[go: up one dir, main page]

WO2018092759A1 - 液晶配向剤、液晶配向膜及び液晶表示素子 - Google Patents

液晶配向剤、液晶配向膜及び液晶表示素子 Download PDF

Info

Publication number
WO2018092759A1
WO2018092759A1 PCT/JP2017/040902 JP2017040902W WO2018092759A1 WO 2018092759 A1 WO2018092759 A1 WO 2018092759A1 JP 2017040902 W JP2017040902 W JP 2017040902W WO 2018092759 A1 WO2018092759 A1 WO 2018092759A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
formula
diamine
polymer
Prior art date
Application number
PCT/JP2017/040902
Other languages
English (en)
French (fr)
Inventor
早紀 相馬
佳道 森本
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to KR1020197016462A priority Critical patent/KR102482055B1/ko
Priority to CN201780083384.XA priority patent/CN110178076B/zh
Priority to JP2018551634A priority patent/JP7032700B2/ja
Publication of WO2018092759A1 publication Critical patent/WO2018092759A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a novel diamine, a polymer used for a liquid crystal display element, a liquid crystal alignment agent and a liquid crystal alignment film, and a liquid crystal display element.
  • Liquid crystal display elements are currently widely used as display devices that are thin and lightweight.
  • the display characteristics of liquid crystal display elements are known to be greatly influenced by the orientation of the liquid crystal, the size of the pretilt angle of the liquid crystal, the stability of the pretilt angle, the electrical characteristics, etc.
  • the display characteristics of such liquid crystal display elements In order to improve the ratio, not only the liquid crystal material to be used, but also a liquid crystal alignment film that is in direct contact with the liquid crystal and determines the alignment state is important.
  • the liquid crystal alignment film mainly uses a resin solution of polyamic acid or polyimide as a liquid crystal alignment agent, and after applying them to the substrate, firing is performed, and the surface of the coating film is subjected to pressure by rayon or nylon cloth. It is formed by performing a so-called rubbing process.
  • the method of obtaining a liquid crystal alignment film from polyimide or its precursor polyamic acid can produce a coating film excellent in heat resistance and solvent resistance by a simple process of applying and baking a resin solution, and by rubbing Since the liquid crystal can be easily aligned, it has been widely spread industrially and has been up to now.
  • Patent Document 1 proposes to use a polyimide resin having a specific repeating unit in order to obtain a high voltage holding ratio.
  • Patent Document 2 proposes to shorten the time until the afterimage is erased by using soluble polyimide having a nitrogen atom in addition to the imide group for the afterimage phenomenon.
  • an object of the present invention is to provide a liquid crystal aligning agent, a liquid crystal alignment film, and a liquid crystal display element in which accumulated charge is quickly relaxed and transparency, solubility, and orientation are improved.
  • the liquid crystal aligning agent of the present invention that achieves the above object includes a polymer obtained from a diamine component containing a diamine having a structure represented by the following formula [1], and an organic solvent.
  • Y 1 represents an S atom or an O atom
  • * represents a site bonded to another group.
  • any hydrogen atom of the benzene ring is substituted with a monovalent organic group. May be.
  • the polymer is at least one selected from the group consisting of a polyimide precursor which is a polycondensate of a diamine having a structure represented by the formula [1] and a tetracarboxylic dianhydride and a polyimide which is an imidized product thereof.
  • the polymer is preferably.
  • diamine is represented by the following formula [2].
  • Y 1 is the same as in the above formula [1]
  • R 2 each independently represents a single bond or the structure of the following formula [3], and n is 1 to 3 Represents an integer, and any hydrogen atom in the benzene ring may be substituted with a monovalent organic group.
  • R 3 represents a single bond, —O—, —COO—, —OCO—, — (CH 2 ) 1 —, —O (CH 2 ) m O—, —CONH—, and — Represents a divalent organic group selected from NHCO- (l, m represents an integer of 1 to 5), * 1 represents a site bonded to a benzene ring in the formula [2], and * 2 represents a formula [2 ] Represents the site
  • the said polymer is at least 1 type selected from the polyimide which is a polyimide precursor containing the structural unit represented by following formula [4], and its imide compound.
  • X 1 is a tetravalent organic group derived from a tetracarboxylic acid derivative
  • W 1 is a divalent derived from a diamine having a structure represented by Formula [2] or Formula [3].
  • R 4 and R 5 represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • a 1 and A 2 each independently represent a hydrogen atom or a carbon atom having 1 to 5 carbon atoms. Represents an alkyl group, an alkenyl group having 2 to 5 carbon atoms, or an alkynyl group having 2 to 5 carbon atoms.
  • the liquid crystal alignment film of the present invention that achieves the above object is obtained from the above liquid crystal aligning agent.
  • the liquid crystal display element of the present invention that achieves the above object is characterized by comprising the above liquid crystal alignment film.
  • liquid crystal aligning agent a liquid crystal alignment film, and a liquid crystal display element, in which stored charge is quickly relaxed and transparency, solubility, and orientation are improved.
  • the liquid crystal aligning agent of this invention contains the polymer obtained from the diamine component containing the diamine which has a structure represented by following formula [1], and an organic solvent, First, diamine is demonstrated.
  • Y 1 represents an S atom or an O atom
  • * represents a site bonded to another group.
  • any hydrogen atom of the benzene ring is substituted with a monovalent organic group. May be.
  • the monovalent organic group includes a hydrocarbon group; a hydrocarbon group containing a hydroxyl group, a carboxyl group, a hydroxyl group, a thiol group, or a carboxyl group; a bonding group such as an ether bond, an ester bond, or an amide bond.
  • a hydrocarbon group linked by: a hydrocarbon group containing a silicon atom; a halogenated hydrocarbon group; an amino group; an inert group in which the amino group is protected by a carbamate-based protecting group such as a t-butoxycarbonyl group, etc. Can be mentioned.
  • the hydrocarbon group may be a straight chain, branched chain or cyclic chain, and may be a saturated hydrocarbon or an unsaturated hydrocarbon.
  • some of the hydrogen atoms of the hydrocarbon group may be replaced by carboxyl groups, hydroxyl groups, thiol groups, silicon atoms, halogen atoms, etc., and are linked by a linking group such as an ether bond, an ester bond, or an amide bond. It may be.
  • the alkylene group having 1 to 3 carbon atoms may be a straight chain, a branched chain or a cyclic chain.
  • a monovalent organic group or an alkylene group having 1 to 3 carbon atoms can be variously selected depending on applications.
  • the bonding position of the benzene ring to the five-membered ring is a carbon atom adjacent to Y 1 on the five-membered ring as shown in the following formula [1-1] from the viewpoint of charge transfer.
  • the bonding position of the benzene ring to the five-membered ring is a carbon atom adjacent to Y 1 on the five-membered ring as shown in the following formula [1-1] from the viewpoint of charge transfer.
  • the specific diamine can be represented by, for example, the following formula [1-2], and is particularly preferably a diamine represented by the following formula [1-3], and further represented by the formula [1-4]. Diamine is more preferred.
  • Y 1 is the same as in the case of the formula [1].
  • Q 1 and Q 2 are each independently a single bond or a divalent group. It is an organic group, that is, Q 1 and Q 2 may have different structures. Further, the two Q 2 in the formula [1-4] may have different structures. Furthermore, any hydrogen atom of the benzene ring may be substituted with a monovalent organic group as in the case of the above formula [1].
  • Preferred examples of the specific diamine include diamines represented by the following formula [2], and more preferred are diamines represented by the formula [2-1].
  • Y 1 in the above formula [2] and formula [2-1] is the same as that in the formula [1].
  • Two R 2 s each independently represent a single bond or a structure of the following formula [3].
  • any hydrogen atom of the benzene ring may be substituted with a monovalent organic group.
  • R 3 represents a single bond, —O—, —COO—, —OCO—, — (CH 2 ) 1 —, —O (CH 2 ) m O—, —CONH—, and — It represents a divalent organic group selected from the group consisting of NHCO—, wherein l and m each represents an integer of 1 to 5.
  • R 3 is preferably a single bond, —O—, —COO—, —OCO—, —CONH—, or —NHCO— from the viewpoint of relaxation of accumulated charge.
  • * 1 represents a site bonded to the benzene ring in the formula [2]
  • * 2 represents a site bonded to the amino group in the formula [2].
  • N in the above formula [2] and formula [2-1] represents an integer of 1 to 3. Preferably it is 1 or 2.
  • diamine represented by the formula [2] examples include diamines represented by the following formulas [4-1-1] to [4-1-12], but are not limited thereto.
  • [4-1-1], [4-1-2], and [4-1-4] to [4-1-12] are preferable from the viewpoint of relaxation of accumulated charge and orientation.
  • -1-1], [4-1-2], and [4-1-8] to [4-1-12] are particularly preferable.
  • the diamine of the present invention can be obtained by reducing a dinitro compound and converting a nitro group to an amino group as shown in the following reaction formula.
  • a diamine in which the hydrogen atom of the benzene ring and the saturated hydrocarbon portion is not substituted with a halogen atom such as a fluorine atom or a monovalent organic group other than an amino group is described as an example.
  • the method for reducing the dinitro compound is not particularly limited, and palladium-carbon, platinum oxide, Raney nickel, platinum black, rhodium-alumina, platinum sulfide carbon, etc. are used as a catalyst, such as ethyl acetate, toluene, tetrahydrofuran, dioxane, alcohols, etc.
  • a catalyst such as ethyl acetate, toluene, tetrahydrofuran, dioxane, alcohols, etc.
  • Examples of the method include reduction with hydrogen gas, hydrazine, hydrogen chloride or the like in a solvent. You may carry out under pressure using an autoclave etc. as needed.
  • an unsaturated bond site is included in the structure of the substituent that replaces the hydrogen atom of the benzene ring or saturated hydrocarbon portion, using palladium carbon, platinum carbon, or the like, the unsaturated bond site is reduced, Since there is a possibility of becoming a saturated bond, reducing conditions using a transition metal such as reduced iron, tin, or tin chloride as a catalyst are preferable.
  • the above reaction can be performed in the presence of a base.
  • the base to be used is not particularly limited as long as it can be synthesized, but inorganic bases such as potassium carbonate, sodium carbonate, cesium carbonate, sodium alkoxide, potassium alkoxide, sodium hydroxide, potassium hydroxide, sodium hydride, pyridine, dimethylaminopyridine And organic bases such as trimethylamine, triethylamine, and tributylamine.
  • a palladium catalyst such as dibenzylideneacetone palladium or diphenylphosphinoferrocene palladium, a copper catalyst, or the like is used in combination, the yield can be improved.
  • the diamine of the present invention thus obtained can be used as a raw material for polyimide precursors such as polyamic acid and polyamic acid ester, polyimide, polyurea, polyamide and the like (collectively referred to as “polymer”).
  • polymer can be used, for example, as a liquid crystal aligning agent by being dissolved in a predetermined organic solvent, but is not limited to its use.
  • the polymer containing the diamine represented by the formula [1] in the structure will be described.
  • the polymer of the present invention is obtained by using the above-described diamine of the present invention or a derivative thereof (described later), and has a structure represented by the following formula [1] derived from the diamine component.
  • Y 1 represents an S atom or an O atom
  • * represents a site bonded to another group.
  • any hydrogen atom of the benzene ring is substituted with a monovalent organic group. May be.
  • Y 1 is the same as in Formula [1] above, R 2 independently represents a single bond or the structure of Formula [3] below, and n is from 1 to Represents an integer of 3, and * 2 represents a site bonded to another group, and any hydrogen atom of the benzene ring may be substituted with a monovalent organic group.
  • R 3 represents a single bond, —O—, —COO—, —OCO—, — (CH 2 ) 1 —, —O (CH 2 ) m O—, —CONH—, and —
  • * 1 represents a site bonded to the benzene ring in formula [2]
  • * 2 represents another group Represents the site that binds to
  • the derivative of the diamine of the present invention a structure in which two or more of the above structures are connected, or a structure in which the above structures are connected through —O—, —S—, —COO— or —OCO—.
  • the structure derived from the diamine component may include a structure derived from other diamine (described later) in addition to the structure of the formula [2].
  • examples of the monovalent organic group and the alkylene group having 1 to 3 carbon atoms in the formula [2] include those similar to the formula [1].
  • the polymer of the present invention is at least one selected from a polyimide precursor containing a structural unit represented by the following formula [4] and a polyimide that is an imide compound thereof, from the viewpoint of use as a liquid crystal aligning agent. It is preferable.
  • X 1 is a tetravalent organic group derived from a tetracarboxylic acid derivative
  • W 1 is a divalent derived from a diamine having a structure represented by Formula [2] or Formula [3].
  • R 4 and R 5 represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • a 1 and A 2 each independently represent a hydrogen atom or a carbon atom having 1 to 5 carbon atoms. Represents an alkyl group, an alkenyl group having 2 to 5 carbon atoms, or an alkynyl group having 2 to 5 carbon atoms.
  • examples of the alkyl group having 1 to 5 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, and an n-pentyl group.
  • alkenyl group having 2 to 5 carbon atoms examples include vinyl group, allyl group, 1-propenyl group, 1-butenyl group, 2 -Butenyl group, 3-butenyl group, 1-pentenyl group, 2-pentenyl group, 3-pentenyl group, 4-pentenyl group and the like.
  • alkynyl group having 2 to 5 carbon atoms examples include ethynyl group, Examples include 1-propynyl group, 2-propynyl (propargyl) group, 3-butynyl group, pentynyl group and the like.
  • R 1 and R 2 are preferably a hydrogen atom, a methyl group or an ethyl group, more preferably a hydrogen atom or a methyl group, and liquid crystal orientation.
  • a 1 and A 2 are preferably a hydrogen atom or a methyl group.
