[go: up one dir, main page]

WO2018093152A1 - Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same - Google Patents

Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same Download PDF

Info

Publication number
WO2018093152A1
WO2018093152A1 PCT/KR2017/012966 KR2017012966W WO2018093152A1 WO 2018093152 A1 WO2018093152 A1 WO 2018093152A1 KR 2017012966 W KR2017012966 W KR 2017012966W WO 2018093152 A1 WO2018093152 A1 WO 2018093152A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
lithium secondary
aqueous electrolyte
lithium
formula
Prior art date
Application number
PCT/KR2017/012966
Other languages
French (fr)
Korean (ko)
Inventor
김광연
임영민
김하은
이철행
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to PL17871248T priority Critical patent/PL3396770T3/en
Priority to CN201780010499.6A priority patent/CN108604709B/en
Priority to US16/070,957 priority patent/US10541447B2/en
Priority to EP17871248.5A priority patent/EP3396770B1/en
Priority claimed from KR1020170152232A external-priority patent/KR102005909B1/en
Publication of WO2018093152A1 publication Critical patent/WO2018093152A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte for lithium secondary batteries and a lithium secondary battery comprising the same, and more particularly, to a non-aqueous electrolyte for lithium secondary batteries capable of improving high temperature durability and stability of a lithium secondary battery and a lithium secondary battery comprising the same.
  • charging and discharging are performed while repeating a process of intercalating and deintercalating lithium ions from a lithium metal oxide of a positive electrode to a carbon electrode of a negative electrode.
  • lithium ions are highly reactive and react with the carbon electrode to form Li 2 CO 3 , LiO, LiOH and the like to form a film on the surface of the negative electrode.
  • a film is called a solid electrolyte interface (SEI) film.
  • SEI film formed at the beginning of charging prevents the reaction between lithium ions and the carbon negative electrode or other materials during charging and discharging, and serves as an ion tunnel passing only lithium ions between the electrolyte and the negative electrode.
  • the ion tunnel serves to prevent the organic solvents of the non-aqueous electrolyte having a large molecular weight, which are solvated with lithium ions, move together to the carbon anode, thereby collapsing the structure of the carbon anode.
  • the organic solvent used in the non-aqueous electrolyte of the lithium secondary battery generally generates gas while being oxidized by the transition metal oxide emitted from the positive electrode when stored for a long time at high temperature, the battery swelling and electrode assembly deformation, etc. This happens.
  • the negative electrode when stored at high temperature in a fully charged state (eg, stored at 60 ° C. after 100% charge at 4.2V), the negative electrode is exposed while the SEI film is gradually decayed, and thus the negative electrode continuously reacts with the electrolyte to continuously react the side reactions.
  • generating a gas such as CO, CO 2 , CH 4 , C 2 H 6 It will eventually lead to deformation such as battery swelling due to the increase in battery pressure.
  • the battery may ignite or explode.
  • the first technical problem of the present invention is to provide a non-aqueous electrolyte solution for a lithium secondary battery comprising an additive that can lower the interfacial resistance of the electrode surface and inhibit the side reaction of the electrolyte during high temperature storage. It is done.
  • Another object of the present invention is to provide a lithium secondary battery having improved high temperature storage characteristics and high temperature life characteristics by including the nonaqueous electrolyte solution for lithium secondary batteries.
  • the additive is lithium difluorophosphate (Lithium difluorophosphate: LiDFP): tertiary alkylbenzene represented by the following formula (1): tetra-vinyl silane (TVS) in a weight ratio of 1: 1 to 4: 0.05 to 0.5 It is a mixed additive to include,
  • the additive provides a non-aqueous electrolyte solution for a lithium secondary battery, which is included in an amount of 2.5% by weight to 4.5% by weight based on the total weight of the nonaqueous electrolyte solution for a lithium secondary battery.
  • R 1 is tertiary alkyl having 4 to 5 carbon atoms.
  • the organic solvent includes a mixed solvent including at least two or more of ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), propylene carbonate, and ethyl methyl carbonate. can do.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • propylene carbonate propylene carbonate
  • ethyl methyl carbonate ethyl methyl carbonate
  • the weight ratio of the lithium difluorophosphate as the additive: tertiaryalkylbenzene represented by the general formula (1): tetravinylsilane may be 1: 1.5 to 4: 0.1 to 0.2.
  • the concentration of lithium difluorophosphate in the nonaqueous electrolyte solution for lithium secondary batteries may be 1 ⁇ 10 ⁇ 2 mol / kg to 0.5 mol / kg.
  • the additive may be included in an amount of 2.5 wt% to 4.3 wt% based on the total weight of the nonaqueous electrolyte solution for the lithium secondary battery.
  • the nonaqueous electrolyte solution for lithium secondary batteries is selected from the group consisting of vinylene carbonate (VC), vinylethylene carbonate, fluoroethylene carbonate, ethylene sulfate (Esa) and propane sultone (PS). It may further comprise at least one additive for forming the SEI film.
  • VC vinylene carbonate
  • Esa ethylene sulfate
  • PS propane sultone
  • the additive for forming the SEI film may be included in at least 0.1% by weight to 2% by weight based on the total weight of the nonaqueous electrolyte.
  • a lithium secondary battery comprising a negative electrode containing a negative electrode active material, a positive electrode containing a positive electrode active material and a nonaqueous electrolyte
  • the positive electrode active material includes at least one or more of a compound represented by Formula 4 and a compound represented by Formula 5 below,
  • the nonaqueous electrolyte provides a lithium secondary battery including the nonaqueous electrolyte for a lithium secondary battery of the present invention.
  • the cathode active material is Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 , Li (Ni 0.5 Mn 0.3 Co 0.2 ) O 2 , Li (Ni 0.7 Mn 0.15 Co 0.15 ) O 2 , and Li (Ni 0.8 Mn 0.1 Co 0.1 ) O 2 may be selected from the group consisting of.
  • the cathode active material may further include a compound represented by Chemical Formula 6.
  • the cathode active material may include 80 to 99 wt% of the compound represented by Formula 4 or 5 and 1 to 20 wt% of the compound represented by Formula 6.
  • a non-aqueous electrolyte for lithium secondary battery capable of forming a stable SEI film on the surface of the negative electrode.
  • the interface resistance with the electrode be lowered by the stable SEI film formed on the surface of the cathode during initial charging, but also the secondary reaction of improved high temperature storage characteristics and lifespan by suppressing side reactions of the positive electrode active material at high voltage.
  • the battery can be manufactured.
  • Example 1 is a graph showing the results of stability measurement during overcharging of the secondary battery of Example 1 according to Experimental Example 3 of the present invention.
  • the additive is lithium difluorophosphate (Lithium difluorophosphate: LiDFP): tertiary alkylbenzene represented by the following formula (1): tetra-vinyl silane (TVS) in a weight ratio of 1: 1 to 4: 0.05 to 0.5 It is a mixed additive to include,
  • the additive provides a non-aqueous electrolyte solution for a lithium secondary battery, which is included in an amount of 2.5% by weight to 4.5% by weight based on the total weight of the nonaqueous electrolyte solution for a lithium secondary battery.
  • R 1 is tertiary alkyl having 4 to 5 carbon atoms.
  • the ionizable lithium salts may be used without limitation, those conventionally used in a lithium secondary battery electrolyte, for example, Li + as a cation of the lithium salt.
  • the anion is F -, Cl -, Br - , I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, AlO 4 -, AlCl 4 -, PF 6 -, SbF 6 -, AsF 6 -, BF 2 C 2 O 4 -, BC 4 O 8 -, PF 4 C 2 O 4 -, PF 2 C 4 O 8 -, (CF 3) 2 PF 4 -, (CF 3 ) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, C 4 F 9 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2 ) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2) 2 CH -, (SF 5) 3 C -,
  • the lithium salt is LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCH 3 CO 2 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , LiAlO 4 , and LiCH 3 SO 3
  • It may include a single or a mixture of two or more selected from the group consisting of, in addition to these LiBTI (lithium bisperfluoroethanesulfonimide, LiN (SO 2 C 2 F) commonly used in the electrolyte of the lithium secondary battery 5) 2), LiFSI (lithium fluorosulfonyl imide, LiN (SO 2 F) 2) and LiTFSI (lithium (bis) trifluoromethanesulfonimide, LiN (SO 2 CF 3) 2)
  • Li is already available, without limitation, an electrolyte salt, such as deuyeom
  • the electrolyte salt is a single or two or more selected from the group consisting of LiPF 6 , LiBF 4 , LiCH 3 CO 2 , LiCF 3 CO 2 , LiCH 3 SO 3 , LiFSI, LiTFSI and LiN (C 2 F 5 SO 2 ) 2 Mixtures may be included.
  • the lithium salt does not include LiDFP which is a lithium salt contained in the mixed additive.
  • the lithium salt may be appropriately changed within a conventionally usable range, and specifically, may be included as 0.1M to 2M in the nonaqueous electrolyte solution for a lithium secondary battery.
  • the concentration of the lithium salt is 0.1M or less, the effect of improving the low temperature output and the high temperature cycle characteristics of the battery is insignificant, and when the lithium salt exceeds 2M, side reactions in the electrolyte are excessively generated during swelling. ) May occur, or may cause corrosion of the positive or negative current collector made of metal in the electrolyte.
  • the organic solvent in the non-aqueous electrolyte lithium secondary battery according to an embodiment of the present invention, can be minimized by the oxidation reaction in the charge and discharge process of the secondary battery, and can exhibit the desired characteristics with the additive
  • An ester solvent may be used as the solvent.
  • ester solvent may include at least one compound selected from the group consisting of a cyclic carbonate compound, a linear carbonate compound, a linear ester compound, and a cyclic ester compound.
  • the cyclic carbonate compound is ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2, Any one selected from the group consisting of 3-pentylene carbonate, vinylene carbonate and fluoroethylene carbonate (FEC), or a mixture of two or more thereof, and more specifically ethylene carbonate, propylene carbonate, vinylene carbonate and One or a mixture of two or more selected from the group consisting of fluoroethylene carbonate (FEC) can be mentioned.
  • EC ethylene carbonate
  • PC propylene carbonate
  • 1,2-butylene carbonate 2,3-butylene carbonate
  • 1,2-pentylene carbonate 2, Any one selected from the group consisting of 3-pentylene carbonate, vinylene carbonate and fluoroethylene carbonate (FEC), or a mixture of two or more thereof, and more specifically ethylene carbonate, propylene carbonate, vinylene carbonate and One or a
  • linear carbonate compound examples include dimethyl carbonate (dimethyl carbonate, DMC), diethyl carbonate (diethyl carbonate, DEC), dipropyl carbonate, ethyl methyl carbonate (EMC), methylpropyl carbonate and ethylpropyl carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC dipropyl carbonate
  • EMC ethyl methyl carbonate
  • Any one selected from, or a mixture of two or more thereof, and the like may be representatively used, and more specifically, any one selected from the group consisting of dimethyl carbonate, diethyl carbonate, dipropyl carbonate, and ethylmethyl carbonate, or two of them. And mixtures of species or more.
  • the linear ester compound is any one selected from the group consisting of methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, and butyl propionate.
  • the above mixture and the like can be used representatively, but is not limited thereto.
  • the cyclic ester compound is any one selected from the group consisting of ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -valerolactone, ⁇ -caprolactone, or two or more thereof Mixtures may be used, but are not limited thereto.
  • the cyclic carbonate-based compound is a high viscosity organic solvent and has a high dielectric constant, and thus may be preferably used because it dissociates lithium salts in the electrolyte.
  • the cyclic carbonate-based compound has low viscosity and low viscosity such as dimethyl carbonate and diethyl carbonate.
  • the organic solvent may be used by mixing a cyclic carbonate compound and a linear carbonate compound, and representative examples thereof include ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), propylene carbonate and ethyl methyl. It may include a mixed solvent including at least two or more of the carbonates.
  • organic solvent may further use an ether solvent or an amide solvent.
  • any one selected from the group consisting of dimethyl ether, diethyl ether, dipropyl ether, methylethyl ether, methylpropyl ether and ethylpropyl ether, or a mixture of two or more thereof may be used. It is not limited to this.
  • lithium difluorophosphate represented by the following Chemical Formula 2, which is one of the additive components, is a component for implementing long-term life characteristics improvement effect of the secondary battery.
  • the lithium ion component decomposed during the initial charge may form a stable SEI film on the surface of the negative electrode, and not only may improve Li mobility to the negative electrode in order to form the SEI film, but also lower the interface resistance.
  • the difluorophosphate anion generated by decomposition during initial charging may be present on the surface of the anode, thereby improving anode stabilization and discharge characteristics.
  • the tertiary alkylbenzene represented by Formula 1 included as one of the additives is a component capable of suppressing side reactions of the positive electrode active material at high voltage, and is a representative example of Butylbenzene (TBB), or tertiary pentylbenzene (TPB), and preferably tert-butyl benzene.
  • the tertiary alkylbenzene represented by Chemical Formula 1 forms a film while being oxidized at a potential of about 4.8 V to 5.0 V during overcharging, and the oxidized oxide is deposited on the cathode and the cathode facing separator, thereby transferring Li ions to the cathode.
  • the tetravinylsilane represented by the following Chemical Formula 3 included as one of the additives is a component capable of suppressing the reaction between lithium ions and the electrolyte, and the Si element contained therein is a positive electrode and By forming a solid ion conductive film through physical adsorption and electrochemical reaction on the surface of the negative electrode, it is possible to suppress side reactions of the positive electrode material at high voltage, thereby improving stability at high temperature.
  • the weight ratio of the lithium difluorophosphate: tertiaryalkylbenzene: tetravinylsilane represented by Chemical Formula 1 is 1: 1 to 4: 0.05 to 0.05. 0.5, specifically, 1: 1.5 to 4: 0.1 to 0.2.
  • the components of the additive are mixed in the ratio in the nonaqueous electrolyte of the present invention, the effect of suppressing side reactions with the electrolyte on the surface of the negative electrode and the positive electrode or reducing the gas generation during the charging of the lithium secondary battery, etc. Since it is possible to form a stable film that brings about, a secondary battery with improved overall performance can be manufactured.
  • the overcharge stability effect of the battery is insignificant, and if it exceeds 4, an increase in resistance during discharge may occur due to a decrease in ion conductivity accompanied by an increase in viscosity in the electrolyte.
  • the content ratio of the tetravinylsilane is less than 0.05, high temperature durability may be lowered, and when it exceeds 0.5, the resistance may increase.
  • the concentration of lithium difluorophosphate in the nonaqueous electrolyte solution for lithium secondary batteries may be 1 ⁇ 10 ⁇ 2 mol / kg to 0.5 mol / kg.
  • non-aqueous electrolyte additive may be included in an amount of 2.5 wt% to 4.5 wt%, specifically 2.5 wt% to 4.3 wt%, based on the total weight of the nonaqueous electrolyte.
  • the additive in the above amount in the non-aqueous electrolyte, it is possible to effectively implement the interface resistance reduction and side reaction suppression. If the content of the additive is less than 2.5% by weight, the effect of improving the physical properties of the secondary battery is insignificant, and if it exceeds 4.5% by weight, the change in battery thickness due to the suppression of gas generation may be suppressed because the additive is included in excess, Increasing resistance in the electrolyte may deteriorate capacity and life characteristics.
  • nonaqueous electrolyte solution for lithium secondary batteries of the present invention is used to increase the gas reduction effect and the high temperature durability improvement effect, vinylene carbonate (VC), vinylethylene carbonate, fluoroethylene carbonate, ethylene sulfate (Esa) and propane sultone (PS). It may further include at least one additive for forming the SEI film selected from the group consisting of).
  • the additive for forming the SEI film may be included in an amount of 0.1 wt% or more and at least 0.1 wt% to 2 wt% based on the total weight of the nonaqueous electrolyte. If the content of the second additive exceeds 2% by weight, the additive is used in the nonaqueous electrolyte as a whole, causing an increase in resistance and a decrease in capacity.
  • the non-aqueous electrolyte of the present invention is an electrolyte additive commonly known for the purpose of improving charge and discharge characteristics, flame retardancy, etc., specifically pyridine, triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme (glyme), hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy It may further comprise at least one additional additive selected from the group consisting of ethanol, and aluminum trichloride.
  • a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics, and FEC (Fluoro-Ethylene) may be further included.
  • Carbonate), PRS (1,3-propene sultone) may be further included.
  • a lithium secondary battery comprising a negative electrode containing a negative electrode active material, a positive electrode containing a positive electrode active material and a nonaqueous electrolyte
  • the positive electrode active material includes at least one or more of a compound represented by Formula 4 and a compound represented by Formula 5 below,
  • the nonaqueous electrolyte provides a lithium secondary battery including the nonaqueous electrolyte for a lithium secondary battery of the present invention.
  • the positive electrode and the negative electrode constituting the lithium secondary battery of the present invention can be manufactured and used in a conventional manner.
  • the positive electrode may be manufactured by forming a positive electrode mixture layer on a positive electrode current collector.
  • the cathode mixture layer may be formed by coating a cathode slurry including a cathode active material, a binder, a conductive material, a solvent, and the like on a cathode current collector, followed by drying and rolling.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes in the battery.
  • the positive electrode current collector may be formed of stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon on the surface of aluminum or stainless steel. Surface treated with nickel, titanium, silver, or the like may be used.
  • the cathode active material represented by Formula 4 or 5 is structurally much more stable than the cathode active material such as LiCoO 2 because the three components have different valences and have a superlattice structure.
  • Representative examples of the cathode active material include Li (Ni 1/3 Mn 1/3 Co 1/3 ) O 2 , Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 , Li (Ni 0.5 Mn 0.3 Co 0.2 ) O 2 , Li (Ni 0.7 Mn 0.15 Co 0.15 ) O 2 , Li (Ni 0.8 Mn 0.1 Co 0.1 ) O 2 , and the like.
  • the cathode active material may be a lithium-manganese oxide (eg, LiMnO 2 , LiMn 2 O 4 if necessary).
  • Etc. lithium-cobalt-based oxides (e.g., LiCoO 2, etc.), lithium-nickel-based oxides (e.g., LiNiO 2, etc.), lithium-nickel-manganese-based oxides (e.g., LiNi 1 - Y Mn Y O 2 (where, 0 ⁇ Y ⁇ 1), LiMn 2-z Ni z O 4 (where, 0 ⁇ z ⁇ 2) and the like), lithium-nickel-cobalt-based oxide (for example, LiNi 1- Y1 Co Y1 O 2 (here, 0 ⁇ Y1 ⁇ 1), etc., lithium-manganese-cobalt based oxides (eg, LiCo 1 -Y2 Mn Y2 O 2 (here, 0 ⁇ Y2 ⁇ 1), LiCo
  • the lithium composite metal oxide may be LiCoO 2 , LiMnO 2 , LiNiO 2 , or lithium nickel cobalt aluminum oxide (eg, Li (Ni 0.8 Co 0.15 Al 0.05 ) O 2, etc.).
  • the cathode active material may be included in an amount of 90 wt% to 99 wt%, specifically 90 wt% to 95 wt%, based on the total weight of solids in the cathode slurry.
  • the energy density may be lowered and the capacity may be lowered.
  • the binder is a component that assists the bonding between the positive electrode active material and the conductive material and the current collector, and is generally added in an amount of 1 to 30 wt% based on the total weight of solids in the positive electrode slurry.
  • binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoro Low ethylene, polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers, and the like.
  • PVDF polyvinylidene fluoride
  • CMC carboxymethyl cellulose
  • EPDM ethylene-propylene-diene terpolymer
  • EPDM ethylene-propylene-diene terpolymer
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • Examples of the conductive material include carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black.
  • Carbon powder Graphite powders such as natural graphite, artificial graphite, or graphite with very advanced crystal structure; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the conductive material is typically added in an amount of 1 to 30% by weight based on the total weight of solids in the positive electrode slurry.
  • the conductive material is Chevron Chemical Company, Denka Singapore Private Limited, Gulf Oil Company, etc., Ketjenblack, EC series (Armak Company) Armak Company), Vulcan XC-72 (Cabot Company), and Super P (manufactured by Timcal) can also be used.
  • the solvent may include an organic solvent such as N-methyl-2-pyrrolidone (NMP), and may be used in an amount that becomes a desirable viscosity when including the positive electrode active material and optionally a binder and a conductive material.
  • NMP N-methyl-2-pyrrolidone
  • the concentration of the solids in the positive electrode active material and, optionally, the slurry including the binder and the conductive material may be 10 wt% to 70 wt%, preferably 20 wt% to 60 wt%.
  • the negative electrode may be prepared by forming a negative electrode mixture layer on the negative electrode current collector.
  • the negative electrode mixture layer may be formed by coating a slurry including a negative electrode active material, a binder, a conductive material, a solvent, and the like on a negative electrode current collector, followed by drying and rolling.
  • the negative electrode current collector generally has a thickness of 3 to 500 ⁇ m.
  • a negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like on the surface, aluminum-cadmium alloy and the like can be used.
  • fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the anode active material may be a lithium metal, a carbon material capable of reversibly intercalating / deintercalating lithium ions, a metal or an alloy of these metals and lithium, a metal composite oxide, and may dope and undo lithium. At least one selected from the group consisting of materials, and transition metal oxide transition metal oxides.
  • any carbon-based negative electrode active material generally used in a lithium ion secondary battery may be used without particular limitation.
  • Examples thereof include crystalline carbon, Amorphous carbons or these may be used together.
  • Examples of the crystalline carbon include graphite such as amorphous, plate, flake, spherical or fibrous natural graphite or artificial graphite, and examples of the amorphous carbon include soft carbon (soft carbon) Or hard carbon, mesophase pitch carbide, calcined coke, or the like.
  • the metals or alloys of these metals with lithium include Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al And a metal selected from the group consisting of Sn or an alloy of these metals with lithium may be used.
  • the metal complex oxide may include PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , Bi 2 O 5 , Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), and Sn x Me 1-x Me ' y O z (Me : Mn, Fe, Pb, Ge; Me ': Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen; 0 ⁇ x ⁇ 1;1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8) may be used.
  • Examples of the material capable of doping and undoping lithium include Si, SiO x (0 ⁇ x ⁇ 2), Si-Y alloys (wherein Y is an alkali metal, an alkaline earth metal, a Group 13 element, a Group 14 element, a transition metal, Is an element selected from the group consisting of rare earth elements and combinations thereof, not Si), Sn, SnO 2 , Sn-Y (Y is an alkali metal, alkaline earth metal, group 13 element, group 14 element, transition metal, rare earth) element and an element selected from the group consisting of, Sn and the like are not), and may also use a mixture of at least one of these with SiO 2.
  • transition metal oxide examples include lithium-containing titanium composite oxide (LTO), vanadium oxide, lithium vanadium oxide, and the like.
  • the negative active material may be included in an amount of 80 wt% to 99 wt% based on the total weight of solids in the negative electrode slurry.
  • the binder is a component that assists the bonding between the conductive material, the active material and the current collector, and is typically added in an amount of 1 to 30 wt% based on the total weight of solids in the negative electrode slurry.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, Polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers thereof, and the like.
  • the conductive material is a component for further improving the conductivity of the negative electrode active material, and may be added in an amount of 1 to 20 wt% based on the total weight of solids in the negative electrode slurry.
  • a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as acetylene black, Ketjen black, channel black, furnace black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the solvent may include an organic solvent such as water or NMP, alcohol, etc., and may be used in an amount that becomes a desirable viscosity when including the negative electrode active material and optionally a binder and a conductive material.
  • concentration of the solids in the slurry including the negative electrode active material and, optionally, the binder and the conductive material may be 50 wt% to 75 wt%, preferably 50 wt% to 65 wt%.
  • the lithium secondary battery of the present invention may further include a separator.
  • the separator is a conventional porous polymer film used in general lithium secondary batteries, for example, polyolefin-based such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer
  • the porous polymer film made of a polymer may be used alone or by laminating them, or a conventional porous nonwoven fabric, for example, a non-woven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, or the like may be used. no.
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be cylindrical, square, pouch type, or coin type using a can.
  • N-methyl-2-pyrroli as a solvent in a weight ratio of Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 as a positive electrode active material, carbon black as a conductive material and polyvinylidene fluoride as a binder in a 96: 2: 2 weight ratio
  • the positive electrode active material slurry (solid content concentration 50% by weight) was prepared by adding it to pig (NMP).
  • the positive electrode active material slurry was applied to an aluminum (Al) thin film, which is a positive electrode current collector having a thickness of about 20 ⁇ m, dried to prepare a positive electrode, and then roll rolled to prepare a positive electrode.
  • carbon powder (graphite) as a negative electrode active material was added to NMP as a solvent in a 96: 3: 1 weight ratio to prepare a negative electrode active material slurry (solid content concentration of 60% by weight). It was.
  • the negative electrode active material slurry was applied to a copper (Cu) thin film, which is a negative electrode current collector having a thickness of 10 ⁇ m, and dried to prepare a negative electrode, followed by roll press, to prepare a negative electrode.
  • Cu copper
  • the positive electrode and the negative electrode thus prepared were laminated together with a polyethylene porous film to prepare an electrode assembly by a conventional method, and then put it in a battery case and inject the non-aqueous electrolyte, and then sealed to manufacture a lithium secondary battery. .
  • propane sultone PS
  • nonaqueous electrolyte preparation step of Example 5 except that 95.8 g of the non-aqueous organic solvent includes an additive 2.7 g, 0.5 g propane sultone (PS) as an additive for forming an SEI film, and 1 g of ethylene sulfate (Esa).
  • PS propane sultone
  • Esa ethylene sulfate
  • a non-aqueous electrolyte and a secondary battery including the same were prepared in the same manner as in Example 1, except that 0.5 g of vinylene carbonate, 0.5 g of propane sultone (PS), and 1 g of ethylene sulfate (Esa) were included. 1).
  • a non-aqueous electrolyte and a secondary battery including the same were prepared (see Table 1 below).
  • LiCoO 2 LiCoO 2 was used as the cathode active material in the step (see Table 1 below).
  • the initial thickness of the secondary batteries prepared in Examples 1 to 7 and Comparative Examples 1 to 9 was measured, and after changing the battery thickness after storage at 60 ° C. for 12 weeks, the thickness of the battery was obtained by using Equation 3 below. The rate of change was measured.
  • Capacity retention rate (capacity after 12 weeks / initial capacity) ⁇ 100
  • Resistance growth rate ((resistance after 12 weeks / initial resistance) ⁇ 100) -100
  • Battery thickness change rate ((battery thickness after 12 weeks / battery thickness of 0 weeks) x 100) -100
  • the secondary batteries prepared in Examples 1 to 7 and Comparative Examples 1 to 9 were charged at 1C to 4.25V / 38mA at CC / CV conditions at 45 ° C., and then discharged at 1C to 3.0V under CC conditions. After 800 cycles of charging and discharging, the capacity of the secondary battery was measured. Subsequently, high temperature lifetime characteristics were calculated using Equation 4 below, and the results are shown in Table 1 below.
  • the resistance was measured using a voltage difference generated by discharging the secondary batteries prepared in Examples 1 to 7 and Comparative Examples 1 to 9 after discharge at 5 ° C. for 10 seconds at 50 ° C. at 50 ° C. after 800 cycles. .
  • the resistance change rate was calculated using Equation 5 below, and the results are shown in Table 1 below.
  • Capacity Retention Rate (800 Cycles / 1 Cycle) ⁇ 100
  • the secondary batteries of Examples 1 to 7 have a capacity of 86% or more after high temperature storage, an increase in resistance was suppressed to less than 21.5%, and the increase in battery thickness was excellent at about 28.5% or less. Can be. In addition, it can be seen that the capacity after 800 cycles at a high temperature is maintained at 82% or more, and the increase in resistance is suppressed to less than 44%.
  • the battery thickness is lower than the secondary batteries of Examples 1 to 6 It can be seen that the increase.
  • the secondary battery of Comparative Example 1 which does not include lithium difluorophosphate
  • the secondary battery of Comparative Example 2 which does not contain tetravinylsilane, and the additives of the additive components
  • Comparative Examples 3 and 5 In the case of the secondary batteries of Comparative Examples 4 and 6, wherein the secondary batteries and the additive content of more than 4.5% by weight, compared with the lithium secondary batteries of Examples 1 to 7 with the nonaqueous electrolyte of the present invention, resistance after high temperature storage In addition to the increase rate and the cell thickness increase rate, it can be seen that most of them are degraded in most cases such as capacity retention rate and resistance increase rate after 800 cycles at high temperature.
  • the secondary battery of Comparative Example 7 in which a small amount of tertiaryalkylbenzene is included in the additive component, and the tetravinylsilane is included in a large amount
  • the secondary battery of Comparative Example 8 in which a large amount of tertiary alkylbenzene is included and a small amount of tetravinylsilane is included.
  • the secondary batteries prepared in Example 1 and Comparative Example 10 were each overcharged at a constant current / constant voltage (CC / CV) condition to 8.5 V at 1 C (775 mAh) / 12 V from a charged state at 25 ° C., and the temperature of the battery at that time and Voltage changes were measured and shown in FIGS. 1 and 2.
  • CC / CV constant current / constant voltage
  • the secondary battery of Example 1 delays a voltage increase caused by overcurrent while consuming electrons near 4.85V during overcharge, thereby suppressing the cell from overcharging (in FIG. 1). Line). Therefore, it is possible to prevent the temperature of the secondary battery from rapidly increasing during overcharging (in FIG. 1). Line). That is, it can be seen that the secondary battery of Example 1 gradually decreases after the temperature is increased to 130 ° C.
  • the secondary battery of Comparative Example 10 has a sudden temperature change from 4.8V portion (about 35 minutes) to 200 °C (Fig. 2 Line), the battery overheats, causing ignition and explosion. Therefore, it can be seen that the secondary battery of Comparative Example 10 cannot measure the voltage after the 4.8V portion (about 35 minutes) (see FIG. 2). Line).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to an non-aqueous electrolyte and a lithium secondary battery comprising the same and, more specifically, to an non-aqueous electrolyte for a lithium secondary battery and a lithium secondary battery comprising the same, the non-aqueous electrolyte comprising: an ionizable lithium salt, an organic solvent, and an additive, wherein the additive is a mixed additive comprising lithium difluorophosphate: tertiary alkyl benzene: tetravinyl silane at a weight ratio of 1: 1 to 4: 0.05 to 0.5, and the additive is included in an amount of 2.5 to 4.5 wt% on the basis of the total weight of the non-aqueous electrolyte for the lithium secondary battery.

