WO2018088483A1 - Method for producing modified conjugated diene rubber - Google Patents
Method for producing modified conjugated diene rubber Download PDFInfo
- Publication number
- WO2018088483A1 WO2018088483A1 PCT/JP2017/040454 JP2017040454W WO2018088483A1 WO 2018088483 A1 WO2018088483 A1 WO 2018088483A1 JP 2017040454 W JP2017040454 W JP 2017040454W WO 2018088483 A1 WO2018088483 A1 WO 2018088483A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- conjugated diene
- general formula
- rubber
- integer
- Prior art date
Links
- 229920003244 diene elastomer Polymers 0.000 title claims abstract description 79
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 52
- 125000000962 organic group Chemical group 0.000 claims abstract description 65
- -1 diene compound Chemical class 0.000 claims abstract description 61
- 150000001875 compounds Chemical class 0.000 claims abstract description 56
- 150000001993 dienes Chemical class 0.000 claims abstract description 55
- 229920000642 polymer Polymers 0.000 claims abstract description 54
- 125000003277 amino group Chemical group 0.000 claims abstract description 34
- 238000000034 method Methods 0.000 claims abstract description 25
- 239000000178 monomer Substances 0.000 claims abstract description 24
- 125000006239 protecting group Chemical group 0.000 claims abstract description 21
- 239000003505 polymerization initiator Substances 0.000 claims abstract description 17
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 16
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims abstract description 14
- 239000012442 inert solvent Substances 0.000 claims abstract description 10
- 150000002736 metal compounds Chemical class 0.000 claims abstract description 9
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims abstract description 9
- 230000000379 polymerizing effect Effects 0.000 claims abstract description 5
- 125000001183 hydrocarbyl group Chemical group 0.000 claims abstract description 4
- 229920001971 elastomer Polymers 0.000 claims description 123
- 239000005060 rubber Substances 0.000 claims description 123
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 81
- 239000000203 mixture Substances 0.000 claims description 46
- 239000000377 silicon dioxide Substances 0.000 claims description 39
- 125000004432 carbon atom Chemical group C* 0.000 claims description 32
- 238000004132 cross linking Methods 0.000 claims description 31
- 125000000217 alkyl group Chemical group 0.000 claims description 19
- 125000003545 alkoxy group Chemical group 0.000 claims description 18
- 125000003700 epoxy group Chemical group 0.000 claims description 14
- 125000003118 aryl group Chemical group 0.000 claims description 13
- 239000003431 cross linking reagent Substances 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- 238000006116 polymerization reaction Methods 0.000 description 20
- 239000003607 modifier Substances 0.000 description 19
- 239000000243 solution Substances 0.000 description 17
- 239000000945 filler Substances 0.000 description 16
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 12
- 230000008878 coupling Effects 0.000 description 12
- 238000010168 coupling process Methods 0.000 description 12
- 238000005859 coupling reaction Methods 0.000 description 12
- 150000002430 hydrocarbons Chemical group 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 229920002554 vinyl polymer Polymers 0.000 description 10
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 8
- 125000005370 alkoxysilyl group Chemical group 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 238000004898 kneading Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 229910052717 sulfur Inorganic materials 0.000 description 8
- 239000011593 sulfur Substances 0.000 description 8
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 7
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 7
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 6
- 239000012190 activator Substances 0.000 description 6
- 239000006229 carbon black Substances 0.000 description 6
- 235000019241 carbon black Nutrition 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 239000006087 Silane Coupling Agent Substances 0.000 description 5
- 238000005227 gel permeation chromatography Methods 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 230000003712 anti-aging effect Effects 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 229920003048 styrene butadiene rubber Polymers 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 3
- 150000001339 alkali metal compounds Chemical class 0.000 description 3
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cis-cyclohexene Natural products C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 3
- 238000013329 compounding Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 229920002857 polybutadiene Polymers 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 150000003512 tertiary amines Chemical class 0.000 description 3
- 125000005369 trialkoxysilyl group Chemical group 0.000 description 3
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical compound C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 2
- XWJBRBSPAODJER-UHFFFAOYSA-N 1,7-octadiene Chemical compound C=CCCCCC=C XWJBRBSPAODJER-UHFFFAOYSA-N 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- SDJHPPZKZZWAKF-UHFFFAOYSA-N 2,3-dimethylbuta-1,3-diene Chemical compound CC(=C)C(C)=C SDJHPPZKZZWAKF-UHFFFAOYSA-N 0.000 description 2
- OVSKIKFHRZPJSS-UHFFFAOYSA-N 2,4-D Chemical compound OC(=O)COC1=CC=C(Cl)C=C1Cl OVSKIKFHRZPJSS-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- RCJMVGJKROQDCB-UHFFFAOYSA-N 2-methylpenta-1,3-diene Chemical compound CC=CC(C)=C RCJMVGJKROQDCB-UHFFFAOYSA-N 0.000 description 2
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- 239000004606 Fillers/Extenders Substances 0.000 description 2
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 2
- 244000043261 Hevea brasiliensis Species 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 239000005062 Polybutadiene Substances 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- NVYXHCXKPMOGSD-UHFFFAOYSA-N [Pt].C=C[SiH](C)O[SiH](C)C=C Chemical compound [Pt].C=C[SiH](C)O[SiH](C)C=C NVYXHCXKPMOGSD-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001341 alkaline earth metal compounds Chemical class 0.000 description 2
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- IAQRGUVFOMOMEM-UHFFFAOYSA-N but-2-ene Chemical compound CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- MGNZXYYWBUKAII-UHFFFAOYSA-N cyclohexa-1,3-diene Chemical compound C1CC=CC=C1 MGNZXYYWBUKAII-UHFFFAOYSA-N 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 239000003398 denaturant Substances 0.000 description 2
- JQVDAXLFBXTEQA-UHFFFAOYSA-N dibutylamine Chemical compound CCCCNCCCC JQVDAXLFBXTEQA-UHFFFAOYSA-N 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 2
- 239000006232 furnace black Substances 0.000 description 2
- 125000005417 glycidoxyalkyl group Chemical group 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 150000002603 lanthanum Chemical class 0.000 description 2
- 150000002642 lithium compounds Chemical class 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000006011 modification reaction Methods 0.000 description 2
- 229920003052 natural elastomer Polymers 0.000 description 2
- 229920001194 natural rubber Polymers 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- PMJHHCWVYXUKFD-UHFFFAOYSA-N piperylene Natural products CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 2
- 229920001195 polyisoprene Polymers 0.000 description 2
- 239000010734 process oil Substances 0.000 description 2
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- QAZLUNIWYYOJPC-UHFFFAOYSA-M sulfenamide Chemical compound [Cl-].COC1=C(C)C=[N+]2C3=NC4=CC=C(OC)C=C4N3SCC2=C1C QAZLUNIWYYOJPC-UHFFFAOYSA-M 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- OJOWICOBYCXEKR-APPZFPTMSA-N (1S,4R)-5-ethylidenebicyclo[2.2.1]hept-2-ene Chemical compound CC=C1C[C@@H]2C[C@@H]1C=C2 OJOWICOBYCXEKR-APPZFPTMSA-N 0.000 description 1
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- AHAREKHAZNPPMI-AATRIKPKSA-N (3e)-hexa-1,3-diene Chemical compound CC\C=C\C=C AHAREKHAZNPPMI-AATRIKPKSA-N 0.000 description 1
- BFFTXLUOWNVAKC-UHFFFAOYSA-N 1,2,2,3-tetramethyl-1,2,5-azadisilolidine Chemical compound CC1C[SiH2]N(C)[Si]1(C)C BFFTXLUOWNVAKC-UHFFFAOYSA-N 0.000 description 1
- BUNFDZZVLUCBGM-UHFFFAOYSA-N 1,2,5-azadisilolidine Chemical compound C1C[SiH2]N[SiH2]1 BUNFDZZVLUCBGM-UHFFFAOYSA-N 0.000 description 1
- OWRCNXZUPFZXOS-UHFFFAOYSA-N 1,3-diphenylguanidine Chemical compound C=1C=CC=CC=1NC(=N)NC1=CC=CC=C1 OWRCNXZUPFZXOS-UHFFFAOYSA-N 0.000 description 1
- PRBHEGAFLDMLAL-UHFFFAOYSA-N 1,5-Hexadiene Natural products CC=CCC=C PRBHEGAFLDMLAL-UHFFFAOYSA-N 0.000 description 1
- XQBHAZDVLGNSOJ-UHFFFAOYSA-N 1-(4-ethenylphenyl)-n,n-dimethylmethanamine Chemical compound CN(C)CC1=CC=C(C=C)C=C1 XQBHAZDVLGNSOJ-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- OEVVKKAVYQFQNV-UHFFFAOYSA-N 1-ethenyl-2,4-dimethylbenzene Chemical compound CC1=CC=C(C=C)C(C)=C1 OEVVKKAVYQFQNV-UHFFFAOYSA-N 0.000 description 1
- VTPNYMSKBPZSTF-UHFFFAOYSA-N 1-ethenyl-2-ethylbenzene Chemical compound CCC1=CC=CC=C1C=C VTPNYMSKBPZSTF-UHFFFAOYSA-N 0.000 description 1
- NVZWEEGUWXZOKI-UHFFFAOYSA-N 1-ethenyl-2-methylbenzene Chemical compound CC1=CC=CC=C1C=C NVZWEEGUWXZOKI-UHFFFAOYSA-N 0.000 description 1
- XHUZSRRCICJJCN-UHFFFAOYSA-N 1-ethenyl-3-ethylbenzene Chemical compound CCC1=CC=CC(C=C)=C1 XHUZSRRCICJJCN-UHFFFAOYSA-N 0.000 description 1
- JZHGRUMIRATHIU-UHFFFAOYSA-N 1-ethenyl-3-methylbenzene Chemical compound CC1=CC=CC(C=C)=C1 JZHGRUMIRATHIU-UHFFFAOYSA-N 0.000 description 1
- QEDJMOONZLUIMC-UHFFFAOYSA-N 1-tert-butyl-4-ethenylbenzene Chemical compound CC(C)(C)C1=CC=C(C=C)C=C1 QEDJMOONZLUIMC-UHFFFAOYSA-N 0.000 description 1
- IGGDKDTUCAWDAN-UHFFFAOYSA-N 1-vinylnaphthalene Chemical compound C1=CC=C2C(C=C)=CC=CC2=C1 IGGDKDTUCAWDAN-UHFFFAOYSA-N 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- IPKOJSMGLIKFLO-UHFFFAOYSA-N 2,2,5,5-tetramethyl-1,2,5-azadisilolidine Chemical group C[Si]1(C)CC[Si](C)(C)N1 IPKOJSMGLIKFLO-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- FZLHAQMQWDDWFI-UHFFFAOYSA-N 2-[2-(oxolan-2-yl)propan-2-yl]oxolane Chemical compound C1CCOC1C(C)(C)C1CCCO1 FZLHAQMQWDDWFI-UHFFFAOYSA-N 0.000 description 1
- PJXJBPMWCKMWLS-UHFFFAOYSA-N 2-methyl-3-methylidenepent-1-ene Chemical compound CCC(=C)C(C)=C PJXJBPMWCKMWLS-UHFFFAOYSA-N 0.000 description 1
- GAODDBNJCKQQDY-UHFFFAOYSA-N 2-methyl-4,6-bis(octylsulfanylmethyl)phenol Chemical compound CCCCCCCCSCC1=CC(C)=C(O)C(CSCCCCCCCC)=C1 GAODDBNJCKQQDY-UHFFFAOYSA-N 0.000 description 1
- JRFVCFVEJBDLDT-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]-n,n-bis(trimethylsilyl)propan-1-amine Chemical compound CO[Si](C)(OC)CCCN([Si](C)(C)C)[Si](C)(C)C JRFVCFVEJBDLDT-UHFFFAOYSA-N 0.000 description 1
- ZZMVLMVFYMGSMY-UHFFFAOYSA-N 4-n-(4-methylpentan-2-yl)-1-n-phenylbenzene-1,4-diamine Chemical compound C1=CC(NC(C)CC(C)C)=CC=C1NC1=CC=CC=C1 ZZMVLMVFYMGSMY-UHFFFAOYSA-N 0.000 description 1
- UTKZHEXXFWCYCH-UHFFFAOYSA-N 4-tert-butyl-2-ethenyl-1-methylbenzene Chemical compound CC1=CC=C(C(C)(C)C)C=C1C=C UTKZHEXXFWCYCH-UHFFFAOYSA-N 0.000 description 1
- UYQYTUYNNYZATF-UHFFFAOYSA-N 6-methyl-4,6-bis(octylsulfanylmethyl)cyclohexa-1,3-dien-1-ol Chemical compound CCCCCCCCSCC1=CC=C(O)C(C)(CSCCCCCCCC)C1 UYQYTUYNNYZATF-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- CCAXDTQJTYESSB-UHFFFAOYSA-N C(C)(C)C1=C(C=C)C=CC(=C1)C(C)C.C(C)C1=CC=C(C=C)C=C1 Chemical compound C(C)(C)C1=C(C=C)C=CC(=C1)C(C)C.C(C)C1=CC=C(C=C)C=C1 CCAXDTQJTYESSB-UHFFFAOYSA-N 0.000 description 1
- 0 C*IN([Si](*)(*)*)[S+](*)* Chemical compound C*IN([Si](*)(*)*)[S+](*)* 0.000 description 1
- ZKSADANYBSWZAB-UHFFFAOYSA-N CCCCCC[Mg]CCCCCC Chemical compound CCCCCC[Mg]CCCCCC ZKSADANYBSWZAB-UHFFFAOYSA-N 0.000 description 1
- FMJFSSGHENXENQ-UHFFFAOYSA-N CCN([Ba])CC Chemical compound CCN([Ba])CC FMJFSSGHENXENQ-UHFFFAOYSA-N 0.000 description 1
- UJZXCEZQGGBDKB-UHFFFAOYSA-N CCSCC.[Ba+] Chemical compound CCSCC.[Ba+] UJZXCEZQGGBDKB-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- BWLUMTFWVZZZND-UHFFFAOYSA-N Dibenzylamine Chemical compound C=1C=CC=CC=1CNCC1=CC=CC=C1 BWLUMTFWVZZZND-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical class [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 1
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- BZEZSORUWZUMNU-UHFFFAOYSA-N [Li]CCCC[Li] Chemical compound [Li]CCCC[Li] BZEZSORUWZUMNU-UHFFFAOYSA-N 0.000 description 1
- DZUSSPRTHSJLLE-UHFFFAOYSA-N [Li]Cc1cc(C[Li])cc(C[Li])c1 Chemical compound [Li]Cc1cc(C[Li])cc(C[Li])c1 DZUSSPRTHSJLLE-UHFFFAOYSA-N 0.000 description 1
- ARCHVGRSBFXDTP-UHFFFAOYSA-N [Li]c1cc([Li])cc([Li])c1 Chemical compound [Li]c1cc([Li])cc([Li])c1 ARCHVGRSBFXDTP-UHFFFAOYSA-N 0.000 description 1
- ZXZSYHLGFSXNNU-UHFFFAOYSA-N [[methyl(4-trimethoxysilylbutyl)carbamothioyl]trisulfanyl] N-methyl-N-(4-trimethoxysilylbutyl)carbamodithioate Chemical compound CO[Si](CCCCN(C(=S)SSSSC(N(C)CCCC[Si](OC)(OC)OC)=S)C)(OC)OC ZXZSYHLGFSXNNU-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 125000005336 allyloxy group Chemical group 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- ZSIQJIWKELUFRJ-UHFFFAOYSA-N azepane Chemical compound C1CCCNCC1 ZSIQJIWKELUFRJ-UHFFFAOYSA-N 0.000 description 1
- QXNDZONIWRINJR-UHFFFAOYSA-N azocane Chemical compound C1CCCNCCC1 QXNDZONIWRINJR-UHFFFAOYSA-N 0.000 description 1
- SLPLCLDJTNLWPW-UHFFFAOYSA-N barium(2+);2-methylpropan-2-olate Chemical compound [Ba+2].CC(C)(C)[O-].CC(C)(C)[O-] SLPLCLDJTNLWPW-UHFFFAOYSA-N 0.000 description 1
- GYIWFHXWLCXGQO-UHFFFAOYSA-N barium(2+);ethanolate Chemical compound [Ba+2].CC[O-].CC[O-] GYIWFHXWLCXGQO-UHFFFAOYSA-N 0.000 description 1
- AGXUVMPSUKZYDT-UHFFFAOYSA-L barium(2+);octadecanoate Chemical compound [Ba+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O AGXUVMPSUKZYDT-UHFFFAOYSA-L 0.000 description 1
- CPUJSIVIXCTVEI-UHFFFAOYSA-N barium(2+);propan-2-olate Chemical compound [Ba+2].CC(C)[O-].CC(C)[O-] CPUJSIVIXCTVEI-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 125000004106 butoxy group Chemical group [*]OC([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- JHLCADGWXYCDQA-UHFFFAOYSA-N calcium;ethanolate Chemical compound [Ca+2].CC[O-].CC[O-] JHLCADGWXYCDQA-UHFFFAOYSA-N 0.000 description 1
- DKVNPHBNOWQYFE-UHFFFAOYSA-N carbamodithioic acid Chemical compound NC(S)=S DKVNPHBNOWQYFE-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 239000006231 channel black Substances 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000010511 deprotection reaction Methods 0.000 description 1
- XNMQEEKYCVKGBD-UHFFFAOYSA-N dimethylacetylene Natural products CC#CC XNMQEEKYCVKGBD-UHFFFAOYSA-N 0.000 description 1
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- GEAWFZNTIFJMHR-UHFFFAOYSA-N hepta-1,6-diene Chemical compound C=CCCCC=C GEAWFZNTIFJMHR-UHFFFAOYSA-N 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- CGQIJXYITMTOBI-UHFFFAOYSA-N hex-5-enyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)CCCCC=C CGQIJXYITMTOBI-UHFFFAOYSA-N 0.000 description 1
- PYGSKMBEVAICCR-UHFFFAOYSA-N hexa-1,5-diene Chemical compound C=CCCC=C PYGSKMBEVAICCR-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 125000003253 isopropoxy group Chemical group [H]C([H])([H])C([H])(O*)C([H])([H])[H] 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- UBJFKNSINUCEAL-UHFFFAOYSA-N lithium;2-methylpropane Chemical compound [Li+].C[C-](C)C UBJFKNSINUCEAL-UHFFFAOYSA-N 0.000 description 1
- WGOPGODQLGJZGL-UHFFFAOYSA-N lithium;butane Chemical compound [Li+].CC[CH-]C WGOPGODQLGJZGL-UHFFFAOYSA-N 0.000 description 1
- CETVQRFGPOGIQJ-UHFFFAOYSA-N lithium;hexane Chemical compound [Li+].CCCCC[CH2-] CETVQRFGPOGIQJ-UHFFFAOYSA-N 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- KJJBSBKRXUVBMX-UHFFFAOYSA-N magnesium;butane Chemical compound [Mg+2].CCC[CH2-].CCC[CH2-] KJJBSBKRXUVBMX-UHFFFAOYSA-N 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- PHQOGHDTIVQXHL-UHFFFAOYSA-N n'-(3-trimethoxysilylpropyl)ethane-1,2-diamine Chemical compound CO[Si](OC)(OC)CCCNCCN PHQOGHDTIVQXHL-UHFFFAOYSA-N 0.000 description 1
- CVNCFZIIZGNVFD-UHFFFAOYSA-N n,n-bis(trimethylsilyl)prop-2-en-1-amine Chemical compound C[Si](C)(C)N([Si](C)(C)C)CC=C CVNCFZIIZGNVFD-UHFFFAOYSA-N 0.000 description 1
- UBHHTPOLMACCDD-UHFFFAOYSA-N n,n-dimethyl-4-phenylbut-3-en-1-amine Chemical compound CN(C)CCC=CC1=CC=CC=C1 UBHHTPOLMACCDD-UHFFFAOYSA-N 0.000 description 1
- IUJLOAKJZQBENM-UHFFFAOYSA-N n-(1,3-benzothiazol-2-ylsulfanyl)-2-methylpropan-2-amine Chemical compound C1=CC=C2SC(SNC(C)(C)C)=NC2=C1 IUJLOAKJZQBENM-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- PXSXRABJBXYMFT-UHFFFAOYSA-N n-hexylhexan-1-amine Chemical compound CCCCCCNCCCCCC PXSXRABJBXYMFT-UHFFFAOYSA-N 0.000 description 1
- ICKUIYZTJRDAPK-UHFFFAOYSA-N naphthalene;potassium Chemical class [K].[K].C1=CC=CC2=CC=CC=C21 ICKUIYZTJRDAPK-UHFFFAOYSA-N 0.000 description 1
- URXNVXOMQQCBHS-UHFFFAOYSA-N naphthalene;sodium Chemical compound [Na].C1=CC=CC2=CC=CC=C21 URXNVXOMQQCBHS-UHFFFAOYSA-N 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- NHKJPPKXDNZFBJ-UHFFFAOYSA-N phenyllithium Chemical compound [Li]C1=CC=CC=C1 NHKJPPKXDNZFBJ-UHFFFAOYSA-N 0.000 description 1
- 150000003003 phosphines Chemical class 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920002589 poly(vinylethylene) polymer Polymers 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- YLLIGHVCTUPGEH-UHFFFAOYSA-M potassium;ethanol;hydroxide Chemical compound [OH-].[K+].CCO YLLIGHVCTUPGEH-UHFFFAOYSA-M 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 150000003388 sodium compounds Chemical class 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- SGAOTOMUHFNBAR-UHFFFAOYSA-N strontium;2-methylpropan-2-olate Chemical compound [Sr+2].CC(C)(C)[O-].CC(C)(C)[O-] SGAOTOMUHFNBAR-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000006234 thermal black Substances 0.000 description 1
- KUAZQDVKQLNFPE-UHFFFAOYSA-N thiram Chemical compound CN(C)C(=S)SSC(=S)N(C)C KUAZQDVKQLNFPE-UHFFFAOYSA-N 0.000 description 1
- 229960002447 thiram Drugs 0.000 description 1
- FBBATURSCRIBHN-UHFFFAOYSA-N triethoxy-[3-(3-triethoxysilylpropyldisulfanyl)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCSSCCC[Si](OCC)(OCC)OCC FBBATURSCRIBHN-UHFFFAOYSA-N 0.000 description 1
- VTHOKNTVYKTUPI-UHFFFAOYSA-N triethoxy-[3-(3-triethoxysilylpropyltetrasulfanyl)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCSSSSCCC[Si](OCC)(OCC)OCC VTHOKNTVYKTUPI-UHFFFAOYSA-N 0.000 description 1
- DQZNLOXENNXVAD-UHFFFAOYSA-N trimethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OC)(OC)OC)CCC2OC21 DQZNLOXENNXVAD-UHFFFAOYSA-N 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08C—TREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
- C08C19/00—Chemical modification of rubber
- C08C19/25—Incorporating silicon atoms into the molecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L15/00—Compositions of rubber derivatives
Definitions
- the present invention relates to a method for producing a modified conjugated diene rubber, and more particularly to a method for producing a modified conjugated diene rubber capable of giving a rubber cross-linked product excellent in wet grip properties and low heat build-up.
- the present invention also relates to a modified conjugated diene rubber obtained by this production method, a rubber composition containing the modified conjugated diene rubber, and a crosslinked rubber product thereof.
- Patent Document 1 a compound having a protected primary amino group and an alkoxysilyl group such as N, N-bis (trimethylsilyl) aminopropylmethyldimethoxysilane is reacted with the active terminal of a conjugated diene polymer. Therefore, attempts have been made to increase the affinity between the conjugated diene polymer and silica.
- the resulting conjugated diene polymer has a certain degree of affinity for silica, but the dispersibility of silica when blended with silica is not always sufficient, and therefore, the wet grip The improvement effect of heat resistance and low exothermicity was also limited.
- the present invention has been made in view of such a situation, and provides a method for producing a modified conjugated diene rubber that can give a crosslinked rubber excellent in wet grip and low heat build-up. With the goal.
- the present inventors have conducted extensive studies on a modifier for modifying the active terminal of a conjugated diene polymer.
- the modifier has a cyclic siloxane structure and is protected.
- Modified conjugated diene rubber obtained by using a specific silane compound with an amino group-containing organic group and reacting this with the active end of a conjugated diene polymer having an active end is good for fillers such as silica. It was found that a rubber cross-linked product excellent in wet grip properties and low heat build-up properties can be obtained, and the present invention has been completed.
- a conjugated diene polymer having an active terminal is obtained by polymerizing a monomer comprising at least a conjugated diene compound using an organic active metal compound as a polymerization initiator in an inert solvent. And a second step of reacting a compound represented by the following general formula (1) with the active terminal of the conjugated diene polymer having the active terminal: A method is provided.
- R 1 and R 3 are each independently a monovalent hydrocarbon group, a hydrogen atom or a hydroxyl group, and R 2 is an arbitrary organic group, a hydrogen atom or a hydroxyl group, X 1 is a protected amino group-containing organic group containing a primary amino group protected by a protecting group, m is an integer of 1 to 30, n is an integer of 0 to 29, and m + n is 3 to 30 is there.)
