[go: up one dir, main page]

WO2018092411A1 - Input apparatus - Google Patents

Input apparatus Download PDF

Info

Publication number
WO2018092411A1
WO2018092411A1 PCT/JP2017/034037 JP2017034037W WO2018092411A1 WO 2018092411 A1 WO2018092411 A1 WO 2018092411A1 JP 2017034037 W JP2017034037 W JP 2017034037W WO 2018092411 A1 WO2018092411 A1 WO 2018092411A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode portion
metal plate
electrode part
fixed
movable electrode
Prior art date
Application number
PCT/JP2017/034037
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 一成
厚志 後藤
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Publication of WO2018092411A1 publication Critical patent/WO2018092411A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G1/00Controlling members, e.g. knobs or handles; Assemblies or arrangements thereof; Indicating position of controlling members
    • G05G1/08Controlling members for hand actuation by rotary movement, e.g. hand wheels
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G25/00Other details or appurtenances of control mechanisms, e.g. supporting intermediate members elastically
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G5/00Means for preventing, limiting or returning the movements of parts of a control mechanism, e.g. locking controlling member
    • G05G5/03Means for enhancing the operator's awareness of arrival of the controlling member at a command or datum position; Providing feel, e.g. means for creating a counterforce
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/965Switches controlled by moving an element forming part of the switch
    • H03K17/975Switches controlled by moving an element forming part of the switch using a capacitive movable element