Description

리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
관련 출원(들)과의 상호 인용Cross Citation with Related Application (s)
본 출원은 2016년 11월 15일자 한국 특허 출원 제10-2016-0151998호 및 2017년 11월 15일자 한국 특허 출원 제10-2017-0152232호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2016-0151998 of November 15, 2016 and Korean Patent Application No. 10-2017-0152232 of November 15, 2017. All content disclosed in the literature is included as part of this specification.
기술분야Technical Field
본 발명은 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지에 관한 것으로, 구체적으로 리튬 이차전지의 고온 내구성 및 안정성을 개선할 수 있는 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지에 관한 것이다.The present invention relates to a non-aqueous electrolyte for lithium secondary batteries and a lithium secondary battery comprising the same, and more particularly, to a non-aqueous electrolyte for lithium secondary batteries capable of improving high temperature durability and stability of a lithium secondary battery and a lithium secondary battery comprising the same.
모바일 기기에 대한 수요가 증가함에 따라 에너지원으로서의 이차전지의 수요가 급격히 증가하고 있고, 이러한 이차전지 중에서 높은 에너지 밀도와 전압을 가지는 리튬 이차전지가 상용화되어 널리 사용되고 있다.As the demand for mobile devices increases, the demand for secondary batteries as energy sources is rapidly increasing, and lithium secondary batteries having high energy density and voltage are commercially used among these secondary batteries.
리튬 이차전지는 양극의 리튬 금속 산화물로부터 리튬 이온이 음극의 탄소 전극으로 삽입(intercalation)되고 탈리(deintercalation)되는 과정을 반복하면서 충방전이 진행된다. In the lithium secondary battery, charging and discharging are performed while repeating a process of intercalating and deintercalating lithium ions from a lithium metal oxide of a positive electrode to a carbon electrode of a negative electrode.
이때 리튬 이온은 반응성이 강하여 탄소 전극과 반응하면 Li2CO3, LiO, LiOH 등을 생성시켜 음극의 표면에 피막을 형성한다. 이러한 피막을 고체 전해질(Solid Electrolyte Interface; SEI) 막이라고 한다. 충전 초기에 형성된 SEI 막은 충방전 중 리튬 이온과 탄소 음극 또는 다른 물질과의 반응을 막아주며, 전해액과 음극 사이에서 리튬 이온만을 통과시키는 이온 터널(Ion Tunnel)로서의 역할을 수행하게 된다. 상기 이온 터널은 리튬 이온을 용매화(solvation)시켜 함께 이동하는 분자량이 큰 비수전해액의 유기 용매들이 탄소 음극에 함께 코인터컬레이션 되어 탄소 음극의 구조를 붕괴시키는 것을 막아 주는 역할을 한다. At this time, lithium ions are highly reactive and react with the carbon electrode to form Li 2 CO 3 , LiO, LiOH and the like to form a film on the surface of the negative electrode. Such a film is called a solid electrolyte interface (SEI) film. The SEI film formed at the beginning of charging prevents the reaction between lithium ions and the carbon negative electrode or other materials during charging and discharging, and serves as an ion tunnel passing only lithium ions between the electrolyte and the negative electrode. The ion tunnel serves to prevent the organic solvents of the non-aqueous electrolyte having a large molecular weight, which are solvated with lithium ions, move together to the carbon anode, thereby collapsing the structure of the carbon anode.
한편, 리튬 이차전지의 비수전해액에 사용되는 유기 용매는 일반적으로 고온에서 장시간 보관할 경우, 양극으로부터 방출된 전이금속 산화물에 의해 산화되면서 가스를 발생시키고, 이렇게 발생한 가스에 의해 전지 부풀음 및 전극 조립체 변형 등이 일어난다. 또한, 만충전 상태에서 고온 저장시 (예를 들어, 4.2V에서 100% 충전 후 60℃에서 저장) 상기 SEI 막이 서서히 붕괴하면서 음극이 노출되고, 이렇게 노출된 음극이 전해액과 반응하여 부반응을 지속적으로 일으키면서 CO, CO2, CH4, C2H6 등의 가스를 발생시켜 결국 전지 내압 상승에 의한 전지 부풀음과 같은 변형을 초래한다. 이러한 전지 변형에 의해 전지의 내부 단락이 유발되어 전지 열화가 나타나면, 전지가 발화 또는 폭발될 수 있다.On the other hand, the organic solvent used in the non-aqueous electrolyte of the lithium secondary battery generally generates gas while being oxidized by the transition metal oxide emitted from the positive electrode when stored for a long time at high temperature, the battery swelling and electrode assembly deformation, etc. This happens. In addition, when stored at high temperature in a fully charged state (eg, stored at 60 ° C. after 100% charge at 4.2V), the negative electrode is exposed while the SEI film is gradually decayed, and thus the negative electrode continuously reacts with the electrolyte to continuously react the side reactions. While generating a gas such as CO, CO 2 , CH 4 , C 2 H 6 It will eventually lead to deformation such as battery swelling due to the increase in battery pressure. When such a battery deformation causes an internal short circuit of the battery and battery degradation occurs, the battery may ignite or explode.
이러한 문제점을 해결하기 위해, 비수전해액 내에 SEI 막의 붕괴를 방지하기 위한 SEI 막 형성 물질을 첨가하는 방법이 제안되었다. 하지만, 이러한 전해액 첨가제에 의하여 다른 부작용이 발생하면서, 이차전지의 제반 성능이 감소하는 또 다른 문제가 발생하였다.In order to solve this problem, a method of adding an SEI film forming material for preventing the collapse of the SEI film in the nonaqueous electrolyte has been proposed. However, while other side effects occur due to the electrolyte additive, another problem occurs that the overall performance of the secondary battery is reduced.
이에, 부작용을 최소화하면서, 리튬 이차전지의 고온 및 과충전 안정성을 향상시킬 수 있는 새로운 구성의 비수전해액에 대한 개발이 지속적으로 요구되고 있다.Thus, while minimizing side effects, the development of a non-aqueous electrolyte of a new configuration that can improve the high temperature and overcharge stability of the lithium secondary battery is continuously required.
선행기술문헌Prior art literature
미국 등록특허공보 제8,986,880호United States Patent Application Publication No. 8,986,880
상기와 같은 문제점을 해결하기 위하여, 본 발명의 제1 기술적 과제는 전극 표면의 계면 저항을 낮추는 동시에, 고온 저장 시 전해액 부반응을 억제할 수 있는 첨가제를 포함하는 리튬 이차전지용 비수전해액을 제공하는 것을 목적으로 한다.In order to solve the above problems, the first technical problem of the present invention is to provide a non-aqueous electrolyte solution for a lithium secondary battery comprising an additive that can lower the interfacial resistance of the electrode surface and inhibit the side reaction of the electrolyte during high temperature storage. It is done.
또한, 본 발명의 제2 기술적 과제는 상기 리튬 이차전지용 비수전해액을 포함함으로써 고온 저장 특성 및 고온 수명 특성이 향상된 리튬 이차전지를 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a lithium secondary battery having improved high temperature storage characteristics and high temperature life characteristics by including the nonaqueous electrolyte solution for lithium secondary batteries.
상기의 목적을 달성하기 위한 일 실시예에서, In one embodiment for achieving the above object,
이온화 가능한 리튬염, 유기 용매, 및 첨가제를 포함하고,Including ionizable lithium salts, organic solvents, and additives,
상기 첨가제는 리튬 디플루오로포스페이트 (lithium difluorophosphate: LiDFP) : 하기 화학식 1로 표시되는 터셔리알킬벤젠 : 테트라비닐실란 (tetra-vinyl silane: TVS)을 1 : 1 내지 4 : 0.05 내지 0.5의 중량비로 포함하는 혼합 첨가제이며,The additive is lithium difluorophosphate (Lithium difluorophosphate: LiDFP): tertiary alkylbenzene represented by the following formula (1): tetra-vinyl silane (TVS) in a weight ratio of 1: 1 to 4: 0.05 to 0.5 It is a mixed additive to include,
상기 첨가제는 리튬 이차전지용 비수전해액 전체 중량을 기준으로 2.5 중량% 내지 4.5 중량%로 포함되는 것인 리튬 이차전지용 비수전해액을 제공한다.The additive provides a non-aqueous electrolyte solution for a lithium secondary battery, which is included in an amount of 2.5% by weight to 4.5% by weight based on the total weight of the nonaqueous electrolyte solution for a lithium secondary battery.
[화학식 1][Formula 1]
Figure PCTKR2017012966-appb-I000001
Figure PCTKR2017012966-appb-I000001
상기 화학식 1에서,In Chemical Formula 1,
R1은 탄소수 4 내지 5의 터셔리 알킬이다.R 1 is tertiary alkyl having 4 to 5 carbon atoms.
상기 리튬 이차전지용 비수전해액에 있어서, 상기 유기용매는 에틸렌 카보네이트(EC), 디메틸카보네이트 (DMC), 디에틸 카보네이트(DEC), 프로필렌카보네이트 및 에틸메틸카보네이트 중 적어도 2개 이상을 포함하는 혼합 용매를 포함할 수 있다.In the nonaqueous electrolyte solution for lithium secondary batteries, the organic solvent includes a mixed solvent including at least two or more of ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), propylene carbonate, and ethyl methyl carbonate. can do.
또한, 상기 리튬 이차전지용 비수전해액에 있어서, 상기 첨가제인 리튬 디플루오로포스페이트:상기 화학식 1로 표시되는 터셔리알킬벤젠:테트라비닐실란의 중량비는 1 : 1.5 내지 4 : 0.1 내지 0.2일 수 있다.In addition, in the non-aqueous electrolyte solution for the lithium secondary battery, the weight ratio of the lithium difluorophosphate as the additive: tertiaryalkylbenzene represented by the general formula (1): tetravinylsilane may be 1: 1.5 to 4: 0.1 to 0.2.
이때, 상기 리튬 이차전지용 비수전해액에 있어서, 상기 리튬 이차전지용 비수전해액 중 리튬 디플루오로포스페이트의 농도는 1 × 10-2 ㏖/㎏ 내지 0.5㏖/㎏ 일 수 있다.In this case, in the nonaqueous electrolyte solution for lithium secondary batteries, the concentration of lithium difluorophosphate in the nonaqueous electrolyte solution for lithium secondary batteries may be 1 × 10 −2 mol / kg to 0.5 mol / kg.
상기 리튬 이차전지용 비수전해액에 있어서, 상기 첨가제는 리튬 이차전지용 비수전해액 전체 중량을 기준으로 2.5 중량% 내지 4.3 중량%로 포함될 수 있다.In the nonaqueous electrolyte solution for lithium secondary batteries, the additive may be included in an amount of 2.5 wt% to 4.3 wt% based on the total weight of the nonaqueous electrolyte solution for the lithium secondary battery.
또한, 상기 리튬 이차전지용 비수전해액에 있어서, 상기 리튬 이차전지용 비수전해액은 비닐렌 카보네이트 (VC), 비닐에틸렌 카보네이트, 플루오로에틸렌 카보네이트, 에틸렌 설페이트(Esa) 및 프로판 설톤(PS)으로 이루어진 군으로부터 선택된 적어도 하나 이상의 SEI 막 형성용 첨가제를 추가로 포함할 수 있다.In the nonaqueous electrolyte solution for lithium secondary batteries, the nonaqueous electrolyte solution for lithium secondary batteries is selected from the group consisting of vinylene carbonate (VC), vinylethylene carbonate, fluoroethylene carbonate, ethylene sulfate (Esa) and propane sultone (PS). It may further comprise at least one additive for forming the SEI film.
이러한 SEI 막 형성용 첨가제는 비수전해액 전체 중량을 기준으로 적어도 0.1 중량% 내지 2 중량%로 포함될 수 있다.The additive for forming the SEI film may be included in at least 0.1% by weight to 2% by weight based on the total weight of the nonaqueous electrolyte.
또한, 본 발명의 일 실시예에서는In addition, in one embodiment of the present invention
음극 활물질을 포함하는 음극, 양극 활물질을 포함하는 양극 및 비수전해액을 구비하는 리튬 이차전지에 있어서,In a lithium secondary battery comprising a negative electrode containing a negative electrode active material, a positive electrode containing a positive electrode active material and a nonaqueous electrolyte,
상기 양극 활물질은 하기 화학식 4로 표시되는 화합물 및 하기 화학식 5로 표시되는 화합물 중 적어도 하나 이상을 포함하고,The positive electrode active material includes at least one or more of a compound represented by Formula 4 and a compound represented by Formula 5 below,
상기 비수전해액은 본 발명의 리튬 이차전지용 비수전해액을 포함하는 리튬 이차전지를 제공한다.The nonaqueous electrolyte provides a lithium secondary battery including the nonaqueous electrolyte for a lithium secondary battery of the present invention.
[화학식 4][Formula 4]
Li(NixCoyMnz)O2 Li (Ni x Co y Mn z ) O 2
상기 화학식 4에서, In Chemical Formula 4,
0<x<1, 0<y<1, 0<z<1, x+y+z=1 이다.0 <x <1, 0 <y <1, 0 <z <1, x + y + z = 1.
[화학식 5][Formula 5]
Li(Nix1Coy1Mnz1)O4 Li (Ni x1 Co y1 Mn z1 ) O 4
상기 화학식 5에서, In Chemical Formula 5,
0<x1<2, 0<y1<2, 0<z1<2, x1+y1+z1=2이다.0 <x1 <2, 0 <y1 <2, 0 <z1 <2, and x1 + y1 + z1 = 2.
상기 리튬 이차전지에서, 상기 양극 활물질은 Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2, 및 Li(Ni0.8Mn0.1Co0.1)O2로 이루어진 군으로부터 선택되는 것을 포함할 수 있다.In the lithium secondary battery, the cathode active material is Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 , Li (Ni 0.5 Mn 0.3 Co 0.2 ) O 2 , Li (Ni 0.7 Mn 0.15 Co 0.15 ) O 2 , and Li (Ni 0.8 Mn 0.1 Co 0.1 ) O 2 may be selected from the group consisting of.
또한, 상기 양극 활물질은 하기 화학식 6으로 표시되는 화합물을 더 포함할 수 있다.In addition, the cathode active material may further include a compound represented by Chemical Formula 6.
[화학식 6][Formula 6]
LiMnO2 LiMnO 2
이때, 상기 양극 활물질은 상기 화학식 4 또는 5로 표시되는 화합물 80 내지 99 중량% 및 상기 화학식 6로 표시되는 화합물 1 내지 20 중량%를 포함할 수 있다.In this case, the cathode active material may include 80 to 99 wt% of the compound represented by Formula 4 or 5 and 1 to 20 wt% of the compound represented by Formula 6.
본 발명의 일 실시예에 따르면, 특정 비율로 혼합된 혼합 첨가제를 포함함으로써, 음극 표면에 안정한 SEI 막을 형성할 수 있는 리튬 이차전지용 비수전해액을 제조할 수 있다. 또한, 이를 포함함으로써, 초기 충전시 음극 표면에 생성된 안정한 SEI 막에 의하여 전극과의 계면 저항을 낮출 수 있을 뿐만 아니라, 고전압 시 양극 활물질의 부반응을 억제하여 고온 저장 특성 및 수명 특성이 향상된 리튬 이차전지를 제조할 수 있다.According to one embodiment of the present invention, by including a mixed additive mixed in a specific ratio, it is possible to manufacture a non-aqueous electrolyte for lithium secondary battery capable of forming a stable SEI film on the surface of the negative electrode. In addition, by including this, not only can the interface resistance with the electrode be lowered by the stable SEI film formed on the surface of the cathode during initial charging, but also the secondary reaction of improved high temperature storage characteristics and lifespan by suppressing side reactions of the positive electrode active material at high voltage. The battery can be manufactured.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술 사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 안 된다.The following drawings, which are attached to this specification, illustrate exemplary embodiments of the present invention, and together with the contents of the present invention, serve to further understand the technical idea of the present invention. It should not be construed as limited.
도 1은 본 발명의 실험예 3에 따른 실시예 1의 이차전지의 과충전 시 안정성 측정 결과를 나타내는 그래프이다. 1 is a graph showing the results of stability measurement during overcharging of the secondary battery of Example 1 according to Experimental Example 3 of the present invention.
도 2는 본 발명의 실험예 3에 따른 비교예 10의 이차전지의 과충전 시 안정성 측정 결과를 나타내는 그래프이다.2 is a graph showing the results of measuring stability during overcharging of the secondary battery of Comparative Example 10 according to Experimental Example 3 of the present invention.
이하, 본 발명을 더욱 상세하게 설명한다. Hereinafter, the present invention will be described in more detail.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in this specification and claims are not to be construed as limiting in their usual or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best explain their invention in the best way possible. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
구체적으로, 본 발명의 일 실시예에서는Specifically, in one embodiment of the present invention
이온화 가능한 리튬염, Ionizable lithium salts,
유기 용매, 및Organic solvents, and
첨가제를 포함하고,Contains additives,
상기 첨가제는 리튬 디플루오로포스페이트 (lithium difluorophosphate: LiDFP) : 하기 화학식 1로 표시되는 터셔리알킬벤젠 : 테트라비닐실란 (tetra-vinyl silane: TVS)을 1 : 1 내지 4 : 0.05 내지 0.5의 중량비로 포함하는 혼합 첨가제이며,The additive is lithium difluorophosphate (Lithium difluorophosphate: LiDFP): tertiary alkylbenzene represented by the following formula (1): tetra-vinyl silane (TVS) in a weight ratio of 1: 1 to 4: 0.05 to 0.5 It is a mixed additive to include,