- the compound represented by the general formula (1) is preferably a compound represented by the following general formula (2).
- R 1 , R 4 to R 6 are each independently a monovalent hydrocarbon group, a hydrogen atom or a hydroxyl group, and X 1 is a primary group protected by a protecting group.
- X 2 is an alkoxy group-containing organic group or an epoxy group-containing organic group
- m is an integer of 1 to 29
- p is an integer of 1 to 29
- q is 0
- the content ratio of the protected amino group-containing organic group to the alkoxy group-containing organic group and / or the epoxy group-containing organic group is expressed as “protected amino group-containing organic group /
- the molar ratio of “alkoxy group-containing organic group and / or epoxy group-containing organic group” is preferably 0.1 to 10.
- the compound represented by the general formula (1) is represented by the following general formula (3), the following general formula (4), or the following general formula (5) as the protected amino group-containing organic group. It is preferable that it contains a group.
- R 7 to R 10 are each independently an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and e is an integer of 1 to 12) F is an integer from 1 to 12.
- R 11 to R 16 are each independently an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and g is an integer of 1 to 12) .
- R 17 and R 18 are each independently an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and h is an integer of 1 to 12) .
- the amount of the compound represented by the general formula (1) is preferably 0.01 to 30 moles relative to 1 mole of the organic active metal as a polymerization initiator, More preferably, it is ⁇ 5 mol.
- the present invention also provides a modified conjugated diene rubber obtained by any one of the above production methods. Furthermore, according to the present invention, there is provided a rubber composition comprising 10 to 200 parts by weight of silica with respect to 100 parts by weight of a rubber component containing the modified conjugated diene rubber.
- the rubber composition of the present invention preferably contains a crosslinking agent.
- a rubber cross-linked product obtained by cross-linking the rubber composition, and a tire comprising the rubber cross-linked product.
- a modified conjugated diene rubber capable of giving a rubber cross-linked product excellent in wet grip properties and low heat build-up properties
- a rubber composition containing the modified conjugated diene rubber, and the rubber composition are cross-linked. It is possible to provide a rubber cross-linked product excellent in wet grip and low heat build-up, and a tire comprising the rubber cross-linked product.
- the method for producing a modified conjugated diene rubber according to the present invention has an active terminal by polymerizing a monomer containing at least a conjugated diene compound using an organic active metal compound as a polymerization initiator in an inert solvent.
- a monomer comprising at least a conjugated diene compound is polymerized in an inert solvent using an organic active metal compound as a polymerization initiator, and a conjugated diene having an active terminal is obtained. This is a step of obtaining a polymer.
- the conjugated diene compound used for polymerization in order to obtain a conjugated diene polymer having an active terminal is not particularly limited, and for example, 1,3-butadiene, isoprene, 2,3-dimethyl-1 , 3-butadiene, 1,3-pentadiene, 2-methyl-3-ethyl-1,3-butadiene, 2-methyl-1,3-pentadiene, 1,3-hexadiene, 1,3-cyclohexadiene, etc. Can be mentioned. Of these, 1,3-butadiene, isoprene and 1,3-pentadiene are preferred, and 1,3-butadiene and isoprene are particularly preferred. In addition, these conjugated diene compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
- the conjugated diene polymer having an active end produced in the first step may be obtained by copolymerizing an aromatic vinyl compound in addition to the conjugated diene compound.
- the aromatic vinyl compound is not particularly limited, and for example, styrene, ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2-ethylstyrene, 3-ethylstyrene, 4-ethylstyrene 2,4-diisopropylstyrene, 2,4-dimethylstyrene, 4-t-butylstyrene, 5-t-butyl-2-methylstyrene, vinylnaphthalene, dimethylaminomethylstyrene, dimethylaminoethylstyrene, etc.
- the conjugated diene polymer having an active end produced in the first step preferably contains 50 to 100% by weight of a conjugated diene monomer unit, particularly preferably contains 55 to 100% by weight, Those containing 0 to 50% by weight of the vinyl group monomer group are preferred, and those containing 0 to 45% by weight are particularly preferred.
- the conjugated diene polymer having an active end is optionally added to the conjugated diene compound as well as other units other than the aromatic vinyl compound as long as the object of the present invention is not impaired. It may be formed by copolymerizing a monomer containing a monomer.
- Examples of other monomers include ⁇ , ⁇ -unsaturated nitriles such as acrylonitrile and methacrylonitrile; unsaturated carboxylic acids or acid anhydrides such as acrylic acid, methacrylic acid, and maleic anhydride; methyl methacrylate, acrylic Unsaturated carboxylic acid esters such as ethyl acrylate and butyl acrylate; Non-conjugated dienes such as 1,5-hexadiene, 1,6-heptadiene, 1,7-octadiene, dicyclopentadiene, 5-ethylidene-2-norbornene; etc. Can be mentioned. These monomers are preferably 10% by weight or less, more preferably 5% by weight or less as monomer units in the conjugated diene polymer having an active terminal.
- the inert solvent used in the first step of the production method of the present invention is not particularly limited as long as it is usually used in solution polymerization and does not inhibit the polymerization reaction.
- Specific examples of the inert solvent include chain aliphatic hydrocarbons such as butane, pentane, hexane, heptane, 2-butene; alicyclic hydrocarbons such as cyclopentane, cyclohexane, cyclohexene; benzene, toluene, xylene, etc. Aromatic hydrocarbons; and the like.
- These inert solvents may be used individually by 1 type, and may be used in combination of 2 or more type.
- the amount of the inert solvent used is such that the monomer concentration is, for example, 1 to 50% by weight, preferably 10 to 40% by weight.
- the organic active metal compound used as a polymerization initiator is not particularly limited as long as it can polymerize a monomer containing a conjugated diene compound to give a conjugated diene polymer having an active terminal,
- a polymerization initiator mainly comprising an organic alkali metal compound, an organic alkaline earth metal compound, a lanthanum series metal compound, or the like is preferably used.
- organic alkali metal compound examples include organic monolithium compounds such as n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, phenyllithium and stilbenelithium; dilithiomethane, 1,4-dilithiobutane, 1,4 -Organic polyvalent lithium compounds such as dilithio-2-ethylcyclohexane, 1,3,5-trilithiobenzene, 1,3,5-tris (lithiomethyl) benzene; organic sodium compounds such as sodium naphthalene; organic such as potassium naphthalene Potassium compounds; and the like.
- organic monolithium compounds such as n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, phenyllithium and stilbenelithium
- dilithiomethane 1,4-dilithiobutane
- organic alkaline earth metal compound examples include di-n-butylmagnesium, di-n-hexylmagnesium, diethoxycalcium, calcium distearate, di-t-butoxystrontium, diethoxybarium, and diisopropoxybarium. Diethyl mercaptobarium, di-t-butoxybarium, diphenoxybarium, diethylaminobarium, barium distearate, diketylbarium and the like.
- a polymerization initiator having a lanthanum series metal compound as a main catalyst for example, a lanthanum series metal comprising a lanthanum series metal such as lanthanum, cerium, praseodymium, neodymium, samarium, gadolinium, a carboxylic acid, and a phosphorus-containing organic acid And a polymerization initiator composed of this salt and a cocatalyst such as an alkylaluminum compound, an organoaluminum hydride compound, and an organoaluminum halide compound.
- a lanthanum series metal comprising a lanthanum series metal such as lanthanum, cerium, praseodymium, neodymium, samarium, gadolinium, a carboxylic acid, and a phosphorus-containing organic acid
- a polymerization initiator composed of this salt and a cocatalyst such as an alkylalumin
- an organic monolithium compound and an organic polyvalent lithium compound are preferable, an organic monolithium compound is more preferable, and n-butyllithium is particularly preferable.
- the organic alkali metal compound is used as an organic alkali metal amide compound by previously reacting with a secondary amine such as dibutylamine, dihexylamine, dibenzylamine, pyrrolidine, hexamethyleneimine, and heptamethyleneimine. Also good.
- These polymerization initiators may be used individually by 1 type, and may be used in combination of 2 or more type.
- the amount of the organic active metal compound used as the polymerization initiator may be determined according to the molecular weight of the target polymer, but is usually 1 to 50 mmol, preferably 1.5 to 20 per 1000 g of monomer. In the range of millimolar, more preferably 2-15 millimolar.
- the polymerization temperature in the first step of the production method of the present invention is usually in the range of ⁇ 80 to + 150 ° C., preferably 0 to 100 ° C., more preferably 30 to 90 ° C.
- any of batch type and continuous type can be adopted.
- a conjugated diene monomer unit and an aromatic vinyl monomer are used.
- the batch method is preferred because it is easy to control the randomness of the bond with the unit.
- the conjugated diene polymer having an active terminal is composed of two or more types of monomer units
- various bonding modes such as a block shape, a taper shape, and a random shape.
- a random binding mode is preferred. By making it random, the resulting rubber cross-linked product is excellent in low heat build-up.
- a polar compound is added to the inert organic solvent during the polymerization. It is preferable to do.
- the polar compound include ether compounds such as dibutyl ether, tetrahydrofuran and 2,2-di (tetrahydrofuryl) propane; tertiary amines such as tetramethylethylenediamine; alkali metal alkoxides; phosphine compounds.
- ether compounds and tertiary amines are preferable, tertiary amines are more preferable, and tetramethylethylenediamine is particularly preferable.
- These polar compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
- the amount of the polar compound used may be determined according to the target vinyl bond content, and is preferably 0.001 to 100 mol, more preferably 0, relative to 1 mol of the organic active metal compound used as the polymerization initiator. .01 to 10 moles. When the amount of the polar compound used is within this range, it is easy to adjust the vinyl bond content in the conjugated diene monomer unit, and problems due to deactivation of the polymerization initiator hardly occur.
- a conjugated diene polymer having an active terminal can be obtained by polymerizing a monomer containing a conjugated diene compound.
- the vinyl bond content in the conjugated diene monomer unit in the conjugated diene polymer having an active end obtained in the first step of the production method of the present invention is preferably 1 to 90 mol%, more preferably 5 ⁇ 85 mol%.
- the vinyl bond amount is in the above range, the resulting rubber cross-linked product has excellent low heat build-up.
- the peak top molecular weight detected by gel permeation chromatography (hereinafter also referred to as GPC) of the conjugated diene polymer having an active terminal obtained in the first step of the production method of the present invention is 10 in terms of polystyrene. It is preferably from 1,000,000 to 1,000,000, more preferably from 50,000 to 850,000, and particularly preferably from 100,000 to 700,000. When a plurality of peaks of the conjugated diene polymer are observed, the peak top molecular weight of the peak having the smallest molecular weight derived from the conjugated diene polymer detected by GPC is used as the conjugated diene polymer having an active end.
- the peak top molecular weight of When the peak top molecular weight of the conjugated diene polymer having an active end is in the above range, the resulting rubber cross-linked product is excellent in low heat build-up.
- the molecular weight distribution represented by the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the conjugated diene polymer having an active end obtained in the first step of the production method of the present invention is: Preferably it is 1.0 to 1.5, more preferably 1.0 to 1.4, and particularly preferably 1.0 to 1.3.
- this molecular weight distribution value (Mw / Mn) is in the above range, the resulting rubber cross-linked product is excellent in low heat build-up.
- R 1 and R 3 are each independently a monovalent hydrocarbon group, a hydrogen atom or a hydroxyl group, and R 2 is an arbitrary organic group, a hydrogen atom or a hydroxyl group, X 1 is a protected amino group-containing organic group containing a primary amino group protected by a protecting group, m is an integer of 1 to 30, n is an integer of 0 to 29, and m + n is 3 to 30 is there.)
- the conjugated diene is reacted by reacting the compound represented by the general formula (1) with the active terminus of the conjugated diene polymer having an active terminus obtained in the first step.
- System rubber can be modified to improve the affinity for silica and other fillers, and when silica and other fillers are blended, the dispersibility of silica and other fillers can be increased.
- a rubber cross-linked product having wet grip properties.
- m is an integer of 1 to 30, preferably an integer of 1 to 20, more preferably an integer of 1 to 10.
- n is an integer of 0 to 29, preferably an integer of 0 to 20, and more preferably an integer of 0 to 10.
- M + n is 3 to 30, preferably 3 to 20, and more preferably 3 to 10.
- X 1 is a protected amino group-containing organic group containing a primary amino group protected by a protecting group (hereinafter, also simply referred to as “protected amino group-containing organic group”).
- the protected amino group-containing organic group is not particularly limited as long as it has a structure in which a protective group is introduced into the amino group, and the two hydrogen atoms of the primary amino group (ie, —NH 2 ) It is preferably a group containing a protected amino group having a structure substituted with a group acting as a protecting group.
- a protecting group is not particularly limited, but is preferably one capable of introducing an inactive structure with respect to the active end of the conjugated diene polymer having an active end obtained in the first step.
- Examples of such a protecting group include a hydrocarbyl group or a silyl group, and a silyl group is preferable.
- a protecting group in addition to being capable of introducing an inactive structure to the active end of the conjugated diene polymer having an active end obtained in the first step, an acid or a base is used. More preferably, it can be deprotected by a method or a hydrolysis reaction.
- the protecting group is deprotectable, the protected amino group-containing organic group contains a primary amino group or a secondary amino group by deprotecting the protecting group.
- the affinity with fillers such as silica can be further increased.
- Suitable examples of such a protected amino group-containing organic group include groups represented by the following general formula (3), the following general formula (4), or the following general formula (5).
- R 7 to R 10 are each independently an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, preferably an alkyl group having 1 to 4 carbon atoms.
- E is an integer of 1 to 12, preferably an integer of 1 to 6, more preferably an integer of 1 to 4.
- R 11 to R 16 are each independently an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, preferably an alkyl group having 1 to 4 carbon atoms.
- G is an integer of 1 to 12, preferably an integer of 1 to 6, more preferably an integer of 1 to 4.
- R 17 and R 18 are each independently an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, preferably an alkyl group having 1 to 4 carbon atoms.
- H is an integer of 1 to 12, preferably an integer of 1 to 6, more preferably an integer of 1 to 4.
- a group represented by —SiR 7 R 8 — (CH 2 ) f —SiR 9 R 10 — acts as a protecting group.
- a group represented by —SiR 11 R 12 R 13 and a group represented by —SiR 14 R 15 R 16 act as a protecting group.
- the group represented by R 17 and the group represented by R 18 act as protective groups.
- those having a silyl group as the protecting group are preferable from the viewpoint that they function well as a protecting group and can also perform a deprotection reaction well, and are represented by the above formula (3).
- the group and the group represented by the above formula (4) are preferable.
- the protected amino group constituting the protected amino group-containing organic group include bis (trimethylsilyl) amino group, bis (triethylsilyl) amino group, bis (triisopropylsilyl) amino group, and bis (triphenylsilyl) amino group.
- R 1 and R 3 are each independently a monovalent hydrocarbon group, a hydrogen atom or a hydroxyl group, preferably a monovalent hydrocarbon group.
- the monovalent hydrocarbon group is preferably an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, more preferably an alkyl group having 1 to 4 carbon atoms, and further preferably a methyl group.
- R 2 is an arbitrary organic group, a hydrogen atom or a hydroxyl group, and examples of the arbitrary organic group include an alkoxy group-containing organic group, an epoxy group-containing organic group, and a monovalent hydrocarbon group.
- n is 2 or more, but so that the R 2 there are a plurality, the plurality of R 2 may be different and the same as each other.
- the modification effect of the conjugated diene rubber specifically, the affinity for the filler such as silica is improved, and the filler such as silica is blended.
- the effect of enhancing the dispersibility of fillers such as silica is high, and thereby, the resulting rubber cross-linked product can be made more excellent in low exothermic property and wet grip property, from the following general formula
- the compound represented by (2) is preferred.
- R 1 , R 4 to R 6 are each independently a monovalent hydrocarbon group, a hydrogen atom or a hydroxyl group, and X 1 is a primary group protected by a protecting group.
- a protected amino group-containing organic group containing an amino group, X 2 is an alkoxy group-containing organic group or an epoxy group-containing organic group, m is an integer of 1 to 29, p is an integer of 1 to 29, and q is 0 (It is an integer of ⁇ 28, and m + p + q is 3 to 30.)
- m is an integer of 1 to 29, preferably an integer of 1 to 20, and more preferably an integer of 1 to 10.
- p is an integer of 1 to 29, preferably an integer of 1 to 20, more preferably an integer of 1 to 10
- q is an integer of 0 to 28, preferably an integer of 0 to 20, more preferably It is an integer of 0 to 10, particularly preferably 0.
- m + p + q is 3 to 30, preferably 3 to 20, and more preferably 3 to 10.
- X 1 is the same as the above general formula (1), and the preferred embodiment is also the same as the above general formula (1).
- X 2 is an alkoxy group-containing organic group or an epoxy group-containing organic group is preferably an alkoxy group-containing organic group.
- p is 2 or more, but so that the X 2 there are a plurality, the plurality of X 2 may be different and the same as each other.
- the alkoxy group-containing organic group may be any group that contains an alkoxy group, and is not particularly limited.
- the alkoxy group include alkoxy groups such as a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, and a butoxy group,
- Examples include alkoxysilyl groups, but it is possible to improve the coupling ratio of two or more branches in the resulting modified conjugated diene rubber, thereby further improving wet grip and low heat build-up. From the standpoint, those containing an alkoxysilyl group are preferred.
- an alkoxy group-containing organic group usually acts as a binding site that binds to a conjugated diene polymer having an active end.
- the alkoxysilyl group-containing organic group is not particularly limited as long as it is a group containing an alkoxysilyl group, and the alkoxysilyl group contains any of a monoalkoxysilyl group, a dialkoxysilyl group, or a trialkoxysilyl group.
- a group represented by the following general formula (6) may be mentioned.
- R 19 each independently represents an alkyl group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 10 carbon atoms, and R 20 represents a hydrogen atom or a carbon number.
- j is an integer of 1 to 20, preferably an integer of 2 to 15, more preferably an integer of 3 to 10
- k is an integer of 1 to 3.
- R 19 is a presence of a plurality
- the plurality of R 19 may be different be the same as each other.
- R 20 is a presence of a plurality
- the plurality of R 20 may be different be the same as each other.
- alkoxysilyl group contained in the alkoxysilyl group-containing organic group include a trialkoxysilyl group such as a trimethoxysilyl group and a triethoxysilyl group; a dimethoxymethylsilyl group, a diethoxymethylsilyl group, a dimethoxyethylsilyl group, Dialkoxyalkylsilyl groups such as diethoxyethylsilyl group; monoalkoxydialkyl groups such as methoxydimethylsilyl group, ethoxydimethylsilyl group, methoxydiethylsilyl group, ethoxydiethylsilyl group; and the like.
- the polymer modifier when used as a polymer modifier, for example, when used as a polymer modifier, it is possible to increase the affinity between the polymer and a filler such as silica.
- the trialkoxysilyl group is preferable and the trimethoxysilyl group is more preferable from the viewpoint that the effect of improving the resistance is high.
- the epoxy group-containing organic group is not particularly limited as long as it is an organic group containing an epoxy group, but is not limited to 2-glycidoxyethyl group, 3-glycidoxypropyl group, 4-glycidoxybutyl group.
- a glycidoxyalkyl group such as 2- (3,4-epoxycyclohexyl) ethyl group, 3- (3,4-epoxycyclohexyl) propyl group, 2- (3,4-epoxynorbornyl) ethyl group, 2 -Epoxycycloalkylalkyl groups such as (3,4-epoxy-3-methylcyclohexyl) -2-methylethyl group; oxiranylalkyl groups such as 4-oxiranylbutyl group and 8-oxiranyloctyl group; Etc.
- a glycidoxyalkyl group is preferable, and a 3-glycidoxypropyl group is particularly preferable.
- R 1 and R 4 to R 6 are each independently a monovalent hydrocarbon group, a hydrogen atom or a hydroxyl group, preferably a monovalent hydrocarbon group.
- the monovalent hydrocarbon group is preferably an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, more preferably an alkyl group having 1 to 4 carbon atoms, and further preferably a methyl group. It is.
- the content ratio of the protected amino group-containing organic group and the alkoxy group-containing organic group and / or the epoxy group-containing organic group is not particularly limited.
- the molar ratio of “group-containing organic group / (alkoxy group-containing organic group and / or epoxy group-containing organic group)” is preferably 0.1 to 10.0, more preferably 0.2 to 5.0, Preferably it is 0.25 to 4.0, and particularly preferably 0.5 to 1.5.
- the usage-amount of the compound represented by the said General formula (1) in a 2nd process is the organic active metal compound as a polymerization initiator used in the 1st process mentioned above.
- the ratio is preferably 0.01 to 30 moles, more preferably 0.05 to 5 moles, and further preferably 0.1 to 3 moles per mole of metal atoms. preferable.
- a cyclic main chain structure composed of repeating units represented by —Si—O— as shown in the general formula (1) is used as a modifier used when producing a modified conjugated diene rubber.
- the compound which has is used.
- the effect of introducing a modified structure introduced by a modifier, ie, the above-described effect The effect of the protected amino group-containing organic group can be made sufficient.
- the effect of improving the affinity for fillers such as silica can be made more satisfactory, and as a result, the obtained rubber cross-linked product is excellent in wet grip and low heat build-up. Is something that can be done.
- the second step of the production method of the present invention as a method of reacting the compound represented by the general formula (1) with the active end of the conjugated diene polymer having the active end obtained in the first step described above.
- the conjugated diene polymer having an active end obtained in the first step described above and the compound represented by the general formula (1) in a solvent capable of dissolving them The method of mixing etc. is mentioned.
- the solvent used at this time those exemplified as the solvent used for the polymerization of the conjugated diene polymer described above can be used.
- the conjugated diene polymer having an active end obtained in the first step described above is kept in the polymerization solution used for the polymerization, and is represented by the general formula (1).
- the method of adding the compound is simple and preferred.
- the compound represented by the general formula (1) is preferably dissolved in the inert solvent used for the polymerization and added to the polymerization system, and the solution concentration is 1 to 50. It is preferable to set it as the range of weight%.
- the reaction temperature in the second step is not particularly limited, but is usually 0 to 120 ° C.
- the reaction time is not particularly limited, but is usually 1 minute to 1 hour.
- the timing of adding the compound represented by the general formula (1) to the solution containing the conjugated diene polymer having an active terminal is not particularly limited, but the polymerization reaction is not completed and the conjugate having an active terminal is present.
- the state in which the solution containing the diene polymer also contains a monomer, more specifically, the solution containing the conjugated diene polymer having an active terminal is 100 ppm or more, more preferably 300 to 50. It is desirable to add the compound represented by the general formula (1) to this solution in a state containing 1,000 ppm of monomer.
- the active end of the conjugated diene polymer is not limited so long as the effect of the present invention is not inhibited.
- the part may be inactivated by adding a coupling agent, a modifier and the like conventionally used in the polymerization system.
- An anti-aging agent such as a phenol-based stabilizer, a phosphorus-based stabilizer, or a sulfur-based stabilizer may be added to the modified conjugated diene rubber solution obtained as described above, if desired. What is necessary is just to determine suitably the addition amount of an anti-aging agent according to the kind etc.
- an extension oil may be blended to form an oil-extended rubber.
- the extender oil include paraffinic, aromatic and naphthenic petroleum softeners, plant softeners, and fatty acids.
- the content of polycyclic aromatics extracted by the method of IP346 the inspection method of THE INSTITUTE PETROLEUM in the UK
- the amount used is usually 5 to 100 parts by weight with respect to 100 parts by weight of the modified conjugated diene rubber.
- the modified conjugated diene rubber after the modification reaction thus obtained is separated from the reaction mixture by removing the solvent by steam stripping to obtain a solid modified conjugated diene rubber.
- the protected amino group-containing organic compound derived from the compound represented by the above general formula (1) introduced into the modified conjugated diene rubber after the modification reaction as described above by steam stripping. It is considered that a primary amino group or a secondary amino group is generated by deprotecting the protecting group in the group by hydrolysis.
- the modified conjugated diene rubber obtained by the production method of the present invention contains the compound represented by the general formula (1) or a structure forming a coupling structure having two or more branches via a coupling agent.
- the modified conjugated diene rubber preferably has a content ratio (coupling ratio) of the structure forming a coupling structure having two or more branches of the compound represented by the general formula (1). Is 5% by weight or more, more preferably 8% by weight or more, and still more preferably 10% by weight or more.
- the content ratio of the structure forming a coupling structure having two or more branches is in the above-mentioned range, the effect of improving wet grip properties and low heat build-up becomes more remarkable, which is preferable.
- the weight average molecular weight (Mw) of the modified conjugated diene rubber obtained by the production method of the present invention is not particularly limited, but is usually 1,000 to 3,000 as a value measured by gel permeation chromatography in terms of polystyrene. 1,000, preferably 10,000 to 2,000,000, more preferably 100,000 to 1,500,000.
- Mw weight average molecular weight
- the molecular weight distribution represented by the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the modified conjugated diene rubber obtained by the production method of the present invention is not particularly limited. Is 1.0 to 5.0, particularly preferably 1.0 to 3.0. By setting the molecular weight distribution of the modified conjugated diene rubber within the above range, the resulting rubber cross-linked product becomes more excellent due to low heat build-up.