Definitions

  • the present invention relates to an input device that can change the rotational resistance using a magnetorheological fluid.
  • Patent Document 1 describes an invention relating to a rotating fluid knob using a magnetorheological fluid (magnetorheological fluid).
  • This rotary fluid knob is provided with a soft magnetic yoke ring having a toroidal coil inside and an operating wheel that is rotatable with respect to the soft magnetic yoke ring.
  • a gap is formed between the soft magnetic yoke ring and the working wheel, and a magneto-rheological fluid is interposed in the gap.
  • a magnetorheological fluid is a suspended material having metal particles. The viscosity of the magneto-rheological fluid changes due to the influence of the magnetic field induced by the toroidal coil, so that the rotational resistance of the working wheel can be changed.
  • the rotating fluid knob is provided with a magnetic sensor wheel that rotates together with the operating wheel, and a Hall sensor that is provided on the soft magnetic yoke ring side and detects the magnetic sensor wheel.
  • the magnetic wheel sensor is intermittently arranged in the rotation direction so as to have a resolution with respect to a rotation angle of 360 degrees.
  • the rotating fluid knob described in Patent Document 1 is provided with a magnetic sensor wheel that rotates together with the working wheel and a hall sensor that faces the magnetic sensor wheel. Yes. For this reason, the number of parts is increased, and the internal structure is complicated because the magnetic sensor wheel and the hall sensor are arranged.
  • the present invention solves the above-described conventional problems, and an object of the present invention is to provide an input device that can detect rotation using a rotating plate that receives a resistance force from a magnetorheological fluid.
  • the present invention relates to a fixed portion, an operating shaft, a rotating plate that rotates together with the operating shaft, a magnetorheological fluid interposed in a gap between the fixing portion and the rotating plate, and a magnetic field generation that applies a magnetic field to the magnetorheological fluid
  • a fixed electrode portion is provided on the fixed portion, and a movable electrode portion that passes through a region facing the fixed electrode portion and a non-electrode portion are provided in the rotation direction on the rotating plate.
  • the movable electrode portion and the non-electrode portion both receive resistance from the magnetorheological fluid, and the operation from the change in the facing area of the fixed electrode portion and the movable electrode portion.
  • the rotation of the shaft is detected.
  • the movable electrode portion is formed of a conductive metal plate, and the non-electrode portion is formed of a material having a higher specific resistance than the metal plate.
  • the rotating plate is formed of a conductive metal plate, and a part of the metal plate is the movable electrode portion.
  • the metal plate has a hole or notch, and the hole or notch is filled with a material having a higher specific resistance than the metal plate to form the non-electrode portion.
  • the operation shaft is made of a conductive metal, and the metal plate and the operation shaft are electrically connected.
  • the non-electrode portion is formed of a magnetic material, and an electrically insulating material is provided at a boundary between the non-electrode portion and the movable electrode portion.
  • a movable electrode part is provided on a rotating plate that receives rotational resistance from a magnetorheological fluid so that the rotation angle can be detected from a change in the facing area between the fixed electrode part and the movable electrode part. Therefore, it is not necessary to arrange a hall sensor or the like in the apparatus, the structure can be simplified, and a small and thin configuration can be achieved.
  • the rotating electrode part is provided by setting the part where the movable electrode part does not exist in the rotating plate as a non-electrode part and both the movable electrode part and the non-electrode part receive resistance from the magnetorheological fluid, The resistance torque received from the magnetorheological fluid will not decrease.
  • FIG. 1 It is sectional drawing which shows the whole structure of the input device of this invention. It is the expanded sectional view which expanded a part of FIG. It is a disassembled perspective view which shows the structure of the lower yoke and rotation board which were provided in the input device shown in FIG.
  • the input device 1 is configured by combining a lower yoke 2 and an upper yoke 3.
  • the lower yoke 2 and the upper yoke 3 are made of a soft magnetic material such as a Ni—Fe alloy.
  • Spacer rings 4 formed of a metal plate are mounted on the outer circumferences of the lower yoke 2 and the upper yoke 3. The spacer ring 4 determines the relative position of the lower yoke 2 and the upper yoke 3 in the vertical direction in the figure, and the gap h of the gap 6 between the lower yoke 2 and the upper yoke 3 is set uniformly.
  • the gap 6 is closed from the outer peripheral side by the spacer ring 4.
  • the lower yoke 2 and the upper yoke 3 are fixed to the inside of the exterior case.
  • an excitation coil 7 serving as a magnetic field generation unit is provided inside the upper yoke 3.
  • the rotation center line O of the rotator 10 is shown.
  • the coated conducting wire is wound in multiple directions around the rotation center line O in the circumferential direction.
  • a female screw hole 15 is opened at the center of the lower yoke 2, and a thrust bearing 21 is screwed into the female screw hole 15.
  • a bearing ball 22 is provided in a recess on the upper surface of the thrust bearing 21.
  • the rotating body 10 is configured by connecting an operating shaft 11 and a rotating plate 12, or the operating shaft 11 and the rotating plate 12 are configured integrally.
  • the tapered recess 13 formed at the lower end of the operation shaft 11 is abutted against the bearing ball 22.
  • a center hole 23 is opened in the upper yoke 3, and a radial bearing 24 is held above the center hole 23.
  • a step portion 14 is formed in the middle portion of the operation shaft 11. The upper part of the operating shaft 11 is inserted into the inner side of the radial bearing 24 from the lower side in the figure, the step 14 is abutted against the lower end part of the inner side of the inner figure, and the operating shaft 11 is rotatably supported by the radial bearing 24. Yes.
  • the rotating plate 12 is located in the gap 6 between the lower yoke 2 and the upper yoke 3.
  • the radial bearing 24 is fitted to the upper portion of the center hole 23 of the upper yoke 3, and the rotating body 10 is mounted from the lower side in the figure.
  • the operating shaft 11 is lowered to the inner side of the radial bearing 24.
  • the step 14 is abutted against the lower end of the inner.
  • the lower yoke 2 is assembled into the upper yoke 3, and the vertical distance is set by the spacer ring 4, and then fixed to an exterior case (not shown) or the like.
  • the thrust bearing 21 is screwed into the female screw hole 15 at the center of the lower yoke 2, when the lower yoke 2 is assembled into the upper yoke 3, a bearing is provided between the tapered recess 13 of the operation shaft 11 and the thrust bearing 21. A ball 22 is sandwiched. After the lower yoke 2 and the upper yoke 3 are assembled, the amount of screwing of the thrust bearing 21 is adjusted, so that the rotating body 10 is placed between the lower yoke 2 and the upper yoke 3 to minimize rattling. It becomes possible to store freely in a restricted state.
  • the magnetorheological fluid 27 is supplied between the lower surface 3a of the upper yoke 3 and the upper surface of the rotating plate 12, and when the lower yoke 2 is assembled, the rotating plate 12 A magnetorheological fluid 27 is supplied between the lower surface and the upper surface 2 a of the lower yoke 2.
  • the rotating body 10 is formed with a seal receiving portion 16 at the boundary between the operating shaft 11 and the rotating plate 12, and at the lower end of the central hole 23 of the upper yoke 3.
  • a receiving taper surface 3b is formed.
  • An O-ring 28 is sandwiched between the seal receiving portion 16 and the tapered surface 3 b, and the magnetic viscous fluid 27 in the gap 6 is restricted from flowing out into the central hole 23 of the upper yoke 3.
  • the magnetorheological fluid 27 is a fluid in which magnetic powder or magnetic particles such as Ni—Fe alloy powder are mixed inside an oil agent such as silicon oil.
  • a fixed electrode portion 31 is provided on the upper surface 2 a of the lower yoke 2.
  • the fixed electrode portion 31 is formed of an insulating substrate having a metal plate or metal foil having a low electric resistance such as copper. Since the lower yoke 2 is made of a metal such as a Ni—Fe alloy, the fixed electrode portion 31 and the lower yoke 2 are insulated by an electrically insulating material layer 32.
  • the electrically insulating material layer 32 is made of a synthetic resin material. When the fixed electrode portion 31 is formed on the insulating substrate, this insulating substrate becomes the electrical insulating material layer 32.
  • the fixed electrode part 31 has an area extending in a range of a predetermined angle in the circumferential direction around the rotation center line O, and the planar shape is a fan shape.
  • fixed electrode portions 31 are provided at two locations. Conductive wires are individually connected to the fixed electrode portion 31, and the conductive wires are connected to a control circuit (not shown).
  • the conducting wire is a conductive pattern formed on the insulating substrate.
  • the rotating plate 12 of the rotating body 10 is formed of a conductive metal plate 33.
  • the metal plate 33 is formed of a low electrical resistance such as a copper plate.
  • the operation shaft 11 is made of iron or the like, and the central portion of the metal plate 33 is fixed to the operation shaft 11.
  • the operation shaft 11 and the metal plate 33 may be integrally formed. In any case, the metal plate 33 and the operation shaft 11 are electrically connected.
  • the metal plate 33 constituting the rotating plate 12 is a circular plate having a uniform thickness, and has a fan-shaped hole (or opening) 33a extending in the circumferential direction.
  • a partial arc-shaped slit 33b is formed along a locus with a predetermined radius from the rotation center line O.
  • a fan-shaped region of the metal plate 33 between the hole 33 a and the hole 33 a and inside the slit 33 b is the movable electrode portion 34.
  • the fan shape refers to a shape surrounded by two radii of a circle and an arc extending between them and having a central angle of less than 180 °.
  • the shape of the hole 33a may be a polygonal shape such as a rectangle or a circular shape in addition to a fan shape.
  • a fan-shaped plate material 35a is fitted in the fan-shaped hole 33a formed in the metal plate 33.
  • the plate member 35a has a specific resistance higher than that of the metal plate 33 constituting the movable electrode portion 34 and is made of a magnetic material.
  • the plate material 35a is, for example, a Ni—Fe alloy plate material.
  • An electrically insulating material layer 35b is provided between the entire circumference of the plate material 35a and the inner edge of the hole 33a, so that the magnetic material plate material 35a and the metal plate 33 are electrically insulated.
  • the non-electrode portion 35 is configured by a plate material 35 a provided in the hole 33 a of the metal plate 33 or by the plate material 35 a and the electrical insulating material layer 35 b.
  • the movable electrode portions 34 and the non-electrode portions 35 are alternately formed in the rotation plate 12 in a predetermined angle range in the rotation direction around the rotation center line O.
  • the two fixed electrode portions 31 provided on the upper surface 2a of the lower yoke 2 and the two movable electrode portions 34 provided on the rotating plate 12 have different arrangement phases in the rotation direction around the rotation center line O. ing. Thereby, when the rotating plate 12 rotates, a rotation detection output whose phase is shifted in the time direction can be obtained from one fixed electrode portion 31 and the other fixed electrode portion 31.
  • the fixed electrode part 31 and the movable electrode part 34 may be provided one by one, or may be provided by three or more.
  • An operation knob is fixed to the upper tip of the operation shaft 11 of the rotating body 10. At least a part of the operation knob is formed of a conductor, and when the operator grips the operation knob, the movable electrode portion 34 of the rotating plate 12 is electrically connected to the operator via the operation knob and the operation shaft 11 and is movable. The electrode part 34 is almost at ground potential.
  • the two movable electrode portions 34, 34 formed of the metal plate 33 on the rotating plate 12 move on the fixed electrode portion 31 fixed to the lower yoke 2. pass.
  • the capacitance between the fixed electrode portion 31 and the movable electrode portion 34 changes according to the change in the facing area between the fixed electrode portion 31 and the movable electrode portion 34.
  • Pulsed detection power is given to each fixed electrode unit 31 from a control circuit (not shown), and the change of the current flowing through the fixed electrode unit 31 is detected by the control circuit. Change can be detected.
  • a control current is applied to the exciting coil 7 by a control operation of a predetermined program stored in the control circuit.
  • This control current induces a magnetic field in the exciting coil 7 to generate a magnetic flux that crosses the gap 6 between the upper yoke 3 and the lower yoke 2, and this magnetic flux changes according to the magnitude of the control current.
  • the magnetorheological fluid 27 located inside the gap 6 the magnetic powder agglomeration structure and the bridge structure change in accordance with the change in the strength of the crossing magnetic flux, and a resistance torque is given to the rotating plate 12 in accordance with this, The resistance felt by the hand operating the control knob changes. Moreover, the resistance torque can be changed.
  • the control current is controlled so as to change according to the rotation state of the rotating body 10 detected from the fixed electrode unit 31.
  • the resistance force changes according to a change in the rotation angle of the operation knob, or the resistance force changes according to a change in the rotation speed of the operation knob.
  • a braking force that makes it difficult to manually rotate the operation knob acts. Accordingly, for example, it is possible to set a limit on the angle at which the operation knob is rotated.
  • two holes 33 a are opened in the metal plate 33 constituting the rotating plate 12, and a non-electrode portion 35 is formed by embedding a plate material 35 a of a magnetic material in the hole 33 a.
  • the magnetorheological fluid 27 in the gap 6 is in contact with not only the movable electrode portion 34 of the rotating plate 10 but also the plate material 35 a located inside the hole 33 a, and therefore rotates from the magnetorheological fluid 27.
  • a resistance force can be applied to almost the entire surface of the plate 12.
  • the rotating plate 12 is separated from the magnetorheological fluid 27 with respect to the movable electrode portion 34, the non-electrode portion 35, and the entire region (the entire region excluding the slit 33b) of the outer peripheral portion 36 that is continuous in the circumferential direction on the outer peripheral side.
  • a resistance torque can be applied.
  • the rotating plate 12 is formed of a conductive metal plate 33 having a hole 33a and a slit 33b, and a magnetic material is formed in the hole 33a.
  • a plate material 35a is installed, and a boundary portion between the plate material 35a and the metal plate 33 is filled with an electrically insulating material layer 35b.
  • the non-electrode portion 35 may be formed by filling the hole 33a with a synthetic resin material that is a nonmagnetic material.
  • the metal plate 33 having the holes 33a may be embedded in the resin by a so-called insert molding method. In this structure, the inside of the hole 33a is filled with a synthetic resin, and both the front and back surfaces of the movable electrode portion 34 and the outer peripheral portion 36 are covered with a thin synthetic resin layer.
  • a material having a higher specific resistance than the movable electrode portion 34 is disposed in the hole 33a.
  • the rotation plate for applying the resistance torque and the rotation detection structure are separately provided.
  • the apparatus can be made smaller and thinner than what is provided as