상기 첨가제는 리튬 이차전지용 비수전해액 전체 중량을 기준으로 2.5 중량% 내지 4.5 중량%로 포함되는 것인 리튬 이차전지용 비수전해액을 제공한다.The additive provides a non-aqueous electrolyte solution for a lithium secondary battery, which is included in an amount of 2.5% by weight to 4.5% by weight based on the total weight of the nonaqueous electrolyte solution for a lithium secondary battery.
[화학식 1][Formula 1]
Figure PCTKR2017012966-appb-I000002
Figure PCTKR2017012966-appb-I000002
상기 화학식 1에서, In Chemical Formula 1,
R1은 탄소수 4 내지 5의 터셔리 알킬이다.R 1 is tertiary alkyl having 4 to 5 carbon atoms.
먼저, 본 발명의 일 실시예에 따른 리튬 이차전지용 비수전해액에 있어서, 상기 이온화 가능한 리튬염은 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 예를 들어 상기 리튬염의 양이온으로 Li+를 포함하고, 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, AlO4 -, AlCl4 -, PF6 -, SbF6 -, AsF6 -, BF2C2O4 -, BC4O8 -, PF4C2O4 -, PF2C4O8 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, C4F9SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택된 적어도 어느 하나를 들 수 있다. 구체적으로, 상기 리튬염은 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCH3CO2, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, LiAlO4, 및 LiCH3SO3으로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 포함할 수 있고, 이들 외에도 리튬 이차전지의 전해액에 통상적으로 사용되는 LiBETI (lithium bisperfluoroethanesulfonimide, LiN(SO2C2F5)2), LiFSI (lithium fluorosulfonyl imide, LiN(SO2F)2) 및 LiTFSI (lithium (bis)trifluoromethanesulfonimide, LiN(SO2CF3)2)로 나타내는 리튬 이미드염과 같은 전해질염을 제한 없이 사용할 수 있다. 구체적으로 전해질염은 LiPF6, LiBF4, LiCH3CO2, LiCF3CO2, LiCH3SO3, LiFSI, LiTFSI 및 LiN(C2F5SO2)2으로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 포함할 수 있다. 다만, 상기 리튬염은 상기 혼합 첨가제에 포함되는 리튬염인 LiDFP는 포함하지 않는다.First, in the nonaqueous electrolyte solution for a lithium secondary battery according to an embodiment of the present invention, the ionizable lithium salts may be used without limitation, those conventionally used in a lithium secondary battery electrolyte, for example, Li + as a cation of the lithium salt. to include, and the anion is F -, Cl -, Br - , I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, AlO 4 -, AlCl 4 -, PF 6 -, SbF 6 -, AsF 6 -, BF 2 C 2 O 4 -, BC 4 O 8 -, PF 4 C 2 O 4 -, PF 2 C 4 O 8 -, (CF 3) 2 PF 4 -, (CF 3 ) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, C 4 F 9 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2 ) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2) 2 CH -, (SF 5) 3 C - , (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 -, CH 3 CO 2 -, SCN - , and (CF 3 CF 2 SO 2) 2 N - consisting of At least one selected from the group can be mentioned. Specifically, the lithium salt is LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCH 3 CO 2 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , LiAlO 4 , and LiCH 3 SO 3 It may include a single or a mixture of two or more selected from the group consisting of, in addition to these LiBTI (lithium bisperfluoroethanesulfonimide, LiN (SO 2 C 2 F) commonly used in the electrolyte of the lithium secondary battery 5) 2), LiFSI (lithium fluorosulfonyl imide, LiN (SO 2 F) 2) and LiTFSI (lithium (bis) trifluoromethanesulfonimide, LiN (SO 2 CF 3) 2) Li is already available, without limitation, an electrolyte salt, such as deuyeom represented by Can be. Specifically, the electrolyte salt is a single or two or more selected from the group consisting of LiPF 6 , LiBF 4 , LiCH 3 CO 2 , LiCF 3 CO 2 , LiCH 3 SO 3 , LiFSI, LiTFSI and LiN (C 2 F 5 SO 2 ) 2 Mixtures may be included. However, the lithium salt does not include LiDFP which is a lithium salt contained in the mixed additive.
상기 리튬염은 통상적으로 사용 가능한 범위 내에서 적절히 변경할 수 있으나, 구체적으로 리튬 이차전지용 비수전해액 내에서 0.1M 내지 2M로 포함될 수 있다. The lithium salt may be appropriately changed within a conventionally usable range, and specifically, may be included as 0.1M to 2M in the nonaqueous electrolyte solution for a lithium secondary battery.
이때, 상기 리튬염의 농도가 0.1M 이하인 경우 전지의 저온 출력 개선 및 고온 사이클 특성의 개선의 효과가 미미하고, 2M을 초과하는 경우 전지의 충방전시 전해액 내의 부반응이 과도하게 발생하여 스웰링(swelling) 현상이 일어날 수 있고, 또는 전해액 중에서 금속으로 이루어진 양극 또는 음극 집전체의 부식을 유발할 수 있다.At this time, when the concentration of the lithium salt is 0.1M or less, the effect of improving the low temperature output and the high temperature cycle characteristics of the battery is insignificant, and when the lithium salt exceeds 2M, side reactions in the electrolyte are excessively generated during swelling. ) May occur, or may cause corrosion of the positive or negative current collector made of metal in the electrolyte.
또한, 본 발명의 일 실시예에 따른 리튬 이차전지용 비수전해액에 있어서, 상기 유기용매는 이차전지의 충방전 과정에서 산화 반응 등에 의한 분해가 최소화될 수 있고, 첨가제와 함께 목적하는 특성을 발휘할 수 있는 용매로 에스테르계 용매를 사용할 수 있다.In addition, in the non-aqueous electrolyte lithium secondary battery according to an embodiment of the present invention, the organic solvent can be minimized by the oxidation reaction in the charge and discharge process of the secondary battery, and can exhibit the desired characteristics with the additive An ester solvent may be used as the solvent.
상기 에스테르계 용매는 구체적인 예로 환형 카보네이트 화합물, 선형 카보네이트 화합물, 선형 에스테르 화합물, 및 환형 에스테르 화합물로 이루어진 군으로부터 선택된 적어도 하나 이상의 화합물을 포함할 수 있다. Specific examples of the ester solvent may include at least one compound selected from the group consisting of a cyclic carbonate compound, a linear carbonate compound, a linear ester compound, and a cyclic ester compound.
이중 상기 환형 카보네이트 화합물은 에틸렌 카보네이트(ethylene carbonate, EC), 프로필렌 카보네이트(propylene carbonate, PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트 및 플루오로에틸렌 카보네이트 (FEC)로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 들 수 있고, 보다 구체적으로 에틸렌 카보네이트, 프로필렌 카보네이트, 비닐렌 카보네이트 및 플루오로에틸렌 카보네이트 (FEC)로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 들 수 있다.The cyclic carbonate compound is ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2, Any one selected from the group consisting of 3-pentylene carbonate, vinylene carbonate and fluoroethylene carbonate (FEC), or a mixture of two or more thereof, and more specifically ethylene carbonate, propylene carbonate, vinylene carbonate and One or a mixture of two or more selected from the group consisting of fluoroethylene carbonate (FEC) can be mentioned.
또한, 상기 선형 카보네이트 화합물의 구체적인 예로는 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있으며, 보다 구체적으로 디메틸 카보네이트, 디에틸 카보네이트, 디프로필 카보네이트, 및 에틸메틸 카보네이트로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 들 수 있다.In addition, specific examples of the linear carbonate compound include dimethyl carbonate (dimethyl carbonate, DMC), diethyl carbonate (diethyl carbonate, DEC), dipropyl carbonate, ethyl methyl carbonate (EMC), methylpropyl carbonate and ethylpropyl carbonate Any one selected from, or a mixture of two or more thereof, and the like may be representatively used, and more specifically, any one selected from the group consisting of dimethyl carbonate, diethyl carbonate, dipropyl carbonate, and ethylmethyl carbonate, or two of them. And mixtures of species or more.
상기 선형 에스테르 화합물은 그 구체적인 예로 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 프로피오네이트, 및 부틸 프로피오네이트로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있으나, 이에 한정되는 것은 아니다.The linear ester compound is any one selected from the group consisting of methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, and butyl propionate. The above mixture and the like can be used representatively, but is not limited thereto.
상기 환형 에스테르 화합물은 그 구체적인 예로 γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤, ε-카프로락톤과 같은 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.The cyclic ester compound is any one selected from the group consisting of γ-butyrolactone, γ-valerolactone, γ-caprolactone, σ-valerolactone, ε-caprolactone, or two or more thereof Mixtures may be used, but are not limited thereto.
상기 에스테르계 용매 중에서 환형 카보네이트계 화합물은 고점도의 유기용매로서 유전율이 높아 전해질 내의 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 환형 카보네이트계 화합물에 디메틸 카보네이트 및 디에틸 카보네이트와 같은 저점도, 저유전율 선형 카보네이트계 화합물 및 선형 에스테르계 화합물을 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해액을 만들 수 있어 더욱 바람직하게 사용될 수 있다.In the ester solvent, the cyclic carbonate-based compound is a high viscosity organic solvent and has a high dielectric constant, and thus may be preferably used because it dissociates lithium salts in the electrolyte. The cyclic carbonate-based compound has low viscosity and low viscosity such as dimethyl carbonate and diethyl carbonate. When the dielectric constant linear carbonate compound and the linear ester compound are mixed in an appropriate ratio, an electrolyte having a high electrical conductivity can be made, and thus it can be more preferably used.
보다 구체적으로 상기 유기용매는 환형 카보네이트계 화합물과 선형 카보네이트계 화합물을 혼합하여 사용할 수 있으며, 그 대표적인 예로 에틸렌 카보네이트(EC), 디메틸카보네이트 (DMC), 디에틸 카보네이트(DEC), 프로필렌카보네이트 및 에틸메틸카보네이트 중 적어도 2개 이상을 포함하는 혼합 용매를 포함할 수 있다.More specifically, the organic solvent may be used by mixing a cyclic carbonate compound and a linear carbonate compound, and representative examples thereof include ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), propylene carbonate and ethyl methyl. It may include a mixed solvent including at least two or more of the carbonates.
또한, 상기 유기용매는 에테르계 용매 또는 아미드계 용매 등을 추가로 사용할 수 있다. In addition, the organic solvent may further use an ether solvent or an amide solvent.
상기 유기용매 중 에테르계 용매로는 디메틸에테르, 디에틸에테르, 디프로필 에테르, 메틸에틸에테르, 메틸프로필 에테르 및 에틸프로필 에테르로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.As the ether solvent in the organic solvent, any one selected from the group consisting of dimethyl ether, diethyl ether, dipropyl ether, methylethyl ether, methylpropyl ether and ethylpropyl ether, or a mixture of two or more thereof may be used. It is not limited to this.
또한, 본 발명의 일 실시예에 따른 리튬 이차전지용 비수전해액에 있어서, 상기 첨가제 성분 중 하나인 하기 화학식 2로 표시되는 리튬 디플루오로포스페이트는 이차전지의 장기적인 수명 특성 향상 효과를 구현하기 위한 성분으로써, 초기 충전 시 분해되어 생성된 리튬 이온 성분이 음극 표면에 안정한 SEI 막을 형성할 수 있고, 이러한 SEI 피막 형성에 위하여 음극으로의 Li 이동성을 개선할 수 있을 뿐만 아니라, 계면 저항을 낮출 수 있다. 또한, 초기 충전 시 분해되어 생성된 디플루오로인산 음이온이 양극 표면에 존재하면서 양극 안정화 및 방전 특성을 향상시킬 수 있다. In addition, in the nonaqueous electrolyte solution for a lithium secondary battery according to an embodiment of the present invention, lithium difluorophosphate represented by the following Chemical Formula 2, which is one of the additive components, is a component for implementing long-term life characteristics improvement effect of the secondary battery. In addition, the lithium ion component decomposed during the initial charge may form a stable SEI film on the surface of the negative electrode, and not only may improve Li mobility to the negative electrode in order to form the SEI film, but also lower the interface resistance. In addition, the difluorophosphate anion generated by decomposition during initial charging may be present on the surface of the anode, thereby improving anode stabilization and discharge characteristics.
[화학식 2][Formula 2]
Figure PCTKR2017012966-appb-I000003
Figure PCTKR2017012966-appb-I000003
또한, 본 발명의 리튬 이차전지용 비수전해액에 있어서, 상기 첨가제 중 하나로 포함되는 상기 화학식 1로 표시되는 터셔리알킬벤젠은 고전압 시에 양극 활물질의 부반응을 억제할 수 있는 성분으로서, 그 대표적인 예로 터셔리부틸벤젠(TBB), 또는 터셔리펜틸벤젠(TPB)을 들 수 있으며, 바람직하게는 터셔리부틸벤젠을 포함할 수 있다.In addition, in the nonaqueous electrolyte solution for lithium secondary batteries of the present invention, the tertiary alkylbenzene represented by Formula 1 included as one of the additives is a component capable of suppressing side reactions of the positive electrode active material at high voltage, and is a representative example of Butylbenzene (TBB), or tertiary pentylbenzene (TPB), and preferably tert-butyl benzene.
상기 화학식 1로 표시되는 터셔리알킬벤젠은 과충전 시 4.8V 내지 5.0V 부근의 전위에서 산화되면서 피막을 형성하고, 이러한 산화된 산화물은 음극 및 음극 대면 분리막에 침적함으로써, Li 이온의 이동 및 음극에 침적된 Li과 전해액 간의 반응성을 억제하여 과전류에 의한 전압 상승을 억제하므로, 고온, 고전압 및 과충전 안정성을 향상시킬 수 있다.The tertiary alkylbenzene represented by Chemical Formula 1 forms a film while being oxidized at a potential of about 4.8 V to 5.0 V during overcharging, and the oxidized oxide is deposited on the cathode and the cathode facing separator, thereby transferring Li ions to the cathode. By suppressing the reactivity between the deposited Li and the electrolyte solution to suppress the voltage rise due to overcurrent, it is possible to improve the high temperature, high voltage and overcharge stability.
또한, 본 발명의 리튬 이차전지용 비수전해액에 있어서, 상기 첨가제 중 하나로 포함되는 하기 화학식 3으로 표시되는 테트라비닐실란은 리튬 이온과 전해액 간의 반응을 억제할 수 있는 성분으로서, 함유된 Si 원소가 양극 및 음극 표면에 물리적 흡착 및 전기화학적 반응을 통하여 견고한 이온전도성 피막을 형성함으로써, 고전압 시 양극 물질의 부반응을 억제하여 고온 저장시의 안정성을 향상시킬 수 있다. In addition, in the nonaqueous electrolyte solution for lithium secondary batteries of the present invention, the tetravinylsilane represented by the following Chemical Formula 3 included as one of the additives is a component capable of suppressing the reaction between lithium ions and the electrolyte, and the Si element contained therein is a positive electrode and By forming a solid ion conductive film through physical adsorption and electrochemical reaction on the surface of the negative electrode, it is possible to suppress side reactions of the positive electrode material at high voltage, thereby improving stability at high temperature.
[화학식 3][Formula 3]
Figure PCTKR2017012966-appb-I000004
Figure PCTKR2017012966-appb-I000004
또한, 본 발명의 일 실시예에 따른 리튬 이차전지용 비수전해액에 있어서, 상기 리튬 디플루오로포스페이트:상기 화학식 1로 표시되는 터셔리알킬벤젠:테트라비닐실란의 중량비는 1 : 1 내지 4 : 0.05 내지 0.5, 구체적으로 1 : 1.5 내지 4 : 0.1 내지 0.2일 수 있다.In addition, in the non-aqueous electrolyte solution for a lithium secondary battery according to an embodiment of the present invention, the weight ratio of the lithium difluorophosphate: tertiaryalkylbenzene: tetravinylsilane represented by Chemical Formula 1 is 1: 1 to 4: 0.05 to 0.05. 0.5, specifically, 1: 1.5 to 4: 0.1 to 0.2.
본 발명의 비수전해액 내에 상기 첨가제의 각 성분들이 상기 비율로 혼합되어 있는 경우, 리튬 이차 전지의 충전 시에, 음극 및 양극 표면에 전해액과의 부반응을 억제하거나, 가스 발생을 저감할 수 있는 효과 등을 가져오는 안정한 피막을 형성할 수 있기 때문에, 제반 성능이 더욱 향상된 이차전지를 제조할 수 있다.When the components of the additive are mixed in the ratio in the nonaqueous electrolyte of the present invention, the effect of suppressing side reactions with the electrolyte on the surface of the negative electrode and the positive electrode or reducing the gas generation during the charging of the lithium secondary battery, etc. Since it is possible to form a stable film that brings about, a secondary battery with improved overall performance can be manufactured.
