[go: up one dir, main page]

WO2018093134A2 - Device for supplying oxygen in water body - Google Patents

Device for supplying oxygen in water body Download PDF

Info

Publication number
WO2018093134A2
WO2018093134A2 PCT/KR2017/012921 KR2017012921W WO2018093134A2 WO 2018093134 A2 WO2018093134 A2 WO 2018093134A2 KR 2017012921 W KR2017012921 W KR 2017012921W WO 2018093134 A2 WO2018093134 A2 WO 2018093134A2
Authority
WO
WIPO (PCT)
Prior art keywords
water
air
bubble
pipe
water body
Prior art date
Application number
PCT/KR2017/012921
Other languages
French (fr)
Korean (ko)
Other versions
WO2018093134A3 (en
Inventor
양시천
Original Assignee
주식회사 한국아쿠오시스
양시천
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한국아쿠오시스, 양시천 filed Critical 주식회사 한국아쿠오시스
Publication of WO2018093134A2 publication Critical patent/WO2018093134A2/en
Publication of WO2018093134A3 publication Critical patent/WO2018093134A3/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/712Feed mechanisms for feeding fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • B01F21/30Workflow diagrams or layout of plants, e.g. flow charts; Details of workflow diagrams or layout of plants, e.g. controlling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C3/00Apparatus in which the axial direction of the vortex flow following a screw-thread type line remains unchanged ; Devices in which one of the two discharge ducts returns centrally through the vortex chamber, a reverse-flow vortex being prevented by bulkheads in the central discharge duct
    • B04C3/04Multiple arrangement thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C3/00Apparatus in which the axial direction of the vortex flow following a screw-thread type line remains unchanged ; Devices in which one of the two discharge ducts returns centrally through the vortex chamber, a reverse-flow vortex being prevented by bulkheads in the central discharge duct
    • B04C3/06Construction of inlets or outlets to the vortex chamber
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to an oxygen supply device for supplying dissolved oxygen (DO) into a body of water, such as water in a biological reaction tank or fish farming tank, artificial lake or natural lake.
  • DO dissolved oxygen
  • Water bodies such as water in artificial reactors or natural lakes, for biological reaction tanks to clean sewage or wastewater, artificial lakes, or natural lakes, constantly require oxygen for the respiration of aerobic living organisms.
  • the source of oxygen in the body of water is usually the oxygen present in the atmosphere at about 21%, or oxygen, a carbon assimilation product of photosynthetic organisms that survives in water, when the rate of oxygen consumption is faster than the supply rate, Life eventually dies from oxygen deficiency. Therefore, when it is necessary to avoid such a situation, it is necessary to supply dissolved oxygen to the water body by an artificial method, and in general, a method of contacting air with water is used.
  • the saturated solubility of oxygen in water upon contact with the atmosphere is only about 9 ppm under atmospheric pressure at the water temperature of 19 ° C.
  • the saturated solubility of oxygen is increased to about 18ppm, so if you want to keep the dissolved oxygen concentration as 5ppm as before,
  • the oxygen supply efficiency can be increased more than three times, which can increase the oxygen concentration in the lower part of the water body to 14 ppm under the same conditions. It also means that creatures can be much more active. However, there are problems that make it difficult to attain this effect in reality.
  • the conventional method of artificially supplying dissolved oxygen to the water body as shown in Figure 1, the air supply means (usually blower, 1) installed outside the water reservoir 9, the air conveying pipe (3) And a method of blowing air bubbles into the lower part of the target body using the diffuser 5 or the like.
  • reference numeral 8 denotes an air bubble.
  • the problem with this method is, firstly, that the deeper the water depth is required to supply the air corresponding to the pressure, so the load on the blower is increased, the energy cost increases.
  • the present invention has been made in order to solve the above problems, by circulating the upper portion of the water body to form the oxygen dissolved water while circulating to the bottom, not only can easily supply the dissolved oxygen in deep water, In addition, it is possible to generate a high concentration of oxygen dissolved water even when supplying a relatively low pressure air bubble, providing an oxygen supply device in the body that can improve the economics and efficiency of water purification system, fish farming system, etc.
  • the purpose is to.
  • the bubble mixed water induction pipe connecting the upper and lower parts of the water body constituting the water circulation pipe;
  • a bubble mixed water transfer means configured to flow on the water of the upper part of the water body through the bubble mixed water induction pipe toward the lower part of the water body through the bubble mixed water induction pipe;
  • Air supply means connected to a pipe of the bubble mixing water induction pipe to supply air;
  • Air bubble removing means connected to an end of the bubble mixed water induction pipe to separate and remove air bubbles remaining in the bubble mixed water from the bubble mixed water induction pipe;
  • An oxygen-dissolved water discharge pipe connected to the air bubble removing means and discharging water passing through the air bubble removing means toward the lower portion of the water body and constituting the water circulation pipe together with the bubble mixed water induction pipe;
  • Removal means may be provided with an air outlet in the upper portion may be configured to remove the separated air bubble to the outside of the water circulation pipe through the air outlet.
  • the air bubble removing means may be configured to separate and remove the air bubbles in a hydrocyclone manner.
  • the air bubble removing means is formed in a cylindrical structure, the bubble mixed water induction pipe is connected to the upper one side, the oxygen dissolved water discharge pipe is connected to the lower one side, the air is discharged air separated in the upper center
  • the discharge pipe can be connected.
  • the bubble mixed water induction pipe may be configured to be connected inside the water body.
  • the bubble mixed water induction pipe may be configured to be connected to the outside of the water body.
  • Fluid bubble reference means for disturbing the flow of the fluid may be provided inside the bubble mixing water induction pipe.
  • the bubble mixed water induction pipe may be connected to a raw water inlet pipe for supplying raw water from the outside of the water body, and may be provided with a treated water discharge pipe for discharging water on an upper side of the water reservoir in which the water body is stored.
  • the supply of dissolved oxygen by contacting water and air in a deep water body not only increases the oxygen molecular density in the air bubble by water pressure but also saturates solubility in proportion to the water pressure. Since it increases the rate of dissolution of oxygen to increase the efficiency of the device, thereby maintaining a higher oxygen concentration in the water can increase the activity of aerobic life in the water there are many advantages of the advantageous aspects.
  • the present invention not only can easily supply dissolved oxygen in the deep water, but also can generate high concentration of oxygen dissolved water even when supplying air bubbles of relatively low pressure, and thus, the high concentration of dissolved oxygen Since the water does not easily rise to the surface of the water and fills up from the bottom of the water body, there is an effect of improving the aerobic biological conditions inside the water body at low cost.
  • FIG. 1 is a block diagram showing the oxygen supply apparatus in the water body of the prior art.
  • FIG. 2 is a block diagram showing an oxygen supply apparatus in a water body according to the first embodiment of the present invention.
  • FIG. 3 is a block diagram showing an oxygen supply apparatus in a water body according to a second embodiment of the present invention.
  • FIG. 4 is a block diagram showing an oxygen supply apparatus in a water body according to a third embodiment of the present invention.
  • FIG. 5 is a perspective view showing a hydrocyclone air bubble removing means configured in the oxygen supply apparatus in the water body according to an embodiment of the present invention.
  • the apparatus for supplying oxygen in a water body relates to an apparatus for supplying dissolved oxygen economically to a water body requiring an aerobic state, and a first embodiment of the present invention assuming a case in which dissolved oxygen is supplied to a simple water tank.
  • Figure 2 the structure and operation of the apparatus according to the following.
  • the oxygen supply apparatus in the water body by connecting the upper and lower parts of the water body to the bubble mixed water induction pipe 20 to allow the upper side of the water flow to the lower side (20) ) And the bubble mixed water induction pipe connected to the pipe of the bubble mixed water induction pipe 20 and supplied with air or oxygen from the atmosphere to the inside of the bubble mixed water induction pipe 20 to introduce water from the upper side of the water body.
  • Air supply means 10 for forming bubbles in the inside of the bubble, and bubble mixed water conveying means for forcibly flowing the bubble mixed water in the bubble mixed water induction pipe 20 from the top to the bottom (that is, downstream) (25), air bubble removing means (30) connected to the distal end of the conduit of the bubble mixing water induction pipe (20), and oxygen dissolved water discharge pipe (40) connected to the air bubble removing means (30).
  • the bubble mixed water refers to water in which air bubbles are dispersed and mixed.
  • reference numeral 60 denotes a water container in which the water body is stored, and the size and shape of the water container 60 may be variously modified according to the implementation conditions, and in the drawing, the water container 60 may have a container shape.
  • the water container 60 is not necessarily limited thereto, any structure or storage area capable of storing conventional water bodies such as biological reaction tanks, fish farming tanks, artificial lakes, natural lakes, etc. to purify sewage or waste water, etc. Of course, it may include.
  • the water inlet 21 is preferably disposed at a position close to the upper layer of the water body.
  • Disturbing means 22 may be provided.
  • the fluid disturbing means 22 may include a configuration in which the inside of the bubble mixing water induction pipe 20 is formed in the form of a corrugated pipe so that vortices can be formed in the bubble mixing water induction pipe 20, and the bubble mixing water induction is induced.
  • the tube 20 may include at least one or more baffles provided at a predetermined position in the bubble mixing water induction tube 20 so that irregular flow may be formed.
  • the bubble mixed water induction pipe 20 is configured to be connected to the outside of the water body. That is, it is configured to be connected to the upper and lower side of the water container 60 from the outside of the water container 60.
  • the air supply means 10, the bubble mixed water conveying means 25, the air bubble removing means 30, etc., which are connected to the bubble mixed water induction pipe, are also configured outside the water container 60.
  • the air supply means 10 may be a blower driven by an electric motor, and an air diffuser 12 may be mounted at an end thereof. Since the air discharge part 12 is located closer to the upper layer of the water body can lower the load of the air supply means 10 is preferably located on the upper side of the bubble mixing water induction pipe 20.
  • the air supply means 10 is not limited to providing general air (air in air), but may be configured to be connected to an oxygen supply tank or the like to supply oxygen.
  • the bubble mixed water transfer means 25 is a means capable of forcibly flowing water in the bubble mixed water induction pipe 20 in a downward direction, and may be a pump or a spiral propeller driven by an electric motor. Located in the rear side of the unit 12, the water flowing through the air inlet 21 of the bubble and the bubble mixed water induction pipe 20 is formed through the air outlet 12, the bubble mixed water induction pipe ( 20 is preferably configured to be forced to the downward direction.
  • the bubble mixed water conveying means 25 is a unitary power unit that sucks air and mixes it with water to force flow downward, that is, the air supply means 10 and the bubble mixed water conveying means 25. It may be.
  • the bubble mixed water transfer means 25 is connected to the bubble mixed water induction pipe 20 in the form of a venturi tube, it is also possible to be configured to suck the air using the pressure difference.
  • the air bubble removing means 30 is a device for separating the air bubbles remaining in the water (see reference numeral 33 in FIG. 2) into the upper layer, and changes the flow rates of the water and the air bubble mixture that are introduced into the water.
  • the device for separating air can be in the form of a cylindrical so-called hydrocyclone.
  • the air bubble removing unit 30 is formed in a cylindrical structure, and the bubble mixing water induction pipe 20 is connected to one upper side thereof, and the oxygen dissolved water discharge pipe 40 is connected to one lower side thereof.
  • An air outlet 30a is provided at the center of the upper side, and the air outlet 30a guides and removes the air bubble separated by the hydrocyclone method to the outside of the water body via the air outlet 30a.
  • the air bubble removing means 30 is configured such that the water flowing through the inlet (bubble mixed water induction pipe 20 is connected) provided in the tangential direction on the outer wall of the cylinder is turned inside the cylinder and discharged to the outside of the cylinder. In the process of being connected to the oxygen dissolved water discharge pipe 40, the air bubbles are easily collected in the center of the swirl flow, so that the air is discharged through the air discharge pipe 31 and the flow control valve 32 provided at the top. It is preferred to be configured.
  • the air discharge pipe 31 may be easily recovered to discharge the water discharged through the air discharge pipe 31.
  • the upper end portion is configured in a curved structure so as to face the lower side (that is, the water body side), and the flow rate control valve 32 may be configured on the conduit so as to adjust the discharge air amount according to the implementation condition.
  • the oxygen-dissolved water discharge pipe 40 is preferably arranged to have a lower portion of the water body and to have one or more discharge ports 41. At the end of each discharge port 41 may be configured to include a water dispersing means 42, such as a collision plate.
  • the oxygen dissolved water discharge pipe 40 serves to discharge the dissolved oxygen water passing through the air bubble removing means 30 to various places of the lower part of the water body.
  • the bubble mixed water conveying means 25 When the bubble mixed water conveying means 25 is operated, the water in the upper layer of the water body flows into the bubble mixed water induction pipe 20 through the water inlet 21, moves downward along the pipeline, and finally at the bottom of the water body. It is discharged to the lower part of the body through the discharge port 41 disposed.
  • the air introduced into the bubble mixed water induction pipe 20 through the air supply means 10 and the air discharge unit 12 forms bubbles and flows together with the water in the bubble mixed water induction pipe 20. do.
  • the oxygen in the bubble is dissolved in the water, and as the pressure goes down toward the lower portion, the saturation solubility of the oxygen increases, so that the larger amount of oxygen melts.
  • the bubble mixed water in which oxygen is dissolved as much as possible flows into the air bubble removing means 30, and the remaining air bubbles are provided in the air discharge pipe 31 and the flow control valve 32 provided on the air bubble removing means 30.
  • the water dispersing means 42 is installed at the rear end of the discharge port 41 so that the new inflow water having high oxygen solubility spreads in the lower part of the water body, pushing the existing water upwards, and old and oxygen-consumed water. This flows back into the bubble mixed water induction pipe 20 through the water inlet 21 to be circulated and processed.
  • the air bubble removing means 30 separates the air bubbles remaining in the bubble mixture water and removes the air bubbles to the outside, the first embodiment of the present invention, together with the oxygen dissolved water in a state that the bubble mixture contains air bubbles
  • the dissolved oxygen which forms a stream of water that rises rapidly in the water body, and the oxygen dissolved water reaches the water surface 61 from the lower side of the water body for a short time is changed to the supersaturated dissolved state. It is possible to prevent the phenomenon of rapidly reducing into the atmosphere, thereby maintaining a high dissolved oxygen concentration inside the water body.
  • FIG. 3 is a block diagram showing an oxygen supply apparatus in a water body according to a second embodiment of the present invention.
  • the apparatus for supplying oxygen in a water body according to the second embodiment of the present invention is an example of application to a fish tank for aquaculture, and includes a bubble mixing water induction pipe 20, an air bubble removing means 30, and an apparatus attached thereto. It is configured differently from the configuration of the first embodiment of the present invention described above in that they are installed inside the water body, that is, inside the water container 60.
  • Bubble mixing water induction pipe 20 the air bubble removing means 30 and the apparatuses attached thereto are the same as the configuration of the first embodiment of the present invention described above only in the installation position Since the same reference numerals are used, detailed descriptions of the respective components will be omitted. In addition, since the other components may be configured identically or similarly to the configuration of the first embodiment of the present invention and the operation may be the same, the same reference numerals are given, and repeated description thereof will be omitted.
  • the bubble mixing water guide pipe 20, air bubble removing means 30, etc. can also be installed outside.
  • FIG. 4 is a block diagram showing an oxygen supply apparatus in a water body according to a third embodiment of the present invention.
  • the oxygen supply apparatus in the water body according to the third embodiment of the present invention illustrates the case where it is applied to a biological reaction tank of a sewage (or wastewater) treatment plant, and in the main components of the first embodiment of the present invention,
  • the raw water inlet pipe 51 supplied to the reaction tank 60a is connected to the bubble mixed water induction pipe 20, and the treated water outlet pipe 52 is connected to the outside of the biological reactor 60a, and the microorganism is
  • the carrier 54 is further configured inside the biological reactor 60a.
  • the raw water inlet pipe 51 is connected to supply the raw water from the upper side of the bubble mixed water induction pipe 20, the treated water discharge pipe 52 is on the upper side of the biological reaction tank (60a) which is a water reservoir in which the water body is stored. It is preferable to be connected and configured in the form of an overflow tube.
  • the raw water inlet pipe 51, the treated water outlet pipe 52, and the water inlet port 21 may be configured by variously changing their positions.
  • FIG. 4 illustrates the case in which the microbial carriers 54 are connected to each other by a string, and the present invention is not limited thereto, and may be configured in various other forms and arrangements by applying a known microbial carrier installation method. In some cases, it is also possible to omit the installation of the carrier, and instead, to separate the microorganism activated sludge in the effluent treatment water, and to circulate and recirculate the biological reactor 60a. For reference, in FIG. 4, only one line is schematically illustrated as a configuration of the microbial carrier 54.
  • the biological reaction tank (60a) may be configured to form the entire or part of the bottom surface in the shape of an inclined funnel, to connect the precipitate discharge pipe to it, to discharge the material precipitated on the floor.
  • the oxygen concentration in the biological reaction tank (60a) may be maintained at an arbitrary level by adjusting the specifications and operating capacity of the air supply means 10 and the bubble mixed water transfer means (25).
  • the amount of oxygen supplied through the discharge port 41 in the biological reactor 60a is controlled (mainly lowered), thereby maintaining the upper portion of the biological reactor 60a in an oxygen-deficient empty oxygen-free or anaerobic state.
  • Decomposition may be induced to cause the sewage to be treated to sequentially go through anaerobic decomposition of the upper part together with aerobic decomposition of the lower part in one reactor, thereby obtaining an effect of removing nitrogen components from the water.
  • the biological treatment process may be performed while continuously passing through the plurality of biological reaction vessels 60a, instead of using one biological reaction vessel 60a.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Farming Of Fish And Shellfish (AREA)

