 239000000203 mixture Substances 0.000 claims description 45
- 238000013334 tissue model Methods 0.000 claims description 42
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 30
- 238000010438 heat treatment Methods 0.000 claims description 30
- 229910004261 CaF 2 Inorganic materials 0.000 claims description 28
- 238000010304 firing Methods 0.000 claims description 28
- 229910052586 apatite Inorganic materials 0.000 claims description 17
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 claims description 17
- 229910004762 CaSiO Inorganic materials 0.000 claims description 14
- 230000008569 process Effects 0.000 claims description 11
- 238000012937 correction Methods 0.000 claims description 9
- 238000000465 moulding Methods 0.000 claims description 9
- 238000002844 melting Methods 0.000 claims description 8
- 230000008018 melting Effects 0.000 claims description 8
- 230000009477 glass transition Effects 0.000 claims description 7
- 230000006835 compression Effects 0.000 claims description 6
- 238000007906 compression Methods 0.000 claims description 6
- 239000000155 melt Substances 0.000 claims description 6
- 229920003023 plastic Polymers 0.000 claims description 6
- 239000004033 plastic Substances 0.000 claims description 6
- 229910052801 chlorine Inorganic materials 0.000 claims description 5
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 5
- 229910052731 fluorine Inorganic materials 0.000 claims description 5
- 125000001153 fluoro group Chemical group F* 0.000 claims description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 5
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 5
- 238000003825 pressing Methods 0.000 claims description 4
- 238000010791 quenching Methods 0.000 claims description 4
- 230000000171 quenching effect Effects 0.000 claims description 4
- 210000003625 skull Anatomy 0.000 claims description 3
- 230000002950 deficient Effects 0.000 claims description 2
- 238000001816 cooling Methods 0.000 claims 1
- 238000002054 transplantation Methods 0.000 abstract description 5
- 238000001727 in vivo Methods 0.000 abstract description 4
- 230000000052 comparative effect Effects 0.000 description 67
- 238000002360 preparation method Methods 0.000 description 34
- 238000005245 sintering Methods 0.000 description 14
- 239000002270 dispersing agent Substances 0.000 description 12
- 238000005259 measurement Methods 0.000 description 12
- 238000013461 design Methods 0.000 description 9
- 230000004927 fusion Effects 0.000 description 9
- 125000006850 spacer group Chemical group 0.000 description 9
- 238000012360 testing method Methods 0.000 description 8
- 239000004372 Polyvinyl alcohol Substances 0.000 description 7
- 238000002441 X-ray diffraction Methods 0.000 description 7
- 238000005452 bending Methods 0.000 description 7
- 230000001054 cortical effect Effects 0.000 description 7
- 231100000135 cytotoxicity Toxicity 0.000 description 7
- 230000003013 cytotoxicity Effects 0.000 description 7
- 238000003384 imaging method Methods 0.000 description 7
- 229920002451 polyvinyl alcohol Polymers 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 239000012620 biological material Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000010583 slow cooling Methods 0.000 description 6
- 201000010099 disease Diseases 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 5
- 239000007943 implant Substances 0.000 description 5
- 230000007774 longterm Effects 0.000 description 5
- 238000003801 milling Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000010456 wollastonite Substances 0.000 description 5
- 229910052882 wollastonite Inorganic materials 0.000 description 5
- 239000002202 Polyethylene glycol Substances 0.000 description 4
- 238000011888 autopsy Methods 0.000 description 4
- 238000009694 cold isostatic pressing Methods 0.000 description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 239000004926 polymethyl methacrylate Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 238000011179 visual inspection Methods 0.000 description 4
- 229910010293 ceramic material Inorganic materials 0.000 description 3
- 238000010562 histological examination Methods 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 210000002303 tibia Anatomy 0.000 description 3
- 238000010146 3D printing Methods 0.000 description 2
- 229910014497 Ca10(PO4)6(OH)2 Inorganic materials 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 210000001124 body fluid Anatomy 0.000 description 2
- 239000010839 body fluid Substances 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000000280 densification Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000001815 facial effect Effects 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 2
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000002595 magnetic resonance imaging Methods 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 235000010981 methylcellulose Nutrition 0.000 description 2
- 239000004200 microcrystalline wax Substances 0.000 description 2
- 235000019808 microcrystalline wax Nutrition 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 238000009877 rendering Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 2
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000012085 test solution Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- 238000012404 In vitro experiment Methods 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 238000011887 Necropsy Methods 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 238000012925 biological evaluation Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- NWXHSRDXUJENGJ-UHFFFAOYSA-N calcium;magnesium;dioxido(oxo)silane Chemical compound [Mg+2].[Ca+2].[O-][Si]([O-])=O.[O-][Si]([O-])=O NWXHSRDXUJENGJ-UHFFFAOYSA-N 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000012669 compression test Methods 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 231100000263 cytotoxicity test Toxicity 0.000 description 1
- 229910052637 diopside Inorganic materials 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000009661 fatigue test Methods 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000006112 glass ceramic composition Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 210000004705 lumbosacral region Anatomy 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000004660 morphological change Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 238000012014 optical coherence tomography Methods 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 238000002600 positron emission tomography Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 238000012285 ultrasound imaging Methods 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/28—Bones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/10—Ceramics or glasses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/12—Phosphorus-containing materials, e.g. apatite
Definitions
- the present invention provides a bioactive glass powder for use in a substitute for living hard tissue defects, which can produce artificial bone tissue for biograft having excellent adhesion, biocompatibility, and mechanical strength with bone tissue in vivo, and using the same.
- the present invention relates to a medicinal material for replacing a non-crystalline biohard tissue defect, a crystalline artificial bone tissue prepared using the crystalline material for replacing a non-crystalline biohard tissue defect, and a method of manufacturing the same.
- the hard tissues that make up the human body are composed of 67% of inorganic and 33% of organic matter, and the inorganic material is composed of apatite mainly composed of Ca / P. Due to the high composition ratio of minerals, it is possible to substitute synthetic hydroxyapatite when hard tissue defects occur. However, synthetic hydroxyapatite has a disadvantage in that it is difficult to apply to various sites requiring mechanical stability due to low compressive strength.
- Hydroxyapatite is a representative bone conducting substance that bonds directly to bones when they engage with peripheral defects in the implanted site. These materials cause bone fusion when they are in direct contact with the defect, or they can damage the surrounding bone by micro-motion of the implant. Therefore, it is possible to enhance the effectiveness of the treatment by customizing the design exactly fit the implantation site.
- Typical ceramic materials are characterized by excellent compressive strength, hardness, and wear resistance. In addition, since it exists in the form of an oxide, it is excellent in corrosion resistance by chemical substances. The excellent physical and chemical stability of ceramic materials has the advantage of greatly extending their life when used in various components. However, due to the rigidity of the material is difficult to process, it is impossible to manufacture a complex molded body.
- the ceramic molded body may be prepared by simply pressing the powder before heat treatment, or by preparing a slurry to cast, injection molding or extrusion molding.
- the molded article produced in the above manner is heat treated according to the sintering temperature of the raw material to complete the manufacture.
- processing after heat treatment should be applied. Due to the ceramic characteristics, this method has a disadvantage in that it takes time and cost. In addition, the high hardness of the surface may cause a defective rate due to processing because the possibility of defects occurring during excessive processing is high. If a defect occurs after a human transplant due to processing defects, the transplantation site is not only severely damaged but also needs to be reoperated.
- a hard tissue replacement material when manufacturing a hard tissue replacement material can be said to be tailored to exactly match the defects.
- the present invention has been made to solve the above-described problems, it is optimal to produce an artificial bone tissue having excellent physical properties, as well as processability, moldability, but excellent adhesion to the bone tissue (bio) tissue in vivo
- An object of the present invention is to provide a bioactive glass powder having a composition and a composition ratio thereof, and a biomaterial for replacing the amorphous biohard tissue defects prepared using the same.
- Another object of the present invention is to provide a biograft artificial bone tissue having crystallinity and a method of manufacturing the same by using the biomaterial for replacing a hard tissue defect.
- the bioactive glass powder of the present invention for solving the above problems includes a pulverized product of a melt obtained by melting a mixture containing MgO, CaO, SiO 2 , P 2 O 5 , CaF 2 and B 2 O 3 .
- the mixture is MgO 4.5 ⁇ 6.5 wt%, CaO 41 ⁇ 43 wt%, SiO 2 34 to 36.2 wt%, P 2 O 5 13.5-17 wt%, CaF 2 0.9-2.5 wt% and B 2 O 3 0.2-1.5 wt%.
- the mixture is MgO 4.5 ⁇ 6.5 wt%, CaO 41 ⁇ 43 wt%, SiO 2 30.5 to 32.5 wt%, P 2 O 5 18.5 to 19.8 wt%, CaF 2 0.5 to 1.5 wt% and B 2 O 3 It may also comprise 0.2 to 1.5% by weight.
- the mixture may further comprise Na 2 O.
- the bioactive glass powder may have an average particle diameter of 0.5 ⁇ m ⁇ 10 ⁇ m.
- a biomaterial for replacing a hard tissue defect includes a bioactive glass powder of the above various forms.
- the biomaterial for replacing the hard tissue defects of the present invention includes an amorphous molded body obtained by heat-treating the compressed molding of the bioactive glass powder to a temperature below the glass transition temperature of the bioactive glass powder in the molding. can do.
- the amorphous molded product is a molded product obtained by heat-treating the compression molded product at 680 ° C to 720 ° C.
- the amorphous molded product may have a linear volumetric shrinkage of 5% or less.
- the amorphous molded article may have a crystallinity of 1% or less.
- the amorphous molded body may have a relative density of 50 to 70% relative to the glass theoretical density (3g / cm 3 ).
- Another object of the present invention relates to a method for manufacturing a medicinal material for replacing the amorphous living hard tissue defects, step 1 of preparing a bioactive glass powder; Step 2 to produce a molded body by pressing the bioactive glass powder; And forming a amorphous molded body by heat-treating the molded body at a temperature below the glass transition temperature of the bioactive glass powder in the molded body.
- the bioactive glass powder of one step is melted by melting the mixture containing MgO, CaO, SiO 2 , P 2 O 5 , CaF 2 and B 2 O 3 at 1,350 °C ⁇ 1,600 °C Step 1-1 to prepare water; Quenching the melt to prepare glass; It may be prepared by performing a process including; steps 1-3 to powder the glass.
- the pressure forming in two steps may be performed through cold isostatic pressing (CIP).
- CIP cold isostatic pressing
- the mixture may be molded by pressure molding.
- the mixture may contain 0.5 to 20 parts by weight of the dispersant based on 100 parts by weight of the bioactive glass powder.
- the dispersant is polyvinyl alcohol (PVA), polyvinylbutyl alcohol (PVB), polymethyl methacrylate (PMMA), polyethylene glycol (PEG), methyl cellulose, hydroxymethyl cellulose, It may include one or more selected from sodium carboxymethyl cellulose, paraffin, wax emulsion, microcrystalline wax and ethanol.
- the dispersant may further include water.
- the amorphous molded article of the three steps may be a variety of forms, such as block form, cylindrical form.
- the heat treatment in three steps may be performed by heat treatment the compression molding at 680 °C ⁇ 720 °C.
- Another object of the present invention relates to a method (method 1) of manufacturing artificial bone tissue using the non-crystalline biohard tissue defect replacement medicinal material, by processing the above-described medicinal material for replacing the non-crystalline biohard tissue defect part 1 step of manufacturing the workpiece; And firing the workpiece to prepare a fired product. 2 may be manufactured to produce artificial bone tissue.
- three stages of the slow cooling of the two-calcined product may further include.
- the step 1 processing comprises the steps of generating the three-dimensional image information of the processing target bone tissue by photographing the processing target bone tissue; Identifying the processing target bone tissue based on the three-dimensional image information of the processing target bone tissue, and generating three-dimensional image information of at least one processing target bone tissue model corresponding to the processing target bone tissue; Verifying suitability of the at least one bone tissue model to be processed; In the verifying step, determining the three-dimensional image information of the processing target bone tissue model when there is no correction of the three-dimensional image information of the at least one processing target tissue model; In the verifying step, when there is correction information of the three-dimensional information of the at least one processing target bone tissue model, the three-dimensional image of the processing target bone tissue model by reflecting the correction information in the three-dimensional image information of the processing target bone tissue model Confirming the information; And processing the workpiece in the form of artificial bone tissue from the 3D image information of the determined bone tissue model to be processed.
- the two-step firing may be performed at 850 ° C to 1,200 ° C.
- the manufactured artificial bone tissue may include CaSiO 3.
- the prepared artificial bone tissue is Ca 10 (PO 4 ) 6 A (where A is an oxygen atom). And Apatite containing at least one selected from Ca 10 (PO 4 ) 6 B 2 , wherein B is a hydroxyl group, a fluorine atom, or a chlorine atom; And Ca 2 Mg (Si 2 O 7 ).
- the prepared artificial bone tissue may include CaSiO 3, the apatite and Ca 2 Mg (Si 2 O 7 ) in a weight ratio of 1: 0.7 to 1.5: 0.5 to 1.2.
- the prepared artificial bone tissue is Ca 10 (PO 4 ) 6 A (where A is an oxygen atom). And Apatite containing at least one selected from Ca 10 (PO 4 ) 6 B 2 , wherein B is a hydroxyl group, a fluorine atom, or a chlorine atom; Ca 2 Mg (Si 2 O 7 ); And CaMgSi 2 O 6 ;
- the prepared artificial bone tissue CaSiO 3 , the apatite and Ca 2 Mg (Si 2 O 7 ) and CaMgSi 2 O 6 0.7 ⁇ 1.3: 0.7 ⁇ 3.0: 0.5 ⁇ 1.2: 0.7 ⁇ 1.3 It may also be included in the weight ratio.
- the artificial bone tissue may have a compressive strength of 900 ⁇ 1,600 Mpa.
- the artificial bone tissue may have a torsional strength of 0.6 N ⁇ m to 2.0 N ⁇ m.
- the artificial bone tissue may have a volume contraction rate of 5% or less based on the length of one axis of the shape of the hard tissue defect of the living body.
- the artificial bone tissue may have a relative density value of 95% or more of theoretical density.
- the artificial bone tissue may have bone fusion characteristics.
- the artificial bone tissue may include artificial bone, artificial joint, oral and maxillofacial bone, skull or dental artificial root.
- the artificial bone tissue may include a bone in the form of a spinal fusion disc, artificial bone for facial reconstruction, intervertebral spacer.
- the non-crystalline biohard-tissue defect replacement medicinal material prepared using the bio-hard tissue defect replacement medicinal composition of the present invention can produce artificial bone tissue through a conventional etching process.
- the replacement material for the amorphous biohard tissue defect portion has a very low volume shrinkage rate, thereby minimizing the incompatibility of the artificial bone tissue manufactured using the same, thereby minimizing the defect rate, and the artificial bone tissue has excellent mechanical strength and biocompatibility. And adhesion with the implanted peripheral bone tissue (bone union properties) is very good.
- FIG. 1 is a schematic diagram of an embodiment of manufacturing the artificial bone tissue of the present invention.
- FIG. 2 is a schematic diagram of a manufacturing system that can be applied when manufacturing artificial bone tissue as one of the preferred embodiments of the present invention.
- FIG. 3 is a schematic diagram of a process of processing a medical material in the form of artificial bone tissue as one exemplary embodiment of the present invention.
- Figure 4 is a photograph of the medicinal material for replacing the amorphous living hard tissue defects heat-treated at 800 °C in Example 1.
- Figure 5 is a graph measuring the compressive strength of the sintered body according to the temperature carried out in Example 2.
- FIG. 6 is an X-ray diffraction pattern analysis result performed in Example 2.
- FIG. 7 is a result of measuring the apparent density and open porosity of Examples 1 to 3 and Comparative Examples 1 to 5 carried out in Experimental Example 2.
- FIG. 7 is a result of measuring the apparent density and open porosity of Examples 1 to 3 and Comparative Examples 1 to 5 carried out in Experimental Example 2.
- FIG. 8A to 8E are XRD measurement results of Examples 1 to 3 and Comparative Examples 4 to 5 carried out in Experimental Example 3, and FIG. 8F is qualitative analysis measurement data by X-ray diffraction method of Example 1.
- FIG. 8F is qualitative analysis measurement data by X-ray diffraction method of Example 1.
- FIG. 9 is an electron microscope measurement photograph of each of the surfaces of Examples 1 to 3 carried out in Experimental Example 4.
- FIG. 9 is an electron microscope measurement photograph of each of the surfaces of Examples 1 to 3 carried out in Experimental Example 4.
- FIG. 10A is a result of measuring bioactivity of each of the sintered bodies of Examples 1 to 3 performed in Experimental Example 5, and FIG. 10B is a result of cytotoxicity evaluation experiment.
- 11A to 11C are the results of the biocompatibility visual inspection of each of the sintered bodies of Examples 1 to 2 and Comparative Example 7 carried out in Experimental Example 7.
- FIG. 11A to 11C are the results of the biocompatibility visual inspection of each of the sintered bodies of Examples 1 to 2 and Comparative Example 7 carried out in Experimental Example 7.
- 12A to 12C are each a radiological test result of each of the sintered bodies of Examples 1 to 2 and Comparative Example 7 carried out in Experimental Example 7.
- FIG. 13A to 13C are the results of histological examination of each of the sintered bodies of Examples 1 to 2 and Comparative Example 7 carried out in Experimental Example 7.
- FIG. 13A to 13C are the results of histological examination of each of the sintered bodies of Examples 1 to 2 and Comparative Example 7 carried out in Experimental Example 7.
- FIG. 14 shows a model of the disk carried out in Preparation Example 1.
- Figure 16 shows the modeling of the spine performed in Preparation Example 2.
- FIG. 17A and 17B are photographs of artificial bone tissue in the form of shaped bodies and vertebrae prepared in Preparation Example 2.
- FIG. 17A and 17B are photographs of artificial bone tissue in the form of shaped bodies and vertebrae prepared in Preparation Example 2.
- Figure 18 is a picture taken of the artificial bone tissue of the spinal form prepared in Preparation Example 2 in accordance with the 3D printing prototype.
- bioactive glass powder refers to a powder composed of components in which apatite is produced upon high temperature firing and exhibits bioactivity during transplantation.
- amorphous such as amorphous biohard tissue defects of the present invention, amorphous shaped bodies, etc. does not mean that the crystallinity is 0%, but that the crystallinity is 1% or less.
- the term "compressive strength" of the present invention may mean the maximum stress of a material that can withstand under compressive load.
- the compressive strength of a material broken into fragments during compression can be defined in the agreement as an independent property, but the compressive strength of materials that do not break into compression can be defined as the amount of stress required to distort any amount of material. have.
- the force applied in the test instrument can be measured by plotting it against deformation. In the compression test, the compressive strength can be calculated by dividing the maximum load by the initial cross section of the specimen.
- torsional strength or torsion refers to the ability of the material to withstand torsional loads, the torsional strength is the maximum strength of the material affected by the torsional load, it can hold the material before fracture Maximum torsional stress may be present. It is also called wave step number or shear strength.
- the unit of measurement may be Newton meters (N ⁇ m) or feet-pound force (ft ⁇ lbf).
- fatigue strength refers to the magnitude of the fluctuating stress required to break a fatigue test specimen by applying a predetermined number of repetitive loads, wherein the repeated number of times is referred to as fatigue life. do. Fatigue strength can generally be measured directly from the S-N diagram, but is not limited thereto. ASTM defines fatigue strength, SNf, as the stress value at which Nf cycle number breaks occur.
- the biomaterial for replacing the amorphous biohard tissue defect of the present invention is a biomaterial for replacing the amorphous biohard tissue defect prepared using a bioactive glass powder, comprising: preparing a bioactive glass powder; Step 2 to produce a molded body by pressing the bioactive glass powder; A step 3 of manufacturing the amorphous molded body by heat-treating the molded body at a temperature below the glass transition temperature of the bioactive glass powder in the molded body; And by firing the amorphous molded body to produce a fired body can be prepared by performing a process comprising a.
- the bioactive glass powder in one step may include SiO 2 and CaO, preferably SiO 2 40 ⁇ 75 mol%, CaO 25 ⁇ It may also contain trace amounts of 60 mol% and other unavoidable impurities.
- the bioactive glass powder may further include one or more components selected from P 2 O 5 , MgO, Na 2 O, B 2 O 3 and CaF 2 as other components in addition to SiO 2 and CaO.
- a method for preparing a bioactive glass powder in one step is described.
- the mixture of step 1-1 is a mixture of MgO, CaO, SiO 2 , P 2 O 5 , CaF 2 and B 2 O 3 , preferably MgO 4.5 ⁇ 6.5 wt%, CaO in the total weight of the mixture 41-43 wt%, SiO 2 34 to 36.2 wt%, P 2 O 5 13.5-17 wt%, CaF 2 0.9-2.5 wt% and B 2 O 3 0.2-1.5 wt%, more preferably MgO 5.2-6.5 wt%, CaO 41.0-42.3 wt%, SiO 2 35.3 to 36.2 wt%, P 2 O 5 13.5-15.0 wt%, CaF 2 0.97-2.2 wt% and B 2 O 3 0.2 to 1.5 wt%, more preferably MgO 5.50 to 6.35 wt%, SiO 2 35.3 to 36.2 wt%, P 2 O 5 13.5 to 14.6 wt%, CaF 2 1.6 to 2.2 wt
- the MgO content when the MgO content is less than 4.5% by weight, there may be a problem in that mechanical properties such as compressive strength are reduced, and when the MgO content is higher than 6.5% by weight, the sintering property may be inferior.
- the CaO content is less than 41 wt%, there may be a problem that the density of the glass powder is low and the porosity is high, and when the CaO content is more than 43 wt%, there may be a problem that the sintering property is lowered.
- SiO 2 If the content is less than 34% by weight, there may be a problem that the sintering property is lowered, and when the content is more than 36.2% by weight, the sintering property may be excellent but the bending strength may be lowered.
- the P 2 O 5 content is less than 13.5% by weight, there may be disadvantageous problems in terms of bioactivity. If the P 2 O 5 content is more than 17% by weight, it may be advantageous in terms of bioactivity. There may be a problem that the physical properties are lowered. In addition, when the CaF 2 content is less than 0.9% by weight, there may be a problem that the mechanical properties are reduced, and when the CaF 2 content is more than 2.5% by weight, other components may be relatively reduced, which may cause other problems. And B 2 O 3 If the content is less than 0.2% by weight, there may be a problem that the sintering temperature is higher, and if the content exceeds 1.5% by weight, there may be a problem that hinders densification.
- the mixture of step 1-1 unlike the mixture 1, the compression strength and bending strength of the glass powder is lower than the mechanical properties, but in the case of preparing a glass powder having a relatively higher biocompatibility than the mixture 1,
- the mixture is MgO 4.5-6.5 wt%, CaO 41-43 wt%, SiO 2 30.5 to 32.5 wt%, P 2 O 5 18.5 to 19.8 wt%, CaF 2 0.5 to 1.5 wt% and B 2 O 3 0.2 to 1.5% by weight, preferably MgO 4.5 to 6.5% by weight, CaO 41 to 43% by weight, SiO 2 30.8 to 32.2 wt%, P 2 O 5 18.5 to 19.3 wt%, CaF 2 0.6 to 1.2 wt% and B 2 O 3 0.2 to 1.5% by weight (mixture 2).
- step 1-1 is MgO, CaO, SiO 2 , P 2 O 5 , CaF 2 and B 2 O 3 depending on the purpose of use
- Na 2 O may be further included.
- the melting of the step 1-1 is preferably performed at 1,350 ° C. to 1,600 ° C., preferably at 1,450 ° C. to 1,550 ° C., and when the melting temperature is less than 1,350 ° C., it is heated to a melting point or more. There may be a problem that can not be sufficiently melted, and if the heat treatment temperature exceeds 1,600 °C there may be a problem that is accompanied by waste of energy due to unnecessary heating, it is preferable to perform the melting at the temperature.
- the grinding method is not particularly limited, a general grinding method used in the art can be used.
- the bioactive glass powder prepared by pulverization may have an average particle diameter of 0.5 ⁇ m to 10 ⁇ m, and preferably has an average particle diameter of about 0.5 ⁇ m to 5 ⁇ m, more preferably about 1.8 ⁇ m to 5 ⁇ m.
- composition of the medicinal material can be adjusted according to the characteristics of the biological hard tissue defects to be applied by changing the components and the ratio of the bioactive glass powder.
- the amorphous molded body can be prepared by the general pressure molding method used in the art of the bioactive glass powder of step 1 prepared by the above method, preferably cold isotropic compression (cold isostatic pressing; CIP) can be used.
- the molded article obtained in the second step may have various shapes such as a block shape and a cylindrical shape.
- bioactive glass powder alone or mixed with a dispersant before pressure molding in step 2
- the bioactive glass powder in the molded body is uniformly distributed and evenly mixed, thereby resulting in amorphous biohard tissue defects having uniform physical properties.
- Alternative medicinal materials may also be prepared.
- the dispersant may be used in an amount of 0.5 to 20 parts by weight, preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the bioactive glass powder.
- polyvinyl alcohol PVA
- polyvinylbutyl alcohol PVB
- polymethyl methacrylate PMMA
- polyethylene glycol PEG
- methyl cellulose hydroxymethyl cellulose
- sodium carboxymethyl cellulose paraffin
- Wax emulsions microcrystalline waxes and ethanol selected from single or two or more kinds
- ethanol selected from single or two or more kinds
- the dispersant may be a dispersion solution in which the dispersant such as PVA and PVB is dispersed in a solution such as water.
- the third step is to form the molded article of the second step at 680 °C ⁇ 720 °C, preferably 685 °C ⁇ 715 °C, more preferably 690 °C ⁇ 710 °C
- the heat treatment should be able to achieve a level of strength capable of processing the bioactive glass molded body.
- the densification of the molded body does not proceed at a heat treatment temperature of less than 680 °C, it may be easily damaged after processing, heat treatment at the temperature above 720 °C because the molded body is rapidly contracted and the strength and hardness may be increased and processing may be impossible. It is preferable to
- the amorphous molded article prepared by heat treatment in this way may have a linear volumetric shrinkage of 5% or less, preferably 1% to 4.5% when the cube is heat treated at 700 ° C. It may be more preferably 1% to 4%.
- the individual customized processing processing according to design design and design
- processing treatment to apply the medicinal material for replacing the amorphous biohard tissue defect of the present invention to artificial artificial bone tissue, etc. It is possible to minimize the deformation of the shape after firing the medicinal material.
- the amorphous molded body may have a degree of crystallinity of 1% or less, and may have a relative density of 50 to 70% with respect to glass theoretical density (3 g / cm 3 ), and thus may be easily processed into a desired shape.