- the Mooney viscosity (ML 1 + 4, 100 ° C.) of the modified conjugated diene rubber obtained by the production method of the present invention is also not particularly limited, but is usually in the range of 20 to 200, preferably 30 to 150. By setting the Mooney viscosity of the modified conjugated diene rubber to the above range, the processability of the rubber composition becomes excellent.
- the modified conjugated diene rubber is an oil-extended rubber
- the Mooney viscosity of the oil-extended rubber is preferably in the above range.
- the modified conjugated diene rubber thus obtained can be suitably used for various applications after adding compounding agents such as a filler and a crosslinking agent.
- compounding agents such as a filler and a crosslinking agent.
- silica is blended as a filler
- a rubber composition suitably used for obtaining a crosslinked rubber product having excellent wet grip properties and low heat build-up properties is provided.
- the rubber composition of the present invention is a composition comprising 10 to 200 parts by weight of silica with respect to 100 parts by weight of a rubber component containing the modified conjugated diene rubber obtained by the production method of the present invention described above.
- silica used in the present invention examples include dry method white carbon, wet method white carbon, colloidal silica, and precipitated silica.
- wet method white carbon mainly containing hydrous silicic acid is preferable.
- a carbon-silica dual phase filler in which silica is supported on the carbon black surface may be used.
- These silicas can be used alone or in combination of two or more.
- nitrogen adsorption specific surface area of silica used is preferably 50 ⁇ 300m 2 / g, more preferably 80 ⁇ 220m 2 / g, particularly preferably 100 ⁇ 170m 2 / g.
- the pH of silica is preferably 5-10.
- the compounding amount of silica in the rubber composition of the present invention is 10 to 200 parts by weight, preferably 30 to 150 parts by weight, more preferably 50 to 100 parts by weight with respect to 100 parts by weight of the rubber component in the rubber composition. Part.
- the rubber composition of the present invention may further contain a silane coupling agent from the viewpoint of further improving the low heat build-up.
- a silane coupling agent examples include vinyltriethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane, 3-octathio- 1-propyl-triethoxysilane, bis (3- (triethoxysilyl) propyl) disulfide, bis (3- (triethoxysilyl) prol) tetrasulfide, ⁇ -trimethoxysilylpropyldimethylthiocarbamyl tetrasulfide, and ⁇ -Trimethoxysilylpropylbenzothiazyl tetrasulfide and the like.
- These silane coupling agents can be used alone or
- the rubber composition of the present invention may further contain carbon black such as furnace black, acetylene black, thermal black, channel black, and graphite. Among these, furnace black is preferable. These carbon blacks can be used alone or in combination of two or more.
- the compounding amount of carbon black is usually 120 parts by weight or less with respect to 100 parts by weight of the rubber component in the rubber composition.
- the method of adding silica to the rubber component containing the modified conjugated diene rubber of the present invention is not particularly limited, and a method of adding and kneading a solid rubber component (dry kneading method) or a modified conjugated diene A method (wet kneading method) that is added to a solution containing a rubber and solidified and dried can be applied.
- the rubber composition of the present invention preferably further contains a cross-linking agent.
- the crosslinking agent include sulfur-containing compounds such as sulfur and sulfur halides, organic peroxides, quinonedioximes, organic polyvalent amine compounds, and alkylphenol resins having a methylol group. Among these, sulfur is preferably used.
- the amount of the crosslinking agent is preferably 0.1 to 15 parts by weight, more preferably 0.5 to 5 parts by weight, and particularly preferably 1 to 4 parts by weight with respect to 100 parts by weight of the rubber component in the rubber composition. It is.
- the rubber composition of the present invention includes a crosslinking accelerator, a crosslinking activator, an anti-aging agent, a filler (excluding silica and carbon black), an activator, and a process oil in accordance with conventional methods.
- a crosslinking accelerator excluding silica and carbon black
- a filler excluding silica and carbon black
- an activator excluding silica and carbon black
- a process oil in accordance with conventional methods.
- Plasticizers, lubricants, tackifiers and the like can be blended in the required amounts.
- crosslinking accelerator When sulfur or a sulfur-containing compound is used as the crosslinking agent, it is preferable to use a crosslinking accelerator and a crosslinking activator in combination.
- the crosslinking accelerator include sulfenamide-based crosslinking accelerators; guanidine-based crosslinking accelerators; thiourea-based crosslinking accelerators; thiazole-based crosslinking accelerators; thiuram-based crosslinking accelerators; dithiocarbamic acid-based crosslinking accelerators; A crosslinking accelerator; and the like. Among these, those containing a sulfenamide-based crosslinking accelerator are preferable. These crosslinking accelerators are used alone or in combination of two or more.
- the amount of the crosslinking accelerator is preferably 0.1 to 15 parts by weight, more preferably 0.5 to 5 parts by weight, and particularly preferably 1 to 4 parts by weight with respect to 100 parts by weight of the rubber component in the rubber composition. Part.
- crosslinking activator examples include higher fatty acids such as stearic acid; zinc oxide. These crosslinking activators are used alone or in combination of two or more.
- the amount of the crosslinking activator is preferably 0.05 to 20 parts by weight, particularly preferably 0.5 to 15 parts by weight based on 100 parts by weight of the rubber component in the rubber composition.
- the rubber composition of the present invention may be blended with other rubber other than the modified conjugated diene rubber obtained by the production method of the present invention described above.
- other rubbers include natural rubber, polyisoprene rubber, emulsion polymerization styrene-butadiene copolymer rubber, solution polymerization styrene-butadiene copolymer rubber, and polybutadiene rubber (high cis-BR and low cis BR).
- polybutadiene rubber containing crystal fibers made of 1,2-polybutadiene polymer.
- Styrene-isoprene copolymer rubber butadiene-isoprene copolymer rubber, styrene-isoprene-butadiene copolymer rubber, acrylonitrile- Of butadiene copolymer rubber, acrylonitrile-styrene-butadiene copolymer rubber, etc., those other than the above-mentioned modified conjugated diene rubber.
- natural rubber, polyisoprene rubber, polybutadiene rubber, and solution-polymerized styrene-butadiene copolymer rubber are preferable. These rubbers can be used alone or in combination of two or more.
- the modified conjugated diene rubber obtained by the production method of the present invention preferably occupies 10 to 100% by weight of the rubber component in the rubber composition, and occupies 50 to 100% by weight. Is particularly preferred.
- the modified conjugated diene rubber obtained by the production method of the present invention in the rubber component at such a ratio, it is possible to obtain a crosslinked rubber product having low heat build-up and excellent wet grip properties.
- each component may be kneaded according to a conventional method.
- a component excluding a thermally unstable component such as a crosslinking agent or a crosslinking accelerator and a modified conjugated diene rubber are used.
- a heat-unstable component such as a crosslinking agent or a crosslinking accelerator can be mixed with the kneaded product to obtain a desired composition.
- the kneading temperature of the component excluding the thermally unstable component and the modified conjugated diene rubber is preferably 80 to 200 ° C., more preferably 120 to 180 ° C., and the kneading time is preferably 30 seconds to 30 minutes. It is.
- the kneaded product and the thermally unstable component are usually mixed after cooling to 100 ° C. or lower, preferably 80 ° C. or lower.
- the rubber cross-linked product of the present invention is obtained by cross-linking the rubber composition of the present invention described above.
- the rubber cross-linked product of the present invention uses the rubber composition of the present invention, for example, is molded by a molding machine corresponding to a desired shape, for example, an extruder, an injection molding machine, a compressor, a roll, and heated. Can be produced by carrying out a crosslinking reaction and fixing the shape as a crosslinked product.
- crosslinking may be performed after molding in advance, or crosslinking may be performed simultaneously with molding.
- the molding temperature is usually 10 to 200 ° C, preferably 25 to 120 ° C.
- the crosslinking temperature is usually 100 to 200 ° C., preferably 130 to 190 ° C.
- the crosslinking time is usually 1 minute to 24 hours, preferably 2 minutes to 12 hours, particularly preferably 3 minutes to 6 hours. .
- a heating method a general method used for crosslinking of rubber such as press heating, steam heating, oven heating, hot air heating, etc. may be appropriately selected.
- the rubber cross-linked product of the present invention thus obtained is obtained by using the modified conjugated diene rubber obtained by the above-described production method of the present invention, and therefore has excellent wet grip properties and low heat build-up properties. It is.
- the modified conjugated diene rubber obtained by the production method of the present invention is obtained by using the compound represented by the above general formula (1) as a modifier. In addition, it has a high affinity for fillers such as silica, and it can disperse fillers such as silica well. Therefore, the rubber cross-linked product of the present invention obtained by using the modified conjugated diene rubber obtained by the production method of the present invention has excellent wet grip properties and low heat build-up properties.
- the rubber cross-linked product of the present invention makes use of such characteristics, and for example, in tires, materials for tire parts such as cap treads, base treads, carcass, sidewalls and bead parts; hoses, belts, mats, It can be used in various applications such as vibration rubber and other various industrial article materials; resin impact resistance improvers; resin film buffers; shoe soles; rubber shoes; golf balls;
- the rubber cross-linked product of the present invention is excellent in wet grip properties and low heat build-up properties, it can be suitably used as a tire material, particularly a low fuel consumption tire material, and is optimal for tread applications.
- the molecular weight of the rubber was determined as a molecular weight in terms of polystyrene by gel permeation chromatography. Specific measurement conditions were as follows. Measuring instrument: High-performance liquid chromatograph (trade name “HLC-8220” manufactured by Tosoh Corporation) Column: manufactured by Tosoh Corporation, two product names “GMH-HR-H” were connected in series.
- Detector differential refractometer (trade name “RI-8220” manufactured by Tosoh Corporation) Eluent: Tetrahydrofuran Column temperature: 40 ° C
- the area ratio of the peak portion having a peak top molecular weight of 1.9 times or more of the peak top molecular weight indicated by the peak derived from the polymer having the smallest molecular weight relative to the total elution area is obtained from the obtained chart.
- the coupling rate of the branched conjugated diene rubber was 2 or more branches (content ratio of 2 or more branched structures).
- Example 1 [Production of denaturant 1] The reactor was charged with 31.8 g of methylhydrogencyclosiloxane represented by the following formula (7) and heated to 40 ° C. with stirring under a nitrogen stream. Next, 1.3 g of a toluene solution of platinum-1,3-divinyl-1,3-dimethyldisiloxane complex (Pt concentration 0.17 wt%) was added, and 1-allyl-2,2 ′, 5,5′- 52.8 g of tetramethyl- (1-aza-2,5-disilacyclopentane) was added dropwise so as to keep the reaction temperature at 40 to 75 ° C. After completion of the dropping, stirring was continued at 70 to 75 ° C.
- Pt concentration 0.17 wt% platinum-1,3-divinyl-1,3-dimethyldisiloxane complex
- reaction solution 0.5 g was sampled and it was confirmed that the reaction was completed by an alkali decomposition gas generation method.
- the reaction solution was heated to 155 ° C. under reduced pressure to distill off the low boiling point for 3 hours, and 134.3 g of the modifier 1 represented by the following formula (8) was obtained.
- the structure represented by the following formula (8) was also confirmed by 1 H-NMR.
- the viscosity of the obtained modifier 1 was 230 mm 2 / s as measured according to JIS-Z-8803 at 25 ° C. using an Ubbelohde viscosity tube.
- the polymerization reaction was continued for 60 minutes, and after confirming that the polymerization conversion rate was in the range of 95% to 100%, the modifier 1 obtained above (compound represented by the above formula (8)) 1.35 parts (1.50 moles relative to the amount of n-butyl lithium used) were added and reacted for 30 minutes, and then 0.064 parts of methanol was added as a polymerization terminator to give a conjugated diene series. A solution containing the polymer was obtained. Then, 100 parts of the obtained polymer component was treated with 2,4-bis [(octylthio) methyl] -o-cresol (trade name “Irganox 1520” manufactured by Ciba Specialty Chemicals) as an anti-aging agent.
- 2,4-bis [(octylthio) methyl] -o-cresol trade name “Irganox 1520” manufactured by Ciba Specialty Chemicals
- the resulting modified conjugated diene rubber 1 had a weight average molecular weight (Mw) of 478,000, and a coupling ratio of two or more branches was 38.3% by weight.
- the temperature of the kneaded product at the end of kneading was 150 ° C. And after cooling the obtained kneaded material to room temperature, it knead
- the obtained kneaded product was mixed with 1.40 parts of sulfur, a crosslinking accelerator: N-tert-butyl-2-benzothiazolylsulfenamide (trade name “Noxeller NS-P”, After adding 1.2 parts of Ouchi Shinsei Chemical Co., Ltd.) and 1.2 parts of diphenylguanidine (trade name “Noxeller D”, Ouchi Shinsei Chemical Co., Ltd.) and kneading them, a sheet-like rubber composition The thing was taken out. Next, the obtained rubber composition was press-crosslinked at 160 ° C. for 20 minutes to produce a rubber cross-linked test piece. The test piece was evaluated for low heat build-up and wet grip. The results are shown in Table 1.
- Example 2 [Production of denaturant 2] Instead of 1-allyl-2,2 ′, 5,5′-tetramethyl- (1-aza-2,5-disilacyclopentane), N-allyl-N, N-bis (trimethylsilyl) amine 53. Except having used 3g, it carried out similarly to Example 1, and obtained the modifier 2 represented by following formula (9). The structure represented by the following formula (9) was also confirmed by 1 H-NMR. The viscosity of the obtained modifier 2 was measured at 25 ° C. according to JIS-Z-8803 using an Ubbelohde viscometer, and found to be 300 mm 2 / s.
- the modified conjugated diene rubber when synthesizing the modified conjugated diene rubber, when the compound represented by the general formula (1) is used as a modifier, the modified conjugated diene rubber is obtained.
- the rubber cross-linked products were all excellent in wet grip properties and low heat build-up (Examples 1 and 2).
- a modified conjugated diene rubber is synthesized, even when a compound having a cyclic main chain structure composed of a repeating unit represented by —Si—O— is used as a modifier, a protected amino group-containing organic group In the case of using a material that does not have, the resulting rubber cross-linked product was inferior in wet grip and low heat build-up (Comparative Example 1).
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Tires In General (AREA)
Abstract
Provided is a method for producing a modified conjugated diene rubber, the method comprising a first step for polymerizing, in an inert solvent, a monomer containing at least a conjugated diene compound by using an organic active metal compound as a polymerization initiator to obtain a conjugated diene polymer having an active end, and a second step for reacting a compound represented by general formula (1) with the active end of said conjugated diene polymer having the active end. (In general formula (1), R1 and R3 each independently represent a monovalent hydrocarbon group, a hydrogen atom, or a hydroxy group, R2 represents an arbitrary defined organic group, a hydrogen atom, or a hydroxy group, X1 represents a protected amino group-containing organic group containing a primary amino group protected by a protecting group, m represents an integer of 1-30, n represents an integer of 0-29, and m+n is 3-30.)
Description
本発明は、変性共役ジエン系ゴムの製造方法に関し、より詳しくは、ウエットグリップ性および低発熱性に優れたゴム架橋物を与えることのできる変性共役ジエン系ゴムを製造するための方法に関する。また、本発明は、この製造方法により得られる変性共役ジエン系ゴム、該変性共役ジエン系ゴムを含有するゴム組成物およびそのゴム架橋物にも関する。
The present invention relates to a method for producing a modified conjugated diene rubber, and more particularly to a method for producing a modified conjugated diene rubber capable of giving a rubber cross-linked product excellent in wet grip properties and low heat build-up. The present invention also relates to a modified conjugated diene rubber obtained by this production method, a rubber composition containing the modified conjugated diene rubber, and a crosslinked rubber product thereof.
近年、環境問題や資源問題から、自動車用のタイヤにも低発熱性が強く求められており、さらに安全性の面からは優れたウエットグリップ性が求められている。シリカを配合したゴム組成物から得られるタイヤは、通常使用されるカーボンブラックを配合したゴム組成物から得られるタイヤに比べて低発熱性に優れるため、これを用いることにより低燃費なタイヤを製造することができる。しかしその一方で、通常使用されているゴムにシリカを配合しても、シリカとの親和性に劣るため、分離が発生しやすく、結果として、低発熱性およびウエットグリップ性を向上させることができないという課題があった。
In recent years, there has been a strong demand for low heat build-up for automobile tires due to environmental problems and resource problems, and from the viewpoint of safety, excellent wet grip properties are also demanded. A tire obtained from a rubber composition blended with silica is superior in low heat build-up compared to a tire obtained from a rubber composition blended with commonly used carbon black. can do. However, on the other hand, even if silica is blended with the rubber that is usually used, it is inferior in affinity with silica, so separation is likely to occur, and as a result, low heat build-up and wet grip properties cannot be improved. There was a problem.
このような課題に対し、ゴムとシリカとの親和性を高めるために、ゴムの重合活性末端等に変性剤を反応させることにより、シリカに対する親和性の高い官能基を導入する技術が知られている。
In order to increase the affinity between rubber and silica for such a problem, a technique for introducing a functional group having a high affinity for silica by reacting a modifier with a polymerization active terminal of rubber is known. Yes.
たとえば、特許文献1には、共役ジエン系重合体の活性末端に、N,N-ビス(トリメチルシリル)アミノプロピルメチルジメトキシシランなどの、保護された1級アミノ基とアルコキシシリル基を有する化合物を反応させることにより、共役ジエン系重合体とシリカとの親和性を高める試みが行われている。この特許文献1の技術では、得られる共役ジエン系重合体は、シリカに対する親和性がある程度向上したものとなるものの、シリカを配合した際におけるシリカの分散性が必ずしも十分でなく、そのため、ウエットグリップ性および低発熱性の向上効果も限定的なものであった。
For example, in Patent Document 1, a compound having a protected primary amino group and an alkoxysilyl group such as N, N-bis (trimethylsilyl) aminopropylmethyldimethoxysilane is reacted with the active terminal of a conjugated diene polymer. Therefore, attempts have been made to increase the affinity between the conjugated diene polymer and silica. In the technique of Patent Document 1, the resulting conjugated diene polymer has a certain degree of affinity for silica, but the dispersibility of silica when blended with silica is not always sufficient, and therefore, the wet grip The improvement effect of heat resistance and low exothermicity was also limited.
本発明は、このような実状に鑑みてなされたものであり、ウエットグリップ性および低発熱性に優れたゴム架橋物を与えることのできる変性共役ジエン系ゴムを製造するための方法を提供することを目的とする。
The present invention has been made in view of such a situation, and provides a method for producing a modified conjugated diene rubber that can give a crosslinked rubber excellent in wet grip and low heat build-up. With the goal.
本発明者等は、上記目的を達成するために、共役ジエン系重合体の活性末端を変性させるための変性剤ついて鋭意検討を行った結果、変性剤として、環状のシロキサン構造を有するとともに、保護アミノ基含有有機基を備えた特定のシラン化合物を用い、これを活性末端を有する共役ジエン系重合体の活性末端に反応させることにより得られる変性共役ジエン系ゴムが、シリカなどの充填剤を良好に分散可能であり、これにより、ウエットグリップ性および低発熱性に優れたゴム架橋物を与えることができることを見出し、本発明を完成させるに至った。
In order to achieve the above object, the present inventors have conducted extensive studies on a modifier for modifying the active terminal of a conjugated diene polymer. As a result, the modifier has a cyclic siloxane structure and is protected. Modified conjugated diene rubber obtained by using a specific silane compound with an amino group-containing organic group and reacting this with the active end of a conjugated diene polymer having an active end is good for fillers such as silica. It was found that a rubber cross-linked product excellent in wet grip properties and low heat build-up properties can be obtained, and the present invention has been completed.
すなわち、本発明によれば、不活性溶媒中で、重合開始剤として有機活性金属化合物を用いて、少なくとも共役ジエン化合物を含んでなる単量体を重合し、活性末端を有する共役ジエン系重合体を得る第1工程と、前記活性末端を有する共役ジエン系重合体の活性末端に、下記一般式(1)で表される化合物を反応させる第2工程と、を備える変性共役ジエン系ゴムの製造方法が提供される。
(上記一般式(1)中、R1、R3は、それぞれ独立して、1価炭化水素基、水素原子または水酸基であり、R2は、任意の有機基、水素原子または水酸基であり、X1は、保護基により保護された第1級アミノ基を含む保護アミノ基含有有機基であり、mは1~30の整数、nは0~29の整数であり、m+nは3~30である。)
That is, according to the present invention, a conjugated diene polymer having an active terminal is obtained by polymerizing a monomer comprising at least a conjugated diene compound using an organic active metal compound as a polymerization initiator in an inert solvent. And a second step of reacting a compound represented by the following general formula (1) with the active terminal of the conjugated diene polymer having the active terminal: A method is provided.
(In the general formula (1), R 1 and R 3 are each independently a monovalent hydrocarbon group, a hydrogen atom or a hydroxyl group, and R 2 is an arbitrary organic group, a hydrogen atom or a hydroxyl group, X 1 is a protected amino group-containing organic group containing a primary amino group protected by a protecting group, m is an integer of 1 to 30, n is an integer of 0 to 29, and m + n is 3 to 30 is there.)
本発明において、前記一般式(1)で表される化合物が、下記一般式(2)で表される化合物であることが好ましい。
(上記一般式(2)中、R1、R4~R6は、それぞれ独立して、1価炭化水素基、水素原子または水酸基であり、X1は、保護基により保護された第1級アミノ基を含む保護アミノ基含有有機基であり、X2は、アルコキシ基含有有機基またはエポキシ基含有有機基であり、mは1~29の整数、pは1~29の整数、qは0~28の整数であり、m+p+qは3~30である。)
前記一般式(2)で表される化合物中における、保護アミノ基含有有機基と、アルコキシ基含有有機基および/またはエポキシ基含有有機基との含有割合が、「保護アミノ基含有有機基/(アルコキシ基含有有機基および/またはエポキシ基含有有機基)」のモル比率で、0.1~10であることが好ましい。 In the present invention, the compound represented by the general formula (1) is preferably a compound represented by the following general formula (2).
(In the general formula (2), R 1 , R 4 to R 6 are each independently a monovalent hydrocarbon group, a hydrogen atom or a hydroxyl group, and X 1 is a primary group protected by a protecting group. A protected amino group-containing organic group containing an amino group, X 2 is an alkoxy group-containing organic group or an epoxy group-containing organic group, m is an integer of 1 to 29, p is an integer of 1 to 29, and q is 0 (It is an integer of ~ 28, and m + p + q is 3 to 30.)
In the compound represented by the general formula (2), the content ratio of the protected amino group-containing organic group to the alkoxy group-containing organic group and / or the epoxy group-containing organic group is expressed as “protected amino group-containing organic group / ( The molar ratio of “alkoxy group-containing organic group and / or epoxy group-containing organic group” ”is preferably 0.1 to 10.
前記一般式(2)で表される化合物中における、保護アミノ基含有有機基と、アルコキシ基含有有機基および/またはエポキシ基含有有機基との含有割合が、「保護アミノ基含有有機基/(アルコキシ基含有有機基および/またはエポキシ基含有有機基)」のモル比率で、0.1~10であることが好ましい。 In the present invention, the compound represented by the general formula (1) is preferably a compound represented by the following general formula (2).
In the compound represented by the general formula (2), the content ratio of the protected amino group-containing organic group to the alkoxy group-containing organic group and / or the epoxy group-containing organic group is expressed as “protected amino group-containing organic group / ( The molar ratio of “alkoxy group-containing organic group and / or epoxy group-containing organic group” ”is preferably 0.1 to 10.
本発明において、前記一般式(1)で表される化合物が、前記保護アミノ基含有有機基として、下記一般式(3)、下記一般式(4)、または下記一般式(5)で表される基を含有するものであることが好ましい。
(上記一般式(3)中、R7~R10は、それぞれ独立して、炭素数1~6のアルキル基または炭素数6~12のアリール基であり、eは1~12の整数である。fは1~12の整数である。)
(上記一般式(4)中、R11~R16は、それぞれ独立して、炭素数1~6のアルキル基または炭素数6~12のアリール基であり、gは1~12の整数である。)
(上記一般式(5)中、R17、R18は、それぞれ独立して、炭素数1~6のアルキル基または炭素数6~12のアリール基であり、hは1~12の整数である。)
In the present invention, the compound represented by the general formula (1) is represented by the following general formula (3), the following general formula (4), or the following general formula (5) as the protected amino group-containing organic group. It is preferable that it contains a group.
(In the general formula (3), R 7 to R 10 are each independently an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and e is an integer of 1 to 12) F is an integer from 1 to 12.)
(In the general formula (4), R 11 to R 16 are each independently an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and g is an integer of 1 to 12) .)
(In the general formula (5), R 17 and R 18 are each independently an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and h is an integer of 1 to 12) .)
本発明において、前記一般式(1)で表される化合物の使用量が、重合開始剤としての前記有機活性金属1モルに対して、0.01~30モルであることが好ましく、0.1~5モルであることがより好ましい。
In the present invention, the amount of the compound represented by the general formula (1) is preferably 0.01 to 30 moles relative to 1 mole of the organic active metal as a polymerization initiator, More preferably, it is ˜5 mol.