이때, 상기 터셔리알킬벤젠의 함량비가 1 미만인 경우, 전지의 과충전 안정성 효과가 미미하고, 4를 초과하는 경우 전해액 내 점도 증가를 동반한 이온전도도 감소로 방전 시 저항 증가가 일어 날 수 있다.In this case, when the content ratio of the tertiary alkylbenzene is less than 1, the overcharge stability effect of the battery is insignificant, and if it exceeds 4, an increase in resistance during discharge may occur due to a decrease in ion conductivity accompanied by an increase in viscosity in the electrolyte.
또한, 상기 테트라비닐실란의 함량비가 0.05 미만인 경우, 고온 내구성이 저하될 수 있고, 0.5를 초과하는 경우 저항이 증가할 수 있다.In addition, when the content ratio of the tetravinylsilane is less than 0.05, high temperature durability may be lowered, and when it exceeds 0.5, the resistance may increase.
상기 리튬 이차전지용 비수전해액에 있어서, 상기 리튬 이차전지용 비수전해액 중 리튬 디플루오로포스페이트의 농도는 1 × 10-2 ㏖/㎏ 내지 0.5㏖/㎏ 일 수 있다.In the nonaqueous electrolyte solution for lithium secondary batteries, the concentration of lithium difluorophosphate in the nonaqueous electrolyte solution for lithium secondary batteries may be 1 × 10 −2 mol / kg to 0.5 mol / kg.
또한, 상기 비수전해액 첨가제는 비수전해액 전체 중량을 기준으로 2.5 중량% 내지 4.5 중량%, 구체적으로 2.5 중량% 내지 4.3 중량%로 포함될 수 있다. In addition, the non-aqueous electrolyte additive may be included in an amount of 2.5 wt% to 4.5 wt%, specifically 2.5 wt% to 4.3 wt%, based on the total weight of the nonaqueous electrolyte.
본 발명에서는 비수전해액 내에 상기 첨가제를 상기와 같은 함량으로 포함함으로써, 계면 저항 감소 및 부반응 억제를 효과적으로 구현할 수 있다. 만약 상기 첨가제의 함량이 2.5 중량% 미만인 경우는 이차전지의 물성 개선 효과가 미비하고, 4.5 중량%를 초과하는 경우, 첨가제가 과량 포함되기 때문에 가스 발생 억제에 따른 전지 두께 변화는 억제될 수 있으나, 전해액 내에서 저항이 증가하여 용량 및 수명 특성이 저하될 수 있다.In the present invention, by including the additive in the above amount in the non-aqueous electrolyte, it is possible to effectively implement the interface resistance reduction and side reaction suppression. If the content of the additive is less than 2.5% by weight, the effect of improving the physical properties of the secondary battery is insignificant, and if it exceeds 4.5% by weight, the change in battery thickness due to the suppression of gas generation may be suppressed because the additive is included in excess, Increasing resistance in the electrolyte may deteriorate capacity and life characteristics.
또한, 본 발명의 리튬 이차전지용 비수전해액은 가스 저감 효과 및 고온 내구성 개선 효과를 증대시키기 위하여, 비닐렌 카보네이트 (VC), 비닐에틸렌 카보네이트, 플루오로에틸렌 카보네이트, 에틸렌 설페이트(Esa) 및 프로판 설톤(PS)으로 이루어진 군으로부터 선택된 적어도 하나 이상의 SEI 막 형성용 첨가제를 추가로 포함할 수 있다.In addition, the nonaqueous electrolyte solution for lithium secondary batteries of the present invention is used to increase the gas reduction effect and the high temperature durability improvement effect, vinylene carbonate (VC), vinylethylene carbonate, fluoroethylene carbonate, ethylene sulfate (Esa) and propane sultone (PS). It may further include at least one additive for forming the SEI film selected from the group consisting of).
상기 SEI 막 형성용 첨가제는 비수전해액 전체 중량을 기준으로 0.1 중량% 이상, 적어도 0.1 중량% 내지 2 중량%로 포함될 수 있다. 만약, 상기 제2 첨가제의 함량이 2 중량%를 초과하는 경우 비수전해액 내에 전체적으로 첨가제가 과량 사용되기 때문에 저항 증가와 이에 따른 용량 저하를 야기한다.The additive for forming the SEI film may be included in an amount of 0.1 wt% or more and at least 0.1 wt% to 2 wt% based on the total weight of the nonaqueous electrolyte. If the content of the second additive exceeds 2% by weight, the additive is used in the nonaqueous electrolyte as a whole, causing an increase in resistance and a decrease in capacity.
이 외에도 필요에 따라서, 본 발명의 비수전해액은 충방전 특성, 난연성 개선 등을 목적으로 통상적으로 알려진 전해액 첨가제, 구체적으로 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 및 삼염화 알루미늄으로 이루어진 군으로부터 선택된 적어도 하나 이상의 부가적 첨가제를 추가로 포함할 수 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 또는 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함할 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄소 가스를 더 포함할 수도 있으며, FEC(Fluoro-Ethylene Carbonate), PRS(1,3-Propene sultone) 등을 더 포함할 수 있다.In addition, if necessary, the non-aqueous electrolyte of the present invention is an electrolyte additive commonly known for the purpose of improving charge and discharge characteristics, flame retardancy, etc., specifically pyridine, triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme (glyme), hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy It may further comprise at least one additional additive selected from the group consisting of ethanol, and aluminum trichloride. In some cases, in order to impart nonflammability, a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics, and FEC (Fluoro-Ethylene) may be further included. Carbonate), PRS (1,3-propene sultone) may be further included.
또한, 본 발명의 일 실시예에서는In addition, in one embodiment of the present invention
음극 활물질을 포함하는 음극, 양극 활물질을 포함하는 양극 및 비수전해액을 구비하는 리튬 이차전지에 있어서,In a lithium secondary battery comprising a negative electrode containing a negative electrode active material, a positive electrode containing a positive electrode active material and a nonaqueous electrolyte,
상기 양극 활물질은 하기 화학식 4로 표시되는 화합물 및 하기 화학식 5로 표시되는 화합물 중 적어도 하나 이상을 포함하고,The positive electrode active material includes at least one or more of a compound represented by Formula 4 and a compound represented by Formula 5 below,
상기 비수전해액은 본 발명의 리튬 이차전지용 비수전해액을 포함하는 리튬 이차전지를 제공한다.The nonaqueous electrolyte provides a lithium secondary battery including the nonaqueous electrolyte for a lithium secondary battery of the present invention.
[화학식 4][Formula 4]
Li(NixCoyMnz)O2 Li (Ni x Co y Mn z ) O 2
상기 화학식 4에서, In Chemical Formula 4,
0<x<1, 0<y<1, 0<z<1, x+y+z=1 이다.0 <x <1, 0 <y <1, 0 <z <1, x + y + z = 1.
[화학식 5][Formula 5]
Li(Nix1Coy1Mnz1)O4 Li (Ni x1 Co y1 Mn z1 ) O 4
상기 화학식 5에서, In Chemical Formula 5,
0<x1<2, 0<y1<2, 0<z1<2, x1+y1+z1=2이다.0 <x1 <2, 0 <y1 <2, 0 <z1 <2, and x1 + y1 + z1 = 2.
이때, 본 발명의 리튬 이차전지를 구성하는 양극 및 음극은 통상적인 방법으로 제조되어 사용될 수 있다.At this time, the positive electrode and the negative electrode constituting the lithium secondary battery of the present invention can be manufactured and used in a conventional manner.
먼저, 상기 양극은 양극 집전체 상에 양극 합제층을 형성하여 제조할 수 있다. 상기 양극 합제층은 양극 활물질, 바인더, 도전재 및 용매 등을 포함하는 양극 슬러리를 양극 집전체 상에 코팅한 후, 건조 및 압연하여 형성할 수 있다.First, the positive electrode may be manufactured by forming a positive electrode mixture layer on a positive electrode current collector. The cathode mixture layer may be formed by coating a cathode slurry including a cathode active material, a binder, a conductive material, a solvent, and the like on a cathode current collector, followed by drying and rolling.
상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. The positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes in the battery. For example, the positive electrode current collector may be formed of stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon on the surface of aluminum or stainless steel. Surface treated with nickel, titanium, silver, or the like may be used.
또한, 상기 화학식 4 또는 5로 표시되는 양극 활물질은 3가지 성분이 서로 다른 원자가를 가지면서 초격자 구조를 가지고 있기 때문에 LiCoO2 등의 양극 활물질보다 구조적으로 훨씬 안정하다. 이러한 양극 활물질은 그 대표적인 예로 Li(Ni1/3Mn1/3Co1/3)O2, Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, 및 Li(Ni0.7Mn0.15Co0.15)O2 및 Li(Ni0.8Mn0.1Co0.1)O2 등을 들 수 있다.In addition, the cathode active material represented by Formula 4 or 5 is structurally much more stable than the cathode active material such as LiCoO 2 because the three components have different valences and have a superlattice structure. Representative examples of the cathode active material include Li (Ni 1/3 Mn 1/3 Co 1/3 ) O 2 , Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 , Li (Ni 0.5 Mn 0.3 Co 0.2 ) O 2 , Li (Ni 0.7 Mn 0.15 Co 0.15 ) O 2 , Li (Ni 0.8 Mn 0.1 Co 0.1 ) O 2 , and the like.
이 외에도 상기 양극 활물질은 필요에 따라 리튬-망간계 산화물(예를 들면, LiMnO2, LiMn2O4 등), 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1 - YMnYO2(여기에서, 0<Y<1), LiMn2 - zNizO4(여기에서, 0<Z<2) 등), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1 - Y1CoY1O2(여기에서, 0<Y1<1) 등), 리튬-망간-코발트계 산화물(예를 들면, LiCo1 -Y2MnY2O2(여기에서, 0<Y2<1), LiMn2 - z1Coz1O4(여기에서, 0<Z1<2) 등), 또는 리튬-니켈-코발트-전이금속(M) 산화물(예를 들면, Li(Nip2Coq2Mnr3MS2)O2(여기에서, M은 Al, Fe, V, Cr, Ti, Ta, Mg 및 Mo로 이루어지는 군으로부터 선택되고, p2, q2, r3 및 s2는 각각 독립적인 원소들의 원자분율로서, 0<p2<1, 0<q2<1, 0<r3<1, 0<s2<1, p2+q2+r3+s2=1이다)) 등을 더 포함할 수 있다. In addition, the cathode active material may be a lithium-manganese oxide (eg, LiMnO 2 , LiMn 2 O 4 if necessary). Etc.), lithium-cobalt-based oxides (e.g., LiCoO 2, etc.), lithium-nickel-based oxides (e.g., LiNiO 2, etc.), lithium-nickel-manganese-based oxides (e.g., LiNi 1 - Y Mn Y O 2 (where, 0 <Y <1), LiMn 2-z Ni z O 4 (where, 0 <z <2) and the like), lithium-nickel-cobalt-based oxide (for example, LiNi 1- Y1 Co Y1 O 2 (here, 0 <Y1 <1), etc., lithium-manganese-cobalt based oxides (eg, LiCo 1 -Y2 Mn Y2 O 2 (here, 0 <Y2 <1), LiMn 2 - z1 Co z1 O 4 (where 0 <Z1 <2) and the like, or lithium-nickel-cobalt-transition metal (M) oxide (eg, Li (Ni p2 Co q2 Mn r3 M S2 ) O 2 (wherein M is selected from the group consisting of Al, Fe, V, Cr, Ti, Ta, Mg and Mo, and p2, q2, r3 and s2 are atomic fractions of the independent elements, respectively, 0 <p2 < 1, 0 <q2 <1, 0 <r3 <1, 0 <s2 <1, p2 + q2 + r3 + s2 = 1), and the like.
이러한 양극 활물질로는 리튬 복합금속 산화물은 LiCoO2, LiMnO2, LiNiO2, 또는 리튬 니켈코발트알루미늄 산화물(예를 들면, Li(Ni0.8Co0.15Al0.05)O2 등) 등일 수 있다.As the cathode active material, the lithium composite metal oxide may be LiCoO 2 , LiMnO 2 , LiNiO 2 , or lithium nickel cobalt aluminum oxide (eg, Li (Ni 0.8 Co 0.15 Al 0.05 ) O 2, etc.).
상기 양극 활물질은 양극 슬러리 중 고형분의 전체 중량을 기준으로 90 중량% 내지 99 중량%, 구체적으로 90 중량% 내지 95 중량%로 포함될 수 있다. The cathode active material may be included in an amount of 90 wt% to 99 wt%, specifically 90 wt% to 95 wt%, based on the total weight of solids in the cathode slurry.
상기 양극 활물질의 함량이 90 중량% 이하인 경우, 에너지 밀도가 낮아져 용량이 저하될 수 있다.When the content of the positive electrode active material is 90% by weight or less, the energy density may be lowered and the capacity may be lowered.
상기 바인더는 양극 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌-부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.The binder is a component that assists the bonding between the positive electrode active material and the conductive material and the current collector, and is generally added in an amount of 1 to 30 wt% based on the total weight of solids in the positive electrode slurry. Examples of such binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoro Low ethylene, polyethylene, polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers, and the like.
상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 또는 서멀 블랙 등의 탄소 분말; 결정구조가 매우 발달된 천연 흑연, 인조흑연, 또는 그라파이트 등의 흑연 분말; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. The conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery. Examples of the conductive material include carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black. Carbon powder; Graphite powders such as natural graphite, artificial graphite, or graphite with very advanced crystal structure; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
상기 도전재는 통상적으로 양극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. The conductive material is typically added in an amount of 1 to 30% by weight based on the total weight of solids in the positive electrode slurry.
상기 도전재는 아세틸렌 블랙 계열인 쉐브론 케미칼 컴퍼니(Chevron Chemical Company)나 덴카 블랙(Denka Singapore Private Limited), 걸프 오일 컴퍼니(Gulf Oil Company) 제품 등), 케첸 블랙(Ketjenblack), EC 계열(아르막 컴퍼니(Armak Company) 제품), 불칸(Vulcan) XC-72(캐보트 컴퍼니(Cabot Company) 제품) 및 수퍼(Super) P(Timcal 사 제품) 등의 명칭으로 시판되고 있는 것을 사용할 수도 있다.The conductive material is Chevron Chemical Company, Denka Singapore Private Limited, Gulf Oil Company, etc., Ketjenblack, EC series (Armak Company) Armak Company), Vulcan XC-72 (Cabot Company), and Super P (manufactured by Timcal) can also be used.
상기 용매는 NMP(N-methyl-2-pyrrolidone) 등의 유기용매를 포함할 수 있으며, 상기 양극 활물질 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 양극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 슬러리 중의 고형분 농도가 10 중량% 내지 70 중량%, 바람직하게 20 중량% 내지 60 중량%가 되도록 포함될 수 있다.The solvent may include an organic solvent such as N-methyl-2-pyrrolidone (NMP), and may be used in an amount that becomes a desirable viscosity when including the positive electrode active material and optionally a binder and a conductive material. For example, the concentration of the solids in the positive electrode active material and, optionally, the slurry including the binder and the conductive material may be 10 wt% to 70 wt%, preferably 20 wt% to 60 wt%.
또한, 상기 음극은 음극 집전체 상에 음극 합제층을 형성하여 제조할 수 있다. 상기 음극 합제층은 음극 집전체 상에 음극 활물질, 바인더, 도전재 및 용매 등을 포함하는 슬러리를 코팅한 후, 건조 및 압연하여 형성할 수 있다.In addition, the negative electrode may be prepared by forming a negative electrode mixture layer on the negative electrode current collector. The negative electrode mixture layer may be formed by coating a slurry including a negative electrode active material, a binder, a conductive material, a solvent, and the like on a negative electrode current collector, followed by drying and rolling.
상기 음극 집전체는 일반적으로 3 내지 500㎛의 두께를 가진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The negative electrode current collector generally has a thickness of 3 to 500 μm. Such a negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery. For example, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like on the surface, aluminum-cadmium alloy and the like can be used. In addition, like the positive electrode current collector, fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
또한, 상기 음극 활물질은 리튬 금속, 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 탄소 물질, 금속 또는 이들 금속과 리튬의 합금, 금속 복합 산화물, 리튬을 도프 및 탈도프할 수 있는 물질, 및 전이 금속 산화물 전이 금속 산화물로 이루어진 군으로부터 선택된 적어도 하나 이상을 포함할 수 있다. In addition, the anode active material may be a lithium metal, a carbon material capable of reversibly intercalating / deintercalating lithium ions, a metal or an alloy of these metals and lithium, a metal composite oxide, and may dope and undo lithium. At least one selected from the group consisting of materials, and transition metal oxide transition metal oxides.