Abstract

The present invention provides a device for supplying oxygen in a water body, the device being composed of: a guiding pipe for water mixed with bubbles that connects an upper portion and a lower portion of the water body; a delivering means for water mixed with bubbles that causes the water in the upper portion of the water body to flow toward the lower portion of the water body through the guiding pipe for water mixed with bubbles; an air supplying means that supplies air to the guiding pipe for water mixed with bubbles; an air bubble removing means connected to an end of the guiding pipe for water mixed with bubbles to separate and remove air bubbles that remain in the water mixed with bubbles; and a discharging pipe for water dissolved oxygen that discharges toward the lower portion of the water body the water that has passed through the air bubble removing means. The device for supplying oxygen in a water body can improve the economic feasibility and efficiency of a purification system for water treatment, a fish culture system, and the like.

Description

수체 내 산소 공급장치Oxygen Supply in Waterbody
본 발명은 생물학적 반응조나 어류 양식용 수조 내의 물, 인공 호수 또는 자연 호수 등의 수체(body of water) 내에 용존산소(dissolved oxygen, DO)를 공급하기 위한 산소 공급장치에 관한 것이다.The present invention relates to an oxygen supply device for supplying dissolved oxygen (DO) into a body of water, such as water in a biological reaction tank or fish farming tank, artificial lake or natural lake.
하수나 폐수를 정화하기 위한 생물학적 반응조나 어류 양식용 수조 내의 물, 인공 호수 또는 자연 호수 등의 수체는 내부에 생존하는 호기성 생명체들의 호흡을 위한 산소가 끊임없이 요구된다.Water bodies, such as water in artificial reactors or natural lakes, for biological reaction tanks to clean sewage or wastewater, artificial lakes, or natural lakes, constantly require oxygen for the respiration of aerobic living organisms.
수체 내의 산소 공급원은 약 21%의 비율로 존재하는 대기 중의 산소 또는 수중에서 생존하는 광합성생물의 탄소동화작용 부산물인 산소가 되는 것이 보통인데, 산소의 소모 속도가 공급 속도보다 빠를 경우, 수체 내의 호기성 생명체들은 종국적으로 산소 결핍으로 사망에 이르게 된다. 따라서, 이러한 상황을 피할 필요가 있는 경우에는 인위적인 방법으로 수체에 용존산소를 공급하여야 하며, 통상적으로 공기를 물과 접촉시키는 방법을 사용한다. 그러나, 대기와의 접촉에 따른 물에 대한 산소의 포화용해도는 수온 19℃의 경우에 대기압 하에서 약 9ppm 정도에 불과하다. 그런데, 이것은 산소 소비자가 존재하는 어떤 수체의 용존산소 농도를 5ppm 수준으로 계속 유지하고자 수표면 직하에서 공기를 공급하는 경우를 가정했을 때 산소의 포화용해도와 수중의 산소 농도의 차이인 4ppm에 상당하는 용해 압력(ΔP)으로 공기와 물의 접촉면을 통하여 산소가 용해, 확산되어 들어가는 것을 의미하므로, 많은 양의 공기를 수체에 제공하더라도 대부분의 산소는 물 밖으로 낭비되고 수중에 용해되는 산소는 극히 제한적인 소량에 불과하게 된다. 이러한 점을 보완하기 위해서는 가능한 한 수심이 깊은 곳에서 공기와 물을 접촉시켜야 산소의 포화용해도가 상승하여 산소 공급효율을 높일 수가 있다. 예를 들어서, 수심 10m(수압을 1기압이라 가정)에서 공기와 물을 접촉시킬 경우, 산소의 포화용해도는 약 18ppm으로 높아지므로 앞에서와 같이 용존산소 농도를 5ppm 수준으로 계속 유지하고자 한다면, 13ppm에 상당하는 용해 압력차로 공기와 물의 접촉면을 통하여 산소가 용해, 확산되어 들어가는 것이 되어서 산소 공급효율을 3배 이상 높일 수 있게 되며, 이는 같은 조건 하에서 수체 하부의 산소 농도를 14ppm까지 높일 수도 있게 되어 수중 호기성 생물들의 활동성을 훨씬 높일 수 있다는 의미도 된다. 그러나, 현실적으로는 이러한 효과를 얻어내기 어렵게 하는 문제점들이 놓여 있다.The source of oxygen in the body of water is usually the oxygen present in the atmosphere at about 21%, or oxygen, a carbon assimilation product of photosynthetic organisms that survives in water, when the rate of oxygen consumption is faster than the supply rate, Life eventually dies from oxygen deficiency. Therefore, when it is necessary to avoid such a situation, it is necessary to supply dissolved oxygen to the water body by an artificial method, and in general, a method of contacting air with water is used. However, the saturated solubility of oxygen in water upon contact with the atmosphere is only about 9 ppm under atmospheric pressure at the water temperature of 19 ° C. However, this is equivalent to 4 ppm, which is the difference between the saturated solubility of oxygen and the oxygen concentration in water, assuming that the oxygen consumer supplies air directly below the surface of the water to keep the dissolved oxygen concentration in a certain body of water present at 5 ppm. The dissolution pressure (ΔP) means that oxygen is dissolved and diffused through the contact surface between air and water, so even if a large amount of air is supplied to the body, most of the oxygen is wasted out of the water and the oxygen dissolved in the water is extremely limited. It will only be. In order to compensate for this, air and water should be brought into contact with water as deep as possible to increase oxygen saturation solubility and increase oxygen supply efficiency. For example, when air and water are contacted at a depth of 10m (assuming water pressure is 1 atm), the saturated solubility of oxygen is increased to about 18ppm, so if you want to keep the dissolved oxygen concentration as 5ppm as before, By dissolving and diffusing oxygen through the contact surface between air and water with a corresponding dissolution pressure difference, the oxygen supply efficiency can be increased more than three times, which can increase the oxygen concentration in the lower part of the water body to 14 ppm under the same conditions. It also means that creatures can be much more active. However, there are problems that make it difficult to attain this effect in reality.
즉, 수체에 인위적으로 용존산소를 공급하는 통상적인 방법을 살펴보면, 도 1에 도시된 바와 같이, 수체 저장조(9) 외부에 설치된 공기 공급수단(보통 송풍장치, 1), 공기 이송관(3) 및 산기관(5) 등을 이용하여 대상 수체의 저층부로 공기방울을 불어 넣는 방식이 활용되고 있다. 도 1에서 도면부호 8은 공기포를 나타낸다.That is, the conventional method of artificially supplying dissolved oxygen to the water body, as shown in Figure 1, the air supply means (usually blower, 1) installed outside the water reservoir 9, the air conveying pipe (3) And a method of blowing air bubbles into the lower part of the target body using the diffuser 5 or the like. In FIG. 1, reference numeral 8 denotes an air bubble.
그러나, 이와 같은 방식의 문제점은, 첫 번째로, 수심이 깊어질수록 이에 상당하는 압력의 공기를 공급하여야 하므로 송풍장치에 걸리는 부하가 커져서 에너지 비용이 증가하는 것이다. 두 번째로는, 압력을 높인 공기를 공급하여 산기장치 주변부 수중의 산소 농도를 높여 놓았다손 치더라도, 이 물이 공급된 잉여 공기의 방울과 함께 빠른 속도로 상승하는 수류를 형성하여 수표층에 올라 퍼지게 됨에 따라 그 물에 작용하던 수압이 없어지므로, 산소 용해도가 대기압 하의 조건으로 회복되어, 과잉 용해되었던 산소가 다시 대기 중으로 환원되고 마는 것이다. 상기와 같은 이유 등으로 상대적으로 고압 하에서 산소의 용해도가 높아지는 유리한 효과들이 상쇄되므로, 현실적으로 깊은 수심의 수체에 공기를 공급하는 방식은 기피되고 있는 실정이다.However, the problem with this method is, firstly, that the deeper the water depth is required to supply the air corresponding to the pressure, so the load on the blower is increased, the energy cost increases. Secondly, by supplying a pressurized air to raise the oxygen concentration in the periphery of the diffuser, even if it is touched, it forms a rapidly rising stream of water with a drop of surplus air supplied to the water and rises to the check bed. As it spreads, the water pressure acting on the water disappears, so that the oxygen solubility is restored to the condition under atmospheric pressure, and the excess dissolved oxygen is reduced back to the atmosphere. Since the advantageous effects of increasing the solubility of oxygen under a relatively high pressure for the same reason are canceled out, a method of supplying air to a deep water body is practically avoided.
본 발명의 배경이 되는 기술은 다음의 특허문헌에 개시되어 있다.The background art of this invention is disclosed by the following patent document.
- 대한민국 등록실용신안공보 제20-0272578호(2002.04.18)-Republic of Korea Utility Model Registration No. 20-0272578 (2002.04.18)
- 대한민국 등록특허공보 제10-0394995호(2003.08.19)-Republic of Korea Patent Publication No. 10-0394995 (2003.08.19)
- 대한민국 등록특허공보 제10-0699931호(2007.03.28)-Republic of Korea Patent Publication No. 10-0699931 (2007.03.28)
- 대한민국 등록특허공보 제10-0941191호(2010.02.05)-Republic of Korea Patent Publication No. 10-0941191 (2010.02.05)