- the medicinal material for replacing the amorphous living hard tissue defect prepared by the method described above may be manufactured and processed by the following method to prepare artificial bone tissue.
- the third step of the slow cooling of the fired product of two steps may further include.
- Step 1 is a process of processing the medical material in the form of artificial bone tissue to be prepared, it can be carried out by the method shown in a schematic diagram in Figure 3, specifically, by photographing the processing target bone tissue 3 Generating dimensional image information; Identifying the processing target bone tissue based on the three-dimensional image information of the processing target bone tissue, and generating three-dimensional image information of at least one processing target bone tissue model corresponding to the processing target bone tissue; Verifying suitability of the at least one bone tissue model to be processed; In the verifying step, when there is no correction of the 3D image information of the at least one processing target bone tissue model, determining 3D image information of the processing target bone tissue model; In the verifying step, when there is correction information of the three-dimensional information of the at least one processing target bone tissue model, the three-dimensional image of the processing target bone tissue model by reflecting the correction information in the three-dimensional image information of the processing target bone tissue model Confirming the information; And processing the workpiece in the form of artificial bone tissue from the 3D image information of the determined bone tissue
- the 3D image information of the bone tissue to be processed is referred to at least one or more additional information of identification information, a disease name, and a surgical method of the bone tissue to be processed.
- 3D image information of the bone tissue model to be processed may be generated.
- the first data storing basic image information including image information of normal bone tissue collected from human bodies by age, gender, height, weight, or race A base may be provided, and detecting the 3D image information of the bone tissue model to be processed may be performed from the basic image information.
- the first database further stores additional identification information about the normal bone tissue, a related disease name, or a surgical method, and the image information of the normal bone tissue is modified by referring to the surgical method to determine the target bone tissue model. 3D image information may also be generated.
- a second database may be provided in which information on at least one of the shape, material, microstructure, strength, surgical method, and surgical success rate of the artificial bone tissue is stored.
- the verifying may be performed by simulating 3D image information of the therapeutic bone tissue model according to a surgical method by editing, comparing, or measuring a graphic object implemented from 3D image information. .
- the determining of the 3D image information of the bone tissue model to be processed may further include performing learning by replacing 3D image information of the normal bone tissue with 3D image information of the replacement bone tissue.
- the processing of the first step can be processed using the artificial bone tissue manufacturing system 100 as follows (see Fig. 2).
- the artificial bone tissue manufacturing system acquires the image information of the bone tissue to be processed from the imaging unit 111 which photographs a target bone tissue of the patient to generate 3D image information, and is coupled to a network for transmitting the image information.
- a client computer 112 comprising a user interface for input of a user or output of information; Based on the image information of the processing target bone tissue received from the client computer, identifying the processing target bone tissue and generates three-dimensional image information of at least one therapeutic bone tissue model corresponding to the processing target bone tissue, the client A server computer (121) for transmitting three-dimensional image information of the at least one processing target bone tissue model to the client computer so that the image information of the at least one processing target bone tissue model is verified and confirmed by a computer; And a processing unit 122 for manufacturing a workpiece in the form of an artificial bone tissue based on the 3D image information of the bone tissue model for processing target determined from the server computer.
- the imaging unit 111 and the client computer 112 may be installed in an operating room or a diagnostic room in the hospital system 110, and the server computer 121 and the processing unit 122 may be located at a separate place from the operating room or the diagnostic room. It may be installed in the artificial bone tissue processing and manufacturing system 120 is disposed. Each component may allow remote access to each other through the network 130, as shown in FIG. To this end, client computer 112 or server computer 121 may include a communication interface (not shown) for connecting to network 130.
- a plurality of hospital systems 110 there are a plurality of hospital systems 110, and thus, a plurality of client computers 112 and imaging units 111, and the artificial bone tissue processing and manufacturing system 120 may be a single. In this case, a many-to-one relationship may be established between the plurality of hospital systems 110 and one artificial bone tissue processing and manufacturing system 120.
- the plurality of client computers and one server computer may be communicatively connected to each other through a network 130 including a wired and wireless communication network.
- the imaging unit is an imaging device capable of generating any three-dimensional image information including information on the size, shape, location or disease of the bone tissue to be processed, an x-ray device, computed tomography or computerized and at least one of an axial tomography (MRI) device, a magnetic resonance imaging (MRI) device, an optical coherence tomography device, an ultrasound imaging device, and a positron emission tomography (PET) device.
- MRI axial tomography
- MRI magnetic resonance imaging
- PET positron emission tomography
- the imaging unit 111 may include an imaging device capable of generating 2D image information capable of 3D rendering.
- the 3D image information may include 3D image information of the processed target bone tissue for replacement, prosthesis, reconstruction, or fusion for the treatment of the processed target bone tissue.
- the apparatus may further include three-dimensional image information about wound bed preparation of bone tissue and image information about adjacent bone tissue, muscle tissue, nerve tissue, or vascular tissue according to a surgical method. These are collectively referred to as three-dimensional image information of the bone tissue to be processed.
- the client computer 112 provides the server computer with the image information of the bone tissue to be processed, and additional information of at least one or more of identification information of the bone tissue to be processed, a disease name, and a surgical method.
- the server computer may generate three-dimensional image information of the processing target bone tissue model with reference to the additional information together with the image information.
- the server computer includes a first database storing basic image information including image information of normal bone tissue collected from human bodies by age, gender, height, weight, or race, and the server computer includes the basic image.
- the 3D image information of the therapeutic bone tissue model may be generated from the information.
- the client computer 112 or server computer 121 is a permanent storage device or temporary storage device for storing application software and data, at least one or more databases stored in the permanent storage device or temporary storage device, and controlling them. It may include a central processing unit for. As an example of the database, first and second databases 123 and 124 provided on the server computer 121 side are illustrated.
- the client computer 112 or server computer 121 also has a user interface including inputs such as a mouse, keyboard or touch panel, and outputs such as a monitor, projection display and head-up display.
- the user interface may implement augmented reality in order to improve the reality and information transfer efficiency of a simulation to be described later.
- Reference numeral 113 in FIG. 2 shows the user interface coupled to the client computer 112.
- the user interface 113 of the client computer 112 may be shared remotely by the server 121.
- the user interface 113 is a display
- the contents operated by the user of the client computer 112 side are transmitted to the user of the server 121 side, and the user interface 113 is displayed through the display of the server side 121.
- the same picture content embodied in can be displayed.
- the contents operated by the user of the server 121 may be implemented in the user interface 113.
- the implementation manner thereof may be realized through streaming of multimedia information or transmission and reception of control information using the Internet, but the present invention is not limited thereto.
- the first database may further include identification information of the normal bone tissue, a name of a related disease, or information about a surgical method, and the first database may include an image of the patient's past target bone tissue. Information or image information about the other normal bone tissue in the left-right symmetry relationship of the bone tissue to be processed may be further included.
- the client computer may transmit the image information of the bone tissue to be processed to a server computer, and the server computer may generate 3D image information of the bone tissue model to be processed by modifying image information of normal bone tissue.
- the server computer may include a second database in which information on at least one of the shape, material, microstructure, and strength of the artificial bone tissue is stored.
- the client computer may edit, compare, or measure a graphic object through which the user may simulate three-dimensional image information of the processed bone tissue model provided from the server computer according to a surgical method. Measurement can also be performed.
- the user may determine the processing target bone tissue model by accepting or modifying the processing target bone tissue model transmitted from the server computer through the simulation result.
- the client computer may include at least one of an editing tool, a comparison tool, and a dimensional measurement tool of a graphic object for performing the simulation.
- the user input may include a command received from a user using at least one of an editing tool, a comparison tool, or a dimension measuring tool of a graphic object to modify 3D image information of a target tissue model.
- the three-dimensional image information of the confirmed artificial bone tissue may be stored in any digital format decodable by the processing unit 122 described later, or by way of non-limiting example, Autocad TM , Catia TM , Solidworks TM ) Can be stored in the database 124 in a digital format of three-dimensional image information that can be supported by commercial software such as MIMICSTM, or 3D MAXTM.
- the processing unit 122 receives artificial bone tissue image information stored in the second database 124 of the server computer 121 and optionally additional information such as material and strength of the artificial bone tissue, and based on this, the three-dimensional shape It can be processed into workpieces in the form of artificial bone tissue.
- the processing unit 122 may process the workpiece by relatively moving the machining tool and the table in three dimensions based on the image information or additional information. At this time, the processing may be performed by a milling method using a commercial milling machine. If necessary, in order to utilize various curved surfaces of the workpiece, a CNC milling machine, a 4-axis milling machine, a 5-axis milling machine, or a dental prosthesis processing machine, etc. capable of multi-axis machining may be used.
- the processing unit 122 may manufacture a workpiece (artificial bone tissue) 125 using a mold.
- step 2 is a step of firing the workpiece processed in the form of artificial bone tissue to be prepared in step 1, firing is a step of forming a high-strength bioactive crystallized glass material by sintering by heat treatment at a high temperature.
- the firing may be performed by firing a processed product by using the primary heat treated medicinal material for replacing the amorphous biotissue defect, wherein the shrinkage during heat treatment may be controlled by an isotropic shrinkage, and the shrinkage rate of the sintered material is respectively It can be made almost identical to the error range within 5% of the length of the axial direction.
- the two-stage firing is performed at 850 ° C. to 1,200 ° C., and when firing is performed at less than 850 ° C., the glass transition temperature of SiO 2 , the main component of the bioactive glass powder included in the workpiece, is approximately 800 ° C. Serious breakage may occur.
- the firing temperature affects the compressive strength of the sintered product.
- the sintering temperature shows a compressive strength of 1,300 Mpa or more, and exhibits high mechanical properties (FIG. 5). ).
- the third step is to sinter the sintered plastics, and the sintered materials are rapidly shrunk and densified as the liquid phase sinters as the glass transition temperature progresses. If the thermal shocks occur in the plastics, serious damage may occur. have. Therefore, the temperature should be lowered slowly so that there is no thermal shock.
- the slow cooling rate is 5 ° C / min, since the breakage of the molded body occurs seriously, slow cooling at a slower speed, it is preferable to perform the slow cooling at 2 ° C / min.
- Artificial bone tissue prepared by the above method may be 15 to 25%, preferably 16 to 20%, more preferably 17 to 19% based on the length of the uniaxial direction. And, the volume shrinkage of the fired product may be 30 to 55%, preferably 40 to 50%.
- the artificial bone tissue of the present invention may include CaSiO 3 .
- the artificial bone tissue of the present invention CaSiO 3 ; Ca 10 (PO 4 ) 6 A (where A is an oxygen atom) And Apatite containing at least one selected from Ca 10 (PO 4 ) 6 B 2 , wherein B is a hydroxyl group, a fluorine atom, or a chlorine atom; And Ca 2 Mg (Si 2 O 7 ); and preferably include CaSiO 3 , the apatite and Ca 2 Mg (Si 2 O 7 ) in a weight ratio of 1: 0.7 to 1.5: 0.5 to 1.2. It may be.
- the artificial bone tissue of the present invention CaSiO 3 ; Ca 10 (PO 4 ) 6 A (where A is an oxygen atom) And Apatite containing at least one selected from Ca 10 (PO 4 ) 6 B 2 , wherein B is a hydroxyl group, a fluorine atom, or a chlorine atom; Ca 2 Mg (Si 2 O 7 ); And CaMgSi 2 O 6 ;
- CaSiO 3 , the apatite and Ca 2 Mg (Si 2 O 7 ) and CaMgSi 2 O 6 are 0.7-1.3: 0.7-3.0: 0.5-1.2: 0.7 It may be included in a weight ratio of ⁇ 1.3, more preferably CaSiO 3 , the apatite and Ca 2 Mg (Si 2 O 7 ) and CaMgSi 2 O 6 1: 1: 0.7 to 3.0: 0.5 to 1.2: 0.7 to 1.3 by weight You may.
- Artificial bone tissue of the present invention may have a compressive strength of 900 to 1,600 Mpa, preferably 980 to 1,500 Mpa, more preferably 1,200 to 1,480 Mpa. .
- the artificial bone tissue of the present invention (or a plastic product of a substitute for the amorphous biohard tissue defect) has a bending strength of 150 to 300 Mpa, preferably 220 to 300 Mpa, more preferably 245 to 285 Mpa. Can be.
- the artificial bone tissue of the present invention (or a fired product of a substitute for amorphous biohard tissue defect) may have a fracture toughness value of 2 Mpa ⁇ m 1/2 or more.
- the artificial bone tissue of the present invention may have a torsional strength of 0.6 N ⁇ m to 2.0 N ⁇ m, preferably 0.6 N ⁇ m to 1.5 N ⁇ m.
- a fatigue strength equal to or more than the maximum compressive strength, which does not break even after repeating 5 million cycles at a repetition speed of 5 Hz and a stress ratio of 10.
- the artificial bone tissue may have a volume shrinkage of 5% or less based on the length of one axis of the shape of the hard tissue defect of the living body, and the artificial bone tissue may have a relative density value of 95% or more of theoretical density.
- the artificial bone tissue of the present invention may have a change in the apparent density and the open porosity, depending on the firing temperature of the two stages, the artificial bone tissue (sintered body) is 2.95 ⁇ 3.05 g / cm 3 when firing at 850 °C , Open porosity is 0.90% ⁇ 1.20%, the apparent density during firing at 900 °C is 2.95 ⁇ 3.05 g / cm 3 , the open porosity may be 0.55% ⁇ 1.20%.
- the artificial bone tissue (sintered body) has an apparent density of 2.97 to 3.07 g / cm 3 when fired at 950 ° C., an open porosity of 0.46% to 1.00%, and a density of 2.99 to 3.08 g / cm 3 when fired at 1,000 ° C.
- the porosity may be 0.50% to 1.00%.
- the artificial bone tissue (sintered body) may have an apparent density of 2.97 to 3.10 g / cm 3 when fired at 1,050 ° C, and an open porosity of 0.50% to 2.75%, preferably 0.50 to 0.95%.
- the artificial bone tissue of the present invention can exhibit a bone fusion (bone fusion) characteristics can also effectively replace the hard tissue defects of the living body when implanted in vivo.
- the artificial bone tissue according to the present invention may be artificial bone, artificial joint, oral and maxillofacial bone, skull or dental artificial tooth. More specifically, for example, the artificial bone tissue of the present invention can be applied as an artificial bone in the form of a disc for spinal fusion, artificial bone for facial reconstruction, intervertebral spacer, and the like.
- the mixture was heat-treated at 1,550 ° C., quenched and vitrified, and then pulverized and powdered to an average particle size of 1.8 ⁇ m, thereby preparing a bioactive glass powder.
- Example 1 amorphous living body Hard tissue defect Alternative Medical supplies According to manufacturing and heat treatment temperature Shrinkage Research
- a block-shaped molded body was prepared by isotropically compressing the medicinal composition for replacing the amorphous living hard tissue defect by cold isostaticpressing (CIP).
- CIP cold isostaticpressing
- the molded article was heat-treated at 650 ° C., 700 ° C., 750 ° C. and 800 ° C., respectively, and the shrinkage ratios of the sides according to the respective heat treatment temperatures were examined.
- the results of heat treatment at 700 ° C. and 750 ° C. It is shown in Table 2 below.
- a temperature condition of less than 650 ° C. the compaction of the molded body did not proceed and was easily broken after processing.
- sintering at 800 °C it was confirmed that the product breakage occurs due to the interruption of crystallization (see Fig. 4).
- the compressive strength of 145 Mpa or more was exhibited from 750 ° C. showing rapid contraction, and the increase was sharply increased with increasing firing temperature. From the firing temperature 920 ⁇ 940 °C showed a compressive strength of more than 900 Mpa, in particular, when the firing temperature is 1,000 °C it was confirmed that the excellent mechanical properties were maintained by showing a compressive strength of 1,300 Mpa or more. Through this, it was confirmed that the proper firing temperature is 850 °C ⁇ 1,200 °C.
- 2 ⁇ the major line of each material, is 29.5 to 30.5 ° for CaSiO 3 (wollastonite), 31.5 ° to 32.5 ° for Ca 10 (PO 4 ) 6 (OH) 2 (hydroxyapatite), and Ca 2 Mg (Si 2 O 7 ) (acmanite) was found to be in the range of 30.5 ° ⁇ 31.5 ° and CaMgSi 2 O 6 (diopside) in the range of 29.5 ° ⁇ 30.5 °.
- Example 2 to 3 and Comparative example 1 to 5 amorphous living body Hard tissue defect Alternative Medical supplies And objections Plastic Produce
- each of the medicinal materials for replacing the amorphous living hard tissue defects (Examples 1 to 3 and Comparative Examples 1 to 5) were respectively processed at 750 ° C, 800 ° C, 850 ° C, 900 ° C, 950 ° C, 1,000 ° C, and 1,050 without additional processing. It was calcined at 2 ° C. for 2 hours to prepare sintered bodies which were fired products.
- the powder, the hydroxyapatite powder, and the mixed powder of Ca (OH) 2 powder were heat-treated at 1550 ° C., quenched and vitrified, and then pulverized to a powder having an average particle diameter of 1.8 ⁇ m, thereby preparing a bioactive glass powder. Thereafter, the molded body obtained by heating the composition of 100 parts by weight of the bioactive glass powder and 10 parts by weight of the dispersant (10% by volume polyvinyl alcohol and 90% by volume water) at 700 ° C in the same manner as in Example 2 was used at 1,050 ° C for 2 hours. Calcined to include CaSiO 3 and Ca 10 (PO 4 ) 6 (OH) 2 A sintered body that was a fired product was produced.
- Example 3 even though 18.905 wt% of P 2 O 5 content exceeded 17 wt%, a high density and low porosity were observed. It is believed to be due to the difference in CaO and CaF 2 content.
- Examples 1 to 3 and Comparative Examples 4 to 5 can confirm that apatite precipitation occurs first at 750 ° C., in particular, the more beta-walastonite is used as the bioactive glass powder containing much MgO is used. It can be seen that there is a tendency for the split to occur around 30 °, which is the main peak of, because the crystal phase of wollastonite substituted with Mg at the Ca site of beta wollastonite and pure beta wollastonite coexist. It is because of this.
- Example 2 has a higher mechanical strength than Comparative Example 4.
- the cytotoxicity test was performed as part of the biocompatibility test, and the extract test method of in vitro methods (ISO 10993-5) (: Biological Evaluation of Medical Devices, Part 5: Tests for Cytotoxicity) was used to test.
- the test solution used in the test was prepared by eluting the test substance with physiological saline and mixing the same amount with 2 ⁇ MEM (Modified Eagle's Medium) serum medium.
- the test solution was prepared on three rat fibroblasts with a uniform monolayer. Administered. At the same time, three solvent control groups, a negative control group, and a positive control group were also administered. All cells were incubated for 48 hours on (37 ⁇ 1) ° C., (5 ⁇ 1)% CO 2 , after which the morphological changes of each cell were observed under a microscope.
- the compressive strength, the bending strength, and the fracture toughness of the sintered bodies (which are 1050 ° C sintered bodies) of Examples 1 to 3 and Comparative Examples 1 to 7 were measured, and the results are shown in Table 8 below.
- the final sintered body was made of a 1 cm long cube and polished to homogenize the face to minimize the strength measurement error.
- Example 1 1321 ⁇ 40 253 ⁇ 13 3.0 ⁇ 0.17
- Example 2 1115 ⁇ 45 241 ⁇ 23 2.32 ⁇ 0.05
- Example 3 949 ⁇ 77 170 ⁇ 14 2.06 ⁇ 0.06
- Comparative Example 6 1103 ⁇ 94 180 ⁇ 10 1.54 ⁇ 0.07
- Comparative Example 7 832 ⁇ 35 53 ⁇ 1 1.51 ⁇ 0.03
- Examples 1 to 3 all have excellent compressive strength, bending strength and fracture toughness.
- Example 1 In the case of Example 1, the compressive strength increased by 20% and 60% and the bending strength increased by 40% and 375% when compared with Comparative Examples 6 to 7. In addition, the fracture toughness was found to increase significantly by about two times for both. And Examples 2 and 3, it was confirmed that the fracture toughness value is more than 2 Mpa.m 1/2 or more than Comparative Examples 6-7.
- the biocompatibility visual inspection was performed about the 1050 degreeC sintered compact of Examples 1-2 and the sintered compact of comparative example 7.
- the biocompatibility visual examination was performed by performing an autopsy to confirm the union and separation of the cortical bone, which is a hard outer portion, and the object artificially inserted into the region.
- FIGS. 11A Example 1
- 11B Example 2
- FIG. 11C Comparative Example 7
- Example 1 and Example 2 the two cases of long-term follow-up showed good union with the cortical bone, and both of the short-term follow-up showed a union with the cortical bone (see FIGS. 11A and 11B). ).
- Radiographic examinations were carried out for the 1050 ° C sintered bodies of Examples 1 to 2 and the sintered bodies of Comparative Example 7.
- Example 1 As a result, in the case of Example 1, both cases of long-term follow-up were completely union with the cortical bone, and autopsy was performed in two cases of short-term follow-up. In addition, Example 2 also showed complete union with the cortical bone in both cases of long-term follow-up, and cortical bone and union in one of the two short-term patients, and partial union in one.
- Radiographic examinations were carried out for the 1050 ° C sintered bodies of Examples 1 to 2 and the sintered bodies of Comparative Example 7.
- radiographic examinations are performed at intervals of two weeks immediately after surgery and up to 12 weeks thereafter, and long-term follow-up examinations are performed on the tibia of the rabbit every 12 months after 12 weeks of union. The degree was observed.
- Histological examination refers to the examination of the human or animal tissues by ablation and observation with an optical microscope. In this study, non-calcified slides were made and subjected to H & E (Hematoxylin & eosin) staining, and then histological examination of the implants with optical microscope. .
- H & E Hematoxylin & eosin
- the implant was inserted below the proximal tibia surface of the rabbit and the external fixation device was shortened and fixed so that the compressive force acted on the insertion site. Three months after the operation, the bolt screw was inserted to pass through the center of the upper and lower tibia, which was in contact with the implant, and the pre-fabricated fixing mechanism was installed at the same interval.
- FIG. 13A Example 1
- FIG. 13B Example 2
- FIG. 13C Comparative Example 7
- FIG 13 shows the observation of the binding state of the graft and bone to the non-calcified tissue.
- Examples 1 and 2 and Comparative Example 7 it can be confirmed that the union with the bone was well.
- Figure 13b it can be confirmed that the property is broken, not because of the strength of the specimen, it is determined that the excessive load due to fracture.
- a block-shaped molded article (a medicinal material for replacing amorphous biohard tissue defects) prepared by heat treatment at 700 ° C. prepared in Example 1 was analyzed by analyzing the disk shape modeling results as shown in FIG.
- the molded body was processed after redesign by applying a shrinkage rate of 18% to each side.
- the processed molded body was calcined at 1,050 ° C., and then artificial bone tissue was prepared, which is a final sintered body in the form of a disk obtained by slow cooling at 2 ° C./min (see FIG. 15).
- the artificial bone tissue produced showed a deviation within 5% of the predictive design (see Table 9 below).
- Production Example 2 preparation of artificial bone tissue in the form of spine
- a block-shaped molded article prepared by heat treatment at 700 ° C. prepared in Example 1 (a substitute for non-crystalline biohard tissue defects) was analyzed by analyzing modeling results of the spine and shapes as shown in FIG. The molded body was processed (see FIG. 17A).
- an artificial bone tissue which is a final sintered sintered body obtained by sintering the molded body processed into the spine form at 1,050 ° C. and then slowly cooled to 2 ° C./min, was prepared (see FIG. 17B).
- Example 1 After treating the medicinal material for replacing the amorphous living hard tissue defect part of Example 1 in the form of a spine spacer, it was calcined at 1,050 ° C to prepare a spinal spacer as a sintered body.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Public Health (AREA)
- Life Sciences & Earth Sciences (AREA)
- Epidemiology (AREA)
- Inorganic Chemistry (AREA)
- Dermatology (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Cardiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Materials For Medical Uses (AREA)
Abstract
The present invention relates to a biologically active glass powder, an amorphous medical material for substituting a biological hard tissue defect using the same, an artificial bone tissue, and a method for manufacturing the same and, more specifically, to a biologically active glass powder, which is used in a medical material for substituting a biological hard tissue defect, the medical material being capable of manufacturing an artificial bone tissue for bio-transplantation having excellent adhesion to an in-vivo bone tissue, biocompatibility, and mechanical strength, to an amorphous medical material for substituting a biological hard tissue defect, the amorphous medicalmaterial being prepared by using the biologically active glass powder, to a crystalline type artificial bone tissue manufactured using the amorphous medical material for substituting a biological hard tissue defect, and to a method for manufacturing the crystalline type artificial bone tissue.
Description
본 발명은 생체 내 골(bone) 조직과의 부착성, 생체적합성 및 기계적 강도가 우수한 생체이식용 인공 골조직을 제조할 수 있는 생체 경조직 결손부 대체용 의용재에 사용되는 생체활성 유리분말 및 이를 이용하여 제조한 비결정성의 생체 경조직 결손부 대체용 의용재, 상기 비결정성 생체 경조직 결손부 대체용 의용재를 이용하여 제조한 결정성 인공 골조직 및 이를 제조하는 방법에 관한 것이다.The present invention provides a bioactive glass powder for use in a substitute for living hard tissue defects, which can produce artificial bone tissue for biograft having excellent adhesion, biocompatibility, and mechanical strength with bone tissue in vivo, and using the same. The present invention relates to a medicinal material for replacing a non-crystalline biohard tissue defect, a crystalline artificial bone tissue prepared using the crystalline material for replacing a non-crystalline biohard tissue defect, and a method of manufacturing the same.
인체를 구성하는 경조직은 67%의 무기물과 33%의 유기물로 구성되며, 무기물은 Ca/P가 주성분인 아파타이트로 구성된다. 무기물의 구성비율이 높기 때문에 경조직 결손부가 생기는 경우 합성 하이드록시아파타이트를 활용하여 대체가 가능하다. 그러나, 합성 하이드록시아파타이트는 낮은 압축강도로 인해 기계적인 안정성을 필요로 하는 다양한 부위에 적용하기 어려운 단점이 있다.The hard tissues that make up the human body are composed of 67% of inorganic and 33% of organic matter, and the inorganic material is composed of apatite mainly composed of Ca / P. Due to the high composition ratio of minerals, it is possible to substitute synthetic hydroxyapatite when hard tissue defects occur. However, synthetic hydroxyapatite has a disadvantage in that it is difficult to apply to various sites requiring mechanical stability due to low compressive strength.