  • X 1 is not particularly limited as long as it is a tetravalent organic group derived from a tetracarboxylic acid derivative. Moreover, X 1 is coatability solubility and liquid crystal alignment agent in the solvent of the polymer liquid crystal orientation in the case where the liquid crystal alignment film, the voltage holding ratio, such stored charge, the degree of properties required Depending on the selection, one type may be used in the same polymer, or two or more types may be mixed.
  • X 1 is not only a tetracarboxylic dianhydride but also a tetracarboxylic acid, tetracarboxylic acid dihalide compound, tetracarboxylic acid dialkyl ester compound or tetracarboxylic acid dialkyl ester dihalide compound which is a tetracarboxylic acid derivative thereof. it can.
  • the tetracarboxylic dianhydride or derivative thereof it is more preferable to use at least one selected from tetracarboxylic dianhydrides represented by the following formula [5] or derivatives thereof.
  • V 1 is a tetravalent organic group having an alicyclic structure, and the structure is not particularly limited. Specific examples include the following formula [V 1 -1] to formula [V 1 -44].
  • R 7 to R 27 each independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, or 2 to 2 carbon atoms.
  • R 7 to R 27 are preferably a hydrogen atom, a halogen atom, a methyl group or an ethyl group, and more preferably a hydrogen atom or a methyl group.
  • Specific structures of the formula [V 1 -1] include structures represented by the following formulas [V 1 -1-1] to [V 1 -1-6].
  • a structure represented by the following formula [V 1 -1-1] is particularly preferable from the viewpoint of liquid crystal alignment and photoreaction sensitivity.
  • W 1 is not particularly limited as long as W 1 is a divalent organic group derived from a diamine having a structure represented by formula [1] or formula [2]. More than one type may be mixed.
  • W 1 corresponds to the structure of the diamine component used in the present invention and has a specific structure having a structure represented by the formula [1] (for example, the following formula [W 1 -1] to formula [W 1 -12]. At least one structure selected from the group consisting of compounds represented by
  • W 1 it is not always necessary that all of W 1 have a structure corresponding to the diamine.
  • a part of W 1 may contain a structure corresponding to a diamine other than the diamine (other diamine).
  • the structure corresponding to the other diamine (hereinafter referred to as “structure W 2 ”) can be generalized as represented by the following formula [6]. As the A 1 and A 2 in the formula [6] are the same as those for the formula [4].
  • W 2 represented by the formula [6] is illustrated as represented by the following formula [W 2 -1] to formula [W 2 -173].
  • the Boc group in the formula [W 2 -168], the formula [W 2 -169], the formula [W 2 -172] and the formula [W 2 -173] is a tert-butoxycarbonyl group represented by the following formula. Represents.
  • the tert-butoxycarbonyl group is also referred to as a Boc group.
  • the structural unit represented by the formula [4] It is preferable that it is 10 mol% or more with respect to the sum total of [6], More preferably, it is 20 mol% or more, Most preferably, it is 30 mol% or more.
  • the molecular weight of the polyimide precursor or polyimide, which is a polymer contained in the liquid crystal aligning agent of the present invention, is the coating film (liquid crystal aligning film) when the liquid crystal aligning film is obtained from the liquid crystal aligning agent containing the polymer.
  • the weight average molecular weight measured by GPC (Gel Permeation Chromatography) method is preferably 2,000 to 500,000 in consideration of the strength of the film, the workability during coating film formation, and the uniformity of the coating film. More preferably from 10,000 to 300,000, and even more preferably from 10,000 to 100,000.
  • the polymer containing the structural unit represented by the formula [4] is a polyamic acid that is a polyimide precursor
  • the polymer includes a tetracarboxylic dianhydride that is a tetracarboxylic acid derivative and a diamine component.
  • a known synthesis method can be used.
  • the synthesis method is a method in which a tetracarboxylic dianhydride and a diamine component are reacted in an organic solvent. Such a method is advantageous in that it proceeds relatively easily in an organic solvent and no by-products are generated.
  • the organic solvent used in the above reaction is not particularly limited as long as the produced polyamic acid (polymer) can be dissolved.
  • N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2 -Pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam dimethyl sulfoxide, tetramethyl urea, pyridine, dimethyl sulfone, hexamethyl sulfoxide, ⁇ -butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethyl amyl ketone, Methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethyl cellosolve
  • the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic dianhydride is used as it is or in an organic solvent.
  • tetracarboxylic dianhydride or diamine component when they are composed of a plurality of types of compounds, they may be reacted in a premixed state, may be individually reacted sequentially, or may be further reacted individually. May be mixed to form a high molecular weight product.
  • the polycondensation temperature can be selected from -20 ° C to 150 ° C, but it is preferably in the range of -5 ° C to 100 ° C.
  • the polycondensation reaction can be carried out at any concentration, but if the concentration is too low, it will be difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution will become too high and uniform stirring will occur. Therefore, the total concentration of the tetracarboxylic dianhydride and the diamine component in the reaction solution is preferably 1% by mass to 50% by mass, more preferably 5% by mass to 30% by mass.
  • the initial stage of the reaction may be performed at a high concentration, and then an organic solvent may be added.
  • the ratio of the total number of moles of tetracarboxylic dianhydride and the total number of moles of diamine component is 0. It is preferably 8 to 1.2. Similar to the normal polycondensation reaction, the closer the molar ratio is to 1.0, the higher the molecular weight of the polyamic acid produced.
  • the polymer containing the structural unit represented by the formula [4] is a polyamic acid ester, a reaction between tetracarboxylic acid diester dichloride and a diamine component, or a suitable condensing agent for converting the tetracarboxylic acid diester and diamine component. It can obtain by making it react in presence of a base. Alternatively, it can also be obtained by previously synthesizing a polyamic acid by the above method and esterifying the carboxylic acid in the amic acid using a polymer reaction.
  • tetracarboxylic acid diester dichloride and diamine are -20 ° C to 150 ° C, preferably 0 ° C to 50 ° C in the presence of a base and an organic solvent, for 30 minutes to 24 hours, preferably 1
  • a polyamic acid ester can be synthesized.
  • pyridine triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently.
  • the addition amount of the base is preferably 2 to 4 times mol of tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.
  • the reaction proceeds efficiently by adding Lewis acid as an additive.
  • Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the amount of Lewis acid added is preferably 0.1 to 1.0 times the molar amount of the diamine or tetracarboxylic acid diester to be reacted.
  • the solvent used in the above reaction can be the same solvent as that used in the synthesis of the polyamic acid shown above, but N-methyl-2-pyrrolidone, ⁇ -Butyrolactone is preferred, and these may be used alone or in combination of two or more.
  • the concentration at the time of synthesis is such that in the reaction solution of a tetracarboxylic acid derivative such as tetracarboxylic acid diester dichloride or tetracarboxylic acid diester and a diamine component, from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained.
  • the total concentration is preferably 1% by mass to 30% by mass, and more preferably 5% by mass to 20% by mass.
  • the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
  • the polymer containing the structural unit represented by the formula [4] is a polyimide
  • the polymer has a divalent group represented by the formula [1] or the formula [2] in the main chain, and It can be obtained by dehydrating and ring-closing polyamic acid.
  • the dehydration cyclization rate (imidization rate) of the amic acid group is not necessarily 100%, and can be arbitrarily adjusted according to the application and purpose.
  • Examples of the method for imidizing polyamic acid include thermal imidization in which a polyamic acid solution is heated as it is, and catalytic imidization in which a catalyst is added to a polyamic acid solution.
  • the temperature at which the polyamic acid is thermally imidized in the solution is 100 ° C. to 400 ° C., preferably 120 ° C. to 250 ° C., and is preferably carried out while removing water generated by the imidization reaction from the outside of the system.
  • the catalytic imidation of polyamic acid can be performed by adding a basic catalyst and an acid anhydride to a polyamic acid solution and stirring at -20 ° C to 250 ° C, preferably 0 ° C to 180 ° C.
  • the amount of the basic catalyst is 0.5 mol times to 30 mol times, preferably 2 mol times to 20 mol times of the amic acid groups, and the amount of the acid anhydride is 1 mol times to 50 mol times of the amic acid groups, The amount is preferably 3 mole times to 30 mole times.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine, and the like.
  • pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like.
  • use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • polyimide can also be obtained by heating a polyamic acid ester at a high temperature to promote dealcoholization and ring closure.
  • the reaction solution is poured into a poor solvent and precipitated. That's fine.
  • the poor solvent used for precipitation include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and water.
  • the polyimide precursor and polyimide which have been put into a poor solvent and precipitated are collected by filtration, they can be dried at normal temperature or under reduced pressure at room temperature or by heating.
  • the impurities in the polymer can be reduced by repeating the steps of re-dissolving the precipitated and recovered polyimide precursor and polyimide in an organic solvent and repeating the reprecipitation and recovery 2 to 10 times.
  • the poor solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of poor solvents selected from these because purification efficiency is further improved.
  • the polymer of the present invention thus obtained can be dissolved in a predetermined organic solvent and used as a liquid crystal aligning agent.
  • This liquid crystal aligning agent is used for the liquid crystal aligning film which controls the orientation of the liquid crystal molecule of a liquid crystal layer in a liquid crystal display element.
  • the liquid crystal aligning agent containing the polymer of this invention is demonstrated.
  • the liquid crystal aligning agent of this invention contains the polymer obtained from the diamine component containing the diamine which has a structure represented by Formula [1] derived from the said diamine component. Moreover, it is preferable that this liquid crystal aligning agent contains the polymer which has a structure represented by Formula [2] derived from the said diamine component. Moreover, it is preferable that this polymer is at least 1 type selected from the polyimide precursor which contains the structural unit represented by the said Formula [4], and the polyimide which is the imide compound.
  • the polymers contained in the liquid crystal aligning agent of the present invention may all be the polymers of the present invention, and are different from the polymers of the present invention as long as the effects described in the present invention are exhibited. You may contain 2 or more types of structures. Or in addition to the polymer of this invention, you may contain the other polymer, ie, the polymer which does not have a bivalent group represented by Formula [1] or Formula [2].
  • polystyrene-phenylmaleimide poly (meta ) Acrylate and the like.
  • the ratio of the polymer of the present invention to the total polymer components is preferably 5% by mass or more, and an example thereof is 5% by mass to 95% by mass. Is mentioned.
  • the ratio of the polymer of this invention can be suitably selected according to the characteristic of a liquid crystal aligning agent or a liquid crystal aligning film.
  • the liquid crystal aligning agent of the present invention is used for preparing a liquid crystal aligning film, and generally takes the form of a coating liquid from the viewpoint of forming a uniform thin film. Also in the liquid crystal aligning agent of this invention, it is preferable that it is a coating liquid containing an above-described polymer component and the organic solvent in which this polymer component is dissolved. At that time, the concentration of the polymer in the liquid crystal aligning agent can be appropriately changed by setting the thickness of the coating film to be formed. From the viewpoint of forming a uniform and defect-free coating film, the content is preferably 1% by mass or more, and from the viewpoint of storage stability of the solution, it is preferably 10% by mass or less. The concentration of the polymer is particularly preferably 2% by mass to 8% by mass.
  • the organic solvent contained in the liquid crystal aligning agent of the present invention is not particularly limited as long as it is an organic solvent that dissolves the polymer.
  • Specific examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethyl sulfoxide, ⁇ -butyrolactone, 1,3-dimethyl-imidazolide.
  • Non-methyl methyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone and the like can be mentioned.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, and ⁇ -butyrolactone are preferably used.
  • the organic solvent illustrated here may be used independently or may be used in mixture.
  • even a solvent that does not dissolve the polymer may be used by mixing with an organic solvent as long as the produced polymer does not precipitate.
  • the organic solvent contained in the liquid crystal aligning agent uses a mixed solvent that is used in combination with a solvent that improves the coating properties and the surface smoothness of the coating film when the liquid crystal aligning agent is applied in addition to the above-described solvents.
  • a mixed solvent is also preferably used in the liquid crystal aligning agent of the present invention. Specific examples of the organic solvent to be used in combination are given below, but the organic solvent is not limited to these examples.
  • ethanol isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 1,2- Ethane All, 1,2-propanediol, 1,3-propan
  • solvents represented by the following formulas [S-1] to [S-3] can be used.
  • R 28 and R 29 represent an alkyl group having 1 to 3 carbon atoms.
  • Examples of the alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group.
  • R 30 represents an alkyl group having 1 to 4 carbon atoms. Examples of the alkyl group having 1 to 4 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group and the like.
  • organic solvents used in combination 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, diethylene glycol diethyl ether, 4-hydroxy-4-methyl-2-pentanone, ethylene It is preferable to use glycol monobutyl ether or dipropylene glycol dimethyl ether.