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Control Devices (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

This input apparatus has: a fixed part; an operation shaft; a rotary plate that rotates integrally with the operation shaft; a magnetic viscous fluid that is interposed in a gap between the fixed part and the rotary plate; and a magnetic field generation part that applies a magnetic field to the magnetic viscous fluid, wherein a fixed electrode part is provided to the fixed part, a non-electrode part and a movable electrode part passing through a region opposed to the fixed electrode part are alternately provided to the rotary plate in a rotational direction, both the movable electrode part and a non-electrode part receive resistance from the magnetic viscous fluid, and rotation of the operation shaft is detected on the basis of changes in the opposing areas of the fixed electrode part and the movable electrode part.

Description

入力装置Input device
 本発明は、磁気粘性流体を使用して回転抵抗を変化させることができる入力装置に関する。 The present invention relates to an input device that can change the rotational resistance using a magnetorheological fluid.
 特許文献1に磁気流動学的流体(磁気粘性流体)を使用した回転流体ノブに関する発明が記載されている。 Patent Document 1 describes an invention relating to a rotating fluid knob using a magnetorheological fluid (magnetorheological fluid).
 この回転流体ノブは、内部にトロイダルコイルを有する軟磁性ヨークリングと、前記軟磁性ヨークリングに対して回転可能とされた作動ホイールとが設けられている。軟磁性ヨークリングと作動ホイールとの間に隙間が形成され、この隙間に磁気流動学的流体が介在している。磁気流動学的流体は、金属粒子を有する懸濁物質である。トロイダルコイルで誘導される磁界の影響で磁気流動学的流体の粘度が変化し、これにより、作動ホイールの回転抵抗を変化させることができるようになっている。 This rotary fluid knob is provided with a soft magnetic yoke ring having a toroidal coil inside and an operating wheel that is rotatable with respect to the soft magnetic yoke ring. A gap is formed between the soft magnetic yoke ring and the working wheel, and a magneto-rheological fluid is interposed in the gap. A magnetorheological fluid is a suspended material having metal particles. The viscosity of the magneto-rheological fluid changes due to the influence of the magnetic field induced by the toroidal coil, so that the rotational resistance of the working wheel can be changed.
 回転流体ノブには、前記作動ホイールと共に回転する磁気センサホイールと、軟磁性ヨークリング側に設けられて、前記磁気センサホイールを検知するホールセンサとが設けられている。磁気ホイールセンサは360度の回転角度に対して分解能を持つように回転方向に断続に配置されている。 The rotating fluid knob is provided with a magnetic sensor wheel that rotates together with the operating wheel, and a Hall sensor that is provided on the soft magnetic yoke ring side and detects the magnetic sensor wheel. The magnetic wheel sensor is intermittently arranged in the rotation direction so as to have a resolution with respect to a rotation angle of 360 degrees.
特開2002-108470号公報JP 2002-108470 A
 特許文献1に記載されている回転流体ノブには、作動ホイールの回転角度を検知するために、作動ホイールと一緒に回転する磁気センサホイールと、磁気センサホイールに対向するホールセンサとが設けられている。そのため、部品点数が多くなり、また磁気センサホイールとホールセンサを配置するために内部構造が複雑であり、小型化が難しい課題がある。 In order to detect the rotation angle of the working wheel, the rotating fluid knob described in Patent Document 1 is provided with a magnetic sensor wheel that rotates together with the working wheel and a hall sensor that faces the magnetic sensor wheel. Yes. For this reason, the number of parts is increased, and the internal structure is complicated because the magnetic sensor wheel and the hall sensor are arranged.
 本発明は上記従来の課題を解決するものであり、磁気粘性流体からの抵抗力を受ける回転板を利用して回転検知ができるようにした入力装置を提供することを目的としている。 The present invention solves the above-described conventional problems, and an object of the present invention is to provide an input device that can detect rotation using a rotating plate that receives a resistance force from a magnetorheological fluid.
 本発明は、固定部と、操作軸と、前記操作軸と共に回転する回転板と、前記固定部と前記回転板との隙間に介在する磁気粘性流体と、前記磁気粘性流体に磁場を与える磁界発生部とを有する入力装置において、前記固定部に固定電極部が設けられ、前記回転板には、前記固定電極部と対向する領域を通過する可動電極部と、非電極部とが、回転方向に向けて交互に設けられており、前記可動電極部と前記非電極部の双方が、前記磁気粘性流体から抵抗を受けるとともに、前記固定電極部と前記可動電極部との対向面積の変化から前記操作軸の回転が検出されることを特徴とするものである。 The present invention relates to a fixed portion, an operating shaft, a rotating plate that rotates together with the operating shaft, a magnetorheological fluid interposed in a gap between the fixing portion and the rotating plate, and a magnetic field generation that applies a magnetic field to the magnetorheological fluid A fixed electrode portion is provided on the fixed portion, and a movable electrode portion that passes through a region facing the fixed electrode portion and a non-electrode portion are provided in the rotation direction on the rotating plate. The movable electrode portion and the non-electrode portion both receive resistance from the magnetorheological fluid, and the operation from the change in the facing area of the fixed electrode portion and the movable electrode portion. The rotation of the shaft is detected.
 本発明の入力装置は、前記可動電極部が導電性の金属板で形成され、前記非電極部が、前記金属板よりも比抵抗の高い材料で形成されている。 In the input device of the present invention, the movable electrode portion is formed of a conductive metal plate, and the non-electrode portion is formed of a material having a higher specific resistance than the metal plate.
 または、本発明の入力装置は、前記回転板は、導電性の金属板で形成されて、前記金属板の一部が前記可動電極部であり、
 前記金属板が穴または切欠きを有し、前記穴または切欠きが、前記金属板よりも比抵抗の高い材料で埋められて、前記非電極部が形成されている。
Alternatively, in the input device of the present invention, the rotating plate is formed of a conductive metal plate, and a part of the metal plate is the movable electrode portion.
The metal plate has a hole or notch, and the hole or notch is filled with a material having a higher specific resistance than the metal plate to form the non-electrode portion.
 上記の入力装置では、前記操作軸は導電性金属で形成され、前記金属板と前記操作軸とが導通していることが好ましい。 In the above input device, it is preferable that the operation shaft is made of a conductive metal, and the metal plate and the operation shaft are electrically connected.
 また、本発明の入力装置は、前記非電極部が磁性材料で形成されており、前記非電極部と前記可動電極部の境界に電気絶縁材料が設けられていることが好ましい。 In the input device of the present invention, it is preferable that the non-electrode portion is formed of a magnetic material, and an electrically insulating material is provided at a boundary between the non-electrode portion and the movable electrode portion.
 本発明の入力装置は、磁気粘性流体から回転抵抗を受ける回転板に可動電極部を設けて、固定電極部と可動電極部との対向面積の変化から回転角度を検出できるようにしている。そのため、装置内にホールセンサなどを配置する必要がなくなり、構造を簡単にでき、小型で薄型に構成することが可能になる。 In the input device of the present invention, a movable electrode part is provided on a rotating plate that receives rotational resistance from a magnetorheological fluid so that the rotation angle can be detected from a change in the facing area between the fixed electrode part and the movable electrode part. Therefore, it is not necessary to arrange a hall sensor or the like in the apparatus, the structure can be simplified, and a small and thin configuration can be achieved.
 また、回転板において可動電極部が存在しない部分を非電極部とし、可動電極部と非電極部の双方が、磁気粘性流体から抵抗を受けるようにすることで、回転電極部を設けても、磁気粘性流体から受ける抵抗トルクが低下することがなくなる。 Moreover, even if the rotating electrode part is provided by setting the part where the movable electrode part does not exist in the rotating plate as a non-electrode part and both the movable electrode part and the non-electrode part receive resistance from the magnetorheological fluid, The resistance torque received from the magnetorheological fluid will not decrease.