また、本発明によれば、上記いずれかの製造方法により得られる変性共役ジエン系ゴムが提供される。
さらに、本発明によれば、上記変性共役ジエン系ゴムを含むゴム成分100重量部に対して、シリカ10~200重量部を含有してなるゴム組成物が提供される。
本発明のゴム組成物は、架橋剤をさらに含有してなるものであることが好ましい。 The present invention also provides a modified conjugated diene rubber obtained by any one of the above production methods.
Furthermore, according to the present invention, there is provided a rubber composition comprising 10 to 200 parts by weight of silica with respect to 100 parts by weight of a rubber component containing the modified conjugated diene rubber.
The rubber composition of the present invention preferably contains a crosslinking agent.
さらに、本発明によれば、上記変性共役ジエン系ゴムを含むゴム成分100重量部に対して、シリカ10~200重量部を含有してなるゴム組成物が提供される。
本発明のゴム組成物は、架橋剤をさらに含有してなるものであることが好ましい。 The present invention also provides a modified conjugated diene rubber obtained by any one of the above production methods.
Furthermore, according to the present invention, there is provided a rubber composition comprising 10 to 200 parts by weight of silica with respect to 100 parts by weight of a rubber component containing the modified conjugated diene rubber.
The rubber composition of the present invention preferably contains a crosslinking agent.
また、本発明によれば、上記ゴム組成物を架橋してなるゴム架橋物、および該ゴム架橋物を含んでなるタイヤが提供される。
Further, according to the present invention, there are provided a rubber cross-linked product obtained by cross-linking the rubber composition, and a tire comprising the rubber cross-linked product.
本発明によれば、ウエットグリップ性および低発熱性に優れたゴム架橋物を与えることのできる変性共役ジエン系ゴム、該変性共役ジエン系ゴムを含有するゴム組成物、該ゴム組成物を架橋してなる、ウエットグリップ性および低発熱性に優れたゴム架橋物、および、該ゴム架橋物を含んでなるタイヤを提供することができる。
According to the present invention, a modified conjugated diene rubber capable of giving a rubber cross-linked product excellent in wet grip properties and low heat build-up properties, a rubber composition containing the modified conjugated diene rubber, and the rubber composition are cross-linked. It is possible to provide a rubber cross-linked product excellent in wet grip and low heat build-up, and a tire comprising the rubber cross-linked product.
<変性共役ジエン系ゴムの製造方法>
本発明の変性共役ジエン系ゴムの製造方法は、不活性溶媒中で、重合開始剤として有機活性金属化合物を用いて、少なくとも共役ジエン化合物を含んでなる単量体を重合し、活性末端を有する共役ジエン系重合体を得る第1工程と、前記活性末端を有する共役ジエン系重合体の活性末端に、後述する一般式(1)で表される化合物を反応させる第2工程と、を備える。 <Method for producing modified conjugated diene rubber>
The method for producing a modified conjugated diene rubber according to the present invention has an active terminal by polymerizing a monomer containing at least a conjugated diene compound using an organic active metal compound as a polymerization initiator in an inert solvent. A first step of obtaining a conjugated diene polymer, and a second step of reacting the active terminus of the conjugated diene polymer having the active terminus with a compound represented by the general formula (1) described later.
本発明の変性共役ジエン系ゴムの製造方法は、不活性溶媒中で、重合開始剤として有機活性金属化合物を用いて、少なくとも共役ジエン化合物を含んでなる単量体を重合し、活性末端を有する共役ジエン系重合体を得る第1工程と、前記活性末端を有する共役ジエン系重合体の活性末端に、後述する一般式(1)で表される化合物を反応させる第2工程と、を備える。 <Method for producing modified conjugated diene rubber>
The method for producing a modified conjugated diene rubber according to the present invention has an active terminal by polymerizing a monomer containing at least a conjugated diene compound using an organic active metal compound as a polymerization initiator in an inert solvent. A first step of obtaining a conjugated diene polymer, and a second step of reacting the active terminus of the conjugated diene polymer having the active terminus with a compound represented by the general formula (1) described later.
<第1工程>
まず、本発明の製造方法における第1工程について説明する。本発明の製造方法における第1工程は、不活性溶媒中で、重合開始剤として有機活性金属化合物を用いて、少なくとも共役ジエン化合物を含んでなる単量体を重合し、活性末端を有する共役ジエン系重合体を得る工程である。 <First step>
First, the 1st process in the manufacturing method of this invention is demonstrated. In the first step of the production method of the present invention, a monomer comprising at least a conjugated diene compound is polymerized in an inert solvent using an organic active metal compound as a polymerization initiator, and a conjugated diene having an active terminal is obtained. This is a step of obtaining a polymer.
まず、本発明の製造方法における第1工程について説明する。本発明の製造方法における第1工程は、不活性溶媒中で、重合開始剤として有機活性金属化合物を用いて、少なくとも共役ジエン化合物を含んでなる単量体を重合し、活性末端を有する共役ジエン系重合体を得る工程である。 <First step>
First, the 1st process in the manufacturing method of this invention is demonstrated. In the first step of the production method of the present invention, a monomer comprising at least a conjugated diene compound is polymerized in an inert solvent using an organic active metal compound as a polymerization initiator, and a conjugated diene having an active terminal is obtained. This is a step of obtaining a polymer.
第1工程において、活性末端を有する共役ジエン系重合体を得るために、重合に用いる共役ジエン化合物としては、特に限定されず、たとえば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、2-メチル-3-エチル-1,3-ブタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、および1,3-シクロヘキサジエンなどを挙げることができる。これらのなかでも、1,3-ブタジエン、イソプレンおよび1,3-ペンタジエンが好ましく、1,3-ブタジエン、およびイソプレンが特に好ましい。なお、これらの共役ジエン化合物は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
In the first step, the conjugated diene compound used for polymerization in order to obtain a conjugated diene polymer having an active terminal is not particularly limited, and for example, 1,3-butadiene, isoprene, 2,3-dimethyl-1 , 3-butadiene, 1,3-pentadiene, 2-methyl-3-ethyl-1,3-butadiene, 2-methyl-1,3-pentadiene, 1,3-hexadiene, 1,3-cyclohexadiene, etc. Can be mentioned. Of these, 1,3-butadiene, isoprene and 1,3-pentadiene are preferred, and 1,3-butadiene and isoprene are particularly preferred. In addition, these conjugated diene compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
また、本発明の製造方法においては、第1工程において製造する、活性末端を有する共役ジエン系重合体として、共役ジエン化合物に加えて、芳香族ビニル化合物を共重合してなるものであってもよい。芳香族ビニル化合物としては、特に限定されず、たとえば、スチレン、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、2-エチルスチレン、3-エチルスチレン、4-エチルスチレン、2,4-ジイソプロピルスチレン、2,4-ジメチルスチレン、4-t-ブチルスチレン、5-t-ブチル-2-メチルスチレン、ビニルナフタレン、ジメチルアミノメチルスチレン、およびジメチルアミノエチルスチレンなどを挙げることができる。これらのなかでも、スチレン、α-メチルスチレン、および4-メチルスチレンが好ましく、スチレンが特に好ましい。なお。これらの芳香族ビニル化合物は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。第1工程において製造する、活性末端を有する共役ジエン系重合体は、共役ジエン単量体単位50~100重量%を含むものが好ましく、55~100重量%を含むものが特に好ましく、また、芳香族ビニル単量体単位0~50重量%を含むものが好ましく、0~45重量%を含むものが特に好ましい。
In the production method of the present invention, the conjugated diene polymer having an active end produced in the first step may be obtained by copolymerizing an aromatic vinyl compound in addition to the conjugated diene compound. Good. The aromatic vinyl compound is not particularly limited, and for example, styrene, α-methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2-ethylstyrene, 3-ethylstyrene, 4-ethylstyrene 2,4-diisopropylstyrene, 2,4-dimethylstyrene, 4-t-butylstyrene, 5-t-butyl-2-methylstyrene, vinylnaphthalene, dimethylaminomethylstyrene, dimethylaminoethylstyrene, etc. Can do. Of these, styrene, α-methylstyrene, and 4-methylstyrene are preferable, and styrene is particularly preferable. Note that. These aromatic vinyl compounds may be used individually by 1 type, and may be used in combination of 2 or more type. The conjugated diene polymer having an active end produced in the first step preferably contains 50 to 100% by weight of a conjugated diene monomer unit, particularly preferably contains 55 to 100% by weight, Those containing 0 to 50% by weight of the vinyl group monomer group are preferred, and those containing 0 to 45% by weight are particularly preferred.
また、本発明の製造方法においては、活性末端を有する共役ジエン系重合体は、本発明の目的を損なわない範囲において、所望により、共役ジエン化合物に加えて、芳香族ビニル化合物以外の他の単量体を含有する単量体を共重合してなるものであってもよい。他の単量体としては、たとえば、アクリロニトリル、メタクリロニトリルなどのα,β-不飽和ニトリル;アクリル酸、メタクリル酸、無水マレイン酸などの不飽和カルボン酸または酸無水物;メタクリル酸メチル、アクリル酸エチル、アクリル酸ブチルなどの不飽和カルボン酸エステル;1,5-ヘキサジエン、1,6-ヘプタジエン、1,7-オクタジエン、ジシクロペンタジエン、5-エチリデン-2-ノルボルネンなどの非共役ジエン;などを挙げることができる。これらの単量体は、活性末端を有する共役ジエン系重合体中に、単量体単位として、10重量%以下とするのが好ましく、5重量%以下とするのがより好ましい。
In addition, in the production method of the present invention, the conjugated diene polymer having an active end is optionally added to the conjugated diene compound as well as other units other than the aromatic vinyl compound as long as the object of the present invention is not impaired. It may be formed by copolymerizing a monomer containing a monomer. Examples of other monomers include α, β-unsaturated nitriles such as acrylonitrile and methacrylonitrile; unsaturated carboxylic acids or acid anhydrides such as acrylic acid, methacrylic acid, and maleic anhydride; methyl methacrylate, acrylic Unsaturated carboxylic acid esters such as ethyl acrylate and butyl acrylate; Non-conjugated dienes such as 1,5-hexadiene, 1,6-heptadiene, 1,7-octadiene, dicyclopentadiene, 5-ethylidene-2-norbornene; etc. Can be mentioned. These monomers are preferably 10% by weight or less, more preferably 5% by weight or less as monomer units in the conjugated diene polymer having an active terminal.
本発明の製造方法の第1工程において用いられる不活性溶媒としては、溶液重合において通常使用されるものであり、重合反応を阻害しないものであれば特に限定されない。不活性溶媒の具体例としては、ブタン、ペンタン、ヘキサン、ヘプタン、2-ブテン等の鎖状脂肪族炭化水素;シクロペンタン、シクロヘキサン、シクロヘキセン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;等が挙げられる。これらの不活性溶媒は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。不活性溶媒の使用量は、単量体濃度が、たとえば、1~50重量%であり、好ましくは10~40重量%となる量である。
The inert solvent used in the first step of the production method of the present invention is not particularly limited as long as it is usually used in solution polymerization and does not inhibit the polymerization reaction. Specific examples of the inert solvent include chain aliphatic hydrocarbons such as butane, pentane, hexane, heptane, 2-butene; alicyclic hydrocarbons such as cyclopentane, cyclohexane, cyclohexene; benzene, toluene, xylene, etc. Aromatic hydrocarbons; and the like. These inert solvents may be used individually by 1 type, and may be used in combination of 2 or more type. The amount of the inert solvent used is such that the monomer concentration is, for example, 1 to 50% by weight, preferably 10 to 40% by weight.
重合開始剤として用いる有機活性金属化合物としては、共役ジエン化合物を含む単量体を重合させて、活性末端を有する共役ジエン系重合体を与えることができるものであれば、特に限定されないが、その具体例としては、有機アルカリ金属化合物、有機アルカリ土類金属化合物、およびランタン系列金属化合物などを主触媒とする重合開始剤が好ましく使用される。有機アルカリ金属化合物としては、例えば、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム、ヘキシルリチウム、フェニルリチウム、スチルベンリチウムなどの有機モノリチウム化合物;ジリチオメタン、1,4-ジリチオブタン、1,4-ジリチオ-2-エチルシクロヘキサン、1,3,5-トリリチオベンゼン、1,3,5-トリス(リチオメチル)ベンゼンなどの有機多価リチウム化合物;ナトリウムナフタレンなどの有機ナトリウム化合物;カリウムナフタレンなどの有機カリウム化合物;などが挙げられる。また、有機アルカリ土類金属化合物としては、例えば、ジ-n-ブチルマグネシウム、ジ-n-ヘキシルマグネシウム、ジエトキシカルシウム、ジステアリン酸カルシウム、ジ-t-ブトキシストロンチウム、ジエトキシバリウム、ジイソプロポキシバリウム、ジエチルメルカプトバリウム、ジ-t-ブトキシバリウム、ジフェノキシバリウム、ジエチルアミノバリウム、ジステアリン酸バリウム、ジケチルバリウムなどが挙げられる。ランタン系列金属化合物を主触媒とする重合開始剤としては、例えば、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ガドリニウムなどのランタン系列金属と、カルボン酸、およびリン含有有機酸などとからなるランタン系列金属の塩を主触媒とし、これと、アルキルアルミニウム化合物、有機アルミニウムハイドライド化合物、有機アルミニウムハライド化合物などの助触媒とからなる重合開始剤などが挙げられる。これらの重合開始剤の中でも、有機モノリチウム化合物、および有機多価リチウム化合物が好ましく、有機モノリチウム化合物がより好ましく、n-ブチルリチウムが特に好ましい。なお、有機アルカリ金属化合物は、予め、ジブチルアミン、ジヘキシルアミン、ジベンジルアミン、ピロリジン、ヘキサメチレンイミン、およびヘプタメチレンイミンなどの第2級アミンと反応させて、有機アルカリ金属アミド化合物として使用してもよい。これらの重合開始剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
The organic active metal compound used as a polymerization initiator is not particularly limited as long as it can polymerize a monomer containing a conjugated diene compound to give a conjugated diene polymer having an active terminal, As a specific example, a polymerization initiator mainly comprising an organic alkali metal compound, an organic alkaline earth metal compound, a lanthanum series metal compound, or the like is preferably used. Examples of the organic alkali metal compound include organic monolithium compounds such as n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, phenyllithium and stilbenelithium; dilithiomethane, 1,4-dilithiobutane, 1,4 -Organic polyvalent lithium compounds such as dilithio-2-ethylcyclohexane, 1,3,5-trilithiobenzene, 1,3,5-tris (lithiomethyl) benzene; organic sodium compounds such as sodium naphthalene; organic such as potassium naphthalene Potassium compounds; and the like. Examples of the organic alkaline earth metal compound include di-n-butylmagnesium, di-n-hexylmagnesium, diethoxycalcium, calcium distearate, di-t-butoxystrontium, diethoxybarium, and diisopropoxybarium. Diethyl mercaptobarium, di-t-butoxybarium, diphenoxybarium, diethylaminobarium, barium distearate, diketylbarium and the like. As a polymerization initiator having a lanthanum series metal compound as a main catalyst, for example, a lanthanum series metal comprising a lanthanum series metal such as lanthanum, cerium, praseodymium, neodymium, samarium, gadolinium, a carboxylic acid, and a phosphorus-containing organic acid And a polymerization initiator composed of this salt and a cocatalyst such as an alkylaluminum compound, an organoaluminum hydride compound, and an organoaluminum halide compound. Among these polymerization initiators, an organic monolithium compound and an organic polyvalent lithium compound are preferable, an organic monolithium compound is more preferable, and n-butyllithium is particularly preferable. The organic alkali metal compound is used as an organic alkali metal amide compound by previously reacting with a secondary amine such as dibutylamine, dihexylamine, dibenzylamine, pyrrolidine, hexamethyleneimine, and heptamethyleneimine. Also good. These polymerization initiators may be used individually by 1 type, and may be used in combination of 2 or more type.
重合開始剤としての有機活性金属化合物の使用量は、目的とする重合体の分子量に応じて決定すればよいが、単量体1000g当り、通常、1~50ミリモル、好ましくは1.5~20ミリモル、より好ましくは2~15ミリモルの範囲である。
The amount of the organic active metal compound used as the polymerization initiator may be determined according to the molecular weight of the target polymer, but is usually 1 to 50 mmol, preferably 1.5 to 20 per 1000 g of monomer. In the range of millimolar, more preferably 2-15 millimolar.
本発明の製造方法の第1工程における、重合温度は、通常、-80~+150℃、好ましくは0~100℃、より好ましくは30~90℃の範囲である。重合様式としては、回分式、連続式などのいずれの様式をも採用できるが、共役ジエン化合物と芳香族ビニル化合物とを共重合させる場合は、共役ジエン単量体単位と芳香族ビニル単量体単位との結合のランダム性を制御しやすい点で、回分式が好ましい。
The polymerization temperature in the first step of the production method of the present invention is usually in the range of −80 to + 150 ° C., preferably 0 to 100 ° C., more preferably 30 to 90 ° C. As the polymerization mode, any of batch type and continuous type can be adopted. However, when copolymerizing a conjugated diene compound and an aromatic vinyl compound, a conjugated diene monomer unit and an aromatic vinyl monomer are used. The batch method is preferred because it is easy to control the randomness of the bond with the unit.
本発明の製造方法において、活性末端を有する共役ジエン系重合体が、2種以上の単量体単位から構成されている場合、その結合様式は、たとえば、ブロック状、テーパー状、ランダム状など種々の結合様式とすることができるが、ランダム状の結合様式であることが好ましい。ランダム状にすることにより、得られるゴム架橋物は低発熱性に優れたものとなる。
In the production method of the present invention, when the conjugated diene polymer having an active terminal is composed of two or more types of monomer units, there are various bonding modes such as a block shape, a taper shape, and a random shape. However, a random binding mode is preferred. By making it random, the resulting rubber cross-linked product is excellent in low heat build-up.
また、本発明の製造方法においては、活性末端を有する共役ジエン系重合体における共役ジエン単量体単位中のビニル結合含有量を調節するために、重合に際し、不活性有機溶媒に極性化合物を添加することが好ましい。極性化合物としては、例えば、ジブチルエーテル、テトラヒドロフラン、2,2-ジ(テトラヒドロフリル)プロパンなどのエーテル化合物;テトラメチルエチレンジアミンなどの第三級アミン;アルカリ金属アルコキシド;ホスフィン化合物;などが挙げられる。これらの中でも、エーテル化合物、および第三級アミンが好ましく、第三級アミンがより好ましく、テトラメチルエチレンジアミンが特に好ましい。これらの極性化合物は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。極性化合物の使用量は、目的とするビニル結合含有量に応じて決定すればよく、重合開始剤として用いる有機活性金属化合物1モルに対して、好ましくは0.001~100モル、より好ましくは0.01~10モルである。極性化合物の使用量がこの範囲にあると、共役ジエン単量体単位中のビニル結合含有量の調節が容易であり、かつ重合開始剤の失活による不具合も発生し難い。
In the production method of the present invention, in order to adjust the vinyl bond content in the conjugated diene monomer unit in the conjugated diene polymer having an active terminal, a polar compound is added to the inert organic solvent during the polymerization. It is preferable to do. Examples of the polar compound include ether compounds such as dibutyl ether, tetrahydrofuran and 2,2-di (tetrahydrofuryl) propane; tertiary amines such as tetramethylethylenediamine; alkali metal alkoxides; phosphine compounds. Among these, ether compounds and tertiary amines are preferable, tertiary amines are more preferable, and tetramethylethylenediamine is particularly preferable. These polar compounds may be used individually by 1 type, and may be used in combination of 2 or more type. The amount of the polar compound used may be determined according to the target vinyl bond content, and is preferably 0.001 to 100 mol, more preferably 0, relative to 1 mol of the organic active metal compound used as the polymerization initiator. .01 to 10 moles. When the amount of the polar compound used is within this range, it is easy to adjust the vinyl bond content in the conjugated diene monomer unit, and problems due to deactivation of the polymerization initiator hardly occur.
以上のようにして、本発明の製造方法における第1工程によれば、共役ジエン化合物を含んでなる単量体を重合することで、活性末端を有する共役ジエン系重合体を得ることができる。
As described above, according to the first step in the production method of the present invention, a conjugated diene polymer having an active terminal can be obtained by polymerizing a monomer containing a conjugated diene compound.
本発明の製造方法の第1工程で得られる活性末端を有する共役ジエン系重合体における共役ジエン単量体単位中のビニル結合含有量は、好ましくは1~90モル%であり、より好ましくは5~85モル%である。ビニル結合量が上記範囲にあると、得られるゴム架橋物は低発熱性に優れたものとなる。
The vinyl bond content in the conjugated diene monomer unit in the conjugated diene polymer having an active end obtained in the first step of the production method of the present invention is preferably 1 to 90 mol%, more preferably 5 ~ 85 mol%. When the vinyl bond amount is in the above range, the resulting rubber cross-linked product has excellent low heat build-up.
本発明の製造方法の第1工程で得られる活性末端を有する共役ジエン系重合体の、ゲルパーミエーションクロマトグラフィ(以下、GPCとも言う)により検出されるピークトップ分子量は、ポリスチレン換算の値として、10,000~1,000,000であることが好ましく、50,000~850,000であることがより好ましく、100,000~700,000であることが特に好ましい。なお、共役ジエン系重合体のピークが複数認められる場合は、GPCにより検出される共役ジエン系重合体に由来する、分子量の最も小さいピークのピークトップ分子量を、活性末端を有する共役ジエン系重合体のピークトップ分子量とする。活性末端を有する共役ジエン系重合体のピークトップ分子量が上記範囲にあると、得られるゴム架橋物は低発熱性に優れたものとなる。
The peak top molecular weight detected by gel permeation chromatography (hereinafter also referred to as GPC) of the conjugated diene polymer having an active terminal obtained in the first step of the production method of the present invention is 10 in terms of polystyrene. It is preferably from 1,000,000 to 1,000,000, more preferably from 50,000 to 850,000, and particularly preferably from 100,000 to 700,000. When a plurality of peaks of the conjugated diene polymer are observed, the peak top molecular weight of the peak having the smallest molecular weight derived from the conjugated diene polymer detected by GPC is used as the conjugated diene polymer having an active end. The peak top molecular weight of When the peak top molecular weight of the conjugated diene polymer having an active end is in the above range, the resulting rubber cross-linked product is excellent in low heat build-up.
本発明の製造方法の第1工程で得られる活性末端を有する共役ジエン系重合体の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表わされる分子量分布は、好ましくは1.0~1.5、より好ましくは1.0~1.4、特に好ましくは1.0~1.3である。この分子量分布の値(Mw/Mn)が上記範囲にあると、得られるゴム架橋物は低発熱性に優れたものとなる。
The molecular weight distribution represented by the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the conjugated diene polymer having an active end obtained in the first step of the production method of the present invention is: Preferably it is 1.0 to 1.5, more preferably 1.0 to 1.4, and particularly preferably 1.0 to 1.3. When this molecular weight distribution value (Mw / Mn) is in the above range, the resulting rubber cross-linked product is excellent in low heat build-up.
<第2工程>
次いで、本発明の製造方法における第2工程について説明する。本発明の製造方法における第2工程は、上述した第1工程で得られた活性末端を有する共役ジエン系重合体の活性末端に、下記一般式(1)で表される化合物を反応させることにより、変性共役ジエン系ゴムを得る工程である。
(上記一般式(1)中、R1、R3は、それぞれ独立して、1価炭化水素基、水素原子または水酸基であり、R2は、任意の有機基、水素原子または水酸基であり、X1は、保護基により保護された第1級アミノ基を含む保護アミノ基含有有機基であり、mは1~30の整数、nは0~29の整数であり、m+nは3~30である。)
<Second step>
Next, the second step in the production method of the present invention will be described. In the second step of the production method of the present invention, the compound represented by the following general formula (1) is reacted with the active end of the conjugated diene polymer having the active end obtained in the first step. In this step, a modified conjugated diene rubber is obtained.
(In the general formula (1), R 1 and R 3 are each independently a monovalent hydrocarbon group, a hydrogen atom or a hydroxyl group, and R 2 is an arbitrary organic group, a hydrogen atom or a hydroxyl group, X 1 is a protected amino group-containing organic group containing a primary amino group protected by a protecting group, m is an integer of 1 to 30, n is an integer of 0 to 29, and m + n is 3 to 30 is there.)
次いで、本発明の製造方法における第2工程について説明する。本発明の製造方法における第2工程は、上述した第1工程で得られた活性末端を有する共役ジエン系重合体の活性末端に、下記一般式(1)で表される化合物を反応させることにより、変性共役ジエン系ゴムを得る工程である。
Next, the second step in the production method of the present invention will be described. In the second step of the production method of the present invention, the compound represented by the following general formula (1) is reacted with the active end of the conjugated diene polymer having the active end obtained in the first step. In this step, a modified conjugated diene rubber is obtained.
本発明の製造方法においては、上述した第1工程で得られた活性末端を有する共役ジエン系重合体の活性末端に、上記一般式(1)で表される化合物を反応させることにより、共役ジエン系ゴムを改質し、シリカなどの充填剤に対する親和性を改良し、シリカなどの充填剤を配合した際における、シリカなどの充填剤の分散性を高めることができ、これにより、低発熱性およびウエットグリップ性を備えたゴム架橋物を与えることのできるものとすることができる。
In the production method of the present invention, the conjugated diene is reacted by reacting the compound represented by the general formula (1) with the active terminus of the conjugated diene polymer having an active terminus obtained in the first step. System rubber can be modified to improve the affinity for silica and other fillers, and when silica and other fillers are blended, the dispersibility of silica and other fillers can be increased. And a rubber cross-linked product having wet grip properties.