  • the kind and content of such a solvent are suitably selected according to the coating device, coating conditions, coating environment, etc. of the liquid crystal aligning agent.
  • these solvents are preferably 20% by mass to 99% by mass with respect to the whole solvent contained in the liquid crystal aligning agent. Of these, 20% by mass to 90% by mass is preferable. More preferred is 20% by mass to 70% by mass.
  • the liquid crystal aligning agent of the present invention may additionally contain components other than the polymer component and the organic solvent as long as the effects of the present invention are not impaired.
  • additional components include an adhesion aid for increasing the adhesion between the liquid crystal alignment film and the substrate and the adhesion between the liquid crystal alignment film and the sealing material, a crosslinking agent for increasing the strength of the liquid crystal alignment film, and the liquid crystal alignment.
  • examples thereof include dielectrics and conductive materials for adjusting the dielectric constant and electrical resistance of the film. Specific examples of these additional components are as disclosed in various known literatures relating to liquid crystal aligning agents. If an example is given, paragraphs [0105] to [0116] of International Publication No. 2015/060357 may be used. Ingredients disclosed in the above.
  • the liquid crystal aligning film of this invention is obtained from the liquid crystal aligning agent mentioned above. If an example of the method of obtaining a liquid crystal aligning film from a liquid crystal aligning agent is given, a liquid crystal aligning agent in the form of a coating solution is applied to a substrate, dried and baked on a film obtained by rubbing or photo-aligning. And a method of performing an alignment treatment.
  • the substrate to which the liquid crystal aligning agent of the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used together with a glass substrate or a silicon nitride substrate. At that time, it is preferable to use a substrate on which an ITO electrode or the like for driving the liquid crystal is formed from the viewpoint of simplification of the process.
  • an opaque material such as a silicon wafer can be used as long as it is only on one side of the substrate, and a material that reflects light such as aluminum can be used for the electrode in this case.
  • the application method of the liquid crystal aligning agent is not particularly limited, but industrially, screen printing, offset printing, flexographic printing, ink jet method and the like are common.
  • As other coating methods there are a dipping method, a roll coater method, a slit coater method, a spinner method, a spray method, and the like, and these may be used according to the purpose.
  • Firing after applying the liquid crystal aligning agent on the substrate is performed at 50 ° C. to 300 ° C., preferably 80 ° C. to 250 ° C. by a heating means such as a hot plate, a hot-air circulating furnace, an infrared furnace, and the solvent is evaporated, A coating film (liquid crystal alignment film) can be formed. If the thickness of the coating film formed after firing is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. The thickness is preferably 10 nm to 100 nm. When the liquid crystal is aligned horizontally or tilted, the fired coating film is treated by rubbing or irradiation with polarized ultraviolet rays.
  • the solvent is evaporated and baked by a heating means such as a hot plate, a thermal circulation oven, an IR (infrared) oven or the like.
  • a heating means such as a hot plate, a thermal circulation oven, an IR (infrared) oven or the like.
  • Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent.
  • the liquid crystal alignment film of the present invention is suitable as a liquid crystal alignment film for a horizontal electric field type liquid crystal display element such as an IPS mode or an FFS mode, and is particularly useful as a liquid crystal alignment film for an FFS mode liquid crystal display element.
  • the liquid crystal display element of the present invention comprises the above-mentioned liquid crystal alignment film, and after obtaining a substrate with a liquid crystal alignment film obtained from the above-mentioned liquid crystal aligning agent, a liquid crystal cell is prepared by a known method, An element is formed using a liquid crystal cell.
  • a liquid crystal cell As an example, two substrates disposed so as to face each other, a liquid crystal layer provided between the substrates, and a liquid crystal formed between the substrate and the liquid crystal layer and formed by the liquid crystal aligning agent of the present invention.
  • a liquid crystal display element comprising a liquid crystal cell having an alignment film.
  • the substrate used in the liquid crystal display element of the present invention is not particularly limited as long as it is a highly transparent substrate, but is usually a substrate on which a transparent electrode for driving liquid crystal is formed.
  • a substrate on which a transparent electrode for driving liquid crystal is formed.
  • substrate described with the above-mentioned liquid crystal aligning film can be mentioned.
  • liquid crystal alignment film is formed by applying the liquid crystal aligning agent of the present invention on this substrate and baking it, and the details are as described above.
  • the liquid crystal material constituting the liquid crystal layer of the liquid crystal display element of the present invention is not particularly limited, and examples thereof include nematic liquid crystals and smectic liquid crystals. Among them, nematic liquid crystals are preferable, and any of positive liquid crystal materials and negative liquid crystal materials can be used. It may be used. Specifically, for example, MLC-2003, MLC-6608, MLC-6609, MLC-3019, MLC-2041, MLC-7026-100 manufactured by Merck & Co., Inc. can be used.
  • a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate.
  • These electrodes can be ITO electrodes, for example, and are patterned so as to display a desired image.
  • an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode.
  • the insulating film can be, for example, a film made of SiO 2 —TiO 2 formed by a sol-gel method.
  • a liquid crystal alignment film is formed on each substrate under the above conditions.
  • an ultraviolet curable sealing material is disposed at a predetermined position on one of the two substrates on which the liquid crystal alignment film is formed, and liquid crystal is disposed at predetermined positions on the liquid crystal alignment film surface.
  • the other substrate is bonded and pressure-bonded so that the liquid crystal alignment film faces, and the liquid crystal is spread on the front surface of the liquid crystal alignment film, and then the entire surface of the substrate is irradiated with ultraviolet rays to cure the sealing material. Get a cell.
  • an opening that can be filled with liquid crystal from the outside is provided when a sealing material is disposed at a predetermined location on one substrate.
  • a liquid crystal material is injected into the liquid crystal cell through an opening provided in the sealing material, and then the opening is sealed with an adhesive to obtain a liquid crystal cell.
  • the liquid crystal material may be injected by a vacuum injection method or a method utilizing capillary action in the atmosphere.
  • a polarizing plate is installed. Specifically, it is preferable to attach a pair of polarizing plates to the surfaces of the two substrates opposite to the liquid crystal layer.
  • the liquid crystal alignment film and the liquid crystal display element of the present invention are not limited to the above description as long as the liquid crystal aligning agent of the present invention is used, and may be prepared by other known methods. Good. Processes for obtaining a liquid crystal display element from a liquid crystal aligning agent are also disclosed in a number of documents in addition to paragraphs [0074] to [0081] of JP-A-2015-135393, for example.
  • the liquid crystal display device manufactured using the liquid crystal aligning agent of the present invention has excellent reliability and can be suitably used for a large-screen high-definition liquid crystal television or the like.
  • Zinc chloride (120.3 g, 882 mmol) was added to a 3 L (liter) four-necked flask, and the temperature was raised to 100 ° C., followed by vacuum drying for 1 hour with an oil pump. Thereafter, at room temperature under a nitrogen atmosphere, toluene (460 g), diethylamine (45.0 g, 615 mmol), t-butanol (46.4 g, 626 mmol), 2-bromo-4-nitroacetophenone (100.0 g, 410 mmol), 4-Nitroacetophenone (104.2 g, 631 mmol) was sequentially added, and the mixture was stirred at room temperature for 3 days.
  • This reaction solution was added to 434.4 g of methanol with stirring, and the deposited precipitate was separated by filtration. The precipitate was washed with methanol and dried under reduced pressure at 60 ° C. to obtain a polyimide powder. The imidation ratio of this polyimide was 75%. 80.0 g of NMP was added to 20.0 g of the obtained polyimide powder, and dissolved by stirring at 70 ° C. for 20 hours to obtain a polyimide solution (SPI-B4).
  • a glass substrate with an electrode having a size of 30 mm ⁇ 35 mm and a thickness of 0.7 mm was prepared.
  • an IZO electrode having a solid pattern constituting a counter electrode as a first layer is formed on the substrate.
  • a SiN (silicon nitride) film formed by the CVD method is formed as the second layer.
  • the second layer SiN film has a thickness of 500 nm and functions as an interlayer insulating film.
  • a comb-like pixel electrode formed by patterning an IZO film as the third layer is arranged to form two pixels, a first pixel and a second pixel. ing.
  • the size of each pixel is 10 mm long and about 5 mm wide.
  • the first-layer counter electrode and the third-layer pixel electrode are electrically insulated by the action of the second-layer SiN film.
  • the pixel electrode of the third layer is a comb tooth formed by arranging a plurality of electrode elements having a U-shape with a bent central portion as shown in FIG. 3 (Japanese Patent Laid-Open No. 2014-77845). It has a shape. The width in the short direction of each electrode element is 3 ⁇ m, and the distance between the electrode elements is 6 ⁇ m. Since the pixel electrode forming each pixel is formed by arranging a plurality of bent-shaped electrode elements in the central portion, the shape of each pixel is not rectangular, but in the central portion like the electrode elements. It is bent and has a shape similar to the bold “ku” character. Each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side.
  • the formation directions of the electrode elements of the pixel electrodes constituting them are different. That is, when the rubbing direction of the liquid crystal alignment film described later is used as a reference, the electrode element of the pixel electrode is formed to form an angle of + 10 ° (clockwise) in the first region of the pixel, and the pixel in the second region of the pixel.
  • the electrode elements of the electrode are formed so as to form an angle of ⁇ 10 ° (clockwise).
  • the directions of the rotation operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode in the substrate surface are mutually It is comprised so that it may become a reverse direction.
  • spin coated After drying for 5 minutes on an 80 degreeC hotplate, it baked for 20 minutes at 230 degreeC, and obtained the 60-nm-thick polyimide film on each board
  • the polyimide film surface is rubbed with a rayon cloth under the conditions of a roll diameter of 120 mm, a roller rotation speed of 500 rpm, a stage moving speed of 30 mm / sec, and a rubbing cloth indentation pressure of 0.3 mm, and then in pure water for 1 minute. Ultrasonic irradiation was performed, and drying was performed at 80 ° C. for 10 minutes.
  • liquid crystal alignment film Using the two types of substrates with the above-mentioned liquid crystal alignment film, the rubbing directions were combined to be antiparallel, the periphery was sealed leaving the liquid crystal injection port, and an empty cell with a cell gap of 3.8 ⁇ m was produced. .
  • Liquid crystals (MLC-3019, manufactured by Merck & Co., Inc.) were vacuum-injected into this empty cell at room temperature, and the injection port was sealed to obtain an anti-parallel alignment liquid crystal cell.
  • the obtained liquid crystal cell constitutes an FFS mode liquid crystal display element. Thereafter, the liquid crystal cell was heated at 120 ° C. for 1 hour and allowed to stand overnight before being used for evaluation.
  • the afterimage was evaluated using the following optical system and the like. That is, the prepared liquid crystal cell is placed between two polarizing plates arranged so that the polarization axes are orthogonal to each other, and the LED backlight is turned on with no voltage applied, so that the brightness of transmitted light is minimized. Further, the arrangement angle of the liquid crystal cell was adjusted. Next, a VT curve (voltage-transmittance curve) was measured while applying an AC voltage with a frequency of 30 Hz to the liquid crystal cell, and an AC voltage with a relative transmittance of 23% was calculated as a drive voltage.
  • VT curve voltage-transmittance curve
  • a DC voltage of 1 V was applied at the same time while driving the liquid crystal cell by applying an AC voltage of 30 Hz with a relative transmittance of 23%, and the liquid crystal cell was driven for 30 minutes. Thereafter, the applied DC voltage value was set to 0 V, and only the application of the DC voltage was stopped, and the device was further driven for 15 minutes in this state.
  • the time during which the relative transmittance decreased to 30% or less by the time 30 minutes elapsed from the start of application of the DC voltage was quantified. Evaluation was made by defining “ ⁇ ” when the relative transmittance decreased to 30% or less within 5 minutes, and “ ⁇ ” when within 6 to 30 minutes. When it took 30 minutes or more before the relative transmittance decreased to 30% or less, the afterimage was not erased, and “x” was defined and evaluated. And the afterimage evaluation according to the method mentioned above was performed on the temperature conditions of the state whose temperature of a liquid crystal cell is 23 degreeC.
  • the rotation angle when the liquid crystal cell was rotated from the angle at which the second region of the first pixel became darkest to the angle at which the first region became darkest was calculated as an angle ⁇ .
  • the second area was compared with the first area, and a similar angle ⁇ was calculated.
  • the average value of the angle ⁇ values of the first pixel and the second pixel was calculated as the angle ⁇ of the liquid crystal cell. The smaller the value of the angle ⁇ of the liquid crystal cell, the better the stability of the liquid crystal alignment.
  • the liquid crystal display elements using the liquid crystal aligning agents of Examples 1 to 4 have a quick relaxation of accumulated charges, and improved orientation and transparency.
  • the liquid crystal display elements using the liquid crystal aligning agents of Examples 1 to 4 and 19 have a quick relaxation of accumulated charges and improved alignment and transparency. You can see that