하이드록시아파타이트는 이식된 부위의 주변 결손부와 맞붙어 있을 때 직접 뼈와 붙는 대표적인 골전도성 물질이다. 이러한 소재는 결손부위와 정확히 맞닿아 있을 때 유합(bone fusion)이 일어나며 그렇지 않은 경우 이식재의 미세거동(micro-motion)에 의해 주위 뼈를 손상시킬 수 있다. 따라서, 이식부위에 정확히 맞는 디자인을 맞춤형으로 제작하여 치료의 효과를 증진시킬 수 있다.Hydroxyapatite is a representative bone conducting substance that bonds directly to bones when they engage with peripheral defects in the implanted site. These materials cause bone fusion when they are in direct contact with the defect, or they can damage the surrounding bone by micro-motion of the implant. Therefore, it is possible to enhance the effectiveness of the treatment by customizing the design exactly fit the implantation site.
일반적인 세라믹 소재의 특징은 압축강도와 경도 및 내마모성이 우수한 것이다. 또한, 산화물의 형태로 존재하기 때문에 화학 물질에 의한 내부식성이 우수하다. 세라믹 소재의 우수한 물리/화학적 안정성은 다양한 부품에 사용되었을 때 수명을 크게 늘여주는 장점이 있다. 그러나 소재의 강성으로 인해 가공의 어려움이 있어 복잡한 성형체의 제조가 불가능하다.Typical ceramic materials are characterized by excellent compressive strength, hardness, and wear resistance. In addition, since it exists in the form of an oxide, it is excellent in corrosion resistance by chemical substances. The excellent physical and chemical stability of ceramic materials has the advantage of greatly extending their life when used in various components. However, due to the rigidity of the material is difficult to process, it is impossible to manufacture a complex molded body.
세라믹 소재의 강성은 열처리(sintering)에 의해 나타나기 때문에 열처리 전에 성형을 완료하는 것이 일반적이며 열처리 후에는 연삭(polishing) 방법으로 활용하여 일부 가공하기도 한다. 세라믹 성형체는 열처리(sintering) 전 분말을 단순 가압하여 제조하거나 슬러리 상태를 제조하여 주조(casting), 사출(injection molding) 혹은 압출(extrusion molding)하여 제조할 수 있다. 상기의 방식으로 제조된 성형체는 원료의 소결 온도에 맞춰 열처리하여 제조를 완료한다. 열처리 전제품 디자인을 성형하는 경우 이를 구현해 줄 수 있는 금형이 필수이며, 해당 디자인에 대해서만 제조가 가능하다.Since the stiffness of the ceramic material is indicated by heat treatment, it is common to complete molding before heat treatment, and some processing may be performed by using a polishing method after heat treatment. The ceramic molded body may be prepared by simply pressing the powder before heat treatment, or by preparing a slurry to cast, injection molding or extrusion molding. The molded article produced in the above manner is heat treated according to the sintering temperature of the raw material to complete the manufacture. When molding the entire heat treatment design, a mold capable of realizing this is essential, and only a corresponding design can be manufactured.
제품의 디자인을 다양하게 구현할 경우 열처리 후 가공을 적용하여야 하며, 세라믹 특성으로 인해 이러한 방식은 시간과 비용이 크게 소요되는 단점이 있다. 또한, 표면의 높은 경도는 무리한 가공 시 결함이 발생할 수 있는 가능성이 높기 때문에 가공에 의한 불량률을 유발할 수 있다. 가공 결함으로 인해 인체 이식 후 파손이 될 경우 이식부위가 크게 손상될 뿐 아니라 재수술을 수행하여야 한다.If various designs of the product are to be implemented, processing after heat treatment should be applied. Due to the ceramic characteristics, this method has a disadvantage in that it takes time and cost. In addition, the high hardness of the surface may cause a defective rate due to processing because the possibility of defects occurring during excessive processing is high. If a defect occurs after a human transplant due to processing defects, the transplantation site is not only severely damaged but also needs to be reoperated.
특히, 경조직 대체재를 제조할 경우 결손부위와 정확히 일치하는 맞춤형 제작이 필수적이라 할 수 있다.In particular, when manufacturing a hard tissue replacement material can be said to be tailored to exactly match the defects.
본 발명은 상술한 문제점을 해결하기 위해 안출된 것으로, 생체 내 골(bone) 조직과의 부착성, 생체적합성이 우수하면서도 가공성, 성형성뿐만 아니라, 우수한 물성을 지닌 인공 골조직을 제조할 수 있도록 최적의 조성 및 조성비를 가지는 생체활성 유리분말 및 이를 이용하여 제조한 비결정성의 생체 경조직 결손부 대체용 의용재를 제공하는데 그 목적이 있다. 또한, 본 발명은 상기 생체 경조직 결손부 대체용 의용재를 이용하여 결정성을 가지는 생체이식용 인공 골조직 및 이를 제조하는 방법을 제공하는데 그 목적이 있다.The present invention has been made to solve the above-described problems, it is optimal to produce an artificial bone tissue having excellent physical properties, as well as processability, moldability, but excellent adhesion to the bone tissue (bio) tissue in vivo An object of the present invention is to provide a bioactive glass powder having a composition and a composition ratio thereof, and a biomaterial for replacing the amorphous biohard tissue defects prepared using the same. Another object of the present invention is to provide a biograft artificial bone tissue having crystallinity and a method of manufacturing the same by using the biomaterial for replacing a hard tissue defect.
상술한 과제를 해결하기 위한 본 발명의 생체활성 유리분말은 MgO, CaO, SiO2, P2O5, CaF2 및 B2O3을 포함하는 혼합물을 용융시킨 용융물의 분쇄물을 포함한다.The bioactive glass powder of the present invention for solving the above problems includes a pulverized product of a melt obtained by melting a mixture containing MgO, CaO, SiO 2 , P 2 O 5 , CaF 2 and B 2 O 3 .
본 발명의 바람직한 일실시예로서, 상기 혼합물은 MgO 4.5 ~ 6.5 중량%, CaO 41 ~ 43 중량%, SiO2
34 ~ 36.2 중량%, P2O5
13.5 ~ 17 중량%, CaF2 0.9 ~ 2.5 중량% 및 B2O3 0.2 ~ 1.5 중량%를 포함할 수 있다.In one preferred embodiment of the invention, the mixture is MgO 4.5 ~ 6.5 wt%, CaO 41 ~ 43 wt%, SiO 2 34 to 36.2 wt%, P 2 O 5 13.5-17 wt%, CaF 2 0.9-2.5 wt% and B 2 O 3 0.2-1.5 wt%.
본 발명의 바람직한 일실시예로서, 상기 혼합물은 MgO 4.5 ~ 6.5 중량%, CaO 41 ~ 43 중량%, SiO2
30.5 ~ 32.5 중량%, P2O5
18.5 ~ 19.8 중량%, CaF2 0.5 ~ 1.5 중량% 및 B2O3
0.2 ~ 1.5 중량%를 포함할 수도 있다.In one preferred embodiment of the invention, the mixture is MgO 4.5 ~ 6.5 wt%, CaO 41 ~ 43 wt%, SiO 2 30.5 to 32.5 wt%, P 2 O 5 18.5 to 19.8 wt%, CaF 2 0.5 to 1.5 wt% and B 2 O 3 It may also comprise 0.2 to 1.5% by weight.
본 발명의 바람직한 일실시예로서, 상기 혼합물은 Na2O를 더 포함할 수도 있다.In one preferred embodiment of the invention, the mixture may further comprise Na 2 O.
본 발명의 바람직한 일실시예로서, 상기 생체활성 유리분말은 평균입경 0.5 ㎛ ~ 10 ㎛일 수 있다.In one preferred embodiment of the present invention, the bioactive glass powder may have an average particle diameter of 0.5 ㎛ ~ 10 ㎛.
본 발명의 다른 목적인 생체 경조직 결손부 대체용 의용재는 상기 다양한 형태의 생체활성 유리분말을 포함한다.Another object of the present invention, a biomaterial for replacing a hard tissue defect includes a bioactive glass powder of the above various forms.
본 발명의 바람직한 일실시예로서, 본 발명의 생체 경조직 결손부 대체용 의용재는 상기 생체활성 유리분말의 압축 성형물을 성형물 내 생체활성 유리분말의 유리전이온도 미만의 온도로 열처리한 비결정성 성형체를 포함할 수 있다. As a preferred embodiment of the present invention, the biomaterial for replacing the hard tissue defects of the present invention includes an amorphous molded body obtained by heat-treating the compressed molding of the bioactive glass powder to a temperature below the glass transition temperature of the bioactive glass powder in the molding. can do.
본 발명의 바람직한 일실시예로서, 상기 비결정성 성형체는 압축 성형물을 680℃ ~ 720℃에서 열처리한 성형체이며, 성형체가 육면체일 때, 비결정성 성형체는 선형 부피수축율이 5% 이하일 수도 있다.In one preferred embodiment of the present invention, the amorphous molded product is a molded product obtained by heat-treating the compression molded product at 680 ° C to 720 ° C. When the molded product is a hexahedron, the amorphous molded product may have a linear volumetric shrinkage of 5% or less.
본 발명의 바람직한 일실시예로서, 상기 비결정성 성형체는 결정화도가 1% 이하일 수도 있다.In one preferred embodiment of the present invention, the amorphous molded article may have a crystallinity of 1% or less.
본 발명의 바람직한 일실시예로서, 상기 비결정성 성형체는 유리 이론밀도(3g/cm3) 대해 50 ~ 70%의 상대밀도를 가질 수도 있다.In one preferred embodiment of the present invention, the amorphous molded body may have a relative density of 50 to 70% relative to the glass theoretical density (3g / cm 3 ).
본 발명의 또 다른 목적은 상기 비결정성 생체 경조직 결손부 대체용 의용재를 제조하는 방법에 관한 것으로서, 생체활성 유리분말을 제조하는 1단계; 상기 생체활성 유리분말을 가압 성형하여 성형체를 제조하는 2단계; 및 상기 성형체를 성형물 내 생체활성 유리분말의 유리전이온도 미만의 온도로 열처리하여 비결정성 성형체를 제조하는 3단계;를 포함하는 공정을 수행하여 비결정성 생체 경조직 결손부 대체용 의용재를 제조할 수 있다.Another object of the present invention relates to a method for manufacturing a medicinal material for replacing the amorphous living hard tissue defects, step 1 of preparing a bioactive glass powder; Step 2 to produce a molded body by pressing the bioactive glass powder; And forming a amorphous molded body by heat-treating the molded body at a temperature below the glass transition temperature of the bioactive glass powder in the molded body. have.
본 발명의 바람직한 일실시예로서, 1단계의 생체활성 유리분말은 MgO, CaO, SiO2, P2O5, CaF2 및 B2O3을 포함하는 혼합물을 1,350℃ ~ 1,600℃ 하에서 용융시켜 용용물을 제조하는 1-1단계; 상기 용융물을 급냉시켜 유리를 제조하는 1-2단계; 상기 유리를 분말화시키는 1-3단계;를 포함하는 공정을 수행하여 제조할 수도 있다.In one preferred embodiment of the present invention, the bioactive glass powder of one step is melted by melting the mixture containing MgO, CaO, SiO 2 , P 2 O 5 , CaF 2 and B 2 O 3 at 1,350 ℃ ~ 1,600 ℃ Step 1-1 to prepare water; Quenching the melt to prepare glass; It may be prepared by performing a process including; steps 1-3 to powder the glass.
본 발명의 바람직한 일실시예로서, 2단계의 상기 가압 성형은 냉간 등방 압축(cold isostatic pressing; CIP)을 통해서 수행할 수 있다.In a preferred embodiment of the present invention, the pressure forming in two steps may be performed through cold isostatic pressing (CIP).
본 발명의 바람직한 일실시예로서, 2단계의 가압 성형 전 생체활성 유리분말에 분산제를 혼합한 혼합물을 제조한 후, 이 혼합물을 가압 성형하여 성형체를 제조할 수도 있다.As a preferred embodiment of the present invention, after preparing a mixture of the dispersant in the bioactive glass powder before the two-step pressure molding, the mixture may be molded by pressure molding.
본 발명의 바람직한 일실시예로서, 상기 혼합물은 생체활성 유리분말 100 중량부에 대하여, 상기 분산제를 0.5 ~ 20 중량부로 포함할 수도 있다.As a preferred embodiment of the present invention, the mixture may contain 0.5 to 20 parts by weight of the dispersant based on 100 parts by weight of the bioactive glass powder.
본 발명의 바람직한 일실시예로서, 상기 분산제는 폴리비닐알코올(PVA), 폴리비닐부틸알(PVB), 폴리메틸메타크릴레이트(PMMA), 폴리에틸렌글리콜(PEG), 메틸셀룰로오스, 하이드록시메틸셀룰로오스, 소듐카복시메틸셀룰로오스, 파라핀, 왁스 에멀젼, 마이크로크리스탈린 왁스 및 에탄올 중에서 선택된 1종 이상을 포함할 수 있다.In one preferred embodiment of the present invention, the dispersant is polyvinyl alcohol (PVA), polyvinylbutyl alcohol (PVB), polymethyl methacrylate (PMMA), polyethylene glycol (PEG), methyl cellulose, hydroxymethyl cellulose, It may include one or more selected from sodium carboxymethyl cellulose, paraffin, wax emulsion, microcrystalline wax and ethanol.
본 발명의 바람직한 일실시예로서, 상기 분산제는 물을 더 포함할 수 있다.In a preferred embodiment of the present invention, the dispersant may further include water.
본 발명의 바람직한 일실시예로서, 상기 3단계의 비결정성 성형체는 블록 형태, 원기둥 형태 등 다양한 형태일 수 있다.As a preferred embodiment of the present invention, the amorphous molded article of the three steps may be a variety of forms, such as block form, cylindrical form.
본 발명의 바람직한 일실시예로서, 3단계의 열처리는 압축 성형물을 680℃ ~ 720℃에서 열처리하여 수행할 수 있다.As a preferred embodiment of the present invention, the heat treatment in three steps may be performed by heat treatment the compression molding at 680 ℃ ~ 720 ℃.
본 발명의 또 다른 목적은 상기 비결정성 생체 경조직 결손부 대체용 의용재를 이용하여 인공 골조직을 제조하는 방법(방법 1)에 관한 것으로서, 앞서 설명한 비결정성 생체 경조직 결손부 대체용 의용재를 가공하여 가공물을 제조하는 1단계; 및 상기 가공물을 소성하여 소성물을 제조하는 2단계;를 포함하는 공정을 수행하여 인공 골조직을 제조할 수 있다.Another object of the present invention relates to a method (method 1) of manufacturing artificial bone tissue using the non-crystalline biohard tissue defect replacement medicinal material, by processing the above-described medicinal material for replacing the non-crystalline biohard tissue defect part 1 step of manufacturing the workpiece; And firing the workpiece to prepare a fired product. 2 may be manufactured to produce artificial bone tissue.
본 발명의 바람직한 일실시예로서, 2단계의 소성물을 서냉시키는 3단계;를 더 포함할 수도 있다.As a preferred embodiment of the present invention, three stages of the slow cooling of the two-calcined product; may further include.
본 발명의 바람직한 일실시예로서, 1단계의 가공은 가공 대상 골조직을 촬영하여 상기 가공 대상 골조직의 3 차원 영상 정보를 생성하는 단계; 상기 가공 대상 골조직의 3 차원 영상 정보에 기초하여, 상기 가공 대상 골조직을 식별하고, 상기 가공 대상 골조직에 대응하는 적어도 하나 이상의 가공 대상 골조직 모델의 3 차원 영상 정보를 생성하는 단계; 상기 적어도 하나 이상의 가공 대상 골조직 모델의 적합성을 검증하는 단계; 상기 검증 단계에서, 상기 적어도 하나 이상의 가공 대상 골조직 모델의 3 차원 영상 정보의 수정이 없는 경우 상기 가공 대상 골조직 모델의 3 차원 영상 정보를 확정하는 단계; 상기 검증하는 단계에서, 상기 적어도 하나 이상의 가공 대상 골조직 모델의 3 차원 정보의 수정 정보가 있는 경우 상기 가공 대상 골조직 모델의 3 차원 영상 정보에 상기 수정 정보를 반영하여 상기 가공 대상 골조직 모델의 3 차원 영상 정보를 확정하는 단계; 및 상기 확정된 가공 대상 골조직 모델의 3 차원 영상 정보로부터 인공 골조직의 형태로 가공물을 가공하는 단계;를 포함하는 공정을 수행할 수도 있다.In one preferred embodiment of the present invention, the step 1 processing comprises the steps of generating the three-dimensional image information of the processing target bone tissue by photographing the processing target bone tissue; Identifying the processing target bone tissue based on the three-dimensional image information of the processing target bone tissue, and generating three-dimensional image information of at least one processing target bone tissue model corresponding to the processing target bone tissue; Verifying suitability of the at least one bone tissue model to be processed; In the verifying step, determining the three-dimensional image information of the processing target bone tissue model when there is no correction of the three-dimensional image information of the at least one processing target tissue model; In the verifying step, when there is correction information of the three-dimensional information of the at least one processing target bone tissue model, the three-dimensional image of the processing target bone tissue model by reflecting the correction information in the three-dimensional image information of the processing target bone tissue model Confirming the information; And processing the workpiece in the form of artificial bone tissue from the 3D image information of the determined bone tissue model to be processed.
본 발명의 바람직한 일실시예로서, 2단계의 소성은 850℃ ~ 1,200℃ 하에서 수행할 수 있다.As a preferred embodiment of the present invention, the two-step firing may be performed at 850 ° C to 1,200 ° C.
본 발명의 바람직한 일실시예로서, 제조된 인공 골조직은 CaSiO3을 포함할 수 있다.In one preferred embodiment of the present invention, the manufactured artificial bone tissue may include CaSiO 3.
본 발명의 바람직한 일실시예로서, 제조된 인공 골조직은 Ca10(PO4)6A (여기서, A는 산소원자이다.) 및 Ca10(PO4)6B2(여기서, B는 수산화기, 불소원자 또는 염소원자이다.) 중에서 선택된 1종 이상을 포함하는 아파타이트; 및 Ca2Mg(Si2O7);을 더 포함할 수 있다.In one preferred embodiment of the present invention, the prepared artificial bone tissue is Ca 10 (PO 4 ) 6 A (where A is an oxygen atom). And Apatite containing at least one selected from Ca 10 (PO 4 ) 6 B 2 , wherein B is a hydroxyl group, a fluorine atom, or a chlorine atom; And Ca 2 Mg (Si 2 O 7 ).
본 발명의 바람직한 일실시예로서, 제조된 인공 골조직은 CaSiO3, 상기 아파타이트 및 Ca2Mg(Si2O7)을 1 : 0.7 ~ 1.5 : 0.5 ~ 1.2 중량비로 포함할 수도 있다.As a preferred embodiment of the present invention, the prepared artificial bone tissue may include CaSiO 3, the apatite and Ca 2 Mg (Si 2 O 7 ) in a weight ratio of 1: 0.7 to 1.5: 0.5 to 1.2.
본 발명의 바람직한 일실시예로서, 제조된 인공 골조직은 Ca10(PO4)6A (여기서, A는 산소원자이다.) 및 Ca10(PO4)6B2(여기서, B는 수산화기, 불소원자 또는 염소원자이다.) 중에서 선택된 1종 이상을 포함하는 아파타이트; Ca2Mg(Si2O7); 및 CaMgSi2O6;을 더 포함할 수 있다.In one preferred embodiment of the present invention, the prepared artificial bone tissue is Ca 10 (PO 4 ) 6 A (where A is an oxygen atom). And Apatite containing at least one selected from Ca 10 (PO 4 ) 6 B 2 , wherein B is a hydroxyl group, a fluorine atom, or a chlorine atom; Ca 2 Mg (Si 2 O 7 ); And CaMgSi 2 O 6 ;
본 발명의 바람직한 일실시예로서, 제조된 인공 골조직은 CaSiO3, 상기 아파타이트 및 Ca2Mg(Si2O7) 및 CaMgSi2O6을 0.7 ~ 1.3 : 0.7 ~ 3.0 : 0.5 ~ 1.2 : 0.7 ~ 1.3 중량비로 포함할 수도 있다.As a preferred embodiment of the present invention, the prepared artificial bone tissue CaSiO 3 , the apatite and Ca 2 Mg (Si 2 O 7 ) and CaMgSi 2 O 6 0.7 ~ 1.3: 0.7 ~ 3.0: 0.5 ~ 1.2: 0.7 ~ 1.3 It may also be included in the weight ratio.
본 발명의 또 다른 목적은 생체 경조직 결손부 대체용 의용재 조성물을 이용하여 제조한 비결정성 생체 경조직 결손부 대체용 의용재를 상기와 같은 방법을 통해 제조한 인공 골조직을 제공하고자 한다.It is another object of the present invention to provide an artificial bone tissue prepared by using the method for replacing a non-crystalline bio-hard tissue defect portion prepared by using a bio-tissue defect replacement component composition.
본 발명의 바람직한 일실시예로서, 상기 인공 골조직은 압축강도가 900 ~ 1,600 Mpa 일 수 있다.In one preferred embodiment of the present invention, the artificial bone tissue may have a compressive strength of 900 ~ 1,600 Mpa.
본 발명의 바람직한 일실시예로서, 상기 인공 골조직은 비틀림강도가 0.6 N·m ~ 2.0 N·m일 수 있다.As a preferred embodiment of the present invention, the artificial bone tissue may have a torsional strength of 0.6 N · m to 2.0 N · m.
본 발명의 바람직한 일실시예로서, 상기 인공 골조직은 생체의 경조직 결손부 형상의 일 축 방향의 길이 기준으로 부피수축율이 5% 이하일 수 있다.As a preferred embodiment of the present invention, the artificial bone tissue may have a volume contraction rate of 5% or less based on the length of one axis of the shape of the hard tissue defect of the living body.
본 발명의 바람직한 일실시예로서, 상기 인공 골조직은 상대밀도 값이 이론밀도의 95% 이상일 수 있다.In a preferred embodiment of the present invention, the artificial bone tissue may have a relative density value of 95% or more of theoretical density.
본 발명의 바람직한 일실시예로서, 상기 인공 골조직은 골 유합(bone fusion) 특성을 가질 수 있다.As a preferred embodiment of the present invention, the artificial bone tissue may have bone fusion characteristics.
본 발명의 바람직한 일실시예로서, 상기 인공 골조직은 인공골, 인공관절, 구강악안면 골, 두개골 또는 치과용 인공치근을 포함할 수 있다.In one preferred embodiment of the present invention, the artificial bone tissue may include artificial bone, artificial joint, oral and maxillofacial bone, skull or dental artificial root.
본 발명의 바람직한 일실시예로서, 상기 인공 골조직은 척추유합술용 디스크 형태의 인공골, 안면 재건술용 인공골, 척추간 스페이서를 포함할 수 있다.As a preferred embodiment of the present invention, the artificial bone tissue may include a bone in the form of a spinal fusion disc, artificial bone for facial reconstruction, intervertebral spacer.
본 발명의 생체 경조직 결손부 대체용 의용재 조성물을 이용하여 제조한 비결정성 생체 경조직 결손부 대체용 의용재는 기존의 식각 가공 공정을 통해서 인공 골조직을 제조할 수 있다. 그리고, 상기 비결정성 생체 경조직 결손부 대체용 의용재는 부피 수축율이 매우 적어서, 이를 이용하여 제조한 인공 골조직의 생체 이식 부적합성을 최소화시켜서 불량률을 최소화시킬 수 있으며, 상기 인공 골조직은 우수한 기계적 강도, 생체적합성 및 이식된 주변 골 조직과의 부착성(골 유합 특성)이 매우 우수하다. The non-crystalline biohard-tissue defect replacement medicinal material prepared using the bio-hard tissue defect replacement medicinal composition of the present invention can produce artificial bone tissue through a conventional etching process. In addition, the replacement material for the amorphous biohard tissue defect portion has a very low volume shrinkage rate, thereby minimizing the incompatibility of the artificial bone tissue manufactured using the same, thereby minimizing the defect rate, and the artificial bone tissue has excellent mechanical strength and biocompatibility. And adhesion with the implanted peripheral bone tissue (bone union properties) is very good.
도 1은 본 발명의 인공 골조직을 제조하는 일구현예에 대한 개략적인 모식도이다. 1 is a schematic diagram of an embodiment of manufacturing the artificial bone tissue of the present invention.
도 2는 본 발명의 바람직한 일실예 중 하나로서, 인공 골조직 제조시 적용될 수 있는 제조시스템의 개략적인 모식도이다.2 is a schematic diagram of a manufacturing system that can be applied when manufacturing artificial bone tissue as one of the preferred embodiments of the present invention.
도 3은 본 발명의 바람직한 일실예 중 하나로서, 인공 골조직 형태로 의용재를 가공하는 공정에 대한 개략적인 모식도이다.3 is a schematic diagram of a process of processing a medical material in the form of artificial bone tissue as one exemplary embodiment of the present invention.
도 4는 실시예 1에서 800℃로 열처리한 비결정성 생체 경조직 결손부 대체용 의용재를 찍은 사진이다.Figure 4 is a photograph of the medicinal material for replacing the amorphous living hard tissue defects heat-treated at 800 ℃ in Example 1.
도 5는 실시예 2에서 실시한 온도에 따른 소결체의 압축강도를 측정한 그래프이다.Figure 5 is a graph measuring the compressive strength of the sintered body according to the temperature carried out in Example 2.
도 6는 실시예 2에서 실시한 X-선 회절 패턴 분석 결과이다.6 is an X-ray diffraction pattern analysis result performed in Example 2. FIG.
도 7은 실험예 2에서 실시한 실시예 1 ~ 3 및 비교예 1 ~ 5 소결체의 겉보기 밀도 및 개기공률 측정 결과이다.7 is a result of measuring the apparent density and open porosity of Examples 1 to 3 and Comparative Examples 1 to 5 carried out in Experimental Example 2. FIG.
도 8a ~ 도 8e는 실험예 3에서 실시한 실시예 1 ~ 3 및 비교예 4 ~ 5 소결체의 XRD 측정 결과이며, 도 8f는 실시예 1의 X선 회절법에 의한 정성분석 측정 데이터다.8A to 8E are XRD measurement results of Examples 1 to 3 and Comparative Examples 4 to 5 carried out in Experimental Example 3, and FIG. 8F is qualitative analysis measurement data by X-ray diffraction method of Example 1. FIG.
도 9는 실험예 4에서 실시한 실시예 1 ~ 3 소결체 각각의 표면에 대한 전자현미경 측정 사진이다.FIG. 9 is an electron microscope measurement photograph of each of the surfaces of Examples 1 to 3 carried out in Experimental Example 4. FIG.