本発明の入力装置の全体構造を示す断面図である。It is sectional drawing which shows the whole structure of the input device of this invention. 図1の一部を拡大した拡大断面図である。It is the expanded sectional view which expanded a part of FIG. 図1に示す入力装置に設けられた下部ヨークと回転板の構造を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the lower yoke and rotation board which were provided in the input device shown in FIG.
 図1と図2に示すように、本発明の実施の形態の入力装置1は、下部ヨーク2と上部ヨーク3とが組み合わされて構成されている。下部ヨーク2と上部ヨーク3は、Ni-Fe合金などの軟磁性材料で形成されている。下部ヨーク2と上部ヨーク3の外周には、金属板で形成されたスペーサリング4が装着されている。スペーサリング4によって下部ヨーク2と上部ヨーク3の図示上下方向の相対位置が決められて、下部ヨーク2と上部ヨーク3との間の隙間6の間隔hが均一に設定されている。またスペーサリング4によって、前記隙間6が外周側から塞がれている。下部ヨーク2と上部ヨーク3の相対位置が、スペーサリング4で決められた状態で、下部ヨーク2と上部ヨーク3が外装ケースの内部などに固定される。 As shown in FIGS. 1 and 2, the input device 1 according to the embodiment of the present invention is configured by combining a lower yoke 2 and an upper yoke 3. The lower yoke 2 and the upper yoke 3 are made of a soft magnetic material such as a Ni—Fe alloy. Spacer rings 4 formed of a metal plate are mounted on the outer circumferences of the lower yoke 2 and the upper yoke 3. The spacer ring 4 determines the relative position of the lower yoke 2 and the upper yoke 3 in the vertical direction in the figure, and the gap h of the gap 6 between the lower yoke 2 and the upper yoke 3 is set uniformly. Further, the gap 6 is closed from the outer peripheral side by the spacer ring 4. With the relative positions of the lower yoke 2 and the upper yoke 3 determined by the spacer ring 4, the lower yoke 2 and the upper yoke 3 are fixed to the inside of the exterior case.
 図1に示すように、上部ヨーク3の内部に磁界発生部である励磁コイル7が設けられている。図1には、回転体10の回転中心線Oが示されているが、励磁コイル7では、被覆導線が、回転中心線Oを中心として円周方向に多重に巻かれている。 As shown in FIG. 1, an excitation coil 7 serving as a magnetic field generation unit is provided inside the upper yoke 3. In FIG. 1, the rotation center line O of the rotator 10 is shown. In the excitation coil 7, the coated conducting wire is wound in multiple directions around the rotation center line O in the circumferential direction.
 図1と図2に示すように、下部ヨーク2の中央部に雌ねじ穴15が開口し、この雌ねじ穴15にスラスト軸受21が螺着されている。スラスト軸受21の上面の凹部に軸受け球22が設けられている。図3にも示すように、回転体10は、操作軸11と回転板12とが連結されて構成され、または操作軸11と回転板12とが一体に構成されている。図1に示すように、操作軸11の下端に形成されたテーパ凹部13が、軸受け球22に突き当てられている。 As shown in FIGS. 1 and 2, a female screw hole 15 is opened at the center of the lower yoke 2, and a thrust bearing 21 is screwed into the female screw hole 15. A bearing ball 22 is provided in a recess on the upper surface of the thrust bearing 21. As shown in FIG. 3, the rotating body 10 is configured by connecting an operating shaft 11 and a rotating plate 12, or the operating shaft 11 and the rotating plate 12 are configured integrally. As shown in FIG. 1, the tapered recess 13 formed at the lower end of the operation shaft 11 is abutted against the bearing ball 22.
 上部ヨーク3には、中心穴23が開口しており、中心穴23の上部にラジアル軸受け24が保持されている。操作軸11の中間部に段差部14が形成されている。操作軸11の上部がラジアル軸受け24のインナーに図示下側から挿入され、前記段差部14が前記インナーの図示下端部に突き当てられて、操作軸11がラジアル軸受け24に回転自在に支持されている。そして、回転板12が、下部ヨーク2と上部ヨーク3との間の隙間6内に位置している。 A center hole 23 is opened in the upper yoke 3, and a radial bearing 24 is held above the center hole 23. A step portion 14 is formed in the middle portion of the operation shaft 11. The upper part of the operating shaft 11 is inserted into the inner side of the radial bearing 24 from the lower side in the figure, the step 14 is abutted against the lower end part of the inner side of the inner figure, and the operating shaft 11 is rotatably supported by the radial bearing 24. Yes. The rotating plate 12 is located in the gap 6 between the lower yoke 2 and the upper yoke 3.
 入力装置1の組立作業では、上部ヨーク3の中心穴23の上部にラジアル軸受け24を嵌合させ、回転体10を図示下側から装着し、このとき操作軸11をラジアル軸受け24のインナーに下から挿通させ、段差部14をインナーの下端部に突き当てる。その後、下部ヨーク2を上部ヨーク3に組み込み、スペーサリング4で上下の間隔を設定してから、図示しない外装ケースなどに固定する。 In the assembling work of the input device 1, the radial bearing 24 is fitted to the upper portion of the center hole 23 of the upper yoke 3, and the rotating body 10 is mounted from the lower side in the figure. At this time, the operating shaft 11 is lowered to the inner side of the radial bearing 24. The step 14 is abutted against the lower end of the inner. Thereafter, the lower yoke 2 is assembled into the upper yoke 3, and the vertical distance is set by the spacer ring 4, and then fixed to an exterior case (not shown) or the like.
 下部ヨーク2の中央部の雌ねじ穴15にスラスト軸受21が螺着されているため、下部ヨーク2が上部ヨーク3に組み込まれると、操作軸11のテーパ凹部13とスラスト軸受21との間に軸受け球22が挟み込まれる。下部ヨーク2と上部ヨーク3とが組み立てられた後に、スラスト軸受21のねじ込み量を調整することで、下部ヨーク2と上部ヨーク3との間に、回転体10を、がたつきを最少限に規制した状態で回転自在に収納することが可能になる。 Since the thrust bearing 21 is screwed into the female screw hole 15 at the center of the lower yoke 2, when the lower yoke 2 is assembled into the upper yoke 3, a bearing is provided between the tapered recess 13 of the operation shaft 11 and the thrust bearing 21. A ball 22 is sandwiched. After the lower yoke 2 and the upper yoke 3 are assembled, the amount of screwing of the thrust bearing 21 is adjusted, so that the rotating body 10 is placed between the lower yoke 2 and the upper yoke 3 to minimize rattling. It becomes possible to store freely in a restricted state.
 上部ヨーク3に回転体10が組み付けられるときに、上部ヨーク3の下面3aと回転板12の上面との間に磁気粘性流体27が供給され、下部ヨーク2が組み込まれるときに、回転板12の下面と、下部ヨーク2の上面2aとの間に磁気粘性流体27が供給される。 When the rotating body 10 is assembled to the upper yoke 3, the magnetorheological fluid 27 is supplied between the lower surface 3a of the upper yoke 3 and the upper surface of the rotating plate 12, and when the lower yoke 2 is assembled, the rotating plate 12 A magnetorheological fluid 27 is supplied between the lower surface and the upper surface 2 a of the lower yoke 2.
 図1と図2に示すように、回転体10には、操作軸11と回転板12との境界部にシール受け部16が形成されており、上部ヨーク3の中心穴23の開口下端には受けテーパ面3bが形成されている。シール受け部16とテーパ面3bとの間にオーリング28が挟まれて、隙間6内の磁気粘性流体27が、上部ヨーク3の中心穴23に流出するのが規制されている。 As shown in FIGS. 1 and 2, the rotating body 10 is formed with a seal receiving portion 16 at the boundary between the operating shaft 11 and the rotating plate 12, and at the lower end of the central hole 23 of the upper yoke 3. A receiving taper surface 3b is formed. An O-ring 28 is sandwiched between the seal receiving portion 16 and the tapered surface 3 b, and the magnetic viscous fluid 27 in the gap 6 is restricted from flowing out into the central hole 23 of the upper yoke 3.
 磁気粘性流体27は、シリコンオイルなどの油剤の内部に、Ni-Fe合金粉などの磁性粉または磁性粒が混在しているものである。 The magnetorheological fluid 27 is a fluid in which magnetic powder or magnetic particles such as Ni—Fe alloy powder are mixed inside an oil agent such as silicon oil.