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Liquid Crystal (AREA)

Abstract

下記式[1]で表される構造を有するジアミンを含むジアミン成分から得られる重合体と、有機溶媒とを含む。 [化1](式[1]中、YはS原子又はO原子を表し、*は、他の基に結合する部位を表す。また、ベンゼン環の任意の水素原子は、一価の有機基に置換されていてもよい。)

Description

液晶配向剤、液晶配向膜及び液晶表示素子
 本発明は、新規のジアミン、液晶表示素子に用いる重合体、液晶配向剤及び液晶配向膜、並びに液晶表示素子に関する。
  液晶表示素子は、薄型・軽量を実現する表示デバイスとして、現在広く使用されている。液晶表示素子の表示特性は液晶の配向性、液晶のプレチルト角の大きさ、プレチルト角の安定性、電気特性などに大きく影響されることが知られており、この様な液晶表示素子の表示特性を向上する上では、用いる液晶材料はもとより、その液晶と直に接し、その配向状態を決定づける液晶配向膜が重要となる。
  現在、液晶配向膜は主にポリアミック酸やポリイミドの樹脂溶液を液晶配向剤として用い、それらを基板に塗布した後、焼成を行い、この塗膜表面をレーヨンやナイロン布によって圧力をかけてこする、いわゆるラビング処理を行って形成されている。
  ポリイミドまたはその前駆体であるポリアミック酸から液晶配向膜を得る方法は、樹脂溶液を塗布・焼成するといった簡便なプロセスで耐熱性、耐溶剤性に優れた塗膜を作製することができ、ラビングにより容易に液晶を配向させることができることから、工業的に広く普及し現在に至っている。
  また、液晶表示素子の表示特性の向上のために、ポリアミック酸やポリイミドの構造を種々選択したり、特性の異なる樹脂をブレンドしたりすることなどによって、さらなる液晶配向性の改善、プレチルト角の制御およびその安定性の改善、電圧保持率の向上や、直流電圧に対する蓄積電荷の溜まりにくさ、溜まった電荷の抜けやすさの改善等、数々の技術が提案されてきた。例えば、特許文献1では高い電圧保持率を得るため、特定の繰り返し単位を有するポリイミド樹脂を用いることが提案されている。また、特許文献2では、残像現象に対し、イミド基以外に窒素原子を有する可溶性ポリイミドを用いることにより、残像が消去されるまでの時間を短くすることが提案されている。
  しかしながら、液晶表示素子の高性能化、表示デバイスの省電力化、様々な環境における耐久性の向上等が進むにつれて、高温環境における電圧保持率が低い為にコントラストが低下するといった問題や、長時間連続駆動した際に電荷が蓄積されて表示の焼き付きが発生するといった問題が顕著になってきており、従来提案されている技術のみでは、この両者を同時に解決することが難しくなってきている。
特開平2-287324号公報 特開平10-104633号公報
 本発明は、このような事情に鑑み、蓄積電荷の緩和が早く、透明性や溶解性や配向性が向上した液晶配向剤及び液晶配向膜、並びに液晶表示素子を提供することを目的とする。
 本発明者らは、鋭意研究を行った結果、特定のジアミンを用いることにより蓄積電荷の緩和時間の短縮について極めて有効であることを見出し、本発明を完成するに至った。
 上記目的を達成する本発明の液晶配向剤は、下記式[1]で表される構造を有するジアミンを含むジアミン成分から得られる重合体と、有機溶媒とを含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000005
(式[1]中、YはS原子又はO原子を表し、*は、他の基に結合する部位を表す。また、ベンゼン環の任意の水素原子は、一価の有機基に置換されていてもよい。)
 前記重合体が、前記式[1]で表される構造を有するジアミンとテトラカルボン酸二無水物との重縮合物であるポリイミド前駆体及びそのイミド化物であるポリイミドからなる群から選ばれる少なくとも一種の重合体であることが好ましい。
 また、上記ジアミンが、下記式[2]で表されることを特徴とする。
Figure JPOXMLDOC01-appb-C000006
(式[2]中、Yの定義は、上記式[1]と同様であり、Rはそれぞれ独立して単結合又は以下の式[3]の構造を表し、nは1から3の整数を表す。ベンゼン環の任意の水素原子は一価の有機基で置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000007
(式[3]中、Rは、単結合、-O-、-COO-、-OCO-、-(CH-、-O(CHO-、-CONH-、及び-NHCO-から選ばれる2価の有機基を表し(l、mは1から5の整数を表す)、*は式[2]中のベンゼン環と結合する部位を表し、*は式[2]中のアミノ基と結合する部位を表す。) 
 また、上記重合体は、下記式[4]で表される構造単位を含むポリイミド前駆体及びそのイミド化合物であるポリイミドから選択される少なくとも一種であることが好ましい。
Figure JPOXMLDOC01-appb-C000008
(式[4]中、Xは、テトラカルボン酸誘導体由来の四価の有機基であり、Wは、式[2]又は式[3]で表される構造を有するジアミン由来の二価の有機基である。R及びRは、水素原子又は炭素原子数1~5のアルキル基を表し、A及びAは、それぞれ独立して、水素原子、炭素原子数1~5のアルキル基、炭素原子数2~5のアルケニル基又は炭素原子数2~5のアルキニル基を表す。)
 上記目的を達成する本発明の液晶配向膜は、上記液晶配向剤から得られることを特徴とする。
 上記目的を達成する本発明の液晶表示素子は、上記液晶配向膜を具備することを特徴とする。
 本発明によれば、蓄積電荷の緩和が早く、透明性や溶解性や配向性が向上した液晶配向剤及び液晶配向膜、並びに液晶表示素子を提供することができる。
 以下、本発明をより詳細に説明する。
 <ジアミン>
 本発明の液晶配向剤は、下記式[1]で表される構造を有するジアミンを含むジアミン成分から得られる重合体と、有機溶媒とを含むものであるが、まず、ジアミンについて説明する。
Figure JPOXMLDOC01-appb-C000009
(式[1]中、YはS原子又はO原子を表し、*は、他の基に結合する部位を表す。また、ベンゼン環の任意の水素原子は、一価の有機基に置換されていてもよい。)
 式[1]において、一価の有機基としては、炭化水素基;ヒドロキシル基、カルボキシル基、ヒドロキシル基、チオール基又はカルボキシル基を含む炭化水素基;エーテル結合、エステル結合、アミド結合等の結合基によって連結された炭化水素基;ケイ素原子を含有する炭化水素基;ハロゲン化炭化水素基;アミノ基;アミノ基がt-ブトキシカルボニル基等のカルバメート系の保護基によって保護された不活性基等が挙げられる。なお、炭化水素基は、直鎖、分岐鎖及び環状鎖の何れでもよく、また、飽和炭化水素でも不飽和炭化水素でもよい。また、炭化水素基の水素原子の一部は、カルボキシル基、ヒドロキシル基、チオール基、ケイ素原子、ハロゲン原子等に置き換えられてもよく、エーテル結合、エステル結合、アミド結合等の結合基によって連結されていてもよい。
 また、炭素原子数1~3のアルキレン基は、直鎖、分岐鎖及び環状鎖の何れでもよい。具体的には、メチレン基、エチレン基、n-プロピレン基、イソプロピレン基、シクロプロピレン基、1-メチル-シクロプロピレン基、2-メチル-シクロプロピレン基、1,1-ジメチル-n-プロピレン基、1,2-ジメチル-n-プロピレン基、2,2-ジメチル-n-プロピレン基、1-エチル-n-プロピレン基、1,2-ジメチル-シクロプロピレン基、2,3-ジメチル-シクロプロピレン基、1-エチル-シクロプロピレン基、2-エチル-シクロプロピレン基、1,1,2-トリメチル-n-プロピレン基、1,2,2-トリメチル-n-プロピレン基、1-エチル-1-メチル-n-プロピレン基、1-エチル-2-メチル-n-プロピレン基、2-n-プロピル-シクロプロピレン基、1-イソプロピル-シクロプロピレン基、2-イソプロピル-シクロプロピレン基、1,2,2-トリメチル-シクロプロピレン基、1,2,3-トリメチル-シクロプロピレン基、2,2,3-トリメチル-シクロプロピレン基、1-エチル-2-メチル-シクロプロピレン基、2-エチル-1-メチル-シクロプロピレン基、2-エチル-2-メチル-シクロプロピレン基及び2-エチル-3-メチル-シクロプロピレン基等が挙げられる。
 なお、一価の有機基や炭素原子数1~3のアルキレン基は、用途に応じて種々選択することができる。 
 上記式[1]の構造において、ベンゼン環の五員環に対する結合位置は電荷移動の点から、下記式[1-1]に示すように五員環上のYの隣にある炭素原子であるのが好ましい。
Figure JPOXMLDOC01-appb-C000010
 上記特定ジアミンは、例えば、下記式[1-2]で表すことができ、特に、下記式[1-3]で表されるジアミンが好ましく、更には、式[1-4]で表されるジアミンがより好ましい。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 式[1-2]~式[1-4]において、Yの定義は前記式[1]の場合と同様であり、Q、Qは、それぞれ独立して、単結合又は2価の有機基であり、すなわち、QとQとは互いに異なる構造であってもよい。また、式[1-4]における2つのQは互いに異なる構造であってもよい。更に、ベンゼン環の任意の水素原子は、上記式[1]の場合と同様に、一価の有機基で置換されていてもよい。
 上記特定ジアミンの好ましい例としては、下記式[2]で表わされるジアミンを挙げることができ、より好ましくは式[2-1]で表されるジアミンである。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
 上記式[2]及び式[2-1]中のYの定義は前記式[1]と同様である。2つのRは、それぞれ独立して、単結合又は以下の式[3]の構造を表す。なお、上記式[1]の場合と同様に、ベンゼン環の任意の水素原子は一価の有機基で置換されていてもよい。
Figure JPOXMLDOC01-appb-C000016
 上記式(3)中、Rは、単結合、-O-、-COO-、-OCO-、-(CH-、-O(CHO-、-CONH-、及び-NHCO-からなる群から選ばれる2価の有機基を表し、ここで、l、mは1~5の整数を表す。なかでも、蓄積電荷の緩和の点から、Rは、単結合、-O-、-COO-、-OCO-、-CONH-、又は-NHCO-が好ましい。また、*は、式[2]中のベンゼン環と結合する部位を表し、*は式[2]中のアミノ基と結合する部位を表す。
 上記式[2]及び式[2-1]中のnは、1~3の整数を表す。好ましくは1又は2である。 
 式[2]で表されるジアミンの具体例としては下記式[4-1-1]~[4-1-12]で表されるジアミンが例示できるが、これらに限定されない。なかでも、蓄積電荷の緩和と配向性の点から、[4-1-1]、[4-1-2]、[4-1-4]~[4-1-12]が好ましく、[4-1-1]、[4-1-2]、[4-1-8]~[4-1-12]が特に好ましい。
Figure JPOXMLDOC01-appb-C000017
 <ジアミンの合成方法>
 次に、本発明のジアミンの主な合成方法について説明する。なお、以下で説明した方法は合成例であり、これに限定されない。
 本発明のジアミンは、下記反応式で示すように、ジニトロ化合物を還元してニトロ基をアミノ基に変換することで、得ることができる。なお、下記反応式においては、ベンゼン環及び飽和炭化水素部の水素原子がフッ素原子等のハロゲン原子やアミノ基以外の一価の有機基で置換されていないジアミンを例として、記載している。
Figure JPOXMLDOC01-appb-C000018
 ジニトロ化合物を還元する方法は特に制限はなく、パラジウム-炭素、酸化白金、ラネーニッケル、白金黒、ロジウム-アルミナ、硫化白金炭素等を触媒として用い、酢酸エチル、トルエン、テトラヒドロフラン、ジオキサン、アルコール系等の溶媒中、水素ガス、ヒドラジン、塩化水素等によって還元を行う方法が例示できる。必要に応じてオートクレープ等を用いて加圧下で行ってもよい。一方で、ベンゼン環や飽和炭化水素部の水素原子を置換する置換基の構造に不飽和結合部位を含む場合、パラジウムカーボンや白金カーボン等を用いると、この不飽和結合部位が還元されてしまい、飽和結合となってしまう虞があるため、還元鉄や錫、塩化錫等の遷移金属を触媒として用いた還元条件が好ましい。
 上記反応は、塩基存在下にて行なうことができる。用いる塩基は合成可能であれば特に限定はないが、炭酸カリウム、炭酸ナトリウム、炭酸セシウム、ナトリウムアルコキシド、カリウムアルコキシド、水酸化ナトリウム、水酸化カリウム、水素化ナトリウム等の無機塩基、ピリジン、ジメチルアミノピリジン、トリメチルアミン、トリエチルアミン、トリブチルアミン等の有機塩基等が挙げられる。また、場合によっては、ジベンジリデンアセトンパラジウムやジフェニルフォスフィノフェロセンパラジウムのようなパラジウム触媒や銅触媒等を併用すると、収率を向上させることができる。
 このようにして得られた本発明のジアミンは、ポリアミック酸やポリアミック酸エステル等のポリイミド前駆体、ポリイミド、ポリウレア、ポリアミド等(これらを纏めて「重合体」という)の原料として用いることができる。この重合体は、例えば、所定の有機溶媒に溶解して液晶配向剤として用いることができるが、その用途に限定されない。以下、その構造中に、式[1]で表されるジアミンを含む重合体について説明する。
 <重合体>
 本発明の重合体は、上述した本発明のジアミン又はその派生物(後述する)を用いて得られるものであり、ジアミン成分由来の下記式[1]で表される構造を有するものである。
Figure JPOXMLDOC01-appb-C000019
(式[1]中、YはS原子又はO原子を表し、*は、他の基に結合する部位を表す。また、ベンゼン環の任意の水素原子は、一価の有機基に置換されていてもよい。)
 このような重合体のジアミン成分由来の上記式[1]で表される構造としては、下記式[2-2]で表される構造を有するものが好ましい。
Figure JPOXMLDOC01-appb-C000020
(式[2-2]中、Yの定義は、上記式[1]と同様であり、Rはそれぞれ独立して単結合又は以下の式[3]の構造を表し、nは1から3の整数を表し、*は他の基に結合する部位を表す。ベンゼン環の任意の水素原子は一価の有機基で置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000021