上記一般式(1)中、mは1~30の整数であり、好ましくは1~20の整数、より好ましくは1~10の整数である。nは0~29の整数であり、好ましくは0~20の整数、より好ましくは0~10の整数である。また、m+nは3~30であり、好ましくは3~20、より好ましくは3~10である。
In the general formula (1), m is an integer of 1 to 30, preferably an integer of 1 to 20, more preferably an integer of 1 to 10. n is an integer of 0 to 29, preferably an integer of 0 to 20, and more preferably an integer of 0 to 10. M + n is 3 to 30, preferably 3 to 20, and more preferably 3 to 10.
上記一般式(1)中、X1は、保護基により保護された第1級アミノ基を含む保護アミノ基含有有機基(以下、単に「保護アミノ基含有有機基」とも言う。)である。保護アミノ基含有有機基としては、アミノ基に保護基が導入された構造であればよく、特に限定されないが、第1級アミノ基(すなわち、-NH2)の2つの水素原子を、アミノ基の保護基として作用する基で置換された構造を有する保護アミノ基を含有する基であることが好ましい。このような保護基としては、特に限定されないが、上述した第1工程で得られた活性末端を有する共役ジエン系重合体の活性末端に対して不活性な構造を導入できるものであることが好ましく、このような保護基としては、たとえば、ヒドロカルビル基またはシリル基などが挙げられ、シリル基が好ましい。また、保護基としては、上述した第1工程で得られた活性末端を有する共役ジエン系重合体の活性末端に対して不活性な構造を導入できるものであることに加え、酸や塩基を用いる方法や、加水分解反応などにより脱保護可能なものであることがより好ましい。そして、保護基が、脱保護可能なものである場合には、保護アミノ基含有有機基は、保護基が脱保護することで、第1級アミノ基または第2級アミノ基を含有するものとなり、これにより、主としてシリカなどの充填剤との親和性をより高めることができると考えられる。
In the general formula (1), X 1 is a protected amino group-containing organic group containing a primary amino group protected by a protecting group (hereinafter, also simply referred to as “protected amino group-containing organic group”). The protected amino group-containing organic group is not particularly limited as long as it has a structure in which a protective group is introduced into the amino group, and the two hydrogen atoms of the primary amino group (ie, —NH 2 ) It is preferably a group containing a protected amino group having a structure substituted with a group acting as a protecting group. Such a protecting group is not particularly limited, but is preferably one capable of introducing an inactive structure with respect to the active end of the conjugated diene polymer having an active end obtained in the first step. Examples of such a protecting group include a hydrocarbyl group or a silyl group, and a silyl group is preferable. Moreover, as a protecting group, in addition to being capable of introducing an inactive structure to the active end of the conjugated diene polymer having an active end obtained in the first step, an acid or a base is used. More preferably, it can be deprotected by a method or a hydrolysis reaction. When the protecting group is deprotectable, the protected amino group-containing organic group contains a primary amino group or a secondary amino group by deprotecting the protecting group. Thus, it is considered that the affinity with fillers such as silica can be further increased.
このような保護アミノ基含有有機基としては、たとえば、下記一般式(3)、下記一般式(4)、または下記一般式(5)で表される基などが好適に挙げられる。なお、上記一般式(1)中、mが2以上の場合、X1は複数存在することとなるが、複数の保護アミノ基含有有機基は、互いに同じであっても異なっていてもよい。
(上記一般式(3)中、R7~R10は、それぞれ独立して、炭素数1~6のアルキル基または炭素数6~12のアリール基であり、好ましくは炭素数1~4のアルキル基である。eは1~12の整数であり、好ましくは1~6の整数、より好ましくは1~4の整数である。fは1~12の整数であり、好ましくは1~6の整数、より好ましくは1~4の整数である。)
(上記一般式(4)中、R11~R16は、それぞれ独立して、炭素数1~6のアルキル基または炭素数6~12のアリール基であり、好ましくは炭素数1~4のアルキル基である。gは1~12の整数であり、好ましくは1~6の整数、より好ましくは1~4の整数である。)
(上記一般式(5)中、R17、R18は、それぞれ独立して、炭素数1~6のアルキル基または炭素数6~12のアリール基であり、好ましくは炭素数1~4のアルキル基である。hは1~12の整数であり、好ましくは1~6の整数、より好ましくは1~4の整数である。)
Suitable examples of such a protected amino group-containing organic group include groups represented by the following general formula (3), the following general formula (4), or the following general formula (5). In the general formula (1), when m is 2 or more, a plurality of X 1 are present, but the plurality of protected amino group-containing organic groups may be the same as or different from each other.
(In the general formula (3), R 7 to R 10 are each independently an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, preferably an alkyl group having 1 to 4 carbon atoms. E is an integer of 1 to 12, preferably an integer of 1 to 6, more preferably an integer of 1 to 4. f is an integer of 1 to 12, and preferably an integer of 1 to 6 More preferably, it is an integer of 1 to 4.)
(In the general formula (4), R 11 to R 16 are each independently an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, preferably an alkyl group having 1 to 4 carbon atoms. (G is an integer of 1 to 12, preferably an integer of 1 to 6, more preferably an integer of 1 to 4.)
(In the general formula (5), R 17 and R 18 are each independently an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, preferably an alkyl group having 1 to 4 carbon atoms. H is an integer of 1 to 12, preferably an integer of 1 to 6, more preferably an integer of 1 to 4.)
なお、上記一般式(3)で表される基中において、-SiR7R8-(CH2)f-SiR9R10-で表される基が、保護基として作用するものである。同様に、上記一般式(4)で表される基中において、-SiR11R12R13で表される基、および-SiR14R15R16で表される基が、保護基として作用するものであり、上記一般式(5)で表される基中において、R17で表される基、およびR18で表される基が、保護基として作用するものである。
In the group represented by the general formula (3), a group represented by —SiR 7 R 8 — (CH 2 ) f —SiR 9 R 10 — acts as a protecting group. Similarly, in the group represented by the general formula (4), a group represented by —SiR 11 R 12 R 13 and a group represented by —SiR 14 R 15 R 16 act as a protecting group. In the group represented by the general formula (5), the group represented by R 17 and the group represented by R 18 act as protective groups.
保護アミノ基含有有機基としては、保護基として良好に作用し、しかも、脱保護反応も良好に行えるという点より、保護基としてシリル基を有するものが好ましく、上記式(3)で表される基、および上記式(4)で表される基が好ましい。
As the protected amino group-containing organic group, those having a silyl group as the protecting group are preferable from the viewpoint that they function well as a protecting group and can also perform a deprotection reaction well, and are represented by the above formula (3). The group and the group represented by the above formula (4) are preferable.
保護アミノ基含有有機基を構成する保護アミノ基の具体例としては、ビス(トリメチルシリル)アミノ基、ビス(トリエチルシリル)アミノ基、ビス(トリイソプロピルシリル)アミノ基、ビス(トリフェニルシリル)アミノ基、ビス(ジメチルフェニルシリル)アミノ基、ビス(t-ブチルジメチルシリル)アミノ基、ビス(t-ブチルジフェニルシリル)アミノ基、2,2,5,5-テトラメチル-1,2,5-アザジシロリジン基、ビス(ジ-t-ブチルメチルシリル)アミノ基、ビス(ジ-t-ブチルイソブチルシリル)アミノ基などが挙げられる。
Specific examples of the protected amino group constituting the protected amino group-containing organic group include bis (trimethylsilyl) amino group, bis (triethylsilyl) amino group, bis (triisopropylsilyl) amino group, and bis (triphenylsilyl) amino group. Bis (dimethylphenylsilyl) amino group, bis (t-butyldimethylsilyl) amino group, bis (t-butyldiphenylsilyl) amino group, 2,2,5,5-tetramethyl-1,2,5-azadisilolidine Group, bis (di-t-butylmethylsilyl) amino group, bis (di-t-butylisobutylsilyl) amino group and the like.
上記一般式(1)中、R1、R3は、それぞれ独立して、1価炭化水素基、水素原子または水酸基であり、好ましくは1価炭化水素基である。1価炭化水素基としては、炭素数1~6のアルキル基または炭素数6~12のアリール基であることが好ましく、より好ましくは炭素数1~4のアルキル基であり、さらに好ましくはメチル基である。R2は、任意の有機基、水素原子または水酸基であり、任意の有機基としては、アルコキシ基含有有機基、エポキシ基含有有機基、または1価炭化水素基などである。なお、上記一般式(1)中、nが2以上の場合、R2は複数存在することとなるが、複数のR2は、互いに同じであっても異なっていてもよい。
In the general formula (1), R 1 and R 3 are each independently a monovalent hydrocarbon group, a hydrogen atom or a hydroxyl group, preferably a monovalent hydrocarbon group. The monovalent hydrocarbon group is preferably an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, more preferably an alkyl group having 1 to 4 carbon atoms, and further preferably a methyl group. It is. R 2 is an arbitrary organic group, a hydrogen atom or a hydroxyl group, and examples of the arbitrary organic group include an alkoxy group-containing organic group, an epoxy group-containing organic group, and a monovalent hydrocarbon group. Incidentally, in the general formula (1), when n is 2 or more, but so that the R 2 there are a plurality, the plurality of R 2 may be different and the same as each other.
また、上記一般式(1)で表される化合物としては、共役ジエン系ゴムの改質効果、具体的には、シリカなどの充填剤に対する親和性を改良し、シリカなどの充填剤を配合した際における、シリカなどの充填剤の分散性を高める効果が高く、これにより、得られるゴム架橋物を、低発熱性およびウエットグリップ性により優れたものとすることができるという点より、下記一般式(2)で表される化合物が好ましい。
(上記一般式(2)中、R1、R4~R6は、それぞれ独立して、1価炭化水素基、水素原子または水酸基であり、X1は、保護基により保護された第1級アミノ基を含む保護アミノ基含有有機基であり、X2は、アルコキシ基含有有機基またはエポキシ基含有有機基であり、mは1~29の整数、pは1~29の整数、qは0~28の整数であり、m+p+qは3~30である。)
Further, as the compound represented by the general formula (1), the modification effect of the conjugated diene rubber, specifically, the affinity for the filler such as silica is improved, and the filler such as silica is blended. At the time, the effect of enhancing the dispersibility of fillers such as silica is high, and thereby, the resulting rubber cross-linked product can be made more excellent in low exothermic property and wet grip property, from the following general formula The compound represented by (2) is preferred.
(In the general formula (2), R 1 , R 4 to R 6 are each independently a monovalent hydrocarbon group, a hydrogen atom or a hydroxyl group, and X 1 is a primary group protected by a protecting group. A protected amino group-containing organic group containing an amino group, X 2 is an alkoxy group-containing organic group or an epoxy group-containing organic group, m is an integer of 1 to 29, p is an integer of 1 to 29, and q is 0 (It is an integer of ~ 28, and m + p + q is 3 to 30.)
上記一般式(2)中、mは1~29の整数であり、好ましくは1~20の整数、より好ましくは1~10の整数である。pは1~29の整数であり、好ましくは1~20の整数、より好ましくは1~10の整数であり、qは0~28の整数であり、好ましくは0~20の整数、より好ましくは0~10の整数であり、特に好ましくは0である。また、m+p+qは3~30であり、好ましくは3~20、より好ましくは3~10である。
In the general formula (2), m is an integer of 1 to 29, preferably an integer of 1 to 20, and more preferably an integer of 1 to 10. p is an integer of 1 to 29, preferably an integer of 1 to 20, more preferably an integer of 1 to 10, and q is an integer of 0 to 28, preferably an integer of 0 to 20, more preferably It is an integer of 0 to 10, particularly preferably 0. Further, m + p + q is 3 to 30, preferably 3 to 20, and more preferably 3 to 10.
上記一般式(2)中、X1は、上記一般式(1)と同様であり、好ましい態様についても、上記一般式(1)と同様である。
In the above general formula (2), X 1 is the same as the above general formula (1), and the preferred embodiment is also the same as the above general formula (1).
また、上記一般式(2)中、X2は、アルコキシ基含有有機基またはエポキシ基含有有機基であり、アルコキシ基含有有機基であることが好ましい。なお、上記一般式(2)中、pが2以上の場合、X2は複数存在することとなるが、複数のX2は、互いに同じであっても異なっていてもよい。
Further, in the above general formula (2), X 2 is an alkoxy group-containing organic group or an epoxy group-containing organic group is preferably an alkoxy group-containing organic group. Incidentally, in the general formula (2), when p is 2 or more, but so that the X 2 there are a plurality, the plurality of X 2 may be different and the same as each other.
アルコキシ基含有有機基としては、アルコキシ基を含有する基であればよく、特に限定されないが、アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基などのアルコキシ基や、アルコキシシリル基などが挙げられるが、得られる変性共役ジエン系ゴムにおける、2分岐以上のカップリング率を向上させることができ、これにより、ウエットグリップ性および低発熱性をより向上させることができるという点より、アルコキシシリル基を含有するものが好ましい。なお、アルコキシ基含有有機基は、通常、活性末端を有する共役ジエン系重合体と結合する結合サイトとして作用すると考えられる。
The alkoxy group-containing organic group may be any group that contains an alkoxy group, and is not particularly limited. Examples of the alkoxy group include alkoxy groups such as a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, and a butoxy group, Examples include alkoxysilyl groups, but it is possible to improve the coupling ratio of two or more branches in the resulting modified conjugated diene rubber, thereby further improving wet grip and low heat build-up. From the standpoint, those containing an alkoxysilyl group are preferred. In addition, it is thought that an alkoxy group-containing organic group usually acts as a binding site that binds to a conjugated diene polymer having an active end.
アルコキシシリル基含有有機基としては、アルコキシシリル基を含有する基であればよく、特に限定されないが、アルコキシシリル基として、モノアルコキシシリル基、ジアルコキシシリル基、トリアルコキシシリル基のいずれを含有するものであってもよく、たとえば、下記一般式(6)で表される基が挙げられる。
上記一般式(6)中、R19は、それぞれ独立して、炭素数1~20のアルキル基であり、好ましくは炭素数1~10のアルキル基であり、R20は、水素原子、炭素数1~20のアルキル基、炭素数6~20のアリール基、炭素数6~20のアリロキシ基、またはハロゲン原子である。jは1~20の整数であり、好ましくは2~15の整数、より好ましくは3~10の整数であり、kは1~3の整数である。なお、kが2または3である場合、R19は、複数存在することとなるが、複数のR19は互いに同じであっても異なっていてもよい。同様に、kが1である場合、R20は、複数存在することとなるが、複数のR20は互いに同じであっても異なっていてもよい。
The alkoxysilyl group-containing organic group is not particularly limited as long as it is a group containing an alkoxysilyl group, and the alkoxysilyl group contains any of a monoalkoxysilyl group, a dialkoxysilyl group, or a trialkoxysilyl group. For example, a group represented by the following general formula (6) may be mentioned.
In the general formula (6), R 19 each independently represents an alkyl group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 10 carbon atoms, and R 20 represents a hydrogen atom or a carbon number. An alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an allyloxy group having 6 to 20 carbon atoms, or a halogen atom. j is an integer of 1 to 20, preferably an integer of 2 to 15, more preferably an integer of 3 to 10, and k is an integer of 1 to 3. Incidentally, when k is 2 or 3, R 19 is a presence of a plurality, the plurality of R 19 may be different be the same as each other. Similarly, when k is 1, R 20 is a presence of a plurality, the plurality of R 20 may be different be the same as each other.
アルコキシシリル基含有有機基に含まれるアルコキシシリル基の具体例としては、トリメトキシシリル基、トリエトキシシリル基などのトリアルコキシシリル基;ジメトキシメチルシリル基、ジエトキシメチルシリル基、ジメトキシエチルシリル基、ジエトキシエチルシリル基などのジアルコキシアルキルシリル基;メトキシジメチルシリル基、エトキシジメチルシリル基、メトキシジエチルシリル基、エトキシジエチルシリル基などのモノアルコキシジアルキル基;などが挙げられる。これらのなかでも、重合体用変性剤としての効果、たとえば、重合体用変性剤として用いた場合に、重合体と、シリカなどの充填剤との親和性を高めることができ、これにより各種特性の向上効果が高いという観点より、トリアルコキシシリル基が好ましく、トリメトキシシリル基がより好ましい。
Specific examples of the alkoxysilyl group contained in the alkoxysilyl group-containing organic group include a trialkoxysilyl group such as a trimethoxysilyl group and a triethoxysilyl group; a dimethoxymethylsilyl group, a diethoxymethylsilyl group, a dimethoxyethylsilyl group, Dialkoxyalkylsilyl groups such as diethoxyethylsilyl group; monoalkoxydialkyl groups such as methoxydimethylsilyl group, ethoxydimethylsilyl group, methoxydiethylsilyl group, ethoxydiethylsilyl group; and the like. Among these, when used as a polymer modifier, for example, when used as a polymer modifier, it is possible to increase the affinity between the polymer and a filler such as silica. The trialkoxysilyl group is preferable and the trimethoxysilyl group is more preferable from the viewpoint that the effect of improving the resistance is high.
また、エポキシ基含有有機基としては、エポキシ基を含有する有機基であればよく、特に限定されないが、2-グリシドキシエチル基、3-グリシドキシプロピル基、4-グリシドキシブチル基等のグリシドキシアルキル基;2-(3,4-エポキシシクロヘキシル)エチル基、3-(3,4-エポキシシクロヘキシル)プロピル基、2-(3,4-エポキシノルボルニル)エチル基、2-(3,4-エポキシ-3-メチルシクロヘキシル)-2-メチルエチル基等のエポキシシクロアルキルアルキル基;4-オキシラニルブチル基、8-オキシラニルオクチル基等のオキシラニルアルキル基;等が挙げられる。これらの中でも、グリシドキシアルキル基が好ましく、3-グリシドキシプロピル基が特に好ましい。
The epoxy group-containing organic group is not particularly limited as long as it is an organic group containing an epoxy group, but is not limited to 2-glycidoxyethyl group, 3-glycidoxypropyl group, 4-glycidoxybutyl group. A glycidoxyalkyl group such as 2- (3,4-epoxycyclohexyl) ethyl group, 3- (3,4-epoxycyclohexyl) propyl group, 2- (3,4-epoxynorbornyl) ethyl group, 2 -Epoxycycloalkylalkyl groups such as (3,4-epoxy-3-methylcyclohexyl) -2-methylethyl group; oxiranylalkyl groups such as 4-oxiranylbutyl group and 8-oxiranyloctyl group; Etc. Among these, a glycidoxyalkyl group is preferable, and a 3-glycidoxypropyl group is particularly preferable.
また、R1、R4~R6は、それぞれ独立して、1価炭化水素基、水素原子または水酸基であり、好ましくは1価炭化水素基である。1価炭化水素基としては、炭素数1~6のアルキル基または炭素数6~12のアリール基であることが好ましく、より好ましくは炭素数1~4のアルキル基であり、さらに好ましくはメチル基である。
R 1 and R 4 to R 6 are each independently a monovalent hydrocarbon group, a hydrogen atom or a hydroxyl group, preferably a monovalent hydrocarbon group. The monovalent hydrocarbon group is preferably an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, more preferably an alkyl group having 1 to 4 carbon atoms, and further preferably a methyl group. It is.
なお、上記一般式(2)で表される化合物中、保護アミノ基含有有機基と、アルコキシ基含有有機基および/またはエポキシ基含有有機基との含有割合は、特に限定されないが、「保護アミノ基含有有機基/(アルコキシ基含有有機基および/またはエポキシ基含有有機基)」のモル比率で、好ましくは0.1~10.0であり、より好ましくは0.2~5.0、さらに好ましくは0.25~4.0であり、特に好ましくは0.5~1.5である。保護アミノ基含有有機基と、アルコキシ基含有有機基および/またはエポキシ基含有有機基との含有割合を上記範囲とすることにより、得られるゴム架橋物のウエットグリップ性および低発熱性をより適切に高めることができる。
In the compound represented by the general formula (2), the content ratio of the protected amino group-containing organic group and the alkoxy group-containing organic group and / or the epoxy group-containing organic group is not particularly limited. The molar ratio of “group-containing organic group / (alkoxy group-containing organic group and / or epoxy group-containing organic group)” is preferably 0.1 to 10.0, more preferably 0.2 to 5.0, Preferably it is 0.25 to 4.0, and particularly preferably 0.5 to 1.5. By setting the content ratio of the protected amino group-containing organic group, the alkoxy group-containing organic group and / or the epoxy group-containing organic group to the above range, the wet grip property and low heat build-up property of the resulting rubber cross-linked product are more appropriately improved. Can be increased.
また、上記一般式(1)で表される化合物としては、互いに異なる構造を有する化合物が複数混合されたものを用いてもよい。すなわち、たとえば、m=2、m+n=4である化合物と、m=2、m+n=5である化合物が混合されたものを用いてもよいし、あるいは、m=2、m+n=4であり、X1が異なる2以上の化合物が混合されたものを用いてもよい。さらには、m=2、m+n=4であり、X1が異なる2以上の化合物と、m=2、m+n=5であり、X1が異なる2以上の化合物とが混合されたものを用いてもよい。
Moreover, as a compound represented by the said General formula (1), you may use what mixed multiple compounds which have a mutually different structure. That is, for example, a mixture of a compound with m = 2 and m + n = 4 and a compound with m = 2 and m + n = 5 may be used, or m = 2 and m + n = 4. A mixture of two or more compounds having different X 1 may be used. Furthermore, m = 2, m + n = 4, and two or more compounds having different X 1 and m = 2, m + n = 5, two or more compounds having different X 1 are mixed. Also good.
また、本発明の製造方法においては、第2工程における、上記一般式(1)で表される化合物の使用量は、上述した第1工程において用いた重合開始剤としての有機活性金属化合物中の金属原子1モルに対して、0.01~30モルの割合とすることが好ましく、0.05~5モルの割合とすることがより好ましく、0.1~3モルの割合とすることがさらに好ましい。上記一般式(1)で表される化合物の使用量を上記範囲とすることにより、第2工程により得られる変性共役ジエン系ゴム中において、変性共役ジエン系ゴムに取り込まれた上記一般式(1)で表される化合物の割合を適切なものとすることができ、これにより、ゴム架橋物とした場合に、ウエットグリップ性および低発熱性をより適切に向上させることができる。
Moreover, in the manufacturing method of this invention, the usage-amount of the compound represented by the said General formula (1) in a 2nd process is the organic active metal compound as a polymerization initiator used in the 1st process mentioned above. The ratio is preferably 0.01 to 30 moles, more preferably 0.05 to 5 moles, and further preferably 0.1 to 3 moles per mole of metal atoms. preferable. By making the usage-amount of the compound represented by the said General formula (1) into the said range, in the modified conjugated diene rubber obtained by a 2nd process, the said General formula (1) taken in by the modified conjugated diene rubber The ratio of the compound represented by (II) can be made appropriate, whereby the wet grip property and the low heat build-up can be improved more appropriately when a rubber cross-linked product is obtained.
本発明においては、変性共役ジエン系ゴムを製造する際に用いる変性剤として、上記一般式(1)に示すように、-Si-O-で表される繰り返し単位からなる環状の主鎖構造を有する化合物を用いるものである。本発明によれば、このような-Si-O-で表される繰り返し単位からなる環状の主鎖構造を有する化合物を用いることにより、変性剤により導入した変性構造の導入効果、すなわち、上述した保護アミノ基含有有機基による効果を十分なものとすることができるものである。そして、これにより、シリカなどの充填剤に対する親和性の向上効果をより十分なものとすることができ、その結果として、得られるゴム架橋物を、ウエットグリップ性および低発熱性に優れたものとすることができるものである。
In the present invention, as a modifier used when producing a modified conjugated diene rubber, a cyclic main chain structure composed of repeating units represented by —Si—O— as shown in the general formula (1) is used. The compound which has is used. According to the present invention, by using such a compound having a cyclic main chain structure composed of repeating units represented by —Si—O—, the effect of introducing a modified structure introduced by a modifier, ie, the above-described effect The effect of the protected amino group-containing organic group can be made sufficient. And thereby, the effect of improving the affinity for fillers such as silica can be made more satisfactory, and as a result, the obtained rubber cross-linked product is excellent in wet grip and low heat build-up. Is something that can be done.