본 발명은, 상기한 문제점을 해결하기 위하여 안출된 것으로서, 수체의 상부 물을 하부로 순환시키면서 산소 용존수를 생성할 수 있도록 구성함으로써, 수심이 깊은 물속에도 용존산소를 용이하게 공급할 수 있을 뿐만이 아니라, 상대적으로 낮은 압력의 공기포를 공급하고도 고농도의 산소 용존수를 생성시킬 수 있게 되어, 수처리용 정화 시스템, 어류 양식용 시스템 등의 경제성 및 효율성을 향상시킬 수 있는 수체 내 산소 공급장치를 제공하는 데 목적이 있다.The present invention has been made in order to solve the above problems, by circulating the upper portion of the water body to form the oxygen dissolved water while circulating to the bottom, not only can easily supply the dissolved oxygen in deep water, In addition, it is possible to generate a high concentration of oxygen dissolved water even when supplying a relatively low pressure air bubble, providing an oxygen supply device in the body that can improve the economics and efficiency of water purification system, fish farming system, etc. The purpose is to.
상기한 기술적 과제를 실현하기 위한 본 발명에 따른 수체 내 산소 공급장치는, 수체의 상부와 하부를 연결하며 물 순환관로를 구성하는 기포혼합수 유도관과; 상기 기포혼합수 유도관의 관로 상에 구성되어 상기 기포혼합수 유도관을 통하여 수체의 상부의 물을 수체의 하부 쪽으로 유동시키는 기포혼합수 이송수단과; 상기 기포혼합수 유도관의 관로 상에 연결되어 공기를 공급하는 공기 공급수단과; 상기 기포혼합수 유도관의 끝단에 연결되어 상기 기포혼합수 유도관으로부터의 기포혼합수에 남아 있는 공기포를 분리, 제거하는 공기포 제거수단과; 상기 공기포 제거수단에 연결되어 상기 공기포 제거수단을 통과한 물을 수체의 하부 쪽으로 배출하며 상기 기포혼합수 유도관과 함께 상기 물 순환관로를 구성하는 산소용해수 배출관을 포함하고, 상기 공기포 제거수단은 상부에 공기 배출구가 구비되어 분리된 공기포를 상기 공기 배출구를 통하여 상기 물 순환관로의 외부로 제거하도록 구성될 수 있다.Oxygen supply device in the water body according to the present invention for realizing the above technical problem, the bubble mixed water induction pipe connecting the upper and lower parts of the water body constituting the water circulation pipe; A bubble mixed water transfer means configured to flow on the water of the upper part of the water body through the bubble mixed water induction pipe toward the lower part of the water body through the bubble mixed water induction pipe; Air supply means connected to a pipe of the bubble mixing water induction pipe to supply air; Air bubble removing means connected to an end of the bubble mixed water induction pipe to separate and remove air bubbles remaining in the bubble mixed water from the bubble mixed water induction pipe; An oxygen-dissolved water discharge pipe connected to the air bubble removing means and discharging water passing through the air bubble removing means toward the lower portion of the water body and constituting the water circulation pipe together with the bubble mixed water induction pipe; Removal means may be provided with an air outlet in the upper portion may be configured to remove the separated air bubble to the outside of the water circulation pipe through the air outlet.
상기 공기포 제거수단은 하이드로사이클론 방식으로 공기포를 분리, 제거하도록 구성될 수 있다.The air bubble removing means may be configured to separate and remove the air bubbles in a hydrocyclone manner.
상기 공기포 제거수단은, 원통형 구조로 형성되어, 상부 일측면에 상기 기포혼합수 유도관이 연결되고, 하부 일측면에 상기 산소용해수 배출관이 연결되며, 상면 중앙부에 분리된 공기포가 배출되는 공기 배출관이 연결될 수 있다.The air bubble removing means is formed in a cylindrical structure, the bubble mixed water induction pipe is connected to the upper one side, the oxygen dissolved water discharge pipe is connected to the lower one side, the air is discharged air separated in the upper center The discharge pipe can be connected.
상기 기포혼합수 유도관은 수체의 내부에서 연결되도록 구성될 수 있다.The bubble mixed water induction pipe may be configured to be connected inside the water body.
이와 달리, 상기 기포혼합수 유도관은 수체의 외부로 연결되도록 구성될 수도 있다.Alternatively, the bubble mixed water induction pipe may be configured to be connected to the outside of the water body.
상기 기포혼합수 유도관의 내부에는 유체의 흐름을 교란시키는 유체 도면부호수단이 구비될 수 있다.Fluid bubble reference means for disturbing the flow of the fluid may be provided inside the bubble mixing water induction pipe.
상기 기포혼합수 유도관에는 수체의 외부에서 원수를 공급하기 위한 원수 유입관이 연결되고, 상기 수체가 저장된 수체 저장조의 상부 일측에는 물을 배출하는 처리수 배출관이 구비될 수 있다.The bubble mixed water induction pipe may be connected to a raw water inlet pipe for supplying raw water from the outside of the water body, and may be provided with a treated water discharge pipe for discharging water on an upper side of the water reservoir in which the water body is stored.
본 발명에 따른 수체 내 산소 공급장치는, 수심이 깊은 수체 내에서 물과 공기를 접촉시켜서 용존산소를 공급하는 것은 수압에 의하여 공기방울 내의 산소 분자 밀도가 상승할 뿐만이 아니라 수압에 비례하여 포화용해도도 상승시키게 되므로 산소의 용해 속도를 빠르게 하여 장치의 효율을 높일 수 있고, 이에 따라서 수중 산소 농도를 보다 높게 유지시켜서 수중 호기성 생명체들의 활성도를 높일 수 있는 등 유리한 측면의 많은 효과가 있다.In the water body oxygen supply apparatus according to the present invention, the supply of dissolved oxygen by contacting water and air in a deep water body not only increases the oxygen molecular density in the air bubble by water pressure but also saturates solubility in proportion to the water pressure. Since it increases the rate of dissolution of oxygen to increase the efficiency of the device, thereby maintaining a higher oxygen concentration in the water can increase the activity of aerobic life in the water there are many advantages of the advantageous aspects.
또한, 물속에 상대적으로 저압 상태의 공기포를 주입하여 수심이 깊은 곳으로 이동시킬 수 있게 하고, 이러한 과정을 통하여 고농도로 산소를 용해시킨 수괴가 쉽사리 수체의 상부로 떠오르는 것을 방지시킴으로써 수체 내부의 용존산소 농도를 높게 유지시키는 경제적이고 효율성 높은 산소 공급장치를 제공하게 된다.In addition, by injecting a relatively low-pressure air bubble into the water to move to a deeper depth, and through this process dissolved in the water to prevent the water-dissolved mass easily dissolved in the upper part of the body of water It provides an economical and efficient oxygen supply that maintains high oxygen concentrations.
결과적으로, 본 발명은 수심이 깊은 물속에 용존산소를 용이하게 공급할 수 있을 뿐만이 아니라 상대적으로 낮은 압력의 공기포를 공급하고도 고 농도의 산소 용존수를 생성시킬 수 있으며, 이렇게 생성된 고농도 산소 용존수가 쉽게 수표면으로 떠오르지 않고 수체의 하부로부터 채워 올라가므로 저렴한 비용으로 수체 내부의 호기성 생물학적 조건을 개선시킬 수 있는 효과가 있다.As a result, the present invention not only can easily supply dissolved oxygen in the deep water, but also can generate high concentration of oxygen dissolved water even when supplying air bubbles of relatively low pressure, and thus, the high concentration of dissolved oxygen Since the water does not easily rise to the surface of the water and fills up from the bottom of the water body, there is an effect of improving the aerobic biological conditions inside the water body at low cost.
도 1은 종래기술의 수체 내 산소 공급장치가 도시된 구성도이다.1 is a block diagram showing the oxygen supply apparatus in the water body of the prior art.
도 2는 본 발명의 제1실시예에 따른 수체 내 산소 공급장치가 도시된 구성도이다.2 is a block diagram showing an oxygen supply apparatus in a water body according to the first embodiment of the present invention.
도 3은 본 발명의 제2실시예에 따른 수체 내 산소 공급장치가 도시된 구성도이다.3 is a block diagram showing an oxygen supply apparatus in a water body according to a second embodiment of the present invention.
도 4는 본 발명의 제3실시예에 따른 수체 내 산소 공급장치가 도시된 구성도이다.4 is a block diagram showing an oxygen supply apparatus in a water body according to a third embodiment of the present invention.
도 5는 본 발명의 실시예에 따른 수체 내 산소 공급장치에 구성되는 하이드로사이클론 방식 공기포 제거수단이 도시된 사시도이다.5 is a perspective view showing a hydrocyclone air bubble removing means configured in the oxygen supply apparatus in the water body according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 설명한다.Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings.
본 발명에 따른 수체 내 산소 공급장치는, 호기성 상태를 필요로 하는 수체에 경제적으로 용존산소를 공급하는 장치에 관한 것으로, 단순한 수조에 용존산소를 공급하는 경우를 가정하여 본 발명의 제1실시예에 따른 장치의 구조와 작동과정을 도 2를 참조하여 설명하면 다음과 같다.The apparatus for supplying oxygen in a water body according to the present invention relates to an apparatus for supplying dissolved oxygen economically to a water body requiring an aerobic state, and a first embodiment of the present invention assuming a case in which dissolved oxygen is supplied to a simple water tank. Referring to Figure 2 the structure and operation of the apparatus according to the following.