상기 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 탄소 물질로는, 리튬 이온 이차전지에서 일반적으로 사용되는 탄소계 음극 활물질이라면 특별히 제한 없이 사용할 수 있으며, 그 대표적인 예로는 결정질 탄소, 비정질 탄소 또는 이들을 함께 사용할 수 있다. 상기 결정질 탄소의 예로는 무정형, 판상, 인편상(flake), 구형 또는 섬유형의 천연 흑연 또는 인조 흑연과 같은 흑연을 들 수 있고, 상기 비정질 탄소의 예로는 소프트 카본(soft carbon: 저온 소성 탄소) 또는 하드 카본(hard carbon), 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다.As the carbon material capable of reversibly intercalating / deintercalating the lithium ions, any carbon-based negative electrode active material generally used in a lithium ion secondary battery may be used without particular limitation. Examples thereof include crystalline carbon, Amorphous carbons or these may be used together. Examples of the crystalline carbon include graphite such as amorphous, plate, flake, spherical or fibrous natural graphite or artificial graphite, and examples of the amorphous carbon include soft carbon (soft carbon) Or hard carbon, mesophase pitch carbide, calcined coke, or the like.
상기 금속 또는 이들 금속과 리튬의 합금으로는 Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn으로 이루어진 군에서 선택되는 금속 또는 이들 금속과 리튬의 합금이 사용될 수 있다.The metals or alloys of these metals with lithium include Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al And a metal selected from the group consisting of Sn or an alloy of these metals with lithium may be used.
상기 금속 복합 산화물로는 PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, Bi2O5, LixFe2O3(0≤≤x≤≤1), LixWO2(0≤≤x≤≤1), 및 SnxMe1-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤≤1; 1≤≤y≤≤3; 1≤≤z≤≤8) 로 이루어진 군에서 선택되는 것이 사용될 수 있다.The metal complex oxide may include PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , Bi 2 O 5 , Li x Fe 2 O 3 (0 ≦≦ x ≦≦ 1), Li x WO 2 (0 ≦≦ x ≦≦ 1), and Sn x Me 1-x Me ' y O z (Me : Mn, Fe, Pb, Ge; Me ': Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen; 0 <x≤≤1;1≤≤y≤≤3; 1 ≦≦ z ≦≦ 8) may be used.
상기 리튬을 도프 및 탈도프할 수 있는 물질로는 Si, SiOx(0 < x < 2), Si-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Si은 아님), Sn, SnO2, Sn-Y(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Sn은 아님) 등을 들 수 있고, 또한 이들 중 적어도 하나와 SiO2를 혼합하여 사용할 수도 있다. 상기 원소 Y로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, Se, Te, Po, 및 이들의 조합으로 이루어진 군에서 선택될 수 있다.Examples of the material capable of doping and undoping lithium include Si, SiO x (0 <x <2), Si-Y alloys (wherein Y is an alkali metal, an alkaline earth metal, a Group 13 element, a Group 14 element, a transition metal, Is an element selected from the group consisting of rare earth elements and combinations thereof, not Si), Sn, SnO 2 , Sn-Y (Y is an alkali metal, alkaline earth metal, group 13 element, group 14 element, transition metal, rare earth) element and an element selected from the group consisting of, Sn and the like are not), and may also use a mixture of at least one of these with SiO 2. As the element Y, Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, Se, Te, Po, and combinations thereof.
상기 전이 금속 산화물로는 리튬 함유 티타늄 복합 산화물(LTO), 바나듐 산화물, 리튬 바나듐 산화물 등을 들 수 있다.Examples of the transition metal oxide include lithium-containing titanium composite oxide (LTO), vanadium oxide, lithium vanadium oxide, and the like.
상기 음극 활물질은 음극 슬러리 중 고형분의 전체 중량을 기준으로 80 중량% 내지 99 중량%로 포함될 수 있다.The negative active material may be included in an amount of 80 wt% to 99 wt% based on the total weight of solids in the negative electrode slurry.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.The binder is a component that assists the bonding between the conductive material, the active material and the current collector, and is typically added in an amount of 1 to 30 wt% based on the total weight of solids in the negative electrode slurry. Examples of such binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, Polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers thereof, and the like.
상기 도전재는 음극 활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 20 중량%로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.The conductive material is a component for further improving the conductivity of the negative electrode active material, and may be added in an amount of 1 to 20 wt% based on the total weight of solids in the negative electrode slurry. Such a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as acetylene black, Ketjen black, channel black, furnace black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
상기 용매는 물 또는 NMP, 알코올 등의 유기용매를 포함할 수 있으며, 상기 음극 활물질 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 음극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 슬러리 중의 고형분 농도가 50 중량% 내지 75 중량%, 바람직하게 50 중량% 내지 65 중량%가 되도록 포함될 수 있다.The solvent may include an organic solvent such as water or NMP, alcohol, etc., and may be used in an amount that becomes a desirable viscosity when including the negative electrode active material and optionally a binder and a conductive material. For example, the concentration of the solids in the slurry including the negative electrode active material and, optionally, the binder and the conductive material may be 50 wt% to 75 wt%, preferably 50 wt% to 65 wt%.
또한, 본 발명의 리튬 이차전지는 분리막을 더 포함할 수 있다.In addition, the lithium secondary battery of the present invention may further include a separator.
상기 분리막은 일반적인 리튬 이차전지에 사용되는 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.The separator is a conventional porous polymer film used in general lithium secondary batteries, for example, polyolefin-based such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer The porous polymer film made of a polymer may be used alone or by laminating them, or a conventional porous nonwoven fabric, for example, a non-woven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, or the like may be used. no.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.The external shape of the lithium secondary battery of the present invention is not particularly limited, but may be cylindrical, square, pouch type, or coin type using a can.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, the present invention will be described in detail with reference to Examples. However, embodiments according to the present invention can be modified in many different forms, the scope of the present invention should not be construed as limited to the embodiments described below. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
실시예Example
실시예 1.Example 1.
(비수전해액 제조)(Non-aqueous electrolyte preparation)
1.0M LiPF6가 용해된 에틸렌 카보네이트(EC) 및 에틸메틸카보네이트(EMC) (30:70 (vol%))로 이루어진 비수성 유기용매 97.3g에 첨가제 (리튬 디플루오로포스페이트:터셔리부틸벤젠:테트라비닐실란 = 1:1.5:0.2 중량비) 2.7g을 혼합하여 비수전해액을 제조하였다 (하기 표 1 참조).Additive (Lithium difluorophosphate: tertiary butylbenzene) to 97.3 g of a non-aqueous organic solvent consisting of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (30:70 (vol%)) dissolved in 1.0 M LiPF 6 : Tetravinylsilane = 1: 1.5: 0.2 weight ratio) 2.7g was mixed to prepare a non-aqueous electrolyte (see Table 1 below).
(이차전지 제조)(Secondary Battery Manufacturing)
양극 활물질로서 Li(Ni0.6Mn0.2Co0.2)O2, 도전재로 카본 블랙(carbon black) 및 바인더로 폴리비닐리덴플루오라이드를 96:2:2 중량비로 용제인 N-메틸-2-피롤리돈 (NMP)에 첨가하여 양극 활물질 슬러리 (고형분 농도 50 중량%)를 제조하였다. 상기 양극 활물질 슬러리를 두께가 20㎛ 정도의 양극 집전체인 알루미늄(Al) 박막에 도포하고, 건조하여 양극을 제조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.N-methyl-2-pyrroli as a solvent in a weight ratio of Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 as a positive electrode active material, carbon black as a conductive material and polyvinylidene fluoride as a binder in a 96: 2: 2 weight ratio The positive electrode active material slurry (solid content concentration 50% by weight) was prepared by adding it to pig (NMP). The positive electrode active material slurry was applied to an aluminum (Al) thin film, which is a positive electrode current collector having a thickness of about 20 μm, dried to prepare a positive electrode, and then roll rolled to prepare a positive electrode.
또한, 음극 활물질로 탄소 분말(graphite), 바인더로 폴리비닐리덴플루오라이드, 도전재로 카본 블랙을 96:3:1 중량비로 용제인 NMP에 첨가하여 음극 활물질 슬러리(고형분 농도 60 중량%)를 제조하였다. 상기 음극 활물질 슬러리를 두께가 10㎛의 음극 집전체인 구리(Cu) 박막에 도포하고, 건조하여 음극을 제조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.In addition, carbon powder (graphite) as a negative electrode active material, polyvinylidene fluoride as a binder and carbon black as a conductive material were added to NMP as a solvent in a 96: 3: 1 weight ratio to prepare a negative electrode active material slurry (solid content concentration of 60% by weight). It was. The negative electrode active material slurry was applied to a copper (Cu) thin film, which is a negative electrode current collector having a thickness of 10 μm, and dried to prepare a negative electrode, followed by roll press, to prepare a negative electrode.
그 다음, 이와 같이 제조한 양극과 음극을 폴리에틸렌 다공성 필름과 함께 적층하여 통상적인 방법으로 전극조립체를 제조한 다음, 이를 전지 케이스에 넣고 상기 비수전해액을 주액한 다음, 밀봉하여 리튬 이차전지를 제조하였다.Then, the positive electrode and the negative electrode thus prepared were laminated together with a polyethylene porous film to prepare an electrode assembly by a conventional method, and then put it in a battery case and inject the non-aqueous electrolyte, and then sealed to manufacture a lithium secondary battery. .
실시예 2.Example 2.
상기 실시예 1의 비수전해액 제조 단계에서 비수성 유기용매 97.4g에 첨가제 (리튬 디플루오로포스페이트:터셔리부틸벤젠:테트라비닐실란 = 1:1.5:0.1의 중량비) 2.6g을 포함하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 1 참조).Except for including 97.4 g of the non-aqueous organic solvent in the step of preparing the non-aqueous electrolyte solution of Example 1 containing 2.6 g of an additive (weight ratio of lithium difluorophosphate: tertiary butylbenzene: tetravinylsilane = 1: 1.5: 0.1) In the same manner as in Example 1, a non-aqueous electrolyte and a secondary battery including the same were prepared (see Table 1 below).
실시예 3.Example 3.
상기 실시예 1의 비수전해액 제조 단계에서 비수성 유기용매 95.5g에 첨가제 (리튬 디플루오로포스페이트:터셔리부틸벤젠:테트라비닐실란 = 1:4:0.5 중량비) 4.5g을 포함하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 1 참조).Except for including 9 g of the non-aqueous organic solvent in the preparation step of Example 1, 4.5 g of an additive (lithium difluorophosphate: tertiary butylbenzene: tetravinylsilane = 1: 4: 0.5 weight ratio) In the same manner as in Example 1, a nonaqueous electrolyte and a secondary battery including the same were prepared (see Table 1 below).
실시예 4.Example 4.
상기 실시예 1의 비수전해액 제조 단계에서 비수성 유기용매 97.5g에 첨가제 (리튬 디플루오로포스페이트:터셔리부틸벤젠:테트라비닐실란 = 1:1:0.05) 2.5g을 포함하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 1 참조).Except that in the non-aqueous electrolyte preparation step of Example 1 97.5g of the non-aqueous organic solvent, 2.5g of additives (lithium difluorophosphate: tertiarybutylbenzene: tetravinylsilane = 1: 1: 0.05), In the same manner as in Example 1, a nonaqueous electrolyte and a secondary battery including the same were prepared (see Table 1 below).
실시예 5.Example 5.
상기 실시예 1의 비수전해액 제조 단계에서 비수성 유기용매 96.8g에 첨가제 (리튬 디플루오로포스페이트:터셔리부틸벤젠:테트라비닐실란 = 1:1.5:0.1) 2.7g을 포함하고, 프로판 설톤(PS) 0.5g을 추가로 포함하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 1 참조).In the non-aqueous electrolyte preparation step of Example 1, 96.8 g of the non-aqueous organic solvent includes 2.7 g of an additive (lithium difluorophosphate: tertiary butylbenzene: tetravinylsilane = 1: 1.5: 0.1), and propane sultone (PS A non-aqueous electrolyte and a secondary battery including the same were prepared in the same manner as in Example 1, except that 0.5 g was further included (see Table 1 below).
실시예 6.Example 6.
상기 실시예 5의 비수전해액 제조 단계에서 비수성 유기용매 95.8g에 첨가제 2.7g, SEI 막 형성용 첨가제인 프로판 설톤(PS) 0.5g, 및 에틸렌 설페이트(Esa) 1g을 포함하는 것을 제외하고는, 상기 실시예 5와 동일한 방법으로 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 1 참조).In the nonaqueous electrolyte preparation step of Example 5, except that 95.8 g of the non-aqueous organic solvent includes an additive 2.7 g, 0.5 g propane sultone (PS) as an additive for forming an SEI film, and 1 g of ethylene sulfate (Esa). In the same manner as in Example 5, a nonaqueous electrolyte and a secondary battery including the same were prepared (see Table 1 below).
실시예 7.Example 7.
상기 실시예 1의 비수전해액 제조 단계에서 비수성 유기용매 95.3g에 첨가제 (리튬 디플루오로포스페이트:터셔리부틸벤젠:테트라비닐실란 = 1:1.5:0.1 중량비) 2.7g, SEI 막 형성용 첨가제인 비닐렌 카보네이트 0.5g, 프로판 설톤(PS) 0.5g 및 에틸렌 설페이트(Esa) 1g을 포함하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 1 참조).2.7 g of an additive (lithium difluorophosphate: tertiary butylbenzene: tetravinylsilane = 1: 1.5: 0.1 weight ratio) to 95.3 g of the non-aqueous organic solvent in the non-aqueous electrolyte preparation step of Example 1, which is an additive for SEI film formation A non-aqueous electrolyte and a secondary battery including the same were prepared in the same manner as in Example 1, except that 0.5 g of vinylene carbonate, 0.5 g of propane sultone (PS), and 1 g of ethylene sulfate (Esa) were included. 1).
비교예 1.Comparative Example 1.
상기 실시예 1의 비수전해액 제조 단계에서 비수성 유기용매 97.5g에 첨가제 (리튬 디플루오로포스페이트:터셔리부틸벤젠 = 1:1.5 중량비) 2.5g을 포함하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 1 참조).Example 1 and except that in the non-aqueous electrolyte preparation step of Example 1 92.5g of the non-aqueous organic solvent includes 2.5g of additives (lithium difluorophosphate: tertiary butylbenzene = 1: 1.5 weight ratio) In the same manner, a non-aqueous electrolyte and a secondary battery including the same were prepared (see Table 1 below).
비교예 2.Comparative Example 2.
상기 실시예 1의 비수전해액 제조 단계에서 비수성 유기용매 97.5g에 첨가제 (터셔리부틸벤젠:테트라비닐실란 = 1.5:0.1 중량비) 2.5g을 포함하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 1 참조).The same method as in Example 1, except that 97.5 g of the non-aqueous organic solvent in the step of preparing the non-aqueous electrolyte solution includes 2.5 g of an additive (tertiarybutylbenzene: tetravinylsilane = 1.5: 0.1 weight ratio) To prepare a non-aqueous electrolyte and a secondary battery comprising the same (see Table 1 below).
비교예 3.Comparative Example 3.
상기 실시예 1의 비수전해액 제조 단계에서 비수성 유기용매 97.95g에 첨가제 (리튬 디플루오로포스페이트:터셔리부틸벤젠:테트라비닐실란 = 1:1:0.05 중량비) 2.05g을 포함하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 1 참조).Except for including 2.05 g of additive (lithium difluorophosphate: tertiary butylbenzene: tetravinylsilane = 1: 1: 0.05 weight ratio) to 97.95 g of the non-aqueous organic solvent in the non-aqueous electrolyte preparation step of Example 1 In the same manner as in Example 1, a nonaqueous electrolyte and a secondary battery including the same were prepared (see Table 1 below).
비교예 4.Comparative Example 4.