도 10a는 실험예 5에서 실시한 실시예 1 ~ 3 소결체 각각의 생체활성 측정 결과이며, 도 10b는 세포독성 평가 실험 결과이다.10A is a result of measuring bioactivity of each of the sintered bodies of Examples 1 to 3 performed in Experimental Example 5, and FIG. 10B is a result of cytotoxicity evaluation experiment.
도 11A ~ 도11C 각각은 실험예 7에서 실시한 실시예 1 ~ 2 및 비교예 7 소결체 각각의 생체친화성 육안검사 측정 결과이다.11A to 11C are the results of the biocompatibility visual inspection of each of the sintered bodies of Examples 1 to 2 and Comparative Example 7 carried out in Experimental Example 7. FIG.
도 12a ~ 도 12c 각각은 실험예 7에서 실시한 실시예 1 ~ 2 및 비교예 7 소결체 각각의 방사선학적 검사 결과이다.12A to 12C are each a radiological test result of each of the sintered bodies of Examples 1 to 2 and Comparative Example 7 carried out in Experimental Example 7.
도 13a ~ 도 13c 각각은 실험예 7에서 실시한 실시예 1 ~ 2 및 비교예 7 소결체 각각의 조직학적 검사 측정 결과이다.13A to 13C are the results of histological examination of each of the sintered bodies of Examples 1 to 2 and Comparative Example 7 carried out in Experimental Example 7. FIG.
도 14은 제조예 1에서 실시한 디스크를 모델링한 것을 나타낸 것이다.FIG. 14 shows a model of the disk carried out in Preparation Example 1. FIG.
도 15는 제조예 1에서 제조한 디스크 형태의 인공 골조직 사진이다.15 is a picture of the artificial bone tissue in the form of a disk prepared in Preparation Example 1.
도 16은 제조예 2에서 실시한 척추를 모델링한 것을 나타낸 것이다.Figure 16 shows the modeling of the spine performed in Preparation Example 2.
도 17a 및 도 17b는 제조예 2에서 제조한 성형체 및 척추 형태의 인공 골조직 사진이다.17A and 17B are photographs of artificial bone tissue in the form of shaped bodies and vertebrae prepared in Preparation Example 2. FIG.
도 18은 제조예 2에서 제조한 척추 형태의 인공 골조직을 3D 프린팅 시제품에 맞춰본 사진을 찍은 것이다.Figure 18 is a picture taken of the artificial bone tissue of the spinal form prepared in Preparation Example 2 in accordance with the 3D printing prototype.
이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명에서 사용되는 용어, "생체활성 유리분말"이란, 고온 소성시 아파타이트가 생성되고, 생체 이식시 생체 활성을 나타내는 성분으로 구성된 분말을 의미하는 것이다.As used herein, the term "bioactive glass powder" refers to a powder composed of components in which apatite is produced upon high temperature firing and exhibits bioactivity during transplantation.
본 발명의 용어 비결정성 생체 경조직 결손부, 비결정성 성형체 등의 "비결정성"이란, 결정화도가 0%인 것을 의미하는 것이 아니라, 결정화도가 1% 이하인 것을 의미한다.The term " amorphous " such as amorphous biohard tissue defects of the present invention, amorphous shaped bodies, etc. does not mean that the crystallinity is 0%, but that the crystallinity is 1% or less.
본 발명의 용어 "압축강도(compressive strength)"는 압축하중 하에서 견딜수 있는 재료의 최대 응력을 의미할 수 있다. 압축시 파편으로 부서지는 재료의 압축강도는 독립적 성질로서 협의에서 정의될 수 있으나, 압축에 부서지지 않는 재료들의 압축강도는 임의의 양의 재료를 일그러트리기 위해 요구되는 응력의 양으로 정의될 수 있다. 테스트 기기에서 적용된 힘을 변형에 대해 플롯하여 측정할 수 있다. 압축시험에서 압축강도는 최대하중을 시편의 초기 단면적으로 나눠줌으로써 계산될 수 있다.The term "compressive strength" of the present invention may mean the maximum stress of a material that can withstand under compressive load. The compressive strength of a material broken into fragments during compression can be defined in the agreement as an independent property, but the compressive strength of materials that do not break into compression can be defined as the amount of stress required to distort any amount of material. have. The force applied in the test instrument can be measured by plotting it against deformation. In the compression test, the compressive strength can be calculated by dividing the maximum load by the initial cross section of the specimen.
본 발명의 용어 "비틀림강도(torsional strength 또는 torsion)"는 비틀림 하중을 견디기 위한 재료의 능력정도를 나타내는 것으로, 비틀림강도는 비틀림 하중의 영향을 받은 재료의 최대강도이며, 파단 전에 재료를 유지시킬 수 있는 최대 비틀림 응력일 수 있다. 달리 파단계수 또는 전단강도라고도 한다. 측정단위는 뉴턴미터(N·m) 또는 피트-파운드력(ft·lbf)을 사용할 수 있다.The term "torsional strength or torsion" of the present invention refers to the ability of the material to withstand torsional loads, the torsional strength is the maximum strength of the material affected by the torsional load, it can hold the material before fracture Maximum torsional stress may be present. It is also called wave step number or shear strength. The unit of measurement may be Newton meters (N · m) or feet-pound force (ft · lbf).
본 발명의 용어 "피로강도(fatigue strength)"는 정해진 수의 반복적으로 하중을 가하여 피로 시험 시편을 파단시키기 위하여 요구되는 변동응력의 크기를 나타내는 것으로, 이때 반복하는 회수를 피로수명(fatigue life)이라고 한다. 피로강도는 일반적으로 S-N 선도로부터 직접 측정할 수 있으나, 이에 제한되지 않는다. ASTM은 피로강도, SNf를 Nf 사이클 수 파단이 일어나는 응력값으로 정의하고 있다.The term "fatigue strength" of the present invention refers to the magnitude of the fluctuating stress required to break a fatigue test specimen by applying a predetermined number of repetitive loads, wherein the repeated number of times is referred to as fatigue life. do. Fatigue strength can generally be measured directly from the S-N diagram, but is not limited thereto. ASTM defines fatigue strength, SNf, as the stress value at which Nf cycle number breaks occur.
본 발명의 비결정성 생체 경조직 결손부 대체용 의용재는 생체활성 유리분말을 이용하여 제조한 비결정성 생체 경조직 결손부 대체용 의용재로서, 생체활성 유리분말을 제조하는 1단계; 상기 생체활성 유리분말을 가압 성형하여 성형체를 제조하는 2단계; 상기 성형체를 성형물 내 생체활성 유리분말의 유리전이온도 미만의 온도로 열처리하여 비결정성 성형체를 제조하는 3단계; 및 상기 비결정 성형체를 소성시켜서 소성체를 제조하는 4단계;를 포함하는 공정을 수행하여 제조할 수 있다.The biomaterial for replacing the amorphous biohard tissue defect of the present invention is a biomaterial for replacing the amorphous biohard tissue defect prepared using a bioactive glass powder, comprising: preparing a bioactive glass powder; Step 2 to produce a molded body by pressing the bioactive glass powder; A step 3 of manufacturing the amorphous molded body by heat-treating the molded body at a temperature below the glass transition temperature of the bioactive glass powder in the molded body; And by firing the amorphous molded body to produce a fired body can be prepared by performing a process comprising a.
본 발명의 비결정성 생체 경조직 결손부 대체용 의용재의 제조방법에 있어서, 1단계의 생체활성 유리분말은 SiO2 및 CaO을 포함할 수 있으며, 바람직하게는 SiO2 40 ~ 75 mol%, CaO 25 ~ 60 mol% 및 기타 불가피한 불순물을 극소량 포함할 수도 있다. 또한, 상기 생체활성 유리분말은 SiO2 및 CaO 외에 기타 성분으로서 P2O5, MgO, Na2O, B2O3 및 CaF2 중에서 선택된 단종 또는 2종 이상의 성분을 더 포함할 수 있다.In the method of manufacturing a substitute for the amorphous biohard tissue defect of the present invention, the bioactive glass powder in one step may include SiO 2 and CaO, preferably SiO 2 40 ~ 75 mol%, CaO 25 ~ It may also contain trace amounts of 60 mol% and other unavoidable impurities. In addition, the bioactive glass powder may further include one or more components selected from P 2 O 5 , MgO, Na 2 O, B 2 O 3 and CaF 2 as other components in addition to SiO 2 and CaO.
1단계의 생체활성 유리분말을 제조하는 방법을 더욱 구체적으로 설명하면, MgO, CaO, SiO2, P2O5, CaF2 및 B2O3을 포함하는 혼합물을 용융시켜서 용융물을 제조하는 1-1단계; 상기 용융물을 급냉시켜 제조한 유리를 제조하는 1-2단계; 및 상기 유리를 분말화시키는 1-3단계;를 포함하는 공정을 수행하여 제조할 수 있다.In more detail, a method for preparing a bioactive glass powder in one step is described. 1- to prepare a melt by melting a mixture including MgO, CaO, SiO 2 , P 2 O 5 , CaF 2 and B 2 O 3 . Stage 1; A step 1-2 of preparing a glass prepared by quenching the melt; And it may be prepared by performing a process comprising; steps 1-3 to powder the glass.
그리고, 1-1단계의 상기 혼합물은 MgO, CaO, SiO2, P2O5, CaF2 및 B2O3을 혼합한 혼합물이며, 바람직하게는 혼합물 전체 중량 중 MgO 4.5 ~ 6.5 중량%, CaO 41 ~ 43 중량%, SiO2
34 ~ 36.2 중량%, P2O5
13.5 ~ 17 중량%, CaF2 0.9 ~ 2.5 중량% 및 B2O3 0.2 ~ 1.5 중량%를 포함할 수 있으며, 더욱 바람직하게는 MgO 5.2 ~ 6.5 중량%, CaO 41.0 ~ 42.3 중량%, SiO2
35.3 ~ 36.2 중량%, P2O5
13.5 ~ 15.0 중량%, CaF2 0.97 ~ 2.2 중량% 및 B2O3
0.2 ~ 1.5 중량%를 포함할 수 있고, 더 더욱 바람직하게는 MgO 5.50 ~ 6.35 중량%, SiO2
35.3 ~ 36.2 중량%, P2O5
13.5 ~ 14.6 중량%, CaF2 1.6 ~ 2.2 중량% 및 B2O3
0.2 ~ 1.0 중량% 및 잔량의 CaO를 포함할 수 있다(혼합물 1). In addition, the mixture of step 1-1 is a mixture of MgO, CaO, SiO 2 , P 2 O 5 , CaF 2 and B 2 O 3 , preferably MgO 4.5 ~ 6.5 wt%, CaO in the total weight of the mixture 41-43 wt%, SiO 2 34 to 36.2 wt%, P 2 O 5 13.5-17 wt%, CaF 2 0.9-2.5 wt% and B 2 O 3 0.2-1.5 wt%, more preferably MgO 5.2-6.5 wt%, CaO 41.0-42.3 wt%, SiO 2 35.3 to 36.2 wt%, P 2 O 5 13.5-15.0 wt%, CaF 2 0.97-2.2 wt% and B 2 O 3 0.2 to 1.5 wt%, more preferably MgO 5.50 to 6.35 wt%, SiO 2 35.3 to 36.2 wt%, P 2 O 5 13.5 to 14.6 wt%, CaF 2 1.6 to 2.2 wt% and B 2 O 3 0.2 to 1.0% by weight and the balance of CaO (mixture 1).
이때, MgO 함량이 4.5 중량% 미만이면 압축강도 등의 기계적 물성이 감소하는 문제가 있을 수 있고, 6.5 중량%를 초과하면 소결특성이 떨어지는 문제가 있을 수 있으므로 상기 범위 내로 MgO를 포함하는 것이 좋다. 그리고, CaO 함량이 41 중량% 미만이면 유리분말의 밀도가 낮고 개기공률이 높은 문제가 있을 수 있고, 43 중량%를 초과하면 소결 특성이 떨어지는 문제가 있을 수 있다. 또한, SiO2
함량이 34 중량% 미만이면 소결 특성이 떨어지는 문제가 있을 수 있고, 36.2 중량%를 초과하면 소결특성이 우수하나 굽힘강도가 떨어지는 문제가 있을 수 있다. In this case, when the MgO content is less than 4.5% by weight, there may be a problem in that mechanical properties such as compressive strength are reduced, and when the MgO content is higher than 6.5% by weight, the sintering property may be inferior. When the CaO content is less than 41 wt%, there may be a problem that the density of the glass powder is low and the porosity is high, and when the CaO content is more than 43 wt%, there may be a problem that the sintering property is lowered. In addition, SiO 2 If the content is less than 34% by weight, there may be a problem that the sintering property is lowered, and when the content is more than 36.2% by weight, the sintering property may be excellent but the bending strength may be lowered.
그리고, P2O5 함량이 13.5 중량% 미만이면 생체활성 측면에서 불리한 문제가 있을 수 있고, 17 중량%를 초과하면 생체활성 측면에서 유리하나, 소결 특성이 다소 떨어져서 압축강도 및 굽힘강도 등의 기계적 물성이 저하되는 문제가 있을 수 있다. 또한, CaF2 함량이 0.9 중량% 미만이면 기계적 물성이 감소하는 문제가 있을 수 있고, CaF2 함량이 2.5 중량%를 초과하면 상대적으로 다른 성분 함량이 감소하여 이로 인한 다른 문제가 있을 수 있다. 그리고, B2O3
함량이 0.2 중량% 미만이면 소결온도가 높아지는 문제가 있을 수 있고, 1.5 중량%를 초과하면 오히려 치밀화를 방해하는 문제가 있을 수 있다. If the P 2 O 5 content is less than 13.5% by weight, there may be disadvantageous problems in terms of bioactivity. If the P 2 O 5 content is more than 17% by weight, it may be advantageous in terms of bioactivity. There may be a problem that the physical properties are lowered. In addition, when the CaF 2 content is less than 0.9% by weight, there may be a problem that the mechanical properties are reduced, and when the CaF 2 content is more than 2.5% by weight, other components may be relatively reduced, which may cause other problems. And B 2 O 3 If the content is less than 0.2% by weight, there may be a problem that the sintering temperature is higher, and if the content exceeds 1.5% by weight, there may be a problem that hinders densification.
또한, 1-1단계의 상기 혼합물은 상기 혼합물 1과 달리 기계적 물성 측면 보다는 유리분말의 압축강도 및 굽힘강도는 낮지만, 상대적으로 혼합물 1 보다 생체 적합성 다소 높은 유리분말을 제조하고자 하는 경우에, 상기 혼합물은 MgO 4.5 ~ 6.5 중량%, CaO 41 ~ 43 중량%, SiO2
30.5 ~ 32.5 중량%, P2O5
18.5 ~ 19.8 중량%, CaF2 0.5 ~ 1.5 중량% 및 B2O3
0.2 ~ 1.5 중량%를 포함할 수 있으며, 바람직하게는 MgO 4.5 ~ 6.5 중량%, CaO 41 ~ 43 중량%, SiO2
30.8 ~ 32.2 중량%, P2O5
18.5 ~ 19.3 중량%, CaF2 0.6 ~ 1.2 중량% 및 B2O3
0.2 ~ 1.5 중량%를 포함할 수 있다(혼합물 2).In addition, the mixture of step 1-1, unlike the mixture 1, the compression strength and bending strength of the glass powder is lower than the mechanical properties, but in the case of preparing a glass powder having a relatively higher biocompatibility than the mixture 1, The mixture is MgO 4.5-6.5 wt%, CaO 41-43 wt%, SiO 2 30.5 to 32.5 wt%, P 2 O 5 18.5 to 19.8 wt%, CaF 2 0.5 to 1.5 wt% and B 2 O 3 0.2 to 1.5% by weight, preferably MgO 4.5 to 6.5% by weight, CaO 41 to 43% by weight, SiO 2 30.8 to 32.2 wt%, P 2 O 5 18.5 to 19.3 wt%, CaF 2 0.6 to 1.2 wt% and B 2 O 3 0.2 to 1.5% by weight (mixture 2).
본 발명의 좀 더 구체적인 생체활성 유리분말의 성분의 예를 들면 하기 표 11과 같다.Examples of the components of the more specific bioactive glass powder of the present invention are shown in Table 11 below.
구분division | 생체활성 유리분말 조성Bioactive Glass Powder Composition |
구현예 1(혼합물 1)Embodiment 1 (mixture 1) | MgO 5.70 ~ 6.10 중량%, SiO2 35.50 ~ 36.10 중량%, P2O5 13.70 ~ 14.80 중량%, CaF2 1.60 ~ 2.20 중량%, B2O3 0.4 ~ 0.7 중량% 및 잔량의 CaOMgO 5.70-6.10 wt%, SiO 2 35.50 to 36.10 weight percent, P 2 O 5 13.70 to 14.80 wt%, CaF 2 1.60 to 2.20 wt%, B 2 O 3 0.4 to 0.7 wt% and balance of CaO |
구현예 2(혼합물 1)Embodiment 2 (mixture 1) | MgO 5.97 중량%, CaO 41.79 중량%, SiO2 35.82 중량%, P2O5 13.93 중량%, CaF2 1.99 중량% 및 B2O3 0.5 중량%MgO 5.97 wt%, CaO 41.79 wt%, SiO 2 35.82 weight percent, P 2 O 5 13.93 wt%, 1.99 wt% CaF 2 and B 2 O 3 0.5 wt% |
구현예 3(혼합물 1)Embodiment 3 (mixture 1) | MgO 4.90 ~ 5.18 중량%, SiO2 34.0 ~ 35.2 중량%, P2O5 15.0 ~ 16.3 중량%, CaF2 0.70 ~ 1.50 중량%, B2O3 0.4 ~ 0.7 중량% 및 잔량의 CaOMgO 4.90-5.18 wt%, SiO 2 34.0 to 35.2 weight percent, P 2 O 5 15.0 to 16.3 wt%, CaF 2 0.70 to 1.50 wt%, B 2 O 3 0.4 to 0.7 wt% and balance of CaO |
구현예 4(혼합물 1)Embodiment 4 (mixture 1) | MgO 4.975 중량%, CaO 42.785 중량%, SiO2 34.825 중량%, P2O5 15.92 중량%, CaF2 0.995 중량%, B2O3 0.5 중량%MgO 4.975 wt%, CaO 42.785 wt%, SiO 2 34.825 weight percent, P 2 O 5 15.92 wt%, CaF 2 0.995 wt%, B 2 O 3 0.5 wt% |
구현예 5(혼합물 2)Embodiment 5 (mixture 2) | MgO 4.9 ~ 6.3 중량%, SiO2 31.0 ~ 32.0 중량%, P2O5 18.6 ~ 19.0 중량%, CaF2 0.75 ~ 1.10 중량%, B2O3 0.3 ~ 1.0 중량% 및 잔량의 CaOMgO 4.9-6.3 wt%, SiO 2 31.0 to 32.0 weight percent, P 2 O 5 18.6 to 19.0 wt%, CaF 2 0.75 to 1.10 wt%, B 2 O 3 0.3 to 1.0 wt% and balance of CaO |
구현예 6(혼합물 2)Embodiment 6 (mixture 2) | MgO 5.97 중량%, CaO 41.79 중량%, SiO2 31.84 중량%, P2O5 18.905중량%, CaF2 0.995 중량%, B2O3 0.5 중량%MgO 5.97 wt%, CaO 41.79 wt%, SiO 2 31.84 weight%, P 2 O 5 18.905 wt%, CaF 2 0.995 wt%, B 2 O 3 0.5 wt% |
또한, 1-1단계의 상기 혼합물은 작용 용도에 따라 MgO, CaO, SiO2, P2O5, CaF2 및 B2O3
외에 Na2O를 더 포함할 수도 있다.In addition, the mixture of step 1-1 is MgO, CaO, SiO 2 , P 2 O 5 , CaF 2 and B 2 O 3 depending on the purpose of use In addition, Na 2 O may be further included.
그리고, 1-1단계의 상기 용융은 상기 혼합물을 1,350℃ ~ 1,600℃ 하에서 수행하는 것이, 바람직하게는 1,450℃ ~ 1,550℃ 하에서 수행하는 것이 좋은데, 이때, 용융 온도가 1,350℃ 미만이면 용융점 이상으로 가열되지 않아 충분히 녹지 않을 수 있는 문제가 있을 수 있고, 열처리 온도가 1,600℃을 초과하면 불필요한 가열로 인한 에너지 낭비가 수반되는 문제가 있을 수 있으므로, 상기 온도로 용융을 수행하는 것이 좋다.In addition, the melting of the step 1-1 is preferably performed at 1,350 ° C. to 1,600 ° C., preferably at 1,450 ° C. to 1,550 ° C., and when the melting temperature is less than 1,350 ° C., it is heated to a melting point or more. There may be a problem that can not be sufficiently melted, and if the heat treatment temperature exceeds 1,600 ℃ there may be a problem that is accompanied by waste of energy due to unnecessary heating, it is preferable to perform the melting at the temperature.
다음으로, 1-2단계에서 급냉시켜 제조한 유리를 분쇄시키는 1-3단계의 공정을 수행하며, 이때, 분쇄방법은 특별하게 한정하지 않으며, 당업계에서 사용하는 일반적인 분쇄방법을 사용할 수 있다. Next, a 1-3 step process of pulverizing the glass prepared by quenching in 1-2 steps is carried out, in this case, the grinding method is not particularly limited, a general grinding method used in the art can be used.
이렇게 분쇄되어 제조된 생체활성 유리분말은 평균입경 0.5 ㎛ ~ 10 ㎛일 수 있으며, 바람직하게는 평균입경 0.5 ㎛ ~ 5 ㎛, 더욱 바람직하게는 1.8 ㎛ ~ 5 ㎛ 정도의 평균입경을 갖는 것이 좋다.The bioactive glass powder prepared by pulverization may have an average particle diameter of 0.5 μm to 10 μm, and preferably has an average particle diameter of about 0.5 μm to 5 μm, more preferably about 1.8 μm to 5 μm.
이와 같이 생체활성 유리분말의 성분 및 성분비에 변화를 주어서 적용시키고자 하는 생체 경조직 결손부의 특징에 맞게 의용재의 조성을 조절할 수 있다.In this way, the composition of the medicinal material can be adjusted according to the characteristics of the biological hard tissue defects to be applied by changing the components and the ratio of the bioactive glass powder.
다음으로, 2단계에 대해 설명하면, 상기와 같은 방법으로 제조한 1단계의 생체활성 유리분말을 당업계에서 사용하는 일반적인 가압 성형법을 통해 비결정성 성형체를 제조할 수 있으며, 바람직하게는 냉간 등방 압축(cold isostatic pressing;CIP)을 이용할 수 있다. 그리고, 상기 2단계에서 얻은 성형체는 블록 형태, 원기둥 형태 등 다양한 형태를 가질 수 있다.Next, with reference to step 2, the amorphous molded body can be prepared by the general pressure molding method used in the art of the bioactive glass powder of step 1 prepared by the above method, preferably cold isotropic compression (cold isostatic pressing; CIP) can be used. The molded article obtained in the second step may have various shapes such as a block shape and a cylindrical shape.
그리고, 2단계에서 가압 성형 전 생체활성 유리분말 단독 또는 이와 함께 분산제를 혼합사용함으로써, 성형체 내 생체활성 유리분말이 균일하게 분포 및 고른 혼합을 유도함으로써, 균일한 물성을 가지는 비결정성 생체 경조직 결손부 대체용 의용재를 제조할 수도 있다. 분산제 사용시, 분산제의 사용량은 생체활성 유리분말 100 중량부에 대하여, 상기 분산제를 0.5 ~ 20 중량부로 사용할 수 있으며, 바람직하게는 0.5 ~ 10 중량부로 사용할 수 있다.In addition, by using bioactive glass powder alone or mixed with a dispersant before pressure molding in step 2, the bioactive glass powder in the molded body is uniformly distributed and evenly mixed, thereby resulting in amorphous biohard tissue defects having uniform physical properties. Alternative medicinal materials may also be prepared. When using a dispersant, the dispersant may be used in an amount of 0.5 to 20 parts by weight, preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the bioactive glass powder.
그리고, 상기 분산제로는 폴리비닐알코올(PVA), 폴리비닐부틸알(PVB), 폴리메틸메타크릴레이트(PMMA), 폴리에틸렌글리콜(PEG), 메틸셀룰로오스, 하이드록시메틸셀룰로오스, 소듐카복시메틸셀룰로오스, 파라핀, 왁스 에멀젼, 마이크로크리스탈린 왁스 및 에탄올 중에서 선택된 단종 또는 2종 이상으로 혼합하여 사용할 수 있다.In addition, as the dispersant, polyvinyl alcohol (PVA), polyvinylbutyl alcohol (PVB), polymethyl methacrylate (PMMA), polyethylene glycol (PEG), methyl cellulose, hydroxymethyl cellulose, sodium carboxymethyl cellulose, paraffin , Wax emulsions, microcrystalline waxes and ethanol selected from single or two or more kinds can be mixed and used.
또한, 상기 분산제는 물 등의 용액에 상기 PVA, PVB 등의 분산제를 분산시킨 분산용액일 수 있다.The dispersant may be a dispersion solution in which the dispersant such as PVA and PVB is dispersed in a solution such as water.