도 2를 참조하면, 본 발명의 제1실시예에 따른 수체 내 산소 공급장치는, 수체의 상부와 하부를 연결하여 수체의 상부 쪽 물을 하부 쪽으로 유동할 수 있게 하는 기포혼합수 유도관(20)과, 기포혼합수 유도관(20)의 관로 상에 연결되며 기포혼합수 유도관(20)의 내부로 대기 중의 공기 또는 산소를 공급하여 수체의 상부 쪽으로부터 물이 유입된 기포혼합수 유도관(20)의 내부에 기포를 형성하는 공기 공급수단(10)과, 기포혼합수 유도관(20) 내 기포혼합수를 상부에서 하부로(즉, 하류 쪽으로) 강제로 유동시키는 기포혼합수 이송수단(25)과, 기포혼합수 유도관(20)의 관로의 말단부에 연결된 공기포 제거수단(30)과, 공기포 제거수단(30)에 연결된 산소용해수 배출관(40)을 포함한다.2, the oxygen supply apparatus in the water body according to the first embodiment of the present invention, by connecting the upper and lower parts of the water body to the bubble mixed water induction pipe 20 to allow the upper side of the water flow to the lower side (20) ) And the bubble mixed water induction pipe connected to the pipe of the bubble mixed water induction pipe 20 and supplied with air or oxygen from the atmosphere to the inside of the bubble mixed water induction pipe 20 to introduce water from the upper side of the water body. Air supply means 10 for forming bubbles in the inside of the bubble, and bubble mixed water conveying means for forcibly flowing the bubble mixed water in the bubble mixed water induction pipe 20 from the top to the bottom (that is, downstream) (25), air bubble removing means (30) connected to the distal end of the conduit of the bubble mixing water induction pipe (20), and oxygen dissolved water discharge pipe (40) connected to the air bubble removing means (30).
상기에서 기포혼합수는 공기방울이 분산되어 섞여 있는 물을 말한다.In the above, the bubble mixed water refers to water in which air bubbles are dispersed and mixed.
도 2에서 도면부호 60은 수체가 저장된 수체 용기를 나타낸 것으로, 수체 용기(60)의 크기, 형태는 실시 조건에 따라 다양하게 변형하여 실시할 수 있고, 도면에는 수체 용기(60)가 용기 형상인 것으로 도시되어 있으나, 수체 용기(60)는 반드시 이에 한정되지 않으며 하수나 폐수 등을 정화시키기 위한 생물학적 반응조, 어류 양식용 수조, 인공 호수, 자연 호수 등 통상의 수체를 저장할 수 있는 모든 구조물 또는 저장 영역을 포함할 수 있음은 물론이다.In FIG. 2, reference numeral 60 denotes a water container in which the water body is stored, and the size and shape of the water container 60 may be variously modified according to the implementation conditions, and in the drawing, the water container 60 may have a container shape. Although it is shown that the water container 60 is not necessarily limited thereto, any structure or storage area capable of storing conventional water bodies such as biological reaction tanks, fish farming tanks, artificial lakes, natural lakes, etc. to purify sewage or waste water, etc. Of course, it may include.
상기와 같은 본 발명의 제1실시예에 따른 수체 내 산소 공급장치의 주요 구성 부분에 대하여 상세히 설명한다.The main components of the oxygen supply apparatus in the water body according to the first embodiment of the present invention as described above will be described in detail.
기포혼합수 유도관(20)은 물 유입구(21)가 수체의 상층부와 가까운 위치에 배치되는 것이 바람직하다. 기포혼합수 유도관(20)에는, 기포혼합수 유도관(20) 내에 물 유입구(21)를 통하여 유입된 물과 공기 공급수단(10)에 의하여 유입된 공기가 원활히 혼합될 수 있게 유도하는 유체 교란수단(22)이 구비될 수 있다. 유체 교란수단(22)은, 기포혼합수 유도관(20) 내에 와류가 형성될 수 있게 기포혼합수 유도관(20)의 내부를 주름관 형태로 마련하는 구성을 포함할 수도 있고, 기포혼합수 유도관(20) 내에 불규칙한 흐름이 형성될 수 있게 기포혼합수 유도관(20) 내 소정의 위치에 마련된 적어도 하나 이상의 방해판(baffle)을 포함할 수도 있다.In the bubble mixed water induction pipe 20, the water inlet 21 is preferably disposed at a position close to the upper layer of the water body. In the bubble mixed water induction pipe (20), the fluid to induce a smooth mixing of the water introduced through the water inlet (21) and the air introduced by the air supply means 10 in the bubble mixed water induction pipe (20) Disturbing means 22 may be provided. The fluid disturbing means 22 may include a configuration in which the inside of the bubble mixing water induction pipe 20 is formed in the form of a corrugated pipe so that vortices can be formed in the bubble mixing water induction pipe 20, and the bubble mixing water induction is induced. The tube 20 may include at least one or more baffles provided at a predetermined position in the bubble mixing water induction tube 20 so that irregular flow may be formed.
이러한 기포혼합수 유도관(20)은 수체의 외부로 연결되게 구성된다. 즉, 수체 용기(60)의 외부에서 수체 용기(60)의 상부와 하부 쪽으로 연결되게 구성되는 것이다. 물론, 기포혼합수 유도관에 연결되어 구성되는 공기 공급수단(10), 기포혼합수 이송수단(25), 공기포 제거수단(30) 등도 수체 용기(60)의 외부에 구성된다.The bubble mixed water induction pipe 20 is configured to be connected to the outside of the water body. That is, it is configured to be connected to the upper and lower side of the water container 60 from the outside of the water container 60. Of course, the air supply means 10, the bubble mixed water conveying means 25, the air bubble removing means 30, etc., which are connected to the bubble mixed water induction pipe, are also configured outside the water container 60.
다음, 공기 공급수단(10)은, 전기모터로 구동되는 송풍기일 수 있고, 말단에 공기 배출부(air diffuser, 12)가 장착될 수도 있다. 공기 배출부(12)는 수체의 상층부에 가깝게 놓일수록 공기 공급수단(10)의 부하를 낮출 수 있으므로 기포혼합수 유도관(20)의 상부 쪽에 위치되는 것이 바람직하다.Next, the air supply means 10 may be a blower driven by an electric motor, and an air diffuser 12 may be mounted at an end thereof. Since the air discharge part 12 is located closer to the upper layer of the water body can lower the load of the air supply means 10 is preferably located on the upper side of the bubble mixing water induction pipe 20.
또한, 공기 공급수단(10)은, 일반적인 공기(대기 중의 공기)를 제공하는 데 한정되지 않으며, 산소 공급탱크 등에 연결되어 산소를 공급할 수 있도록 구성되는 것도 가능하다.In addition, the air supply means 10 is not limited to providing general air (air in air), but may be configured to be connected to an oxygen supply tank or the like to supply oxygen.
다음, 기포혼합수 이송수단(25)은, 기포혼합수 유도관(20) 내에서 물을 하측방향으로 강제 유동시킬 수 있는 수단으로서, 전기모터로 구동되는 펌프나 나선 프로펠러일 수 있으며, 공기 배출부(12)의 후방 쪽에 위치되어, 공기 배출부(12)를 통하여 유입되어 형성되는 기포와 기포혼합수 유도관(20)의 물 유입구(21)를 통하여 유입되는 물을 기포혼합수 유도관(20)의 아래 방향으로 강제 이송시킬 수 있도록 구성되는 것이 바람직하다. 또한, 기포혼합수 이송수단(25)은 스스로 공기를 빨아들여서 물과 혼합하여 하측방향으로 강제 유동시키는, 즉 공기 공급수단(10)과 기포혼합수 이송수단(25)을 겸한 일체형의 동력장치일 수도 있다. 또한, 기포혼합수 이송수단(25)은 벤츄리 관 형태로 기포혼합수 유도관(20)에 연결하여, 압력차를 이용하여 공기를 빨아들이도록 구성하는 것도 가능하다.Next, the bubble mixed water transfer means 25 is a means capable of forcibly flowing water in the bubble mixed water induction pipe 20 in a downward direction, and may be a pump or a spiral propeller driven by an electric motor. Located in the rear side of the unit 12, the water flowing through the air inlet 21 of the bubble and the bubble mixed water induction pipe 20 is formed through the air outlet 12, the bubble mixed water induction pipe ( 20 is preferably configured to be forced to the downward direction. In addition, the bubble mixed water conveying means 25 is a unitary power unit that sucks air and mixes it with water to force flow downward, that is, the air supply means 10 and the bubble mixed water conveying means 25. It may be. In addition, the bubble mixed water transfer means 25 is connected to the bubble mixed water induction pipe 20 in the form of a venturi tube, it is also possible to be configured to suck the air using the pressure difference.
다음, 공기포 제거수단(bubble trap, 30)은 수중에 잔존하는 공기포(도 2의 도면부호 33 참조)를 상층으로 분리하는 장치인바, 유입되는 물과 공기방울 혼합체의 유속을 변화시켜서 물과 공기를 분리하는 장치로서 원통형의 소위 하이드로사이클론 형태일 수 있다. 도 5를 참조하면, 공기포 제거수단(30)은, 원통형 구조로 형성되어, 상부 일측면에는 기포혼합수 유도관(20)이 연결되고, 하부 일측면에는 산소용해수 배출관(40)이 연결되며, 상측의 중앙부에는 공기 배출구(30a)가 구비되고, 공기 배출구(30a)에는 하이드로사이클론 방식으로 분리된 공기포를 공기 배출구(30a)를 경유하여 수체의 외부로 유도, 제거하는 공기 배출관(31)이 연결되게 구성되는 것이 바람직하다.Next, the air bubble removing means 30 is a device for separating the air bubbles remaining in the water (see reference numeral 33 in FIG. 2) into the upper layer, and changes the flow rates of the water and the air bubble mixture that are introduced into the water. The device for separating air can be in the form of a cylindrical so-called hydrocyclone. Referring to FIG. 5, the air bubble removing unit 30 is formed in a cylindrical structure, and the bubble mixing water induction pipe 20 is connected to one upper side thereof, and the oxygen dissolved water discharge pipe 40 is connected to one lower side thereof. An air outlet 30a is provided at the center of the upper side, and the air outlet 30a guides and removes the air bubble separated by the hydrocyclone method to the outside of the water body via the air outlet 30a. ) Is preferably configured to be connected.