상기 실시예 1의 비수전해액 제조 단계에서 비수성 유기용매 94.5g에 첨가제 (리튬 디플루오로포스페이트:터셔리부틸벤젠:테트라비닐실란 = 1:4:0.5 중량비) 5.5g을 포함하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 1 참조).Except for including 5.5g of an additive (lithium difluorophosphate: tertiary butylbenzene: tetravinylsilane = 1: 4: 0.5 weight ratio) to 94.5g of the non-aqueous organic solvent in the nonaqueous electrolyte preparation step of Example 1 In the same manner as in Example 1, a nonaqueous electrolyte and a secondary battery including the same were prepared (see Table 1 below).
비교예Comparative example 5. 5.
상기 실시예 1의 비수전해액 제조 단계에서 비수성 유기용매 99.5g에 첨가제 (리튬 디플루오로포스페이트:터셔리부틸벤젠:테트라비닐실란 테트라비닐실란 = 1 : 1.5 : 0.1의 중량비) 0.5g을 포함하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 1 참조).9 g of the non-aqueous organic solvent in the non-aqueous electrolyte preparation step of Example 1, containing 0.5 g of an additive (weight ratio of lithium difluorophosphate: tertiary butylbenzene: tetravinylsilane tetravinylsilane = 1: 1.5: 0.1) Except that, a non-aqueous electrolyte and a secondary battery including the same were prepared in the same manner as in Example 1 (see Table 1 below).
비교예 6.Comparative Example 6.
상기 실시예 1의 비수전해액 제조 단계에서 비수성 유기용매 95g에 첨가제 (리튬 디플루오로포스페이트:터셔리부틸벤젠:테트라비닐실란 = 1:1.5:0.1 중량비) 5.0g을 포함하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 1 참조).Except for including 5.0 g of an additive (lithium difluorophosphate: tertiary butylbenzene: tetravinylsilane = 1: 1.5: 0.1 weight ratio) to 95 g of the non-aqueous organic solvent in the non-aqueous electrolyte preparation step of Example 1, In the same manner as in Example 1, a nonaqueous electrolyte and a secondary battery including the same were prepared (see Table 1 below).
비교예 7.Comparative Example 7.
상기 실시예 1의 비수전해액 제조 단계에서 비수성 유기용매 97.3g에 첨가제 (리튬 디플루오로포스페이트:터셔리부틸벤젠:테트라비닐실란 = 1:0.8:0.6 중량비) 2.7g을 포함하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 1 참조).Except for including 2.7 g of an additive (lithium difluorophosphate: tertiary butylbenzene: tetravinylsilane = 1: 0.8: 0.6 weight ratio) to 97.3 g of the non-aqueous organic solvent in the non-aqueous electrolyte preparation step of Example 1 In the same manner as in Example 1, a nonaqueous electrolyte and a secondary battery including the same were prepared (see Table 1 below).
비교예 8.Comparative Example 8.
상기 실시예 1의 비수전해액 제조 단계에서 비수성 유기용매 97.3g에 첨가제 (리튬 디플루오로포스페이트:터셔리부틸벤젠:테트라비닐실란 = 1:4.3:0.04 중량비) 2.7g을 포함하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 1 참조).Except for including 92.7 g of the non-aqueous organic solvent in the non-aqueous electrolyte preparation step of Example 1, 2.7 g of an additive (lithium difluorophosphate: tert-butylbenzene: tetravinylsilane = 1: 4.3: 0.04 weight ratio) In the same manner as in Example 1, a nonaqueous electrolyte and a secondary battery including the same were prepared (see Table 1 below).
비교예 9.Comparative Example 9.
상기 실시예 1의 비수전해액 제조 단계에서 비수성 유기용매 97.4g에 첨가제 (리튬 디플루오로포스페이트:터셔리부틸벤젠:테트라비닐실란 = 1:1.5:0.1 중량비) 2.6g을 포함하고, 이차전지 제조 단계에서 양극 활물질로 LiCoO2를 포함하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 1 참조).In the non-aqueous electrolyte preparation step of Example 1, 2.6.g of an additive (lithium difluorophosphate: tertiary butylbenzene: tetravinylsilane = 1: 1.5: 0.1 weight ratio) was added to 97.4 g of the non-aqueous organic solvent, and a secondary battery was prepared. A nonaqueous electrolyte and a secondary battery including the same were prepared in the same manner as in Example 1, except that LiCoO 2 was used as the cathode active material in the step (see Table 1 below).
비교예 10.Comparative Example 10.
상기 실시예 1의 비수전해액 제조 단계에서 비수성 유기용매 97.5g에 첨가제 (리튬 디플루오로포스페이트:테트라비닐실란 = 1:0.1 중량비) 2.5g을 포함하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 비수전해액 및 이를 포함하는 이차전지를 제조하였다 (하기 표 1 참조).In the step of preparing the non-aqueous electrolyte of Example 1, except that 97.5 g of the non-aqueous organic solvent includes 2.5 g of an additive (lithium difluorophosphate: tetravinylsilane = 1: 0.1 weight ratio), the same as in Example 1 By the method, a non-aqueous electrolyte and a secondary battery including the same were prepared (see Table 1 below).
실험예Experimental Example
실험예Experimental Example 1: 고온 저장 특성 비교 1: Comparison of high temperature storage characteristics
상기 실시예 1 내지 7 및 비교예 1 내지 9에서 제조된 이차전지의 초기 용량을 측정하였다. 이어서, 60℃에서 12주 동안 저장한 후, 상온에서 CC/CV 조건으로 4.25V/38 mA까지 1C로 충전한 다음, CC 조건으로 3.0V까지 1C로 방전하여, 12주 후의 용량을 측정하였다. 하기 식 1을 이용하여 용량 유지율을 산출하고, 그 결과를 하기 표 1에 나타내었다.Initial capacities of the secondary batteries prepared in Examples 1 to 7 and Comparative Examples 1 to 9 were measured. Subsequently, after storage at 60 ° C. for 12 weeks, the battery was charged at 1 C up to 4.25 V / 38 mA at CC / CV conditions at room temperature, and then discharged at 1 C up to 3.0 V under CC conditions, and the capacity after 12 weeks was measured. Capacity retention rate was calculated using Equation 1 below, and the results are shown in Table 1 below.
또한, 상기 실시예 1 내지 7 및 비교예 1 내지 9에서 제조된 이차전지의 초기 저항을 측정하였다. 이어서, 60℃에서 12주 동안 저장한 후, 상온에서 SOC 50%에서 5C로 10초간 방전한 다음, 발생하는 전압 차이로 12주 후의 저항을 측정하였다. 하기 식 2를 이용하여 저항 증가율을 산출하고, 그 결과를 하기 표 1에 나타내었다.In addition, the initial resistance of the secondary batteries prepared in Examples 1 to 7 and Comparative Examples 1 to 9 were measured. Subsequently, after storing for 12 weeks at 60 ℃, discharge for 10 seconds from 50% SOC to 5C at room temperature, the resistance after 12 weeks was measured by the voltage difference generated. Using the following equation 2 to calculate the resistance increase rate, the results are shown in Table 1 below.
또한, 실시예 1 내지 7 및 비교예 1 내지 9에서 제조된 이차전지의 초기 두께를 측정하고, 60℃에서 12주 동안 저장한 후에 변화된 전지 두께를 측정한 다음, 하기 식 3을 이용하여 전지 두께 변화율을 측정하였다.In addition, the initial thickness of the secondary batteries prepared in Examples 1 to 7 and Comparative Examples 1 to 9 was measured, and after changing the battery thickness after storage at 60 ° C. for 12 weeks, the thickness of the battery was obtained by using Equation 3 below. The rate of change was measured.
[식 1][Equation 1]
용량 유지율 = (12주 후 용량 / 초기 용량)×100 Capacity retention rate = (capacity after 12 weeks / initial capacity) × 100
[식 2][Equation 2]
저항 증가율 = ((12주 후 저항 / 초기 저항)×100)-100Resistance growth rate = ((resistance after 12 weeks / initial resistance) × 100) -100
[식 3][Equation 3]
전지 두께 변화율 = ((12주 후의 전지 두께 / 0주의 전지 두께)×100)-100Battery thickness change rate = ((battery thickness after 12 weeks / battery thickness of 0 weeks) x 100) -100
실험예Experimental Example 2: 고온 수명 특성 비교 2: high temperature life characteristics comparison
상기 실시예 1 내지 7 및 비교예 1 내지 9에서 제조된 이차전지를 45℃에서 CC/CV 조건으로 4.25V/38mA까지 1C로 충전한 다음, CC 조건으로 3.0V까지 1C로 방전하였다. 상기 충방전을 800 사이클 실시한 다음, 이차전지의 용량을 측정하였다. 이어서, 하기 식 4를 이용하여 고온 수명 특성을 산출하고, 그 결과를 하기 표 1에 나타내었다. The secondary batteries prepared in Examples 1 to 7 and Comparative Examples 1 to 9 were charged at 1C to 4.25V / 38mA at CC / CV conditions at 45 ° C., and then discharged at 1C to 3.0V under CC conditions. After 800 cycles of charging and discharging, the capacity of the secondary battery was measured. Subsequently, high temperature lifetime characteristics were calculated using Equation 4 below, and the results are shown in Table 1 below.
또한, 상기 실시예 1 내지 7 및 비교예 1 내지 9에서 제조된 이차전지를 45℃에서 800 사이클 후, 상온, SOC 50%에서 5C로 10초간 방전하여 발생하는 전압 차이를 이용하여 저항을 측정하였다. 이어서, 하기 식 5를 이용하여 저항 변화율을 산출하고, 그 결과를 하기 표 1에 나타내었다.In addition, the resistance was measured using a voltage difference generated by discharging the secondary batteries prepared in Examples 1 to 7 and Comparative Examples 1 to 9 after discharge at 5 ° C. for 10 seconds at 50 ° C. at 50 ° C. after 800 cycles. . Next, the resistance change rate was calculated using Equation 5 below, and the results are shown in Table 1 below.
[식 4][Equation 4]
용량 유지율 = (800 사이클 / 1 사이클)×100Capacity Retention Rate = (800 Cycles / 1 Cycle) × 100
[식 5][Equation 5]
저항 증가율 = ((800 사이클 저항 / 초기 사이클 저항)×100)-100Resistance Growth Rate = ((800 Cycle Resistance / Initial Cycle Resistance) × 100) -100
Figure PCTKR2017012966-appb-T000001
Figure PCTKR2017012966-appb-T000001
상기 표 1에 나타낸 바와 같이, 실시예 1 내지 7의 이차전지는 고온 저장 후 용량이 86% 이상 유지되고, 저항 증가가 21.5% 미만으로 억제되었으며, 전지 두께 증가율이 약 28.5% 이하로 우수한 것을 알 수 있다. 또한, 고온에서 800 사이클 이후의 용량이 82% 이상 유지되고, 저항 증가가 44% 미만으로 억제된 것을 알 수 있다.As shown in Table 1, the secondary batteries of Examples 1 to 7 have a capacity of 86% or more after high temperature storage, an increase in resistance was suppressed to less than 21.5%, and the increase in battery thickness was excellent at about 28.5% or less. Can be. In addition, it can be seen that the capacity after 800 cycles at a high temperature is maintained at 82% or more, and the increase in resistance is suppressed to less than 44%.
다만, 실시예 7의 이차전지의 경우, 비수전해액 내에 비교적 낮은 산화 전위를 갖는 VC를 소량 포함함으로써, 고온 저장 시에 양극에서 CO2가 발행되어 실시예 1 내지 6의 이차전지에 비하여 전지 두께가 증가하는 것을 알 수 있다. However, in the case of the secondary battery of Example 7, by containing a small amount of VC having a relatively low oxidation potential in the non-aqueous electrolyte, the CO 2 is issued at the positive electrode during high temperature storage, the battery thickness is lower than the secondary batteries of Examples 1 to 6 It can be seen that the increase.
반면에, 첨가제 성분 중 리튬 디플루오로포스페이트를 포함하지 않는 비교예 1의 이차전지와 테트라비닐실란을 포함하지 않는 비교예 2의 이차전지와, 첨가제의 함량이 2.5 중량% 미만인 비교예 3 및 5의 이차전지, 및 첨가제 함량이 4.5 중량%를 초과하는 비교예 4 및 6의 이차전지의 경우, 본 발명의 비수전해액을 구비한 실시예 1 내지 7의 리튬 이차전지와 비교하여, 고온 저장 후 저항 증가율 및 전지 두께 증가율뿐만 아니라, 고온에서 800 사이클 이후의 용량 유지율 및 저항 증가율 등 대부분에서 모두 열화된 것을 알 수 있다.On the other hand, the secondary battery of Comparative Example 1, which does not include lithium difluorophosphate, and the secondary battery of Comparative Example 2, which does not contain tetravinylsilane, and the additives of the additive components, Comparative Examples 3 and 5 In the case of the secondary batteries of Comparative Examples 4 and 6, wherein the secondary batteries and the additive content of more than 4.5% by weight, compared with the lithium secondary batteries of Examples 1 to 7 with the nonaqueous electrolyte of the present invention, resistance after high temperature storage In addition to the increase rate and the cell thickness increase rate, it can be seen that most of them are degraded in most cases such as capacity retention rate and resistance increase rate after 800 cycles at high temperature.
특히, 첨가제 성분 중 터셔리알킬벤젠이 소량 포함되고, 테트라비닐실란이 과량 포함된 비교예 7의 이차전지 및 터셔리알킬벤젠이 과량 포함되고, 테트라비닐실란이 소량 포함된 비교예 8의 이차전지의 경우, 본 발명의 비수전해액을 구비한 실시예 1 내지 7의 리튬 이차전지와 비교하여, 고온 저장 후 저항 증가율 및 전지 두께 증가율뿐만 아니라, 고온에서 800 사이클 이후의 용량 유지율 및 저항 증가율 등이 현저히 열화된 것을 알 수 있다.In particular, the secondary battery of Comparative Example 7 in which a small amount of tertiaryalkylbenzene is included in the additive component, and the tetravinylsilane is included in a large amount, and the secondary battery of Comparative Example 8 in which a large amount of tertiary alkylbenzene is included and a small amount of tetravinylsilane is included. In the case of, compared with the lithium secondary batteries of Examples 1 to 7 with the nonaqueous electrolyte of the present invention, not only the resistance increase rate and battery thickness increase rate after high temperature storage, but also the capacity retention rate and resistance increase rate after 800 cycles at a high temperature are remarkably increased. It can be seen that the degradation.
또한, 양극 활물질로 삼성분계 양극 활물질 대신 LCO를 사용한 비교예 9의 이차전지의 경우, 실시예 1 내지 7의 이차전지와 비교하여, 고온 저장 후 저항 증가율 및 전지 두께 증가율, 고온에서 800 사이클 이후의 용량 유지율 및 저항 증가율이 모두 열화된 것을 알 수 있다.In addition, in the case of the secondary battery of Comparative Example 9 using LCO instead of the ternary positive electrode active material as the positive electrode active material, compared with the secondary batteries of Examples 1 to 7, the resistance increase rate and battery thickness increase rate after high temperature storage, after 800 cycles at high temperature It can be seen that both the capacity retention rate and the resistance increase rate are deteriorated.
실험예 3.Experimental Example 3.
실시예 1 및 비교예 10에서 제조된 이차전지를 25℃에서 충전 상태로부터 1C(775mAh)/12V로 정전류/정전압(CC/CV) 조건으로 8.5V까지 각각 과충전을 하고, 그때의 전지의 온도 및 전압 변화를 측정하여 도 1 및 도 2에 나타내었다.The secondary batteries prepared in Example 1 and Comparative Example 10 were each overcharged at a constant current / constant voltage (CC / CV) condition to 8.5 V at 1 C (775 mAh) / 12 V from a charged state at 25 ° C., and the temperature of the battery at that time and Voltage changes were measured and shown in FIGS. 1 and 2.
도 1을 참고하면, 실시예 1의 이차전지는 과충전이 되는 동안 4.85V 부근에서의 전자를 소모하면서 과전류에 의한 전압 상승을 지연시켜 셀이 과충전에 이르는 것을 억제한다(도 1에서
Figure PCTKR2017012966-appb-I000005
선 참조). 따라서, 과충전 시 이차전지의 온도가 급격한 상승하는 것을 방지할 수 있다 (도 1에서
Figure PCTKR2017012966-appb-I000006
선 참조). 즉, 실시예 1의 이차전지는 온도가 130℃까지 서서히 증가된 후, 감소하는 것을 알 수 있다.
Referring to FIG. 1, the secondary battery of Example 1 delays a voltage increase caused by overcurrent while consuming electrons near 4.85V during overcharge, thereby suppressing the cell from overcharging (in FIG. 1).
Figure PCTKR2017012966-appb-I000005
Line). Therefore, it is possible to prevent the temperature of the secondary battery from rapidly increasing during overcharging (in FIG. 1).
Figure PCTKR2017012966-appb-I000006
Line). That is, it can be seen that the secondary battery of Example 1 gradually decreases after the temperature is increased to 130 ° C.
반면에, 비교예 10의 이차전지는 4.8V 부분 (약 35분) 에서 200℃까지 급격한 온도 변화가 일어나면서 (도 2의
Figure PCTKR2017012966-appb-I000007
선 참조), 전지가 과열되어 발화, 폭발되는 현상이 나타난다. 따라서, 비교예 10의 이차전지는 4.8V 부분 (약 35분) 이후 전압 측정이 불가능한 것을 알 수 있다 (도 2의
Figure PCTKR2017012966-appb-I000008
선 참조).
On the other hand, the secondary battery of Comparative Example 10 has a sudden temperature change from 4.8V portion (about 35 minutes) to 200 ℃ (Fig. 2
Figure PCTKR2017012966-appb-I000007
Line), the battery overheats, causing ignition and explosion. Therefore, it can be seen that the secondary battery of Comparative Example 10 cannot measure the voltage after the 4.8V portion (about 35 minutes) (see FIG. 2).
Figure PCTKR2017012966-appb-I000008
Line).
이러한 결과로부터, 본 발명의 비수 전해액 내에 첨가제 성분 중 하나인 터셔리알킬벤젠을 포함하지 않는 경우, 이차전지의 안정성이 저하되는 것을 알 수 있다.From these results, it can be seen that the stability of the secondary battery is lowered when tertiary benzene which is one of the additive components is not included in the nonaqueous electrolyte of the present invention.