 図3に示すように、下部ヨーク2の上面2aに、固定電極部31が設けられている。固定電極部31は、銅などの電気抵抗の低い金属板または金属箔を有する絶縁基板などで形成されている。下部ヨーク2はNi-Fe合金などの金属製であるため、固定電極部31と下部ヨーク2は、電気絶縁材料層32で絶縁されている。電気絶縁材料層32は合成樹脂材料で形成されている。固定電極部31が絶縁基板上に形成されている場合には、この絶縁基板が電気絶縁材料層32となる。 As shown in FIG. 3, a fixed electrode portion 31 is provided on the upper surface 2 a of the lower yoke 2. The fixed electrode portion 31 is formed of an insulating substrate having a metal plate or metal foil having a low electric resistance such as copper. Since the lower yoke 2 is made of a metal such as a Ni—Fe alloy, the fixed electrode portion 31 and the lower yoke 2 are insulated by an electrically insulating material layer 32. The electrically insulating material layer 32 is made of a synthetic resin material. When the fixed electrode portion 31 is formed on the insulating substrate, this insulating substrate becomes the electrical insulating material layer 32.
 固定電極部31は、回転中心線Oを中心として円周方向に所定の角度の範囲で延びる面積を有し、平面形状は扇形状である。実施の形態では、固定電極部31が2箇所に設けられている。固定電極部31には、個別に導線が接続されており、この導線が図示しない制御回路に接続されている。固定電極部31が絶縁基板に設けられているときには、前記導線は、絶縁基板に形成された導電パターンである。 The fixed electrode part 31 has an area extending in a range of a predetermined angle in the circumferential direction around the rotation center line O, and the planar shape is a fan shape. In the embodiment, fixed electrode portions 31 are provided at two locations. Conductive wires are individually connected to the fixed electrode portion 31, and the conductive wires are connected to a control circuit (not shown). When the fixed electrode portion 31 is provided on the insulating substrate, the conducting wire is a conductive pattern formed on the insulating substrate.
 回転体10の回転板12は導電性の金属板33で形成されている。金属板33は銅板などの電気抵抗が低いもので形成されている。一方で、操作軸11は鉄などで形成されており、金属板33の中心部が、操作軸11に固定されている。または、操作軸11と金属板33とが一体に形成されもよい。いずれにせよ、金属板33と操作軸11は電気的に導通している。 The rotating plate 12 of the rotating body 10 is formed of a conductive metal plate 33. The metal plate 33 is formed of a low electrical resistance such as a copper plate. On the other hand, the operation shaft 11 is made of iron or the like, and the central portion of the metal plate 33 is fixed to the operation shaft 11. Alternatively, the operation shaft 11 and the metal plate 33 may be integrally formed. In any case, the metal plate 33 and the operation shaft 11 are electrically connected.
 図3に示すように、回転板12を構成している金属板33は厚さが均一な円板であり、円周方向に延びる扇形状の穴(または開口部)33aが形成されている。穴33aが形成されていない領域では、回転中心線Oから所定の半径の軌跡に沿って部分円弧状のスリット33bが形成されている。回転板12では、金属板33のうちの、穴33aと穴33aとの間の領域で且つスリット33bよりも内側の扇形状の領域が可動電極部34となって
いる。ここで、扇形状とは、円の2本の半径とその間に延びる円弧とで囲まれ、中心角が180°未満の形状をいう。穴33aの形状は扇形状の他、長方形等の多角形状、円形状であってもよい。
As shown in FIG. 3, the metal plate 33 constituting the rotating plate 12 is a circular plate having a uniform thickness, and has a fan-shaped hole (or opening) 33a extending in the circumferential direction. In a region where the hole 33a is not formed, a partial arc-shaped slit 33b is formed along a locus with a predetermined radius from the rotation center line O. In the rotating plate 12, a fan-shaped region of the metal plate 33 between the hole 33 a and the hole 33 a and inside the slit 33 b is the movable electrode portion 34. Here, the fan shape refers to a shape surrounded by two radii of a circle and an arc extending between them and having a central angle of less than 180 °. The shape of the hole 33a may be a polygonal shape such as a rectangle or a circular shape in addition to a fan shape.
 金属板33に形成された扇形状の穴33aには、扇形状の板材35aが嵌められている。板材35aは、可動電極部34を構成する金属板33よりも比抵抗が高く、且つ磁性材料で形成されている。板材35aは例えばNi-Fe合金の板材である。板材35aの周囲全周と、穴33aの内縁部との間に電気絶縁材料層35bが設けられて、磁性材料の板材35aと金属板33とが電気的に絶縁されている。回転板12では、金属板33の穴33aに設けられた板材35aで、または板材35aと電気絶縁材料層35bとで非電極部35が構成されている。すなわち、回転板12には、回転中心線Oを中心とする回転方向に向けて可動電極部34と非電極部35とが、所定の角度の範囲で交互に形成されている。 In the fan-shaped hole 33a formed in the metal plate 33, a fan-shaped plate material 35a is fitted. The plate member 35a has a specific resistance higher than that of the metal plate 33 constituting the movable electrode portion 34 and is made of a magnetic material. The plate material 35a is, for example, a Ni—Fe alloy plate material. An electrically insulating material layer 35b is provided between the entire circumference of the plate material 35a and the inner edge of the hole 33a, so that the magnetic material plate material 35a and the metal plate 33 are electrically insulated. In the rotating plate 12, the non-electrode portion 35 is configured by a plate material 35 a provided in the hole 33 a of the metal plate 33 or by the plate material 35 a and the electrical insulating material layer 35 b. In other words, the movable electrode portions 34 and the non-electrode portions 35 are alternately formed in the rotation plate 12 in a predetermined angle range in the rotation direction around the rotation center line O.
 下部ヨーク2の上面2aに設けられた2つの固定電極部31と、回転板12に設けられた2つの可動電極部34は、回転中心線Oを中心とした回転方向において配置位相が互いに相違している。これにより、回転板12が回転したときに、一方の固定電極部31と他方の固定電極部31とから、位相が時間方向にずれた回転検知出力を得ることができる。 The two fixed electrode portions 31 provided on the upper surface 2a of the lower yoke 2 and the two movable electrode portions 34 provided on the rotating plate 12 have different arrangement phases in the rotation direction around the rotation center line O. ing. Thereby, when the rotating plate 12 rotates, a rotation detection output whose phase is shifted in the time direction can be obtained from one fixed electrode portion 31 and the other fixed electrode portion 31.
 なお、固定電極部31と可動電極部34は、1個ずつ設けられていてもよいし、3個以上ずつ設けられていてもよい。 In addition, the fixed electrode part 31 and the movable electrode part 34 may be provided one by one, or may be provided by three or more.
 次に、前記入力装置に動作を説明する。 Next, the operation of the input device will be described.
 回転体10の操作軸11の上部先部には、操作ノブが固定されている。操作ノブは少なくとも一部が導電体で形成されており、操作者が操作ノブを握ると、操作ノブと操作軸11を介して、回転板12の可動電極部34が操作者に導通され、可動電極部34がほぼ接地電位となる。 An operation knob is fixed to the upper tip of the operation shaft 11 of the rotating body 10. At least a part of the operation knob is formed of a conductor, and when the operator grips the operation knob, the movable electrode portion 34 of the rotating plate 12 is electrically connected to the operator via the operation knob and the operation shaft 11 and is movable. The electrode part 34 is almost at ground potential.
 操作ノブを操作して操作軸11を回転させると、回転板12において金属板33で形成された2個の可動電極部34,34が、下部ヨーク2に固定された固定電極部31の上を通過する。このとき、固定電極部31と可動電極部34との対向面積の変化に応じて、固定電極部31と可動電極部34との間の静電容量が変化する。図示しない制御回路からそれぞれの固定電極部31にパルス状の検出電力が与えられ、前記制御回路で固定電極部31に流れる電流の変化を検知することで、自己容量測定方式で前記静電容量の変化を検出できる。 When the operation knob 11 is operated to rotate the operation shaft 11, the two movable electrode portions 34, 34 formed of the metal plate 33 on the rotating plate 12 move on the fixed electrode portion 31 fixed to the lower yoke 2. pass. At this time, the capacitance between the fixed electrode portion 31 and the movable electrode portion 34 changes according to the change in the facing area between the fixed electrode portion 31 and the movable electrode portion 34. Pulsed detection power is given to each fixed electrode unit 31 from a control circuit (not shown), and the change of the current flowing through the fixed electrode unit 31 is detected by the control circuit. Change can be detected.