이와 같이 구성된 공기포 제거수단(30)은 원통형의 외벽에 접선 방향으로 구비된 유입구(기포혼합수 유도관(20)이 연결됨)를 통하여 유입되는 물은 원통의 내부에서 선회하며 원통의 외부로 배출(산소용해수 배출관(40)으로 연결됨)되는 과정에서 공기포가 선회류의 중심부에 용이하게 모여들게 되는데, 이렇게 모인 공기는 상부에 구비된 공기 배출관(31)과 유량조절밸브(32)을 통하여 배출되도록 구성되는 것이 바람직하다.The air bubble removing means 30 is configured such that the water flowing through the inlet (bubble mixed water induction pipe 20 is connected) provided in the tangential direction on the outer wall of the cylinder is turned inside the cylinder and discharged to the outside of the cylinder. In the process of being connected to the oxygen dissolved water discharge pipe 40, the air bubbles are easily collected in the center of the swirl flow, so that the air is discharged through the air discharge pipe 31 and the flow control valve 32 provided at the top. It is preferred to be configured.
여기서, 공기 배출구(30a)와 공기 배출관(31)을 통하여 공기와 함께 물이 섞여서 배출될 수 있으므로, 공기 배출관(31)을 통하여 배출되는 물을 용이하게 회수할 수 있도록, 공기 배출관(31)은 상단부가 하측(즉, 수체 쪽)을 향하도록 곡면 구조로 구성되는 것이 바람직하며, 실시 조건에 따라서 배출 공기량을 조절할 수 있도록 관로 상에 유량조절밸브(32)를 구성할 수 있다.Here, since water may be mixed with air through the air outlet 30a and the air discharge pipe 31 to be discharged, the air discharge pipe 31 may be easily recovered to discharge the water discharged through the air discharge pipe 31. It is preferable that the upper end portion is configured in a curved structure so as to face the lower side (that is, the water body side), and the flow rate control valve 32 may be configured on the conduit so as to adjust the discharge air amount according to the implementation condition.
다음, 산소용해수 배출관(40)은, 수체의 하부에 넓게 배치되고, 하나 이상의 방출구(41)를 가지도록 구성되는 것이 바람직하다. 각각의 방출구(41)의 말단에는 충돌판과 같은 물 분산수단(42)을 포함하도록 구성될 수도 있다.Next, the oxygen-dissolved water discharge pipe 40 is preferably arranged to have a lower portion of the water body and to have one or more discharge ports 41. At the end of each discharge port 41 may be configured to include a water dispersing means 42, such as a collision plate.
이러한 산소용해수 배출관(40)은 공기포 제거수단(30)을 거친 산소 용해수를 수체의 하부 여러 곳으로 배출하는 기능을 수행한다.The oxygen dissolved water discharge pipe 40 serves to discharge the dissolved oxygen water passing through the air bubble removing means 30 to various places of the lower part of the water body.
상기한 바와 같이 구성되는 본 발명의 제1실시예에 따른 수체 내 산소 공급장치의 작동에 대해 설명하면 다음과 같다.Referring to the operation of the oxygen supply apparatus in the water body according to the first embodiment of the present invention configured as described above are as follows.
기포혼합수 이송수단(25)을 작동시키면, 수체의 상층부 쪽 물이 물 유입구(21)를 통하여 기포혼합수 유도관(20) 내로 유입되어 관로를 따라 하측으로 이동된 후 최종적으로 수체의 하부에 배치된 방출구(41)를 통하여 수체의 하부로 유출된다. 이와 함께, 공기 공급수단(10)과 공기 배출부(12)를 통하여 기포혼합수 유도관(20) 내로 유입된 공기가 기포를 형성하면서 기포혼합수 유도관(20) 내에서 물과 함께 유동하게 된다.When the bubble mixed water conveying means 25 is operated, the water in the upper layer of the water body flows into the bubble mixed water induction pipe 20 through the water inlet 21, moves downward along the pipeline, and finally at the bottom of the water body. It is discharged to the lower part of the body through the discharge port 41 disposed. In addition, the air introduced into the bubble mixed water induction pipe 20 through the air supply means 10 and the air discharge unit 12 forms bubbles and flows together with the water in the bubble mixed water induction pipe 20. do.
이러한 유동 과정에서, 기포 중의 산소는 수중에 녹아 들어가는데, 하부로 갈수록 수압이 더해지므로 산소의 포화용해도가 높아져서 더 많은 양의 산소가 녹아 들어가게 된다. 이렇게 산소가 최대한 용해된 기포혼합수는, 공기포 제거수단(30)으로 유입된 후, 잔존 공기포는 공기포 제거수단(30)의 상부에 구비된 공기 배출관(31)과 유량조절밸브(32)를 통하여 배출되고, 기포가 제거된 산소 용존수는 앞서 설명한 바와 같이 수체의 하부의 방출구(41)를 통하여 유출되고 계속하여 다시 물 유입구(21)로 흘러들어가면서 순환이 이루어진다.In this flow process, the oxygen in the bubble is dissolved in the water, and as the pressure goes down toward the lower portion, the saturation solubility of the oxygen increases, so that the larger amount of oxygen melts. The bubble mixed water in which oxygen is dissolved as much as possible flows into the air bubble removing means 30, and the remaining air bubbles are provided in the air discharge pipe 31 and the flow control valve 32 provided on the air bubble removing means 30. The oxygen-dissolved water that is discharged through), and the bubble is removed, flows out through the outlet 41 of the lower part of the water body as described above, and continues to flow back into the water inlet 21 to circulate.
이때, 방출구(41)의 후단에는 물 분산수단(42)이 설치되어 높은 산소 용존도를 가진 신규 유입수가 수체의 하부에 퍼지면서 기존의 물을 상부 쪽으로 밀어올리고, 오래되고 산소가 소모된 물이 다시 물 유입구(21)를 통하여 기포혼합수 유도관(20)으로 흘러들어가면서 순환하여 처리될 수 있게 된다.At this time, the water dispersing means 42 is installed at the rear end of the discharge port 41 so that the new inflow water having high oxygen solubility spreads in the lower part of the water body, pushing the existing water upwards, and old and oxygen-consumed water. This flows back into the bubble mixed water induction pipe 20 through the water inlet 21 to be circulated and processed.
여기서, 공기포 제거수단(30)은 기포혼합수에 남아 있는 공기포를 분리하여 외부로 제거하므로, 본 발명의 제1실시예는, 기포혼합수가 공기포를 포함하는 상태로 산소용해수와 함께 수체의 하부 쪽으로 유입되는 경우, 이 기포혼합수가 수체에 빠른 속도로 상승하는 수류를 형성하고, 산소용해수가 수체의 하부 쪽으로부터 수표면(61) 쪽으로 단시간에 도달하여 과포화용해 상태로 바뀐 용존산소가 대기 중으로 급속히 환원되는 현상을 방지할 수 있고, 이에 따라 수체 내부의 용존산소 농도를 높게 유지할 수 있다.Here, since the air bubble removing means 30 separates the air bubbles remaining in the bubble mixture water and removes the air bubbles to the outside, the first embodiment of the present invention, together with the oxygen dissolved water in a state that the bubble mixture contains air bubbles When it flows into the lower part of the water body, the dissolved oxygen which forms a stream of water that rises rapidly in the water body, and the oxygen dissolved water reaches the water surface 61 from the lower side of the water body for a short time is changed to the supersaturated dissolved state. It is possible to prevent the phenomenon of rapidly reducing into the atmosphere, thereby maintaining a high dissolved oxygen concentration inside the water body.
도 3은 본 발명의 제2실시예에 따른 수체 내 산소 공급장치가 도시된 구성도이다3 is a block diagram showing an oxygen supply apparatus in a water body according to a second embodiment of the present invention.
본 발명의 제2실시예에 따른 수체 내 산소 공급장치는, 어류 양식용 수조에 적용하는 경우를 예시한 것으로서, 기포혼합수 유도관(20)과 공기포 제거수단(30) 및 이에 부속되는 장치들이 수체 내부, 즉 수체 용기(60)의 안쪽에 설치되는 점이 앞서 설명한 본 발명의 제1실시예의 구성과 다르게 구성된다.The apparatus for supplying oxygen in a water body according to the second embodiment of the present invention is an example of application to a fish tank for aquaculture, and includes a bubble mixing water induction pipe 20, an air bubble removing means 30, and an apparatus attached thereto. It is configured differently from the configuration of the first embodiment of the present invention described above in that they are installed inside the water body, that is, inside the water container 60.