Claims (11)

  1. 이온화 가능한 리튬염, Ionizable lithium salts,
    유기용매, 및Organic solvents, and
    첨가제를 포함하고,Contains additives,
    상기 첨가제는 리튬 디플루오로포스페이트, 하기 화학식 1로 표시되는 터셔리알킬벤젠, 테트라비닐실란을 1 : 1 내지 4 : 0.05 내지 0.5의 중량비로 포함하는 혼합 첨가제이며,The additive is a mixed additive containing lithium difluorophosphate, tertiary alkylbenzene represented by the following Chemical Formula 1, and tetravinylsilane in a weight ratio of 1: 1 to 4: 0.05 to 0.5,
    상기 첨가제는 리튬 이차전지용 비수전해액 전체 중량을 기준으로 2.5 중량% 내지 4.5 중량%로 포함되는 것인 리튬 이차전지용 비수전해액.The additive is a non-aqueous electrolyte lithium secondary battery that will be included in 2.5 to 4.5% by weight based on the total weight of the non-aqueous electrolyte for lithium secondary battery.
    [화학식 1][Formula 1]
    Figure PCTKR2017012966-appb-I000009
    Figure PCTKR2017012966-appb-I000009
    상기 화학식 1에서,In Chemical Formula 1,
    R1은 탄소수 4 내지 5의 터셔리 알킬이다.R 1 is tertiary alkyl having 4 to 5 carbon atoms.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 유기용매는 에틸렌 카보네이트, 디메틸카보네이트, 디에틸 카보네이트, 프로필렌카보네이트 및 에틸메틸카보네이트 중 적어도 2개 이상을 포함하는 혼합 용매인 것인 리튬 이차전지용 비수전해액.The organic solvent is a non-aqueous electrolyte lithium secondary battery that is a mixed solvent containing at least two or more of ethylene carbonate, dimethyl carbonate, diethyl carbonate, propylene carbonate and ethyl methyl carbonate.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 리튬 디플루오로포스페이트 : 상기 화학식 1로 표시되는 터셔리알킬벤젠 : 테트라비닐실란의 중량비는 1 : 1.5 내지 4 : 0.1 내지 0.2인 것인 리튬 이차전지용 비수전해액.The lithium difluorophosphate: tertiary alkylbenzene represented by the formula (1): the weight ratio of tetravinylsilane is 1: 1.5 to 4: 0.1 to 0.2 non-aqueous electrolyte for lithium secondary battery.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 리튬 이차전지용 비수전해액 중 리튬 디플루오로포스페이트의 농도는 1 × 10-2 ㏖/㎏ 내지 0.5㏖/㎏ 인 것인 리튬 이차전지용 비수전해액.The concentration of the lithium difluoro phosphate in the non-aqueous electrolyte for lithium secondary batteries is 1 × 10 -2 mol / kg to 0.5 mol / kg nonaqueous electrolyte for lithium secondary batteries.
  5. 청구항 1에 있어서, The method according to claim 1,
    상기 첨가제는 리튬 이차전지용 비수전해액 전체 중량을 기준으로 2.5 중량% 내지 4.3 중량%로 포함된 것인 리튬 이차전지용 비수전해액.The additive is a non-aqueous electrolyte lithium secondary battery that is contained in a 2.5 to 4.3% by weight based on the total weight of the non-aqueous electrolyte for lithium secondary battery.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 리튬 이차전지용 비수전해액은 비닐렌 카보네이트 (VC), 비닐에틸렌 카보네이트, 플루오로에틸렌 카보네이트, 에틸렌 설페이트(Esa) 및 프로판 설톤(PS)으로 이루어진 군으로부터 선택된 적어도 하나 이상의 SEI 막 형성용 첨가제를 추가로 포함하는 것인 리튬 이차전지용 비수전해액.The non-aqueous electrolyte for lithium secondary batteries may further include at least one additive for forming an SEI film selected from the group consisting of vinylene carbonate (VC), vinylethylene carbonate, fluoroethylene carbonate, ethylene sulfate (Esa) and propane sultone (PS). Non-aqueous electrolyte solution for lithium secondary batteries containing.
  7. 청구항 6에 있어서, The method according to claim 6,
    상기 SEI 막 형성용 첨가제는 비수전해액 전체 중량을 기준으로 적어도 0.1 중량% 내지 2 중량%로 포함되는 것인 리튬 이차전지용 비수전해액.The additive for forming the SEI film is a non-aqueous electrolyte solution for a lithium secondary battery that is contained in at least 0.1% by weight to 2% by weight based on the total weight of the nonaqueous electrolyte.
  8. 음극 활물질을 포함하는 음극, 양극 활물질을 포함하는 양극 및 비수전해액을 구비하는 리튬 이차전지에 있어서,In a lithium secondary battery comprising a negative electrode containing a negative electrode active material, a positive electrode containing a positive electrode active material and a nonaqueous electrolyte,
    상기 양극 활물질은 하기 화학식 4로 표시되는 화합물 및 하기 화학식 5로 표시되는 화합물 중 적어도 하나 이상을 포함하고,The positive electrode active material includes at least one or more of a compound represented by Formula 4 and a compound represented by Formula 5 below,
    상기 비수전해액은 청구항 1의 리튬 이차전지용 비수전해액을 포함하는 것인 리튬 이차전지.The non-aqueous electrolyte is a lithium secondary battery comprising a non-aqueous electrolyte for lithium secondary battery of claim 1.
    [화학식 4][Formula 4]
    Li(NixCoyMnz)O2 Li (Ni x Co y Mn z ) O 2
    상기 화학식 4에서, In Chemical Formula 4,
    0<x<1, 0<y<1, 0<z<1, x+y+z=1 이다.0 <x <1, 0 <y <1, 0 <z <1, x + y + z = 1.
    [화학식 5][Formula 5]
    Li(Nix1Coy1Mnz1)O4 Li (Ni x1 Co y1 Mn z1 ) O 4
    상기 화학식 5에서, In Chemical Formula 5,
    0<x1<2, 0<y1<2, 0<z1<2, x1+y1+z1=2이다.0 <x1 <2, 0 <y1 <2, 0 <z1 <2, and x1 + y1 + z1 = 2.
  9. 청구항 8에 있어서,The method according to claim 8,
    상기 양극 활물질은 Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2, 및 Li(Ni0.8Mn0.1Co0.1)O2로 이루어진 군으로부터 선택되는 것을 포함하는 리튬 이차전지.The cathode active material is Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 , A lithium secondary battery comprising one selected from the group consisting of Li (Ni 0.5 Mn 0.3 Co 0.2 ) O 2 , Li (Ni 0.7 Mn 0.15 Co 0.15 ) O 2 , and Li (Ni 0.8 Mn 0.1 Co 0.1 ) O 2 .
  10. 청구항 8에 있어서,The method according to claim 8,
    상기 양극 활물질은 하기 화학식 6으로 표시되는 화합물을 더 포함하는 것인 리튬 이차전지.The cathode active material further comprises a compound represented by the following formula (6).
    [화학식 6][Formula 6]
    LiMnO2 LiMnO 2
  11. 청구항 10에 있어서,The method according to claim 10,
    상기 양극 활물질은 상기 화학식 4 또는 5로 표시되는 화합물 80 중량% 내지 99 중량% 및 상기 화학식 6으로 표시되는 화합물 1 중량% 내지 20 중량%를 포함하는 것인 리튬 이차전지.The positive active material is a lithium secondary battery comprising 80% to 99% by weight of the compound represented by Formula 4 or 5 and 1% to 20% by weight of the compound represented by Formula 6.
PCT/KR2017/012966 2016-11-15 2017-11-15 Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same WO2018093152A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PL17871248T PL3396770T3 (en) 2016-11-15 2017-11-15 Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
CN201780010499.6A CN108604709B (en) 2016-11-15 2017-11-15 Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery including the same
US16/070,957 US10541447B2 (en) 2016-11-15 2017-11-15 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
EP17871248.5A EP3396770B1 (en) 2016-11-15 2017-11-15 Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160151998 2016-11-15
KR10-2016-0151998 2016-11-15
KR10-2017-0152232 2017-11-15
KR1020170152232A KR102005909B1 (en) 2016-11-15 2017-11-15 Non-aqueous liquid electrolyte for lithium secondary battery and lithium secondary battery comprising the same