本発明の製造方法の第2工程において、上述した第1工程で得られた活性末端を有する共役ジエン系重合体の活性末端に、上記一般式(1)で表される化合物を反応させる方法としては、特に限定されないが、上述した第1工程で得られた活性末端を有する共役ジエン系重合体と、上記一般式(1)で表される化合物とを、これらを溶解可能な溶媒中で、混合する方法などが挙げられる。この際に用いる溶媒としては、上述した共役ジエン系重合体の重合に用いる溶媒として例示したものなどを用いることができる。また、この際においては、上述した第1工程で得られた活性末端を有する共役ジエン系重合体を、その重合に用いた重合溶液のままの状態とし、ここに上記一般式(1)で表される化合物を添加する方法が簡便であり好ましい。また、この際においては、上記一般式(1)で表される化合物は、上述した重合に用いる不活性溶媒に溶解して重合系内に添加することが好ましく、その溶液濃度は、1~50重量%の範囲とすることが好ましい。第2工程における反応温度は、特に限定されないが、通常、0~120℃であり、反応時間は、特に限定されないが、通常、1分~1時間である。
In the second step of the production method of the present invention, as a method of reacting the compound represented by the general formula (1) with the active end of the conjugated diene polymer having the active end obtained in the first step described above. Is not particularly limited, but the conjugated diene polymer having an active end obtained in the first step described above and the compound represented by the general formula (1) in a solvent capable of dissolving them, The method of mixing etc. is mentioned. As the solvent used at this time, those exemplified as the solvent used for the polymerization of the conjugated diene polymer described above can be used. In this case, the conjugated diene polymer having an active end obtained in the first step described above is kept in the polymerization solution used for the polymerization, and is represented by the general formula (1). The method of adding the compound is simple and preferred. In this case, the compound represented by the general formula (1) is preferably dissolved in the inert solvent used for the polymerization and added to the polymerization system, and the solution concentration is 1 to 50. It is preferable to set it as the range of weight%. The reaction temperature in the second step is not particularly limited, but is usually 0 to 120 ° C., and the reaction time is not particularly limited, but is usually 1 minute to 1 hour.
活性末端を有する共役ジエン系重合体を含有する溶液に、上記一般式(1)で表される化合物を添加する時期は特に限定されないが、重合反応が完結しておらず、活性末端を有する共役ジエン系重合体を含有する溶液が単量体をも含有している状態、より具体的には、活性末端を有する共役ジエン系重合体を含有する溶液が、100ppm以上、より好ましくは300~50,000ppmの単量体を含有している状態で、この溶液に上記一般式(1)で表される化合物を添加することが望ましい。上記一般式(1)で表される化合物の添加をこのように行なうことにより、活性末端を有する共役ジエン系重合体と重合系中に含まれる不純物等との副反応を抑制して、反応を良好に制御することが可能となる。
The timing of adding the compound represented by the general formula (1) to the solution containing the conjugated diene polymer having an active terminal is not particularly limited, but the polymerization reaction is not completed and the conjugate having an active terminal is present. The state in which the solution containing the diene polymer also contains a monomer, more specifically, the solution containing the conjugated diene polymer having an active terminal is 100 ppm or more, more preferably 300 to 50. It is desirable to add the compound represented by the general formula (1) to this solution in a state containing 1,000 ppm of monomer. By adding the compound represented by the general formula (1) in this way, side reactions between the conjugated diene polymer having an active terminal and impurities contained in the polymerization system are suppressed, and the reaction is performed. It becomes possible to control well.
なお、活性末端を有する共役ジエン系重合体に、上記一般式(1)で表される化合物を反応させる前に、本発明の効果を阻害しない範囲で、共役ジエン系重合体の活性末端の一部を、従来から通常使用されているカップリング剤や変性剤などを重合系内に添加して、不活性化してもよい。
Before reacting the compound represented by the general formula (1) with the conjugated diene polymer having an active end, the active end of the conjugated diene polymer is not limited so long as the effect of the present invention is not inhibited. The part may be inactivated by adding a coupling agent, a modifier and the like conventionally used in the polymerization system.
活性末端を有する共役ジエン系重合体に、上記一般式(1)で表される化合物を反応させた後に、未反応の活性末端が残存している場合、メタノール、エタノール、イソプロパノール等のアルコールまたは水等の、重合停止剤を重合溶液に添加して、未反応の活性末端を失活させることが好ましい。
When the compound represented by the general formula (1) is reacted with a conjugated diene polymer having an active end, and an unreacted active end remains, an alcohol such as methanol, ethanol, isopropanol, or water It is preferable to deactivate the unreacted active terminal by adding a polymerization terminator or the like to the polymerization solution.
以上のようにして得られる変性共役ジエン系ゴムの溶液には、所望により、フェノール系安定剤、リン系安定剤、イオウ系安定剤などの老化防止剤を添加してもよい。老化防止剤の添加量は、その種類などに応じて適宜決定すればよい。さらに、所望により、伸展油を配合して、油展ゴムとしてもよい。伸展油としては、たとえば、パラフィン系、芳香族系及びナフテン系の石油系軟化剤、植物系軟化剤、ならびに脂肪酸等が挙げられる。石油系軟化剤を用いる場合には、IP346の方法(英国のTHE INSTITUTE PETROLEUMの検査方法)により抽出される多環芳香族の含有量が3%未満であることが好ましい。伸展油を使用する場合、その使用量は、変性共役ジエン系ゴム100重量部に対して、通常5~100重量部である。
An anti-aging agent such as a phenol-based stabilizer, a phosphorus-based stabilizer, or a sulfur-based stabilizer may be added to the modified conjugated diene rubber solution obtained as described above, if desired. What is necessary is just to determine suitably the addition amount of an anti-aging agent according to the kind etc. Furthermore, if desired, an extension oil may be blended to form an oil-extended rubber. Examples of the extender oil include paraffinic, aromatic and naphthenic petroleum softeners, plant softeners, and fatty acids. When using a petroleum softener, it is preferable that the content of polycyclic aromatics extracted by the method of IP346 (the inspection method of THE INSTITUTE PETROLEUM in the UK) is less than 3%. When the extender oil is used, the amount used is usually 5 to 100 parts by weight with respect to 100 parts by weight of the modified conjugated diene rubber.
そして、このようにして得られた変性反応後の変性共役ジエン系ゴムは、スチームストリッピングにより、溶媒を除去することにより、反応混合物から分離することで、固形状の変性共役ジエン系ゴムを得ることができる。また、この際においては、スチームストリッピングにより、上述したように、変性反応後の変性共役ジエン系ゴム中に導入された、上記一般式(1)で表される化合物由来の保護アミノ基含有有機基中の、保護基が加水分解により脱保護することで、第1級アミノ基または第2級アミノ基が生成するものと考えられる。
The modified conjugated diene rubber after the modification reaction thus obtained is separated from the reaction mixture by removing the solvent by steam stripping to obtain a solid modified conjugated diene rubber. be able to. In this case, the protected amino group-containing organic compound derived from the compound represented by the above general formula (1) introduced into the modified conjugated diene rubber after the modification reaction as described above by steam stripping. It is considered that a primary amino group or a secondary amino group is generated by deprotecting the protecting group in the group by hydrolysis.
本発明の製造方法により得られる変性共役ジエン系ゴムは、上記一般式(1)で表される化合物、またはカップリング剤を介した2分岐以上のカップリング構造を形成している構造体を含有していることが好ましく、変性共役ジエン系ゴムは、上記一般式(1)で表される化合物2分岐以上のカップリング構造を形成している構造体の含有割合(カップリング率)は、好ましくは5重量%以上、より好ましくは8重量%以上、さらに好ましくは10重量%以上である。2分岐以上のカップリング構造を形成している構造体の含有割合が上記範囲にあると、ウエットグリップ性および低発熱性の向上効果がより顕著なものとなるため、好ましい。
The modified conjugated diene rubber obtained by the production method of the present invention contains the compound represented by the general formula (1) or a structure forming a coupling structure having two or more branches via a coupling agent. The modified conjugated diene rubber preferably has a content ratio (coupling ratio) of the structure forming a coupling structure having two or more branches of the compound represented by the general formula (1). Is 5% by weight or more, more preferably 8% by weight or more, and still more preferably 10% by weight or more. When the content ratio of the structure forming a coupling structure having two or more branches is in the above-mentioned range, the effect of improving wet grip properties and low heat build-up becomes more remarkable, which is preferable.
本発明の製造方法により得られる変性共役ジエン系ゴムの重量平均分子量(Mw)は、特に限定されないが、ポリスチレン換算のゲルパーミエーションクロマトグラフィで測定される値として、通常、1,000~3,000,000、好ましくは10,000~2,000,000、より好ましくは100,000~1,500,000の範囲である。変性共役ジエン系ゴムの重量平均分子量を上記範囲とすることにより、変性共役ジエン系ゴムへのシリカの配合が容易となり、ゴム組成物は加工性に優れたものとなる。
The weight average molecular weight (Mw) of the modified conjugated diene rubber obtained by the production method of the present invention is not particularly limited, but is usually 1,000 to 3,000 as a value measured by gel permeation chromatography in terms of polystyrene. 1,000, preferably 10,000 to 2,000,000, more preferably 100,000 to 1,500,000. By setting the weight average molecular weight of the modified conjugated diene rubber within the above range, it is easy to add silica to the modified conjugated diene rubber, and the rubber composition has excellent processability.
また、本発明の製造方法により得られる変性共役ジエン系ゴムの重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表わされる分子量分布も、特に限定されないが、好ましくは1.0~5.0、特に好ましくは1.0~3.0である。変性共役ジエン系ゴムの分子量分布を上記範囲とすることにより、得られるゴム架橋物は低発熱性により優れたものとなる。
Further, the molecular weight distribution represented by the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the modified conjugated diene rubber obtained by the production method of the present invention is not particularly limited. Is 1.0 to 5.0, particularly preferably 1.0 to 3.0. By setting the molecular weight distribution of the modified conjugated diene rubber within the above range, the resulting rubber cross-linked product becomes more excellent due to low heat build-up.
また、本発明の製造方法により得られる変性共役ジエン系ゴムのムーニー粘度(ML1+4,100℃)も、特に限定されないが、通常、20~200、好ましくは30~150の範囲である。変性共役ジエン系ゴムのムーニー粘度を上記範囲とすることにより、ゴム組成物の加工性が優れたものとなる。なお、変性共役ジエン系ゴムを油展ゴムとする場合は、その油展ゴムのムーニー粘度を上記の範囲とすることが好ましい。
The Mooney viscosity (ML 1 + 4, 100 ° C.) of the modified conjugated diene rubber obtained by the production method of the present invention is also not particularly limited, but is usually in the range of 20 to 200, preferably 30 to 150. By setting the Mooney viscosity of the modified conjugated diene rubber to the above range, the processability of the rubber composition becomes excellent. When the modified conjugated diene rubber is an oil-extended rubber, the Mooney viscosity of the oil-extended rubber is preferably in the above range.
このようにして得られた変性共役ジエン系ゴムは、充填剤および架橋剤などの配合剤を添加した上で、種々の用途に好適に用いることができる。特に、充填剤としてシリカを配合した場合に、ウエットグリップ性および低発熱性に優れたゴム架橋物を得るために好適に用いられるゴム組成物を与える。
The modified conjugated diene rubber thus obtained can be suitably used for various applications after adding compounding agents such as a filler and a crosslinking agent. In particular, when silica is blended as a filler, a rubber composition suitably used for obtaining a crosslinked rubber product having excellent wet grip properties and low heat build-up properties is provided.
<ゴム組成物>
本発明のゴム組成物は、上述した本発明の製造方法により得られる変性共役ジエン系ゴムを含むゴム成分100重量部に対して、シリカ10~200重量部を含有してなる組成物である。 <Rubber composition>
The rubber composition of the present invention is a composition comprising 10 to 200 parts by weight of silica with respect to 100 parts by weight of a rubber component containing the modified conjugated diene rubber obtained by the production method of the present invention described above.
本発明のゴム組成物は、上述した本発明の製造方法により得られる変性共役ジエン系ゴムを含むゴム成分100重量部に対して、シリカ10~200重量部を含有してなる組成物である。 <Rubber composition>
The rubber composition of the present invention is a composition comprising 10 to 200 parts by weight of silica with respect to 100 parts by weight of a rubber component containing the modified conjugated diene rubber obtained by the production method of the present invention described above.
本発明で用いるシリカとしては、たとえば、乾式法ホワイトカーボン、湿式法ホワイトカーボン、コロイダルシリカ、沈降シリカなどが挙げられる。これらの中でも、含水ケイ酸を主成分とする湿式法ホワイトカーボンが好ましい。また、カーボンブラック表面にシリカを担持させたカーボン-シリカデュアル・フェイズ・フィラーを用いてもよい。これらのシリカは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。用いるシリカの窒素吸着比表面積(ASTM D3037-81に準じBET法で測定される)は、好ましくは50~300m2/g、より好ましくは80~220m2/g、特に好ましくは100~170m2/gである。また、シリカのpHは、5~10であることが好ましい。
Examples of the silica used in the present invention include dry method white carbon, wet method white carbon, colloidal silica, and precipitated silica. Among these, wet method white carbon mainly containing hydrous silicic acid is preferable. Alternatively, a carbon-silica dual phase filler in which silica is supported on the carbon black surface may be used. These silicas can be used alone or in combination of two or more. Is (measured by the BET method according to ASTM D3037-81) nitrogen adsorption specific surface area of silica used is preferably 50 ~ 300m 2 / g, more preferably 80 ~ 220m 2 / g, particularly preferably 100 ~ 170m 2 / g. The pH of silica is preferably 5-10.
本発明のゴム組成物におけるシリカの配合量は、ゴム組成物中のゴム成分100重量部に対して、10~200重量部であり、好ましくは30~150重量部、より好ましくは50~100重量部である。シリカの配合量を上記範囲とすることにより、ゴム組成物の加工性が優れたものとなり、得られるゴム架橋物のウエットグリップ性および低発熱性が優れたものとなる。
The compounding amount of silica in the rubber composition of the present invention is 10 to 200 parts by weight, preferably 30 to 150 parts by weight, more preferably 50 to 100 parts by weight with respect to 100 parts by weight of the rubber component in the rubber composition. Part. By setting the blending amount of silica in the above range, the processability of the rubber composition becomes excellent, and the resulting rubber cross-linked product has excellent wet grip properties and low exothermic properties.
本発明のゴム組成物には、低発熱性をさらに改良するという観点より、さらにシランカップリング剤を配合してもよい。シランカップリング剤としては、たとえば、ビニルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、3-オクタチオ-1-プロピル-トリエトキシシラン、ビス(3-(トリエトキシシリル)プロピル)ジスルフィド、ビス(3-(トリエトキシシリル)プロル)テトラスルフィド、γ-トリメトキシシリルプロピルジメチルチオカルバミルテトラスルフィド、およびγ-トリメトキシシリルプロピルベンゾチアジルテトラスルフィドなどを挙げることができる。これらのシランカップリング剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。シランカップリング剤の配合量は、シリカ100重量部に対して、好ましくは0.1~30重量部、より好ましくは1~15重量部である。
The rubber composition of the present invention may further contain a silane coupling agent from the viewpoint of further improving the low heat build-up. Examples of the silane coupling agent include vinyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane, 3-octathio- 1-propyl-triethoxysilane, bis (3- (triethoxysilyl) propyl) disulfide, bis (3- (triethoxysilyl) prol) tetrasulfide, γ-trimethoxysilylpropyldimethylthiocarbamyl tetrasulfide, and γ -Trimethoxysilylpropylbenzothiazyl tetrasulfide and the like. These silane coupling agents can be used alone or in combination of two or more. The amount of the silane coupling agent is preferably 0.1 to 30 parts by weight, more preferably 1 to 15 parts by weight with respect to 100 parts by weight of silica.
また、本発明のゴム組成物には、さらに、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、およびグラファイトなどのカーボンブラックを配合してもよい。これらのなかでも、ファーネスブラックが好ましい。これらのカーボンブラックは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。カーボンブラックの配合量は、ゴム組成物中のゴム成分100重量部に対して、通常、120重量部以下である。
Further, the rubber composition of the present invention may further contain carbon black such as furnace black, acetylene black, thermal black, channel black, and graphite. Among these, furnace black is preferable. These carbon blacks can be used alone or in combination of two or more. The compounding amount of carbon black is usually 120 parts by weight or less with respect to 100 parts by weight of the rubber component in the rubber composition.
なお、本発明の変性共役ジエン系ゴムを含むゴム成分に、シリカを添加する方法としては特に限定されず、固形のゴム成分に対して添加して混練する方法(乾式混練法)や変性共役ジエン系ゴムを含む溶液に対して添加して凝固・乾燥させる方法(湿式混練法)などを適用することができる。
The method of adding silica to the rubber component containing the modified conjugated diene rubber of the present invention is not particularly limited, and a method of adding and kneading a solid rubber component (dry kneading method) or a modified conjugated diene A method (wet kneading method) that is added to a solution containing a rubber and solidified and dried can be applied.
また、本発明のゴム組成物は、架橋剤をさらに含有していることが好ましい。架橋剤としては、たとえば、硫黄、ハロゲン化硫黄などの含硫黄化合物、有機過酸化物、キノンジオキシム類、有機多価アミン化合物、メチロール基を有するアルキルフェノール樹脂などが挙げられる。これらの中でも、硫黄が好ましく使用される。架橋剤の配合量は、ゴム組成物中のゴム成分100重量部に対して、好ましくは0.1~15重量部、より好ましくは0.5~5重量部、特に好ましくは1~4重量部である。
The rubber composition of the present invention preferably further contains a cross-linking agent. Examples of the crosslinking agent include sulfur-containing compounds such as sulfur and sulfur halides, organic peroxides, quinonedioximes, organic polyvalent amine compounds, and alkylphenol resins having a methylol group. Among these, sulfur is preferably used. The amount of the crosslinking agent is preferably 0.1 to 15 parts by weight, more preferably 0.5 to 5 parts by weight, and particularly preferably 1 to 4 parts by weight with respect to 100 parts by weight of the rubber component in the rubber composition. It is.
さらに、本発明のゴム組成物には、上記成分以外に、常法に従って、架橋促進剤、架橋活性化剤、老化防止剤、充填剤(上記シリカおよびカーボンブラックを除く)、活性剤、プロセス油、可塑剤、滑剤、粘着付与剤などの配合剤をそれぞれ必要量配合できる。
Further, in addition to the above components, the rubber composition of the present invention includes a crosslinking accelerator, a crosslinking activator, an anti-aging agent, a filler (excluding silica and carbon black), an activator, and a process oil in accordance with conventional methods. , Plasticizers, lubricants, tackifiers and the like can be blended in the required amounts.
架橋剤として、硫黄または含硫黄化合物を用いる場合には、架橋促進剤および架橋活性化剤を併用することが好ましい。架橋促進剤としては、たとえば、スルフェンアミド系架橋促進剤;グアニジン系架橋促進剤;チオウレア系架橋促進剤;チアゾール系架橋促進剤;チウラム系架橋促進剤;ジチオカルバミン酸系架橋促進剤;キサントゲン酸系架橋促進剤;などが挙げられる。これらのなかでも、スルフェンアミド系架橋促進剤を含むものが好ましい。これらの架橋促進剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いられる。架橋促進剤の配合量は、ゴム組成物中のゴム成分100重量部に対して、好ましくは0.1~15重量部、より好ましくは0.5~5重量部、特に好ましくは1~4重量部である。
When sulfur or a sulfur-containing compound is used as the crosslinking agent, it is preferable to use a crosslinking accelerator and a crosslinking activator in combination. Examples of the crosslinking accelerator include sulfenamide-based crosslinking accelerators; guanidine-based crosslinking accelerators; thiourea-based crosslinking accelerators; thiazole-based crosslinking accelerators; thiuram-based crosslinking accelerators; dithiocarbamic acid-based crosslinking accelerators; A crosslinking accelerator; and the like. Among these, those containing a sulfenamide-based crosslinking accelerator are preferable. These crosslinking accelerators are used alone or in combination of two or more. The amount of the crosslinking accelerator is preferably 0.1 to 15 parts by weight, more preferably 0.5 to 5 parts by weight, and particularly preferably 1 to 4 parts by weight with respect to 100 parts by weight of the rubber component in the rubber composition. Part.
架橋活性化剤としては、たとえば、ステアリン酸などの高級脂肪酸;酸化亜鉛;などを挙げることができる。これらの架橋活性化剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いられる。架橋活性化剤の配合量は、ゴム組成物中のゴム成分100重量部に対して、好ましくは0.05~20重量部、特に好ましくは0.5~15重量部である。
Examples of the crosslinking activator include higher fatty acids such as stearic acid; zinc oxide. These crosslinking activators are used alone or in combination of two or more. The amount of the crosslinking activator is preferably 0.05 to 20 parts by weight, particularly preferably 0.5 to 15 parts by weight based on 100 parts by weight of the rubber component in the rubber composition.
また、本発明のゴム組成物には、上述した本発明の製造方法によって得られる変性共役ジエン系ゴム以外のその他のゴムを配合してもよい。その他のゴムとしては、たとえば、天然ゴム、ポリイソプレンゴム、乳化重合スチレン-ブタジエン共重合ゴム、溶液重合スチレン-ブタジエン共重合ゴム、ポリブタジエンゴム(高シス-BR、低シスBRであってもよい。また、1,2-ポリブタジエン重合体からなる結晶繊維を含むポリブタジエンゴムであってもよい。)、スチレン-イソプレン共重合ゴム、ブタジエン-イソプレン共重合ゴム、スチレン-イソプレン-ブタジエン共重合ゴム、アクリロニトリル-ブタジエン共重合ゴム、およびアクリロニトリル-スチレン-ブタジエン共重合ゴムなどのうち、上述した変性共役ジエン系ゴム以外のものをいう。これらのなかでも、天然ゴム、ポリイソプレンゴム、ポリブタジエンゴム、および溶液重合スチレン-ブタジエン共重合ゴムが好ましい。これらのゴムは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。
Further, the rubber composition of the present invention may be blended with other rubber other than the modified conjugated diene rubber obtained by the production method of the present invention described above. Examples of other rubbers include natural rubber, polyisoprene rubber, emulsion polymerization styrene-butadiene copolymer rubber, solution polymerization styrene-butadiene copolymer rubber, and polybutadiene rubber (high cis-BR and low cis BR). Further, it may be a polybutadiene rubber containing crystal fibers made of 1,2-polybutadiene polymer.), Styrene-isoprene copolymer rubber, butadiene-isoprene copolymer rubber, styrene-isoprene-butadiene copolymer rubber, acrylonitrile- Of butadiene copolymer rubber, acrylonitrile-styrene-butadiene copolymer rubber, etc., those other than the above-mentioned modified conjugated diene rubber. Of these, natural rubber, polyisoprene rubber, polybutadiene rubber, and solution-polymerized styrene-butadiene copolymer rubber are preferable. These rubbers can be used alone or in combination of two or more.
本発明のゴム組成物において、本発明の製造方法により得られる変性共役ジエン系ゴムは、ゴム組成物中のゴム成分の10~100重量%を占めることが好ましく、50~100重量%を占めることが特に好ましい。このような割合で、本発明の製造方法により得られる変性共役ジエン系ゴムをゴム成分中に含めることにより、低発熱性およびウエットグリップ性に優れたゴム架橋物を得ることができる。
In the rubber composition of the present invention, the modified conjugated diene rubber obtained by the production method of the present invention preferably occupies 10 to 100% by weight of the rubber component in the rubber composition, and occupies 50 to 100% by weight. Is particularly preferred. By including the modified conjugated diene rubber obtained by the production method of the present invention in the rubber component at such a ratio, it is possible to obtain a crosslinked rubber product having low heat build-up and excellent wet grip properties.
本発明のゴム組成物を得るためには、常法に従って各成分を混練すればよく、たとえば、架橋剤や架橋促進剤などの熱に不安定な成分を除く成分と変性共役ジエン系ゴムとを混練後、その混練物に架橋剤や架橋促進剤などの熱に不安定な成分を混合して目的の組成物を得ることができる。熱に不安定な成分を除く成分と変性共役ジエン系ゴムとの混練温度は、好ましくは80~200℃、より好ましくは120~180℃であり、その混練時間は、好ましくは30秒~30分である。また、その混練物と熱に不安定な成分との混合は、通常100℃以下、好ましくは80℃以下まで冷却した後に行われる。
In order to obtain the rubber composition of the present invention, each component may be kneaded according to a conventional method. For example, a component excluding a thermally unstable component such as a crosslinking agent or a crosslinking accelerator and a modified conjugated diene rubber are used. After kneading, a heat-unstable component such as a crosslinking agent or a crosslinking accelerator can be mixed with the kneaded product to obtain a desired composition. The kneading temperature of the component excluding the thermally unstable component and the modified conjugated diene rubber is preferably 80 to 200 ° C., more preferably 120 to 180 ° C., and the kneading time is preferably 30 seconds to 30 minutes. It is. The kneaded product and the thermally unstable component are usually mixed after cooling to 100 ° C. or lower, preferably 80 ° C. or lower.
<ゴム架橋物>
本発明のゴム架橋物は、上述した本発明のゴム組成物を架橋してなるものである。
本発明のゴム架橋物は、本発明のゴム組成物を用い、たとえば、所望の形状に対応した成形機、たとえば、押出機、射出成形機、圧縮機、ロールなどにより成形を行い、加熱することにより架橋反応を行い、架橋物として形状を固定化することにより製造することができる。この場合においては、予め成形した後に架橋しても、成形と同時に架橋を行ってもよい。成形温度は、通常、10~200℃、好ましくは25~120℃である。架橋温度は、通常、100~200℃、好ましくは130~190℃であり、架橋時間は、通常、1分~24時間、好ましくは2分~12時間、特に好ましくは3分~6時間である。 <Rubber cross-linked product>
The rubber cross-linked product of the present invention is obtained by cross-linking the rubber composition of the present invention described above.