수체 용기(60)의 내부에 구성되는 기포혼합수 유도관(20), 공기포 제거수단(30) 및 이에 부속되는 장치들은 설치 위치만 달리할 뿐 앞서 설명한 본 발명의 제1실시예의 구성과 동일하거나 유사하게 구성할 수 있으므로, 동일한 도면부호를 부여하고, 각 구성 부분에 대한 구체적인 설명은 생략한다. 또한, 다른 구성 부분들도 본 발명의 제1실시예의 구성과 동일 또는 유사하게 구성할 수 있고 작동 또한 동일하게 이루어질 수 있으므로 동일한 도면부호를 부여하고, 그에 대한 반복 설명은 생략한다.Bubble mixing water induction pipe 20, the air bubble removing means 30 and the apparatuses attached thereto are the same as the configuration of the first embodiment of the present invention described above only in the installation position Since the same reference numerals are used, detailed descriptions of the respective components will be omitted. In addition, since the other components may be configured identically or similarly to the configuration of the first embodiment of the present invention and the operation may be the same, the same reference numerals are given, and repeated description thereof will be omitted.
한편, 본 실시예에서와 같이 어류 양식용 수조에 적용하는 경우에도 앞서 설명한 본 발명의 제1실시예와 같이 기포혼합수 유도관(20), 공기포 제거수단(30) 등을 수체 용기(60)의 외부에 설치하여 구성하는 것도 가능하다.On the other hand, in the case of applying to the fish culture tank as in the present embodiment as shown in the first embodiment of the present invention, the bubble mixing water guide pipe 20, air bubble removing means 30, etc. It can also be installed outside.
도 4는 본 발명의 제3실시예에 따른 수체 내 산소 공급장치가 도시된 구성도이다.4 is a block diagram showing an oxygen supply apparatus in a water body according to a third embodiment of the present invention.
본 발명의 제3실시예에 따른 수체 내 산소 공급장치는, 하수(또는, 폐수) 처리장의 생물학적 반응조에 적용하는 경우를 예시한 것으로서, 앞서 설명한 본 발명의 제1실시예의 주요 구성 부분에, 생물학적 반응조(60a)로 공급되는 원수 유입관(51)이 기포혼합수 유도관(20)에 연결되어 구성되고, 처리수 유출관(52)이 생물학적 반응조(60a)의 바깥쪽으로 연결되어 구성되며, 미생물 담체(54)가 생물학적 반응조(60a)의 내부에 추가로 구성된다.The oxygen supply apparatus in the water body according to the third embodiment of the present invention illustrates the case where it is applied to a biological reaction tank of a sewage (or wastewater) treatment plant, and in the main components of the first embodiment of the present invention, The raw water inlet pipe 51 supplied to the reaction tank 60a is connected to the bubble mixed water induction pipe 20, and the treated water outlet pipe 52 is connected to the outside of the biological reactor 60a, and the microorganism is The carrier 54 is further configured inside the biological reactor 60a.
여기서, 원수 유입관(51)은 기포혼합수 유도관(20)의 상부 쪽에서 원수를 공급할 수 있도록 연결되고, 처리수 배출관(52)은 수체가 저장된 수체 저장조인 생물학적 반응조(60a)의 상부 일측에 오버플로우 관 형태로 연결되어 구성되는 것이 바람직하다.Here, the raw water inlet pipe 51 is connected to supply the raw water from the upper side of the bubble mixed water induction pipe 20, the treated water discharge pipe 52 is on the upper side of the biological reaction tank (60a) which is a water reservoir in which the water body is stored. It is preferable to be connected and configured in the form of an overflow tube.
원수 유입관(51), 처리수 유출관(52) 및 물 유입구(21) 등은 그 위치를 다양하게 변경하여 구성할 수 있다.The raw water inlet pipe 51, the treated water outlet pipe 52, and the water inlet port 21 may be configured by variously changing their positions.
도 4에서는 미생물 담체(54)가 서로 끈으로 연결되어 있는 경우를 예시하여 도시한 것으로, 이에 한정되지 않고, 공지의 미생물 담체 설치 방법 등을 적용하여 여러 가지 다른 형태와 배치로 구성 가능하며, 필요에 따라서는 담체의 설치를 생략하고 대신에 유출 처리수 중의 미생물 활성슬러지를 분리한 후에 생물학적 반응조(60a)로 순환 재투입하는 방식을 적용하는 것도 가능하다. 참고로, 도 4에서는 미생물 담체(54)의 구성을 대표적으로 1개의 라인만을 단순화하여 도시하였다.4 illustrates the case in which the microbial carriers 54 are connected to each other by a string, and the present invention is not limited thereto, and may be configured in various other forms and arrangements by applying a known microbial carrier installation method. In some cases, it is also possible to omit the installation of the carrier, and instead, to separate the microorganism activated sludge in the effluent treatment water, and to circulate and recirculate the biological reactor 60a. For reference, in FIG. 4, only one line is schematically illustrated as a configuration of the microbial carrier 54.
한편, 생물학적 반응조(60a)는 바닥면의 전체 또는 일부를 경사진 깔때기 모양으로 형성하고, 여기에 침전물 배출관을 연결하여, 바닥에 침전된 물질을 배출시킬 수 있도록 구성하는 것도 가능하다.On the other hand, the biological reaction tank (60a) may be configured to form the entire or part of the bottom surface in the shape of an inclined funnel, to connect the precipitate discharge pipe to it, to discharge the material precipitated on the floor.
이외의 구성 부분은 앞서 설명한 본 발명의 제1실시예의 구성과 동일하거나 유사하게 구성되므로, 동일한 도면부호를 부여하고, 그에 대한 반복 설명은 생략한다.Since the other components are the same as or similar to the configuration of the first embodiment of the present invention described above, the same reference numerals are given, and repeated description thereof will be omitted.
상기와 같이 구성되는 본 발명의 제3실시예에 따른 수체 내 산소 공급장치의 작동 관계를 설명하면 다음과 같다.Referring to the operation of the oxygen supply apparatus in the water body according to the third embodiment of the present invention configured as described above are as follows.
기포혼합수 이송수단(25)이 작동되면, 생물학적 반응조(60a)의 상층부의 물이 물 유입구(21)를 통하여 기포혼합수 유도관(20)으로 유입된다. 이와 함께 원수 유입관(51)을 통하여 원수를 유입시킬 경우에 기포혼합수 유도관(20)으로 원수도 유입된다.When the bubble mixed water transfer means 25 is operated, water in the upper portion of the biological reaction tank 60a is introduced into the bubble mixed water induction pipe 20 through the water inlet 21. In addition, when the raw water is introduced through the raw water inlet pipe 51, raw water is also introduced into the bubble mixed water induction pipe 20.
이후, 앞서 설명한 본 발명의 제1실시예에서와 같이 기포혼합수 유도관(20) 및 공기포 제거수단(30)을 거쳐서 수체 하부에 열려 있는 방출구(41)들을 통하여 유출되는 과정을 통하여 생물학적 반응조(60a)의 내부에 용존산소가 공급되어 수질의 정화가 이루어지고, 원수 유입관(51)을 통한 원수의 유입량과 균형을 맞추는 분량의 물이 처리수 유출관(52)을 통하여 생물학적 반응조(60a)의 외부로 유출된다.Thereafter, as in the first embodiment of the present invention described above through the bubble mixed water induction pipe 20 and the air bubble removing means 30 through the discharge port 41 is open through the discharge port 41 in the lower body of the biological Dissolved oxygen is supplied to the inside of the reaction tank 60a to purify the water quality, and a quantity of water that balances the inflow of the raw water through the raw water inlet pipe 51 is passed through the biological water tank through the treated water outlet pipe 52 ( Out of 60a).
이때, 생물학적 반응조(60a) 내부의 산소 농도는 공기 공급수단(10)과 기포혼합수 이송수단(25)의 규격과 가동 용량 등을 조절하여 임의의 수준으로 유지시킬 수도 있다.At this time, the oxygen concentration in the biological reaction tank (60a) may be maintained at an arbitrary level by adjusting the specifications and operating capacity of the air supply means 10 and the bubble mixed water transfer means (25).
또한, 본 실시예에서는 생물학적 반응조(60a) 내의 방출구(41)를 통한 산소 공급량을 조절(주로 낮춤)하여, 생물학적 반응조(60a)의 상부를 산소가 부족한 빈산소 상태 또는 무산소 상태로 유지시킴으로써 혐기성 분해를 유도하여 처리 대상 하수가 하나의 반응조 내에서 하부의 호기성 분해와 함께 상부의 혐기성 분해를 순차적으로 거치게 하여, 수중 질소 성분의 제거 효과를 얻을 수도 있다.In addition, in the present embodiment, the amount of oxygen supplied through the discharge port 41 in the biological reactor 60a is controlled (mainly lowered), thereby maintaining the upper portion of the biological reactor 60a in an oxygen-deficient empty oxygen-free or anaerobic state. Decomposition may be induced to cause the sewage to be treated to sequentially go through anaerobic decomposition of the upper part together with aerobic decomposition of the lower part in one reactor, thereby obtaining an effect of removing nitrogen components from the water.
또한, 하나의 생물학적 반응조(60a)를 이용하는데 그치지 않고, 복수개로 구비된 생물학적 반응조(60a)를 연속적으로 거치면서 생물학적 처리 과정을 진행하는 것도 가능하다.In addition, the biological treatment process may be performed while continuously passing through the plurality of biological reaction vessels 60a, instead of using one biological reaction vessel 60a.