(式[3]中、Rは、単結合、-O-、-COO-、-OCO-、-(CH-、-O(CHO-、-CONH-、及び-NHCO-から選ばれる2価の有機基を表し(l、mは1から5の整数を表す)、*は式[2]中のベンゼン環と結合する部位を表し、*は他の基に結合する部位を表す。)
 ここで、上記本発明のジアミンの派生物としては、上記構造を2つ以上連結させた構造や、上記構造を-O-、-S-、-COO-又は-OCO-を介して連結した構造を有するジアミンを挙げることができる。また、ジアミン成分由来の構造は、式[2]の構造の他、他のジアミン由来の構造(後述する)を含んでもよい。
 なお、式[2]における一価の有機基や炭素原子数1~3のアルキレン基としては、式[1]と同様のものが挙げられる。
 また、本発明の重合体は、液晶配向剤としての使用の観点から、下記式[4]で表される構造単位を含むポリイミド前駆体及びそのイミド化合物であるポリイミドから選択される少なくとも一種であることが好ましい。
Figure JPOXMLDOC01-appb-C000022
(式[4]中、Xは、テトラカルボン酸誘導体由来の四価の有機基であり、Wは、式[2]又は式[3]で表される構造を有するジアミン由来の二価の有機基である。R及びRは、水素原子又は炭素原子数1~5のアルキル基を表し、A及びAは、それぞれ独立して、水素原子、炭素原子数1~5のアルキル基、炭素原子数2~5のアルケニル基又は炭素原子数2~5のアルキニル基を表す。)
 式[4]において、炭素原子数1~5のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、s-ペンチル基、t-ペンチル基等が挙げられ、炭素原子数2~5のアルケニル基としては、例えば、ビニル基、アリル基、1-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基等が挙げられ、炭素原子数2~5のアルキニル基としては、例えば、エチニル基、1-プロピニル基、2-プロピニル(プロパルギル)基、3-ブチニル基、ペンチニル基等が挙げられる。これらの中で、加熱時のイミド化反応の進行のし易さの観点から、R及びRは水素原子、メチル基又はエチル基が好ましく、水素原子又はメチル基がより好ましく、液晶配向性の観点から、A及びAは水素原子又はメチル基が好ましい。
 Xは、テトラカルボン酸誘導体由来の四価の有機基であれば、その構造は特に限定されるものではない。また、Xは、重合体の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷等、必要とされる特性の程度に応じて適宜選択され、同一重合体中に1種類であってもよく、2種類以上が混在していてもよい。
 Xは、テトラカルボン酸二無水物だけでなく、そのテトラカルボン酸誘導体であるテトラカルボン酸、テトラカルボン酸ジハライド化合物、テトラカルボン酸ジアルキルエステル化合物又はテトラカルボン酸ジアルキルエステルジハライド化合物を用いることもできる。テトラカルボン酸二無水物又はその誘導体としては、下記式[5]で示されるテトラカルボン酸二無水物又はその誘導体から選ばれる少なくとも1つを用いることがより好ましい。
Figure JPOXMLDOC01-appb-C000023
 式[5]において、Vは、脂環式構造を有する4価の有機基であり、その構造は特に限定されない。具体例としては、下記式[V-1]~式[V-44]が挙げられる。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
 式[V-1]~式[V-4]において、R~R27は、それぞれ独立して、水素原子、ハロゲン原子、炭素原子数1~6のアルキル基、炭素原子数2~6のアルケニル基、炭素原子数2~6のアルキニル基、フッ素原子を含有する炭素原子数1~6の1価の有機基又はフェニル基であり、同一でも異なってもよい。液晶配向性の観点から、R~R27は、水素原子、ハロゲン原子、メチル基又はエチル基が好ましく、水素原子又はメチル基がより好ましい。
 式[V-1]の具体的な構造としては、下記式[V-1-1]~式[V-1-6]で表される構造が挙げられる。液晶配向性及び光反応の感度の観点から、下記式[V-1-1]で表される構造が特に好ましい。
Figure JPOXMLDOC01-appb-C000030
 式[4]において、Wは、式[1]又は式[2]で表される構造を有するジアミン由来の二価の有機基であれば、その構造は特に限定されるものではなく、2種類以上が混在していてもよい。また、Wは、本発明で使用されるジアミン成分の構造に対応し、式[1]で表される構造を有する特定の構造(例えば、下記式[W-1]~式[W-12]で表される化合物からなる群から選ばれる少なくとも1種の構造)を含有している。
Figure JPOXMLDOC01-appb-C000031
 ただし、Wの全てが、上記ジアミンに対応した構造となっている必要は必ずしもない。Wの一部に、上記ジアミン以外のジアミン(その他のジアミン)に対応した構造が含まれていてもよい。その他のジアミンに対応した構造(以下、「構造W」とする)としては、下記式[6]で表される通りに一般式化することができる。なお、下記式[6]におけるA及びAとしては、式[4]と同様のものが挙げられる。
Figure JPOXMLDOC01-appb-C000032
 また、式[6]で表される構造Wを例示すると、下記式[W-1]~式[W-173]で表される通りである。
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
 なお、式[W-168]、式[W-169]、式[W-172]及び式[W-173]中のBoc基は、下記で表されるtert-ブトキシカルボニル基を表している。以下、明細書において、tert-ブトキシカルボニル基は、Boc基ともいう。
Figure JPOXMLDOC01-appb-C000053
 式[4]で表される構造単位を含むポリイミド前駆体が、式[6]で表される構造単位を同時に含む場合、式[4]で表される構造単位は、式[4]と式[6]の合計に対して10モル%以上であることが好ましく、より好ましくは20モル%以上であり、特に好ましくは30モル%以上である。
 本発明の液晶配向剤に含まれる重合体であるポリイミド前駆体やポリイミドの分子量は、当該重合体を含有した液晶配向剤から液晶配向膜が得られた場合に、その塗膜(液晶配向膜)の強度、塗膜形成時の作業性、及び塗膜の均一性を考慮して、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量が2,000~500,000であることが好ましく、5,000~300,000であることがより好ましく、10,000~100,000であることが更に好ましい。
 <重合体の製造方法>
 次に、本発明の液晶配向剤に含まれる重合体の主な製造方法について説明する。なお、以下で説明した方法は製造例であり、これに限定されない。
 例えば、式[4]で表される構造単位を含む重合体が、ポリイミド前駆体であるポリアミック酸である場合において、かかる重合体は、テトラカルボン酸誘導体であるテトラカルボン酸二無水物とジアミン成分との反応により得られる。この反応により、ポリアミック酸を得るにあたっては、公知の合成方法を用いることができる。その合成方法は、テトラカルボン酸二無水物とジアミン成分とを有機溶媒中で反応させる方法である。かかる方法は、有機溶媒中で比較的容易に進行し、且つ副生成物が発生しない点で有利である。
 上記反応に用いる有機溶媒としては、生成したポリアミック酸(重合体)が溶解するものであれば特に限定されず、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド等が挙げられる。これらは、単独で使用しても混合して使用してもよい。また、ポリアミック酸(重合体)を溶解させない溶媒であっても、生成したポリアミック酸が析出しない範囲で、上記有機溶媒に混合して使用してもよい。特に、有機溶媒中の水分は、重合反応を阻害し、更には生成したポリアミック酸を加水分解させる原因となるので、有機溶媒はなるべく脱水乾燥させたものを用いることが好ましい。
 テトラカルボン酸二無水物とジアミン成分とを有機溶媒中で反応させる際には、ジアミン成分を有機溶媒に分散又は溶解させた溶液を撹拌させ、テトラカルボン酸二無水物をそのまま、又は有機溶媒に分散若しくは溶解させて添加する方法、テトラカルボン酸二無水物を有機溶媒に分散又は溶解させた溶液にジアミン成分を添加する方法、テトラカルボン酸二無水物とジアミン成分とを交互に添加する方法等が挙げられ、これらの何れかの方法を用いてもよい。また、テトラカルボン酸二無水物又はジアミン成分が複数種の化合物からなる場合は、予め混合した状態で反応させてもよく、個別に順次反応させてもよく、更に個別に反応させた低分子量体を混合反応させ高分子量体としてもよい。
 その際の重縮合の温度は-20℃~150℃の任意の温度を選択することができるが、好ましくは-5℃~100℃の範囲である。また、重縮合反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な撹拌が困難となるので、テトラカルボン酸二無水物とジアミン成分の反応溶液中での合計濃度は、好ましくは1質量%~50質量%、より好ましくは5質量%~30質量%とする。反応初期は高濃度で行い、その後、有機溶媒を追加してもよい。
 ポリアミック酸の重合反応においては、テトラカルボン酸二無水物の合計モル数と、ジアミン成分の合計モル数の比(テトラカルボン酸二無水物の合計モル数/ジアミン成分の合計モル数)は、0.8~1.2であることが好ましい。通常の重縮合反応同様、このモル比が1.0に近いほど生成するポリアミック酸の分子量は大きくなる。
 式[4]で表される構造単位を含む重合体が、ポリアミック酸エステルである場合においては、テトラカルボン酸ジエステルジクロリドとジアミン成分との反応や、テトラカルボン酸ジエステルとジアミン成分を適当な縮合剤や塩基の存在下にて反応させることにより得ることができる。或いは、上記の方法で予めポリアミック酸を合成し、高分子反応を利用してアミック酸中のカルボン酸をエステル化することでも得ることができる。
 具体的には、例えば、テトラカルボン酸ジエステルジクロリドとジアミンとを、塩基と有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1時間~4時間反応させることによって、ポリアミック酸エステルを合成することができる。
 塩基としては、ピリジン、トリエチルアミン、4-ジメチルアミノピリジン等が使用できるが、反応が穏和に進行するためピリジンが好ましい。塩基の添加量は、除去が容易な量で、且つ高分子量体が得やすいという観点から、テトラカルボン酸ジエステルジクロリドに対して、2倍モル~4倍モルであることが好ましい。
 また、テトラカルボン酸ジエステルとジアミン成分を、縮合剤存在下にて重縮合する場合、塩基として、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムテトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニル、4-(4,6-ジメトキシ-1,3,5-トリアジンー2-イル)4-メトキシモルホリウムクロリドn-水和物等を使用することができる。
 また、上記縮合剤を用いる方法において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウム等のハロゲン化リチウムが好ましい。ルイス酸の添加量は、反応させるジアミン又はテトラカルボン酸ジエステルに対して0.1倍モル量~1.0倍モル量であることが好ましい。
 上記の反応に用いる溶媒は、上記にて示したポリアミック酸を合成する際に用いられる溶媒と同様の溶媒で行なうことができるが、モノマー及びポリマーの溶解性からN-メチル-2-ピロリドン、γ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。合成時の濃度は、重合体の析出が起こりにくく、且つ高分子量体が得やすいという観点から、テトラカルボン酸ジエステルジクロリドやテトラカルボン酸ジエステル等のテトラカルボン酸誘導体とジアミン成分の反応溶液中での合計濃度が1質量%~30質量%が好ましく、5質量%~20質量%がより好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの合成に用いる溶媒はできるだけ脱水されていることがよく、窒素雰囲気中で、外気の混入を防ぐのが好ましい。
 式[4]で表される構造単位を含む重合体が、ポリイミドである場合においては、式[1]又は式[2]で表される2価の基を主鎖に有するものであり、上記ポリアミック酸を脱水閉環させることにより得られる。このポリイミドにおいて、アミド酸基の脱水閉環率(イミド化率)は、必ずしも100%である必要はなく、用途や目的に応じて任意に調整することができる。
 ポリアミック酸をイミド化させる方法としては、ポリアミック酸の溶液をそのまま加熱する熱イミド化や、ポリアミック酸の溶液に触媒を添加する触媒イミド化等が挙げられる。
 ポリアミック酸を溶液中で熱イミド化させる場合の温度は、100℃~400℃、好ましくは120℃~250℃であり、イミド化反応により生成する水を系外に除きながら行うことが好ましい。
 ポリアミック酸の触媒イミド化は、ポリアミック酸の溶液に、塩基性触媒と酸無水物とを添加し、-20℃~250℃、好ましくは0℃~180℃で攪拌することにより行うことができる。塩基性触媒の量はアミド酸基の0.5モル倍~30モル倍、好ましくは2モル倍~20モル倍であり、酸無水物の量はアミド酸基の1モル倍~50モル倍、好ましくは3モル倍~30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができ、中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。
 また、上述のように、ポリアミック酸エステルを高温で加熱し、脱アルコールを促し閉環させることによっても、ポリイミドを得ることができる。
 なお、ポリアミック酸、ポリアミック酸エステル等のポリイミド前駆体や、ポリイミドの反応溶液から、生成したポリアミック酸、ポリアミック酸エステル、ポリイミドを回収する場合には、反応溶液を貧溶媒に投入して沈殿させればよい。沈殿に用いる貧溶媒としてはメタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、水等を挙げることができる。貧溶媒に投入して沈殿させたポリイミド前駆体やポリイミドは濾過して回収した後、常圧或いは減圧下で、常温或いは加熱して乾燥することができる。また、沈殿回収したポリイミド前駆体やポリイミドを、有機溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素等が挙げられ、これらの内から選ばれる3種類以上の貧溶媒を用いると、より一層精製の効率が上がるので好ましい。
 このようにして得られた本発明の重合体は、所定の有機溶媒に溶解して液晶配向剤として用いることができる。この液晶配向剤は、液晶表示素子において、液晶層の液晶分子の配向性を制御する液晶配向膜に用いるものである。以下、本発明の重合体を含有する液晶配向剤について説明する。
 <液晶配向剤>
 本発明の液晶配向剤は、上記ジアミン成分由来の式[1]で表される構造を有するジアミンを含むジアミン成分から得られる重合体を含有するものである。また、この液晶配向剤は、上記ジアミン成分由来の式[2]で表される構造を有する重合体を含有することが好ましい。また、この重合体は、上記式[4]で表される構造単位を含むポリイミド前駆体及びそのイミド化合物であるポリイミドから選択される少なくとも一種であることが好ましい。
 ただし、本発明の液晶配向剤において含有する重合体は、全てが本発明の重合体であってもよく、また、本発明に記載の効果を奏する限度において、本発明の重合体のうち、異なる構造の2種以上を含有してもよい。或いは、本発明の重合体に加えて、その他の重合体、即ち式[1]又は式[2]で表される二価の基を有さない重合体を含有してもよい。その他の重合体の種類としては、ポリアミック酸、ポリイミド、ポリアミック酸エステル、ポリエステル、ポリアミド、ポリウレア、ポリオルガノシロキサン、セルロース誘導体、ポリアセタール、ポリスチレン又はその誘導体、ポリ(スチレン-フェニルマレイミド)誘導体、ポリ(メタ)アクリレート等を挙げることができる。
 本発明の液晶配向剤がその他の重合体を含有する場合、全重合体成分に対する本発明の重合体の割合は、5質量%以上であることが好ましく、その一例として5質量%~95質量%が挙げられる。本発明の重合体の割合は、液晶配向剤や液晶配向膜の特性に応じて、適宜選択することができる。
 本発明の液晶配向剤は、液晶配向膜を作製するために用いられるものであり、均一な薄膜を形成させるという観点から、一般的には塗布液の形態をとる。本発明の液晶配向剤においても前記した重合体成分と、この重合体成分を溶解させる有機溶媒とを含有する塗布液であることが好ましい。その際、液晶配向剤中の重合体の濃度は、形成させようとする塗膜の厚みの設定によって適宜変更することができる。均一で欠陥のない塗膜を形成させるという点からは、1質量%以上であることが好ましく、溶液の保存安定性の点からは、10質量%以下とすることが好ましい。特に好ましい重合体の濃度は、2質量%~8質量%である。
 本発明の液晶配向剤に含有される有機溶媒は、重合体を溶解させる有機溶媒であれば特に限定されない。その具体例として、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン等を挙げることができる。中でも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトンを用いることが好ましい。なお、ここで例示された有機溶媒は、単独で使用しても、混合して使用してもよい。更に、重合体を溶解させない溶媒であっても、生成した重合体が析出しない範囲で、有機溶媒に混合して使用してもよい。
 また、液晶配向剤に含有される有機溶媒は、上記のような溶媒に加えて液晶配向剤を塗布する際の塗布性や塗膜の表面平滑性を向上させる溶媒を併用した混合溶媒を使用することが一般的であり、本発明の液晶配向剤においてもこのような混合溶媒は好適に用いられる。併用する有機溶媒の具体例を下記に挙げるが、これらの例に限定されるものではない。
 例えば、エタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、ジプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、4-ヘプタノン、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、2-(メトキシメトキシ)エタノール、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、2-(ヘキシルオキシ)エタノール、フルフリルアルコール、ジエチレングリコール、プロピレングリコール、プロピレングリコールモノブチルエーテル、1-(ブトキシエトキシ)プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル等の溶媒を挙げることができる。
 また、上述の溶媒の他に、例えば、下記式[S-1]~式[S-3]で示される溶媒を用いることができる。
Figure JPOXMLDOC01-appb-C000054
 式[S-1]及び式[S-2]において、R28及びR29は、炭素原子数1~3のアルキル基を示す。炭素原子数1~3のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基等が挙げられる。また、式[S-3]において、R30は、炭素原子数1~4のアルキル基を示す。炭素原子数1~4のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基等が挙げられる。
 併用する有機溶媒の中でも、1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、プロピレングリコールモノブチルエーテル、ジエチレングリコールジエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、エチレングリコールモノブチルエーテル又はジプロピレングリコールジメチルエーテルを用いることが好ましい。このような溶媒の種類及び含有量は、液晶配向剤の塗布装置、塗布条件、塗布環境等に応じて適宜選択される。
 また、これらの溶媒は、液晶配向剤に含まれる溶媒全体の20質量%~99質量%であることが好ましい。中でも、20質量%~90質量%が好ましい。より好ましいのは、20質量%~70質量%である。
 本発明の液晶配向剤は、本発明の効果を損なわない範囲において、重合体成分及び有機溶媒以外の成分を追加的に含有してもよい。このような追加成分としては、液晶配向膜と基板との密着性や液晶配向膜とシール材との密着性を高めるための密着助剤、液晶配向膜の強度を高めるための架橋剤、液晶配向膜の誘電率や電気抵抗を調整するための誘電体や導電物質等が挙げられる。これら追加成分の具体例としては、液晶配向剤に関する公知の文献に種々開示されているとおりであるが、あえてその一例を示すなら、国際公開第2015/060357号の段落[0105]~[0116]に開示されている成分等が挙げられる。
 <液晶配向膜>
 本発明の液晶配向膜は、上述した液晶配向剤から得られるものである。液晶配向剤から液晶配向膜を得る方法の一例を挙げるなら、塗布液形態の液晶配向剤を基板に塗布し、乾燥し、焼成して得られた膜に対してラビング処理法又は光配向処理法で配向処理を施す方法が挙げられる。
 本発明の液晶配向剤を塗布する基板としては、透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板と共に、アクリル基板やポリカーボネート基板等のプラスチック基板等を用いることもできる。その際、液晶を駆動させるためのITO電極等が形成された基板を用いると、プロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならば、シリコンウエハー等の不透明な物でも使用でき、この場合の電極にはアルミニウム等の光を反射する材料も使用することができる。
 液晶配向剤の塗布方法は、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェット法等が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナー法、スプレー法等があり、目的に応じてこれらを用いてもよい。
 液晶配向剤を基板上に塗布した後の焼成は、ホットプレート、熱風循環炉、赤外線炉等の加熱手段により50℃~300℃、好ましくは80℃~250℃で行い、溶媒を蒸発させて、塗膜(液晶配向膜)を形成させることができる。焼成後に形成される塗膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5nm~300nm、より好ましくは10nm~100nmである。液晶を水平配向や傾斜配向させる場合は、焼成後の塗膜をラビング又は偏光紫外線照射等で処理する。
 液晶配向剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン、IR(赤外線)型オーブン等の加熱手段により、溶媒を蒸発させ、焼成する。液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含有される溶媒を十分に除去するために、50℃~120℃で1分~10分焼成し、その後、150℃~300℃で、5分~120分焼成する条件が挙げられる。
 本発明の液晶配向膜は、IPS方式やFFS方式等の横電界方式の液晶表示素子の液晶配向膜として好適であり、特に、FFS方式の液晶表示素子の液晶配向膜として有用である。
 <液晶表示素子>
 本発明の液晶表示素子は、上述した液晶配向膜を具備するものであり、上述の液晶配向剤から得られる液晶配向膜付きの基板を得た後、既知の方法で液晶セルを作製し、該液晶セルを使用して素子としたものである。一例を挙げるならば、対向するように配置された2枚の基板と、基板間に設けられた液晶層と、基板と液晶層との間に設けられ本発明の液晶配向剤により形成された液晶配向膜とを有する液晶セルを具備する液晶表示素子である。
 本発明の液晶表示素子に用いる基板としては、透明性の高い基板であれば特に限定されないが、通常は、基板上に液晶を駆動するための透明電極が形成された基板である。具体例としては、上述の液晶配向膜で記載した基板と同様のものを挙げることができる。
 また、液晶配向膜は、この基板上に本発明の液晶配向剤を塗布した後焼成することにより形成されるものであり、詳しくは上述した通りである。
 本発明の液晶表示素子の液晶層を構成する液晶材料は特に限定されず、ネマチック液晶及びスメクチック液晶を挙げることができ、その中でもネマチック液晶が好ましく、ポジ型液晶材料やネガ型液晶材料の何れを用いてもよい。具体的には、例えばメルク社製のMLC-2003、MLC-6608、MLC-6609、MLC-3019、MLC-2041、MLC-7026-100等を用いることができる。
 具体的には、透明なガラス製の基板を準備し、一方の基板の上にコモン電極を、他方の基板の上にセグメント電極を設ける。これらの電極は、例えばITO電極とすることができ、所望の画像表示ができるようパターニングされている。次いで、各基板の上に、コモン電極とセグメント電極を被覆するようにして絶縁膜を設ける。絶縁膜は、例えば、ゾル-ゲル法によって形成されたSiO-TiOからなる膜とすることができる。次に、前記のような条件で、各基板の上に液晶配向膜を形成する。
 次いで、液晶配向膜を形成した2枚の基板のうちの一方の基板上の所定の場所に例えば紫外線硬化性のシール材を配置し、更に液晶配向膜面上の所定の数カ所に液晶を配置した後、液晶配向膜が対向するように他方の基板を貼り合わせて圧着することにより液晶を液晶配向膜前面に押し広げた後、基板の全面に紫外線を照射してシール材を硬化することで液晶セルを得る。
 或いは、基板の上に液晶配向膜を形成した後の工程として、一方の基板上の所定の場所にシール材を配置する際に、外部から液晶を充填可能な開口部を設けておき、液晶を配置しないで基板を貼り合わせた後、シール材に設けた開口部を通じて液晶セル内に液晶材料を注入し、次いで、この開口部を接着剤で封止して液晶セルを得る。液晶材料の注入には、真空注入法でもよいし、大気中で毛細管現象を利用した方法でもよい。
 上記の何れの方法においても、液晶セル内に液晶材料が充填される空間を確保する為に、一方の基板上に柱状の突起を設けるか、一方の基板上にスペーサーを散布するか、シール材にスペーサーを混入するか、又はこれらを組み合わせる等の手段を取ることが好ましい。
 次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に一対の偏光板を貼り付けることが好ましい。
 なお、本発明の液晶配向膜及び液晶表示素子は、本発明の液晶配向剤を用いている限り上記の記載に限定されるものでは無く、その他の公知の手法で作成されたものであってもよい。液晶配向剤から液晶表示素子を得るまでの工程は、例えば、特開2015-135393号公報の段落[0074]~段落[0081]等の他、数多くの文献でも開示されている。
 以上のようにして、本発明の液晶配向剤を用いて作製された液晶表示素子は、信頼性に優れたものとなり、大画面で高精細の液晶テレビ等に好適に利用することができる。 
 以下に本発明について、実施例等を挙げて具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
 以下で使用した化合物の略号、及び特性評価の方法は、以下のとおりである。
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
<有機溶媒>
 NMP:N-メチル-2-ピロリドン
 NEP:N-エチル-2-ピロリドン
 GBL:γ-ブチロラクトン
 BCS:ブチルセロソルブ
 PB:プロピレングリコールモノブチルエーテル
 DME:ジプロピレングリコールジメチルエーテル
 DAA:4-ヒドロキシ-4-メチル-2-ペンタノン
 DEDG:ジエチレングリコールジエチルエーテル
 DIBK:2,6-ジメチル-4-ヘプタノン
 DIPE:ジイソプロピルエーテル
 DIBC:2,6-ジメチル-4-ヘプタノール
 Pd/C:パラジウムカーボン
 DMSO:ジメチルスルオキシド
 THF:テトラヒドロフラン
<添加剤>
 LS-4668:3-グリシドキシプロピルトリエトキシシラン
H-NMRの測定)
 装置:Varian NMR system 400NB(400MHz)(Varian社製)、及びJMTC-500/54/SS(500MHz)(JEOL社製)
 測定溶媒:CDCl(重水素化クロロホルム),DMSO-d(重水素化ジメチルスルホキシド)
 基準物質:TMS(テトラメチルシラン)(δ:0.0ppm,H)及びCDCl(δ:77.0ppm,13C)
<ジアミン化合物(DA-1)の合成>
Figure JPOXMLDOC01-appb-C000057
 2L(リットル)の四つ口フラスコに2,5-ジブロモチオフェン(50g、208mmol)、4-ニトロフェニルボロン酸(72.9g、 436mmol)、炭酸ナトリウム(110g、 1040mmol)、ジメチルホルムアミド(500g)、純水(100g)を仕込んだ。その後、窒素雰囲気下、室温にて、テトラキストリフェニルホスフィンパラジウム(2.5g)を加え、100℃に昇温し、48時間撹拌した。HPLC(高速液体クロマトグラフィ)にて反応終了を確認した後、得られた固体を減圧濾過し、純水(500g)にてリパルプ洗浄を行った。析出した結晶を減圧濾過し、アセトニトリル(350g)、80℃にてリパルプ洗浄した後、乾燥し、粉末結晶(1)を得た(収量42g,収率50%)。
 NMR測定結果は以下の通りである。
1H-NMR(DMSO-d):8.32-8.28(4H,m),8.03-8.00(4H,m),7.94(2H,s)
Figure JPOXMLDOC01-appb-C000058
 化合物(1)(20g、61.3mmol)、5質量%Pt/C(50%含水型)、特性白鷺活性炭(2.0g)、及びジオキサン(100g)の混合物を、水素加圧条件下に80℃で24時間攪拌した。反応終了後、触媒をろ過した後、濃縮乾固を行った。得られた固体を酢酸エチル(200g)、トルエン(200g)にて再結晶後、析出した結晶を減圧濾過し、メタノール(50g)で洗浄した後、乾燥し、粉末結晶DA-1を得た(収量8g,収率50%)。
 NMR測定結果は以下の通りである。
1H-NMR(DMSO-d):7.34-7.27(4H,m),7.09(2H,s), 7.09-6.55(4H,m),5.28(4H,s)
<ジアミン化合物(DA-2)の合成>
Figure JPOXMLDOC01-appb-C000059
 3L(リットル)の四つ口フラスコに塩化亜鉛(120.3g、882mmol)を加え、100℃にまで昇温し、オイルポンプにて1時間真空乾燥した。その後、窒素雰囲気下、室温にて、トルエン(460g)、ジエチルアミン(45.0g、615mmol)、t-ブタノール(46.4g、626mmol)、2-ブロモー4-ニトロアセトフェノン(100.0g、410mmol)、4-ニトロアセトフェノン(104.2g、631mmol)を順次加え、室温にて3日間撹拌した。HPLC(高速液体クロマトグラフィ)にて反応終了を確認した後、5%硫酸水溶液(400g)を加え、中和し、1時間室温にて撹拌した。析出した結晶を減圧濾過し、トルエン(200g)、純水(300g)、メタノール(200g)で洗浄した後、乾燥し、粗結晶を得た。得られた粗結晶をテトラヒドロフラン(1340g)、60℃にて全溶解させた後、エタノール(1340g)を加え、5℃にて1時間撹拌した。析出した結晶を減圧濾過し、エタノール(200g)で洗浄した後、乾燥し、粉末結晶(1)を得た(収量63g,収率45%)。
 NMR測定結果は以下の通りである。
1H-NMR(DMSO-d):8.40-8.36(4H,m),8.28-8.24(4H,m),3.53(4H,s)
Figure JPOXMLDOC01-appb-C000060
 2L(リットル)の四つ口フラスコに化合物(1)(50g,152mmol)、無水酢酸を(1000g)仕込み、硫酸(10g)と無水酢酸(200g)を滴下した。滴下終了後140℃にまで昇温し、3時間撹拌した。HPLC(高速液体クロマトグラフィ)にて反応終了を確認した後、反応液を冷水(5000g)に加え、1時間撹拌した。析出した結晶を減圧濾過し、アセトニトリル(500g)、80℃にてリパルプ洗浄した後、乾燥し、粉末結晶(2)を得た(収量42g,収率90%)。
 NMR測定結果は以下の通りである。
1H-NMR(DMSO-d):8.34-8.31(4H,m),8.16-8.13(4H,m),7.56(2H,s)
Figure JPOXMLDOC01-appb-C000061
 化合物(2)(40g、129mmol)、5質量%Pt/C(50%含水型)、特性白鷺活性炭(4.0g)、及びテトラヒドロフラン(400g)の混合物を、水素加圧条件下に60℃で12時間攪拌した。反応終了後、触媒をろ過した後、濃縮乾固を行った。得られた固体をアセトニトリル(400g)にて再結晶後、析出した結晶を減圧濾過し、メタノール(50g)で洗浄した後、乾燥し、粉末結晶DA-2を得た(収量20g,収率77%)。
 NMR測定結果は以下の通りである。
1H-NMR(DMSO-d):7.42-7.38(4H,m),6.61-6.56(6H,m),5.28(2H,s)
[合成例1]
 撹拌装置付き及び窒素導入管付きの100mlの四つ口フラスコにDA-1(1.60g,6.0mmol)及びDA-4(0.79g,4.0mmol)を加えた後、NMP:GBL=1:1混合溶媒24.0gを加え、窒素を送りながら撹拌し溶解させた。この溶液を撹拌しながら、CA-1を(0.87g,4.0mmol)、CA-2を(1.04g,5.3mmol)、及びNMP:GBL=1:1混合溶媒を8g加えた後、さらに50℃条件下にて12時間攪拌することでポリアミック酸溶液(PAA-A1)を得た。
[合成例2~7]
 表1に示す、ジアミン成分、テトラカルボン酸成分、及び溶媒を使用し、それぞれ、表1に示す反応温度にせしめた他は、合成例1と同様に実施することにより、表1に示すポリアミック酸溶液(PAA-A2)~(PAA-A4)及びポリアミック酸溶液(PAA-B1)~(PAA-B3)を得た。
Figure JPOXMLDOC01-appb-T000062
[合成例8]
 撹拌装置付き及び窒素導入管付きの200mlの四つ口フラスコにDA-6(4.03g,16.5mmol)、DA-7(3.59g、9.0mmol)、及びDA-8(2.51g、4.5mmol)を加えた後、NMP74.0gを加え、窒素を送りながら撹拌し溶解させた。この溶液を撹拌しながらCA-3を(4.37g、19.5mmol)、及びNMPを9.0g加え、40℃条件下にて3時間攪拌した。その後、25℃条件下にてCA-2を(1.71g,8.7mmol)、及びNMPを9.0g加えた後、さらに12時間攪拌することでポリアミック酸溶液を得た。このポリアミック酸溶液の温度25℃における粘度は480mPa・sであった。また、このポリアミック酸の分子量はMn=10,660、Mw=20,512であった。
 このポリアミック酸溶液を80.0g分取し、NMPを20.0g加えた後、無水酢酸を6.8g、及びピリジンを1.8g加え、50℃で3時間反応させた。この反応溶液を434.4gのメタノールに撹拌しながら投入し、析出した沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミドの粉末を得た。このポリイミドのイミド化率は75%であった。得られたポリイミド粉末20.0gにNMP80.0gを加えて70℃にて20hr攪拌して溶解させることでポリイミド溶液(SPI-B4)を得た。
[実施例1~19]及び[比較例1~4]
 合成例1~7で得られたポリアミック酸溶液、及び合成例8得られたポリイミド溶液を、得られる液晶配向剤中の溶媒表2-1及び表2-2に示す組成になるように、攪拌しながら、溶媒および添加剤を加え、更に室温で2時間撹拌することにより液晶配向剤を得た。
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000064
<ラビング法による液晶表示素子の作製>
 30mm×35mmの大きさで、厚さが0.7mmの電極付きのガラス基板を準備した。基板上には第1層目として対向電極を構成する、ベタ状のパターンを備えたIZO電極が形成されている。第1層目の対向電極の上には第2層目として、CVD法により成膜されたSiN(窒化珪素)膜が形成されている。第2層目のSiN膜の膜厚は500nmであり、層間絶縁膜として機能する。第2層目のSiN膜の上には、第3層目としてIZO膜をパターニングして形成された櫛歯状の画素電極が配置され、第1画素及び第2画素の2つの画素を形成している。各画素のサイズは、縦10mmで横約5mmである。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により電気的に絶縁されている。
 第3層目の画素電極は、特開2014-77845号公報に記載の図(図3)に示される、中央部分が屈曲したくの字形状の電極要素を複数配列して構成された櫛歯状の形状を有する。各電極要素の短手方向の幅は3μmであり、電極要素間の間隔は6μmである。各画素を形成する画素電極が、中央部分の屈曲したくの字形状の電極要素を複数配列して構成されているため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字の「く」の字に似た形状を備える。そして、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。
 各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっている。すなわち、後述する液晶配向膜のラビング方向を基準とした場合、画素の第1領域では画素電極の電極要素が+10°の角度(時計回り)をなすように形成され、画素の第2領域では画素電極の電極要素が-10°の角度(時計回り)をなすように形成されている。また、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が互いに逆方向となるように構成されている。
 次に、液晶配向剤を1.0μmのフィルターで濾過した後、上記電極付き基板と対向基板として裏面にITO膜が成膜されており、かつ高さ4μmの柱状のスペーサーを有するガラス基板のそれぞれにスピンコートした。次いで、80℃のホットプレート上で5分間乾燥後、230℃で20分間焼成し、各基板上に膜厚60nmのポリイミド膜を得た。このポリイミド膜面に、ロール径120mm、ローラー回転数500rpm、ステージ移動速度30mm/sec、ラビング布押し込み圧0.3mmの条件で、レーヨン布によりラビング処理を施した後、純水中にて1分間超音波照射を行い、80℃で10分間乾燥した。
 上記液晶配向膜付きの2種類の基板を用いて、それぞれのラビング方向が逆平行になるように組み合わせ、液晶注入口を残して周囲をシールし、セルギャップが3.8μmの空セルを作製した。この空セルに液晶(メルク社製、MLC-3019)を常温で真空注入した後、注入口を封止してアンチパラレル配向の液晶セルとした。得られた液晶セルは、FFSモード液晶表示素子を構成する。その後、液晶セルを120℃で1時間加熱し、一晩放置してから評価に使用した。
<残像消去時間の評価>
 以下の光学系等を用いて残像の評価を行った。すなわち、作製した液晶セルを偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でLEDバックライトを点灯させておき、透過光の輝度が最も小さくなるように、液晶セルの配置角度を調整した。次に、この液晶セルに周波数30Hzの交流電圧を印加しながらV-Tカーブ(電圧-透過率曲線)を測定し、相対透過率が23%となる交流電圧を駆動電圧として算出した。
 残像評価では、相対透過率が23%となる周波数30Hzの交流電圧を印加して液晶セルを駆動させながら、同時に1Vの直流電圧を印加し、30分間駆動させた。その後、印加直流電圧値を0Vにして直流電圧の印加のみを停止し、その状態でさらに15分駆動した。
 残像評価は、直流電圧の印加を開始した時点から30分間が経過するまでに、相対透過率が30%以下に低下した時間を数値化した。5分以内に相対透過率が30%以下に低下した場合は「○」、6分~30分以内であれば「△」と定義して評価した。相対透過率が30%以下に低下するまでに30分間以上を要した場合には、残像消去不可とし、「×」と定義して評価した。そして、上述した方法に従う残像評価は、液晶セルの温度が23℃の状態の温度条件下で行った。
<液晶配向の安定性評価>
 作成した液晶セルに、60℃の恒温環境下、周波数30Hzで10VPPの交流電圧を168時間印加した。その後、液晶セルの画素電極と対向電極との間を短絡させた状態にし、そのまま室温に一日放置した。
 放置の後、液晶セルを偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でバックライトを点灯させておき、透過光の輝度が最も小さくなるように液晶セルの配置角度を調整した。そして、第1画素の第2領域が最も暗くなる角度から第1領域が最も暗くなる角度まで液晶セルを回転させたときの回転角度を角度Δとして算出した。第2画素でも同様に、第2領域と第1領域とを比較し、同様の角度Δを算出した。そして、第1画素と第2画素の角度Δ値の平均値を液晶セルの角度Δとして算出した。この液晶セルの角度Δの値が小さいものほど、液晶配向の安定性に優れるとした。
<光学特性(透明性)の評価>
 40mm×40mmの大きさで、厚さが1.0mmの石英基板を準備した。次に、液晶配向剤を1.0μmのフィルターで濾過した後、上記石英基板にスピンコートした。次いで、80℃のホットプレート上で2分間乾燥後、230℃で20分間焼成し、各基板上に膜厚100nmのポリイミド膜を得た。
 透明性の評価は、前記手法で得られた基板の透過率を測定することで行った。具体的には、測定装置にUV-3600(島津製作所社製)を用い、温度25℃、スキャン波長を300nm~800nmの条件で、透過率を測定した。その際、リファレンス(参照例)に何も塗布していない石英基板を用いて行った。評価は、450nm~800nmの波長の平均透過率を算出し、透過率が高いものほど、透明性に優れるとした。
<評価結果>
 上記実施例1~4、19、及び比較例1~4の各液晶配向剤を使用する液晶表示素子に関し、上記で実施した残像消去時間の評価、液晶配向の安定性評価、及び透明性の評価の結果を表3-1、表3-2及び表3-3に示す。
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000067
 表3-1に見られるように、実施例1~4の液晶配向剤を使用する液晶表示素子は、蓄積電荷の緩和が早く、かつ配向性、透明性が向上していることが判る。
 表3-1及び表3-3に見られるように、実施例1~4及び19の液晶配向剤を使用する液晶表示素子は、蓄積電荷の緩和が早く、かつ配向性、透明性が向上していることが判る。

Claims (6)

  1.  下記式[1]で表される構造を有するジアミンを含むジアミン成分から得られる重合体と、有機溶媒とを含むことを特徴とする液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
    (式[1]中、YはS原子又はO原子を表し、*は、他の基に結合する部位を表す。また、ベンゼン環の任意の水素原子は、一価の有機基に置換されていてもよい。)
  2.  前記重合体が、前記式[1]で表される構造を有するジアミンとテトラカルボン酸二無水物との重縮合物であるポリイミド前駆体及びそのイミド化物であるポリイミドからなる群から選ばれる少なくとも一種の重合体である請求項1に記載の液晶配向剤。
  3.  上記ジアミンが、以下の式[2]で表される、請求項1又は2に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000002
    (式[2]中、Yの定義は、上記式[1]と同様であり、Rはそれぞれ独立して単結合又は以下の式[3]の構造を表し、nは1から3の整数を表す。ベンゼン環の任意の水素原子は一価の有機基で置換されていてもよい。)
    Figure JPOXMLDOC01-appb-C000003
    (式[3]中、Rは、単結合、-O-、-COO-、-OCO-、-(CH-、-O(CHO-、-CONH-、及び-NHCO-から選ばれる2価の有機基を表し(l、mは1から5の整数を表す)、*は式[2]中のベンゼン環と結合する部位を表し、*は式[2]中のアミノ基と結合する部位を表す。)
  4.  前記重合体が、下記式[4]で表される構造単位を含むポリイミド前駆体及びそのイミド化合物であるポリイミドから選択される少なくとも一種であることを特徴とする請求項1~3の何れか一項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000004
    (式[4]中、Xは、テトラカルボン酸誘導体由来の四価の有機基であり、Wは、式[2]又は式[3]で表される構造を有するジアミン由来の二価の有機基である。R及びRは、水素原子又は炭素原子数1~5のアルキル基を表し、A及びAは、それぞれ独立して、水素原子、炭素原子数1~5のアルキル基、炭素原子数2~5のアルケニル基又は炭素原子数2~5のアルキニル基を表す。)
  5.  請求項1~請求項4の何れか一項に記載の液晶配向剤から得られることを特徴とする液晶配向膜。
  6.  請求項5に記載の液晶配向膜を具備することを特徴とする液晶表示素子。
PCT/JP2017/040902 2016-11-15 2017-11-14 液晶配向剤、液晶配向膜及び液晶表示素子 WO2018092759A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197016462A KR102482055B1 (ko) 2016-11-15 2017-11-14 액정 배향제, 액정 배향막 및 액정 표시 소자
CN201780083384.XA CN110178076B (zh) 2016-11-15 2017-11-14 液晶取向剂、液晶取向膜、及液晶表示元件
JP2018551634A JP7032700B2 (ja) 2016-11-15 2017-11-14 液晶配向剤、液晶配向膜及び液晶表示素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016222724 2016-11-15
JP2016-222724 2016-11-15

Publications (1)

Publication Number Publication Date
WO2018092759A1 true WO2018092759A1 (ja) 2018-05-24

Family

ID=62146159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040902 WO2018092759A1 (ja) 2016-11-15 2017-11-14 液晶配向剤、液晶配向膜及び液晶表示素子

Country Status (5)

Country Link
JP (1) JP7032700B2 (ja)
KR (1) KR102482055B1 (ja)
CN (1) CN110178076B (ja)
TW (1) TWI752113B (ja)
WO (1) WO2018092759A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113423763A (zh) * 2019-02-13 2021-09-21 日产化学株式会社 液晶取向剂、液晶取向膜以及使用了该液晶取向膜的液晶显示元件
JP7639548B2 (ja) 2020-07-29 2025-03-05 Jsr株式会社 液晶配向剤、液晶配向膜及び液晶素子

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0467018A (ja) * 1990-07-05 1992-03-03 Sumitomo Chem Co Ltd 液晶用配向制御膜

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2743460B2 (ja) 1989-04-27 1998-04-22 日産化学工業株式会社 液晶セル用配向処理剤
JP3650982B2 (ja) 1996-10-02 2005-05-25 Jsr株式会社 液晶配向剤および液晶表示素子
CN101960367B (zh) * 2008-02-28 2012-11-21 夏普株式会社 液晶取向膜形成用组合物和液晶显示装置
US7935779B2 (en) * 2008-03-07 2011-05-03 Great Eastern Resins Industrial Co., Ltd. Synthesis of polyimides (PI) from poly-carbodiimides and dianhydrides by sequential self-repetitive reaction (SSRR)
JP5516863B2 (ja) * 2009-03-18 2014-06-11 Jsr株式会社 液晶配向剤および液晶表示素子
JP5552894B2 (ja) * 2010-05-14 2014-07-16 Jsr株式会社 液晶配向剤および液晶表示素子
JP5761188B2 (ja) * 2010-06-30 2015-08-12 日産化学工業株式会社 液晶配向処理剤、液晶配向膜及びそれを用いた液晶表示素子
CN104136977B (zh) * 2011-12-28 2017-03-08 日产化学工业株式会社 液晶取向剂、液晶取向膜、液晶显示元件及二胺化合物
JP6127721B2 (ja) * 2012-09-14 2017-05-17 Jsr株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
JP6350795B2 (ja) * 2013-05-29 2018-07-04 Jsr株式会社 液晶配向剤
CN105683829B (zh) * 2013-09-03 2019-08-20 日产化学工业株式会社 液晶取向处理剂、液晶取向膜和液晶表示元件
CN105765453B (zh) * 2013-09-26 2019-04-12 日产化学工业株式会社 液晶取向处理剂和使用了其的液晶表示元件
TWI513737B (zh) * 2013-11-29 2015-12-21 Daxin Materials Corp 液晶配向劑、液晶配向膜和液晶顯示元件
JP2016035052A (ja) * 2014-08-01 2016-03-17 住友ベークライト株式会社 ポリアミドの製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0467018A (ja) * 1990-07-05 1992-03-03 Sumitomo Chem Co Ltd 液晶用配向制御膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
REE, MOONHOR: "Synthesis and properties of new aromatic polyimides. Polymeric materials for light-emitting and liquid-crystal displays", MACROMOLECULAR SYMPOSIA (1999, vol. 142, no. 1, 1999, pages 73 - 84, XP000927395 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113423763A (zh) * 2019-02-13 2021-09-21 日产化学株式会社 液晶取向剂、液晶取向膜以及使用了该液晶取向膜的液晶显示元件
CN113423763B (zh) * 2019-02-13 2023-10-03 日产化学株式会社 液晶取向剂、液晶取向膜以及使用了该液晶取向膜的液晶显示元件
JP7639548B2 (ja) 2020-07-29 2025-03-05 Jsr株式会社 液晶配向剤、液晶配向膜及び液晶素子

Also Published As

Publication number Publication date
JP7032700B2 (ja) 2022-03-09
CN110178076B (zh) 2022-04-19
TWI752113B (zh) 2022-01-11
KR20190077519A (ko) 2019-07-03
JPWO2018092759A1 (ja) 2019-10-17
TW201829752A (zh) 2018-08-16
KR102482055B1 (ko) 2022-12-27
CN110178076A (zh) 2019-08-27

Similar Documents

Publication Publication Date Title
JP7173194B2 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
JP7176601B2 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
JP7315907B2 (ja) ジアミン及びそれを用いた重合体
JP7031606B2 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
JP7131538B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP7633608B2 (ja) ジアミン及びその製造方法並びに重合体
JP7345724B2 (ja) ジアミン及び重合体
JP6993618B2 (ja) 新規重合体及びジアミン化合物、液晶配向剤、液晶配向膜及び液晶表示素子
JP7032700B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP7351295B2 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
JP7425537B2 (ja) ジアミン、重合体、液晶配向剤、液晶配向膜及び液晶表示素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17871816

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018551634

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197016462

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17871816

Country of ref document: EP

Kind code of ref document: A1