The rubber cross-linked product of the present invention uses the rubber composition of the present invention, for example, is molded by a molding machine corresponding to a desired shape, for example, an extruder, an injection molding machine, a compressor, a roll, and heated. Can be produced by carrying out a crosslinking reaction and fixing the shape as a crosslinked product. In this case, crosslinking may be performed after molding in advance, or crosslinking may be performed simultaneously with molding. The molding temperature is usually 10 to 200 ° C, preferably 25 to 120 ° C. The crosslinking temperature is usually 100 to 200 ° C., preferably 130 to 190 ° C., and the crosslinking time is usually 1 minute to 24 hours, preferably 2 minutes to 12 hours, particularly preferably 3 minutes to 6 hours. .
本発明のゴム架橋物は、上述した本発明のゴム組成物を架橋してなるものである。
本発明のゴム架橋物は、本発明のゴム組成物を用い、たとえば、所望の形状に対応した成形機、たとえば、押出機、射出成形機、圧縮機、ロールなどにより成形を行い、加熱することにより架橋反応を行い、架橋物として形状を固定化することにより製造することができる。この場合においては、予め成形した後に架橋しても、成形と同時に架橋を行ってもよい。成形温度は、通常、10~200℃、好ましくは25~120℃である。架橋温度は、通常、100~200℃、好ましくは130~190℃であり、架橋時間は、通常、1分~24時間、好ましくは2分~12時間、特に好ましくは3分~6時間である。 <Rubber cross-linked product>
The rubber cross-linked product of the present invention is obtained by cross-linking the rubber composition of the present invention described above.
The rubber cross-linked product of the present invention uses the rubber composition of the present invention, for example, is molded by a molding machine corresponding to a desired shape, for example, an extruder, an injection molding machine, a compressor, a roll, and heated. Can be produced by carrying out a crosslinking reaction and fixing the shape as a crosslinked product. In this case, crosslinking may be performed after molding in advance, or crosslinking may be performed simultaneously with molding. The molding temperature is usually 10 to 200 ° C, preferably 25 to 120 ° C. The crosslinking temperature is usually 100 to 200 ° C., preferably 130 to 190 ° C., and the crosslinking time is usually 1 minute to 24 hours, preferably 2 minutes to 12 hours, particularly preferably 3 minutes to 6 hours. .
また、ゴム架橋物の形状、大きさなどによっては、表面が架橋していても内部まで十分に架橋していない場合があるので、さらに加熱して二次架橋を行ってもよい。
In addition, depending on the shape and size of the rubber cross-linked product, even if the surface is cross-linked, it may not be sufficiently cross-linked to the inside. Therefore, secondary cross-linking may be performed by heating.
加熱方法としては、プレス加熱、スチーム加熱、オーブン加熱、熱風加熱などのゴムの架橋に用いられる一般的な方法を適宜選択すればよい。
As a heating method, a general method used for crosslinking of rubber such as press heating, steam heating, oven heating, hot air heating, etc. may be appropriately selected.
このようにして得られる本発明のゴム架橋物は、上述した本発明の製造方法により得られる変性共役ジエン系ゴムを用いて得られるものであるため、ウエットグリップ性および低発熱性に優れたものである。特に、本発明の製造方法により得られる変性共役ジエン系ゴムは、変性剤として、上記一般式(1)で表される化合物を用いることにより得られたものであるため、上述したように、シリカなどの充填剤に対する親和性が高く、しかも、シリカなどの充填剤を良好に分散させることができるものである。したがって、このような本発明の製造方法により得られる変性共役ジエン系ゴムを用いて得られる、本発明のゴム架橋物は、ウエットグリップ性および低発熱性に優れたものとなる。
The rubber cross-linked product of the present invention thus obtained is obtained by using the modified conjugated diene rubber obtained by the above-described production method of the present invention, and therefore has excellent wet grip properties and low heat build-up properties. It is. In particular, the modified conjugated diene rubber obtained by the production method of the present invention is obtained by using the compound represented by the above general formula (1) as a modifier. In addition, it has a high affinity for fillers such as silica, and it can disperse fillers such as silica well. Therefore, the rubber cross-linked product of the present invention obtained by using the modified conjugated diene rubber obtained by the production method of the present invention has excellent wet grip properties and low heat build-up properties.
そして、本発明のゴム架橋物は、このような特性を活かし、たとえば、タイヤにおいて、キャップトレッド、ベーストレッド、カーカス、サイドウォール、ビード部などのタイヤ各部位の材料;ホース、ベルト、マット、防振ゴム、その他の各種工業用品の材料;樹脂の耐衝撃性改良剤;樹脂フィルム緩衝剤;靴底;ゴム靴;ゴルフボール;玩具;などの各種用途に用いることができる。とりわけ、本発明のゴム架橋物は、ウエットグリップ性および低発熱性に優れることから、タイヤの材料、特に低燃費タイヤの材料として好適に用いることができ、トレッド用途に最適である。
The rubber cross-linked product of the present invention makes use of such characteristics, and for example, in tires, materials for tire parts such as cap treads, base treads, carcass, sidewalls and bead parts; hoses, belts, mats, It can be used in various applications such as vibration rubber and other various industrial article materials; resin impact resistance improvers; resin film buffers; shoe soles; rubber shoes; golf balls; In particular, since the rubber cross-linked product of the present invention is excellent in wet grip properties and low heat build-up properties, it can be suitably used as a tire material, particularly a low fuel consumption tire material, and is optimal for tread applications.
以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。なお、以下において、「部」は、特に断りのない限り重量基準である。また、試験および評価は下記に従った。
Hereinafter, the present invention will be described based on more detailed examples, but the present invention is not limited to these examples. In the following, “part” is based on weight unless otherwise specified. Moreover, the test and evaluation followed the following.
〔変性共役ジエン系ゴムの分子量、カップリング率〕
ゴムの分子量は、ゲルパーミエーションクロマトグラフィによりポリスチレン換算分子量として求めた。具体的な測定条件は、以下のとおりとした。
測定器:高速液体クロマトグラフ(東ソー社製、商品名「HLC-8220」)
カラム:東ソー社製、商品名「GMH-HR-H」を二本直列に連結した。
検出器:示差屈折計(東ソー社製、商品名「RI-8220」)
溶離液:テトラヒドロフラン
カラム温度:40℃
カップリング率については、得られたチャートより、全溶出面積に対する、分子量の最も小さい重合体に由来するピークが示すピークトップ分子量の1.9倍以上のピークトップ分子量を有するピーク部分の面積比を、変性共役ジエン系ゴムの2分岐以上のカップリング率(2分岐以上の分岐構造体の含有割合)とした。 [Molecular weight and coupling rate of modified conjugated diene rubber]
The molecular weight of the rubber was determined as a molecular weight in terms of polystyrene by gel permeation chromatography. Specific measurement conditions were as follows.
Measuring instrument: High-performance liquid chromatograph (trade name “HLC-8220” manufactured by Tosoh Corporation)
Column: manufactured by Tosoh Corporation, two product names “GMH-HR-H” were connected in series.
Detector: differential refractometer (trade name “RI-8220” manufactured by Tosoh Corporation)
Eluent: Tetrahydrofuran Column temperature: 40 ° C
For the coupling rate, the area ratio of the peak portion having a peak top molecular weight of 1.9 times or more of the peak top molecular weight indicated by the peak derived from the polymer having the smallest molecular weight relative to the total elution area is obtained from the obtained chart. The coupling rate of the branched conjugated diene rubber was 2 or more branches (content ratio of 2 or more branched structures).
ゴムの分子量は、ゲルパーミエーションクロマトグラフィによりポリスチレン換算分子量として求めた。具体的な測定条件は、以下のとおりとした。
測定器:高速液体クロマトグラフ(東ソー社製、商品名「HLC-8220」)
カラム:東ソー社製、商品名「GMH-HR-H」を二本直列に連結した。
検出器:示差屈折計(東ソー社製、商品名「RI-8220」)
溶離液:テトラヒドロフラン
カラム温度:40℃
カップリング率については、得られたチャートより、全溶出面積に対する、分子量の最も小さい重合体に由来するピークが示すピークトップ分子量の1.9倍以上のピークトップ分子量を有するピーク部分の面積比を、変性共役ジエン系ゴムの2分岐以上のカップリング率(2分岐以上の分岐構造体の含有割合)とした。 [Molecular weight and coupling rate of modified conjugated diene rubber]
The molecular weight of the rubber was determined as a molecular weight in terms of polystyrene by gel permeation chromatography. Specific measurement conditions were as follows.
Measuring instrument: High-performance liquid chromatograph (trade name “HLC-8220” manufactured by Tosoh Corporation)
Column: manufactured by Tosoh Corporation, two product names “GMH-HR-H” were connected in series.
Detector: differential refractometer (trade name “RI-8220” manufactured by Tosoh Corporation)
Eluent: Tetrahydrofuran Column temperature: 40 ° C
For the coupling rate, the area ratio of the peak portion having a peak top molecular weight of 1.9 times or more of the peak top molecular weight indicated by the peak derived from the polymer having the smallest molecular weight relative to the total elution area is obtained from the obtained chart. The coupling rate of the branched conjugated diene rubber was 2 or more branches (content ratio of 2 or more branched structures).
〔低発熱性〕
長さ50mm、幅12.7mm、厚さ2mmとした試験片について、粘弾性測定装置(レオメトリックス社製、製品名「ARES」)を用い、動的歪み2.5%、10Hzの条件で60℃におけるtanδを測定した。このtanδの値については、比較例1の測定値を100とする指数で示した。この指数が大きいものほど、低発熱性に優れる。 [Low heat generation]
For a test piece having a length of 50 mm, a width of 12.7 mm, and a thickness of 2 mm, a viscoelasticity measuring device (manufactured by Rheometrics, product name “ARES”) is used, and the dynamic strain is 2.5% and 10 Hz. Tan δ at 0 ° C. was measured. The value of tan δ is indicated by an index with the measured value of Comparative Example 1 being 100. The larger this index, the better the low heat buildup.
長さ50mm、幅12.7mm、厚さ2mmとした試験片について、粘弾性測定装置(レオメトリックス社製、製品名「ARES」)を用い、動的歪み2.5%、10Hzの条件で60℃におけるtanδを測定した。このtanδの値については、比較例1の測定値を100とする指数で示した。この指数が大きいものほど、低発熱性に優れる。 [Low heat generation]
For a test piece having a length of 50 mm, a width of 12.7 mm, and a thickness of 2 mm, a viscoelasticity measuring device (manufactured by Rheometrics, product name “ARES”) is used, and the dynamic strain is 2.5% and 10 Hz. Tan δ at 0 ° C. was measured. The value of tan δ is indicated by an index with the measured value of Comparative Example 1 being 100. The larger this index, the better the low heat buildup.
〔ウエットグリップ性〕
長さ50mm、幅12.7mm、厚さ2mmとした試験片について、粘弾性測定装置(レオメトリックス社製、製品名「ARES」)を用い、動的歪み0.5%、10Hzの条件で0℃におけるtanδを測定した。このtanδの値については、比較例1の測定値を100とする指数で示した。この指数が大きいものほど、ウエットグリップ性に優れる。 [Wet grip]
For a test piece having a length of 50 mm, a width of 12.7 mm, and a thickness of 2 mm, a viscoelasticity measuring device (manufactured by Rheometrics, product name “ARES”) was used, and the dynamic strain was 0.5% and 10 Hz. Tan δ at 0 ° C. was measured. The value of tan δ is indicated by an index with the measured value of Comparative Example 1 being 100. The larger this index, the better the wet grip.
長さ50mm、幅12.7mm、厚さ2mmとした試験片について、粘弾性測定装置(レオメトリックス社製、製品名「ARES」)を用い、動的歪み0.5%、10Hzの条件で0℃におけるtanδを測定した。このtanδの値については、比較例1の測定値を100とする指数で示した。この指数が大きいものほど、ウエットグリップ性に優れる。 [Wet grip]
For a test piece having a length of 50 mm, a width of 12.7 mm, and a thickness of 2 mm, a viscoelasticity measuring device (manufactured by Rheometrics, product name “ARES”) was used, and the dynamic strain was 0.5% and 10 Hz. Tan δ at 0 ° C. was measured. The value of tan δ is indicated by an index with the measured value of Comparative Example 1 being 100. The larger this index, the better the wet grip.
〔実施例1〕
〔変性剤1の製造〕
反応器に下記式(7)で表されるメチルハイドロジェンシクロシロキサン31.8gを仕込み、窒素流通下で攪拌しながら40℃まで加温した。
次いで、白金-1,3-ジビニル-1,3-ジメチルジシロキサン錯体のトルエン溶液(Pt濃度0.17wt%)を1.3g添加し、1-アリル-2,2’,5,5’-テトラメチル-(1-アザ-2,5-ジシラシクロペンタン)52.8gを反応温度40~75℃に保つように滴下した。滴下終了後に70~75℃で攪拌を1時間継続した後、反応液を0.5g採取し、アルカリ分解ガス発生法(残存したSi-H基をKOHのエタノール/水溶液によって分解し、発生した水素ガスの体積から反応率を計算する)により反応率が約50%であることを確認した。次に、5-ヘキセニルトリメトキシシラン74.8gを反応温度70~80℃に保つように滴下した。滴下終了後、白金-1,3-ジビニル-1,3-ジメチルジシロキサン錯体のトルエン溶液(Pt濃度0.17wt%)を0.4g添加し、80℃で攪拌を1時間継続した。反応液を0.5g採取し、アルカリ分解ガス発生法により反応が完結したことを確認した。反応液を減圧下で155℃に加熱して3時間低沸分を溜去したのち、下記式(8)で表される変性剤1を134.3g得た。なお、下記式(8)で表される構造は1H-NMRによっても確認された。そして、得られた変性剤1について、25℃においてウベローデ型粘度管を使用してJIS-Z-8803に沿って粘度を測定したところ、230mm2/sであった。
[Example 1]
[Production of denaturant 1]
The reactor was charged with 31.8 g of methylhydrogencyclosiloxane represented by the following formula (7) and heated to 40 ° C. with stirring under a nitrogen stream.
Next, 1.3 g of a toluene solution of platinum-1,3-divinyl-1,3-dimethyldisiloxane complex (Pt concentration 0.17 wt%) was added, and 1-allyl-2,2 ′, 5,5′- 52.8 g of tetramethyl- (1-aza-2,5-disilacyclopentane) was added dropwise so as to keep the reaction temperature at 40 to 75 ° C. After completion of the dropping, stirring was continued at 70 to 75 ° C. for 1 hour, and then 0.5 g of the reaction solution was sampled, and an alkali decomposition gas generation method (remaining Si—H group was decomposed with KOH ethanol / water solution to generate hydrogen generated). The reaction rate was confirmed to be about 50% by calculating the reaction rate from the gas volume). Next, 74.8 g of 5-hexenyltrimethoxysilane was added dropwise so as to keep the reaction temperature at 70 to 80 ° C. After completion of dropping, 0.4 g of a toluene solution of platinum-1,3-divinyl-1,3-dimethyldisiloxane complex (Pt concentration 0.17 wt%) was added, and stirring was continued at 80 ° C. for 1 hour. 0.5 g of the reaction solution was sampled and it was confirmed that the reaction was completed by an alkali decomposition gas generation method. The reaction solution was heated to 155 ° C. under reduced pressure to distill off the low boiling point for 3 hours, and 134.3 g of the modifier 1 represented by the following formula (8) was obtained. The structure represented by the following formula (8) was also confirmed by 1 H-NMR. The viscosity of the obtained modifier 1 was 230 mm 2 / s as measured according to JIS-Z-8803 at 25 ° C. using an Ubbelohde viscosity tube.
〔変性剤1の製造〕
反応器に下記式(7)で表されるメチルハイドロジェンシクロシロキサン31.8gを仕込み、窒素流通下で攪拌しながら40℃まで加温した。
[Production of denaturant 1]
The reactor was charged with 31.8 g of methylhydrogencyclosiloxane represented by the following formula (7) and heated to 40 ° C. with stirring under a nitrogen stream.
〔変性共役ジエン系ゴム1の製造〕
窒素雰囲気下、オートクレーブに、シクロヘキサン800部、1,3-ブタジエン94.8部、スチレン25.2部、およびテトラメチルエチレンジアミン0.187部を仕込んだ後、n-ブチルリチウム0.045部を添加し、60℃で重合を開始した。60分間重合反応を継続し、重合転化率が95%から100%の範囲になったことを確認してから、上記にて得られた変性剤1(上記式(8)で表される化合物)1.35部(n-ブチルリチウムの使用量に対して、1.50倍モル)を添加し、30分間反応させた後、重合停止剤としてメタノール0.064部を添加して、共役ジエン系重合体を含有する溶液を得た。そして、得られた重合体成分100部に対して、老化防止剤として2,4-ビス[(オクチルチオ)メチル]-o-クレゾール(チバスペシャルティケミカルズ社製、商品名「イルガノックス1520」)0.15部を溶液に添加した後、スチームストリッピングにより、溶媒を除去し、60℃で24時間真空乾燥して、固形状の変性共役ジエン系ゴム1を得た。得られた変性共役ジエン系ゴム1の重量平均分子量(Mw)は478,000であり、また、2分岐以上のカップリング率は、38.3重量%であった。 [Production of Modified Conjugated Diene Rubber 1]
In a nitrogen atmosphere, charge 800 parts of cyclohexane, 94.8 parts of 1,3-butadiene, 25.2 parts of styrene, and 0.187 parts of tetramethylethylenediamine, and then add 0.045 part of n-butyllithium to the autoclave. Then, polymerization was started at 60 ° C. The polymerization reaction was continued for 60 minutes, and after confirming that the polymerization conversion rate was in the range of 95% to 100%, the modifier 1 obtained above (compound represented by the above formula (8)) 1.35 parts (1.50 moles relative to the amount of n-butyl lithium used) were added and reacted for 30 minutes, and then 0.064 parts of methanol was added as a polymerization terminator to give a conjugated diene series. A solution containing the polymer was obtained. Then, 100 parts of the obtained polymer component was treated with 2,4-bis [(octylthio) methyl] -o-cresol (trade name “Irganox 1520” manufactured by Ciba Specialty Chemicals) as an anti-aging agent. After adding 15 parts to the solution, the solvent was removed by steam stripping, followed by vacuum drying at 60 ° C. for 24 hours to obtain a solid modified conjugated diene rubber 1. The resulting modified conjugated diene rubber 1 had a weight average molecular weight (Mw) of 478,000, and a coupling ratio of two or more branches was 38.3% by weight.
窒素雰囲気下、オートクレーブに、シクロヘキサン800部、1,3-ブタジエン94.8部、スチレン25.2部、およびテトラメチルエチレンジアミン0.187部を仕込んだ後、n-ブチルリチウム0.045部を添加し、60℃で重合を開始した。60分間重合反応を継続し、重合転化率が95%から100%の範囲になったことを確認してから、上記にて得られた変性剤1(上記式(8)で表される化合物)1.35部(n-ブチルリチウムの使用量に対して、1.50倍モル)を添加し、30分間反応させた後、重合停止剤としてメタノール0.064部を添加して、共役ジエン系重合体を含有する溶液を得た。そして、得られた重合体成分100部に対して、老化防止剤として2,4-ビス[(オクチルチオ)メチル]-o-クレゾール(チバスペシャルティケミカルズ社製、商品名「イルガノックス1520」)0.15部を溶液に添加した後、スチームストリッピングにより、溶媒を除去し、60℃で24時間真空乾燥して、固形状の変性共役ジエン系ゴム1を得た。得られた変性共役ジエン系ゴム1の重量平均分子量(Mw)は478,000であり、また、2分岐以上のカップリング率は、38.3重量%であった。 [Production of Modified Conjugated Diene Rubber 1]
In a nitrogen atmosphere, charge 800 parts of cyclohexane, 94.8 parts of 1,3-butadiene, 25.2 parts of styrene, and 0.187 parts of tetramethylethylenediamine, and then add 0.045 part of n-butyllithium to the autoclave. Then, polymerization was started at 60 ° C. The polymerization reaction was continued for 60 minutes, and after confirming that the polymerization conversion rate was in the range of 95% to 100%, the modifier 1 obtained above (compound represented by the above formula (8)) 1.35 parts (1.50 moles relative to the amount of n-butyl lithium used) were added and reacted for 30 minutes, and then 0.064 parts of methanol was added as a polymerization terminator to give a conjugated diene series. A solution containing the polymer was obtained. Then, 100 parts of the obtained polymer component was treated with 2,4-bis [(octylthio) methyl] -o-cresol (trade name “Irganox 1520” manufactured by Ciba Specialty Chemicals) as an anti-aging agent. After adding 15 parts to the solution, the solvent was removed by steam stripping, followed by vacuum drying at 60 ° C. for 24 hours to obtain a solid modified conjugated diene rubber 1. The resulting modified conjugated diene rubber 1 had a weight average molecular weight (Mw) of 478,000, and a coupling ratio of two or more branches was 38.3% by weight.
〔ゴム組成物およびゴム架橋物の製造〕
容量250mlのブラベンダータイプミキサー中で、上記にて得られた変性共役ジエン系ゴム1 100部を30秒素練りし、次いでシリカ(ローディア社製、商品名「Zeosil1165MP」)50部、プロセスオイル(新日本石油社製、商品名「アロマックス T-DAE」)20部、およびシランカップリング剤:ビス(3-(トリエトキシシリル)プロピル)テトラスルフィド(デグッサ社製、商品名「Si69」)6.0部を添加して、110℃を開始温度として1.5分間混練後、シリカ(ローディア社製、商品名「Zeosil1165MP」)25部、酸化亜鉛3部、ステアリン酸2部および老化防止剤:N-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアミン(大内新興社製、商品名「ノクラック6C」)2部を添加し、更に2.5分間混練し、ミキサーから混練物を排出させた。混錬終了時の混練物の温度は150℃であった。そして、得られた混練物を、室温まで冷却した後、再度ブラベンダータイプミキサー中で、110℃を開始温度として2分間混練した後、ミキサーから混練物を排出させた。次いで、50℃のオープンロールで、得られた混練物に、硫黄1.40部、架橋促進剤:N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド(商品名「ノクセラーNS-P」、大内新興化学工業社製)1.2部、およびジフェニルグアニジン(商品名「ノクセラーD」、大内新興化学工業社製)1.2部を加えてこれらを混練した後、シート状のゴム組成物を取り出した。
次いで、得られたゴム組成物を、160℃で20分間プレス架橋して、ゴム架橋物の試験片を作製し、この試験片について、低発熱性およびウエットグリップ性の評価を行なった。結果を表1に示す。 [Production of rubber composition and rubber cross-linked product]
In a Brabender type mixer with a capacity of 250 ml, 100 parts of the modified conjugated diene rubber 1 obtained above was masticated for 30 seconds, then 50 parts of silica (trade name “Zeosil 1165MP”, manufactured by Rhodia), and process oil ( 20 parts by Nippon Oil Corporation, trade name “Aromax T-DAE”), and silane coupling agent: bis (3- (triethoxysilyl) propyl) tetrasulfide (trade name “Si69”, manufactured by Degussa) 6 0.0 part was added and kneaded for 1.5 minutes starting at 110 ° C., then 25 parts of silica (trade name “Zeosil 1165MP”, manufactured by Rhodia), 3 parts of zinc oxide, 2 parts of stearic acid, and an antioxidant: N-phenyl-N ′-(1,3-dimethylbutyl) -p-phenylenediamine (manufactured by Ouchi Shinsei Co., Ltd., trade name “NOCRACK 6” ") 2 parts were added, and kneaded further 2.5 minutes and drained a kneaded material from the mixer. The temperature of the kneaded product at the end of kneading was 150 ° C. And after cooling the obtained kneaded material to room temperature, it knead | mixed again for 2 minutes in 110 degreeC start temperature in a Brabender type mixer, Then, the kneaded material was discharged | emitted from the mixer. Next, with an open roll at 50 ° C., the obtained kneaded product was mixed with 1.40 parts of sulfur, a crosslinking accelerator: N-tert-butyl-2-benzothiazolylsulfenamide (trade name “Noxeller NS-P”, After adding 1.2 parts of Ouchi Shinsei Chemical Co., Ltd.) and 1.2 parts of diphenylguanidine (trade name “Noxeller D”, Ouchi Shinsei Chemical Co., Ltd.) and kneading them, a sheet-like rubber composition The thing was taken out.
Next, the obtained rubber composition was press-crosslinked at 160 ° C. for 20 minutes to produce a rubber cross-linked test piece. The test piece was evaluated for low heat build-up and wet grip. The results are shown in Table 1.