Claims (7)

  1. 수체의 상부와 하부를 연결하며, 물 순환관로를 구성하는 기포혼합수 유도관과;A bubble mixing water induction pipe connecting the upper and lower parts of the water body and constituting the water circulation pipe;
    상기 기포혼합수 유도관의 관로 상에 구성되어 상기 기포혼합수 유도관을 통하여 수체의 상부의 물을 수체의 하부 쪽으로 유동시키는 기포혼합수 이송수단과;A bubble mixed water transfer means configured to flow on the water of the upper part of the water body through the bubble mixed water induction pipe toward the lower part of the water body through the bubble mixed water induction pipe;
    상기 기포혼합수 유도관의 관로 상에 연결되어 공기를 공급하는 공기 공급수단과;Air supply means connected to a pipe of the bubble mixing water induction pipe to supply air;
    상기 기포혼합수 유도관의 끝단에 연결되어 상기 기포혼합수 유도관으로부터의 기포혼합수에 남아 있는 공기포를 분리, 제거하는 공기포 제거수단과;Air bubble removing means connected to an end of the bubble mixed water induction pipe to separate and remove air bubbles remaining in the bubble mixed water from the bubble mixed water induction pipe;
    상기 공기포 제거수단에 연결되어 상기 공기포 제거수단을 통과한 물을 수체의 하부 쪽으로 배출하며 상기 기포혼합수 유도관과 함께 상기 물 순환관로를 구성하는 산소용해수 배출관을 포함하고,And an oxygen-dissolved water discharge pipe connected to the air bubble removing means to discharge water passing through the air bubble removing means toward the lower portion of the water body and together with the bubble mixed water induction pipe to constitute the water circulation pipe.
    상기 공기포 제거수단은 상부에 공기 배출구가 구비되어 분리된 공기포를 상기 공기 배출구를 통하여 상기 물 순환관로의 외부로 제거하는,The air bubble removing means is provided with an air outlet at the top to remove the separated air bubble to the outside of the water circulation pipe through the air outlet,
    수체 내 산소 공급장치.Oxygen supply in the body of water.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 공기포 제거수단은 하이드로사이클론 방식으로 공기포를 제거하도록 구성된 것을 특징으로 하는 수체 내 산소 공급장치.The air bubble removing means is configured to remove the air bubbles in a hydrocyclone method, the oxygen supply device in the water body.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 공기포 제거수단은, 원통형 구조로 형성되어, 상부 외벽에는 상기 기포혼합수 유도관이 접선방향으로 연결되고, 하부 외벽에는 상기 산소용해수 배출관이 접선방향으로 연결되며, 상측 중앙부의 상기 공기 배출구에는 분리된 공기포를 상기 공기 배출구를 통하여 수체의 외부로 유도, 제거하는 공기 배출관이 연결된 것을 특징으로 하는 수체 내 산소 공급장치.The air bubble removing means is formed in a cylindrical structure, the bubble mixing water induction pipe is connected to the upper outer wall in the tangential direction, the oxygen dissolved water discharge pipe is connected to the lower outer wall in the tangential direction, the air outlet of the upper center The oxygen supply apparatus in the water body, characterized in that the air discharge pipe for inducing, removing the separated air bubble through the air outlet to the outside of the water body is connected.
  4. 청구항 3에 있어서,The method according to claim 3,
    상기 공기 배출관은 말단의 출구가 수체 쪽을 향하는 구조를 가진 것을 특징으로 하는 수체 내 산소 공급장치.The air discharge pipe has an oxygen supply apparatus in the water body, characterized in that the outlet of the end toward the water body structure.
  5. 청구항 1 내지 청구항 4 중 어느 하나에 있어서,The method according to any one of claims 1 to 4,
    상기 기포혼합수 유도관은 수체의 내부 또는 수체의 외부를 경유하여 연결되게 구성된 것을 특징으로 하는 수체 내 산소 공급장치.The bubble mixing water induction pipe is an oxygen supply apparatus in the water body, characterized in that configured to be connected via the inside of the water body or the outside of the water body.
  6. 청구항 1 내지 청구항 4 중 어느 하나에 있어서,The method according to any one of claims 1 to 4,
    상기 기포혼합수 유도관의 내부에는 유체의 흐름을 교란시키는 유체 교란수단이 구비된 것을 특징으로 하는 수체 내 산소 공급장치.Intra-body oxygen supply apparatus, characterized in that the inside of the bubble mixing water induction pipe is provided with fluid disturbance means for disturbing the flow of the fluid.
  7. 청구항 1 내지 청구항 4 중 어느 하나에 있어서,The method according to any one of claims 1 to 4,
    상기 기포혼합수 유도관에는 수체의 외부에서 원수를 공급하기 위한 원수 유입관이 연결되고,The bubble mixed water induction pipe is connected to the raw water inlet pipe for supplying raw water from the outside of the water body,
    수체가 저장된 수체 저장조의 상부 일측에는 물을 배출하는 처리수 배출관이 구비된 것을 특징으로 하는 수체 내 산소 공급장치.The upper one side of the water reservoir in which the water body is stored, the oxygen supply device in the water body, characterized in that the treated water discharge pipe for discharging water.
PCT/KR2017/012921 2016-11-15 2017-11-15 Device for supplying oxygen in water body WO2018093134A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160151788A KR101767402B1 (en) 2016-11-15 2016-11-15 Oxygen supplying system for water body
KR10-2016-0151788 2016-11-15