다음으로, 비결정성 생체 경조직 결손부 대체용 의용재의 제조시, 3단계는 2단계의 성형체를 680℃ ~ 720℃에서, 바람직하게는 685℃ ~ 715℃에서, 더욱 바람직하게는 690℃ ~ 710℃에서 열처리하여 비결정성 성형체를 제조하는 단계로서, 열처리는 생체활성 유리 성형체의 가공이 가능한 수준의 강도를 구현할 수 있어야 한다. 이때, 열처리 온도 680℃ 미만에서는 성형체의 치밀화가 진행되지 않으므로 가공 후 쉽게 파손될 수 있으며, 720℃ 이상의 온도로 열처리할 경우 성형체가 급격하게 수축되면서 강도 및 경도가 높아져 가공이 불가능할 수 있으므로 상기 온도로 열처리를 하는 것이 바람직하다. Next, in the preparation of the medicinal material for replacing the amorphous biohard tissue defect, the third step is to form the molded article of the second step at 680 ℃ ~ 720 ℃, preferably 685 ℃ ~ 715 ℃, more preferably 690 ℃ ~ 710 ℃ As a step of producing an amorphous molded body by heat treatment at, the heat treatment should be able to achieve a level of strength capable of processing the bioactive glass molded body. At this time, since the densification of the molded body does not proceed at a heat treatment temperature of less than 680 ℃, it may be easily damaged after processing, heat treatment at the temperature above 720 ℃ because the molded body is rapidly contracted and the strength and hardness may be increased and processing may be impossible. It is preferable to
이렇게 열처리하여 제조된 비결정성 성형체(즉, 비결정성 생체 경조직 결손부 대체용 의용재)는 700℃에서 열처리한 육면체일 때, 선형 부피수축율이 5% 이하, 바람직하게는 1% ~ 4.5%일 수 있으며, 더욱 바람직하게는 1% ~ 4%일 수 있다. 이와 같이 매우 낮은 선형 부피수축율을 가짐으로써, 본 발명의 비결정성 생체 경조직 결손부 대체용 의용재를 실제 인공 골조직 등으로 적용하기 위한 개인별 맞춤형 가공 처리(디자인 설계 및 설계에 따른 가공) 및 가공 처리한 의용재를 소성한 후에 형태의 변형을 최소화시킬 수 있는 것이다.The amorphous molded article prepared by heat treatment in this way (ie, a substitute for amorphous biohard tissue defects) may have a linear volumetric shrinkage of 5% or less, preferably 1% to 4.5% when the cube is heat treated at 700 ° C. It may be more preferably 1% to 4%. By having such a very low linear volumetric shrinkage rate, the individual customized processing (processing according to design design and design) and processing treatment to apply the medicinal material for replacing the amorphous biohard tissue defect of the present invention to artificial artificial bone tissue, etc. It is possible to minimize the deformation of the shape after firing the medicinal material.
또한, 상기 비결정성 성형체는 성형체는 결정화도가 1% 이하일 수 있으며, 유리 이론밀도(3g/cm3) 대해 50 ~ 70%의 상대밀도를 가질 수 있는 바, 원하는 형태로 가공하기 용이하다.In addition, the amorphous molded body may have a degree of crystallinity of 1% or less, and may have a relative density of 50 to 70% with respect to glass theoretical density (3 g / cm 3 ), and thus may be easily processed into a desired shape.
앞서 설명한 방법으로 제조한 비결정성 생체 경조직 결손부 대체용 의용재는 하기와 같은 방법으로 가공 및 소성시켜서 인공 골조직을 제조할 수 있다.The medicinal material for replacing the amorphous living hard tissue defect prepared by the method described above may be manufactured and processed by the following method to prepare artificial bone tissue.
도 1의 개략도로 나타낸 공정을 수행하는 방법으로서, 비결정성 생체 경조직 결손부 대체용 의용재를 가공하여 가공물을 제조하는 1단계; 및 상기 가공물을 소성하여 소성물을 제조하는 2단계;를 포함하는 공정을 수행하여 인공 골조직을 제조할 수 있다.A method for performing the process shown in the schematic diagram of FIG. 1, comprising: a step of manufacturing a workpiece by processing a medicinal material for replacing an amorphous living hard tissue defect; And firing the workpiece to prepare a fired product. 2 may be manufactured to produce artificial bone tissue.
그리고, 2단계의 소성물을 서냉시키는 3단계;를 더 포함할 수도 있다.And, the third step of the slow cooling of the fired product of two steps; may further include.
1단계의 가공은 제조하고자 하는 인공 골조직 형태로 의용재를 가공하는 공정으로서, 도 3에 개략적인 모식도로 나타낸 방법으로 수행할 수 있으며, 구체적으로는 가공 대상 골조직을 촬영하여 상기 가공 대상 골조직의 3 차원 영상 정보를 생성하는 단계; 상기 가공 대상 골조직의 3 차원 영상 정보에 기초하여, 상기 가공 대상 골조직을 식별하고, 상기 가공 대상 골조직에 대응하는 적어도 하나 이상의 가공 대상 골조직 모델의 3 차원 영상 정보를 생성하는 단계; 상기 적어도 하나 이상의 가공 대상 골조직 모델의 적합성을 검증하는 단계; 상기 검증 단계에서, 상기 적어도 하나 이상의 가공 대상 골조직 모델의 3 차원 영상 정보의 수정이 없는 경우, 상기 가공 대상 골조직 모델의 3 차원 영상 정보를 확정하는 단계; 상기 검증하는 단계에서, 상기 적어도 하나 이상의 가공 대상 골조직 모델의 3 차원 정보의 수정 정보가 있는 경우 상기 가공 대상 골조직 모델의 3 차원 영상 정보에 상기 수정 정보를 반영하여 상기 가공 대상 골조직 모델의 3 차원 영상 정보를 확정하는 단계; 및 상기 확정된 가공 대상 골조직 모델의 3 차원 영상 정보로부터 인공 골조직의 형태로 가공물을 가공하는 단계;를 포함하는 공정을 수행할 수도 있다. Step 1 is a process of processing the medical material in the form of artificial bone tissue to be prepared, it can be carried out by the method shown in a schematic diagram in Figure 3, specifically, by photographing the processing target bone tissue 3 Generating dimensional image information; Identifying the processing target bone tissue based on the three-dimensional image information of the processing target bone tissue, and generating three-dimensional image information of at least one processing target bone tissue model corresponding to the processing target bone tissue; Verifying suitability of the at least one bone tissue model to be processed; In the verifying step, when there is no correction of the 3D image information of the at least one processing target bone tissue model, determining 3D image information of the processing target bone tissue model; In the verifying step, when there is correction information of the three-dimensional information of the at least one processing target bone tissue model, the three-dimensional image of the processing target bone tissue model by reflecting the correction information in the three-dimensional image information of the processing target bone tissue model Confirming the information; And processing the workpiece in the form of artificial bone tissue from the 3D image information of the determined bone tissue model to be processed.
상기 가공 대상 골조직 모델의 3 차원 영상 정보를 생성하는 단계에서, 상기 가공 대상 골조직의 상기 3 차원 영상 정보와 함께 상기 가공 대상 골조직의 식별 정보, 질환 명칭 및 수술 방법 중 적어도 하나 이상의 추가적 정보를 참조하여 상기 가공 대상 골조직 모델의 3 차원 영상 정보를 생성할 수도 있다. 상기 가공 대상 골조직 모델의 3 차원 영상 정보를 생성하는 단계에서, 연령별, 성별, 신장별, 체중별 또는 인종별의 인체들에서 수집된 정상 골조직의 영상 정보들을 포함하는 기초 영상 정보가 저장된 제 1 데이터 베이스가 제공되고, 상기 기초 영상 정보로부터 상기 가공 대상 골조직 모델의 상기 3 차원 영상 정보를 검출하는 단계가 수행될 수도 있다.In generating the 3D image information of the bone tissue model to be processed, the 3D image information of the bone tissue to be processed is referred to at least one or more additional information of identification information, a disease name, and a surgical method of the bone tissue to be processed. 3D image information of the bone tissue model to be processed may be generated. In generating the 3D image information of the bone tissue model to be processed, the first data storing basic image information including image information of normal bone tissue collected from human bodies by age, gender, height, weight, or race A base may be provided, and detecting the 3D image information of the bone tissue model to be processed may be performed from the basic image information.
상기 제 1 데이터 베이스에는 상기 정상 골조직의 식별 정보, 관련 질환 명칭 또는 수술 방법에 관한 추가적 정보들이 더 저장되고, 상기 수술 방법을 참조하여, 상기 정상 골조직의 영상 정보를 수정하여 상기 가공 대상 골조직 모델의 3 차원 영상 정보를 생성할 수도 있다. 상기 인공 골조직의 형상, 재료, 미세 조직, 강도, 수술 방법 및 수술 성공률 중 적어도 어느 하나의 정보가 저장되는 제 2 데이터 베이스가 제공될 수도 있다. The first database further stores additional identification information about the normal bone tissue, a related disease name, or a surgical method, and the image information of the normal bone tissue is modified by referring to the surgical method to determine the target bone tissue model. 3D image information may also be generated. A second database may be provided in which information on at least one of the shape, material, microstructure, strength, surgical method, and surgical success rate of the artificial bone tissue is stored.
또한, 상기 검증하는 단계는, 3 차원 영상 정보로부터 구현된 그래픽 객체의 편집, 비교 또는 치수 측정에 의하여 상기 치료용 골조직 모델의 3 차원 영상 정보를 수술 방법에 따라 시뮬레이션하는 단계에 의해 수행될 수도 있다.In addition, the verifying may be performed by simulating 3D image information of the therapeutic bone tissue model according to a surgical method by editing, comparing, or measuring a graphic object implemented from 3D image information. .
또한, 상기 가공 대상 골조직 모델의 3 차원 영상 정보를 확정하는 단계는, 상기 정상 골조직의 3 차원 영상 정보를 대체 골조직의 3 차원 영상 정보로 대체하여 학습을 수행하는 단계를 더 수행할 수도 있다.The determining of the 3D image information of the bone tissue model to be processed may further include performing learning by replacing 3D image information of the normal bone tissue with 3D image information of the replacement bone tissue.
그리고, 상기 1단계의 상기 가공은 하기와 같은 인공 골조직 제조 시스템(100)을 이용하여 가공할 수 있다(도 2 참조).And, the processing of the first step can be processed using the artificial bone tissue manufacturing system 100 as follows (see Fig. 2).
상기 인공 골조직 제조 시스템은 환자의 가공 대상 골조직을 촬영하여 3 차원 영상 정보를 생성하는 촬상부(111)로부터 상기 가공 대상 골조직의 상기 영상 정보를 획득하고, 상기 영상 정보의 송신을 위해 네트워크에 결합되며, 사용자의 입력 또는 정보의 출력을 위한 사용자 인터페이스를 포함하는 클라이언트 컴퓨터(112); 상기 클라이언트 컴퓨터로부터 수신된 상기 가공 대상 골조직의 상기 영상정보에 기초하여, 상기 가공 대상 골조직을 식별하고 상기 가공 대상 골조직에 대응하는 적어도 하나 이상의 치료용 골조직 모델의 3 차원 영상 정보를 생성하며, 상기 클라이언트 컴퓨터에 의해 상기 적어도 하나 이상의 가공 대상 골조직 모델의 상기 영상 정보가 검증 및 확정되도록 상기 적어도 하나 이상의 가공 대상 골조직 모델의 3 차원 영상 정보를 상기 클라이언트 컴퓨터에 전송하는 서버 컴퓨터(121); 및 상기 서버 컴퓨터로부터 확정된 가공 대상용 골조직 모델의 3 차원 영상 정보에 기초하여 인공 골조직 형태의 가공물을 제조하는 가공부(122);를 포함한다. The artificial bone tissue manufacturing system acquires the image information of the bone tissue to be processed from the imaging unit 111 which photographs a target bone tissue of the patient to generate 3D image information, and is coupled to a network for transmitting the image information. A client computer 112 comprising a user interface for input of a user or output of information; Based on the image information of the processing target bone tissue received from the client computer, identifying the processing target bone tissue and generates three-dimensional image information of at least one therapeutic bone tissue model corresponding to the processing target bone tissue, the client A server computer (121) for transmitting three-dimensional image information of the at least one processing target bone tissue model to the client computer so that the image information of the at least one processing target bone tissue model is verified and confirmed by a computer; And a processing unit 122 for manufacturing a workpiece in the form of an artificial bone tissue based on the 3D image information of the bone tissue model for processing target determined from the server computer.
촬상부(111) 및 클라이언트 컴퓨터(112)는 병원 시스템(110) 내 수술실 또는 진단실에 설치될 수 있고, 서버 컴퓨터(121) 및 가공부(122)는 수술실 또는 진단실과는 구별되는 별개의 장소에 배치되는 인공 골조직 가공 및 제조 시스템(120)에 설치될 수 있다. 각 구성 요소들은 필요한 경우 도 2에 도시된 바와 같이 네트워크(130)를 통해서 서로 원격지간 접속을 허용할 수 있다. 이를 위하여, 클라이언트 컴퓨터(112) 또는 서버 컴퓨터(121)는 네트워크(130)에 접속하기 위한 통신 인터페이스(미도시)를 포함할 수도 있다.The imaging unit 111 and the client computer 112 may be installed in an operating room or a diagnostic room in the hospital system 110, and the server computer 121 and the processing unit 122 may be located at a separate place from the operating room or the diagnostic room. It may be installed in the artificial bone tissue processing and manufacturing system 120 is disposed. Each component may allow remote access to each other through the network 130, as shown in FIG. To this end, client computer 112 or server computer 121 may include a communication interface (not shown) for connecting to network 130.
일실시예에서, 병원 시스템(110)은 복수 개이고, 그에 따라 클라이언트 컴퓨터(112)와 촬상부(111)도 복수 개일 수 있으며, 인공 골조직 가공 및 제조 시스템(120)은 단일할 수 있다. 이 경우 복수 개의 병원 시스템(110)과 하나의 인공 골조직 가공 및 제조 시스템(120) 사이에 다대일 관계가 성립될 수 있다. 복수의 클라이언트 컴퓨터들과 하나의 서버 컴퓨터는 유무선 통신망을 포함하는 네트워크(130)를 통해 상호간 통신 가능하게 연결될 수 있다.In one embodiment, there are a plurality of hospital systems 110, and thus, a plurality of client computers 112 and imaging units 111, and the artificial bone tissue processing and manufacturing system 120 may be a single. In this case, a many-to-one relationship may be established between the plurality of hospital systems 110 and one artificial bone tissue processing and manufacturing system 120. The plurality of client computers and one server computer may be communicatively connected to each other through a network 130 including a wired and wireless communication network.
그리고, 상기 촬상부는 가공 대상 골조직의 크기, 형상, 위치 또는 질환에 관한 정보를 포함하는 임의의 3 차원 영상 정보를 생성할 수 있는 이미징 장치로서, ×-레이 장치, 컴퓨터 단층촬영(computed tomography 또는computerized axial tomography) 장치, MRI(magnetic resonance imaging) 장치, 광간섭 단층촬영(optical coherence tomography) 장치, 초음파 영상 장치 및 PET(positron emission tomography) 장치 중 적어도 1종 이상을 포함할 수 있다. 상기 3 차원 영상 정보는 복수의 2 차원 정보들로부터 3 차원 랜더링되어 생성될 수 있으므로, 촬상부(111)는 3 차원 랜더링이 가능한 2 차원 영상 정보를 생성할 수 있는 이미징 장치를 포함할 수 있다. 여기서, 상기 3 차원 영상 정보는 상기 가공 대상 골조직의 치료를 위해 대체, 보철, 재건, 또는 유합을 위한 상기 가공 대상 골조직의 3 차원 영상 정보를 포함할 수 있다. 선택적으로는, 골조직의 환부 저치(wound bed preparation)에 관한 3 차원 영상 정보 및 수술 방법에 따른 인접 골조직, 근육 조직, 신경 조직 또는 혈관 조직에 관한 영상 정보를 더 포함할 수 있으며, 본 명세서에서는, 이들을 통칭하여 가공 대상 골조직의 3 차원 영상 정보라고 칭한다.In addition, the imaging unit is an imaging device capable of generating any three-dimensional image information including information on the size, shape, location or disease of the bone tissue to be processed, an x-ray device, computed tomography or computerized and at least one of an axial tomography (MRI) device, a magnetic resonance imaging (MRI) device, an optical coherence tomography device, an ultrasound imaging device, and a positron emission tomography (PET) device. Since the 3D image information may be generated by 3D rendering from a plurality of 2D information, the imaging unit 111 may include an imaging device capable of generating 2D image information capable of 3D rendering. The 3D image information may include 3D image information of the processed target bone tissue for replacement, prosthesis, reconstruction, or fusion for the treatment of the processed target bone tissue. Optionally, the apparatus may further include three-dimensional image information about wound bed preparation of bone tissue and image information about adjacent bone tissue, muscle tissue, nerve tissue, or vascular tissue according to a surgical method. These are collectively referred to as three-dimensional image information of the bone tissue to be processed.
상기 클라이언트 컴퓨터(112)는 상기 가공 대상 골조직의 상기 영상 정보와 함께 상기 가공 대상 골조직의 식별정보, 질환 명칭 및 수술 방법 중 적어도 하나 이상의 추가적 정보를 상기 서버 컴퓨터에 제공하고, 상기 수술대상 골조직의 상기 영상 정보와 함께 상기 추가적 정보를 참조하여 상기 서버 컴퓨터가 상기 가공 대상 골조직 모델의 3 차원 영상 정보를 생성할 수 있다. 상기 서버 컴퓨터는 연령별, 성별, 신장별, 체중별 또는 인종별의 인체들에서 수집된 정상 골조직의 영상 정보들을 포함하는 기초 영상 정보가 저장된 제 1 데이터 베이스를 포함하고, 상기 서버 컴퓨터는 상기 기초 영상 정보로부터 상기 치료용 골조직 모델의 상기 3 차원 영상 정보를 생성할 수 있다.The client computer 112 provides the server computer with the image information of the bone tissue to be processed, and additional information of at least one or more of identification information of the bone tissue to be processed, a disease name, and a surgical method. The server computer may generate three-dimensional image information of the processing target bone tissue model with reference to the additional information together with the image information. The server computer includes a first database storing basic image information including image information of normal bone tissue collected from human bodies by age, gender, height, weight, or race, and the server computer includes the basic image. The 3D image information of the therapeutic bone tissue model may be generated from the information.
상기 클라이언트 컴퓨터(112) 또는 서버 컴퓨터(121)는 응용 소프트웨어 및 자료의 저장을 위한 영구 저장 장치 또는 임시 저장 장치, 상기 영구 저장 장치 또는 임시 저장 장치에 저장된 적어도 하나 이상의 데이터 베이스들, 및 이들을 제어하기 위한 중앙처리장치를 포함할 수 있다. 상기 데이터 베이스의 예로서, 서버 컴퓨터(121) 측에 마련된 제 1 및 제 2 데이터 베이스들(123, 124)이 예시되어 있다. 또한, 클라이언트 컴퓨터(112) 또는 서버 컴퓨터(121)는 마우스, 키보드 또는 터치 패널과 같은 입력부, 및 모니터, 프로젝션 디스플레이 및 헤드업 디스플레이와 같은 출력부를 포함하는 사용자 인터페이스를 갖는다. 상기 사용자 인터페이스는 후술하는 시뮬레이션의 현실감과 정보 전달 효율의 향상을 위해 증강 현실을 구현할 수도 있다. 도 2의 참조 부호 113은 클라이언트 컴퓨터(112)에 결합된 상기 사용자 인터페이스를 도시한다.The client computer 112 or server computer 121 is a permanent storage device or temporary storage device for storing application software and data, at least one or more databases stored in the permanent storage device or temporary storage device, and controlling them. It may include a central processing unit for. As an example of the database, first and second databases 123 and 124 provided on the server computer 121 side are illustrated. The client computer 112 or server computer 121 also has a user interface including inputs such as a mouse, keyboard or touch panel, and outputs such as a monitor, projection display and head-up display. The user interface may implement augmented reality in order to improve the reality and information transfer efficiency of a simulation to be described later. Reference numeral 113 in FIG. 2 shows the user interface coupled to the client computer 112.
실시예에서, 클라이언트 컴퓨터(112)의 사용자 인터페이스(113)는 서버(121)에 의해 원격지간 공유될 수 있다. 예를 들면, 사용자 인터페이스(113)가 디스플레이인 경우, 클라이언트 컴퓨터(112)측의 사용자가 동작시키는 내용은 서버(121)측 사용자에게 전송되어 서버측(121)의 디스플레이를 통해 사용자 인터페이스(113)에 구현된 동일한 화상 내용이 시현될 수 있다. 마찬가지로, 서버(121)측 사용자가 동작시키는 내용이 사용자 인터페이스(113)에 구현될 수도 있다. 이의 구현 방식은 인터넷을 이용한 멀티미디어 정보의 스트리밍 또는 제어 정보의 송수신을 통해 실현될 수 있으며, 본 발명이 이에 한정되는 것은 아니다.In an embodiment, the user interface 113 of the client computer 112 may be shared remotely by the server 121. For example, when the user interface 113 is a display, the contents operated by the user of the client computer 112 side are transmitted to the user of the server 121 side, and the user interface 113 is displayed through the display of the server side 121. The same picture content embodied in can be displayed. Similarly, the contents operated by the user of the server 121 may be implemented in the user interface 113. The implementation manner thereof may be realized through streaming of multimedia information or transmission and reception of control information using the Internet, but the present invention is not limited thereto.
그리고, 상기 제 1 데이터 베이스에는 상기 정상 골조직의 식별 정보, 관련 질환 명칭 또는 수술 방법에 관한 정보들이 더 포함될 수 있으며, 또한, 상기 제 1 데이터 베이스에는 상기 환자의 과거의 해당 가공 대상 골조직에 관한 영상 정보 또는 상기 가공 대상 골조직의 좌우 대칭 관계에 있는 다른 쪽의 정상 골조직에 관한 영상 정보들이 더 포함할 수 있다.The first database may further include identification information of the normal bone tissue, a name of a related disease, or information about a surgical method, and the first database may include an image of the patient's past target bone tissue. Information or image information about the other normal bone tissue in the left-right symmetry relationship of the bone tissue to be processed may be further included.
상기 클라이언트 컴퓨터는 상기 가공 대상 골조직의 상기 영상 정보를 서버 컴퓨터에 전송하고, 상기 서버 컴퓨터는 정상 골조직의 영상 정보를 수정하여 상기 가공 대상 골조직 모델의 3 차원 영상 정보를 생성할 수 있다. 상기 서버 컴퓨터는 상기 인공 골조직의 형상, 재료, 미세 조직 및 강도 중 적어도 어느 하나의 정보가 저장되는 제2 데이터 베이스를 포함할 수 있다.The client computer may transmit the image information of the bone tissue to be processed to a server computer, and the server computer may generate 3D image information of the bone tissue model to be processed by modifying image information of normal bone tissue. The server computer may include a second database in which information on at least one of the shape, material, microstructure, and strength of the artificial bone tissue is stored.
또한, 일실시예로서, 상기 클라이언트 컴퓨터는 상기 사용자 인터페이스를 통하여 사용자가 상기 서버 컴퓨터로부터 제공된 상기 가공 대상 골조직 모델의 3 차원 영상 정보를 수술 방법에 따라 시뮬레이션할 수 있는 그래픽 객체의 편집, 비교 또는 치수 측정을 수행할 수도 있다. 또한, 상기 사용자는 상기 시뮬레이션 결과를 통해 상기 서버 컴퓨터로부터 전송된 상기 가공 대상 골조직 모델을 수용하거나 이를 수정하는 단계를 통하여 상기 가공 대상 골조직 모델이 확정될 수 있다. 이를 위해, 상기 클라이언트 컴퓨터는 상기 시뮬레이션을 수행하기 위한 그래픽 객체의 편집 도구, 비교 도구 및 치수 측정 도구 중 적어도 1종 이상을 포함할 수도 있다In addition, as an embodiment, the client computer may edit, compare, or measure a graphic object through which the user may simulate three-dimensional image information of the processed bone tissue model provided from the server computer according to a surgical method. Measurement can also be performed. In addition, the user may determine the processing target bone tissue model by accepting or modifying the processing target bone tissue model transmitted from the server computer through the simulation result. To this end, the client computer may include at least one of an editing tool, a comparison tool, and a dimensional measurement tool of a graphic object for performing the simulation.
상기 사용자 입력은, 가공 대상 골조직 모델의 3 차원 영상 정보를 수정할 수 있도록 그래픽 객체의 편집 도구, 비교 도구 또는 치수 측정 도구 중 적어도 어느 하나를 이용하여 사용자로부터 수신되는 명령어를 포함할 수 있다.The user input may include a command received from a user using at least one of an editing tool, a comparison tool, or a dimension measuring tool of a graphic object to modify 3D image information of a target tissue model.
확정된 인공 골조직의 3 차원 영상 정보는 후술하는 가공부(122)에서 디코딩 가능한 임의의 디지털 포맷으로 저장되거나, 비제한적 예로서 오토캐드(AutocadTM), 카티아(CatiaTM), 솔리드웍스 (SolidworksTM), 미믹스(MIMICSTM), 또는 3D 맥스(3D MAXTM)와 같은 상용 소프트웨어에서 지원 가능한 3 차원 이미지 정보의 디지털 포맷으로 데이터 베이스(124)에 저장될 수 있다.The three-dimensional image information of the confirmed artificial bone tissue may be stored in any digital format decodable by the processing unit 122 described later, or by way of non-limiting example, Autocad TM , Catia TM , Solidworks TM ) Can be stored in the database 124 in a digital format of three-dimensional image information that can be supported by commercial software such as MIMICSTM, or 3D MAXTM.
가공부(122)는 서버 컴퓨터(121)의 제 2 데이터 베이스(124)에 저장된 인공 골조직 영상 정보 및 선택적으로는 인공 골조직의 재료 및 강도와 같은 추가적 정보들을 수신하고, 이를 기초로, 3 차원 형상의 인공 골조직의 형태인 가공물로 가공할 수 있다. 가공부(122)는, 예를 들면, 상기 영상 정보 또는 추가적 정보들에 기초하여, 가공 툴과 테이블을 3 차원으로 상대 운동시켜서 가공물을 가공할 수 있다. 이때, 가공은 상용의 밀링 기계를 이용한 밀링 방법에 의해 수행될 수 있다. 필요에 따라, 가공물의 다양한 곡면을 활용하기 위해, 다축 (Multi-axis) 가공이 가능한 CNC 밀링기(Milling)기, 4 축 밀링기, 5 축 밀링기 또는 치아보철물 가공기 등이 활용될 수 있다. 가공부(122)는 다른 실시예에서, 주형을 이용하여 가공물(인공 골조직, 125)을 제조할 수도 있다. The processing unit 122 receives artificial bone tissue image information stored in the second database 124 of the server computer 121 and optionally additional information such as material and strength of the artificial bone tissue, and based on this, the three-dimensional shape It can be processed into workpieces in the form of artificial bone tissue. For example, the processing unit 122 may process the workpiece by relatively moving the machining tool and the table in three dimensions based on the image information or additional information. At this time, the processing may be performed by a milling method using a commercial milling machine. If necessary, in order to utilize various curved surfaces of the workpiece, a CNC milling machine, a 4-axis milling machine, a 5-axis milling machine, or a dental prosthesis processing machine, etc. capable of multi-axis machining may be used. In another embodiment, the processing unit 122 may manufacture a workpiece (artificial bone tissue) 125 using a mold.
다음으로, 2단계는 1단계에서 제조하고자 하는 인공 골조직의 형태로 가공한 가공물을 소성시키는 단계로서, 소성은 고온으로 열처리하여 소결시킴으로써 고강도의 생체활성 결정화 유리질을 형성시키는 공정이다. Next, step 2 is a step of firing the workpiece processed in the form of artificial bone tissue to be prepared in step 1, firing is a step of forming a high-strength bioactive crystallized glass material by sintering by heat treatment at a high temperature.