容量250mlのブラベンダータイプミキサー中で、上記にて得られた変性共役ジエン系ゴム1 100部を30秒素練りし、次いでシリカ(ローディア社製、商品名「Zeosil1165MP」)50部、プロセスオイル(新日本石油社製、商品名「アロマックス T-DAE」)20部、およびシランカップリング剤:ビス(3-(トリエトキシシリル)プロピル)テトラスルフィド(デグッサ社製、商品名「Si69」)6.0部を添加して、110℃を開始温度として1.5分間混練後、シリカ(ローディア社製、商品名「Zeosil1165MP」)25部、酸化亜鉛3部、ステアリン酸2部および老化防止剤:N-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアミン(大内新興社製、商品名「ノクラック6C」)2部を添加し、更に2.5分間混練し、ミキサーから混練物を排出させた。混錬終了時の混練物の温度は150℃であった。そして、得られた混練物を、室温まで冷却した後、再度ブラベンダータイプミキサー中で、110℃を開始温度として2分間混練した後、ミキサーから混練物を排出させた。次いで、50℃のオープンロールで、得られた混練物に、硫黄1.40部、架橋促進剤:N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド(商品名「ノクセラーNS-P」、大内新興化学工業社製)1.2部、およびジフェニルグアニジン(商品名「ノクセラーD」、大内新興化学工業社製)1.2部を加えてこれらを混練した後、シート状のゴム組成物を取り出した。
次いで、得られたゴム組成物を、160℃で20分間プレス架橋して、ゴム架橋物の試験片を作製し、この試験片について、低発熱性およびウエットグリップ性の評価を行なった。結果を表1に示す。 [Production of rubber composition and rubber cross-linked product]
In a Brabender type mixer with a capacity of 250 ml, 100 parts of the modified conjugated diene rubber 1 obtained above was masticated for 30 seconds, then 50 parts of silica (trade name “Zeosil 1165MP”, manufactured by Rhodia), and process oil ( 20 parts by Nippon Oil Corporation, trade name “Aromax T-DAE”), and silane coupling agent: bis (3- (triethoxysilyl) propyl) tetrasulfide (trade name “Si69”, manufactured by Degussa) 6 0.0 part was added and kneaded for 1.5 minutes starting at 110 ° C., then 25 parts of silica (trade name “Zeosil 1165MP”, manufactured by Rhodia), 3 parts of zinc oxide, 2 parts of stearic acid, and an antioxidant: N-phenyl-N ′-(1,3-dimethylbutyl) -p-phenylenediamine (manufactured by Ouchi Shinsei Co., Ltd., trade name “NOCRACK 6” ") 2 parts were added, and kneaded further 2.5 minutes and drained a kneaded material from the mixer. The temperature of the kneaded product at the end of kneading was 150 ° C. And after cooling the obtained kneaded material to room temperature, it knead | mixed again for 2 minutes in 110 degreeC start temperature in a Brabender type mixer, Then, the kneaded material was discharged | emitted from the mixer. Next, with an open roll at 50 ° C., the obtained kneaded product was mixed with 1.40 parts of sulfur, a crosslinking accelerator: N-tert-butyl-2-benzothiazolylsulfenamide (trade name “Noxeller NS-P”, After adding 1.2 parts of Ouchi Shinsei Chemical Co., Ltd.) and 1.2 parts of diphenylguanidine (trade name “Noxeller D”, Ouchi Shinsei Chemical Co., Ltd.) and kneading them, a sheet-like rubber composition The thing was taken out.
Next, the obtained rubber composition was press-crosslinked at 160 ° C. for 20 minutes to produce a rubber cross-linked test piece. The test piece was evaluated for low heat build-up and wet grip. The results are shown in Table 1.
〔実施例2〕
〔変性剤2の製造〕
1-アリル-2,2’,5,5’-テトラメチル-(1-アザ-2,5-ジシラシクロペンタン)に代えて、N-アリル-N,N-ビス(トリメチルシリル)アミン53.3gを用いた以外は、実施例1と同様にして、下記式(9)で表される変性剤2を得た。なお、下記式(9)で表される構造は1H-NMRによっても確認された。そして、得られた変性剤2について、25℃においてウベローデ型粘度管を使用してJIS-Z-8803に沿って粘度を測定したところ、300mm2/sであった。
[Example 2]
[Production of denaturant 2]
Instead of 1-allyl-2,2 ′, 5,5′-tetramethyl- (1-aza-2,5-disilacyclopentane), N-allyl-N, N-bis (trimethylsilyl) amine 53. Except having used 3g, it carried out similarly to Example 1, and obtained the modifier 2 represented by following formula (9). The structure represented by the following formula (9) was also confirmed by 1 H-NMR. The viscosity of the obtained modifier 2 was measured at 25 ° C. according to JIS-Z-8803 using an Ubbelohde viscometer, and found to be 300 mm 2 / s.
〔変性剤2の製造〕
1-アリル-2,2’,5,5’-テトラメチル-(1-アザ-2,5-ジシラシクロペンタン)に代えて、N-アリル-N,N-ビス(トリメチルシリル)アミン53.3gを用いた以外は、実施例1と同様にして、下記式(9)で表される変性剤2を得た。なお、下記式(9)で表される構造は1H-NMRによっても確認された。そして、得られた変性剤2について、25℃においてウベローデ型粘度管を使用してJIS-Z-8803に沿って粘度を測定したところ、300mm2/sであった。
[Production of denaturant 2]
Instead of 1-allyl-2,2 ′, 5,5′-tetramethyl- (1-aza-2,5-disilacyclopentane), N-allyl-N, N-bis (trimethylsilyl) amine 53. Except having used 3g, it carried out similarly to Example 1, and obtained the modifier 2 represented by following formula (9). The structure represented by the following formula (9) was also confirmed by 1 H-NMR. The viscosity of the obtained modifier 2 was measured at 25 ° C. according to JIS-Z-8803 using an Ubbelohde viscometer, and found to be 300 mm 2 / s.
〔変性共役ジエン系ゴム2の製造〕
変性剤1 1.35部に代えて、上記にて得られた変性剤2(上記式(9)で表される化合物)1.35部(n-ブチルリチウムの使用量に対して、1.50倍モル)を使用した以外は、実施例1と同様に操作して、固形状の変性共役ジエン系ゴム2を得た。得られた変性共役ジエン系ゴム2の重量平均分子量(Mw)は528,000であり、また、2分岐以上のカップリング率は、42.9重量%であった。 [Production of Modified Conjugated Diene Rubber 2]
In place of 1.35 parts of the modifier 1 1.35 parts of the modifier 2 obtained above (compound represented by the above formula (9)) (1. A solid modified conjugated diene rubber 2 was obtained in the same manner as in Example 1 except that 50 mol) was used. The resulting modified conjugated diene rubber 2 had a weight average molecular weight (Mw) of 528,000 and a coupling ratio of 2 or more branches was 42.9% by weight.
変性剤1 1.35部に代えて、上記にて得られた変性剤2(上記式(9)で表される化合物)1.35部(n-ブチルリチウムの使用量に対して、1.50倍モル)を使用した以外は、実施例1と同様に操作して、固形状の変性共役ジエン系ゴム2を得た。得られた変性共役ジエン系ゴム2の重量平均分子量(Mw)は528,000であり、また、2分岐以上のカップリング率は、42.9重量%であった。 [Production of Modified Conjugated Diene Rubber 2]
In place of 1.35 parts of the modifier 1 1.35 parts of the modifier 2 obtained above (compound represented by the above formula (9)) (1. A solid modified conjugated diene rubber 2 was obtained in the same manner as in Example 1 except that 50 mol) was used. The resulting modified conjugated diene rubber 2 had a weight average molecular weight (Mw) of 528,000 and a coupling ratio of 2 or more branches was 42.9% by weight.
〔ゴム組成物およびゴム架橋物の製造〕
そして、変性共役ジエン系ゴム1 100部に代えて、上記にて得られた変性共役ジエン系ゴム2 100部を使用した以外は、実施例1と同様にして、ゴム組成物およびゴム架橋物を得て、同様に評価を行った。結果を表1に示す。 [Production of rubber composition and rubber cross-linked product]
Then, in place of 100 parts of the modified conjugated diene rubber 1 and using 100 parts of the modified conjugated diene rubber 2 obtained above, a rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 1. Obtained and evaluated in the same manner. The results are shown in Table 1.
そして、変性共役ジエン系ゴム1 100部に代えて、上記にて得られた変性共役ジエン系ゴム2 100部を使用した以外は、実施例1と同様にして、ゴム組成物およびゴム架橋物を得て、同様に評価を行った。結果を表1に示す。 [Production of rubber composition and rubber cross-linked product]
Then, in place of 100 parts of the modified conjugated diene rubber 1 and using 100 parts of the modified conjugated diene rubber 2 obtained above, a rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 1. Obtained and evaluated in the same manner. The results are shown in Table 1.
〔比較例1〕
〔変性共役ジエン系ゴム3の製造〕
変性剤1 1.35部に代えて、下記式(10)に示す変性剤3 0.384部(n-ブチルリチウムの使用量に対して、1.50倍モル)を使用した以外は、実施例1と同様に操作して、固形状の変性共役ジエン系ゴム3を得た。得られた変性共役ジエン系ゴム3の重量平均分子量(Mw)は316,000であり、また、2分岐以上のカップリング率は、1.6重量%であった。
[Comparative Example 1]
[Production of Modified Conjugated Diene Rubber 3]
Modification Example 1 Except for using 1.384 parts of Modification Agent 3 (0.384 parts per mole of n-butyllithium) as shown in the following formula (10) In the same manner as in Example 1, a solid modified conjugated diene rubber 3 was obtained. The resulting modified conjugated diene rubber 3 had a weight average molecular weight (Mw) of 316,000, and a coupling ratio of two or more branches was 1.6% by weight.
〔変性共役ジエン系ゴム3の製造〕
変性剤1 1.35部に代えて、下記式(10)に示す変性剤3 0.384部(n-ブチルリチウムの使用量に対して、1.50倍モル)を使用した以外は、実施例1と同様に操作して、固形状の変性共役ジエン系ゴム3を得た。得られた変性共役ジエン系ゴム3の重量平均分子量(Mw)は316,000であり、また、2分岐以上のカップリング率は、1.6重量%であった。
[Production of Modified Conjugated Diene Rubber 3]
Modification Example 1 Except for using 1.384 parts of Modification Agent 3 (0.384 parts per mole of n-butyllithium) as shown in the following formula (10) In the same manner as in Example 1, a solid modified conjugated diene rubber 3 was obtained. The resulting modified conjugated diene rubber 3 had a weight average molecular weight (Mw) of 316,000, and a coupling ratio of two or more branches was 1.6% by weight.
〔ゴム組成物およびゴム架橋物の製造〕
そして、変性共役ジエン系ゴム1 100部に代えて、上記にて得られた変性共役ジエン系ゴム3 100部を使用した以外は、実施例1と同様にして、ゴム組成物およびゴム架橋物を得て、同様に評価を行った。結果を表1に示す。 [Production of rubber composition and rubber cross-linked product]
Then, in place of 100 parts of the modified conjugated diene rubber 1 and using 100 parts of the modified conjugated diene rubber 3 obtained above, a rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 1. Obtained and evaluated in the same manner. The results are shown in Table 1.
そして、変性共役ジエン系ゴム1 100部に代えて、上記にて得られた変性共役ジエン系ゴム3 100部を使用した以外は、実施例1と同様にして、ゴム組成物およびゴム架橋物を得て、同様に評価を行った。結果を表1に示す。 [Production of rubber composition and rubber cross-linked product]
Then, in place of 100 parts of the modified conjugated diene rubber 1 and using 100 parts of the modified conjugated diene rubber 3 obtained above, a rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 1. Obtained and evaluated in the same manner. The results are shown in Table 1.
〔比較例2〕
〔変性共役ジエン系ゴム4の製造〕
変性剤1 1.35部に代えて、下記式(11)に示す変性剤4 0.329部(n-ブチルリチウムの使用量に対して、1.50倍モル)を使用した以外は、実施例1と同様に操作して、固形状の変性共役ジエン系ゴム4を得た。得られた変性共役ジエン系ゴム4の重量平均分子量(Mw)は456,000であり、また、2分岐以上のカップリング率は、37.8重量%であった。
[Comparative Example 2]
[Production of Modified Conjugated Diene Rubber 4]
Modification Agent 1 Implemented except that 0.335 part of Modification Agent 4 represented by the following formula (11) was used instead of 1.35 parts (1.50 times the mole of n-butyllithium). In the same manner as in Example 1, a solid modified conjugated diene rubber 4 was obtained. The resulting modified conjugated diene rubber 4 had a weight average molecular weight (Mw) of 456,000, and a coupling ratio of two or more branches was 37.8% by weight.
〔変性共役ジエン系ゴム4の製造〕
変性剤1 1.35部に代えて、下記式(11)に示す変性剤4 0.329部(n-ブチルリチウムの使用量に対して、1.50倍モル)を使用した以外は、実施例1と同様に操作して、固形状の変性共役ジエン系ゴム4を得た。得られた変性共役ジエン系ゴム4の重量平均分子量(Mw)は456,000であり、また、2分岐以上のカップリング率は、37.8重量%であった。
[Production of Modified Conjugated Diene Rubber 4]
Modification Agent 1 Implemented except that 0.335 part of Modification Agent 4 represented by the following formula (11) was used instead of 1.35 parts (1.50 times the mole of n-butyllithium). In the same manner as in Example 1, a solid modified conjugated diene rubber 4 was obtained. The resulting modified conjugated diene rubber 4 had a weight average molecular weight (Mw) of 456,000, and a coupling ratio of two or more branches was 37.8% by weight.
〔ゴム組成物およびゴム架橋物の製造〕
そして、変性共役ジエン系ゴム1 100部に代えて、上記にて得られた変性共役ジエン系ゴム4 100部を使用した以外は、実施例1と同様にして、ゴム組成物およびゴム架橋物を得て、同様に評価を行った。結果を表1に示す。 [Production of rubber composition and rubber cross-linked product]
Then, in place of 100 parts of the modified conjugated diene rubber 1 and using 100 parts of the modified conjugated diene rubber 4 obtained above, the rubber composition and the rubber cross-linked product were obtained in the same manner as in Example 1. Obtained and evaluated in the same manner. The results are shown in Table 1.
そして、変性共役ジエン系ゴム1 100部に代えて、上記にて得られた変性共役ジエン系ゴム4 100部を使用した以外は、実施例1と同様にして、ゴム組成物およびゴム架橋物を得て、同様に評価を行った。結果を表1に示す。 [Production of rubber composition and rubber cross-linked product]
Then, in place of 100 parts of the modified conjugated diene rubber 1 and using 100 parts of the modified conjugated diene rubber 4 obtained above, the rubber composition and the rubber cross-linked product were obtained in the same manner as in Example 1. Obtained and evaluated in the same manner. The results are shown in Table 1.
表1より、変性共役ジエン系ゴムを合成する際に、変性剤として、上記一般式(1)で表される化合物を用いた場合には、得られた変性共役ジエン系ゴムを用いて得られたゴム架橋物は、いずれも、ウエットグリップ性および低発熱性に優れたものであった(実施例1,2)。
一方、変性共役ジエン系ゴムを合成する際に、変性剤として、-Si-O-で表される繰り返し単位からなる環状の主鎖構造を有する化合物を用いた場合でも、保護アミノ基含有有機基を有しないものを用いた場合には、得られるゴム架橋物はウエットグリップ性および低発熱性に劣るものであった(比較例1)。
また、変性共役ジエン系ゴムを合成する際に、変性剤として、保護アミノ基含有有機基を有するものの、-Si-O-で表される繰り返し単位からなる環状の主鎖構造を有さないものを用いた場合にも、得られるゴム架橋物はウエットグリップ性および低発熱性に劣るものであった(比較例2)。 From Table 1, when synthesizing the modified conjugated diene rubber, when the compound represented by the general formula (1) is used as a modifier, the modified conjugated diene rubber is obtained. The rubber cross-linked products were all excellent in wet grip properties and low heat build-up (Examples 1 and 2).
On the other hand, when a modified conjugated diene rubber is synthesized, even when a compound having a cyclic main chain structure composed of a repeating unit represented by —Si—O— is used as a modifier, a protected amino group-containing organic group In the case of using a material that does not have, the resulting rubber cross-linked product was inferior in wet grip and low heat build-up (Comparative Example 1).
In addition, when synthesizing a modified conjugated diene rubber, it has a protective amino group-containing organic group as a modifier, but does not have a cyclic main chain structure composed of a repeating unit represented by -Si-O- Even when the rubber was used, the resulting rubber cross-linked product was inferior in wet grip and low heat build-up (Comparative Example 2).
一方、変性共役ジエン系ゴムを合成する際に、変性剤として、-Si-O-で表される繰り返し単位からなる環状の主鎖構造を有する化合物を用いた場合でも、保護アミノ基含有有機基を有しないものを用いた場合には、得られるゴム架橋物はウエットグリップ性および低発熱性に劣るものであった(比較例1)。
また、変性共役ジエン系ゴムを合成する際に、変性剤として、保護アミノ基含有有機基を有するものの、-Si-O-で表される繰り返し単位からなる環状の主鎖構造を有さないものを用いた場合にも、得られるゴム架橋物はウエットグリップ性および低発熱性に劣るものであった(比較例2)。 From Table 1, when synthesizing the modified conjugated diene rubber, when the compound represented by the general formula (1) is used as a modifier, the modified conjugated diene rubber is obtained. The rubber cross-linked products were all excellent in wet grip properties and low heat build-up (Examples 1 and 2).
On the other hand, when a modified conjugated diene rubber is synthesized, even when a compound having a cyclic main chain structure composed of a repeating unit represented by —Si—O— is used as a modifier, a protected amino group-containing organic group In the case of using a material that does not have, the resulting rubber cross-linked product was inferior in wet grip and low heat build-up (Comparative Example 1).
In addition, when synthesizing a modified conjugated diene rubber, it has a protective amino group-containing organic group as a modifier, but does not have a cyclic main chain structure composed of a repeating unit represented by -Si-O- Even when the rubber was used, the resulting rubber cross-linked product was inferior in wet grip and low heat build-up (Comparative Example 2).
Claims (10)
- 不活性溶媒中で、重合開始剤として有機活性金属化合物を用いて、少なくとも共役ジエン化合物を含んでなる単量体を重合し、活性末端を有する共役ジエン系重合体を得る第1工程と、
前記活性末端を有する共役ジエン系重合体の活性末端に、下記一般式(1)で表される化合物を反応させる第2工程と、を備える変性共役ジエン系ゴムの製造方法。
A second step of reacting a compound represented by the following general formula (1) with the active end of the conjugated diene polymer having the active end, and a method for producing a modified conjugated diene rubber.
- 前記一般式(1)で表される化合物が、下記一般式(2)で表される化合物である請求項1に記載の変性共役ジエン系ゴムの製造方法。
- 前記一般式(2)で表される化合物中における、保護アミノ基含有有機基と、アルコキシ基含有有機基および/またはエポキシ基含有有機基との含有割合が、「保護アミノ基含有有機基/(アルコキシ基含有有機基および/またはエポキシ基含有有機基)」のモル比率で、0.1~10である請求項2に記載の変性共役ジエン系ゴムの製造方法。 In the compound represented by the general formula (2), the content ratio of the protected amino group-containing organic group to the alkoxy group-containing organic group and / or the epoxy group-containing organic group is expressed as “protected amino group-containing organic group / ( 3. The process for producing a modified conjugated diene rubber according to claim 2, wherein the molar ratio of the “alkoxy group-containing organic group and / or epoxy group-containing organic group” is 0.1 to 10.
- 前記一般式(1)で表される化合物が、前記保護アミノ基含有有機基として、下記一般式(3)、下記一般式(4)、または下記一般式(5)で表される基を含有する請求項1~3のいずれかに記載の変性共役ジエン系ゴムの製造方法。
- 前記一般式(1)で表される化合物の使用量が、重合開始剤としての前記有機活性金属1モルに対して、0.01~30モルである請求項1~4のいずれかに記載の変性共役ジエン系ゴムの製造方法。 The amount of the compound represented by the general formula (1) used is 0.01 to 30 mol with respect to 1 mol of the organic active metal as a polymerization initiator. A method for producing a modified conjugated diene rubber.
- 請求項1~5のいずれかに記載の製造方法により得られる変性共役ジエン系ゴム。 A modified conjugated diene rubber obtained by the production method according to any one of claims 1 to 5.
- 請求項6に記載の変性共役ジエン系ゴムを含むゴム成分100重量部に対して、シリカ10~200重量部を含有してなるゴム組成物。 A rubber composition comprising 10 to 200 parts by weight of silica with respect to 100 parts by weight of a rubber component containing the modified conjugated diene rubber according to claim 6.
- 架橋剤をさらに含有してなる請求項7に記載のゴム組成物。 The rubber composition according to claim 7, further comprising a crosslinking agent.
- 請求項8に記載のゴム組成物を架橋してなるゴム架橋物。 A crosslinked rubber product obtained by crosslinking the rubber composition according to claim 8.
- 請求項9に記載のゴム架橋物を含んでなるタイヤ。 A tire comprising the rubber cross-linked product according to claim 9.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018550258A JP7020423B2 (en) | 2016-11-14 | 2017-11-09 | Method for manufacturing modified conjugated diene rubber |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016221406 | 2016-11-14 | ||
JP2016-221406 | 2016-11-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018088483A1 true WO2018088483A1 (en) | 2018-05-17 |
Family
ID=62110637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/040454 WO2018088483A1 (en) | 2016-11-14 | 2017-11-09 | Method for producing modified conjugated diene rubber |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7020423B2 (en) |
WO (1) | WO2018088483A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004231905A (en) * | 2003-01-31 | 2004-08-19 | Nippon Zeon Co Ltd | Method for producing conjugated diene rubber |
JP2010275489A (en) * | 2009-05-29 | 2010-12-09 | Bridgestone Corp | Manufacturing method for modified conjugative diene-based polymer, modified conjugative diene-based polymer, rubber composition, and pneumatic tire |
JP2014501325A (en) * | 2010-12-31 | 2014-01-20 | 株式会社ブリヂストン | COUPLED POLYMER AND METHOD FOR PRODUCING SAME |
JP2015521221A (en) * | 2012-05-09 | 2015-07-27 | ランクセス・ドイチュランド・ゲーエムベーハー | Amine-containing carbinol-terminated polymers |
WO2016001372A1 (en) * | 2014-07-03 | 2016-01-07 | Compagnie Generale Des Etablissements Michelin | Diene elastomer with a reduced pi having a silanol function at the chain end and composition containing same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8030423B2 (en) | 2008-01-25 | 2011-10-04 | Salamone Joseph C | Multi-armed macromonomers |
WO2018088485A1 (en) | 2016-11-14 | 2018-05-17 | 東レ・ダウコーニング株式会社 | Co-modified silicone |
-
2017
- 2017-11-09 WO PCT/JP2017/040454 patent/WO2018088483A1/en active Application Filing
- 2017-11-09 JP JP2018550258A patent/JP7020423B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004231905A (en) * | 2003-01-31 | 2004-08-19 | Nippon Zeon Co Ltd | Method for producing conjugated diene rubber |
JP2010275489A (en) * | 2009-05-29 | 2010-12-09 | Bridgestone Corp | Manufacturing method for modified conjugative diene-based polymer, modified conjugative diene-based polymer, rubber composition, and pneumatic tire |
JP2014501325A (en) * | 2010-12-31 | 2014-01-20 | 株式会社ブリヂストン | COUPLED POLYMER AND METHOD FOR PRODUCING SAME |
JP2015521221A (en) * | 2012-05-09 | 2015-07-27 | ランクセス・ドイチュランド・ゲーエムベーハー | Amine-containing carbinol-terminated polymers |
WO2016001372A1 (en) * | 2014-07-03 | 2016-01-07 | Compagnie Generale Des Etablissements Michelin | Diene elastomer with a reduced pi having a silanol function at the chain end and composition containing same |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018088483A1 (en) | 2019-10-03 |
JP7020423B2 (en) | 2022-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5716736B2 (en) | Conjugated diene rubber, rubber composition, rubber cross-linked product, tire, and method for producing conjugated diene rubber | |
KR102602901B1 (en) | Method for producing conjugated diene rubber | |
JP6468283B2 (en) | Process for producing modified conjugated diene rubber | |
WO2016208739A1 (en) | Method for producing conjugated diene rubber | |
JP2016037543A (en) | Method for producing conjugated diene rubber | |
JP2017082235A (en) | Method for producing conjugated diene rubber | |
JP2017082236A (en) | Method for producing polybutadiene rubber | |
JP6597600B2 (en) | Method for producing conjugated diene rubber | |
WO2015199226A1 (en) | Method for manufacturing conjugated diene rubber | |
JP6332279B2 (en) | Method for producing conjugated diene rubber | |
JP6421521B2 (en) | Conjugated diene polymer and rubber composition | |
JP6432319B2 (en) | Conjugated diene polymer and rubber composition | |
JP6205788B2 (en) | Process for producing modified conjugated diene rubber | |
JP2014208805A (en) | Method for producing modified conjugated diene-based rubber | |
JP7108460B2 (en) | Method for producing conjugated diene rubber | |
WO2016199842A1 (en) | Conjugated diene polymer and method for producing conjugated diene polymer | |
JP7244244B2 (en) | Method for producing conjugated diene rubber | |
JP7020423B2 (en) | Method for manufacturing modified conjugated diene rubber | |
JP7225802B2 (en) | Method for producing modified conjugated diene rubber | |
JP7370734B2 (en) | Manufacturing method of polybutadiene rubber | |
JP2019172806A (en) | Conjugated diene rubber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17869327 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018550258 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17869327 Country of ref document: EP Kind code of ref document: A1 |