Publications (1)

Publication Number Publication Date
WO2018093152A1 true WO2018093152A1 (en) 2018-05-24

Family

ID=62145667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012966 WO2018093152A1 (en) 2016-11-15 2017-11-15 Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same

Country Status (1)

Country Link
WO (1) WO2018093152A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190372161A1 (en) * 2018-05-29 2019-12-05 Wildcat Discovery Technologies, Inc. High Voltage Electrolyte Additives
CN111293361A (en) * 2018-12-10 2020-06-16 Sk新技术株式会社 Electrolyte for lithium secondary battery and lithium secondary battery including the same
CN112602211A (en) * 2018-06-20 2021-04-02 通用汽车环球科技运作有限责任公司 Water-based hybrid lithium ion capacitor battery with salt-in-water electrolyte
CN113692669A (en) * 2019-05-02 2021-11-23 株式会社Lg新能源 Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
CN114024029A (en) * 2021-10-20 2022-02-08 珠海冠宇电池股份有限公司 Non-aqueous electrolyte and battery comprising same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100015514A1 (en) * 2005-10-20 2010-01-21 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
JP2013016456A (en) * 2011-06-07 2013-01-24 Sony Corp Nonaqueous electrolyte battery, battery pack, electronic device, electric vehicle, power storage device, and electric power system
WO2013187380A1 (en) * 2012-06-13 2013-12-19 セントラル硝子株式会社 Electrolyte for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using same
KR20150006364A (en) * 2013-07-08 2015-01-16 삼성에스디아이 주식회사 Electrolyte for lithium secondary battery, and lithium secondary battery including the same
KR20160044056A (en) * 2013-09-26 2016-04-22 미쓰비시 가가꾸 가부시키가이샤 Nonaqueous electrolyte solution and nonaqueous electrolyte battery using same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100015514A1 (en) * 2005-10-20 2010-01-21 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
JP2013016456A (en) * 2011-06-07 2013-01-24 Sony Corp Nonaqueous electrolyte battery, battery pack, electronic device, electric vehicle, power storage device, and electric power system
US8986880B2 (en) 2011-06-07 2015-03-24 Sony Corporation Nonaqueous electrolyte battery, battery pack, electronic device, electric vehicle, power storage device, and power system
WO2013187380A1 (en) * 2012-06-13 2013-12-19 セントラル硝子株式会社 Electrolyte for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using same
KR20150006364A (en) * 2013-07-08 2015-01-16 삼성에스디아이 주식회사 Electrolyte for lithium secondary battery, and lithium secondary battery including the same
KR20160044056A (en) * 2013-09-26 2016-04-22 미쓰비시 가가꾸 가부시키가이샤 Nonaqueous electrolyte solution and nonaqueous electrolyte battery using same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190372161A1 (en) * 2018-05-29 2019-12-05 Wildcat Discovery Technologies, Inc. High Voltage Electrolyte Additives
US11322778B2 (en) * 2018-05-29 2022-05-03 Wildcat Discovery Technologies, Inc. High voltage electrolyte additives
US20220223913A1 (en) * 2018-05-29 2022-07-14 Wildcat Discovery Technologies, Inc. High voltage electrolyte additives
CN112602211A (en) * 2018-06-20 2021-04-02 通用汽车环球科技运作有限责任公司 Water-based hybrid lithium ion capacitor battery with salt-in-water electrolyte
CN112602211B (en) * 2018-06-20 2023-10-10 通用汽车环球科技运作有限责任公司 Water-based hybrid lithium ion capacitor battery with water-in-salt electrolyte
CN111293361A (en) * 2018-12-10 2020-06-16 Sk新技术株式会社 Electrolyte for lithium secondary battery and lithium secondary battery including the same
CN113692669A (en) * 2019-05-02 2021-11-23 株式会社Lg新能源 Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
CN113692669B (en) * 2019-05-02 2023-12-29 株式会社Lg新能源 Electrolyte for lithium secondary battery and lithium secondary battery comprising same
CN114024029A (en) * 2021-10-20 2022-02-08 珠海冠宇电池股份有限公司 Non-aqueous electrolyte and battery comprising same
CN114024029B (en) * 2021-10-20 2024-04-05 珠海冠宇电池股份有限公司 Nonaqueous electrolyte and battery comprising same

Similar Documents

Publication Publication Date Title
WO2018135822A1 (en) Additive for non-aqueous electrolyte, lithium secondary battery non-aqueous electrolyte comprising same, and lithium secondary battery
WO2019156539A1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
WO2018135889A1 (en) Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2020130575A1 (en) Electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2020067779A1 (en) Nonaqueous electrolyte and lithium secondary battery comprising same
WO2021033987A1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
WO2019151724A1 (en) Lithium secondary battery having improved high-temperature storage characteristics
WO2021167428A1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
WO2020149678A1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2018093152A1 (en) Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2019151725A1 (en) Lithium secondary battery having improved high-temperature storage characteristics
WO2019004699A1 (en) Lithium secondary battery
WO2018135890A1 (en) Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2018106078A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2019093853A1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2020153791A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2021040388A1 (en) Non-aqueous electrolytic solution, and lithium secondary battery comprising same
WO2017204599A1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
WO2020222469A1 (en) Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2021091215A1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
WO2020096411A1 (en) Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battering including same
WO2020213962A1 (en) Non-aqueous electrolytic solution additive for lithium secondary battery, and non-aqueous electrolytic solution for lithium secondary battery and lithium secondary battery, comprising same
WO2023085843A1 (en) Non-aqueous electrolyte containing non-aqueous electrolyte additive, and lithium secondary battery including same
WO2018131952A1 (en) Non-aqueous electrolyte solution and lithium secondary battery comprising same
WO2019009595A1 (en) Electrolyte additive and nonaqueous electrolyte solution for lithium secondary battery containing same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017871248

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017871248

Country of ref document: EP

Effective date: 20180725

NENP Non-entry into the national phase

Ref country code: DE