 図3に示すように、回転中心線Oを中心とする円周方向での固定電極部31の配置角度と、可動電極部34の配置角度とが相違しているため、一方の固定電極部31と他方の固定電極部31とから異なる位相の回転検知出力を得ることができる。この2つの回転検知出力から、操作軸11の回転角度と回転方向を検知できる。 As shown in FIG. 3, since the arrangement angle of the fixed electrode portion 31 in the circumferential direction around the rotation center line O is different from the arrangement angle of the movable electrode portion 34, one fixed electrode portion 31. And a rotation detection output with a different phase can be obtained from the other fixed electrode portion 31. From the two rotation detection outputs, the rotation angle and the rotation direction of the operation shaft 11 can be detected.
 前記制御回路に格納された所定のプログラムの制御動作により、励磁コイル7に制御電流が与えられる。この制御電流により励磁コイル7で磁界が誘導されて、上部ヨーク3と下部ヨーク2との隙間6を横断する磁束が発生し、この磁束は、制御電流の大小に応じて変化する。隙間6の内部に位置する磁気粘性流体27では、横断する磁束の強弱の変化に応じて、磁性粉の凝集構造やブリッジ構造が変化し、これに応じて回転板12に抵抗トルクが与えられ、操作ノブを操作する手に感じる抵抗が変化する。しかも抵抗トルクを変化させることができる。 A control current is applied to the exciting coil 7 by a control operation of a predetermined program stored in the control circuit. This control current induces a magnetic field in the exciting coil 7 to generate a magnetic flux that crosses the gap 6 between the upper yoke 3 and the lower yoke 2, and this magnetic flux changes according to the magnitude of the control current. In the magnetorheological fluid 27 located inside the gap 6, the magnetic powder agglomeration structure and the bridge structure change in accordance with the change in the strength of the crossing magnetic flux, and a resistance torque is given to the rotating plate 12 in accordance with this, The resistance felt by the hand operating the control knob changes. Moreover, the resistance torque can be changed.
 制御電流は、固定電極部31から検出される回転体10の回転状態に応じて変化するように制御される。例えば、操作ノブの回転角度の変化に応じて抵抗力が変化したり、操作ノブの回転速度の変化に応じて抵抗力が変化する。また、励磁コイル7に与える制御電流が大きくなると、操作ノブに手で回転させるのが困難となるブレーキ力が作用する。これによって、例えば操作ノブを回転させる角度に限界を設けることが可能になる。 The control current is controlled so as to change according to the rotation state of the rotating body 10 detected from the fixed electrode unit 31. For example, the resistance force changes according to a change in the rotation angle of the operation knob, or the resistance force changes according to a change in the rotation speed of the operation knob. Further, when the control current applied to the exciting coil 7 increases, a braking force that makes it difficult to manually rotate the operation knob acts. Accordingly, for example, it is possible to set a limit on the angle at which the operation knob is rotated.
 図3に示すように、回転板12を構成する金属板33に2箇所の穴33aが開口しているが、この穴33aに磁性材料の板材35aが埋め込まれて非電極部35が形成されている。図2に示すように、隙間6内の磁気粘性流体27は、回転板10の可動電極部34のみならず穴33aの内部に位置する板材35aにも接しているため、磁気粘性流体27から回転板12のほぼ全面に対して抵抗力を与えることが可能になる。特に、穴33a内に磁性材料の板材35aが嵌められて非電極部35が形成されていると、隙間6内を横断する磁束が板材35aに集められ、板材35aに接する磁気粘性流体27に強い磁場が与えられるようになり、磁気粘性流体27から回転板12に与えられる抵抗トルクの伝搬効率が高くなる。 As shown in FIG. 3, two holes 33 a are opened in the metal plate 33 constituting the rotating plate 12, and a non-electrode portion 35 is formed by embedding a plate material 35 a of a magnetic material in the hole 33 a. Yes. As shown in FIG. 2, the magnetorheological fluid 27 in the gap 6 is in contact with not only the movable electrode portion 34 of the rotating plate 10 but also the plate material 35 a located inside the hole 33 a, and therefore rotates from the magnetorheological fluid 27. A resistance force can be applied to almost the entire surface of the plate 12. In particular, when a non-electrode portion 35 is formed by fitting a magnetic material plate 35a in the hole 33a, the magnetic flux crossing the gap 6 is collected in the plate material 35a and strong against the magnetorheological fluid 27 in contact with the plate material 35a. A magnetic field is applied, and the propagation efficiency of the resistance torque applied from the magnetorheological fluid 27 to the rotating plate 12 is increased.
 すなわち、回転板12は、可動電極部34と非電極部35および、外周側において円周方向に連続する外周部36の全領域(スリット33bを除く全領域)に対して、磁気粘性流体27から抵抗トルクを与えることが可能になる。 In other words, the rotating plate 12 is separated from the magnetorheological fluid 27 with respect to the movable electrode portion 34, the non-electrode portion 35, and the entire region (the entire region excluding the slit 33b) of the outer peripheral portion 36 that is continuous in the circumferential direction on the outer peripheral side. A resistance torque can be applied.
 前記第1の実施の形態の入力装置1では、図2と図3に示すように、回転板12が穴33aとスリット33bを有する導電性の金属板33で形成され、穴33aに磁性材料の板材35aが設置され、板材35aと金属板33との境界部が電気絶縁材料層35bで埋められている。ただし、本発明での回転板12は、穴33a内に非磁性材料である合成樹脂材料が埋められて非電極部35が形成されてもよい。また、穴33aを有する金属板33が、いわゆるインサート成形法により、樹脂の内部に埋め込まれたものであってもよい。この構造では、穴33aの内部が合成樹脂で埋められ、可動電極部34と外周部36の表裏両面が薄い合成樹脂層で覆われたものとなる。 In the input device 1 of the first embodiment, as shown in FIGS. 2 and 3, the rotating plate 12 is formed of a conductive metal plate 33 having a hole 33a and a slit 33b, and a magnetic material is formed in the hole 33a. A plate material 35a is installed, and a boundary portion between the plate material 35a and the metal plate 33 is filled with an electrically insulating material layer 35b. However, in the rotating plate 12 according to the present invention, the non-electrode portion 35 may be formed by filling the hole 33a with a synthetic resin material that is a nonmagnetic material. Further, the metal plate 33 having the holes 33a may be embedded in the resin by a so-called insert molding method. In this structure, the inside of the hole 33a is filled with a synthetic resin, and both the front and back surfaces of the movable electrode portion 34 and the outer peripheral portion 36 are covered with a thin synthetic resin layer.
 いずれにせよ、非電極部35では、穴33a内に、可動電極部34よりも比抵抗の高い材料が配置される。 In any case, in the non-electrode portion 35, a material having a higher specific resistance than the movable electrode portion 34 is disposed in the hole 33a.
 前記構成の入力装置1は、回転検出用の可動電極部34を有する回転板12に磁気粘性流体27から抵抗トルクを与えているため、抵抗トルクを与える回転板と、回転検出構造を別個のものとして備えたものに比べて装置を小型で薄型に構成することができる。 In the input device 1 having the above-described configuration, since the resistance torque is applied from the magnetorheological fluid 27 to the rotation plate 12 having the movable electrode portion 34 for detecting rotation, the rotation plate for applying the resistance torque and the rotation detection structure are separately provided. The apparatus can be made smaller and thinner than what is provided as
 本願は、日本国に2016年11月21日に出願された基礎出願2016-225652号に基づくものであり、その全内容はここに参照をもって援用される。 This application is based on Basic Application No. 2016-225652 filed on November 21, 2016 in Japan, the entire contents of which are incorporated herein by reference.
1 入力装置
2 下部ヨーク
3 上部ヨーク
4 スペーサリング
6 隙間
7 励磁コイル(磁界発生部)
10 回転体
11 操作軸
12 回転板
27 磁気粘性流体
31 固定電極部
33 金属板
33a 穴
33b スリット
34 可動電極部
35 非電極部
35a 磁性材料の板材
35b 電気絶縁材料層
O 回転中心線
1 Input device 2 Lower yoke 3 Upper yoke 4 Spacer ring 6 Gap 7 Excitation coil (magnetic field generator)
DESCRIPTION OF SYMBOLS 10 Rotating body 11 Operation shaft 12 Rotating plate 27 Magnetorheological fluid 31 Fixed electrode portion 33 Metal plate 33a Hole 33b Slit 34 Movable electrode portion 35 Non-electrode portion 35a Magnetic material plate material 35b Electrical insulating material layer O Rotation center line