Publications (2)

Publication Number Publication Date
WO2018093134A2 true WO2018093134A2 (en) 2018-05-24
WO2018093134A3 WO2018093134A3 (en) 2018-08-09

Family

ID=60141984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012921 WO2018093134A2 (en) 2016-11-15 2017-11-15 Device for supplying oxygen in water body

Country Status (2)

Country Link
KR (1) KR101767402B1 (en)
WO (1) WO2018093134A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101767402B1 (en) * 2016-11-15 2017-08-14 주식회사 한국아쿠오시스 Oxygen supplying system for water body

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200246068Y1 (en) * 1999-02-03 2001-09-26 임정홍 Highly Efficient Device of Oxygen Supplying and Dissolving for the Aquatic and Water & Wastewater Treatment
KR100394995B1 (en) * 2001-04-10 2003-08-19 박인구 A oxygen supplies equipment for water pool
KR100699931B1 (en) * 2005-09-29 2007-03-28 변무원 Transportation method of live fish and apparatus
KR100763272B1 (en) * 2006-07-20 2007-10-04 이순화 Low energy and high efficiency underwater oxygen supply device
KR101134099B1 (en) * 2009-12-18 2012-04-13 한국건설기술연구원 Combined Dissolved Air Flotation and Submerged Membrane Device and Method using Waste Air Reuse and such Device
KR101767402B1 (en) * 2016-11-15 2017-08-14 주식회사 한국아쿠오시스 Oxygen supplying system for water body

Also Published As

Publication number Publication date
KR101767402B1 (en) 2017-08-14
WO2018093134A3 (en) 2018-08-09

Similar Documents

Publication Publication Date Title
WO2013005913A1 (en) Composite microorganism reactor, and apparatus and method for water treatment using same
TWI472488B (en) Apparatus and method for biological sewage treatment
US5421999A (en) Floating nitrification reactor in a treatment pond
KR101671491B1 (en) Advanced water-treating apparatus and method for wastewater
CN208022785U (en) A kind of integrated sewage disposal bioreactor
KR100760816B1 (en) Sewage advanced treatment process by top and bottom arrangement of waterway type anaerobic and aerobic tank with circulation
KR100913728B1 (en) Wastewater treatment method for controlling dissolved oxygen concentration by pure oxygen and wastewater treatment device suitable for this
CN108275779A (en) A kind of integrated sewage disposal bioreactor
WO2018093134A2 (en) Device for supplying oxygen in water body
KR100882818B1 (en) Aeration tank
CN206616115U (en) A kind of two-stage A BAF textile waste processing units
KR101634292B1 (en) Wastewater treatment system using carrier based on modified a2o
KR102202456B1 (en) Biologic advanced water treatment system by utilizing pressure tank
US7041219B2 (en) Method and apparatus for enhancing wastewater treatment in lagoons
JP3263267B2 (en) Septic tank
KR101634296B1 (en) Sbr wastewater treatment system using soil microorganism
KR101163968B1 (en) The supper micro-bubble bioreactor
CN107445296B (en) Activated sludge water quality purifying device
ES2843200T3 (en) Waste water treatment device
CN218931842U (en) Sludge reduction sewage treatment system
JPS60193596A (en) Sewage treatment equipment
CN116102199B (en) Low-dissolved-oxygen sewage treatment system and method
CN204958685U (en) MBR sewage processor
KR200221815Y1 (en) Fluidized bed system for sewage treatment
CN216191737U (en) Domestic sewage integrated treatment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17871548

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17871548

Country of ref document: EP

Kind code of ref document: A2