본 발명에서 상기 소성은 1차적으로 열처리된 상기 비결정성 생체 경조직 결손부 대체용 의용재를 사용하여 가공한 가공물을 소성시키는 바, 열처리시 수축을 등방 수축으로 제어할 수 있으며, 소성물의 수축율이 각각의 축 방향의 길이 기준으로 5% 이내의 오차 범위로 거의 동일하게 발생하도록 할 수 있다.In the present invention, the firing may be performed by firing a processed product by using the primary heat treated medicinal material for replacing the amorphous biotissue defect, wherein the shrinkage during heat treatment may be controlled by an isotropic shrinkage, and the shrinkage rate of the sintered material is respectively It can be made almost identical to the error range within 5% of the length of the axial direction.
2단계의 소성은 850℃ ~ 1,200℃에서 수행을 하는데, 850℃ 미만에서 소성을 수행하면, 가공물에 포함된 생체활성 유리분말의 주성분인 SiO2의 유리전이온도가 대략 800℃인 바, 가공물의 심각한 파손이 발생할 수 있다. The two-stage firing is performed at 850 ° C. to 1,200 ° C., and when firing is performed at less than 850 ° C., the glass transition temperature of SiO 2 , the main component of the bioactive glass powder included in the workpiece, is approximately 800 ° C. Serious breakage may occur.
그리고, 소성 온도는 소결물의 압축강도에 영향을 미치는데, 소성 온도가 1,000℃에서 소성 및 소결시킨 경우, 1,300 Mpa 이상의 압축강도를 보이며, 고강도의 기계적 특성을 발휘하고 있음을 확인할 수 있다(도 5).In addition, the firing temperature affects the compressive strength of the sintered product. When the firing temperature is sintered and sintered at 1,000 ° C., the sintering temperature shows a compressive strength of 1,300 Mpa or more, and exhibits high mechanical properties (FIG. 5). ).
다음으로, 3단계는 소결된 소성물을 소성시키는 단계로서, 소성물이 유리전이온도를 지나면서 액상 소결이 진행되어 급격하게 수축되고 치밀화되는데, 소성물에 열충격이 발생하면 심각한 파손이 야기될 수 있다. 따라서, 온도를 서서히 낮춰 열충격이 없도록 서냉(slow cooling)하여야 한다. 서냉 속도가 5 ℃/min인 경우 성형체의 파손이 심각하게 발생하므로 그보다 느린 속도로 서냉시키는 것이, 바람직하게는 2 ℃/min으로 서냉을 수행하는 것이 좋다.Next, the third step is to sinter the sintered plastics, and the sintered materials are rapidly shrunk and densified as the liquid phase sinters as the glass transition temperature progresses. If the thermal shocks occur in the plastics, serious damage may occur. have. Therefore, the temperature should be lowered slowly so that there is no thermal shock. When the slow cooling rate is 5 ° C / min, since the breakage of the molded body occurs seriously, slow cooling at a slower speed, it is preferable to perform the slow cooling at 2 ° C / min.
상기 제법을 통해서 제조한 인공 골조직은 일 축 방향의 길이 기준으로 15 ~ 25%, 바람직하게는 16 ~ 20%, 더욱 바람직하게는 17 ~ 19%일 수 있다. 그리고, 소성물의 부피 수축율은 30 ~ 55%, 바람직하게는 40 ~ 50%일 수 있다.Artificial bone tissue prepared by the above method may be 15 to 25%, preferably 16 to 20%, more preferably 17 to 19% based on the length of the uniaxial direction. And, the volume shrinkage of the fired product may be 30 to 55%, preferably 40 to 50%.
그리고, 본 발명의 인공 골조직은 CaSiO3을 포함할 수 있다.In addition, the artificial bone tissue of the present invention may include CaSiO 3 .
또한, 본 발명의 인공 골조직은 CaSiO3; Ca10(PO4)6A (여기서, A는 산소원자이다.) 및 Ca10(PO4)6B2(여기서, B는 수산화기, 불소원자 또는 염소원자이다.) 중에서 선택된 1종 이상을 포함하는 아파타이트; 및 Ca2Mg(Si2O7);을 더 포함할 수 있으며, 바람직하게는 CaSiO3, 상기 아파타이트 및 Ca2Mg(Si2O7)을 1 : 0.7 ~ 1.5 : 0.5 ~ 1.2 중량비로 포함할 수도 있다.In addition, the artificial bone tissue of the present invention CaSiO 3 ; Ca 10 (PO 4 ) 6 A (where A is an oxygen atom) And Apatite containing at least one selected from Ca 10 (PO 4 ) 6 B 2 , wherein B is a hydroxyl group, a fluorine atom, or a chlorine atom; And Ca 2 Mg (Si 2 O 7 ); and preferably include CaSiO 3 , the apatite and Ca 2 Mg (Si 2 O 7 ) in a weight ratio of 1: 0.7 to 1.5: 0.5 to 1.2. It may be.
또한, 본 발명의 인공 골조직은 CaSiO3; Ca10(PO4)6A (여기서, A는 산소원자이다.) 및 Ca10(PO4)6B2(여기서, B는 수산화기, 불소원자 또는 염소원자이다.) 중에서 선택된 1종 이상을 포함하는 아파타이트; Ca2Mg(Si2O7); 및 CaMgSi2O6;을 더 포함할 수 있으며, 바람직하게는 CaSiO3, 상기 아파타이트 및 Ca2Mg(Si2O7) 및 CaMgSi2O6을 0.7~1.3 : 0.7~3.0 : 0.5~1.2 : 0.7~1.3 중량비로 포함할 수도 있고, 더욱 바람직하게는 CaSiO3, 상기 아파타이트 및 Ca2Mg(Si2O7) 및 CaMgSi2O6을 1 : 0.7~3.0 : 0.5~1.2 : 0.7~1.3 중량비로 포함할 수도 있다. In addition, the artificial bone tissue of the present invention CaSiO 3 ; Ca 10 (PO 4 ) 6 A (where A is an oxygen atom) And Apatite containing at least one selected from Ca 10 (PO 4 ) 6 B 2 , wherein B is a hydroxyl group, a fluorine atom, or a chlorine atom; Ca 2 Mg (Si 2 O 7 ); And CaMgSi 2 O 6 ; Preferably, CaSiO 3 , the apatite and Ca 2 Mg (Si 2 O 7 ) and CaMgSi 2 O 6 are 0.7-1.3: 0.7-3.0: 0.5-1.2: 0.7 It may be included in a weight ratio of ~ 1.3, more preferably CaSiO 3 , the apatite and Ca 2 Mg (Si 2 O 7 ) and CaMgSi 2 O 6 1: 1: 0.7 to 3.0: 0.5 to 1.2: 0.7 to 1.3 by weight You may.
본 발명의 인공 골조직(또는 비결정성 생체 경조직 결손부 대체용 의용재의 소성물)은 압축강도 900 ~ 1,600 Mpa를, 바람직하게는 980 ~ 1,500 Mpa를, 더욱 바람직하게는 1,200 ~ 1,480 Mpa를 가질 수 있다.Artificial bone tissue of the present invention (or a plastic material for replacing the amorphous biohard tissue defects) may have a compressive strength of 900 to 1,600 Mpa, preferably 980 to 1,500 Mpa, more preferably 1,200 to 1,480 Mpa. .
또한, 본 발명의 인공 골조직(또는 비결정성 생체 경조직 결손부 대체용 의용재의 소성물)은 굽힘강도 150 ~ 300 Mpa를, 바람직하게는 220 ~ 300 Mpa를, 더욱 바람직하게는 245 ~ 285 Mpa를 가질 수 있다.In addition, the artificial bone tissue of the present invention (or a plastic product of a substitute for the amorphous biohard tissue defect) has a bending strength of 150 to 300 Mpa, preferably 220 to 300 Mpa, more preferably 245 to 285 Mpa. Can be.
또한, 본 발명의 인공 골조직(또는 비결정성 생체 경조직 결손부 대체용 의용재의 소성물)은 파괴인성 값이 2 Mpaㆍm1/2 이상을 가질 수 있다.In addition, the artificial bone tissue of the present invention (or a fired product of a substitute for amorphous biohard tissue defect) may have a fracture toughness value of 2 Mpa · m 1/2 or more.
본 발명의 인공 골조직(또는 비결정성 생체 경조직 결손부 대체용 의용재의 소성물)은 비틀림강도가 0.6 N·m ~ 2.0 N·m, 바람직하게는 0.6 N·m ~ 1.5 N·m 일 수 있다. 또한, 반복속도 5 Hz 및 응력비 10 에서 500만 사이클을 반복하여도 파손되지 않는, 최대 압축강도 이상의 피로강도를 가질 수 있다.The artificial bone tissue of the present invention (or a fired product of a substitute for amorphous living hard tissue defects) may have a torsional strength of 0.6 N · m to 2.0 N · m, preferably 0.6 N · m to 1.5 N · m. In addition, it is possible to have a fatigue strength equal to or more than the maximum compressive strength, which does not break even after repeating 5 million cycles at a repetition speed of 5 Hz and a stress ratio of 10.
상기 인공 골조직은 생체의 경조직 결손부 형상의 일 축 방향의 길이 기준으로 부피수축율이 5% 이하일 수 있고, 상기 인공 골조직은 상대밀도 값이 이론밀도의 95% 이상일 수 있다.The artificial bone tissue may have a volume shrinkage of 5% or less based on the length of one axis of the shape of the hard tissue defect of the living body, and the artificial bone tissue may have a relative density value of 95% or more of theoretical density.
또한, 본 발명의 인공 골조직은 2단계의 소성 온도에 따라, 겉보기밀도와 개기공률에 변화가 있을 수 있는데, 인공골조직(소결체)은 850℃에서 소성시 겉보기밀도가 2.95 ~ 3.05 g/cm3이고, 개기공률이 0.90% ~ 1.20%이며, 900℃에서 소성시 겉보기밀도가 2.95 ~ 3.05 g/cm3이고, 개기공률이 0.55% ~ 1.20%일 수 있다. 또한, 인공골조직(소결체)은 950℃에서 소성시 겉보기밀도가 2.97 ~ 3.07 g/cm3이고, 개기공률이 0.46% ~ 1.00%이며, 1,000℃에서 소성시 겉보기밀도가 2.99 ~ 3.08 g/cm3이고, 개기공률이 0.50% ~ 1.00%일 수 있다. 또한, 인공골조직(소결체)은 1,050℃에서 소성시 겉보기밀도가 2.97 ~ 3.10 g/cm3이고, 개기공률이 0.50% ~ 2.75%, 바람직하게는 0.50 ~ 0.95%일 수 있다. In addition, the artificial bone tissue of the present invention may have a change in the apparent density and the open porosity, depending on the firing temperature of the two stages, the artificial bone tissue (sintered body) is 2.95 ~ 3.05 g / cm 3 when firing at 850 ℃ , Open porosity is 0.90% ~ 1.20%, the apparent density during firing at 900 ℃ is 2.95 ~ 3.05 g / cm 3 , the open porosity may be 0.55% ~ 1.20%. In addition, the artificial bone tissue (sintered body) has an apparent density of 2.97 to 3.07 g / cm 3 when fired at 950 ° C., an open porosity of 0.46% to 1.00%, and a density of 2.99 to 3.08 g / cm 3 when fired at 1,000 ° C. The porosity may be 0.50% to 1.00%. In addition, the artificial bone tissue (sintered body) may have an apparent density of 2.97 to 3.10 g / cm 3 when fired at 1,050 ° C, and an open porosity of 0.50% to 2.75%, preferably 0.50 to 0.95%.
또한, 본 발명의 인공 골조직은 골 유합(bone fusion) 특성을 나타낼 수 있어 생체 내 이식되었을 때 효과적으로 생체의 경조직 결손부를 대체할 수도 있다.In addition, the artificial bone tissue of the present invention can exhibit a bone fusion (bone fusion) characteristics can also effectively replace the hard tissue defects of the living body when implanted in vivo.
구체적으로, 본 발명에 따른 인공 골조직은 인공골, 인공관절, 구강악안면 골, 두개골 또는 치과용 인공치근일 수 있다. 좀 더 구체적인 예를 들면, 본 발명의 인공 골조직은 척추유합술용 디스크 형태의 인공골, 안면 재건술용 인공골, 척추간 스페이서 등으로 응용될 수 있다.Specifically, the artificial bone tissue according to the present invention may be artificial bone, artificial joint, oral and maxillofacial bone, skull or dental artificial tooth. More specifically, for example, the artificial bone tissue of the present invention can be applied as an artificial bone in the form of a disc for spinal fusion, artificial bone for facial reconstruction, intervertebral spacer, and the like.
이하에서는 실시예를 통하여 본 발명을 더욱 구체적으로 설명하기로 하지만, 하기 실시예가 본 발명의 범위를 제한하는 것은 아니며, 이는 본 발명의 이해를 돕기 위한 것으로 해석되어야 할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the following Examples are not intended to limit the scope of the present invention, which should be construed as to help the understanding of the present invention.
[[
실시예Example
] ]
준비예Preparation
1 : One :
생체활성Bioactivity
유리분말의 제조 Manufacture of glass powder
MgO 분말 5.97 중량%, CaO 분말 41.79 중량%, SiO2 분말 35.82 중량%, P2O5 분말 13.93 중량%, CaF2 분말 1.99 중량% 및 B2O3
0.5 중량%를 혼합 및 교반하여 혼합물을 준비하였다.5.97 wt% MgO powder, 41.79 wt% CaO powder, 35.82 wt% SiO 2 powder, 13.93 wt% P 2 O 5 powder, 1.99 wt% CaF 2 powder and B 2 O 3 The mixture was prepared by mixing and stirring 0.5% by weight.
다음으로, 상기 혼합물을 1,550℃로 열처리한 후, 급냉시켜서 유리화시킨 후, 이를 파쇄하여 평균 입경 1.8 ㎛이 되도록 분말화하여, 생체활성 유리분말을 제조하였다. Next, the mixture was heat-treated at 1,550 ° C., quenched and vitrified, and then pulverized and powdered to an average particle size of 1.8 μm, thereby preparing a bioactive glass powder.
준비예 Preparation
2 ~ 3 및 2 to 3 and
비교준비예 Comparative Preparation
1 ~ 5 1 to 5
상기 준비예 1과 동일한 방법으로 생체활성 유리분말을 제조하되, 하기 표 1과 같은 조성을 가지도록 혼합물을 제조하여 생체활성 유리분말을 제조하였다.To prepare a bioactive glass powder in the same manner as in Preparation Example 1, to prepare a mixture to have a composition as shown in Table 1 to prepare a bioactive glass powder.
구분(중량%)Division (% by weight) | MgOMgO | CaOCaO | SiO2 SiO 2 | P2O5 P 2 O 5 | CaF2 CaF 2 | B2O3 B 2 O 3 |
준비예1Preparation Example 1 | 5.975.97 | 41.7941.79 | 35.8235.82 | 13.9313.93 | 1.991.99 | 0.50.5 |
준비예 2Preparation Example 2 | 4.9754.975 | 42.78542.785 | 34.82534.825 | 15.9215.92 | 0.9950.995 | 0.50.5 |
준비예 3Preparation Example 3 | 5.975.97 | 41.7941.79 | 31.8431.84 | 18.90518.905 | 0.9950.995 | 0.50.5 |
비교준비예1Comparative Preparation Example 1 | 4.9754.975 | 43.7843.78 | 33.8333.83 | 17.9117.91 | 0.9950.995 | 0.50.5 |
비교준비예2Comparative Preparation Example 2 | 4.9754.975 | 42.78542.785 | 32.83532.835 | 17.9117.91 | 0.9950.995 | 0.50.5 |
비교준비예3Comparative Preparation Example 3 | 5.975.97 | 40.79540.795 | 31.8431.84 | 18.90518.905 | 1.991.99 | 0.50.5 |
비교준비예4Comparative Preparation Example 4 | 4.9754.975 | 43.7843.78 | 35.8235.82 | 13.9313.93 | 0.9950.995 | 0.50.5 |
비교준비예5Comparative Preparation Example 5 | 5.975.97 | 40.79540.795 | 35.8235.82 | 13.9313.93 | 1.991.99 | 0.50.5 |
실시예Example
1 : 비결정성 생체 1: amorphous living body
경조직 결손부Hard tissue defect
대체용 Alternative
의용재Medical supplies
제조 및 열처리 온도에 따른 According to manufacturing and heat treatment temperature
수축율Shrinkage
조사 Research
상기 준비예 1에서 제조한 생체활성 유리분말 100 중량부에 대하여, 분산제(10 부피% 폴리비닐알코올 및 90 부피% 물) 10 중량부를 혼합하여 비결정성 생체 경조직 결손부 대체용 의용재 조성물을 제조하였다.10 parts by weight of a dispersant (10% by volume polyvinyl alcohol and 90% by volume water) was mixed with respect to 100 parts by weight of the bioactive glass powder prepared in Preparation Example 1, to prepare a medicinal composition for replacing the amorphous biological hard tissue defect. .
다음으로, 비결정성 생체 경조직 결손부 대체용 의용재 조성물을 냉간 등방 압축(cold isostaticpressing; CIP) 법으로 등방압축시켜 블록 형태의 성형체를 제조하였다.Next, a block-shaped molded body was prepared by isotropically compressing the medicinal composition for replacing the amorphous living hard tissue defect by cold isostaticpressing (CIP).
상기 제조된 성형체를 각각 650℃, 700℃, 750℃ 및 800℃에서 열처리하고 각각의 열처리 온도에 따른 각 변의 수축율을 조사하였고, 그 결과로서 대표적으로 700℃ 및 750℃에서의 열처리에 따른 결과를 하기 표 2에 나타내었다. 650℃ 미만의 온도 조건인 600℃에서는 성형체의 치밀화가 진행되지 않아 가공 후 쉽게 파손되었다. 또한, 800℃에서 소결하는 경우 결정화의 중단에 의한 제품 파손이 일어나는 것으로 확인되었다(도 4 참조).The molded article was heat-treated at 650 ° C., 700 ° C., 750 ° C. and 800 ° C., respectively, and the shrinkage ratios of the sides according to the respective heat treatment temperatures were examined. As a result, the results of heat treatment at 700 ° C. and 750 ° C. It is shown in Table 2 below. At 600 ° C., a temperature condition of less than 650 ° C., the compaction of the molded body did not proceed and was easily broken after processing. In addition, when sintering at 800 ℃ it was confirmed that the product breakage occurs due to the interruption of crystallization (see Fig. 4).
표 2의 측정 결과를 통해 750℃로 열처리한 경우 성형체가 급격하게 수축되는 것을 확인할 수 있고 이를 통해 성형체의 강도 및 경도가 높아져 가공이 불가능함을 알 수 있다. 이에 반해, 700℃로 열처리한 경우, 성형체가 5% 내외로 부피 수축되며 선형 수축율은 2% 수준임을 확인하였다.When the heat treatment at 750 ℃ through the measurement results of Table 2 it can be confirmed that the molded body is shrunk sharply, through which the strength and hardness of the molded body can be seen that the processing is impossible. On the contrary, when the heat treatment was performed at 700 ° C., the molded body was shrunk to about 5% and the linear shrinkage was about 2%.
실험예Experimental Example
1: 소결된 소결체 제조 및 소성 온도에 따른 1: Preparation of Sintered Sintered Body and Depending on Firing Temperature
수축율Shrinkage
실시예 1에서 제조한 700℃에서 열처리하여 제조한 블록 형태의 비결정성 성형체(비결정성 생체 경조직 결손부 대체용 의용재)를 별도의 가공 없이 750℃, 850℃, 900℃ 및 1,000℃의 소성온도에서 소결하여 소결체를 제조한 후 압축강도를 평가하였으며, 그 결과를 도 5에 나타내었다.Firing temperature of 750 ℃, 850 ℃, 900 ℃ and 1,000 ℃ of the block-shaped amorphous molded body (medical material for replacing the amorphous living hard tissue defects) prepared by the heat treatment at 700 ℃ prepared in Example 1 without additional processing After sintering at to prepare a sintered compact to evaluate the compressive strength, the results are shown in FIG.
도 5를 살펴보면, 급격한 수축을 보이는 750℃에서부터 145 Mpa 이상의 압축강도를 나타냈으며 소성 온도가 증가할수록 그 증가 폭이 급격하게 증가했다. 소성 온도 920 ~ 940℃에서부터 900 Mpa 이상의 압축강도를 보였으며, 특히, 소성 온도가 1,000℃인 경우는 1,300 Mpa 이상의 압축강도를 보여 우수한 기계적 특성을 유지하고 있음을 확인하였다. 이를 통하여, 적정 소성 온도가 850℃ ~ 1,200℃임을 확인할 수 있었다. Referring to FIG. 5, the compressive strength of 145 Mpa or more was exhibited from 750 ° C. showing rapid contraction, and the increase was sharply increased with increasing firing temperature. From the firing temperature 920 ~ 940 ℃ showed a compressive strength of more than 900 Mpa, in particular, when the firing temperature is 1,000 ℃ it was confirmed that the excellent mechanical properties were maintained by showing a compressive strength of 1,300 Mpa or more. Through this, it was confirmed that the proper firing temperature is 850 ℃ ~ 1,200 ℃.
그리고, 1,000℃에서 소성시켜 제조한 소결체의 각 변의 수축율을 측정하였고, 이를 하기 표 3에 나타내었다.And, the shrinkage of each side of the sintered body prepared by firing at 1,000 ℃ was measured, which is shown in Table 3 below.
상기 표 3을 통해, 700℃ 열처리한 성형체를 1,000℃로 소성시킨 경우 가로, 세로, 높이 방향으로 균일하게 수축되어 약 18%의 수축율을 나타내는 것을 확인할 수 있었다.Through the above Table 3, when the molded body heat-treated at 700 ℃ at 1,000 ℃ it can be confirmed that the shrinkage of about 18% uniformly contracted in the horizontal, vertical, height direction.
그리고, 제조한 소결체를 X-선 회절 패턴 분석한 결과를 도 6에 나타내었다.And the result of X-ray diffraction pattern analysis of the manufactured sintered compact is shown in FIG.
구체적으로 각 물질의 주회절선인 2θ는 CaSiO3(월라스토나이트)의 경우 29.5 ~ 30.5°, Ca10(PO4)6(OH)2(하이드록시아파타이트)의 경우 31.5° ~ 32.5°, Ca2Mg(Si2O7)(에커마나이트)의 경우 30.5° ~ 31.5° 및 CaMgSi2O6(디옵사이드)의 경우 29.5° ~ 30.5° 범위에 있음을 확인할 수 있었다.Specifically, 2θ, the major line of each material, is 29.5 to 30.5 ° for CaSiO 3 (wollastonite), 31.5 ° to 32.5 ° for Ca 10 (PO 4 ) 6 (OH) 2 (hydroxyapatite), and Ca 2 Mg (Si 2 O 7 ) (acmanite) was found to be in the range of 30.5 ° ~ 31.5 ° and CaMgSi 2 O 6 (diopside) in the range of 29.5 ° ~ 30.5 °.
실시예Example
2 ~ 3 및 2 to 3 and
비교예Comparative example
1 ~ 5 : 비결정성 생체 1 to 5: amorphous living body
경조직 결손부Hard tissue defect
대체용 Alternative
의용재Medical supplies
및 이의 And objections
소성물Plastic
제조 Produce
상기 실시예 1과 동일한 방법으로 700℃ 열처리한 성형체를 각각 제조하되, 준비예 1의 생체활성 유리분말 대신 준비예 2 ~ 3 및 비교준비예 1 ~ 5의 생체활성 유리분말을 각각 사용하여 비결정성 생체 경조직 결손부 대체용 의용재(또는 비결정성 성형체) 각각 제조함으로써, 실시예 2 ~ 3 및 비교예 1 ~ 5를 각각 실시하였다(하기 표 4 참조).Prepare molded bodies heat-treated at 700 ° C. in the same manner as in Example 1, except for using the bioactive glass powders of Preparation Examples 2 to 3 and Comparative Preparation Examples 1 to 5 instead of the bioactive glass powders of Preparation Example 1, respectively. Examples 2 to 3 and Comparative Examples 1 to 5 were carried out by manufacturing the medicinal materials (or amorphous molded bodies) for replacing the living hard tissue defects, respectively (see Table 4 below).
그리고, 비결정성 생체 경조직 결손부 대체용 의용재(실시예 1 ~ 3 및 비교예 1 ~ 5) 각각을 별도의 가공 없이 750℃, 800℃, 850℃, 900℃, 950℃, 1,000℃ 및 1,050℃로 2시간 동안 소성시켜서 소성물인 소결체를 각각 제조하였다.In addition, each of the medicinal materials for replacing the amorphous living hard tissue defects (Examples 1 to 3 and Comparative Examples 1 to 5) were respectively processed at 750 ° C, 800 ° C, 850 ° C, 900 ° C, 950 ° C, 1,000 ° C, and 1,050 without additional processing. It was calcined at 2 ° C. for 2 hours to prepare sintered bodies which were fired products.
비교예Comparative example
6 6
SiO2
분말, 하이드록시아파타이트 분말, Ca(OH)2 분말의 혼합분말을 1550℃로 열처리한 후, 급냉시켜서 유리화시킨 후, 이를 파쇄하여 평균 입경 1.8 ㎛이 되도록 분말화하여, 생체활성 유리분말을 제조한 후, 생체활성 유리분말 100 중량부 및 분산제(10 부피% 폴리비닐알코올 및 90 부피% 물) 10 중량부를 혼합한 조성물을 상기 실시예 2와 동일한 방법으로 700℃ 열처리한 성형체를 1,050℃로 2시간 동안 소성시켜서 CaSiO3 및 Ca10(PO4)6(OH)2를 포함하는 소성물인 소결체를 제조하였다.SiO 2 The powder, the hydroxyapatite powder, and the mixed powder of Ca (OH) 2 powder were heat-treated at 1550 ° C., quenched and vitrified, and then pulverized to a powder having an average particle diameter of 1.8 μm, thereby preparing a bioactive glass powder. Thereafter, the molded body obtained by heating the composition of 100 parts by weight of the bioactive glass powder and 10 parts by weight of the dispersant (10% by volume polyvinyl alcohol and 90% by volume water) at 700 ° C in the same manner as in Example 2 was used at 1,050 ° C for 2 hours. Calcined to include CaSiO 3 and Ca 10 (PO 4 ) 6 (OH) 2 A sintered body that was a fired product was produced.
비교예Comparative example
7 7
하이드록시아파타이트 100 중량%로 포함하는 조성물을 이용하여 상기 비교예 6과 동일한 방법으로 700℃ 열처리한 성형체를 1,300℃로 2시간 동안 소성시켜서 소결체를 제조하였다.Using a composition containing 100% by weight of hydroxyapatite, a molded body heat-treated at 700 ° C in the same manner as in Comparative Example 6 was fired at 1,300 ° C for 2 hours to prepare a sintered body.
비결정성 생체 경조직 결손부 대체용 의용재Substances for replacing amorphous living hard tissue defects | 생체활성 유리분말Bioactive Glass Powder | 열처리 온도Heat treatment temperature | 소성 온도Firing temperature |
실시예 1Example 1 | 준비예1Preparation Example 1 | 700℃700 ℃ | 1050℃1050 ℃ |
실시예 2Example 2 | 준비예 2Preparation Example 2 | 700℃700 ℃ | 1050℃1050 ℃ |
실시예 3Example 3 | 준비예 3Preparation Example 3 | 700℃700 ℃ | 1050℃1050 ℃ |
비교예1Comparative Example 1 | 비교준비예1Comparative Preparation Example 1 | 700℃700 ℃ | 1050℃1050 ℃ |
비교예2Comparative Example 2 | 비교준비예2Comparative Preparation Example 2 | 700℃700 ℃ | 1050℃1050 ℃ |
비교예3Comparative Example 3 | 비교준비예3Comparative Preparation Example 3 | 700℃700 ℃ | 1050℃1050 ℃ |
비교예4Comparative Example 4 | 비교준비예4Comparative Preparation Example 4 | 700℃700 ℃ | 1050℃1050 ℃ |
비교예5Comparative Example 5 | 비교준비예5Comparative Preparation Example 5 | 700℃700 ℃ | 1050℃1050 ℃ |
실험예Experimental Example
2 : 소결체의 겉보기 밀도 및 2: apparent density of sintered body and
개기공률Open porosity
측정 실험 Measurement experiment
상기 실시예 1 ~ 3 및 비교예 1 ~ 5에서 제조한 소결체의 소성 온도에 따른 겉보기 밀도(apparent density, g/cm3) 및 개기공률(open porosity, %)을 측정하였으며, 그 결과를 하기 표 5 ~ 표 6 및 도 7에 나타내었다.Apparent density (g / cm 3 ) and open porosity (%) were measured according to the firing temperature of the sintered bodies prepared in Examples 1 to 3 and Comparative Examples 1 to 5, and the results are shown in the following table. 5 to Table 6 and shown in FIG.
구분(겉보기밀도,g/cm3)Classification (apparent density, g / cm 3 ) |
750℃750 |
800℃800 |
850℃850 |
900℃900 |
950℃950 ℃ | 1,000℃1,000 ℃ | 1,050℃1,050 ℃ |
실시예 1Example 1 | 2.962.96 | 2.972.97 | 2.982.98 | 2.982.98 | 3.003.00 | 3.043.04 | 3.053.05 |
실시예 2Example 2 | 2.962.96 | 2.972.97 | 2.972.97 | 3.003.00 | 3.003.00 | 3.003.00 | 3.023.02 |
실시예 3Example 3 | 2.902.90 | 2.982.98 | 2.992.99 | 3.003.00 | 3.033.03 | 3.043.04 | 2.972.97 |
비교예 1Comparative Example 1 | 2.402.40 | 2.492.49 | 2.482.48 | 2.492.49 | 2.502.50 | 2.492.49 | 2.452.45 |
비교예 2Comparative Example 2 | 2.632.63 | 2.672.67 | 2.682.68 | 2.692.69 | 2.702.70 | 2.712.71 | 2.692.69 |
비교예 3Comparative Example 3 | 2.302.30 | 2.462.46 | 2.482.48 | 2.492.49 | 2.522.52 | 2.522.52 | 2.362.36 |
비교예 4Comparative Example 4 | 2.932.93 | 2.942.94 | 2.952.95 | 2.952.95 | 2.972.97 | 3.003.00 | 3.003.00 |
비교예 5Comparative Example 5 | 2.872.87 | 2.872.87 | 2.892.89 | 2.892.89 | 2.912.91 | 2.962.96 | 2.952.95 |
구분(개기공률,%)Classification (Open Porosity,%) |
750℃750 |
800℃800 |
850℃850 |
900℃900 |
950℃950 ℃ | 1,000℃1,000 ℃ | 1,050℃1,050 ℃ |
실시예 1Example 1 | 0.870.87 | 0.870.87 | 0.970.97 | 1.071.07 | 0.970.97 | 0.970.97 | 0.580.58 |
실시예 2Example 2 | 1.171.17 | 0.380.38 | 1.171.17 | 0.580.58 | 0.490.49 | 0.780.78 | 0.880.88 |
실시예 3Example 3 | 3.803.80 | 1.801.80 | 1.071.07 | 1.171.17 | 0.800.80 | 0.600.60 | 2.632.63 |
비교예 1Comparative Example 1 | 19.619.6 | 16.616.6 | 17.217.2 | 16.716.7 | 16.816.8 | 17.417.4 | 18.918.9 |
비교예 2Comparative Example 2 | 12.412.4 | 11.011.0 | 10.710.7 | 11.211.2 | 10.610.6 | 10.710.7 | 11.511.5 |
비교예 3Comparative Example 3 | 24.024.0 | 19.019.0 | 19.219.2 | 19.219.2 | 18.518.5 | 19.419.4 | 23.823.8 |
비교예 4Comparative Example 4 | 0.780.78 | 0.880.88 | 0.490.49 | 0.970.97 | 1.171.17 | 0.780.78 | 0.580.58 |
비교예 5Comparative Example 5 | 1.901.90 | 1.571.57 | 1.861.86 | 2.442.44 | 1.861.86 | 1.951.95 | 1.461.46 |
상기 표 5 ~ 표 6 및 도 7을 살펴보면, P2O5 함량이 17 중량% 초과 사용한 비교예 1 및 비교예 2의 경우 및 CaO 함량을 41 중량% 미만으로 사용한 비교예 3의 경우, 겉보기 밀도가 낮거나 및/또는 개기공률이 높은 경향을 보였다.Referring to Tables 5 to 6 and FIG. 7, in the case of Comparative Examples 1 and 2 in which the P 2 O 5 content is more than 17 wt%, and in Comparative Example 3 in which the CaO content is less than 41 wt%, the apparent density Tends to be low and / or high open porosity.
이에 반해, 실시예 3의 경우, P2O5 함량이 17 중량% 초과한 18.905 중량% 사용했음에도 높은 밀도 및 낮은 개기공률을 보이는 특이한 현상을 보였는데, 이는 비교예 1 ~ 3과 실시예 3의 CaO 및 CaF2 함량 차이로 인한 것으로 판단된다.On the contrary, in Example 3, even though 18.905 wt% of P 2 O 5 content exceeded 17 wt%, a high density and low porosity were observed. It is believed to be due to the difference in CaO and CaF 2 content.
실험예Experimental Example
3 : 소결체의 3: of sintered body
XRDXRD
분석 analysis
(1) 상기 실험예 2에서 제조한 실시예 1 ~ 3 및 비교예 4 ~ 5의 소결체 각각에 대한 온도별 XRD 분석 실험을 수행하였고, 그 결과를 도 8a(실시예 1), 도 8b(실시예 2), 도 8c(실시예 3), 도 8d(비교예 4) 및 도 8e(비교예 5)에 나타내었다.(1) XRD analysis experiments were performed for each of the sintered bodies of Examples 1 to 3 and Comparative Examples 4 to 5 prepared in Experimental Example 2, and the results are shown in FIGS. 8A (Example 1) and 8B (Example). Example 2), FIG. 8C (Example 3), FIG. 8D (Comparative Example 4), and FIG. 8E (Comparative Example 5).
도 8a ~ 도 8e를 살펴보면, 실시예 1 ~ 3 및 비교예 4 ~ 5 모두 750℃에서 아파타이트 석출이 먼저 일어나는 것을 확인할 수 있으며, 특히, MgO가 많이 들어간 생체활성 유리분말을 사용할수록 베타월라스토나이트의 메인 피크인 30°부근에서 스필릿(split)이 일어나는 경향이 있음을 확인할 수 있는데, 이는 베타월라스토나이트의 Ca 자리에 Mg가 치환된 월라스토나이트와 순수한 베타월라스토나이트의 결정상이 공존하기 때문인 것으로 판단된다.8A to 8E, Examples 1 to 3 and Comparative Examples 4 to 5 can confirm that apatite precipitation occurs first at 750 ° C., in particular, the more beta-walastonite is used as the bioactive glass powder containing much MgO is used. It can be seen that there is a tendency for the split to occur around 30 °, which is the main peak of, because the crystal phase of wollastonite substituted with Mg at the Ca site of beta wollastonite and pure beta wollastonite coexist. It is because of this.
그리고, 도 8a(실시예 1)과 도 8e(비교예 5)를 비교해보면, XRD 데이터 상으로는 큰 차이가 없었으나, 비교예 5는 실시예 1에 비해 소결특성이 다소 떨어지는 문제가 있었다.And when comparing FIG. 8A (Example 1) and FIG. 8E (Comparative Example 5), there was no significant difference on the XRD data, but Comparative Example 5 had a problem in that the sintering characteristics are somewhat lower than that of Example 1.
또한, 도 8b(실시예 2)과 도 8d(비교예 4)를 비교해보면, 비교예 4가 실시예 2 보다 P2O5 함량이 높음에도 불구하고 베타월라스토나이트 피크의 강도가 더 높게 나오는 경향을 보였다. 따라서, 실시예 2가 비교예 4 보다 기계적 강도가 더 높을 것으로 판단된다.In addition, comparing FIG. 8B (Example 2) and FIG. 8D (Comparative Example 4), although the comparative example 4 has a higher P 2 O 5 content than Example 2, the intensity of the beta wollastonite peak is higher Showed a tendency. Therefore, it is determined that Example 2 has a higher mechanical strength than Comparative Example 4.
그리고, 도 8c(실시예 3)의 경우, 실시예 1 및 실시예 2 보다 소결 특성이 다소 떨어지지만, P2O5 함량이 높음에도 비교적 우수한 소결 특성을 보였다.In addition, in the case of FIG. 8C (Example 3), although the sintering characteristics are slightly lower than those of Examples 1 and 2, the sintering characteristics are relatively excellent even though the P 2 O 5 content is high.
(2) 또한, 1,000℃에서 소결시킨 실시예 1의 소결체를 분쇄시킨 분쇄물의 X선 회절 측정 결과를 도 8f 및 하기 표 7에 나타내었다.(2) X-ray diffraction measurement results of the pulverized product of the sintered compact of Example 1 sintered at 1,000 ° C. are shown in Fig. 8F and Table 7 below.
구분(중량%)Division (% by weight) | CaSiO3 CaSiO 3 | 아파타이트Apatite | Ca2Mg(Si2O7)Ca 2 Mg (Si 2 O 7 ) | CaMgSi2O6 CaMgSi 2 O 6 | 중량비Weight ratio |
실시예 1Example 1 | 17.117.1 | 50.550.5 | 17.117.1 | 15.315.3 | 1 : 2.953 : 1 : 0.8951: 2.953: 1: 0.895 |
실험예Experimental Example
4 : 소결체의 결정화된 미세구조 측정 4: measurement of crystallized microstructure of sintered body
상기 실시예 1 ~ 3의 1,050℃에서 소결시킨 소결체에 대한 소결체의 결정화 유리 표면을 전자현미경으로 관찰하였으며, 그 결과를 도 9에 나타내었다.The crystallized glass surface of the sintered compact with respect to the sintered compact sintered at 1,050 degreeC of Examples 1-3 was observed with the electron microscope, and the result is shown in FIG.
도 9를 살펴보면, 실시예 1 ~ 3 모두 표면에 기공이 거의 없는 매우 치밀한 조직을 가지는 것을 확인할 수 있었다.Looking at Figure 9, it can be seen that Examples 1 to 3 all have a very dense structure with little pores on the surface.
실험예Experimental Example
5 : 소결체의 5: of sintered body
생체활성Bioactivity
및 세포독성 평가 And cytotoxicity assessment
상기 실시예 1 ~ 3의 1,050℃에서 소결시킨 소결체 각각에 대한 생체활성 및 세포독성을 측정하였다.The bioactivity and cytotoxicity of each of the sintered bodies sintered at 1,050 ° C. of Examples 1 to 3 were measured.
(1) 생체활성은 의사체액(SBF) 침적 실험을 통해 수행하였으며, 상기 소결체 각각을 완전히 24시간 동안 의사체액에 완전히 침적시킨 후, 전자현미경을 통해 탄산아파타이트층 형성여부를 확인하였고, 그 결과를 도 10a에 나타내었다.(1) The bioactivity was performed through a pseudo body fluid (SBF) deposition experiment, each of the sintered body was completely deposited in the pseudo body fluid for 24 hours, and then confirmed the formation of apatite carbonate layer through an electron microscope, the results It is shown in Figure 10a.
도 10a을 살펴보면, 실시예 1 ~ 3의 소결체 모두 의사체액 침적 실험 24시간 만에 소결체 표면에 탄산아파타이트가 고르게 층이 형성되었음을 확인할 수 있었으며, 이를 통해서 실시예 1 ~ 3 모두 생체활성이 우수함을 확인할 수 있었다.Looking at Figure 10a, it was confirmed that the sintered body of Examples 1 to 3 evenly formed a layer of apatite carbonate on the surface of the sintered body within 24 hours of the pseudo-body deposition experiment, it was confirmed that the Examples 1 to 3 have excellent bioactivity Could.
(2) 또한, 세포독성 평가는 SaOS-2 세포 배양을 통한 in-vitro 실험을 수행하였고 그 결과를 도 10b에 나타내었다. (2) In addition, the cytotoxicity evaluation was performed in-vitro experiments through SaOS-2 cell culture and the results are shown in Figure 10b.
세포독성시험은 생체적합성 시험의 일환으로서 실시한 것이며, 시험물질의 세포독성유발 여부를 평가하기 위해 in vitro Methods (ISO 10993-5)의 extract test 방법(: Biological Evaluation of Medical Devices, Part 5: Tests for Cytotoxicity)으로 시험을 실시하였다. 시험에 사용된 검액은 생리식염수로 시험물질을 용출한 후 2×MEM(Modified Eagle's Medium) 혈청배지와 동량으로 섞는 방식으로 조제하였으며, 이 검액을 균일한 단층을 형성한 3개의 쥐 섬유아세포 상으로 투여하였다. 동시에 3개의 용매대조군, 음성대조군, 양성대조군도 투여하였다. 모든 세포는 (37±1)℃, (5±1)% CO2 상에서 48시간 배양하였고, 이후 현미경 상으로 각 세포의 형태적 변화를 관찰하였다.The cytotoxicity test was performed as part of the biocompatibility test, and the extract test method of in vitro methods (ISO 10993-5) (: Biological Evaluation of Medical Devices, Part 5: Tests for Cytotoxicity) was used to test. The test solution used in the test was prepared by eluting the test substance with physiological saline and mixing the same amount with 2 × MEM (Modified Eagle's Medium) serum medium. The test solution was prepared on three rat fibroblasts with a uniform monolayer. Administered. At the same time, three solvent control groups, a negative control group, and a positive control group were also administered. All cells were incubated for 48 hours on (37 ± 1) ° C., (5 ± 1)% CO 2 , after which the morphological changes of each cell were observed under a microscope.
그리고, 대조군으로는 비교예 7에서 제조한 소결체(HA)를 사용하였다.And the sintered compact (HA) manufactured by the comparative example 7 was used as a control.
도 10b를 살펴보면, 대조군과 비교할 때, 실시예 1 ~ 3 모두 세포독성이 낮은 결과를 보였으며, 특히, 실시예 1의 소결체가 가장 낮은 세포독성을 보였다.Looking at Figure 10b, when compared with the control, in Examples 1 to 3 all showed a low cytotoxicity, in particular, the sintered compact of Example 1 showed the lowest cytotoxicity.
실험예Experimental Example
6 : 소결체의 기계적 물성 측정 실험 6: Experimental Measurement of Mechanical Properties of Sintered Body
그리고, 상기 실시예 1 ~ 3 및 비교예 1 ~ 7의 소결체(1050℃ 소결체임)의 압축강도, 굽힘강도, 파괴인성을 측정하였고, 그 결과를 하기 표 8에 나타내었다. 최종 소결체는 1 cm 길이의 정육면체로 제조하였으며, 강도 측정 오류를 최소화하기 위하여 폴리싱(polishing)하여 면을 균질화하였다.In addition, the compressive strength, the bending strength, and the fracture toughness of the sintered bodies (which are 1050 ° C sintered bodies) of Examples 1 to 3 and Comparative Examples 1 to 7 were measured, and the results are shown in Table 8 below. The final sintered body was made of a 1 cm long cube and polished to homogenize the face to minimize the strength measurement error.
구분division | 압축강도(Mpa)Compressive strength (Mpa) | 굽힘강도(Mpa)Bending strength (Mpa) | 파괴인성(Mpaㆍm1/2)Fracture Toughness (Mpa · m 1/2 ) |
실시예 1Example 1 | 1321±401321 ± 40 | 253±13253 ± 13 | 3.0±0.173.0 ± 0.17 |
실시예 2Example 2 | 1115±451115 ± 45 | 241±23241 ± 23 | 2.32±0.052.32 ± 0.05 |
실시예 3Example 3 | 949±77949 ± 77 | 170±14170 ± 14 | 2.06±0.062.06 ± 0.06 |
비교예 6Comparative Example 6 | 1103±941103 ± 94 | 180±10180 ± 10 | 1.54±0.071.54 ± 0.07 |
비교예 7Comparative Example 7 | 832±35832 ± 35 | 53±153 ± 1 | 1.51±0.031.51 ± 0.03 |
상기 표 8을 살펴보면, 실시예 1 ~ 3 모두 우수한 압축강도, 굽힘강도 및 파괴인성을 가지는 것을 확인할 수 있다.Looking at Table 8, it can be seen that Examples 1 to 3 all have excellent compressive strength, bending strength and fracture toughness.
그리고, P2O5
함량이 18.5 ~ 19.8 중량% 범위의 생체활성 유리분말을 사용하였던 실시예 3 보다 P2O5
함량이 13.5 ~ 17 중량% 범위의 생체활성 유리분말을 사용한 실시예 1 ~ 2가 상대적으로 우수한 기계적 특성 가지는 경향을 보였다.And P 2 O 5 Content P 2 O 5 than Example 3 using a bioactive glass powder in the range of 18.5 ~ 19.8% by weight Content Examples 1 to 2 using bioactive glass powders in the range of 13.5 to 17 wt% showed relatively good mechanical properties.
실시예 1의 경우, 비교예 6 ~ 7과 비교할 때, 20% 및 60% 가량 증가된 압축강도 및 40% 및 375% 가량 증가된 굽힘강도를 나타내었다. 뿐만 아니라, 파괴인성은 둘 모두에 대해 약 2배까지 현저히 증가함을 확인할 수 있었다. 그리고, 실시예 2 및 3은 파괴인성 값이 2 Mpaㆍm1/2 이상으로 비교예 6 ~ 7 보다 상대적으로 우수함을 확인할 수 있었다.In the case of Example 1, the compressive strength increased by 20% and 60% and the bending strength increased by 40% and 375% when compared with Comparative Examples 6 to 7. In addition, the fracture toughness was found to increase significantly by about two times for both. And Examples 2 and 3, it was confirmed that the fracture toughness value is more than 2 Mpa.m 1/2 or more than Comparative Examples 6-7.
실험예Experimental Example
7 : 소결체의 생체친화성 평가 실험 7: Test of biocompatibility of sintered body
(1) 생체친화성 육안검사(1) Biocompatibility Visual Inspection
실시예 1 ~ 2의 1050℃ 소결체 및 비교예 7의 소결체에 대한 생체친화성 육안검사를 실시하였다.The biocompatibility visual inspection was performed about the 1050 degreeC sintered compact of Examples 1-2 and the sintered compact of comparative example 7.
생체친화성 육안 검사는 부검을 실시하여, 딱딱한 바깥쪽 부분의 뼈인 피질골과 그 부위에 인위적으로 삽입한 물체와의 유합 및 분리 여부를 확인하여 실시하였다.The biocompatibility visual examination was performed by performing an autopsy to confirm the union and separation of the cortical bone, which is a hard outer portion, and the object artificially inserted into the region.
부검을 실시한 11례의 개체에 대하여 육안 검사를 시행하였고 그 결과를 도 11a(실시예 1), 도 11b(실시예 2) 및 도 11c(비교예 7)을 각각 나타내었다.Visual inspection was performed on 11 subjects who underwent necropsy and the results are shown in FIGS. 11A (Example 1), 11B (Example 2), and FIG. 11C (Comparative Example 7).
비교예 7의 경우 단기 추시한 3마리 중 2례에서 유합된 소견을 보였으나, 1례에서는 피질골과 삽입물의 분리 소견을 보였다(도 11C참조). In Comparative Example 7, two cases were found to be fused in short-term follow-up, but one case showed cortical bone and implant separation (see FIG. 11C).
이에 반해, 실시예 1 및 실시예 2군의 경우 장기 추시한 2례에서는 모두 피질골과 잘 유합된 소견을 보였고, 단기 추시한 2마리에서도 모두 피질골과 유합된 소견을 보였다(도 11a 및 도 11b 참조). On the contrary, in the case of Example 1 and Example 2, the two cases of long-term follow-up showed good union with the cortical bone, and both of the short-term follow-up showed a union with the cortical bone (see FIGS. 11A and 11B). ).
(2) 방사선학적 검사 1(2) radiological examination 1
실시예 1 ~ 2의 1050℃ 소결체 및 비교예 7의 소결체에 대한 방사선학적 검사를 실시하였다.Radiographic examinations were carried out for the 1050 ° C sintered bodies of Examples 1 to 2 and the sintered bodies of Comparative Example 7.
이때, 방사선학적 검사는 단기 시추의 경우, 수술 3개월된 시점에 부검을 시행하였고, 장기 추시의 경우 수술 후 8개월된 시범에 부검을 시행하여 연속성이 유지되면서 골조직과 유사한 굴곡 강도와 탄성을 나타내며 유합체에 움직임이 전혀 없을 경우 완전 유합으로 판정하였다.In the case of short-term drilling, autopsy was performed at 3 months postoperatively. For long-term follow-up, autopsy was performed at 8 months postoperatively, showing continuity and similar flexural strength and elasticity. If the union had no movement, it was determined as complete union.
측정결과, 실시예 1의 경우, 장기 추시한 2례는 모두 피질골과 잘 유합된 완전 유합, 단기 추시한 2례에서 부검을 시행한 결과도 모두 잘 유합된 완전 유합이 일어났다. 그리고, 실시예 2 역시 장기 추시한 2례에서는 모두 피질골과 잘 유합된 완전 유합 소견을 보였고, 단기 추시한 2마리 중 1마리에서 피질골과 유합, 1마리에서는 부분 유합을 보였다.As a result, in the case of Example 1, both cases of long-term follow-up were completely union with the cortical bone, and autopsy was performed in two cases of short-term follow-up. In addition, Example 2 also showed complete union with the cortical bone in both cases of long-term follow-up, and cortical bone and union in one of the two short-term patients, and partial union in one.
이에 반해, 비교예 7의 경우, 단기 추시한 3마리에서 1례에서 완전 유합, 2례에서는 부분 유합이 있었다. In contrast, in Comparative Example 7, there were 3 cases of complete fusion in 1 case and partial union in 2 cases.
(3) (3)
방사산학적 Radiological
검사 2 Check 2
실시예 1 ~ 2의 1050℃ 소결체 및 비교예 7의 소결체에 대한 방사선학적 검사를 실시하였다.Radiographic examinations were carried out for the 1050 ° C sintered bodies of Examples 1 to 2 and the sintered bodies of Comparative Example 7.
이때, 방사선 검사는 단기 시추의 경우, 수술 직후 및 이후 12주까지 2주 간격으로 시행하고, 장기 추시는 12주 이후 1개월 마다 가토의 경골에 대하여 방사선 검사를 시행하여 치밀체와 피질골과의 유합 정도를 관찰하였다.In the case of short-term drilling, radiographic examinations are performed at intervals of two weeks immediately after surgery and up to 12 weeks thereafter, and long-term follow-up examinations are performed on the tibia of the rabbit every 12 months after 12 weeks of union. The degree was observed.
방사선 측정 검사는 2주 마다 촬영하였으며, 수술 전 및 수술 후 3 개월 지난 시점에서 방사전 측정 사진을 도 12a(실시예 1), 도 12b(실시예 2) 및 도 12c(비교예 7)에 각각 나타내었다.Radiographic examinations were taken every two weeks, Before and after 3 months after the operation, the radiographs are shown in FIGS. 12A (Example 1), 12B (Example 2), and FIG. 12C (Comparative Example 7), respectively.
측정 결과, 실시예 1의 1례 및 비교예 7의 1례에서 이식부의 원위부에서 골절 소견이 관찰되었다. 그리고, 이식부는 유합이 진행됨을 확인하였다.As a result of the measurement, fractures were observed in the distal portion of the transplantation in one case of Example 1 and one case of Comparative Example 7. Then, the transplantation confirmed that the fusion progressed.
(4) 조직학적 검사 및 인장 검사(4) histological and tensile tests
실시예 1 ~ 2의 1050℃ 소결체 및 비교예 7의 소결체에 대한 조직학적 검사 및 인장검사를 실시하였다.Histological and tensile tests of the sintered compacts of Examples 1 to 2 and the sintered compacts of Comparative Example 7 were carried out.
조직학적 검사는 인체 또는 동물조직을 절제하여 광학현미경으로 관찰하는 검사를 말하며 본 연구에서는 비탈석회화 슬라이드를 제작 후 H&E(Hematoxylin & eosin) 염색을 시행한 뒤 광학현미경으로 이식체의 조직학 검사를 수행하였다. 그리고, 인장 검사는 가토의 하지 경골 근위부 조면 아래에 이식체를 삽입하고, 삽입 부위에 압축력이 작용하도록 외고정 장치를 단축시켜 고정하였다. 수술을 시행한지 3개월 후 이식체와 맞닿은 상, 하 경골의 중심을 통과하도록 볼트 나사못을 삽입한 후 미리 제작된 고정 기구를 동일한 간격으로 설치하였다. 이때, 전후방에 고르게 인장력이 작용하여 회전 응력이 가해지지 않도록 수행하였다. 그리고, 그 결과를 도 13a(실시예 1), 도 13b(실시예 2) 및 도 13c(비교예 7)을 나타내었다.Histological examination refers to the examination of the human or animal tissues by ablation and observation with an optical microscope. In this study, non-calcified slides were made and subjected to H & E (Hematoxylin & eosin) staining, and then histological examination of the implants with optical microscope. . In the tensile test, the implant was inserted below the proximal tibia surface of the rabbit and the external fixation device was shortened and fixed so that the compressive force acted on the insertion site. Three months after the operation, the bolt screw was inserted to pass through the center of the upper and lower tibia, which was in contact with the implant, and the pre-fabricated fixing mechanism was installed at the same interval. At this time, the tensile force is applied to the front and rear evenly so that the rotational stress is not applied. And the result was shown to FIG. 13A (Example 1), FIG. 13B (Example 2), and FIG. 13C (Comparative Example 7).
도 13을 살펴보면, 비탈석회화 조직으로 이식체와 골과의 결합상태를 관찰한 것을 나타낸 것이다. 실시예 1 ~ 2 및 비교예 7 모두 골과의 유합이 잘 되었음을 확인할 수 있다. 다만, 도 13b를 살펴보면, 파손되어 있는 성상을 확인할 수 있는데, 이는 시편의 강도의 문제가 아니라, 골절로 인한 과중한 하중을 받았기 때문으로 판단된다.Looking at Figure 13, it shows the observation of the binding state of the graft and bone to the non-calcified tissue. In Examples 1 and 2 and Comparative Example 7 it can be confirmed that the union with the bone was well. However, looking at Figure 13b, it can be confirmed that the property is broken, not because of the strength of the specimen, it is determined that the excessive load due to fracture.
제조예Production Example
1 : 디스크 형태의 인공 골조직의 제조 1: Preparation of disk-shaped artificial bone tissue
실시예 1에서 제조한 700℃에서 열처리하여 제조한 블록 형태의 성형체(비결정성 생체 경조직 결손부 대체용 의용재)를 도 14와 같은 디스크 형태의 모델링 결과를 해석하여 디스크 형태를 추출한 후 해당 디자인에 수축율 18%를 각 변에 적용하여 재디자인 한 후 상기 성형체를 가공하였다.A block-shaped molded article (a medicinal material for replacing amorphous biohard tissue defects) prepared by heat treatment at 700 ° C. prepared in Example 1 was analyzed by analyzing the disk shape modeling results as shown in FIG. The molded body was processed after redesign by applying a shrinkage rate of 18% to each side.
다음으로, 가공한 성형체를 1,050℃로 소성시킨 다음, 2 ℃/min으로 서냉시켜 얻은 최종 완료된 디스크 형태의 소결체인 인공 골조직을 제조하였다(도 15참조).Next, the processed molded body was calcined at 1,050 ° C., and then artificial bone tissue was prepared, which is a final sintered body in the form of a disk obtained by slow cooling at 2 ° C./min (see FIG. 15).
제조한 인공 골조직은 예측 디자인과 5% 이내의 편차를 보였다(하기 표 9 참조).The artificial bone tissue produced showed a deviation within 5% of the predictive design (see Table 9 below).
구분division | A(mm)A (mm) | B(mm)B (mm) | C(mm)C (mm) |
디자인design | 24.524.5 | 18.718.7 | 7.47.4 |
실측치Found | 24.86±0.1324.86 ± 0.13 | 18.53±0.1518.53 ± 0.15 | 7.57±0.497.57 ± 0.49 |
오차error | 0.16%0.16% | 0.9%0.9% | 2.3%2.3% |
제조예Production Example
2 : 척추 형태의 인공 골조직의 제조 2: preparation of artificial bone tissue in the form of spine
실시예 1에서 제조한 700℃에서 열처리하여 제조한 블록 형태의 성형체(비결정성 생체 경조직 결손부 대체용 의용재)를 도 16과 같은 척추와 형태의 모델링 결과를 해석하여 척추 형태를 추출한 후 해당 디자인에 상기 성형체를 가공하였다(도 17a 참조).A block-shaped molded article prepared by heat treatment at 700 ° C. prepared in Example 1 (a substitute for non-crystalline biohard tissue defects) was analyzed by analyzing modeling results of the spine and shapes as shown in FIG. The molded body was processed (see FIG. 17A).
다음으로, 척추 형태로 가공한 성형체를 1,050℃로 소성시킨 다음, 2 ℃/min으로 서냉시켜 얻은 최종 완료된 척추 형태의 소결체인 인공 골조직을 제조하였다(도 17b 참조).Next, an artificial bone tissue, which is a final sintered sintered body obtained by sintering the molded body processed into the spine form at 1,050 ° C. and then slowly cooled to 2 ° C./min, was prepared (see FIG. 17B).
그리고, 제조한 인공 골조직을 동일한 척추 형상으로 3D 프린팅 한 시작품과 맞춰 보았을 때 정확히 맞춰져 형상에 대한 구현 효과가 우수한 제조 공정임을 확인하였다(도 18).In addition, when the artificial bone tissue was matched with the prototype produced by 3D printing in the same spine shape, it was confirmed that the manufacturing process was excellent in the implementation effect on the shape (FIG. 18).
제조예Production Example
3 : 척추 3: spine
스페이서의Spacer
제조 및 이의 특성 분석 Manufacture and Characterization thereof
상기 실시예 1의 비결정성 생체 경조직 결손부 대체용 의용재를 척추 스페이서 형태로 가공한 후, 1,050℃로 소성시켜서 소결체인 척추 스페이서를 제조하였다.After treating the medicinal material for replacing the amorphous living hard tissue defect part of Example 1 in the form of a spine spacer, it was calcined at 1,050 ° C to prepare a spinal spacer as a sintered body.
제조한 척추 스페이서를 이용한 인체 임상실험 결과 일반적인 수술 방법인 티타늄 케이지에 자가골을 이식한 경우(대조군)와 비교하여 유사한 수준의 주위 골과의 유합력을 나타내었다. 해당 스페이서를 요추에 이식한 피험자 39명 중 35명(89.7%)에서 12개월째 우수한 임상적 결과를 보이고 있으며, 이식된 스페이서는 주위 척추체와 직접 결합하였다. 특히, 척추체와 스페이서 간의 결합된 면적을 계산한 결과, 하기 표 9에 나타난 바와 같이, 본 발명에 따른 결정화 유리 세라믹 소재의 스페이서에 대한 결합 면적이 티타늄 케이지에 채워진 자가골에 비해 통계적으로 유의하게 높았다(p<0.001). 계산된 추체 종판과 결합된 스페이서 또는 자가골의 면적을 표 10에 비교하였다.The clinical results of the human spine using the manufactured spinal spacer showed a similar level of union with the surrounding bone compared to the autogenous bone implanted into the titanium cage, which is a common surgical method (control). Thirty-five (89.7%) of 39 subjects with the spacer implanted in the lumbar spine had excellent clinical results at 12 months. In particular, as a result of calculating the bonded area between the vertebral body and the spacer, as shown in Table 9, the bonding area for the spacer of the crystallized glass ceramic material according to the present invention was statistically significantly higher than the autogenous bone filled in the titanium cage ( p <0.001). The area of spacer or autogenous bone associated with the calculated vertebral endplates is compared in Table 10.
구분division | 상부 추체 종판Upper vertebral endplate | 하부 추체 종판Lower vertebral endplate |
본 발명(실시예 1)Invention (Example 1) | 86.0±48.0 mm2 86.0 ± 48.0 mm 2 | 81.4±48.6 mm2 81.4 ± 48.6 mm 2 |
대조군Control | 36.4±16.1 mm2 36.4 ± 16.1 mm 2 | 39.3 ± 14.7 mm2 39.3 ± 14.7 mm 2 |
이상에서 설명한 본 발명이 전술한 실시예 및 첨부된 도면에 한정되지 않으며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 치환, 변형 및 변경이 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.The present invention described above is not limited to the above-described embodiments and the accompanying drawings, and various substitutions, modifications, and changes are possible within the scope without departing from the technical spirit of the present invention. It will be apparent to those who have knowledge.
Claims (24)
- MgO, CaO, SiO2, P2O5, CaF2 및 B2O3을 포함하는 혼합물을 열처리한 분쇄물을 포함하는 것을 특징으로 하는 생체활성 유리분말.A bioactive glass powder comprising a ground material obtained by heat treatment of a mixture comprising MgO, CaO, SiO 2 , P 2 O 5 , CaF 2 and B 2 O 3 .
- 제1항에 있어서, 상기 혼합물은 MgO 4.5 ~ 6.5 중량%, CaO 41 ~ 43.0 중량%, SiO2 34 ~ 36.2 중량%, P2O5 13.5 ~ 17 중량%, CaF2 0.90 ~ 2.5 중량% 및 B2O3 0.2 ~ 1.5 중량%를 포함하는 것을 특징으로 하는 생체활성 유리분말.According to claim 1, wherein the mixture is MgO 4.5 to 6.5 wt%, CaO 41 to 43.0 wt%, SiO 2 34 to 36.2 wt%, P 2 O 5 13.5 to 17 wt%, CaF 2 0.90 to 2.5 wt% and B 2 O 3 Bioactive glass powder comprising 0.2 to 1.5% by weight.
- 제1항에 있어서, 상기 혼합물은 MgO 4.5 ~ 6.5 중량%, CaO 41 ~ 43.0 중량%, SiO2 30.5 ~ 32.5 중량%, P2O5 18.5 ~ 19.8 중량%, CaF2 0.5 ~ 1.5 중량% 및 B2O3 0.2 ~ 1.5 중량%를 포함하는 것을 특징으로 하는 생체활성 유리분말.According to claim 1, wherein the mixture is MgO 4.5 to 6.5 wt%, CaO 41 to 43.0 wt%, SiO 2 30.5 to 32.5 wt%, P 2 O 5 18.5 to 19.8 wt%, CaF 2 0.5 to 1.5 wt% and B 2 O 3 Bioactive glass powder comprising 0.2 to 1.5% by weight.
- 제1항에 있어서, 상기 혼합물은 Na2O를 포함하는 것을 특징으로 하는 생체활성 유리분말.The bioactive glass powder according to claim 1, wherein the mixture comprises Na 2 O.
- 제1항 내지 제4항 중에서 선택된 어느 한 항의 생체활성 유리분말을 포함하는 것을 특징으로 하는 비결정성 생체 경조직 결손부 대체용 의용재.A medicinal material for replacing an amorphous living hard tissue defect, comprising the bioactive glass powder of any one of claims 1 to 4.
- 제5항에 있어서, 상기 생체활성 유리분말의 압축 성형물을 성형물 내 생체활성 유리분말의 유리전이온도 미만의 온도로 열처리한 비결정성 성형체를 포함하는 비결정성 생체 경조직 결손부 대체용 의용재.The medicinal material for replacing a non-crystalline biohard tissue defect according to claim 5, wherein the compressed molded product of the bioactive glass powder is subjected to a heat treatment at a temperature below the glass transition temperature of the bioactive glass powder in the molding.
- 제6항에 있어서, 상기 비결정성 성형체는 압축 성형물을 680℃ ~ 720℃에서 열처리한 성형체이며, 성형체가 육면체일 때, 비결정성 성형체는 선형 부피수축율이 5% 이하인 것을 특징으로 하는 비결정성 생체 경조직 결손부 대체용 의용재.The non-crystalline living body hard tissue according to claim 6, wherein the amorphous molded body is a molded body obtained by heat-treating the compression molded body at 680 ° C to 720 ° C. Replacement material for defective parts.
- 제7항에 있어서, 상기 비결정성 성형체는 결정화도가 1% 이하인 것을 특징으로 하는 비결정성 생체 경조직 결손부 대체용 의용재.The method of claim 7, wherein the amorphous molded article has a crystallinity of 1% or less, medicinal material for replacing the amorphous living hard tissue defects.
- 제8항에 있어서, 상기 비결정성 성형체는 유리 이론밀도(3g/cm3) 대해 50 ~ 70%의 상대밀도를 가지는 것을 특징으로 하는 비결정성 생체 경조직 결손부 대체용 의용재.The method of claim 8, wherein the amorphous molded article has a relative density of 50 to 70% relative to the glass theoretical density (3g / cm 3 ), the medicinal material for replacing the amorphous living hard tissue defects.
- 생체활성 유리분말을 제조하는 1단계; 1 step of preparing a bioactive glass powder;상기 생체활성 유리분말을 가압 성형하여 성형체를 제조하는 2단계; 및Step 2 to produce a molded body by pressing the bioactive glass powder; And상기 성형체를 성형물 내 생체활성 유리분말의 유리전이온도 미만의 온도로 열처리하여 비결정성 성형체를 제조하는 3단계;를 포함하는 것을 특징으로 하는 비결정성 생체 경조직 결손부 대체용 의용재의 제조방법.And heat-treating the molded body at a temperature below the glass transition temperature of the bioactive glass powder in the molded article to produce an amorphous molded body. 3.
- 제10항에 있어서, 1단계의 생체활성 유리분말은The method of claim 10, wherein the step 1 bioactive glass powderMgO, CaO, SiO2, P2O5, CaF2 및 B2O3을 포함하는 혼합물을 1350℃ ~ 1600℃ 하에서 용융시켜서 용융물을 얻는 1-1단계;1-1 step of melting the mixture containing MgO, CaO, SiO 2 , P 2 O 5 , CaF 2 and B 2 O 3 at 1350 ° C. to 1600 ° C. to obtain a melt;상기 용융물을 급냉시켜 유리를 제조하는 1-2단계;Quenching the melt to prepare glass;상기 유리를 분말화시키는 1-3단계;를 포함하는 공정을 수행하는 것을 특징으로 하는 비결정성 생체 경조직 결손부 대체용 의용재의 제조방법.Method of manufacturing a medicinal material for replacing the amorphous living hard tissue defects, characterized in that for performing a process comprising a; 1-3 to powder the glass.
- 제10항에 있어서, 3단계의 상기 열처리는 680℃ ~ 720℃ 하에서 수행하는 것을 특징으로 하는 비결정성 생체 경조직 결손부 대체용 의용재의 제조방법.The method of claim 10, wherein the heat treatment in three steps is performed at 680 ° C. to 720 ° C. 12.
- 제5항의 비결정성 생체 경조직 결손부 대체용 의용재를 가공하여 가공물을 제조하는 1단계; 및 A step 1 of manufacturing a workpiece by processing the medicinal material for replacing the amorphous living hard tissue defect of claim 5; And상기 가공물을 소성하여 소성물을 제조하는 2단계;를 포함하는 공정을 수행하는 것을 특징으로 하는 인공 골조직을 제조하는 방법.And firing the workpiece to prepare a fired product. 2.
- 제13항에 있어서, 2단계의 소성물을 서냉시키는 3단계;를 더 포함하는 것을 특징으로 하는 인공 골조직을 제조하는 방법.The method of claim 13, further comprising three steps of slowly cooling the calcined product.
- 제13항에 있어서, 상기 1단계의 가공은 가공 대상 골조직을 촬영하여 상기 가공 대상 골조직의 3 차원 영상 정보를 생성하는 단계; 상기 가공 대상 골조직의 3 차원 영상 정보에 기초하여, 상기 가공 대상 골조직을 식별하고, 상기 가공 대상 골조직에 대응하는 적어도 하나 이상의 가공 대상 골조직 모델의 3 차원 영상 정보를 생성하는 단계; 상기 적어도 하나 이상의 가공 대상 골조직 모델의 적합성을 검증하는 단계; 상기 검증 단계에서, 상기 적어도 하나 이상의 가공 대상 골조직 모델의 3 차원 영상 정보의 수정이 없는 경우 상기 가공 대상 골조직 모델의 3 차원 영상 정보를 확정하는 단계; 상기 검증하는 단계에서, 상기 적어도 하나 이상의 가공 대상 골조직 모델의 3 차원 정보의 수정 정보가 있는 경우 상기 가공 대상 골조직 모델의 3 차원 영상 정보에 상기 수정 정보를 반영하여 상기 가공 대상 골조직 모델의 3 차원 영상 정보를 확정하는 단계; 및 상기 확정된 가공 대상 골조직 모델의 3 차원 영상 정보로부터 인공 골조직의 형태로 가공물을 가공하는 단계;를 포함하는 공정을 수행하는 것을 특징으로 하는 인공 골조직을 제조하는 방법.The method of claim 13, wherein the processing of the first step comprises: photographing the processing target bone tissue to generate three-dimensional image information of the processing target bone tissue; Identifying the processing target bone tissue based on the three-dimensional image information of the processing target bone tissue, and generating three-dimensional image information of at least one processing target bone tissue model corresponding to the processing target bone tissue; Verifying suitability of the at least one bone tissue model to be processed; In the verifying step, determining the three-dimensional image information of the processing target bone tissue model when there is no correction of the three-dimensional image information of the at least one processing target tissue model; In the verifying step, when there is correction information of the three-dimensional information of the at least one processing target bone tissue model, the three-dimensional image of the processing target bone tissue model by reflecting the correction information in the three-dimensional image information of the processing target bone tissue model Confirming the information; And processing the workpiece in the form of artificial bone tissue from the 3D image information of the determined bone tissue model of the processing target.
- 제13항에 있어서, 상기 소성은 850℃ ~ 1,200℃ 하에서 수행하는 것을 특징으로 하는 인공 골조직을 제조하는 방법.The method of claim 13, wherein the firing is performed at 850 ° C to 1,200 ° C.
- 제5항의 비결정성 생체 경조직 결손부 대체용 의용재의 소성물을 포함하며,A plastic material of the medicinal material for replacing the amorphous living hard tissue defect of claim 5,상기 소성물은 CaSiO3을 포함하는 것을 특징으로 하는 인공 골조직.The fired product is artificial bone tissue, characterized in that containing CaSiO 3 .
- 제17항에 있어서, 상기 소성물은 Ca10(PO4)6A (여기서, A는 산소원자이다.) 및 Ca10(PO4)6B2(여기서, B는 수산화기, 불소원자 또는 염소원자이다.) 중에서 선택된 1종 이상을 포함하는 아파타이트; Ca2Mg(Si2O7); 및 CaMgSi2O6 중에서 선택된 1종 이상을 더 포함하는 것을 특징으로 하는 인공 골조직.The method of claim 17, wherein the calcined product is Ca 10 (PO 4 ) 6 A, wherein A is an oxygen atom. And Apatite containing at least one selected from Ca 10 (PO 4 ) 6 B 2 , wherein B is a hydroxyl group, a fluorine atom, or a chlorine atom; Ca 2 Mg (Si 2 O 7 ); And CaMgSi 2 O 6 Artificial bone tissue characterized in that it further comprises at least one selected from.
- 제18항에 있어서, 상기 인공 골조직은 CaSiO3, 상기 아파타이트, Ca2Mg(Si2O7) 및 CaMgSi2O6을 1 : 0.7 ~ 3.0 : 0.5 ~ 1.2 : 0.7 ~ 1.3 중량비로 포함하는 것을 특징으로 하는 인공 골조직.19. The method according to claim 18, wherein the artificial bone tissue comprises CaSiO 3 , the apatite, Ca 2 Mg (Si 2 O 7 ) and CaMgSi 2 O 6 in 1: 1: 0.7 to 3.0: 0.5 to 1.2: 0.7 to 1.3 weight ratio Artificial bone tissue.
- 제17항에 있어서, 상기 인공 골조직은 결정상(crystalline phase)인 것을 특징으로 하는 인공 골조직.18. The artificial bone tissue of claim 17 wherein the artificial bone tissue is in a crystalline phase.
- 제17항에 있어서, 압축강도가 900 ~ 1,600 Mpa이고, 비틀림강도가 0.6 N·m ~ 2.0 N·m인 것을 특징으로 하는 인공 골조직.18. The artificial bone tissue according to claim 17, wherein the compressive strength is 900 to 1,600 Mpa and the torsional strength is 0.6 Nm to 2.0 Nm.
- 제17항에 있어서, 생체의 경조직 결손부 형상의 일 축 방향의 길이 기준으로 부피수축율이 5% 이하인 것을 특징으로 하는 인공 골조직.18. The artificial bone tissue according to claim 17, wherein the volume shrinkage ratio is 5% or less based on the length in the uniaxial direction of the shape of the hard tissue defect of the living body.
- 제17항에 있어서, 상기 소성물의 상대밀도 값이 유리 이론밀도의 95% 이상인 것을 특징으로 하는 인공 골조직.18. The artificial bone tissue according to claim 17, wherein the relative density value of the fired material is 95% or more of the glass theoretical density.
- 제17항에 있어서, 인공 골조직은 인공골, 인공관절, 구강악안면 골, 두개골 또는 치과용 인공치근을 포함하는 것을 특징으로 하는 인공 골조직.18. The artificial bone tissue of claim 17 wherein the artificial bone tissue comprises artificial bone, artificial joint, oral and maxillofacial bone, skull, or dental artificial tooth root.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20160154294 | 2016-11-18 | ||
KR10-2016-0154294 | 2016-11-18 | ||
KR1020170148259A KR102054505B1 (en) | 2016-11-18 | 2017-11-08 | Bioactive glass powder, Amorphous medical materials using the same, Artificial osseous tissue and Manufacturing method thereof |
KR10-2017-0148259 | 2017-11-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018093159A1 true WO2018093159A1 (en) | 2018-05-24 |
Family
ID=62146624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/012987 WO2018093159A1 (en) | 2016-11-18 | 2017-11-16 | Biologically active glass powder, amorphous medical material for substituting biological hard tissue defect using same, artificial bone tissue using same, and method for manufacturing same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018093159A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5120340A (en) * | 1989-09-06 | 1992-06-09 | S.A. Fbfc International | Bioreactive material for a prosthesis or composite implants |
KR100491275B1 (en) * | 1996-01-29 | 2005-08-04 | 유니버시티 오브 매릴랜드 앳 발티모어 | Bioactive Glass Compositions and Methods of Treatment Using Bioactive Glass |
KR20090077650A (en) * | 2008-01-11 | 2009-07-15 | 재단법인서울대학교산학협력재단 | Bioactive Glass Composition and Manufacturing Method of Crystallized Glass Using the Same |
KR101321904B1 (en) * | 2012-03-27 | 2013-10-28 | 한국과학기술정보연구원 | System and method for custom prosthetic applicance design and recording medium thereof |
KR20160065730A (en) * | 2014-11-28 | 2016-06-09 | 주식회사 바이오알파 | High strength crystallized glass ceramics comprising Wallastonite, hydroxyapatite and Akermanite |
KR20170023353A (en) * | 2015-08-21 | 2017-03-03 | 주식회사 바이오알파 | Preparation method of medical material for substituting ridge defect and medical material prepared therefrom |
-
2017
- 2017-11-16 WO PCT/KR2017/012987 patent/WO2018093159A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5120340A (en) * | 1989-09-06 | 1992-06-09 | S.A. Fbfc International | Bioreactive material for a prosthesis or composite implants |
KR100491275B1 (en) * | 1996-01-29 | 2005-08-04 | 유니버시티 오브 매릴랜드 앳 발티모어 | Bioactive Glass Compositions and Methods of Treatment Using Bioactive Glass |
KR20090077650A (en) * | 2008-01-11 | 2009-07-15 | 재단법인서울대학교산학협력재단 | Bioactive Glass Composition and Manufacturing Method of Crystallized Glass Using the Same |
KR101321904B1 (en) * | 2012-03-27 | 2013-10-28 | 한국과학기술정보연구원 | System and method for custom prosthetic applicance design and recording medium thereof |
KR20160065730A (en) * | 2014-11-28 | 2016-06-09 | 주식회사 바이오알파 | High strength crystallized glass ceramics comprising Wallastonite, hydroxyapatite and Akermanite |
KR20170023353A (en) * | 2015-08-21 | 2017-03-03 | 주식회사 바이오알파 | Preparation method of medical material for substituting ridge defect and medical material prepared therefrom |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102054505B1 (en) | Bioactive glass powder, Amorphous medical materials using the same, Artificial osseous tissue and Manufacturing method thereof | |
Yamamuro et al. | Development of bioactive bone cement and its clinical applications | |
Ameen et al. | Design, finite element analysis (FEA), and fabrication of custom titanium alloy cranial implant using electron beam melting additive manufacturing | |
Kennedy et al. | PEEK-based 3D printing: a paradigm shift in implant revolution for healthcare | |
Lewin et al. | Mechanical behaviour of composite calcium phosphate–titanium cranial implants: Effects of loading rate and design | |
Sazesh et al. | Experimental and numerical analysis of titanium/HA FGM for dental implantation | |
Raines et al. | Experimental characterization of the mechanical properties of medical-grade dental implants, fabricated using vat-photopolymerization additive manufacturing process | |
Wu et al. | Design and 3D printing of ceramic maxillofacial prosthesis with gradient pores based on Voronoi-Tessellation principle | |
Bicalho et al. | Fatigue and subcritical crack growth in ZrO2–bioglass ceramics | |
Wu et al. | Biomechanical and osteointegration study of 3D-printed porous PEEK hydroxyapatite-coated scaffolds | |
Pisaneschi et al. | Numerical and experimental investigation of a 3D-printed PCU patient-specific cranial implant | |
WO2018093159A1 (en) | Biologically active glass powder, amorphous medical material for substituting biological hard tissue defect using same, artificial bone tissue using same, and method for manufacturing same | |
Su et al. | Optical properties of recycled zirconia for dental applications | |
Sheydaeian et al. | Additive manufacture of porous ceramic proximal interphalangeal (PIP) joint implant: design and process optimization | |
WO2017034243A1 (en) | Method of producing medical material for replacing lost portions of hard tissue, and medical material produced through same | |
Jirman et al. | Individual replacement of the frontal bone defect: case report | |
Wattanutchariya et al. | Appropriate forming conditions for hydroxyapatite-bioactive glass compact scaffold | |
Wu et al. | Design and 3D printing of integrated bionic porous ceramic maxillofacial prosthesis | |
Dimitriadis et al. | Selective Laser Melting-Sintering Technology: from dental Co-Cr alloys to dental ceramic materials | |
Mandal | Ceramics for biomedical applications | |
Alhotan et al. | Effect of artificial aging on fracture toughness and hardness of 3D‐printed and milled 3Y‐TZP zirconia | |
Shaikh | 3D printing in orthopaedic implants: Design, materials, application | |
WO2021033803A1 (en) | Bioactive crystallized glass ceramic comprising wollastonite, hydroxyapatite and diopside, and use thereof | |
Thomas et al. | 3D printing cross-linkable calcium phosphate biocomposites for biocompatible surgical implantation | |
Huang et al. | Sintering of alumina ceramics reinforced with a bioactive glass of 3CaO. P2O5-SiO2-MgO system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17872268 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17872268 Country of ref document: EP Kind code of ref document: A1 |