Claims (5)

  1.  固定部と、操作軸と、前記操作軸と共に回転する回転板と、前記固定部と前記回転板との隙間に介在する磁気粘性流体と、前記磁気粘性流体に磁場を与える磁界発生部とを有する入力装置において、
     前記固定部に固定電極部が設けられ、
     前記回転板には、前記固定電極部と対向する領域を通過する可動電極部と、非電極部とが、回転方向に向けて交互に設けられており、
     前記可動電極部と前記非電極部の双方が、前記磁気粘性流体から抵抗を受けるとともに、前記固定電極部と前記可動電極部との対向面積の変化から前記操作軸の回転が検出されることを特徴とする入力装置。
    A fixed portion; an operating shaft; a rotating plate that rotates together with the operating shaft; a magnetorheological fluid interposed in a gap between the fixing portion and the rotating plate; and a magnetic field generator that applies a magnetic field to the magnetorheological fluid. In the input device,
    A fixed electrode portion is provided in the fixed portion;
    In the rotating plate, movable electrode parts that pass through a region facing the fixed electrode part, and non-electrode parts are alternately provided in the rotation direction,
    Both the movable electrode part and the non-electrode part receive resistance from the magnetorheological fluid, and the rotation of the operation shaft is detected from a change in the facing area between the fixed electrode part and the movable electrode part. Characteristic input device.
  2.  前記可動電極部が導電性の金属板で形成され、前記非電極部が、前記金属板よりも比抵抗の高い材料で形成されている請求項1記載の入力装置。 The input device according to claim 1, wherein the movable electrode portion is formed of a conductive metal plate, and the non-electrode portion is formed of a material having a higher specific resistance than the metal plate.
  3.  前記回転板は、導電性の金属板で形成されて、前記金属板の一部が前記可動電極部であり、
     前記金属板が穴または切欠きを有し、前記穴または切欠きが、前記金属板よりも比抵抗の高い材料で埋められて、前記非電極部が形成されている請求項1記載の入力装置。
    The rotating plate is formed of a conductive metal plate, and a part of the metal plate is the movable electrode part,
    The input device according to claim 1, wherein the metal plate has a hole or a notch, and the non-electrode portion is formed by filling the hole or the notch with a material having a higher specific resistance than the metal plate. .
  4.  前記操作軸は導電性金属で形成され、前記金属板と前記操作軸とが導通している請求項3記載の入力装置。 The input device according to claim 3, wherein the operation shaft is formed of a conductive metal, and the metal plate and the operation shaft are electrically connected.
  5.  前記非電極部が磁性材料で形成されており、前記非電極部と前記可動電極部の境界に電気絶縁材料が設けられている請求項1ないし4のいずれかに記載の入力装置。 The input device according to any one of claims 1 to 4, wherein the non-electrode portion is formed of a magnetic material, and an electrically insulating material is provided at a boundary between the non-electrode portion and the movable electrode portion.
PCT/JP2017/034037 2016-11-21 2017-09-21 Input apparatus WO2018092411A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-225652 2016-11-21
JP2016225652A JP2020016909A (en) 2016-11-21 2016-11-21 Input device

Publications (1)

Publication Number Publication Date
WO2018092411A1 true WO2018092411A1 (en) 2018-05-24

Family

ID=62145479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034037 WO2018092411A1 (en) 2016-11-21 2017-09-21 Input apparatus

Country Status (2)

Country Link
JP (1) JP2020016909A (en)
WO (1) WO2018092411A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111299395A (en) * 2019-11-28 2020-06-19 哈尔滨理工大学 Magnetic medium auxiliary sheet blanking forming device and method
WO2021084121A1 (en) * 2019-10-31 2021-05-06 Inventus Engineering Gmbh Magnetorheological brake device, in particular an operating device
US20220314801A1 (en) * 2019-09-06 2022-10-06 Zf Friedrichshafen Ag Operating device for a vehicle and method for adjusting an operating characteristic of an operating device
WO2025083180A1 (en) * 2023-10-20 2025-04-24 Apem Human-machine interface with magnetorheological braking module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024091252A (en) * 2022-12-23 2024-07-04 本田技研工業株式会社 Active vibration isolation device and its manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007538301A (en) * 2004-01-29 2007-12-27 プレー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Programmable rotational torque supply device using spring parts
JP2011519098A (en) * 2008-04-29 2011-06-30 コミサリア ア レネルジ アトミ−ク エ オエネルジー アルテルナティヴ Force feedback interface with improved operational feel
JP2013228298A (en) * 2012-04-26 2013-11-07 Tokai Rika Co Ltd Contactless sensor and shift lever device
JP2014181778A (en) * 2013-03-21 2014-09-29 Kurimoto Ltd Rotation brake

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007538301A (en) * 2004-01-29 2007-12-27 プレー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Programmable rotational torque supply device using spring parts
JP2011519098A (en) * 2008-04-29 2011-06-30 コミサリア ア レネルジ アトミ−ク エ オエネルジー アルテルナティヴ Force feedback interface with improved operational feel
JP2013228298A (en) * 2012-04-26 2013-11-07 Tokai Rika Co Ltd Contactless sensor and shift lever device
JP2014181778A (en) * 2013-03-21 2014-09-29 Kurimoto Ltd Rotation brake

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220314801A1 (en) * 2019-09-06 2022-10-06 Zf Friedrichshafen Ag Operating device for a vehicle and method for adjusting an operating characteristic of an operating device
WO2021084121A1 (en) * 2019-10-31 2021-05-06 Inventus Engineering Gmbh Magnetorheological brake device, in particular an operating device
CN114600058A (en) * 2019-10-31 2022-06-07 因文图斯工程有限公司 Magnetorheological brake device, in particular actuating device
CN114600058B (en) * 2019-10-31 2023-12-08 因文图斯工程有限公司 Magnetorheological braking device for changing the torque of rotational motion
CN111299395A (en) * 2019-11-28 2020-06-19 哈尔滨理工大学 Magnetic medium auxiliary sheet blanking forming device and method
CN111299395B (en) * 2019-11-28 2021-12-24 哈尔滨理工大学 Magnetic medium auxiliary plate blanking forming device and method
WO2025083180A1 (en) * 2023-10-20 2025-04-24 Apem Human-machine interface with magnetorheological braking module
FR3154515A1 (en) * 2023-10-20 2025-04-25 Apem Human-machine interface with magnetorheological braking module

Also Published As

Publication number Publication date
JP2020016909A (en) 2020-01-30

Similar Documents

Publication Publication Date Title
WO2018092411A1 (en) Input apparatus
JP6568616B2 (en) Input device and control method of input device
US10845840B2 (en) Operation feel imparting type input device
JP6544804B2 (en) Input device
US4835509A (en) Noncontact potentiometer
JP6605702B2 (en) Operating device
WO2017145857A1 (en) Operation device
JPH06207833A (en) Guidance position display device
CN110998123B (en) Operating device
JP2013124970A (en) Rotation angle detection device
CN109075688B (en) Rotating electrical machine
JP6593796B2 (en) Operating device
JP2005172096A (en) MR fluid type rotary steer damper
JP5179267B2 (en) Resistance device for exercise equipment
EP4549883A1 (en) Electric power generating element, magnetic sensor, and encoder
EP3795851A1 (en) Torque generation device
JP6041437B2 (en) Rotary actuator
JP2011058936A (en) Magnetic resolver
JP4942668B2 (en) Rotor for permanent magnet type rotating electrical machine and method for manufacturing rotor for permanent magnet type rotating electrical machine
JP2011112438A (en) Encoder
JP7201807B2 (en) Operating device
JP2006029517A (en) Bearing with sensor
JP2008271689A (en) Motor
JP2017215184A (en) Rotation angle detector
JPH07131970A (en) Magnetic force type torque controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17870855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17870855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP