WO2018088473A1 - Textile, holding rod for textile weaving, full-width temple device for loom, loom, and method for producing textile - Google Patents
Textile, holding rod for textile weaving, full-width temple device for loom, loom, and method for producing textile Download PDFInfo
- Publication number
- WO2018088473A1 WO2018088473A1 PCT/JP2017/040427 JP2017040427W WO2018088473A1 WO 2018088473 A1 WO2018088473 A1 WO 2018088473A1 JP 2017040427 W JP2017040427 W JP 2017040427W WO 2018088473 A1 WO2018088473 A1 WO 2018088473A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fabric
- loom
- woven fabric
- weaving
- point
- Prior art date
Links
- 239000004753 textile Substances 0.000 title claims abstract description 15
- 238000009941 weaving Methods 0.000 title claims description 63
- 238000004519 manufacturing process Methods 0.000 title claims description 22
- 239000004744 fabric Substances 0.000 claims description 281
- 239000002759 woven fabric Substances 0.000 claims description 109
- 230000003014 reinforcing effect Effects 0.000 claims description 64
- 238000000034 method Methods 0.000 claims description 51
- 230000002093 peripheral effect Effects 0.000 claims description 14
- 230000002787 reinforcement Effects 0.000 claims description 9
- 230000004323 axial length Effects 0.000 claims description 5
- 239000000463 material Substances 0.000 description 45
- 239000000835 fiber Substances 0.000 description 33
- 230000035699 permeability Effects 0.000 description 31
- 229920002994 synthetic fiber Polymers 0.000 description 17
- 239000012209 synthetic fiber Substances 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 14
- 238000003825 pressing Methods 0.000 description 14
- 238000012360 testing method Methods 0.000 description 14
- 238000005520 cutting process Methods 0.000 description 12
- -1 polyethylene terephthalate Polymers 0.000 description 12
- 210000005069 ears Anatomy 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 239000004677 Nylon Substances 0.000 description 9
- 229920001778 nylon Polymers 0.000 description 9
- 239000011347 resin Substances 0.000 description 9
- 229920005989 resin Polymers 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- 229920000728 polyester Polymers 0.000 description 8
- 238000007792 addition Methods 0.000 description 7
- 238000011144 upstream manufacturing Methods 0.000 description 7
- 238000004804 winding Methods 0.000 description 7
- 230000037303 wrinkles Effects 0.000 description 7
- 229920002302 Nylon 6,6 Polymers 0.000 description 6
- 229930040373 Paraformaldehyde Natural products 0.000 description 6
- 235000014676 Phragmites communis Nutrition 0.000 description 6
- 239000004952 Polyamide Substances 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 229920002647 polyamide Polymers 0.000 description 6
- 229920006324 polyoxymethylene Polymers 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 229910001369 Brass Inorganic materials 0.000 description 5
- 239000010951 brass Substances 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 229920002292 Nylon 6 Polymers 0.000 description 4
- 238000010998 test method Methods 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000004080 punching Methods 0.000 description 3
- 238000009991 scouring Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 210000003128 head Anatomy 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 210000003127 knee Anatomy 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 229920003189 Nylon 4,6 Polymers 0.000 description 1
- 241000269979 Paralichthys olivaceus Species 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000009998 heat setting Methods 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 238000009940 knitting Methods 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000009958 sewing Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000003017 thermal stabilizer Substances 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D1/00—Woven fabrics designed to make specified articles
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D1/00—Woven fabrics designed to make specified articles
- D03D1/02—Inflatable articles
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03J—AUXILIARY WEAVING APPARATUS; WEAVERS' TOOLS; SHUTTLES
- D03J1/00—Auxiliary apparatus combined with or associated with looms
- D03J1/22—Temples
Definitions
- the present invention relates to a woven fabric, a weaving grip rod for a woven fabric, a full-width temple device for a loom, a loom, and a method for manufacturing the woven fabric. More specifically, the present invention is suitable for weaving a base fabric for an air bag, and a high-quality fabric, a fabric for weaving such a high-quality fabric by reducing the difference in weaving density during weaving.
- the present invention relates to a weaving grip bar, a full width temple device for a loom, a loom, and a method for producing such a fabric.
- the car is equipped with an airbag for ensuring the safety of passengers.
- a shock such as a collision is detected by a sensor.
- high-temperature and high-pressure gas is generated in the airbag, and the airbag is inflated instantaneously by this gas, so that the occupant's face, frontal head, and the like are protected during a collision or the like.
- Air bags are generally used to improve properties such as heat resistance, flame resistance, and air barrier properties to woven fabrics made of plain woven fabric using nylon 6-filament yarn of 150 to 1000 dtex or nylon 6-6 filament yarn.
- a base fabric coated with silicone resin or the like is cut and sewn into a bag.
- There is also a so-called non-coated cloth which is used by reducing the air flow rate of the fabric by weaving synthetic fiber filament yarn such as polyamide fiber or polyester fiber with high density without applying resin.
- the airbag fabric is highly powerful and low in order to inflate the airbag instantaneously in the event of a car crash and protect the occupant's face, head, knees, etc. Breathability is required. For this reason, it is necessary for the fabric for airbags to use a higher-strength yarn and to have a higher density than the fabric for ordinary clothing.
- the fabric for airbags to use a higher-strength yarn and to have a higher density than the fabric for ordinary clothing.
- the warp and weft are 470 dtex
- the warp and weft fabric density is 55 plain weaves per inch (2.54 cm) in both warp and weft.
- the higher the weft density the greater the amount by which the weave before weaving moves from the most advanced position of the reed to the warp sending side.
- the weft is cut by the cutter at the left and right ends before weaving.
- the cut wefts are not gripped and become free, and the weft crimps at both ear ends of the base fabric increase, and conversely the warp crimps at the ear ends decrease.
- the warp crimp is increased due to the small fabric gripping force, the warp density is increased at both ends, and there is a difference in the weave density between the center and the end of the fabric.
- edge parts falls because the crimp difference of both ends and an edge part increases.
- the gripping force of the weft by the warp was lowered, the wefts of both ears before weaving were retreated, the warp density at both ends was increased, and the density difference from the center was large.
- the speed of the loom is increased, the phenomenon that the weave at the end of the ear recedes appears more remarkably.
- the looseness of the warp at the base cloth ear causes a difference in the fabric length between the ear part and the center part, and flare (also referred to as “ear knocking”) in which the ear end part is wavy.
- the airbag fabric is cut and sewn to make a bag.
- a cutting pattern is designed and is usually used up to the ear end or the vicinity thereof. Since the edge of the cut product is easily frayed, if a flare is generated in the vicinity of the ear end portion, a cutting defect is likely to occur. As a result, a desired accurate shape as an airbag cannot be obtained, and the required function is not provided.
- Patent Document 1 As various attempts to prevent weaving at both ears before weaving, in the airbag fabric made of synthetic fiber fabric, the warp fineness of the fabric ear and the warp fineness of the base fabric body A method of making it thinner has been proposed (Patent Document 1). In addition, a method of inserting an additional yarn in addition to the entangled yarn or a method of changing the texture of the entangled yarn has been proposed (Patent Documents 2 to 4).
- JP-A-10-236253 JP 2001-355143 A Japanese Patent Laid-Open No. 2002-212856 JP 2002-69790 A JP 11-350309 A Japanese Patent Laid-Open No. 10-226946 JP-A-57-128241 JP 7-324257 A JP 2003-278054 A
- the fabric gripping force is weak and not uniform over the entire width. Therefore, not only the protrusion of the base cloth ear part is not sufficiently suppressed, but also a difference in the weave density occurs between the center and the end part of the fabric. Further, since the woven fabric is damaged by the needles of the ring temple, the appearance is deteriorated and the tensile strength is easily lowered.
- the fabric gripping rod of the full width temple device needs to feed out the fabric. Therefore, the fabric gripping rod has a structure that can move back and forth within the full width temple device. At this time, there is nothing that obstructs the back-and-forth movement at both ends with respect to the central portion of the fabric. As a result, the fabric gripping rod has a larger moving distance at the end portion than the center portion, and the fabric gripping force tends to decrease. As a result, the end of the fabric tends to increase in size.
- the present invention has been made in view of such a conventional problem, and an object of the present invention is to provide a high-quality woven fabric in which a difference in weaving density between the central portion and both end portions generated during weaving is small. Further, the present invention provides a weaving gripping rod for weaving a high-quality fabric, a full-width temple device for a loom, a loom for weaving the high-quality fabric by reducing the difference in weaving density during weaving and reducing the extrusion. It aims at providing the manufacturing method of the said textile fabric.
- the fabric of one embodiment of the present invention that solves the above-described problems is a value obtained by multiplying the fabric width ratio (W) on the horizontal axis and the density ratio ((ab) / b) of the fabric by 100 (100 ⁇ (a When -b) / b) is taken on the vertical axis, the width (W) of the fabric and the density ratio of the fabric multiplied by 100 (100 ⁇ (ab) / b) are the following 6 It is a woven fabric in an area defined by dots.
- a weaving grip rod for a woven fabric includes a main body portion and reinforcing portions provided at both ends of the main body portion, and the reinforcing portion is configured by a member having a Young's modulus larger than that of the main body portion.
- the reinforcing part has a total length in the axial direction of 10 mm or more and less than 60 mm, and has a mode described in at least one of the following modes 1 or 2.
- the reinforcing portion includes a portion whose outer peripheral surface is knurled or threaded.
- the reinforcing portion has a large-diameter portion and a small-diameter portion that are formed on the same axis, and the small-diameter portion is embedded in the main-body portion, thereby being attached to the main-body portion.
- a full-width temple device for a loom is a full-width temple device for a loom including the above-described weaving gripping rod for a woven fabric, and the weaving gripping rod for the woven fabric is provided at both ends of the main body portion and the main body portion.
- the reinforcing part is made of a member having a Young's modulus larger than that of the main body part, the axial total length of the reinforcing part is 10 mm or more and less than 60 mm, and the following aspect 1 or aspect 2 is a full-width temple device for a loom having the aspect described in at least one of the items.
- the reinforcing portion includes a portion whose outer peripheral surface is knurled or threaded.
- Aspect 2 The reinforcing portion has a large-diameter portion and a small-diameter portion that are formed on the same axis, and the small-diameter portion is embedded in the main-body portion, thereby being attached to the main-body portion.
- a loom according to one aspect of the present invention is a loom including the above-described full-width temple device for a loom.
- the method for manufacturing a fabric according to one embodiment of the present invention is a method for manufacturing a fabric using the loom.
- FIG. 1 is a schematic graph for explaining a region partitioned by the first point (A) to the sixth point (F) in the fabric of one embodiment of the present invention.
- FIG. 2 is a schematic graph for explaining a region defined by the first point (A1) to the sixth point (F1) indicating a preferable range in the fabric of one embodiment of the present invention.
- FIG. 3 is a schematic plan view of a loom including the temple device according to the embodiment of the present invention.
- FIG. 4 is a schematic side view of a temple apparatus according to an embodiment of the present invention.
- FIG. 5 is a schematic plan view of a fabric gripping bar included in the temple device according to the embodiment of the present invention.
- FIG. 1 is a schematic graph for explaining a region partitioned by the first point (A) to the sixth point (F) in the fabric of one embodiment of the present invention.
- FIG. 2 is a schematic graph for explaining a region defined by the first point (A1) to the sixth point (F1) indicating a preferable
- FIG. 6 is a schematic plan view of a modified example of the fabric gripping bar according to the embodiment of the present invention.
- FIG. 7 shows the area defined by the first point (A) to the sixth point (F) shown in FIG. 1 multiplied by 100 for the width and density ratio of the fabrics of the examples and comparative examples.
- FIG. 8 shows that the area defined by the first point (A1) to the sixth point (F1) shown in FIG. 1 is multiplied by 100 to the width and density ratio of the fabrics of the respective examples and comparative examples.
- FIG. 7 shows the area defined by the first point (A) to the sixth point (F) shown in FIG. 1 multiplied by 100 for the width and density ratio of the fabrics of the examples and comparative examples.
- FIG. 8 shows that the area defined by the first point (A1) to the sixth point (F1) shown in FIG. 1 is multiplied by 100 to the width and density ratio of the fabrics of the respective examples and comparative examples.
- the fabric of one embodiment of the present invention has a value (100 ⁇ (ab) / b) obtained by multiplying the fabric width ratio (W) on the horizontal axis and the density ratio (ab) / b) of the fabric by 100. ) On the vertical axis, the value obtained by multiplying the fabric width (W) and the fabric density ratio by 100 (100 ⁇ (ab) / b) is divided into the following 6 points. It is a woven fabric.
- the method for producing such a woven fabric is not particularly limited. As an example, such a woven fabric can be produced by a loom including a temple apparatus including a gripping rod for weaving the woven fabric described later.
- the fabric is preferably in a region defined by the following first point (A1) to sixth point (F1).
- FIG. 1 is a schematic graph for explaining a region defined by the first point (A) to the sixth point (F) in the fabric of the present embodiment.
- FIG. 2 is a schematic graph for explaining a region defined by the first point (A1) to the sixth point (F1) indicating a preferable range in the fabric of the present embodiment.
- the fabric of the present embodiment has the first point (A) to the sixth point (F) (preferably the first point (A1) to the sixth point (F1). )
- fabric width (W) and “density ratio (ab) / b) of fabric” (100 ⁇ (ab) / b).
- the woven fabric of this embodiment included in these partitioned regions has a small woven density difference between the central portion and both ends, and a small difference in air permeability. Sufficient tensile strength and breaking elongation are exhibited, and such a woven fabric is useful as an airbag or the like by being sewn, and in the present embodiment, both ends are the width of the woven fabric as described above. It means the part from the both ends of the direction to the position of 100mm each. It is the site of 100mm wide at the center in the width direction.
- the material constituting the fabric of this embodiment is not particularly limited.
- the base of the woven fabric may be composed of synthetic fiber multifilaments.
- the synthetic fiber material include polyamide fiber, polyester fiber, aramid fiber, rayon fiber, polysulfone fiber, and ultrahigh molecular weight polyethylene fiber.
- the material is preferably a polyamide fiber or a polyester fiber excellent in mass productivity and economy.
- polyamide fibers examples include nylon 6, nylon 66, nylon 12, nylon 46, copolymer polyamide of nylon 6 and nylon 66, and copolymer polyamide obtained by copolymerizing nylon 6 with polyalkylene glycol, dicarboxylic acid, amine, and the like.
- the fiber which consists of etc. is illustrated.
- nylon 6 fiber and nylon 66 fiber are preferable because of their particularly excellent strength.
- polyester fibers examples include fibers made of polyethylene terephthalate, polybutylene terephthalate, and the like.
- the polyester fiber may be a fiber made of a copolymer polyester obtained by copolymerizing polyethylene terephthalate or polybutylene terephthalate with an aliphatic dicarboxylic acid such as isophthalic acid, 5-sodium sulfoisophthalic acid, or adipic acid as an acid component. .
- These synthetic fibers have thermal stabilizers, antioxidants, light stabilizers, smoothing agents, antistatic agents, plasticizers, thickeners to improve productivity and properties in the spinning / drawing process and processing process.
- Additives such as agents, pigments and flame retardants may be included.
- the cross-sectional shape of the single fiber of the synthetic fiber may be a circular cross section, and may be a flat cross section in addition to the circular cross section.
- the flatness defined by the ratio (D1 / D2) of the major axis (D1) to the minor axis (D2) is 1.5 or more. It is preferable that it is, and it is more preferable that it is 2.0 or more. Further, the flatness is preferably 4 or less, and more preferably 3.5 or less.
- the flat cross-sectional shape may be a geometrically true elliptical shape, a rectangular shape, a rhombus shape, a saddle shape, or the like. Further, the flat cross-sectional shape may be a combination of these. Further, the cross-sectional shape may be a protrusion, a dent, or a hollow part partially formed on the basis of the above.
- the same synthetic fiber yarn is used as the warp and the weft.
- “the same synthetic fiber yarn is used as a warp and a weft” is composed of the same type of polymer for both the warp and the weft, the warp and the weft have the same single fiber fineness, and both the warp and the weft It has the same total fineness.
- the same type of polymer refers to polymers having a common main repeating unit of polymers such as nylon 66 and polyethylene terephthalate. For example, even a combination of a homopolymer and a copolymer is preferably used as the same kind of polymer in the present embodiment. Furthermore, if there is a copolymer component, and if copolymerization, the types and amounts of copolymer components are the same combination, it is not necessary to distinguish between warp and weft, which is preferable in production management.
- the synthetic fiber yarn used as the ground yarn of the fabric is preferably a synthetic fiber filament having a single fiber fineness of 1 to 7 dtex.
- the single fiber fineness is 7 dtex or less, voids between single fibers in the resulting woven fabric are reduced, and the fiber filling effect is further improved.
- the air permeability of the obtained base fabric is likely to be reduced.
- the single fiber fineness is 7 dtex or less, an effect of reducing the rigidity of the synthetic fiber filament can be obtained. Therefore, the storing property of the airbag using the obtained base fabric is easily improved.
- the total fineness of the synthetic fiber yarn used as the ground yarn of the woven fabric is preferably 150 to 1000 dtex.
- the total fineness refers to the fineness of one woven yarn constituting the fabric structure.
- the fineness is a value by which the fineness fineness is measured at a predetermined load of 0.045 cN / dtex according to JIS L 1013: 2010 8.3.1 A method.
- the strength of the resulting fabric can be easily maintained. Further, when the total fineness is less than 150 dtex, in the formation of the warp bending structure described later, the weft tends to have low rigidity, the warp bending structure does not increase, the contact length between the warp and the weft does not increase, There is a tendency for the slip resistance of the fibers in the direction to be insufficient. Moreover, when the total fineness is less than 150 dtex, the obtained base fabric tends not to have a desired low air permeability.
- the airbag using the obtained base fabric is easily maintained in compactness and low air permeability during storage.
- the total fineness is preferably 200 dtex or more, and more preferably 300 dtex or more. Further, the total fineness is preferably 700 dtex or less, and more preferably 500 dtex or less.
- both the warp and the weft are preferably 8.0 cN / dtex or more, and more preferably 8.3 cN / dex or more. Further, the tensile strength is preferably 9.0 cN / dtex or less, and more preferably 8.7 cN / dtex or less.
- the structure of the fabric of this embodiment is not particularly limited as long as the fabric defined in this embodiment is obtained.
- the texture of the woven fabric is particularly preferably a plain weave from the viewpoint of compact storage.
- the woven density of the woven fabric may vary depending on whether it is a woven fabric that is resin-processed or a non-resin-processed fabric, and the fineness of the woven yarn.
- the cover factor is preferably 1800 to 2500 in order to achieve both low air permeability and high slip resistance. In general, when the cover factor is 1800 to 2500, warp looseness is likely to occur at the ears, and the warp density at the ears tends to be high.
- the loom according to the present embodiment can be effectively employed in the production of a fabric having a cover factor of less than 1800 or more than 2500.
- the resulting woven fabric is likely to exhibit the above-described effects.
- the entangled yarn and the reinforcing yarn may be driven into the ear portion during weaving.
- the entanglement yarn and the reinforcing yarn are used for forming a woven ear.
- Tangled yarn also called Reno, tightens the wefts at both warp ends to form ears to prevent fraying of the ears.
- a planetary gear is generally used.
- a planetary gear torsion system is employed.
- the method for forming the ear may be other methods.
- the material, type, and fineness of the entangled yarn are appropriately selected depending on the type of ground yarn and the weave density. The number used is preferably 2 or more, preferably 2 at each end.
- As the entangled yarn a monofilament having excellent ear fastening performance is generally used. A multifilament may be used as the entanglement yarn.
- the material of the entangled yarn is preferably the same nylon as the material of the ground yarn. Polyester may be used for the entanglement yarn.
- the fineness of the entangled yarn is preferably 33 dtex or less. When the fineness exceeds 33 dtex, fraying may occur at the ear portion of the base fabric, and when the base fabric is wound around a single roll in a long length, the ear height is increased and wrinkles are likely to occur.
- the fineness is preferably 5 to 22 dtex.
- ⁇ “Threading” is used for the purpose of preventing the formation of ears of the base fabric, ear fraying, and ear tearing, similarly to the entangled yarn, and is arranged on both sides of the warp to assist the entangled yarn.
- the planetary device is not used for the yarn addition.
- the material, type and fineness of the yarn increase are appropriately selected depending on the type and weave density of the ground yarn.
- a monofilament with excellent ear fastening performance is preferably used as the yarn increasing.
- the number of yarns is, for example, 2 to 10 at both ends.
- the fineness of the yarn addition is preferably 33 dtex or less.
- the fineness is preferably 5 to 22 dtex.
- the entangled yarn and the additional yarn are yarns that do not have crimps, that is, non-processed yarns.
- crimped yarns may be used as long as there are no ear heights, ear suspensions, or wrinkles.
- a processed yarn such as a crimped yarn.
- the material of the yarn addition is preferably the same as the material of the ground yarn.
- the ground yarn is often nylon. Therefore, it is preferable that the yarn increase is nylon. Further, polyester may be used for the yarn addition.
- the fabric structure is preferably a plain weave.
- the texture of the woven fabric may be oblique weaving, satin weaving, or the like depending on the characteristics required for the base fabric.
- the fabric manufactured in the present embodiment is for an airbag base fabric
- the fabric is woven by a water jet loom and then the base fabric is dried or the oil agent adhering to the raw yarn is removed. Or scouring and setting to remove wrinkles.
- the base fabric width after weaving is preferably 160 cm or more, more preferably 180 cm or more, and even more preferably 185 cm or more. Moreover, it is preferable that a base fabric width is 250 cm or less. When the width of the base fabric is within the above range, it is effective in that a woven fabric having a small woven density difference at the center portion of the end portion can be obtained for the woven fabric width. When the width of the base fabric exceeds 250 cm, loss at the time of cutting when manufacturing the airbag is likely to occur.
- the “base fabric width” is the width of the main body of the fabric excluding the ears.
- the fabric according to the present embodiment has a small difference in weave density not only when the width of the base fabric is 160 cm or more, but also when the width is particularly wide such as 185 cm or more. Thus, it can be said that it is a particularly remarkable effect that a fabric having a small woven density difference is obtained in a wide woven fabric.
- the woven fabric in the partitioned region has a small woven density difference between the central portion and both end portions, and a small difference in air permeability.
- the fabric also exhibits sufficient tensile strength and elongation at break. Such a fabric is useful as an airbag or the like by being sewn.
- a loom according to an embodiment of the present invention includes a full-width temple device for a loom (hereinafter also simply referred to as a temple device), which will be described later. First, an outline of the loom will be described.
- FIG. 3 is a schematic plan view of a loom including the temple device of the present embodiment.
- the loom 1 is supplied from a warp supply device (not shown) and has a plurality of warps 2 aligned in the longitudinal direction, a reed 3 through which the warp 2 is passed, and a temple device 4 disposed on the downstream side of the reed 3.
- a weft nozzle 5 disposed between the reed 3 and the temple device 4; a weft 6 which is suitably fed out in the direction orthogonal to the warp 2 from the weft nozzle 5 and inserted into the weft 2; It mainly includes a weft cutter 7 for cutting the weft 6 driven in the direction of the temple device 4.
- the temple device 4 is introduced with a fabric 8 formed by wefts 6 being driven by the reed 3.
- the temple device 4 is a device for preventing wear of the reed 3 due to expansion and contraction and warp breakage when weaving with the loom 1, and is attached before weaving.
- the fabric 8 led out from the temple device 4 is wound up by a winding device (not shown) arranged on the downstream side.
- the resulting woven fabric 8 has a width (W) of the woven fabric 8 on the horizontal axis and a density ratio ((ab) / b) of the woven fabric 8 multiplied by 100 (100 ⁇ (ab) / b))
- the vertical axis represents the width (W) of the fabric 8 and the density ratio of the fabric 8 multiplied by 100 (100 ⁇ (ab) / b) It is characterized by being inside.
- b is the average value of the warp density (line / 2.54 cm) of the central part 100 mm of the woven fabric 8.)
- Such woven fabric 8 is woven between the central portion and both end portions. The density difference is small and the difference in air permeability is small. In addition, the fabric 8 exhibits sufficient tensile strength and elongation at break. Such a fabric 8 is useful as an airbag or the like by being sewn.
- FIG. 4 is a schematic side view of the temple device 4 of the present embodiment.
- the temple device 4 of the present embodiment is a so-called bar temple, and a fabric gripping bar 9 (grip weaving gripping rod) for gripping the fabric 8 during weaving, and a pair of upper and lower gripping members (over the entire width of the fabric 8) ( The supporting member 10 and the pressing member 11) are mainly provided.
- the fabric 8 is introduced so as to be gripped by the support member 10 and the fabric gripping bar 9 along the hammering direction A ⁇ b> 1.
- the fabric 8 introduced into the temple device 4 is wound around the outer peripheral surface of the fabric gripping bar 9.
- the fabric 8 is gripped by the fabric gripping bar 9 and the pressing member 11, and is led out in the striking direction A ⁇ b> 1 along the upper surface of the pressing member 11. At this time, the fabric 8 is tensioned by a winding device disposed on the downstream side of the temple device 4. For this reason, the fabric gripping rod 9 around which the fabric 8 is wound is appropriately pressed against the support member 10 and the pressing member 11.
- the fabric gripping rod 9 moves slightly in the kitting direction A1, so that the force gripped by the support member 10 and the pressing member 11 is temporarily weakened. It is done. At that time, the fabric 8 is fed out along with the rotation of the fabric gripping bar 9 and moved in the hammering direction A1. Thereafter, the fabric 8 is again tensioned by the winding device. As a result, the fabric gripping rod 9 moves to the upstream side in the hammering direction A1 and is pressed against the support member 10 and the pressing member 11 again.
- the rear end portion (before weaving) of the fabric 8 formed by the beaten wefts 6 moves to the downstream side in the beating direction A ⁇ b> 1, and an ejection 81 can occur.
- the end portion 81 in the width direction of the fabric is likely to have a large protrusion 81 as compared with the central portion.
- the loom may stop the weaving operation when fluff occurs in the fabric.
- the size of the squeeze 81 (the squeeze amount) is determined when the temple device 4 is positioned at the upstream end in the striking direction A1 and the scissor 3 is located at the most upstream side in the striking direction A1. Is the maximum distance from the weft thread 6 that has been beaten at the end (see the protruding amount d2 in FIG. 1).
- the temple device 4 of the present embodiment suppresses such a squeeze 81 that occurs at the time of striking.
- each configuration will be described.
- the temple apparatus 4 of this embodiment has the characteristics in the fabric holding
- the support member 10 is a member to which the fabric gripping bar 9 and the pressing member 11 are attached, and is fixed to the support base 12.
- the support member 10 is formed on an attachment portion 10a attached to the support base 12, an edge portion 10b extending obliquely upward on the upstream side in the strike direction A1 from the end portion of the attachment portion 10a, and an upper side of the attachment portion 10a.
- Engaged portion 10c is a substantially flat plate-like member formed on the upper surface of the mounting portion 10a, and a recessed portion that is depressed in the strike direction A1 is formed on the side surface.
- An engaging portion 11b of a pressing member 11 described later is engaged with the recess.
- the holding member 11 is a member for holding the fabric holding bar 9 together with the support member 10, and has a substantially flat plate-like pressing portion main body 11 a and an obliquely lower side downstream of the striking direction A 1 from the lower surface of the pressing portion main body 11 a. And an extended engaging portion 11b.
- the upstream end portion in the striking direction A1 is curved toward the obliquely lower side on the upstream side in the striking direction A1 (curved portion).
- the holding member 11 and the supporting member 10 are arranged so that the end of the curved portion and the end of the edge portion 10b are separated from each other, and the fabric holding rod 9 is restrained from falling off to the upstream side in the punching direction A1. To do.
- the engaging portion 11b is slightly smaller in size than the recessed portion of the engaged portion 10c, and is fitted into the recessed portion. Therefore, the pressing member 11 can rotate by a predetermined angle with the engaging portion 11b as a fulcrum in a state where the engaging portion 11b is fitted in the recess.
- the fabric gripping bar 9 is a bar-shaped member for gripping the fabric 8 during weaving.
- FIG. 5 is a schematic plan view of the fabric gripping bar 9 provided in the temple device 4 of the present embodiment.
- FIG. 6 is a schematic plan view of a modified example (fabric gripping bar 9a) of the fabric gripping bar 9 of the present embodiment.
- the fabric gripping bar can take two forms (or both).
- mode 1 one mode will be described as the fabric gripping bar 9 in the present embodiment
- mode 2 will be described as the fabric gripping bar 9a of the modified example. To do.
- the fabric grip rod 9 of the present embodiment includes a main body portion 91 and reinforcing portions 92 provided at both ends of the main body portion 91 in the axial direction A2 of the fabric grip rod 9.
- the reinforcing portion 92 is made of a material (second material) having a Young's modulus larger than that of the material (first material) constituting the main body portion 91.
- the total length in the axial direction of the reinforcing portion 92 is 10 mm or more and less than 60 mm.
- the Young's modulus is a value measured based on the “JIS Z 2280 strain gauge method”.
- the main body 91 is a main part of the fabric gripping bar 9 and is a relatively long bar-like part.
- a 1st material which comprises the main-body part 91 what is necessary is just a material with a Young's modulus smaller than the 2nd material mentioned later.
- examples of such materials include resins such as nylon and polyoxymethylene, and metals such as stainless steel, brass, and aluminum.
- the first material is preferably a material having a low surface hardness so that the resulting woven fabric 8 is hardly damaged. More specifically, the first material is preferably a resin such as nylon or polyoxymethylene.
- the surface hardness is referred to JIS7202-2, Plastic—How to obtain hardness—Part 2: Rockwell hardness measured based on Rockwell hardness.
- the first material is preferably one whose Rockwell hardness can be measured on any scale of L scale, R scale, and M scale. Among these, the first material is more preferably 150 or less on the L scale. Furthermore, the first material is preferably 100 or less on the M scale, and more preferably 90 or less. Alternatively, the first material is preferably 150 or less on the R scale, and more preferably 130 or less. Further, the surface of the fabric gripping rod is damaged by the applied stress, and the surface of the damaged fabric gripping rod may come into contact with the fabric.
- the fabric gripping rod needs to have a hardness that does not cause damage due to stress.
- the lower limit of such hardness is preferably 10 or more and more preferably 50 or more on the M scale.
- the value of surface hardness differs greatly between resin and metal. For this reason, it is difficult to measure the surface hardness of the resin and the metal by the same method, and to compare and compare the values. Therefore, in the present embodiment, it is more preferable that the surface of the fabric 8 is not damaged, the Rockwell hardness is 100 or less on the M scale, and 150 or less on the R scale. A metal that is determined and is apparently having a surface hardness greater than these is determined to be “hard”.
- the length of the main body 91 is not particularly limited.
- the length of the main body 91 is appropriately adjusted according to the full width of the fabric 8 to be woven, the length of a reinforcing portion 92 described later, and the like.
- the thickness (diameter) of the main body 91 is not particularly limited.
- the thickness of the main body 91 is appropriately adjusted according to the strength (material) and the like.
- the thickness of the main body 91 is 7 to 10 mm.
- the cross-sectional shape of the main body 91 is not particularly limited.
- the cross-sectional shape of the main body 91 is preferably circular from the viewpoint of hardly damaging the surface of the fabric 8 and gripping the fabric 8 evenly.
- the surface shape of the main body 91 is not particularly limited.
- the surface shape of the main body 91 may be uneven or may be a flat surface with no unevenness. It is preferable that the surface shape of the main body 91 is formed with irregularities from the viewpoint of easily suppressing the protrusion 81 and obtaining the effect of extending the fabric 8.
- the unevenness processing include a unified coarse thread (described in JIS B 0206), a unified fine thread (described in JIS B 0208), a knurled thread (described in JIS B 0951), and the like.
- the reinforcing part 92 is a part provided at both ends of the main body part 91, and is a bar-like part similar to the main body part 91.
- the reinforcing portion 92 may be configured as a separate member from the main body 91 or may be a member formed integrally with the main body 91.
- the reinforcement part 92 may be integrally formed by being connected with the main-body part 91, and the reinforcement part 92 may be formed in a part of the textile-grip stick
- the reinforcing portion 92 and the main body portion 91 may be arranged side by side without being connected to the support member 10 described above.
- the reinforcing portion 92 is made of a second material having a Young's modulus larger than that of the first material.
- a second material is preferably a material having a Young's modulus of 10 GPa or more, more preferably a material of 100 GPa or more, although it depends on the first material.
- the second material include resins such as nylon and polyoxymethylene, and metals such as stainless steel, brass, and aluminum.
- the second material is made of a resin from the viewpoint that the obtained fabric 8 is hardly damaged.
- the second material is preferably made of metal from the viewpoint of being able to maintain a high fabric gripping force and having high rigidity. As described above, the second material may be appropriately selected according to the desired effect.
- the Rockwell hardness measured by the test method of ASTM D785 is referred to, as with the main body portion 91.
- the second material is preferably 100 or less, more preferably 90 or less on the M scale.
- the second material is preferably 150 or less, more preferably 130 or less on the R scale.
- the length of the reinforcement part 92 should just be 10 mm or more, and it is preferable that it is 15 mm or more. Moreover, the length of the reinforcement part 92 should just be less than 60 mm, and it is preferable that it is 50 mm or less.
- the length of the reinforcing portion 92 is less than 10 mm, the stress that is pressed against the supporting member 10 and the pressing member 11 tends to be small in the reinforcing portion 92. For this reason, the fabric gripping rod 9 tends to have a weak gripping force on the fabric 8. As a result, the temple device 4 tends not to sufficiently suppress the protrusion 81.
- the length of the reinforcing portion 92 is 60 mm or more, the temple device 4 is difficult to obtain the effect of suppressing the protrusion 81.
- the thickness (diameter), cross-sectional shape, and surface shape of the reinforcing portion 92 are not particularly limited.
- the thickness, cross-sectional shape, and surface shape of the reinforcing portion 92 are preferably the same as those of the main body portion 91.
- the aspect 1 is an aspect in which the outer peripheral surface of the reinforcement part 92 contains the part to which the knurling process or the threading process was given.
- FIG. 5 illustrates a case where the outer peripheral surface of the reinforcing portion 92 is knurled.
- “Knurling” is a French word meaning “jagged” and is also referred to as “Knurling”. Further, “knurling” refers to forming mesh-like irregularities.
- flare of the obtained base fabric is suppressed by the concavo-convex portion formed on the fabric gripping bar 9. Therefore, the fabric gripping rod 9 according to the present embodiment only needs to be provided with unevenness that exhibits such an effect.
- a portion where such irregularities are formed is referred to as a knurled portion. Therefore, for example, even when the unevenness is formed by a method other than knurling, when the obtained fabric gripping rod 9 has the same effect, the “knurling portion provided in this embodiment” is provided. Corresponds to a “textile gripping rod”.
- a knurled portion is formed by knurling.
- the knurling method includes a cutting method by cutting and a rolling method in which a dedicated knurling tool is pressed against the surface of the fabric gripping rod and plastically deformed.
- the method for forming the knurled portion may be any method.
- the knurled eyes include "Hirame” and "Ayame” (JIS B 0951). In the present embodiment, from the viewpoint of more reliably holding the fabric 8, the knurled eye is preferably “Ayame”.
- the diameter of the fabric gripping bar 9 at the position where the knurled portion is provided is preferably 5 mm or more, and more preferably 8 mm or more. Further, the diameter of the fabric gripping bar 9 at the position where the knurled portion is provided is preferably 15 mm or less, and more preferably 12 mm or less. When the diameter is less than 5 mm, the fabric gripping rod 9 tends to have a low gripping force and may be pushed out. On the other hand, when the diameter exceeds 15 mm, the strength of the fabric 8 tends to decrease.
- the knurled eye is preferably 10th or more.
- a knurl is 40th or less. When the knurled stitch is less than 10th, the strength of the resulting woven fabric tends to decrease. On the other hand, when the knurled stitch exceeds 40th, the fabric gripping rod tends to have a low gripping force and may be pushed out.
- the lengths of the knurled portions (reinforcing portions 92) at both ends of the present embodiment are preferably 15 mm or less, respectively.
- the length of the knurled portion is less than 10 mm, the fabric 8 is not firmly gripped, and there is a tendency that a difference in weave density is likely to occur in the base fabric.
- the gripping force of the fabric gripping rod 9 becomes too strong, and the tensile strength and breaking elongation of the fabric 8 tend to decrease.
- a threaded part subjected to threading may be formed.
- the threaded portion is a portion having a coiled protrusion shape (thread) on the outer surface of a cylinder or cylinder.
- the surface shape of the screw is not particularly limited.
- the screws are triangular such as unified coarse screws (described in JIS B 0206), unified fine screws (described in JIS B 0208), knurled eyes (described in JIS B 0951), and the like.
- a screw is preferred.
- the screw may be a trapezoidal screw, a square screw, a sawtooth screw, a round screw, or the like.
- aspect 2 has the large diameter part 92b and the small diameter part 92c in which the reinforcement part 92a of the textile-grip stick 9a was formed coaxially, and the small diameter part 92c is a main-body part. It is the aspect with which it was mounted
- the main body portion 91a is the same as the main body portion (main body portion 91, see FIG. 5) in common matters except that a fitting hole in which a small diameter portion 92c described later is embedded is formed.
- the large-diameter portion 92b has a larger diameter than the small-diameter portion 92c described later, and is a portion formed coaxially with the small-diameter portion 92c.
- the surface shape of the outer surface of the large diameter portion 92b is not particularly limited.
- the outer surface of the large diameter portion 92b may have a surface shape similar to that of the main body portion 91a, and the knurling process or the threading process described in the aspect 1 may be performed. Since the outer peripheral surface of the large-diameter portion 92b is knurled or threaded, the fabric 8 obtained by using the loom including the temple device including the fabric gripping rod 9a is used to reinforce the fabric gripping rod 9a.
- the portion 92a can be gripped more reliably. As a result, the weave 8 is more difficult to retreat, and the difference in weave density between the center and both ends is further reduced. Therefore, the woven fabric 8 has a smaller woven density difference between the central portion and both end portions, and further reduces the difference in air permeability. Further, the fabric 8 exhibits further excellent tensile strength and breaking elongation.
- the diameter of the large diameter portion 92b is preferably the same as the diameter of the main body portion 91a.
- the diameter of the large-diameter portion 92b is the same as the diameter of the main body portion 91a” means that the ratio of the “diameter of the main body portion 91a” to the “diameter of the large-diameter portion 92b” is 100 ⁇ . It means 2.5%.
- the material of the large diameter portion 92b is the same as that of the reinforcing portion 92 described above in common matters.
- the small diameter portion 92c has a smaller diameter than the large diameter portion 92b and is a portion embedded in the main body portion 91a. More specifically, the shape of the small diameter portion 92c is not particularly limited by embedding the small diameter portion 92c in fitting holes formed at both ends of the main body portion 91a.
- the small diameter portion 92c may be a columnar shape, a prismatic shape, various polygonal shapes, or an indefinite shape.
- the shape of the fitting hole of the main-body part 91a is a shape complementary to the small diameter part 92c so that the small diameter part 92c may be embedded without gap.
- the fitting hole is preferably a cylindrical hole having a diameter that is the same as or slightly different from the outer diameter of the small-diameter portion 92c.
- the diameter of the small-diameter portion 92c only needs to be large enough for the reinforcing portion 92a to be properly positioned on the main body portion 91a.
- the diameter of the small diameter portion 92c is preferably 2 mm or more, and more preferably 4 mm or more.
- the diameter of the small diameter part 92c should just be smaller than a large diameter part.
- the material of the small diameter portion 92c is not particularly limited.
- the material of the small diameter portion 92c may be the same as that of the large diameter portion 92b (that is, it may be the second material) or may be different.
- the dimensions of the large diameter portion 92b and the small diameter portion 92c can be adjusted.
- the total axial length of the large-diameter portion 92b exceeds 0 mm and is 5 mm or more.
- the total length of the large diameter portion 92b in the axial direction is preferably 15 mm or less, and more preferably 10 mm or less.
- the temple device 4 is configured such that when the urging 81 is pushed in by the heel 3, the fabric gripping bar 9 moves in the lashing direction A ⁇ b> 1. A strong stress is applied along.
- the protrusion 81 is formed so that the end portion in the width direction of the fabric 8 is larger than the center portion. Therefore, the stress is easily applied to the reinforcing portion 92 of the fabric gripping bar 9.
- the second material constituting the reinforcing portion 92 has a Young's modulus greater than that of the first material constituting the main body portion 91.
- the fabric gripping bar 9 has a high bending rigidity and is not easily deformed by a stress applied at the time of hammering.
- the distance between the fabric gripping bar 9 and the supporting member 10 and the pressing member 11 is shortened when the temple device 4 is beaten, and the temple device 4 can continue to firmly grip the fabric 8 wound around the fabric gripping bar 9. Therefore, the protrusion 81 is kept small.
- synthetic fiber filament yarn is used as warp and weft.
- a warp with a fineness according to the fabric design is warped and applied to the loom.
- wefts are prepared.
- the synthetic fiber filament yarn used for the warp and the weft is preferably the same in terms of the quality of the base fabric in terms of the post-process.
- the loom it is preferable to use a water jet loom because the generation of warp fluff during weaving is small, high-speed weaving is relatively easy and productivity is high.
- a weft length measuring device When weaving with a water jet loom, it is preferable to select a weft length measuring device with restrained flight.
- a water jet loom having a device for winding a weft for one pick around a length measuring drum by rotating a guide or a device for winding a weft for one pick by rotating the drum of the length measuring device and blowing by a blower is used. It is preferable.
- a free-drum type length measuring device used for an air jet loom loom applies a brake with a locking pin when the weft of one pick is completed. Therefore, the tension applied to the weft is high, and the retreat of the knitting mouth of the ear portion becomes large. As a result, even if used, the effect is poor.
- restraint flying is when the weft of one pick is wound around the drum of the length measuring device by guide rotation or drum rotation, blower by blower, and when the wound weft is finished unwinding from the length measuring device , It means the state of flying with the brake applied to the weft. With restraint flight, the retraction of the ear weave is reduced as compared to the free drum type restraint flight.
- the warp tension is preferably adjusted to 50 cN / line or more, and more preferably adjusted to 100 cN / line or more.
- the warp tension is preferably adjusted to 250 cN / line or less, more preferably 200 cN / line or less.
- the warp subjected to the tension described above pushes and bends the weft so that the tissue restraint force of the fabric in the weft direction can be easily increased, the anti-displacement of the fabric is improved, and the bag as an airbag Air leakage due to misalignment of the sewn portion when forming the wire is easy to be suppressed.
- the warp tension is less than 50 cN / piece, the contact area between the warp and the weft in the woven fabric is difficult to increase, and the sliding resistance of the obtained base fabric is not sufficiently obtained.
- gap between single fibers is hard to be reduced, and it is hard to obtain low air permeability sufficient for the base fabric obtained.
- the warp tension exceeds 250 cN / string, there is a tendency that the warp tends to generate fluff due to rubbing with heald mail.
- Examples of methods for adjusting the warp tension within the above range include a method for adjusting the warp feed speed of the loom, a method for adjusting the weft driving speed, and the like. Whether the warp tension is actually within the above range during weaving can be determined, for example, by measuring the tension applied to one warp with a tension measuring instrument between the warp beam and the back roller during operation of the loom. Can be confirmed.
- the back roller height is generally set at a position 10 to 30 mm higher than the horizontal position, for example, so that the difference between the upper thread traveling line length and the lower thread traveling line length is different.
- the method of attaching is illustrated.
- a cam drive system is adopted for the opening device, and the dwell angle on one side of the upper thread / lower thread is set to 100 degrees from the other. A method of taking a larger value is exemplified.
- processing steps such as scouring and heat setting may be employed as necessary after the weaving step.
- the obtained base fabric may be coated with a resin or the like on the surface of the base fabric or a coated fabric with a film attached thereto.
- the loom used in the manufacturing method of the present embodiment includes the temple device including the above-described fabric gripping rod. Therefore, by using such a loom, the fabric is more reliably gripped by the reinforcing portion of the fabric gripping bar. As a result, the weave is less likely to recede, and the difference in weave density between the center and both ends becomes smaller. Therefore, the resulting woven fabric has a smaller woven density difference between the center and both ends, and a smaller difference in air permeability. The resulting woven fabric also exhibits better tensile strength and elongation at break.
- an airbag can be manufactured by cutting a fabric according to a cutting pattern, sewing it into a bag shape, and attaching an accessory device such as an inflator.
- the obtained airbag can be used for a driver's seat, a passenger seat and a rear seat, a side surface, a knee, a ceiling airbag, and the like.
- the obtained airbag is particularly suitably used as a driver seat or passenger seat airbag requiring a large restraining force.
- the cutting of the fabric is usually performed by stacking a plurality of resin processed fabrics and punching with a knife.
- the edge of the cut product is easily frayed by punching with a knife, and is usually cut one by one with a laser cutter.
- the fabric of this embodiment has no flare in the vicinity of the ear end. Therefore, the woven fabric is easily cut into a designed shape and is easy to sew.
- the airbag of the present embodiment is functionally superior in that the form of the airbag is as designed and can be finished in an accurate form, and has high burst strength. Further, since the woven fabric used for the air bag has a small flare, there is little waste loss, it can be used effectively as much as possible, and it is advantageous in terms of cost.
- the embodiment of the present invention has been described above.
- the present invention is not particularly limited to the above embodiment.
- the above-described embodiments mainly describe the invention having the following configuration.
- the width (W) of the woven fabric is taken on the horizontal axis, and the value obtained by multiplying the density ratio ((ab) / b) of the woven fabric by 100 (100 ⁇ (ab) / b) is taken on the vertical axis.
- the woven fabric has a width (W) of the woven fabric and a value obtained by multiplying the density ratio of the woven fabric by 100 (100 ⁇ (ab) / b) within a region defined by the following six points. .
- the woven fabric in the partitioned region has a small woven density difference between the central portion and both end portions, and a small difference in air permeability.
- the fabric also exhibits sufficient tensile strength and elongation at break.
- Such a fabric is useful as an airbag or the like by being sewn.
- the reinforcing portion includes a portion whose outer peripheral surface is knurled or threaded.
- the reinforcing portion has a large-diameter portion and a small-diameter portion that are formed on the same axis, and the small-diameter portion is embedded in the main-body portion, thereby being attached to the main-body portion.
- the fabric is gripped by the reinforcing portion of the fabric gripping rod by using, for example, a loom equipped with a temple device or the like including a woven gripping rod for fabric.
- a loom equipped with a temple device or the like including a woven gripping rod for fabric.
- the obtained woven fabric has a small woven density difference between the center portion and both end portions, and a difference in air permeability.
- the resulting woven fabric exhibits sufficient tensile strength and elongation at break.
- the “ear end portion” of the fabric refers to the outermost end portions on the left and right sides where the ear portions are formed.
- the outer diameter of the large-diameter part and the outer diameter of the main body part are the same.
- the fabric is gripped more reliably by the reinforcing portion of the fabric gripping rod.
- the weave is less likely to recede, and the difference in weave density between the center and both ends becomes smaller. Therefore, the resulting woven fabric has a smaller woven density difference between the center and both ends, and a smaller difference in air permeability.
- the resulting woven fabric exhibits sufficient tensile strength and elongation at break.
- the fabric is gripped more reliably by the reinforcing portion (particularly the large diameter portion) of the fabric gripping rod.
- the weave is less likely to recede, and the difference in weave density between the center and both ends becomes smaller. Therefore, the resulting woven fabric has a smaller woven density difference between the center and both ends, and a smaller difference in air permeability.
- the resulting woven fabric exhibits sufficient tensile strength and elongation at break.
- a full-width temple device for a loom comprising the weaving gripping rod for a woven fabric according to any one of (2) to (4), wherein the weaving gripping rod for the woven fabric has a main body portion and both ends of the main body portion.
- the reinforcing portion is formed of a member having a Young's modulus larger than that of the main body portion, and the axial total length of the reinforcing portion is 10 mm or more and less than 60 mm, and the following aspect 1 Or the full width temple apparatus for looms which has the aspect as described in at least any one of aspect 2.
- FIG. Aspect 1 The reinforcing portion includes a portion whose outer peripheral surface is knurled or threaded.
- the reinforcing portion has a large-diameter portion and a small-diameter portion that are formed on the same axis, and the small-diameter portion is embedded in the main-body portion, thereby being attached to the main-body portion.
- the full-width temple device for a loom includes the above-mentioned weaving gripping rod for the fabric. Therefore, by using a loom including such a full width temple device for a loom, the fabric is more reliably gripped by the reinforcing portion of the fabric gripping bar. As a result, the weave is less likely to recede, and the difference in weave density between the center and both ends becomes smaller. Therefore, the resulting woven fabric has a smaller woven density difference between the center and both ends, and a smaller difference in air permeability. The resulting woven fabric exhibits sufficient tensile strength and elongation at break.
- the loom includes the full-width temple device for the loom including the above-mentioned weaving gripping rod for the woven fabric. Therefore, by using such a loom, the fabric is more reliably gripped by the reinforcing portion of the fabric gripping bar. As a result, the weave is less likely to recede, and the difference in weave density between the center and both ends becomes smaller. Therefore, the resulting woven fabric has a smaller woven density difference between the center and both ends, and a smaller difference in air permeability. The resulting woven fabric exhibits sufficient tensile strength and elongation at break.
- the loom includes the full-width temple device for the loom including the above-mentioned weaving gripping rod for the woven fabric. Therefore, by using such a loom, the fabric is more reliably gripped by the reinforcing portion of the fabric gripping bar. As a result, the weave is less likely to recede, and the difference in weave density between the center and both ends becomes smaller. Therefore, the resulting woven fabric has a smaller woven density difference between the center and both ends, and a smaller difference in air permeability. The resulting woven fabric exhibits sufficient tensile strength and elongation at break.
- Cover factor A cover factor is a value calculated from the total fineness and woven density of a yarn used for warp or weft, and is defined by the following equation (1).
- Dw is the total warp fineness (dtex)
- Df is the total weft fineness (dtex)
- Nw is the weft density of warp yarns (2.52 cm)
- Nf is the weft yarn The weave density (main / 2.54 cm).
- Tensile strength JIS K 6404-3 Based on test method B (strip method), for each of the warp direction and the weft direction, five test pieces were taken from the region divided into five equal parts in the width direction of the fabric, and the yarn was removed from both sides of the width to a width of 30 mm. The test piece was pulled with a constant-speed tension type testing machine at a holding interval of 150 mm and a tensile speed of 200 mm / min until the test piece was cut. The maximum load until the cutting was measured, and the average value was calculated for each of the warp direction and the weft direction.
- Elongation at break JIS K 6404-3 Based on test method B (strip method), for each of the warp direction and the weft direction, five test pieces were taken from the region divided into five equal parts in the width direction of the fabric, and the yarn was removed from both sides of the width to a width of 30 mm. Marks at intervals of 100 mm are attached to the center of these test pieces, and the test pieces are pulled with a constant-speed tension type tester at a gripping interval of 150 mm and a tensile speed of 200 mm / min until the test pieces are cut. The distance between them was read, the breaking elongation was calculated by the following formula, and the average value was calculated for each of the warp direction and the weft direction.
- E [(L-100) / 100] ⁇ 100 (In the formula, E is the elongation at break (%), and L is the distance (mm) between the marked lines at the time of cutting) (8) Fabric density ratio
- the warp density of the fabric was measured according to JIS L 1096: 2010 8.6.1A method. Place the fabric on a flat table and remove unnatural wrinkles and tension, in the region (end region R2) from the widthwise end of the fabric 8 shown in FIG. The number of warp yarns between 2.54 cm was counted at three locations, and the average value of each was calculated. Further, based on the calculated average value, the difference (warp density difference) between the average warp density in the end region R2 and the average warp density in the central region was calculated.
- Air permeability c Measurement was performed by collecting five test pieces of about 20 cm ⁇ 20 cm from the ends of both ears except 10 cm from the ends of the base cloth in the length direction of the base fabric. The larger one of the average values for each of the five ears was defined as the air permeability c.
- Air permeability d From a center point in the width direction of the base fabric, about 20 cm ⁇ 20 cm test pieces were collected in the length direction of the base fabric and measured, and the measured values were measured at five locations. The average value was used.
- Example 1 [Textile gripping rod of full width temple device]
- the fabric gripping rod a main body portion and a reinforcing portion having an axial total length of 5 cm on both sides of the main body portion were used.
- the reinforcement part is made of brass (65% copper, 35% zinc), and is formed on its axis with a length of 1.5 cm, an outer diameter of 8 mm, a large diameter part of 3.5 cm, and an outer diameter of 4 mm.
- the small diameter part was embedded in the main body part, and the one mounted on the main body part was used.
- the outer peripheral surface of the large-diameter portion was knurled by 40th thread by a cutting method.
- the main body is made of polyoxymethylene (an example of the first material) whose surface is threaded, and has an outer diameter of 8.0 mm and a length of 211 cm.
- the total length of the fabric gripping bar was 214 cm.
- Table 1 shows the detailed physical properties of the fabric gripping bar.
- the Young's modulus was measured based on the JIS Z 2280 strain gauge method.
- the Young's modulus of brass was 100 GPa, and the Young's modulus of polyoxymethylene was 3 GPa.
- the Rockwell hardness was measured by the test method of ASTM D785.
- the Rockwell hardness of brass was not measurable on the L, R, and M scales, and the Rockwell hardness of polyoxymethylene was 80 on the M scale.
- a full-width temple device provided with such a fabric gripping rod was prepared.
- this woven fabric was dried at 180 ° C. for 1 minute under the dimensional regulation of 0% width filling and 0% overfeed using a pin tenter dryer, and the warp density was 54.80 pieces / 2.54 cm and the weft density was A fabric roll of 54.52 pieces / 2.54 cm and a width of 205 cm was obtained.
- the cover factor of the obtained woven fabric was 2384.
- Example 2 to 12 Comparative Examples 1 to 4> A woven fabric was produced in the same manner as in Example 1 except that the used fabric gripping rod, weaving conditions, etc. were changed to those shown in Table 1. In Examples 2 to 12, the amount of protrusion on the loom was suppressed to a practically sufficient level. In Comparative Example 1, the amount of protrusion on the loom was larger than that of the example.
- FIG. 7 shows the area defined by the first point (A) to the sixth point (F) shown in FIG. 1 multiplied by 100 for the width and density ratio of the fabrics of the examples and comparative examples.
- FIG. 8 shows that the area defined by the first point (A1) to the sixth point (F1) shown in FIG. 1 is multiplied by 100 to the width and density ratio of the fabrics of the respective examples and comparative examples.
- the fabrics of Examples 1 to 12 are all included in the region defined by the first point (A) to the sixth point (F) shown in FIG. All of these woven fabrics had high tensile strength and elongation at break. Therefore, these woven fabrics were thought to be useful as airbags or the like by being sewn, for example.
- the woven fabrics of Comparative Examples 1 to 4 are not included in the region defined by the first point (A) to the sixth point (F) shown in FIG. The elongation at break decreased. In particular, the tensile strength of the woven fabrics of Comparative Examples 2 to 4 in which the length of the reinforcing portion was 6 cm or more was small.
- the air permeability ratio of the fabric of Example 1 was smaller than the air permeability ratio of the fabric of Comparative Example 1 having the same fabric width.
- the air permeability ratio of the fabric of Example 10 was smaller than the air permeability ratio of the fabric of Comparative Example 3 having the same width of the fabric. Therefore, in comparison with other woven fabrics having the same width, it has been found that the woven fabrics of Examples 1 and 10 are useful as airbags or the like by being sewn.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Auxiliary Weaving Apparatuses, Weavers' Tools, And Shuttles (AREA)
- Woven Fabrics (AREA)
Abstract
Provided is a textile that falls within the range demarcated by the following six points, where the horizontal axis is the width (W) of the textile and the vertical axis is the textile density ratio (value found by multiplying (a-b)/b by 100). First point (A): W=185, 100×(a-b)/b=0.5; second point (B): W=185, 100×(a-b)/b=1.6; third point (C): W=205, 100×(a-b)/b=0.5; fourth point (D): W=205, 100×(a-b)/b=1.8; fifth point (E): W=250, 100×(a-b)/b=1.5; sixth point (F): W=250, 100×(a-b)/b=5.4 (where a is whichever is the greater value of the mean densities of warp (yarns/2.54 cm) at positions 100 mm from the two ends of the textile, and b is the mean density of warp (yarns/2.54 cm) of a 100 mm-wide middle section of the textile).
Description
本発明は、織物、織物の製織用把持棒、織機用全幅テンプル装置、織機、織物の製造方法に関する。より詳細には、本発明は、エアバッグ用基布の製織に好適であり、高品位な織物、製織時の織密度差を小さくし、そのような高品位な織物を製織するための織物の製織用把持棒、織機用全幅テンプル装置、織機、そのような織物の製造方法に関する。
The present invention relates to a woven fabric, a weaving grip rod for a woven fabric, a full-width temple device for a loom, a loom, and a method for manufacturing the woven fabric. More specifically, the present invention is suitable for weaving a base fabric for an air bag, and a high-quality fabric, a fabric for weaving such a high-quality fabric by reducing the difference in weaving density during weaving. The present invention relates to a weaving grip bar, a full width temple device for a loom, a loom, and a method for producing such a fabric.
自動車には、乗員の安全確保のためのエアバッグが装備されている。自動車の衝突事故等の際、衝突等の衝撃がセンサーによって検知される。その後、高温、高圧のガスがエアバッグ内で発生し、このガスによってエアバッグが瞬間的に膨張し、衝突時等に乗員の顔面、前頭部等が保護される。
The car is equipped with an airbag for ensuring the safety of passengers. In the event of a car crash or the like, a shock such as a collision is detected by a sensor. Thereafter, high-temperature and high-pressure gas is generated in the airbag, and the airbag is inflated instantaneously by this gas, so that the occupant's face, frontal head, and the like are protected during a collision or the like.
エアバッグは、一般に、150~1000dtexのナイロン6フィラメント糸またはナイロン6・6フィラメント糸を用いた平織物からなる織布に、耐熱性、難燃性、空気遮断性等の特性を向上させるためのシリコーン樹脂等を塗布した基布を、裁断し、袋体に縫製して作られる。また、樹脂を付与せずに、ポリアミド繊維あるいはポリエステル繊維等の合成繊維フィラメント糸を高密度に製織することにより布帛の通気量を小さくして使用される、いわゆるノンコート布もある。
Air bags are generally used to improve properties such as heat resistance, flame resistance, and air barrier properties to woven fabrics made of plain woven fabric using nylon 6-filament yarn of 150 to 1000 dtex or nylon 6-6 filament yarn. A base fabric coated with silicone resin or the like is cut and sewn into a bag. There is also a so-called non-coated cloth which is used by reducing the air flow rate of the fabric by weaving synthetic fiber filament yarn such as polyamide fiber or polyester fiber with high density without applying resin.
ここで、エアバッグ用の織物は、自動車の衝突事故の際、エアバッグを瞬間的に膨張させ、衝突時等には乗員の顔面、頭部、膝等を保護するために、高強力かつ低通気性が要求される。このため、エアバッグ用の織物は、通常の衣料用の織物に比較して、より高強力の糸を用い、かつ、高密度である必要がある。一般に、この高密度織物を製織する際、織物設計上、たとえば、経糸および緯糸が470dtex、経糸および緯糸の織物密度が、経、緯共に1インチ(2.54cm)あたり55本の平織り組織の場合など、緯糸密度が高くなるほど、織り前の織り口が筬の最前進位置よりも経糸の送出し側に移動する量が大きくなる。
Here, the airbag fabric is highly powerful and low in order to inflate the airbag instantaneously in the event of a car crash and protect the occupant's face, head, knees, etc. Breathability is required. For this reason, it is necessary for the fabric for airbags to use a higher-strength yarn and to have a higher density than the fabric for ordinary clothing. In general, when weaving this high-density fabric, for example, in the case of a fabric design, the warp and weft are 470 dtex, and the warp and weft fabric density is 55 plain weaves per inch (2.54 cm) in both warp and weft. For example, the higher the weft density, the greater the amount by which the weave before weaving moves from the most advanced position of the reed to the warp sending side.
また、緯糸が打ち込まれた後、織り前の左右それぞれの端部でカッターにより緯糸が切断される。この際、切断された緯糸は把持されずフリーとなり、基布の両方の耳端部の緯糸クリンプが大きくなり、それにより逆に耳端部の経糸クリンプが小さくなる。織物把持力が小さいことで緯糸クリンプが大きくなるため、経糸密度が両端部で増加し、織物中央と端部で織密度に差が生じていた。また両端部と端部のクリンプ差が増加することで両方の耳部の経糸張力が低下する。これにより、経糸による緯糸の把持力が低下し、織り前の両耳部の織り口が後退し、両端部の経糸密度は増加し、中央部との密度差が大きくなっていた。しかも、織機回転数を高速化すると、耳端部の織り口が後退する現象が、さらに顕著に表れる。基布耳部の経糸緩みにより、耳部と中央部との布長差が生じ、耳端部が波打ち状態になるフレア(「耳たぶり」とも言う)も発生する。エアバッグ用基布は、裁断、縫製されて袋体に作られる。この場合、エアバッグ用基布を最大限有効利用するため、裁断パターンが設計され、通常、耳端部またはその近傍まで使用される。裁断品の端はほつれやすいため、耳端部近傍部にフレアが発生していると裁断不良を生じやすい。その結果、エアバッグとしての所望の正確な形状が得られず、必要とされる機能も有しなくなる。
Also, after the weft is driven, the weft is cut by the cutter at the left and right ends before weaving. At this time, the cut wefts are not gripped and become free, and the weft crimps at both ear ends of the base fabric increase, and conversely the warp crimps at the ear ends decrease. Since the weft crimp is increased due to the small fabric gripping force, the warp density is increased at both ends, and there is a difference in the weave density between the center and the end of the fabric. Moreover, the warp tension of both ear | edge parts falls because the crimp difference of both ends and an edge part increases. As a result, the gripping force of the weft by the warp was lowered, the wefts of both ears before weaving were retreated, the warp density at both ends was increased, and the density difference from the center was large. In addition, when the speed of the loom is increased, the phenomenon that the weave at the end of the ear recedes appears more remarkably. The looseness of the warp at the base cloth ear causes a difference in the fabric length between the ear part and the center part, and flare (also referred to as “ear knocking”) in which the ear end part is wavy. The airbag fabric is cut and sewn to make a bag. In this case, in order to make the most effective use of the airbag fabric, a cutting pattern is designed and is usually used up to the ear end or the vicinity thereof. Since the edge of the cut product is easily frayed, if a flare is generated in the vicinity of the ear end portion, a cutting defect is likely to occur. As a result, a desired accurate shape as an airbag cannot be obtained, and the required function is not provided.
織り前の両耳部の織り口後退を防止するための種々の試みとして、合成繊維織物からなるエアバッグ用基布において、織物の耳部の経糸の繊度を、基布の本体の経糸の繊度より細くする方法が提案されている(特許文献1)。また、絡み糸の他に増糸を挿入する方法、または絡み糸の組織を変更する方法が提案されている(特許文献2~4)。
As various attempts to prevent weaving at both ears before weaving, in the airbag fabric made of synthetic fiber fabric, the warp fineness of the fabric ear and the warp fineness of the base fabric body A method of making it thinner has been proposed (Patent Document 1). In addition, a method of inserting an additional yarn in addition to the entangled yarn or a method of changing the texture of the entangled yarn has been proposed (Patent Documents 2 to 4).
また、織機の全幅において織物を把持するテンプル装置(織機用全幅テンプル装置ともいう)の端部に追加のテンプル装置を使用し、端部を巻き取り側に引く力を強くする技術や(特許文献5、6)、全幅テンプル装置の織物把持棒の両端部の外径を大きくし、両耳部における織物の巻き取り量を大きくする技術が知られている(特許文献7)。ほかにも、幅の広いリングテンプルを用いる技術が知られている(特許文献8、9)。
In addition, a technique that uses an additional temple device at the end of a temple device (also referred to as a full width temple device for a loom) that grips the fabric in the entire width of the loom, and strengthens the force to pull the end toward the winding side (Patent Literature) 5, 6), a technique is known in which the outer diameters of both ends of the fabric gripping rod of the full width temple device are increased to increase the winding amount of the fabric at both ears (Patent Document 7). In addition, a technique using a wide ring temple is known (Patent Documents 8 and 9).
しかしながら、コスト競争力を求められる現在では、織機の運転の高速化、目的とする織物の広幅化に応えるため、高密度織物を製織する場合、これら特許文献1~4に提案されているような方法では、織機運転の高速化に伴って、緯糸の飛走時の張力が高くなると、緯糸を充分に締め付けることができず、耳部の経糸張力低下、経糸密度の増加を招き、中央部との織密度差は増加する問題がある。
However, at present, where cost competitiveness is required, when weaving a high-density woven fabric in order to respond to the speeding up of the operation of the loom and the widening of the target woven fabric, these patent documents 1 to 4 are proposed. In the method, if the tension during weft flight increases as the loom speed increases, the weft cannot be sufficiently tightened, leading to a decrease in the warp tension at the ear and an increase in the warp density. There is a problem that the difference in weave density increases.
また、特許文献5および特許文献6に記載の技術のように、複数のテンプル装置が使用される場合、中央部または端部のいずれかは、織り前から離れた位置で把持される。そのため、中央部または端部のいずれかに対する把持力が弱くなる。また、把持力が全幅において均等ではないため、迫出しが全幅において充分に抑制されず、織物中央と端部で織密度に差が生じていた。特許文献7に記載の技術においては、織物把持棒の両端部における把持力が充分に向上されない。そのため、迫出しは、必ずしも充分に抑制されず、織物中央と端部で織密度に差が生じていた。さらに、特許文献8および特許文献9に記載の技術によれば、織物把持力が弱く全幅において均一ではない。そのため、基布耳部の迫出しは充分に抑制されないだけではなく、織物中央と端部で織密度に差が生じていた。また、織物がリングテンプルの針により傷付けられるため、外観の悪化、また引張強度が低下しやすい。
Also, as in the techniques described in Patent Document 5 and Patent Document 6, when a plurality of temple devices are used, either the central portion or the end portion is gripped at a position away from the pre-weaving. Therefore, the gripping force with respect to either the central portion or the end portion is weakened. Further, since the gripping force is not uniform over the entire width, the protrusion is not sufficiently suppressed over the entire width, and a difference in the weave density occurs between the center and the end of the fabric. In the technique described in Patent Document 7, the gripping force at both ends of the fabric gripping bar is not sufficiently improved. For this reason, the ejection is not necessarily sufficiently suppressed, and there is a difference in the weave density between the center and the end of the fabric. Furthermore, according to the techniques described in Patent Document 8 and Patent Document 9, the fabric gripping force is weak and not uniform over the entire width. Therefore, not only the protrusion of the base cloth ear part is not sufficiently suppressed, but also a difference in the weave density occurs between the center and the end part of the fabric. Further, since the woven fabric is damaged by the needles of the ring temple, the appearance is deteriorated and the tensile strength is easily lowered.
全幅テンプル装置を用いても織物の端部の迫出しが大きくなる理由は、以下の通りである。すなわち、全幅テンプル装置の織物把持棒は、織物を送り出す必要がある。そのため、織物把持棒は、全幅テンプル装置内で、前後に移動し得る構造になっている。この際、織物の中央部に対し、両端部では、前後移動を阻害するものが無い。その結果、織物把持棒は、端部の方が中央部と比べて移動距離が大きく、織物把持力が低下しやすい。これにより、織物の端部は、迫出しが大きくなりやすい。
The reason why the protruding end of the fabric becomes large even when the full width temple device is used is as follows. That is, the fabric gripping rod of the full width temple device needs to feed out the fabric. Therefore, the fabric gripping rod has a structure that can move back and forth within the full width temple device. At this time, there is nothing that obstructs the back-and-forth movement at both ends with respect to the central portion of the fabric. As a result, the fabric gripping rod has a larger moving distance at the end portion than the center portion, and the fabric gripping force tends to decrease. As a result, the end of the fabric tends to increase in size.
本発明は、このような従来の問題に鑑みてなされたものであり、製織時に発生する中央部と両端部との織密度差が小さい高品位な織物を提供することを目的とする。また、本発明は、製織時の織密度差を小さくし、かつ、迫出しを小さくすることにより、上記高品位な織物を製織するための織物の製織用把持棒、織機用全幅テンプル装置、織機、上記織物の製造方法を提供することを目的とする。
The present invention has been made in view of such a conventional problem, and an object of the present invention is to provide a high-quality woven fabric in which a difference in weaving density between the central portion and both end portions generated during weaving is small. Further, the present invention provides a weaving gripping rod for weaving a high-quality fabric, a full-width temple device for a loom, a loom for weaving the high-quality fabric by reducing the difference in weaving density during weaving and reducing the extrusion. It aims at providing the manufacturing method of the said textile fabric.
上記課題を解決する本発明の一態様の織物は、織物の幅(W)を横軸にとり、前記織物の密度比((a-b)/b)に100を乗じた値(100×(a-b)/b)を縦軸にとる場合において、前記織物の幅(W)と前記織物の密度比に100を乗じた値(100×(a-b)/b)とが、以下の6点で区画される領域内にある、織物である。
第1点(A) W=185、100×(a-b)/b=0.5
第2点(B) W=185、100×(a-b)/b=1.6
第3点(C) W=205、100×(a-b)/b=0.5
第4点(D) W=205、100×(a-b)/b=1.8
第5点(E) W=250、100×(a-b)/b=1.5
第6点(F) W=250、100×(a-b)/b=5.4
(ただし、aは、JIS L 1096:(1999)8.6.1に準拠して測定した、織物の両端部から100mmの位置におけるそれぞれの経密度(本/2.54cm)の平均値のうち、大きい方の値であり、bは織物の中央部100mm幅の経密度(本/2.54cm)の平均値である。) The fabric of one embodiment of the present invention that solves the above-described problems is a value obtained by multiplying the fabric width ratio (W) on the horizontal axis and the density ratio ((ab) / b) of the fabric by 100 (100 × (a When -b) / b) is taken on the vertical axis, the width (W) of the fabric and the density ratio of the fabric multiplied by 100 (100 × (ab) / b) are the following 6 It is a woven fabric in an area defined by dots.
First point (A) W = 185, 100 × (ab) /b=0.5
Second point (B) W = 185, 100 × (ab) /b=1.6
Third point (C) W = 205, 100 × (ab) /b=0.5
Fourth point (D) W = 205, 100 × (ab) /b=1.8
Fifth point (E) W = 250, 100 × (ab) /b=1.5
Sixth point (F) W = 250, 100 × (ab) /b=5.4
(However, a is the average value of each warp density (line / 2.54 cm) at a position of 100 mm from both ends of the woven fabric, measured according to JIS L 1096: (1999) 8.6.1. The larger value is b, and b is the average value of warp density (line / 2.54 cm) of 100 mm width at the center of the fabric.)
第1点(A) W=185、100×(a-b)/b=0.5
第2点(B) W=185、100×(a-b)/b=1.6
第3点(C) W=205、100×(a-b)/b=0.5
第4点(D) W=205、100×(a-b)/b=1.8
第5点(E) W=250、100×(a-b)/b=1.5
第6点(F) W=250、100×(a-b)/b=5.4
(ただし、aは、JIS L 1096:(1999)8.6.1に準拠して測定した、織物の両端部から100mmの位置におけるそれぞれの経密度(本/2.54cm)の平均値のうち、大きい方の値であり、bは織物の中央部100mm幅の経密度(本/2.54cm)の平均値である。) The fabric of one embodiment of the present invention that solves the above-described problems is a value obtained by multiplying the fabric width ratio (W) on the horizontal axis and the density ratio ((ab) / b) of the fabric by 100 (100 × (a When -b) / b) is taken on the vertical axis, the width (W) of the fabric and the density ratio of the fabric multiplied by 100 (100 × (ab) / b) are the following 6 It is a woven fabric in an area defined by dots.
First point (A) W = 185, 100 × (ab) /b=0.5
Second point (B) W = 185, 100 × (ab) /b=1.6
Third point (C) W = 205, 100 × (ab) /b=0.5
Fourth point (D) W = 205, 100 × (ab) /b=1.8
Fifth point (E) W = 250, 100 × (ab) /b=1.5
Sixth point (F) W = 250, 100 × (ab) /b=5.4
(However, a is the average value of each warp density (line / 2.54 cm) at a position of 100 mm from both ends of the woven fabric, measured according to JIS L 1096: (1999) 8.6.1. The larger value is b, and b is the average value of warp density (line / 2.54 cm) of 100 mm width at the center of the fabric.)
本発明の一態様の織物の製織用把持棒は、本体部と、前記本体部の両端に設けられた補強部とを備え、前記補強部は、前記本体部よりもヤング率が大きい部材で構成され、補強部の軸方向の全長は、10mm以上、60mm未満であり、かつ下記態様1または態様2の少なくともいずれか一方に記載の態様を有する、織物の製織用把持棒である。
態様1:前記補強部は、外周面が、ローレット加工、または、ねじ切り加工が施された部分を含む。
態様2:前記補強部は、同軸上に形成された大径部と小径部とを有し、前記小径部が前記本体部中に埋設されることにより、前記本体部に装着されている。 A weaving grip rod for a woven fabric according to one aspect of the present invention includes a main body portion and reinforcing portions provided at both ends of the main body portion, and the reinforcing portion is configured by a member having a Young's modulus larger than that of the main body portion. The reinforcing part has a total length in the axial direction of 10 mm or more and less than 60 mm, and has a mode described in at least one of the followingmodes 1 or 2.
Aspect 1: The reinforcing portion includes a portion whose outer peripheral surface is knurled or threaded.
Aspect 2: The reinforcing portion has a large-diameter portion and a small-diameter portion that are formed on the same axis, and the small-diameter portion is embedded in the main-body portion, thereby being attached to the main-body portion.
態様1:前記補強部は、外周面が、ローレット加工、または、ねじ切り加工が施された部分を含む。
態様2:前記補強部は、同軸上に形成された大径部と小径部とを有し、前記小径部が前記本体部中に埋設されることにより、前記本体部に装着されている。 A weaving grip rod for a woven fabric according to one aspect of the present invention includes a main body portion and reinforcing portions provided at both ends of the main body portion, and the reinforcing portion is configured by a member having a Young's modulus larger than that of the main body portion. The reinforcing part has a total length in the axial direction of 10 mm or more and less than 60 mm, and has a mode described in at least one of the following
Aspect 1: The reinforcing portion includes a portion whose outer peripheral surface is knurled or threaded.
Aspect 2: The reinforcing portion has a large-diameter portion and a small-diameter portion that are formed on the same axis, and the small-diameter portion is embedded in the main-body portion, thereby being attached to the main-body portion.
本発明の一態様の織機用全幅テンプル装置は、上記織物の製織用把持棒を備える織機用全幅テンプル装置であり、前記織物の製織用把持棒は、本体部と、前記本体部の両端に設けられた補強部とを備え、前記補強部は、前記本体部よりもヤング率が大きい部材で構成され、補強部の軸方向の全長は、10mm以上、60mm未満であり、かつ下記態様1または態様2の少なくともいずれか一方に記載の態様を有する、織機用全幅テンプル装置である。
態様1:前記補強部は、外周面が、ローレット加工、または、ねじ切り加工が施された部分を含む。
態様2:前記補強部は、同軸上に形成された大径部と小径部とを有し、前記小径部が前記本体部中に埋設されることにより、前記本体部に装着されている。 A full-width temple device for a loom according to one aspect of the present invention is a full-width temple device for a loom including the above-described weaving gripping rod for a woven fabric, and the weaving gripping rod for the woven fabric is provided at both ends of the main body portion and the main body portion. The reinforcing part is made of a member having a Young's modulus larger than that of the main body part, the axial total length of the reinforcing part is 10 mm or more and less than 60 mm, and the following aspect 1 oraspect 2 is a full-width temple device for a loom having the aspect described in at least one of the items.
Aspect 1: The reinforcing portion includes a portion whose outer peripheral surface is knurled or threaded.
Aspect 2: The reinforcing portion has a large-diameter portion and a small-diameter portion that are formed on the same axis, and the small-diameter portion is embedded in the main-body portion, thereby being attached to the main-body portion.
態様1:前記補強部は、外周面が、ローレット加工、または、ねじ切り加工が施された部分を含む。
態様2:前記補強部は、同軸上に形成された大径部と小径部とを有し、前記小径部が前記本体部中に埋設されることにより、前記本体部に装着されている。 A full-width temple device for a loom according to one aspect of the present invention is a full-width temple device for a loom including the above-described weaving gripping rod for a woven fabric, and the weaving gripping rod for the woven fabric is provided at both ends of the main body portion and the main body portion. The reinforcing part is made of a member having a Young's modulus larger than that of the main body part, the axial total length of the reinforcing part is 10 mm or more and less than 60 mm, and the following aspect 1 or
Aspect 1: The reinforcing portion includes a portion whose outer peripheral surface is knurled or threaded.
Aspect 2: The reinforcing portion has a large-diameter portion and a small-diameter portion that are formed on the same axis, and the small-diameter portion is embedded in the main-body portion, thereby being attached to the main-body portion.
本発明の一態様の織機は、上記織機用全幅テンプル装置を備える織機である。
A loom according to one aspect of the present invention is a loom including the above-described full-width temple device for a loom.
本発明の一態様の織物の製造方法は、上記織機を用いる、織物の製造方法である。
The method for manufacturing a fabric according to one embodiment of the present invention is a method for manufacturing a fabric using the loom.
<織物>
本発明の一実施形態の織物は、織物の幅(W)を横軸にとり、織物の密度比(a-b)/b)に100を乗じた値(100×(a-b)/b))を縦軸にとる場合において、織物の幅(W)と織物の密度比に100を乗じた値(100×(a-b)/b)とが、以下の6点で区画される領域内にある織物である。このような織物を製造する方法は特に限定されない。一例を挙げると、このような織物は、後述する織物の製織用把持棒を備えるテンプル装置を備える織機によって作製され得る。
第1点(A) W=185、100×(a-b)/b=0.5
第2点(B) W=185、100×(a-b)/b=1.6
第3点(C) W=205、100×(a-b)/b=0.5
第4点(D) W=205、100×(a-b)/b=1.8
第5点(E) W=250、100×(a-b)/b=1.5
第6点(F) W=250、100×(a-b)/b=5.4
(ただし、aは、JIS L 1096:(1999)8.6.1に準拠して測定した、織物の両端部から100mmの位置におけるそれぞれの経密度(本/2.54cm)の平均値のうち、大きい方の値であり、bは織物の中央部100mm幅の経密度(本/2.54cm)の平均値である。) <Textile>
The fabric of one embodiment of the present invention has a value (100 × (ab) / b) obtained by multiplying the fabric width ratio (W) on the horizontal axis and the density ratio (ab) / b) of the fabric by 100. ) On the vertical axis, the value obtained by multiplying the fabric width (W) and the fabric density ratio by 100 (100 × (ab) / b) is divided into the following 6 points. It is a woven fabric. The method for producing such a woven fabric is not particularly limited. As an example, such a woven fabric can be produced by a loom including a temple apparatus including a gripping rod for weaving the woven fabric described later.
First point (A) W = 185, 100 × (ab) /b=0.5
Second point (B) W = 185, 100 × (ab) /b=1.6
Third point (C) W = 205, 100 × (ab) /b=0.5
Fourth point (D) W = 205, 100 × (ab) /b=1.8
Fifth point (E) W = 250, 100 × (ab) /b=1.5
Sixth point (F) W = 250, 100 × (ab) /b=5.4
(However, a is the average value of each warp density (line / 2.54 cm) at a position of 100 mm from both ends of the woven fabric, measured according to JIS L 1096: (1999) 8.6.1. The larger value is b, and b is the average value of warp density (line / 2.54 cm) of 100 mm width at the center of the fabric.)
本発明の一実施形態の織物は、織物の幅(W)を横軸にとり、織物の密度比(a-b)/b)に100を乗じた値(100×(a-b)/b))を縦軸にとる場合において、織物の幅(W)と織物の密度比に100を乗じた値(100×(a-b)/b)とが、以下の6点で区画される領域内にある織物である。このような織物を製造する方法は特に限定されない。一例を挙げると、このような織物は、後述する織物の製織用把持棒を備えるテンプル装置を備える織機によって作製され得る。
第1点(A) W=185、100×(a-b)/b=0.5
第2点(B) W=185、100×(a-b)/b=1.6
第3点(C) W=205、100×(a-b)/b=0.5
第4点(D) W=205、100×(a-b)/b=1.8
第5点(E) W=250、100×(a-b)/b=1.5
第6点(F) W=250、100×(a-b)/b=5.4
(ただし、aは、JIS L 1096:(1999)8.6.1に準拠して測定した、織物の両端部から100mmの位置におけるそれぞれの経密度(本/2.54cm)の平均値のうち、大きい方の値であり、bは織物の中央部100mm幅の経密度(本/2.54cm)の平均値である。) <Textile>
The fabric of one embodiment of the present invention has a value (100 × (ab) / b) obtained by multiplying the fabric width ratio (W) on the horizontal axis and the density ratio (ab) / b) of the fabric by 100. ) On the vertical axis, the value obtained by multiplying the fabric width (W) and the fabric density ratio by 100 (100 × (ab) / b) is divided into the following 6 points. It is a woven fabric. The method for producing such a woven fabric is not particularly limited. As an example, such a woven fabric can be produced by a loom including a temple apparatus including a gripping rod for weaving the woven fabric described later.
First point (A) W = 185, 100 × (ab) /b=0.5
Second point (B) W = 185, 100 × (ab) /b=1.6
Third point (C) W = 205, 100 × (ab) /b=0.5
Fourth point (D) W = 205, 100 × (ab) /b=1.8
Fifth point (E) W = 250, 100 × (ab) /b=1.5
Sixth point (F) W = 250, 100 × (ab) /b=5.4
(However, a is the average value of each warp density (line / 2.54 cm) at a position of 100 mm from both ends of the woven fabric, measured according to JIS L 1096: (1999) 8.6.1. The larger value is b, and b is the average value of warp density (line / 2.54 cm) of 100 mm width at the center of the fabric.)
また、織物は、以下の第1点(A1)~第6点(F1)によって区画される領域内にあることが好ましい。
第1点(A1) W=185、100×(a-b)/b=0.5
第2点(B1) W=185、100×(a-b)/b=1.4
第3点(C1) W=205、100×(a-b)/b=0.5
第4点(D1) W=205、100×(a-b)/b=1.4
第5点(E1) W=250、100×(a-b)/b=1.5
第6点(F1) W=250、100×(a-b)/b=5.2 The fabric is preferably in a region defined by the following first point (A1) to sixth point (F1).
First point (A1) W = 185, 100 × (ab) /b=0.5
Second point (B1) W = 185, 100 × (ab) /b=1.4
Third point (C1) W = 205, 100 × (ab) /b=0.5
Fourth point (D1) W = 205, 100 × (ab) /b=1.4
Fifth point (E1) W = 250, 100 × (ab) /b=1.5
Sixth point (F1) W = 250, 100 × (ab) /b=5.2
第1点(A1) W=185、100×(a-b)/b=0.5
第2点(B1) W=185、100×(a-b)/b=1.4
第3点(C1) W=205、100×(a-b)/b=0.5
第4点(D1) W=205、100×(a-b)/b=1.4
第5点(E1) W=250、100×(a-b)/b=1.5
第6点(F1) W=250、100×(a-b)/b=5.2 The fabric is preferably in a region defined by the following first point (A1) to sixth point (F1).
First point (A1) W = 185, 100 × (ab) /b=0.5
Second point (B1) W = 185, 100 × (ab) /b=1.4
Third point (C1) W = 205, 100 × (ab) /b=0.5
Fourth point (D1) W = 205, 100 × (ab) /b=1.4
Fifth point (E1) W = 250, 100 × (ab) /b=1.5
Sixth point (F1) W = 250, 100 × (ab) /b=5.2
図1は、本実施形態の織物において、上記第1点(A)~第6点(F)で区画される領域を説明するための模式的なグラフである。図2は、本実施形態の織物において、好ましい範囲を示す上記第1点(A1)~第6点(F1)で区画される領域を説明するための模式的なグラフである。
FIG. 1 is a schematic graph for explaining a region defined by the first point (A) to the sixth point (F) in the fabric of the present embodiment. FIG. 2 is a schematic graph for explaining a region defined by the first point (A1) to the sixth point (F1) indicating a preferable range in the fabric of the present embodiment.
図1および図2に示されるように、本実施形態の織物は、図示された第1点(A)~第6点(F)(好ましくは第1点(A1)~第6点(F1))によって区画された領域に含まれるよう、「織物幅(W)」および「織物の密度比(a-b)/b)に100を乗じた値(100×(a-b)/b)が適宜調整されたものである。これらの区画された領域に含まれる本実施形態の織物は、中央部と両端部との織密度差が小さく、通気度の差が小さくなる。また、織物は、充分な引張強度および破断伸度を示す。このような織物は、縫製されることにより、エアバッグ等として有用である。なお、本実施形態において、両端部とは、上記のとおり、織物の幅方向の両端からそれぞれ100mmの位置までの部位をいう。また、中央部とは、織物の幅方向の中央における幅100mmの部位である。
As shown in FIGS. 1 and 2, the fabric of the present embodiment has the first point (A) to the sixth point (F) (preferably the first point (A1) to the sixth point (F1). ) By multiplying 100 by “fabric width (W)” and “density ratio (ab) / b) of fabric” (100 × (ab) / b). The woven fabric of this embodiment included in these partitioned regions has a small woven density difference between the central portion and both ends, and a small difference in air permeability. Sufficient tensile strength and breaking elongation are exhibited, and such a woven fabric is useful as an airbag or the like by being sewn, and in the present embodiment, both ends are the width of the woven fabric as described above. It means the part from the both ends of the direction to the position of 100mm each. It is the site of 100mm wide at the center in the width direction.
本実施形態の織物を構成する素材は特に限定されない。一例を挙げると、織物は、その地部が合成繊維マルチフィラメントから構成されてもよい。合成繊維の素材としては、ポリアミド系繊維、ポリエステル系繊維、アラミド系繊維、レーヨン系繊維、ポリサルホン系繊維、あるいは超高分子量ポリエチレン系繊維等が例示される。これらの中でも、素材は、大量生産性や経済性に優れたポリアミド系繊維やポリエステル系繊維が好ましい。
The material constituting the fabric of this embodiment is not particularly limited. As an example, the base of the woven fabric may be composed of synthetic fiber multifilaments. Examples of the synthetic fiber material include polyamide fiber, polyester fiber, aramid fiber, rayon fiber, polysulfone fiber, and ultrahigh molecular weight polyethylene fiber. Among these, the material is preferably a polyamide fiber or a polyester fiber excellent in mass productivity and economy.
ポリアミド系繊維としては、ナイロン6、ナイロン66、ナイロン12、ナイロン46や、ナイロン6とナイロン66との共重合ポリアミド、ナイロン6にポリアルキレングリコール、ジカルボン酸、アミン等を共重合させた共重合ポリアミド等からなる繊維が例示される。これらの中でも、ナイロン6繊維、ナイロン66繊維は、強度が特に優れており好ましい。
Examples of polyamide fibers include nylon 6, nylon 66, nylon 12, nylon 46, copolymer polyamide of nylon 6 and nylon 66, and copolymer polyamide obtained by copolymerizing nylon 6 with polyalkylene glycol, dicarboxylic acid, amine, and the like. The fiber which consists of etc. is illustrated. Among these, nylon 6 fiber and nylon 66 fiber are preferable because of their particularly excellent strength.
ポリエステル系繊維としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート等からなる繊維が例示される。ポリエステル系繊維は、ポリエチレンテレフタレートやポリブチレンテレフタレートに酸成分としてイソフタル酸、5-ナトリウムスルホイソフタル酸や、アジピン酸等の脂肪族ジカルボン酸を共重合させた共重合ポリエステルからなる繊維であってもよい。
Examples of the polyester fibers include fibers made of polyethylene terephthalate, polybutylene terephthalate, and the like. The polyester fiber may be a fiber made of a copolymer polyester obtained by copolymerizing polyethylene terephthalate or polybutylene terephthalate with an aliphatic dicarboxylic acid such as isophthalic acid, 5-sodium sulfoisophthalic acid, or adipic acid as an acid component. .
これらの合成繊維には、紡糸・延伸工程や加工工程での生産性、あるいは特性改善のために、熱安定剤、酸化防止剤、光安定剤、平滑剤、帯電防止剤、可塑剤、増粘剤、顔料、難燃剤等の添加剤が含まれてもよい。
These synthetic fibers have thermal stabilizers, antioxidants, light stabilizers, smoothing agents, antistatic agents, plasticizers, thickeners to improve productivity and properties in the spinning / drawing process and processing process. Additives such as agents, pigments and flame retardants may be included.
合成繊維の単繊維の断面形状は、円形断面であってもよく、円形断面の他に扁平断面であってもよい。扁平な断面の繊維を用いることにより、織物としたときの繊維の高い密度での充填が可能となり、織物中の単繊維間に占める空隙が小さくなり、同じ織物組織であれば、同等繊度の円形断面糸を使用した場合よりも、エアバッグ用途で要求される、通気量を小さく抑えることができる。
The cross-sectional shape of the single fiber of the synthetic fiber may be a circular cross section, and may be a flat cross section in addition to the circular cross section. By using a fiber having a flat cross section, it becomes possible to fill the fiber with a high density when it is made into a woven fabric, and the space occupied between single fibers in the woven fabric is reduced. Compared with the case where cross-sectional yarn is used, the amount of ventilation required for airbag applications can be reduced.
扁平断面の形状については、単繊維の断面形状を楕円に近似した際に、その長径(D1)と短径(D2)との比(D1/D2)で定義される扁平率が1.5以上であることが好ましく、2.0以上であることがより好ましい。また、扁平率は、4以下であることが好ましく、3.5以下であることがより好ましい。扁平断面形状としては、幾何学的に真の楕円形の他、長方形、菱形または繭形等であってもよく、左右対称の他、左右非対称型であってもよい。また、扁平断面形状は、これらの組み合わされた形状であってもよい。さらに、断面形状は、上記を基本形として、突起や凹みあるいは部分的に中空部が形成されたものであってもよい。
As for the shape of the flat cross section, when the cross sectional shape of the single fiber is approximated to an ellipse, the flatness defined by the ratio (D1 / D2) of the major axis (D1) to the minor axis (D2) is 1.5 or more. It is preferable that it is, and it is more preferable that it is 2.0 or more. Further, the flatness is preferably 4 or less, and more preferably 3.5 or less. The flat cross-sectional shape may be a geometrically true elliptical shape, a rectangular shape, a rhombus shape, a saddle shape, or the like. Further, the flat cross-sectional shape may be a combination of these. Further, the cross-sectional shape may be a protrusion, a dent, or a hollow part partially formed on the basis of the above.
本実施形態の織物は、通常は、同じ合成繊維糸が経糸および緯糸として用いられることが好ましい。なお、本実施形態において、「同じ合成繊維糸が経糸および緯糸として用いられる」とは、経糸・緯糸とも同種のポリマーからなり、経糸・緯糸とも同じ単繊維繊度を有し、かつ経糸・緯糸とも同じ総繊度を有するということである。同種のポリマーとは、ナイロン66同士、ポリエチレンテレフタレート同士等、ポリマーの主たる繰り返し単位が共通するポリマー同士であることをいう。一例を挙げると、ホモポリマーと共重合ポリマーとの組み合わせであっても、本実施形態でいう同種のポリマーとして好ましく使用される。さらには、共重合成分の有無、また共重合する場合は共重合成分の種類、量も同じ組み合わせであるならば、経糸と緯糸とを区別する必要がなく、生産管理上好ましい。
In the fabric of this embodiment, it is usually preferable that the same synthetic fiber yarn is used as the warp and the weft. In the present embodiment, “the same synthetic fiber yarn is used as a warp and a weft” is composed of the same type of polymer for both the warp and the weft, the warp and the weft have the same single fiber fineness, and both the warp and the weft It has the same total fineness. The same type of polymer refers to polymers having a common main repeating unit of polymers such as nylon 66 and polyethylene terephthalate. For example, even a combination of a homopolymer and a copolymer is preferably used as the same kind of polymer in the present embodiment. Furthermore, if there is a copolymer component, and if copolymerization, the types and amounts of copolymer components are the same combination, it is not necessary to distinguish between warp and weft, which is preferable in production management.
本実施形態において織物の地部糸として使用される合成繊維糸は、単繊維繊度1~7dtexの合成繊維フィラメントが用いられることが好ましい。単繊維繊度が7dtex以下であることにより、得られる織物中の単繊維間に占める空隙が小さくなり、繊維の充填化効果がより一層向上する。その結果、得られる基布の通気量が低下されやすい。また、単繊維繊度が7dtex以下であることにより、合成繊維フィラメントの剛性を低下させる効果が得られる。そのため、得られる基布を用いたエアバッグの収納性が向上しやすい。
In the present embodiment, the synthetic fiber yarn used as the ground yarn of the fabric is preferably a synthetic fiber filament having a single fiber fineness of 1 to 7 dtex. When the single fiber fineness is 7 dtex or less, voids between single fibers in the resulting woven fabric are reduced, and the fiber filling effect is further improved. As a result, the air permeability of the obtained base fabric is likely to be reduced. Moreover, when the single fiber fineness is 7 dtex or less, an effect of reducing the rigidity of the synthetic fiber filament can be obtained. Therefore, the storing property of the airbag using the obtained base fabric is easily improved.
織物の地部糸として使用される合成繊維糸の総繊度としては、150~1000dtexであることが好ましい。ここで、総繊度とは、織物の組織を構成する織糸1本分の繊度をいう。一例を挙げると、後述する実施例のように、334dtex、96フィラメントの糸を2本引き揃えて1本の織糸(経糸)として用いる場合、総繊度は668dtexである。なお、本実施形態において、繊度は、JIS L 1013:2010 8.3.1 A法により、所定荷重0.045cN/dtexで正量繊度を測定される値である。
The total fineness of the synthetic fiber yarn used as the ground yarn of the woven fabric is preferably 150 to 1000 dtex. Here, the total fineness refers to the fineness of one woven yarn constituting the fabric structure. As an example, when two yarns of 334 dtex and 96 filaments are aligned and used as one woven yarn (warp yarn) as in the example described later, the total fineness is 668 dtex. In the present embodiment, the fineness is a value by which the fineness fineness is measured at a predetermined load of 0.045 cN / dtex according to JIS L 1013: 2010 8.3.1 A method.
本実施形態において地部糸として使用される合成繊維糸の総繊度を150dtex以上とすることにより、得られる織物の強度が維持されやすい。また、総繊度が150dtex未満である場合、後述する経糸の曲がり構造の形成において、緯糸が低剛性となりやすく、経糸の曲がり構造が大きくならず、経糸と緯糸との接触長が大きくならず、経方向の繊維の滑脱抵抗力が不充分となる傾向がある。また、総繊度が150dtex未満である場合、得られる基布は、所望の低通気度とならない傾向がある。地部糸として使用される合成繊維糸の総繊度を1000dtex以下とすることにより、得られる基布を用いたエアバッグは、収納時のコンパクト性や、低通気性が維持されやすい。総繊度は、200dtex以上であることが好ましく、300dtex以上であることがより好ましい。また、総繊度は、700dtex以下であることが好ましく、500dtex以下であることがより好ましい。総繊度をこれらの範囲内に調整することにより、得られる織物の強力、滑脱抵抗力、低通気性、柔軟性、コンパクト収納性がバランスよく向上され得る。
In this embodiment, by setting the total fineness of the synthetic fiber yarn used as the ground yarn to 150 dtex or more, the strength of the resulting fabric can be easily maintained. Further, when the total fineness is less than 150 dtex, in the formation of the warp bending structure described later, the weft tends to have low rigidity, the warp bending structure does not increase, the contact length between the warp and the weft does not increase, There is a tendency for the slip resistance of the fibers in the direction to be insufficient. Moreover, when the total fineness is less than 150 dtex, the obtained base fabric tends not to have a desired low air permeability. By setting the total fineness of the synthetic fiber yarn used as the base yarn to 1000 dtex or less, the airbag using the obtained base fabric is easily maintained in compactness and low air permeability during storage. The total fineness is preferably 200 dtex or more, and more preferably 300 dtex or more. Further, the total fineness is preferably 700 dtex or less, and more preferably 500 dtex or less. By adjusting the total fineness within these ranges, the strength, slip resistance, low breathability, flexibility and compact storage property of the resulting fabric can be improved in a balanced manner.
本実施形態の織物が、エアバッグ基布用として使用される場合、織物を構成する繊維の引張強度は、エアバッグ基布用織物として要求される機械的特性を満足する点と、製糸操業面から、経糸および緯糸ともに8.0cN/dtex以上であることが好ましく、8.3cN/dex以上であることがより好ましい。また、引張強度は、9.0cN/dtex以下であることが好ましく、8.7cN/dtex以下であることがより好ましい。
When the woven fabric of this embodiment is used for an airbag base fabric, the tensile strength of the fibers constituting the woven fabric satisfies the mechanical properties required for the airbag base fabric, and the surface of the yarn production operation. Therefore, both the warp and the weft are preferably 8.0 cN / dtex or more, and more preferably 8.3 cN / dex or more. Further, the tensile strength is preferably 9.0 cN / dtex or less, and more preferably 8.7 cN / dtex or less.
本実施形態の織物の組織は、本実施形態で規定する織物が得られる限り特に限定されない。一例を挙げると、エアバッグに使用される場合、織物の組織は、コンパクトに収納できる観点から、平織りであることが特に好ましい。織物の織密度は、樹脂加工される織物であるか、あるいは、樹脂加工されない織物であるか、また織糸の繊度等によって変わり得る。一例を挙げると、カバーファクターは、1800~2500であることが、低通気性と高滑脱抵抗力を両立する上で好ましい。一般的に、カバーファクターが1800~2500になると、耳部で経糸緩みが生じやすく、耳部の経糸密度が高くなりやすい。しかしながら、本実施形態の織機は、カバーファクターが1800未満、もしくは、2500を超える織物の製造に際しても、有効に採用できる。特に、カバーファクターが1800~2500である織物の製造に用いられる場合、得られる織物は、上記効果が奏されやすい。
The structure of the fabric of this embodiment is not particularly limited as long as the fabric defined in this embodiment is obtained. For example, when used in an airbag, the texture of the woven fabric is particularly preferably a plain weave from the viewpoint of compact storage. The woven density of the woven fabric may vary depending on whether it is a woven fabric that is resin-processed or a non-resin-processed fabric, and the fineness of the woven yarn. As an example, the cover factor is preferably 1800 to 2500 in order to achieve both low air permeability and high slip resistance. In general, when the cover factor is 1800 to 2500, warp looseness is likely to occur at the ears, and the warp density at the ears tends to be high. However, the loom according to the present embodiment can be effectively employed in the production of a fabric having a cover factor of less than 1800 or more than 2500. In particular, when used for producing a woven fabric having a cover factor of 1800 to 2500, the resulting woven fabric is likely to exhibit the above-described effects.
かかる織物のカバーファクターとは、糸条繊度の平方根と1インチあたりの糸条数との積の値について、経糸と緯糸のそれぞれで算出し、それを合計した和を言う。すなわち、織物のカバーファクター(CF)は、経糸総繊度をDw(dtex)、緯糸総繊度をDf(dtex)、経糸の織密度をNw(本/2.54cm)、緯糸の織密度をNf(本/2.54cm)としたとき、次の式で表される。
CF=(Dw)1/2×Nw+(Df)1/2×Nf The cover factor of the woven fabric refers to the sum of the values of the product of the square root of the yarn fineness and the number of yarns per inch calculated for each of the warp and the weft, and the sum of them. That is, the cover factor (CF) of the woven fabric is that the total fineness of the warp is Dw (dtex), the total fineness of the weft is Df (dtex), the weave density of the warp is Nw (line / 2.54 cm), and the weft density of the weft is Nf ( This is expressed by the following formula.
CF = (Dw) 1/2 × Nw + (Df) 1/2 × Nf
CF=(Dw)1/2×Nw+(Df)1/2×Nf The cover factor of the woven fabric refers to the sum of the values of the product of the square root of the yarn fineness and the number of yarns per inch calculated for each of the warp and the weft, and the sum of them. That is, the cover factor (CF) of the woven fabric is that the total fineness of the warp is Dw (dtex), the total fineness of the weft is Df (dtex), the weave density of the warp is Nw (line / 2.54 cm), and the weft density of the weft is Nf ( This is expressed by the following formula.
CF = (Dw) 1/2 × Nw + (Df) 1/2 × Nf
本実施形態において、絡み糸、増糸が製織時に耳部に打ち込まれてもよい。絡み糸、増糸は、織物の耳を形成するために用いられる。
In the present embodiment, the entangled yarn and the reinforcing yarn may be driven into the ear portion during weaving. The entanglement yarn and the reinforcing yarn are used for forming a woven ear.
「絡み糸」は、レノとも呼ばれ、耳ほつれを防止するため、経糸両端部で緯糸を締め付け、耳を形成する。耳を形成する場合、一般的に遊星歯車が使用される。また、好ましくは、遊星歯車ねじり方式が採用される。耳を形成する方法は、その他の方法であってもよい。絡み糸の素材、種類、繊度は、地糸の種類、織密度により適宜選択される。使用本数は、両端部にそれぞれ2本以上、好ましくは2本ずつであることが好ましい。絡み糸は、一般的には、耳締めの性能の優れるモノフィラメントが用いられる。絡み糸は、マルチフィラメントが使用されてもよい。絡み糸の材質としては、地糸材質と同じナイロンであることが好ましい。絡み糸は、ポリエステルが使用されてもよい。
“Tangled yarn”, also called Reno, tightens the wefts at both warp ends to form ears to prevent fraying of the ears. When forming an ear, a planetary gear is generally used. Preferably, a planetary gear torsion system is employed. The method for forming the ear may be other methods. The material, type, and fineness of the entangled yarn are appropriately selected depending on the type of ground yarn and the weave density. The number used is preferably 2 or more, preferably 2 at each end. As the entangled yarn, a monofilament having excellent ear fastening performance is generally used. A multifilament may be used as the entanglement yarn. The material of the entangled yarn is preferably the same nylon as the material of the ground yarn. Polyester may be used for the entanglement yarn.
絡み糸の繊度は、33dtex以下であることが好ましい。繊度が33dtexを超える場合、基布の耳部においてほつれが発生する場合があり、また基布を1本のロールに長尺で巻いた場合、耳高になりシワの原因となりやすい。繊度は、5~22dtexであることが好ましい。
The fineness of the entangled yarn is preferably 33 dtex or less. When the fineness exceeds 33 dtex, fraying may occur at the ear portion of the base fabric, and when the base fabric is wound around a single roll in a long length, the ear height is increased and wrinkles are likely to occur. The fineness is preferably 5 to 22 dtex.
「増糸」は、絡み糸と同様に、基布の耳の形成、耳ほつれ、耳裂け防止を目的として使用され、経糸の両側面部に配置されて、絡み糸を補助する。ただし、増糸に対しては、遊星装置は使用されない。また、増糸の素材、種類、繊度は、それぞれ、地糸の種類、織密度により適宜選択される。上記した絡み糸と同様に、増糸は、耳締めの性能の優れるモノフィラメントが好適に用いられる。使用される場合の増糸の本数は、たとえば両端部に各2本から10本である。増糸の繊度は、33dtex以下であることが好ましい。繊度が33dtexを超える場合、基布の耳部においてほつれが発生する場合があり、また基布を1本のロールに長尺で巻いた場合、耳高になりシワの原因となりやすい。繊度は、5~22dtexであることが好ましい。
増 “Threading” is used for the purpose of preventing the formation of ears of the base fabric, ear fraying, and ear tearing, similarly to the entangled yarn, and is arranged on both sides of the warp to assist the entangled yarn. However, the planetary device is not used for the yarn addition. Further, the material, type and fineness of the yarn increase are appropriately selected depending on the type and weave density of the ground yarn. As with the above-described entangled yarn, a monofilament with excellent ear fastening performance is preferably used as the yarn increasing. When used, the number of yarns is, for example, 2 to 10 at both ends. The fineness of the yarn addition is preferably 33 dtex or less. When the fineness exceeds 33 dtex, fraying may occur at the ear portion of the base fabric, and when the base fabric is wound around a single roll in a long length, the ear height is increased and wrinkles are likely to occur. The fineness is preferably 5 to 22 dtex.
これら絡み糸、増糸としてモノフィラメントが用いられる場合、捲縮を有する加工糸が使用されると、製織した基布をロールに巻き取る際に、ロールの巻き径が大きくなるにつれて、耳高、耳吊り、皺の発生原因となりやすい。そのため、絡み糸および増糸は、捲縮を有さない糸、すなわち非加工糸であるのが好ましい。なお、耳高、耳吊り、皺の発生がなければ、捲縮糸が使用されてもよい。また、絡み糸、増糸としてマルチフィラメントが用いられる場合、捲縮糸等の加工糸が用いられることが好ましい。
When monofilaments are used as these entanglement yarns and yarn additions, when a processed yarn having crimps is used, when the woven base fabric is wound on a roll, the height of the ear increases as the roll diameter of the roll increases. It tends to cause hanging and wrinkles. Therefore, it is preferable that the entangled yarn and the additional yarn are yarns that do not have crimps, that is, non-processed yarns. Note that crimped yarns may be used as long as there are no ear heights, ear suspensions, or wrinkles. Further, when multifilament is used as the entanglement yarn or the yarn addition, it is preferable to use a processed yarn such as a crimped yarn.
増糸の素材としては、地部糸の材質と同じものであることが好ましい。基布がエアバック用である場合、地部糸がナイロンであることが多い。そのため、増糸は、ナイロンであることが好ましい。また、増糸は、ポリエステルが使用されてもよい。
The material of the yarn addition is preferably the same as the material of the ground yarn. When the base fabric is used for an airbag, the ground yarn is often nylon. Therefore, it is preferable that the yarn increase is nylon. Further, polyester may be used for the yarn addition.
本実施形態において、織物の組織は、平織りであることが好ましい。織物の組織は、基布への要求特性などにより斜文織り、朱子織り等であってもよく、織物組織によってヘルド通し順、筬への引き通し本数が適宜決定される。
In the present embodiment, the fabric structure is preferably a plain weave. The texture of the woven fabric may be oblique weaving, satin weaving, or the like depending on the characteristics required for the base fabric.
本実施形態において製造される織物がエアバッグ基布用である場合、織物は、ウォータージェットルーム織機で製織された後、基布を乾燥するため、または、原糸に付着していた油剤を除去したり、シワを除去するために、精練・セット加工を行うことが好ましい。
When the fabric manufactured in the present embodiment is for an airbag base fabric, the fabric is woven by a water jet loom and then the base fabric is dried or the oil agent adhering to the raw yarn is removed. Or scouring and setting to remove wrinkles.
本実施形態において得られる織物は、製織した後の基布幅が160cm以上であることが好ましく、180cm以上であることがより好ましく、185cm以上であることがさらに好ましい。また、基布幅は、250cm以下であることが好ましい。基布幅が上記範囲内である場合、織物幅の割に端部中央部で織密度差が小さい織物が得られる点で有効である。基布幅が250cmを超える場合、エアバックを製造する際の裁断時のロスが発生しやすい。なお、本実施形態において、「基布幅」とは、耳部を除いた織物の本体部の幅である。本実施形態の織物は、基布幅が160cm以上である場合はもちろん、特に185cm以上のような広幅である場合においても、織密度差が小さい。このように、広幅の織物において織密度差が小さいものが得られる点は、特に顕著な効果であるといえる。
The base fabric width after weaving is preferably 160 cm or more, more preferably 180 cm or more, and even more preferably 185 cm or more. Moreover, it is preferable that a base fabric width is 250 cm or less. When the width of the base fabric is within the above range, it is effective in that a woven fabric having a small woven density difference at the center portion of the end portion can be obtained for the woven fabric width. When the width of the base fabric exceeds 250 cm, loss at the time of cutting when manufacturing the airbag is likely to occur. In the present embodiment, the “base fabric width” is the width of the main body of the fabric excluding the ears. The fabric according to the present embodiment has a small difference in weave density not only when the width of the base fabric is 160 cm or more, but also when the width is particularly wide such as 185 cm or more. Thus, it can be said that it is a particularly remarkable effect that a fabric having a small woven density difference is obtained in a wide woven fabric.
以上、本実施形態の織物によれば、上記区画される領域内にある織物は、中央部と両端部との織密度差が小さく、通気度の差が小さくなる。また、織物は、充分な引張強度および破断伸度を示す。このような織物は、縫製されることにより、エアバッグ等として有用である。
As described above, according to the woven fabric of the present embodiment, the woven fabric in the partitioned region has a small woven density difference between the central portion and both end portions, and a small difference in air permeability. The fabric also exhibits sufficient tensile strength and elongation at break. Such a fabric is useful as an airbag or the like by being sewn.
<織機用全幅テンプル装置、および、織機用全幅テンプル装置を備える織機>
本発明の一実施形態の織機は、後述する織機用全幅テンプル装置(以下、単にテンプル装置ともいう)を備える。まず、織機の概要について説明する。 <Full width temple device for loom and loom equipped with full width temple device for loom>
A loom according to an embodiment of the present invention includes a full-width temple device for a loom (hereinafter also simply referred to as a temple device), which will be described later. First, an outline of the loom will be described.
本発明の一実施形態の織機は、後述する織機用全幅テンプル装置(以下、単にテンプル装置ともいう)を備える。まず、織機の概要について説明する。 <Full width temple device for loom and loom equipped with full width temple device for loom>
A loom according to an embodiment of the present invention includes a full-width temple device for a loom (hereinafter also simply referred to as a temple device), which will be described later. First, an outline of the loom will be described.
図3は、本実施形態のテンプル装置を備える織機の概略的な平面図である。織機1は、経糸供給装置(図示せず)から供給され、縦方向に整列された複数の経糸2と、経糸2が通される筬3と、筬3の下流側に配置されたテンプル装置4と、筬3とテンプル装置4との間に配置された緯糸ノズル5と、緯糸ノズル5から経糸2を直交する方向に適宜繰り出され、経糸2間に緯入れされる緯糸6と、筬3によりテンプル装置4の方向に打ち込まれる緯糸6を切断するための緯糸カッター7とを主に備える。テンプル装置4には、筬3により緯糸6が打ち込まれて形成された織物8が導入される。テンプル装置4は、織機1にて製織する際に、伸び縮みによる筬3の摩耗や、経糸切れを防止するための装置であり、織り前に取り付けられる。テンプル装置4から導出される織物8は、下流側に配置された巻取装置(図示せず)により巻き取られる。得られる織物8は、織物8の幅(W)を横軸にとり、織物8の密度比((a-b)/b)に100を乗じた値(100×(a-b)/b))を縦軸にとる場合において、織物8の幅(W)と織物8の密度比に100を乗じた値(100×(a-b)/b)とが、以下の6点で区画される領域内にあることを特徴とする。
第1点(A) W=185、100×(a-b)/b=0.5
第2点(B) W=185、100×(a-b)/b=1.6
第3点(C) W=205、100×(a-b)/b=0.5
第4点(D) W=205、100×(a-b)/b=1.8
第5点(E) W=250、100×(a-b)/b=1.5
第6点(F) W=250、100×(a-b)/b=5.4
(ただし、aは、JIS L 1096:(1999)8.6.1に準拠して測定した、織物8の両端部から100mmの位置におけるそれぞれの経密度(本/2.54cm)の平均値のうち、大きい方の値であり、bは織物8の中央部100mm幅の経密度(本/2.54cm)の平均値である。)このような織物8は、中央部と両端部との織密度差が小さく、通気度の差が小さくなる。また、織物8は、充分な引張強度および破断伸度を示す。このような織物8は、縫製されることにより、エアバッグ等として有用である。 FIG. 3 is a schematic plan view of a loom including the temple device of the present embodiment. The loom 1 is supplied from a warp supply device (not shown) and has a plurality ofwarps 2 aligned in the longitudinal direction, a reed 3 through which the warp 2 is passed, and a temple device 4 disposed on the downstream side of the reed 3. And a weft nozzle 5 disposed between the reed 3 and the temple device 4; a weft 6 which is suitably fed out in the direction orthogonal to the warp 2 from the weft nozzle 5 and inserted into the weft 2; It mainly includes a weft cutter 7 for cutting the weft 6 driven in the direction of the temple device 4. The temple device 4 is introduced with a fabric 8 formed by wefts 6 being driven by the reed 3. The temple device 4 is a device for preventing wear of the reed 3 due to expansion and contraction and warp breakage when weaving with the loom 1, and is attached before weaving. The fabric 8 led out from the temple device 4 is wound up by a winding device (not shown) arranged on the downstream side. The resulting woven fabric 8 has a width (W) of the woven fabric 8 on the horizontal axis and a density ratio ((ab) / b) of the woven fabric 8 multiplied by 100 (100 × (ab) / b)) Where the vertical axis represents the width (W) of the fabric 8 and the density ratio of the fabric 8 multiplied by 100 (100 × (ab) / b) It is characterized by being inside.
First point (A) W = 185, 100 × (ab) /b=0.5
Second point (B) W = 185, 100 × (ab) /b=1.6
Third point (C) W = 205, 100 × (ab) /b=0.5
Fourth point (D) W = 205, 100 × (ab) /b=1.8
Fifth point (E) W = 250, 100 × (ab) /b=1.5
Sixth point (F) W = 250, 100 × (ab) /b=5.4
(However, a is the average value of each warp density (line / 2.54 cm) at a position of 100 mm from both ends of thefabric 8 measured in accordance with JIS L 1096: (1999) 8.6.1. Of these, the larger value is shown, and b is the average value of the warp density (line / 2.54 cm) of the central part 100 mm of the woven fabric 8.) Such woven fabric 8 is woven between the central portion and both end portions. The density difference is small and the difference in air permeability is small. In addition, the fabric 8 exhibits sufficient tensile strength and elongation at break. Such a fabric 8 is useful as an airbag or the like by being sewn.
第1点(A) W=185、100×(a-b)/b=0.5
第2点(B) W=185、100×(a-b)/b=1.6
第3点(C) W=205、100×(a-b)/b=0.5
第4点(D) W=205、100×(a-b)/b=1.8
第5点(E) W=250、100×(a-b)/b=1.5
第6点(F) W=250、100×(a-b)/b=5.4
(ただし、aは、JIS L 1096:(1999)8.6.1に準拠して測定した、織物8の両端部から100mmの位置におけるそれぞれの経密度(本/2.54cm)の平均値のうち、大きい方の値であり、bは織物8の中央部100mm幅の経密度(本/2.54cm)の平均値である。)このような織物8は、中央部と両端部との織密度差が小さく、通気度の差が小さくなる。また、織物8は、充分な引張強度および破断伸度を示す。このような織物8は、縫製されることにより、エアバッグ等として有用である。 FIG. 3 is a schematic plan view of a loom including the temple device of the present embodiment. The loom 1 is supplied from a warp supply device (not shown) and has a plurality of
First point (A) W = 185, 100 × (ab) /b=0.5
Second point (B) W = 185, 100 × (ab) /b=1.6
Third point (C) W = 205, 100 × (ab) /b=0.5
Fourth point (D) W = 205, 100 × (ab) /b=1.8
Fifth point (E) W = 250, 100 × (ab) /b=1.5
Sixth point (F) W = 250, 100 × (ab) /b=5.4
(However, a is the average value of each warp density (line / 2.54 cm) at a position of 100 mm from both ends of the
図4は、本実施形態のテンプル装置4の概略的な側面図である。本実施形態のテンプル装置4は、いわゆるバーテンプルであり、製織時に織物8を把持するための織物把持棒9(織物の製織用把持棒)と、織物8の幅全体にわたる上下一対の把持部材(支持部材10および押さえ部材11)とを主に備える。このようなテンプル装置4において、織物8は、筬打ち方向A1に沿って、支持部材10と織物把持棒9とにより把持されるよう導入される。テンプル装置4に導入された織物8は、織物把持棒9の外周面に沿って掛け回されている。また、織物8は、織物把持棒9と押さえ部材11とにより把持されており、押さえ部材11の上面に沿って、筬打ち方向A1に導出される。この際、織物8は、テンプル装置4の下流側に配置された巻取装置により張力が加えられている。そのため、織物8が掛け回された織物把持棒9は、支持部材10および押さえ部材11に適度に押し付けられている。
FIG. 4 is a schematic side view of the temple device 4 of the present embodiment. The temple device 4 of the present embodiment is a so-called bar temple, and a fabric gripping bar 9 (grip weaving gripping rod) for gripping the fabric 8 during weaving, and a pair of upper and lower gripping members (over the entire width of the fabric 8) ( The supporting member 10 and the pressing member 11) are mainly provided. In such a temple device 4, the fabric 8 is introduced so as to be gripped by the support member 10 and the fabric gripping bar 9 along the hammering direction A <b> 1. The fabric 8 introduced into the temple device 4 is wound around the outer peripheral surface of the fabric gripping bar 9. The fabric 8 is gripped by the fabric gripping bar 9 and the pressing member 11, and is led out in the striking direction A <b> 1 along the upper surface of the pressing member 11. At this time, the fabric 8 is tensioned by a winding device disposed on the downstream side of the temple device 4. For this reason, the fabric gripping rod 9 around which the fabric 8 is wound is appropriately pressed against the support member 10 and the pressing member 11.
織物8は、筬3によって緯糸6が打ち込まれる筬打ち時には、織物把持棒9が筬打ち方向A1にわずかに移動することにより、支持部材10および押さえ部材11によって把持される力が一時的に弱められる。その際、織物8は、織物把持棒9の回転とともに繰り出され、筬打ち方向A1へ移動される。その後、織物8は、再び巻取装置により張力が加えられる。その結果、織物把持棒9は、筬打ち方向A1の上流側へ移動し、再度、支持部材10および押さえ部材11に押し付けられる。このような織機1およびテンプル装置4において、筬打ちされた緯糸6によって形成される織物8の後端部(織り前)は、筬打ち方向A1の下流側に移動し、迫出し81が生じ得る(図3参照)。特に、織物の幅方向の端部は、中央部と比べて、迫出し81が大きくなりやすい。迫出し81が大きくなると、織物は、特に端部において経糸の張力が低下し、密度ムラや通気度ムラ等に加えて、毛羽立ちが発生しやすい。織機は、織物に毛羽が発生すると、製織動作が停止する場合がある。そのため、毛羽立ちを抑制することは、得られる織物の品位を高めるだけでなく、製造コストの低減にも貢献し得る。なお、本実施形態において、迫出し81の大きさ(迫出し量)は、テンプル装置4の筬打ち方向A1の上流側端部と、筬3が筬打ち方向A1の最も上流側に位置するときの最後に筬打ちされた緯糸6との最大距離をいう(図1の迫出し量d2参照)。本実施形態のテンプル装置4は、筬打ち時に発生するこのような迫出し81を抑制する。以下、それぞれの構成について説明する。なお、本実施形態のテンプル装置4は、織物把持棒9に特徴を有する。そのため、以下に示される他の構成(支持部材10および押さえ部材11等)は例示であり、公知の他の構成が採用されてもよい。
In the fabric 8, when the weft 6 is driven by the kite 3, the fabric gripping rod 9 moves slightly in the kitting direction A1, so that the force gripped by the support member 10 and the pressing member 11 is temporarily weakened. It is done. At that time, the fabric 8 is fed out along with the rotation of the fabric gripping bar 9 and moved in the hammering direction A1. Thereafter, the fabric 8 is again tensioned by the winding device. As a result, the fabric gripping rod 9 moves to the upstream side in the hammering direction A1 and is pressed against the support member 10 and the pressing member 11 again. In such a loom 1 and temple device 4, the rear end portion (before weaving) of the fabric 8 formed by the beaten wefts 6 moves to the downstream side in the beating direction A <b> 1, and an ejection 81 can occur. (See FIG. 3). In particular, the end portion 81 in the width direction of the fabric is likely to have a large protrusion 81 as compared with the central portion. When the protrusion 81 becomes large, the warp tension of the woven fabric decreases particularly at the end portion, and in addition to density unevenness, air permeability unevenness and the like, fluff is likely to occur. The loom may stop the weaving operation when fluff occurs in the fabric. Therefore, suppressing fuzzing not only improves the quality of the resulting fabric, but can also contribute to a reduction in manufacturing costs. In the present embodiment, the size of the squeeze 81 (the squeeze amount) is determined when the temple device 4 is positioned at the upstream end in the striking direction A1 and the scissor 3 is located at the most upstream side in the striking direction A1. Is the maximum distance from the weft thread 6 that has been beaten at the end (see the protruding amount d2 in FIG. 1). The temple device 4 of the present embodiment suppresses such a squeeze 81 that occurs at the time of striking. Hereinafter, each configuration will be described. In addition, the temple apparatus 4 of this embodiment has the characteristics in the fabric holding | grip stick | rod 9. FIG. Therefore, the other configurations shown below (such as the support member 10 and the pressing member 11) are examples, and other known configurations may be adopted.
(支持部材10)
支持部材10は、織物把持棒9および押さえ部材11が取り付けられる部材であり、支持台12に固定されている。支持部材10は、支持台12に取り付けられる取付部10aと、取付部10aの端部から筬打ち方向A1の上流側の斜め上方に延設された縁部10bと、取付部10aの上側に形成された被係合部10cとを備える。被係合部10cは、取付部10aの上面に形成された略平板状の部材であり、側面には筬打ち方向A1に落ち窪んだ凹部が形成されている。凹部には、後述する押さえ部材11の係合部11bが係合される。 (Supporting member 10)
Thesupport member 10 is a member to which the fabric gripping bar 9 and the pressing member 11 are attached, and is fixed to the support base 12. The support member 10 is formed on an attachment portion 10a attached to the support base 12, an edge portion 10b extending obliquely upward on the upstream side in the strike direction A1 from the end portion of the attachment portion 10a, and an upper side of the attachment portion 10a. Engaged portion 10c. The engaged portion 10c is a substantially flat plate-like member formed on the upper surface of the mounting portion 10a, and a recessed portion that is depressed in the strike direction A1 is formed on the side surface. An engaging portion 11b of a pressing member 11 described later is engaged with the recess.
支持部材10は、織物把持棒9および押さえ部材11が取り付けられる部材であり、支持台12に固定されている。支持部材10は、支持台12に取り付けられる取付部10aと、取付部10aの端部から筬打ち方向A1の上流側の斜め上方に延設された縁部10bと、取付部10aの上側に形成された被係合部10cとを備える。被係合部10cは、取付部10aの上面に形成された略平板状の部材であり、側面には筬打ち方向A1に落ち窪んだ凹部が形成されている。凹部には、後述する押さえ部材11の係合部11bが係合される。 (Supporting member 10)
The
(押さえ部材11)
押さえ部材11は、支持部材10とともに織物把持棒9を把持するための部材であり、略平板状の押さえ部本体11aと、押さえ部本体11aの下面から筬打ち方向A1の下流側の斜め下方に延設された係合部11bとを備える。押さえ部本体11aのうち、筬打ち方向A1の上流側端部は、筬打ち方向A1の上流側の斜め下方に向かって湾曲加工されている(湾曲部)。押さえ部材11と支持部材10とは、それぞれ湾曲部の端部と縁部10bの端部とが離間するよう配置されており、筬打ち方向A1の上流側に脱落しないよう織物把持棒9を制止する。係合部11bは、被係合部10cの凹部よりもわずかに寸法が小さく、凹部に嵌め込まれる。そのため、押さえ部材11は、係合部11bが凹部に嵌め込まれた状態において、係合部11bを支点として所定の角度だけ回動し得る。 (Presser member 11)
The holdingmember 11 is a member for holding the fabric holding bar 9 together with the support member 10, and has a substantially flat plate-like pressing portion main body 11 a and an obliquely lower side downstream of the striking direction A 1 from the lower surface of the pressing portion main body 11 a. And an extended engaging portion 11b. Of the presser body 11a, the upstream end portion in the striking direction A1 is curved toward the obliquely lower side on the upstream side in the striking direction A1 (curved portion). The holding member 11 and the supporting member 10 are arranged so that the end of the curved portion and the end of the edge portion 10b are separated from each other, and the fabric holding rod 9 is restrained from falling off to the upstream side in the punching direction A1. To do. The engaging portion 11b is slightly smaller in size than the recessed portion of the engaged portion 10c, and is fitted into the recessed portion. Therefore, the pressing member 11 can rotate by a predetermined angle with the engaging portion 11b as a fulcrum in a state where the engaging portion 11b is fitted in the recess.
押さえ部材11は、支持部材10とともに織物把持棒9を把持するための部材であり、略平板状の押さえ部本体11aと、押さえ部本体11aの下面から筬打ち方向A1の下流側の斜め下方に延設された係合部11bとを備える。押さえ部本体11aのうち、筬打ち方向A1の上流側端部は、筬打ち方向A1の上流側の斜め下方に向かって湾曲加工されている(湾曲部)。押さえ部材11と支持部材10とは、それぞれ湾曲部の端部と縁部10bの端部とが離間するよう配置されており、筬打ち方向A1の上流側に脱落しないよう織物把持棒9を制止する。係合部11bは、被係合部10cの凹部よりもわずかに寸法が小さく、凹部に嵌め込まれる。そのため、押さえ部材11は、係合部11bが凹部に嵌め込まれた状態において、係合部11bを支点として所定の角度だけ回動し得る。 (Presser member 11)
The holding
(織物把持棒9)
織物把持棒9は、製織時に織物8を把持するための棒状部材である。図5は、本実施形態のテンプル装置4が備える織物把持棒9の概略的な平面図である。図6は、本実施形態の織物把持棒9の変形例(織物把持棒9a)の概略的な平面図である。後述するとおり、織物把持棒は、2種の態様(またはその両方)を採り得る。以下、両態様の共通事項を説明し、次いで、一方の態様(態様1)を本実施形態において織物把持棒9として説明し、他の態様(態様2)を変形例の織物把持棒9aとして説明する。 (Fabric gripping rod 9)
Thefabric gripping bar 9 is a bar-shaped member for gripping the fabric 8 during weaving. FIG. 5 is a schematic plan view of the fabric gripping bar 9 provided in the temple device 4 of the present embodiment. FIG. 6 is a schematic plan view of a modified example (fabric gripping bar 9a) of the fabric gripping bar 9 of the present embodiment. As will be described later, the fabric gripping bar can take two forms (or both). Hereinafter, the common matters of both modes will be described, and then one mode (mode 1) will be described as the fabric gripping bar 9 in the present embodiment, and the other mode (mode 2) will be described as the fabric gripping bar 9a of the modified example. To do.
織物把持棒9は、製織時に織物8を把持するための棒状部材である。図5は、本実施形態のテンプル装置4が備える織物把持棒9の概略的な平面図である。図6は、本実施形態の織物把持棒9の変形例(織物把持棒9a)の概略的な平面図である。後述するとおり、織物把持棒は、2種の態様(またはその両方)を採り得る。以下、両態様の共通事項を説明し、次いで、一方の態様(態様1)を本実施形態において織物把持棒9として説明し、他の態様(態様2)を変形例の織物把持棒9aとして説明する。 (Fabric gripping rod 9)
The
・態様1および態様2の共通事項
態様1および態様2の共通事項について、図5を参照し、態様1に基づいて説明する。本実施形態の織物把持棒9は、本体部91と、織物把持棒9の軸方向A2において本体部91の両端に設けられた補強部92とを備える。補強部92は、本体部91を構成する材料(第1の材料)よりもヤング率が大きい材料(第2の材料)で構成されている。補強部92の軸方向の全長は、10mm以上、60mm未満である。なお、本実施形態において、ヤング率は、「JIS Z 2280 ひずみゲージ法」に基づいて測定される値が採用される。 -Common matter of aspect 1 andaspect 2 The common matter of aspect 1 and aspect 2 is demonstrated based on aspect 1 with reference to FIG. The fabric grip rod 9 of the present embodiment includes a main body portion 91 and reinforcing portions 92 provided at both ends of the main body portion 91 in the axial direction A2 of the fabric grip rod 9. The reinforcing portion 92 is made of a material (second material) having a Young's modulus larger than that of the material (first material) constituting the main body portion 91. The total length in the axial direction of the reinforcing portion 92 is 10 mm or more and less than 60 mm. In the present embodiment, the Young's modulus is a value measured based on the “JIS Z 2280 strain gauge method”.
態様1および態様2の共通事項について、図5を参照し、態様1に基づいて説明する。本実施形態の織物把持棒9は、本体部91と、織物把持棒9の軸方向A2において本体部91の両端に設けられた補強部92とを備える。補強部92は、本体部91を構成する材料(第1の材料)よりもヤング率が大きい材料(第2の材料)で構成されている。補強部92の軸方向の全長は、10mm以上、60mm未満である。なお、本実施形態において、ヤング率は、「JIS Z 2280 ひずみゲージ法」に基づいて測定される値が採用される。 -Common matter of aspect 1 and
本体部91は、織物把持棒9の主たる部位であり、比較的長尺の棒状部位である。本体部91を構成する第1の材料としては、後述する第2の材料よりもヤング率の小さい材料であればよい。このような材料としては、ナイロン、ポリオキシメチレン等の樹脂や、ステンレス、真鍮、アルミニウム等の金属が例示される。これらの中でも、第1の材料は、得られる織物8に傷がつきにくいように表面硬度の低い材料が好ましい。より具体的には、第1の材料は、ナイロン、ポリオキシメチレン等の樹脂が好ましい。本実施形態において、表面硬度は、JIS7202-2 プラスチック-硬さの求め方-第2部:ロックウェル硬さに基づき測定されたロックウェル硬さが参照される。第1の材料は、ロックウェル硬度が、Lスケール、Rスケール、Mスケールのいずれかのスケールで、測定可能であるものが好ましい。中でも、第1の材料は、Lスケールで150以下であることがより好ましい。さらには、第1の材料は、Mスケールで100以下であることが好ましく、90以下であることがより好ましい。あるいは、第1の材料は、Rスケールで150以下であることが好ましく、130以下であることがより好ましい。また、織物把持棒は、作用する応力によって表面が損傷し、損傷した織物把持棒の表面が織物に接触する虞がある。損傷した織物把持棒を使用して製織した場合、織物は、傷がつき、織物物性が低下する虞がある。そのため、織物把持棒は、応力によっても損傷しない程度の硬度が必要である。そのような硬度の下限は、Mスケールでは10以上であることが好ましく、50以上であることがより好ましい。
The main body 91 is a main part of the fabric gripping bar 9 and is a relatively long bar-like part. As a 1st material which comprises the main-body part 91, what is necessary is just a material with a Young's modulus smaller than the 2nd material mentioned later. Examples of such materials include resins such as nylon and polyoxymethylene, and metals such as stainless steel, brass, and aluminum. Among these, the first material is preferably a material having a low surface hardness so that the resulting woven fabric 8 is hardly damaged. More specifically, the first material is preferably a resin such as nylon or polyoxymethylene. In the present embodiment, the surface hardness is referred to JIS7202-2, Plastic—How to obtain hardness—Part 2: Rockwell hardness measured based on Rockwell hardness. The first material is preferably one whose Rockwell hardness can be measured on any scale of L scale, R scale, and M scale. Among these, the first material is more preferably 150 or less on the L scale. Furthermore, the first material is preferably 100 or less on the M scale, and more preferably 90 or less. Alternatively, the first material is preferably 150 or less on the R scale, and more preferably 130 or less. Further, the surface of the fabric gripping rod is damaged by the applied stress, and the surface of the damaged fabric gripping rod may come into contact with the fabric. When weaving using a damaged fabric gripping rod, the fabric may be damaged and the physical properties of the fabric may be reduced. Therefore, the fabric gripping rod needs to have a hardness that does not cause damage due to stress. The lower limit of such hardness is preferably 10 or more and more preferably 50 or more on the M scale.
なお、一般に、樹脂と金属とでは、表面硬度の値が大きく異なる。そのため、樹脂と金属とは、表面硬度を同一の方法で測定すること、および、値を換算して比較することが難しい。そのため、本実施形態では、織物8表面に傷がつかない、ロックウェル硬さがMスケールで100以下の場合、および、Rスケールで150以下の場合がより好ましく、織物に対して「柔らかい」と判定され、これらよりも表面硬度が大きいことが明らかである金属は、「硬い」と判定される。
In general, the value of surface hardness differs greatly between resin and metal. For this reason, it is difficult to measure the surface hardness of the resin and the metal by the same method, and to compare and compare the values. Therefore, in the present embodiment, it is more preferable that the surface of the fabric 8 is not damaged, the Rockwell hardness is 100 or less on the M scale, and 150 or less on the R scale. A metal that is determined and is apparently having a surface hardness greater than these is determined to be “hard”.
本体部91の長さは特に限定されない。本体部91の長さは、製織すべき織物8の全幅、後述する補強部92の長さ等に合わせて適宜調整される。
The length of the main body 91 is not particularly limited. The length of the main body 91 is appropriately adjusted according to the full width of the fabric 8 to be woven, the length of a reinforcing portion 92 described later, and the like.
本体部91の太さ(径)は特に限定されない。本体部91の太さは、強度(材質)等に合わせて適宜調整される。一例を挙げると、本体部91の太さは、7~10mmである。
The thickness (diameter) of the main body 91 is not particularly limited. The thickness of the main body 91 is appropriately adjusted according to the strength (material) and the like. As an example, the thickness of the main body 91 is 7 to 10 mm.
本体部91の断面形状は特に限定されない。本体部91の断面形状は、織物8の表面を傷つけにくく、かつ、織物8を均等に把持する観点から、円形であることが好ましい。
The cross-sectional shape of the main body 91 is not particularly limited. The cross-sectional shape of the main body 91 is preferably circular from the viewpoint of hardly damaging the surface of the fabric 8 and gripping the fabric 8 evenly.
本体部91の表面形状は特に限定されない。一例を挙げると、本体部91の表面形状は、凹凸が形成されていてもよく、凹凸の無い平面状であってもよい。本体部91の表面形状は、迫出し81を抑制しやすく、かつ、織物8の巾出し効果が得られる観点から、凹凸が形成されていることが好ましい。凹凸加工の種類としては、ユニファイ並目ねじ(JIS B 0206記載)、ユニファイ細目ねじ(JIS B 0208記載)、ローレット目(JIS B 0951記載)等が例示される。
The surface shape of the main body 91 is not particularly limited. As an example, the surface shape of the main body 91 may be uneven or may be a flat surface with no unevenness. It is preferable that the surface shape of the main body 91 is formed with irregularities from the viewpoint of easily suppressing the protrusion 81 and obtaining the effect of extending the fabric 8. Examples of the unevenness processing include a unified coarse thread (described in JIS B 0206), a unified fine thread (described in JIS B 0208), a knurled thread (described in JIS B 0951), and the like.
補強部92は、本体部91の両端に設けられた部位であり、本体部91と同様の棒状部位である。なお、補強部92は、本体部91と別の部材として構成されていてもよく、本体部91と一体的に形成された部材であってもよい。また、補強部92は、本体部91と連結されることによって一体的に形成されてもよく、元々同一の部材からなる織物把持棒9の一部に補強部92が形成されてもよい。さらに、補強部92と本体部91とは、上記した支持部材10上に連結されずに横並びで配置されてもよい。
The reinforcing part 92 is a part provided at both ends of the main body part 91, and is a bar-like part similar to the main body part 91. The reinforcing portion 92 may be configured as a separate member from the main body 91 or may be a member formed integrally with the main body 91. Moreover, the reinforcement part 92 may be integrally formed by being connected with the main-body part 91, and the reinforcement part 92 may be formed in a part of the textile-grip stick | rod 9 which consists of the same member originally. Further, the reinforcing portion 92 and the main body portion 91 may be arranged side by side without being connected to the support member 10 described above.
補強部92は、上記した第1の材料よりもヤング率の大きい第2の材料で構成されている。このような第2の材料としては、第1の材料にも依るが、ヤング率が10GPa以上の材料であることが好ましく、100GPa以上の材質であることがより好ましい。より具体的には、第2の材料としては、ナイロン、ポリオキシメチレン等の樹脂や、ステンレス、真鍮、アルミニウム等の金属が例示される。これらの中でも、第2の材料は、得られる織物8に傷がつきにくい観点からは、樹脂製であることが好ましい。一方、第2の材料は、高い織物把持力を維持することができ、かつ、高剛性である観点からは、金属製であることが好ましい。このように、第2の材料は、所望される作用効果に合わせて適宜選択されればよい。
The reinforcing portion 92 is made of a second material having a Young's modulus larger than that of the first material. Such a second material is preferably a material having a Young's modulus of 10 GPa or more, more preferably a material of 100 GPa or more, although it depends on the first material. More specifically, examples of the second material include resins such as nylon and polyoxymethylene, and metals such as stainless steel, brass, and aluminum. Among these, it is preferable that the second material is made of a resin from the viewpoint that the obtained fabric 8 is hardly damaged. On the other hand, the second material is preferably made of metal from the viewpoint of being able to maintain a high fabric gripping force and having high rigidity. As described above, the second material may be appropriately selected according to the desired effect.
補強部92(第2の材料)の表面硬度は、本体部91と同様に、ASTM D785の試験方法により測定されたロックウェル硬さが参照される。第2の材料は、Mスケールでは100以下であることが好ましく、90以下であることがより好ましい。また、第2の材料は、Rスケールでは150以下であることが好ましく、130以下であることがより好ましい。
As for the surface hardness of the reinforcing portion 92 (second material), the Rockwell hardness measured by the test method of ASTM D785 is referred to, as with the main body portion 91. The second material is preferably 100 or less, more preferably 90 or less on the M scale. In addition, the second material is preferably 150 or less, more preferably 130 or less on the R scale.
補強部92の長さは、10mm以上であればよく、15mm以上であることが好ましい。また、補強部92の長さは、60mm未満であればよく、50mm以下であることが好ましい。補強部92の長さが10mm未満の場合、補強部92は、支持部材10および押さえ部材11に押さえ付けられる応力が小さくなりやすい。そのため、織物把持棒9は、織物8の把持力が弱くなりやすい。その結果、テンプル装置4は、迫出し81を充分に抑制できない傾向がある。一方、補強部92の長さが60mm以上である場合、テンプル装置4は、迫出し81を抑制する効果が得られにくい。
The length of the reinforcement part 92 should just be 10 mm or more, and it is preferable that it is 15 mm or more. Moreover, the length of the reinforcement part 92 should just be less than 60 mm, and it is preferable that it is 50 mm or less. When the length of the reinforcing portion 92 is less than 10 mm, the stress that is pressed against the supporting member 10 and the pressing member 11 tends to be small in the reinforcing portion 92. For this reason, the fabric gripping rod 9 tends to have a weak gripping force on the fabric 8. As a result, the temple device 4 tends not to sufficiently suppress the protrusion 81. On the other hand, when the length of the reinforcing portion 92 is 60 mm or more, the temple device 4 is difficult to obtain the effect of suppressing the protrusion 81.
補強部92の太さ(径)、断面形状および表面形状としては特に限定されない。補強部92の太さ、断面形状および表面形状は、本体部91と同様であることが好ましい。
The thickness (diameter), cross-sectional shape, and surface shape of the reinforcing portion 92 are not particularly limited. The thickness, cross-sectional shape, and surface shape of the reinforcing portion 92 are preferably the same as those of the main body portion 91.
次に、態様1および態様2の相違点について説明する。
Next, the differences between Aspect 1 and Aspect 2 will be described.
・態様1について
態様1は、補強部92の外周面が、ローレット加工、または、ねじ切り加工が施された部分を含む態様である。図5には、補強部92の外周面にローレット加工が施されている場合が例示されている。なお、「ローレット」とは、「ぎざぎざ」を意味するフランス語であり、ナーリング(Knurling)ともいう。また、「ローレット加工」とは、網目状の凹凸を形成することをいう。本実施形態では、織物把持棒9に形成された凹凸部分によって、得られる基布のフレアが抑制される。そのため、本実施形態の織物把持棒9は、このような効果が奏される凹凸が形成されていればよい。本実施形態では、このような凹凸が形成された部分がローレット加工部と称されている。そのため、たとえばローレット加工以外の方法によって凹凸が形成される場合であっても、得られた織物把持棒9が同様の効果を奏する場合には、本実施形態でいう「ローレット加工部が設けられた織物把持棒」に相当する。以下、一例として、ローレット加工によってローレット加工部が形成される場合について説明する。 -About aspect 1 The aspect 1 is an aspect in which the outer peripheral surface of thereinforcement part 92 contains the part to which the knurling process or the threading process was given. FIG. 5 illustrates a case where the outer peripheral surface of the reinforcing portion 92 is knurled. “Knurling” is a French word meaning “jagged” and is also referred to as “Knurling”. Further, “knurling” refers to forming mesh-like irregularities. In the present embodiment, flare of the obtained base fabric is suppressed by the concavo-convex portion formed on the fabric gripping bar 9. Therefore, the fabric gripping rod 9 according to the present embodiment only needs to be provided with unevenness that exhibits such an effect. In the present embodiment, a portion where such irregularities are formed is referred to as a knurled portion. Therefore, for example, even when the unevenness is formed by a method other than knurling, when the obtained fabric gripping rod 9 has the same effect, the “knurling portion provided in this embodiment” is provided. Corresponds to a “textile gripping rod”. Hereinafter, as an example, a case where a knurled portion is formed by knurling will be described.
態様1は、補強部92の外周面が、ローレット加工、または、ねじ切り加工が施された部分を含む態様である。図5には、補強部92の外周面にローレット加工が施されている場合が例示されている。なお、「ローレット」とは、「ぎざぎざ」を意味するフランス語であり、ナーリング(Knurling)ともいう。また、「ローレット加工」とは、網目状の凹凸を形成することをいう。本実施形態では、織物把持棒9に形成された凹凸部分によって、得られる基布のフレアが抑制される。そのため、本実施形態の織物把持棒9は、このような効果が奏される凹凸が形成されていればよい。本実施形態では、このような凹凸が形成された部分がローレット加工部と称されている。そのため、たとえばローレット加工以外の方法によって凹凸が形成される場合であっても、得られた織物把持棒9が同様の効果を奏する場合には、本実施形態でいう「ローレット加工部が設けられた織物把持棒」に相当する。以下、一例として、ローレット加工によってローレット加工部が形成される場合について説明する。 -About aspect 1 The aspect 1 is an aspect in which the outer peripheral surface of the
ローレット加工方法には、切削加工による切削方法と専用ローレット加工具を織物把持棒の表面に押し当てて塑性変形させる転造式とがある。本実施形態では、ローレット加工部を形成する方法は、いずれの方法であってもよい。また、ローレット目には「平目」と「綾目(あやめ)」とがある(JIS B 0951)。本実施形態では、織物8の把持をより確実に行う観点から、ローレット目は、「綾目(あやめ)」が好ましい。
The knurling method includes a cutting method by cutting and a rolling method in which a dedicated knurling tool is pressed against the surface of the fabric gripping rod and plastically deformed. In this embodiment, the method for forming the knurled portion may be any method. The knurled eyes include "Hirame" and "Ayame" (JIS B 0951). In the present embodiment, from the viewpoint of more reliably holding the fabric 8, the knurled eye is preferably “Ayame”.
ローレット加工部の設けられた位置における織物把持棒9の直径は、5mm以上であることが好ましく、8mm以上であることがより好ましい。また、ローレット加工部の設けられた位置における織物把持棒9の直径は、15mm以下であることが好ましく、12mm以下であることがより好ましい。直径が5mm未満である場合、織物把持棒9は、把持力が低下しやすく、迫り出しが生じる虞がある。一方、直径が15mmを超える場合、織物8の強力が低下する傾向がある。
The diameter of the fabric gripping bar 9 at the position where the knurled portion is provided is preferably 5 mm or more, and more preferably 8 mm or more. Further, the diameter of the fabric gripping bar 9 at the position where the knurled portion is provided is preferably 15 mm or less, and more preferably 12 mm or less. When the diameter is less than 5 mm, the fabric gripping rod 9 tends to have a low gripping force and may be pushed out. On the other hand, when the diameter exceeds 15 mm, the strength of the fabric 8 tends to decrease.
ローレット目の表し方は、たとえばm(モジュール)表示する場合は、ピッチ円(山の高さの中心線)から頂点までの距離を表し、外周ピッチに換算するにはこの数値に3.14を掛けた値である。たとえば、m=0.3のときの外周ピッチP=0.3×3.14=0.942≒1と近似値換算される。一方、番手表示の場合は、1インチの中の山の数であり、25.4÷ピッチ=番手となる。本実施形態においては、ローレット目は、10番手以上であることが好ましい。また、ローレット目は、40番手以下であることが好ましい。ローレット目が10番手未満である場合、得られる織物の強力が低下しやすい。一方、ローレット目が40番手を超える場合、織物把持棒は、把持力が低下しやすく、迫り出しが生じる虞がある。
For example, when m (module) is displayed, the knurled eye is expressed by the distance from the pitch circle (the center line of the height of the mountain) to the apex. It is a multiplied value. For example, the approximate value is converted to an outer peripheral pitch P = 0.3 × 3.14 = 0.842≈1 when m = 0.3. On the other hand, in the case of count display, it is the number of peaks in one inch, and 25.4 ÷ pitch = count. In the present embodiment, the knurled eye is preferably 10th or more. Moreover, it is preferable that a knurl is 40th or less. When the knurled stitch is less than 10th, the strength of the resulting woven fabric tends to decrease. On the other hand, when the knurled stitch exceeds 40th, the fabric gripping rod tends to have a low gripping force and may be pushed out.
本実施形態の両端部のローレット加工部(補強部92)の長さは、それぞれ15mm以下であることが好ましい。ローレット加工部の長さが10mm未満である場合、織物8がしっかり把持されず、基布に織密度差が発生しやすい傾向がある。一方、ローレット加工部の長さが15mmを超える場合、織物把持棒9は、把持力が強くなりすぎて、織物8の引張強力、破断伸度が低下しやすい。
The lengths of the knurled portions (reinforcing portions 92) at both ends of the present embodiment are preferably 15 mm or less, respectively. When the length of the knurled portion is less than 10 mm, the fabric 8 is not firmly gripped, and there is a tendency that a difference in weave density is likely to occur in the base fabric. On the other hand, when the length of the knurled portion exceeds 15 mm, the gripping force of the fabric gripping rod 9 becomes too strong, and the tensile strength and breaking elongation of the fabric 8 tend to decrease.
また、態様1において、ローレット加工部に代えて、ねじ切り加工の施されたねじ切り加工部が形成されてもよい。ねじ切り加工部は、円柱、円筒の外面にコイル状の突起形状(ねじ山)を有した部分である。ねじの表面形状は特に限定されない。一例を挙げると、ねじは、織物8を強固に把持する観点から、ユニファイ並目ねじ(JIS B 0206記載)、ユニファイ細目ねじ(JIS B 0208記載)、ローレット目(JIS B 0951記載)等の三角ねじであることが好ましい。なお、ねじは、台形ねじ、四角ねじ、のこ歯ねじ、丸ねじ等であってもよい。
Further, in aspect 1, instead of the knurled part, a threaded part subjected to threading may be formed. The threaded portion is a portion having a coiled protrusion shape (thread) on the outer surface of a cylinder or cylinder. The surface shape of the screw is not particularly limited. For example, from the viewpoint of firmly holding the fabric 8, the screws are triangular such as unified coarse screws (described in JIS B 0206), unified fine screws (described in JIS B 0208), knurled eyes (described in JIS B 0951), and the like. A screw is preferred. The screw may be a trapezoidal screw, a square screw, a sawtooth screw, a round screw, or the like.
ねじ切り加工部の寸法等は、上記したローレット加工部と同様であるため、説明を省略する。
Since the dimensions and the like of the threaded portion are the same as those of the knurled portion described above, description thereof is omitted.
・態様2について
態様2は、図6に示されるように、織物把持棒9aの補強部92aが同軸上に形成された大径部92bと小径部92cとを有し、小径部92cが本体部91a中に埋設されることにより本体部91aに装着されている態様である。なお、本体部91aは、後述する小径部92cが埋設される嵌合穴が形成されている以外は、共通事項において上記した本体部(本体部91、図5参照)と同様である。 -Aboutaspect 2 As FIG. 6 shows, aspect 2 has the large diameter part 92b and the small diameter part 92c in which the reinforcement part 92a of the textile-grip stick 9a was formed coaxially, and the small diameter part 92c is a main-body part. It is the aspect with which it was mounted | worn with the main-body part 91a by being embedded in 91a. The main body portion 91a is the same as the main body portion (main body portion 91, see FIG. 5) in common matters except that a fitting hole in which a small diameter portion 92c described later is embedded is formed.
態様2は、図6に示されるように、織物把持棒9aの補強部92aが同軸上に形成された大径部92bと小径部92cとを有し、小径部92cが本体部91a中に埋設されることにより本体部91aに装着されている態様である。なお、本体部91aは、後述する小径部92cが埋設される嵌合穴が形成されている以外は、共通事項において上記した本体部(本体部91、図5参照)と同様である。 -About
大径部92bは、後述する小径部92cよりも大きな径を有し、かつ、小径部92cと同軸上に形成された部位である。大径部92bの外表面の表面形状は特に限定されない。大径部92bの外表面は、本体部91aと同様の表面形状であってもよく、態様1において上記したローレット加工またはねじ切り加工が施されてもよい。大径部92bの外周面にローレット加工またはねじ切り加工が施されていることにより、このような織物把持棒9aを備えるテンプル装置を備える織機を用いて得られる織物8は、織物把持棒9aの補強部92aによって、さらに確実に把持され得る。その結果、織物8は、織り口がさらに後退しにくく、中央部と両端部とにおける織密度の差がさらに小さくなる。したがって、織物8は、中央部と両端部との織密度差がさらに小さく、通気度の差がさらに小さくなる。また、織物8は、さらに優れた引張強度および破断伸度を示す。
The large-diameter portion 92b has a larger diameter than the small-diameter portion 92c described later, and is a portion formed coaxially with the small-diameter portion 92c. The surface shape of the outer surface of the large diameter portion 92b is not particularly limited. The outer surface of the large diameter portion 92b may have a surface shape similar to that of the main body portion 91a, and the knurling process or the threading process described in the aspect 1 may be performed. Since the outer peripheral surface of the large-diameter portion 92b is knurled or threaded, the fabric 8 obtained by using the loom including the temple device including the fabric gripping rod 9a is used to reinforce the fabric gripping rod 9a. The portion 92a can be gripped more reliably. As a result, the weave 8 is more difficult to retreat, and the difference in weave density between the center and both ends is further reduced. Therefore, the woven fabric 8 has a smaller woven density difference between the central portion and both end portions, and further reduces the difference in air permeability. Further, the fabric 8 exhibits further excellent tensile strength and breaking elongation.
大径部92bの径は、本体部91aの径と同一であることが好ましい。これにより、織物把持棒9aを備えるテンプル装置を備える織機を用いることにより、得られる織物8は、織物把持棒9aの補強部92aによって、より確実に把持される。その結果、織物8は、織り口がより後退しにくく、中央部と両端部とにおける織密度の差がより小さくなる。したがって、織物8は、中央部と両端部との織密度差がより小さく、通気度の差がより小さくなる。また、織物8は、より優れた引張強度および破断伸度を示す。なお、本実施形態において、「大径部92bの径と本体部91aの径とが同一である」とは、「大径部92bの径」に対する「本体部91aの径」の割合が100±2.5%であることをいう。
The diameter of the large diameter portion 92b is preferably the same as the diameter of the main body portion 91a. Thereby, the fabric 8 obtained by using the loom including the temple device including the fabric gripping bar 9a is more reliably gripped by the reinforcing portion 92a of the fabric gripping bar 9a. As a result, the woven fabric 8 is less likely to retreat, and the difference in the woven density between the central portion and both end portions becomes smaller. Therefore, the fabric 8 has a smaller woven density difference between the center portion and both end portions, and a smaller difference in air permeability. In addition, the fabric 8 exhibits better tensile strength and elongation at break. In the present embodiment, “the diameter of the large-diameter portion 92b is the same as the diameter of the main body portion 91a” means that the ratio of the “diameter of the main body portion 91a” to the “diameter of the large-diameter portion 92b” is 100 ±. It means 2.5%.
大径部92bの材質は、いずれも共通事項において上記した補強部92と同様である。
The material of the large diameter portion 92b is the same as that of the reinforcing portion 92 described above in common matters.
小径部92cは、大径部92bよりも小径であり、本体部91a中に埋設される部位である。より具体的には、小径部92cは、本体部91aの両端に形成された嵌合穴に埋設されることにより、小径部92cの形状は特に限定されない。小径部92cは、円柱状、角柱状、各種多角形状、不定形状であってもよい。なお、本体部91aの嵌合穴の形状は、小径部92cが隙間なく埋設されるように、小径部92cと相補的な形状であることが好ましい。一例を挙げると、小径部92cが円柱状である場合、嵌合穴は、小径部92cの外径と同程度か、わずかに異なる径の円筒形の穴であることが好ましい。
The small diameter portion 92c has a smaller diameter than the large diameter portion 92b and is a portion embedded in the main body portion 91a. More specifically, the shape of the small diameter portion 92c is not particularly limited by embedding the small diameter portion 92c in fitting holes formed at both ends of the main body portion 91a. The small diameter portion 92c may be a columnar shape, a prismatic shape, various polygonal shapes, or an indefinite shape. In addition, it is preferable that the shape of the fitting hole of the main-body part 91a is a shape complementary to the small diameter part 92c so that the small diameter part 92c may be embedded without gap. For example, when the small-diameter portion 92c is cylindrical, the fitting hole is preferably a cylindrical hole having a diameter that is the same as or slightly different from the outer diameter of the small-diameter portion 92c.
小径部92cの径は、補強部92aが本体部91aに適切に位置決めされるために充分な大きさであればよい。一例を挙げると、小径部92cの径は、小径部92cが円筒状である場合において、2mm以上であることが好ましく、4mm以上であることがより好ましい。なお、小径部92cの径は、大径部よりも小さければよい。
The diameter of the small-diameter portion 92c only needs to be large enough for the reinforcing portion 92a to be properly positioned on the main body portion 91a. For example, when the small diameter portion 92c is cylindrical, the diameter of the small diameter portion 92c is preferably 2 mm or more, and more preferably 4 mm or more. In addition, the diameter of the small diameter part 92c should just be smaller than a large diameter part.
小径部92cの材質は特に限定されない。小径部92cの材質は、大径部92bと同様であってもよく(すなわち、第2の材料であってもよく)、異なっていてもよい。
The material of the small diameter portion 92c is not particularly limited. The material of the small diameter portion 92c may be the same as that of the large diameter portion 92b (that is, it may be the second material) or may be different.
補強部92aの軸方向の全長が10mm以上、60mm未満である限りにおいて、大径部92bおよび小径部92cの寸法は調整され得る。態様2において、大径部92bの軸方向の全長は、0mmを超え、5mm以上であることが好ましい。また、大径部92bの軸方向の全長は、15mm以下であることが好ましく、10mm以下であることがより好ましい。大径部92bの軸方向の全長が15mmを超える場合、得られる織物8の破断伸度等の物性が低下する傾向がある。
As long as the total length in the axial direction of the reinforcing portion 92a is 10 mm or more and less than 60 mm, the dimensions of the large diameter portion 92b and the small diameter portion 92c can be adjusted. In aspect 2, it is preferable that the total axial length of the large-diameter portion 92b exceeds 0 mm and is 5 mm or more. Further, the total length of the large diameter portion 92b in the axial direction is preferably 15 mm or less, and more preferably 10 mm or less. When the total axial length of the large-diameter portion 92b exceeds 15 mm, physical properties such as breaking elongation of the resulting fabric 8 tend to decrease.
テンプル装置4全体の説明に戻り、図3または図4に示されるように、本実施形態のテンプル装置4は、筬3によって迫出し81が押し込まれると、織物把持棒9は、筬打ち方向A1に沿って強い応力が加えられる。迫出し81は、織物8の幅方向の端部の方が、中央部よりも大きく形成されている。そのため、応力は、織物把持棒9の補強部92に加えられやすい。しかしながら、補強部92を構成する第2の材料は、本体部91を構成する第1の材料よりもヤング率が大きい。そのため、織物把持棒9は、曲げ剛性が強く、筬打ち時に加えられる応力によっても変形しにくい。その結果、テンプル装置4は、筬打ち時に織物把持棒9が支持部材10および押さえ部材11から離れる距離が短くなり、織物把持棒9に掛け回された織物8を強く把持し続けることができる。したがって、迫出し81は、小さく抑えられる。
Returning to the description of the entire temple device 4, as shown in FIG. 3 or FIG. 4, the temple device 4 according to this embodiment is configured such that when the urging 81 is pushed in by the heel 3, the fabric gripping bar 9 moves in the lashing direction A <b> 1. A strong stress is applied along. The protrusion 81 is formed so that the end portion in the width direction of the fabric 8 is larger than the center portion. Therefore, the stress is easily applied to the reinforcing portion 92 of the fabric gripping bar 9. However, the second material constituting the reinforcing portion 92 has a Young's modulus greater than that of the first material constituting the main body portion 91. For this reason, the fabric gripping bar 9 has a high bending rigidity and is not easily deformed by a stress applied at the time of hammering. As a result, the distance between the fabric gripping bar 9 and the supporting member 10 and the pressing member 11 is shortened when the temple device 4 is beaten, and the temple device 4 can continue to firmly grip the fabric 8 wound around the fabric gripping bar 9. Therefore, the protrusion 81 is kept small.
<織物の製造方法>
次に、本発明の一実施形態の織物を製造する方法について説明する。本実施形態の織物の製造方法は、上記した織機を用いて織物を製織することを特徴とする。そのため、上記した織機を用いる以外の工程はいずれも例示であり、適宜設計変更を行うことができる。 <Method for producing woven fabric>
Next, a method for producing a fabric according to an embodiment of the present invention will be described. The manufacturing method of the fabric of this embodiment is characterized by weaving the fabric using the above-described loom. Therefore, all the processes other than using the loom described above are examples, and the design can be changed as appropriate.
次に、本発明の一実施形態の織物を製造する方法について説明する。本実施形態の織物の製造方法は、上記した織機を用いて織物を製織することを特徴とする。そのため、上記した織機を用いる以外の工程はいずれも例示であり、適宜設計変更を行うことができる。 <Method for producing woven fabric>
Next, a method for producing a fabric according to an embodiment of the present invention will be described. The manufacturing method of the fabric of this embodiment is characterized by weaving the fabric using the above-described loom. Therefore, all the processes other than using the loom described above are examples, and the design can be changed as appropriate.
まず、合成繊維フィラメント糸が経糸および緯糸として用いられる。織物設計に準じた繊度の経糸を整経して織機にかけられる。同様に緯糸が準備される。経糸および緯糸に用いられる合成繊維フィラメント糸条は、同じものであることが、基布の品質上、後工程の面で好ましい。織機としては、ウォータージェットルーム織機を用いることが製織時の経糸毛羽の発生が小さく、また高速製織が比較的容易で生産性が高いため好ましい。
First, synthetic fiber filament yarn is used as warp and weft. A warp with a fineness according to the fabric design is warped and applied to the loom. Similarly, wefts are prepared. The synthetic fiber filament yarn used for the warp and the weft is preferably the same in terms of the quality of the base fabric in terms of the post-process. As the loom, it is preferable to use a water jet loom because the generation of warp fluff during weaving is small, high-speed weaving is relatively easy and productivity is high.
ウォータージェットルーム織機で製織する際、拘束飛走がある緯糸測長装置が選択されることが好ましい。一例を挙げると、ガイド回転により1ピック分の緯糸を測長ドラムに巻き付ける装置、または1ピック分の緯糸を測長装置のドラム回転とブロアによる送風により巻き付ける装置を有するウォータージェットルーム織機が用いられることが好ましい。主に、エアージェットルーム織機に用いられるフリードラム式の測長装置は、1ピック分の緯糸の飛走が完了すると、係止ピンでブレーキをかける。そのため、緯糸にかかる張力が高く、耳部の織り口の後退が大きくなる。その結果、使用しても効果は乏しい。なお、拘束飛走とは、1ピック分の緯糸をガイド回転またはドラム回転、ブロワによる送風により測長装置のドラムに巻き付けて、巻き付けられた緯糸が測長装置からの解舒が終了したときに、緯糸にブレーキが効いた状態で飛走している状態をいう。拘束飛走を有すると、耳部の織り口後退は、フリードラム式の拘束飛走なしに比べて軽減される。
When weaving with a water jet loom, it is preferable to select a weft length measuring device with restrained flight. As an example, a water jet loom having a device for winding a weft for one pick around a length measuring drum by rotating a guide or a device for winding a weft for one pick by rotating the drum of the length measuring device and blowing by a blower is used. It is preferable. Mainly, a free-drum type length measuring device used for an air jet loom loom applies a brake with a locking pin when the weft of one pick is completed. Therefore, the tension applied to the weft is high, and the retreat of the knitting mouth of the ear portion becomes large. As a result, even if used, the effect is poor. In addition, restraint flying is when the weft of one pick is wound around the drum of the length measuring device by guide rotation or drum rotation, blower by blower, and when the wound weft is finished unwinding from the length measuring device , It means the state of flying with the brake applied to the weft. With restraint flight, the retraction of the ear weave is reduced as compared to the free drum type restraint flight.
本実施形態では、経糸張力は50cN/本以上に調整されることが好ましく、100cN/本以上に調整されることがより好ましい。また、経糸張力は、250cN/本以下に調整されることが好ましく、200cN/本以下に調整されることがより好ましい。経糸張力が上記範囲内に調整される場合、織物を構成するマルチフィラメント糸の糸束中の単繊維間の空隙が減少されやすく、得られる基布の通気量が低減されやすい。また、緯糸の打ち込み後に、上記張力をかけられた経糸が緯糸を押し曲げることで、緯糸方向の織物の組織拘束力が高められやすく、織物の抗目ズレ性が向上し、エアバッグとして袋体を形成するときの縫製部分の目ズレによる空気漏れが抑えられやすい。一方、経糸張力が50cN/本未満である場合、経糸と緯糸との織物中での接触面積が増えにくく、得られる基布の滑脱抵抗力が充分に得られにくい。また、単繊維間の空隙が減少されにくく、得られる基布に充分な低通気性が得られにくい。一方、経糸張力が250cN/本を超える場合、経糸がヘルドメールでの擦過により毛羽が発生しやすくなる傾向がある。経糸張力を上記範囲内に調整する方法としては、織機の経糸送り出し速度を調整する方法や、緯糸の打ち込み速度を調整する方法等が例示される。なお、経糸張力が製織中に実際に上記範囲内となっているかどうかは、たとえば織機稼動中に経糸ビームとバックローラーとの中間において、経糸1本当たりに加わる張力を張力測定器で測ることにより、確認することができる。
In this embodiment, the warp tension is preferably adjusted to 50 cN / line or more, and more preferably adjusted to 100 cN / line or more. The warp tension is preferably adjusted to 250 cN / line or less, more preferably 200 cN / line or less. When the warp tension is adjusted within the above range, the gap between the single fibers in the yarn bundle of the multifilament yarn constituting the woven fabric is likely to be reduced, and the air flow rate of the obtained base fabric is likely to be reduced. In addition, after the weft has been driven, the warp subjected to the tension described above pushes and bends the weft so that the tissue restraint force of the fabric in the weft direction can be easily increased, the anti-displacement of the fabric is improved, and the bag as an airbag Air leakage due to misalignment of the sewn portion when forming the wire is easy to be suppressed. On the other hand, when the warp tension is less than 50 cN / piece, the contact area between the warp and the weft in the woven fabric is difficult to increase, and the sliding resistance of the obtained base fabric is not sufficiently obtained. Moreover, the space | gap between single fibers is hard to be reduced, and it is hard to obtain low air permeability sufficient for the base fabric obtained. On the other hand, when the warp tension exceeds 250 cN / string, there is a tendency that the warp tends to generate fluff due to rubbing with heald mail. Examples of methods for adjusting the warp tension within the above range include a method for adjusting the warp feed speed of the loom, a method for adjusting the weft driving speed, and the like. Whether the warp tension is actually within the above range during weaving can be determined, for example, by measuring the tension applied to one warp with a tension measuring instrument between the warp beam and the back roller during operation of the loom. Can be confirmed.
また、経糸開口における上糸シート張力と下糸シート張力に差をつけることが好ましい。これらを調整する方法としては、バックローラー高さを、一般的に水平位置から、たとえば10~30mm高めの位置に設置するなどして、上糸の走行線長と下糸の走行線長に差をつける方法が例示される。また、上糸の張力と下糸の張力とに差をつける他の方法としては、たとえば、開口装置にカム駆動方式を採用し、上糸・下糸の片側のドエル角を他方よりも100度以上大きく取る方法が例示される。
Also, it is preferable to make a difference between the upper thread sheet tension and the lower thread sheet tension at the warp opening. As a method for adjusting these, the back roller height is generally set at a position 10 to 30 mm higher than the horizontal position, for example, so that the difference between the upper thread traveling line length and the lower thread traveling line length is different. The method of attaching is illustrated. Further, as another method for making a difference between the tension of the upper thread and the tension of the lower thread, for example, a cam drive system is adopted for the opening device, and the dwell angle on one side of the upper thread / lower thread is set to 100 degrees from the other. A method of taking a larger value is exemplified.
本実施形態の織物の製造方法は、製織工程後に必要に応じて、精練、熱セット等の加工工程が採用されてもよい。特に小さい通気量が求められる場合には、得られた基布は、基布表面に樹脂等が塗布されてもよく、フィルムを貼り付けたコート布とされてもよい。
In the method for manufacturing a woven fabric according to the present embodiment, processing steps such as scouring and heat setting may be employed as necessary after the weaving step. In particular, when a small air flow rate is required, the obtained base fabric may be coated with a resin or the like on the surface of the base fabric or a coated fabric with a film attached thereto.
以上、本実施形態の製造方法において用いられる織機は、上記した織物把持棒を備えるテンプル装置を備える。そのため、このような織機を用いることにより、織物は、織物把持棒の補強部によって、より確実に把持される。その結果、織り口がより後退しにくく、中央部と両端部とにおける織密度の差がより小さくなる。したがって、得られる織物は、中央部と両端部との織密度差がより小さく、通気度の差がより小さくなる。また、得られる織物は、より優れた引張強度および破断伸度を示す。
As described above, the loom used in the manufacturing method of the present embodiment includes the temple device including the above-described fabric gripping rod. Therefore, by using such a loom, the fabric is more reliably gripped by the reinforcing portion of the fabric gripping bar. As a result, the weave is less likely to recede, and the difference in weave density between the center and both ends becomes smaller. Therefore, the resulting woven fabric has a smaller woven density difference between the center and both ends, and a smaller difference in air permeability. The resulting woven fabric also exhibits better tensile strength and elongation at break.
なお、本実施形態の織物の製造方法によって得られた織物からエアバッグを製造する方法は特に限定されない。一例を挙げると、エアバッグは、織物を裁断パターンにしたがって裁断し、袋状に縫製し、インフレーターなどの付属機器を取り付けることによって製造し得る。得られるエアバッグは、運転席用、助手席用および後部座席用、側面用、膝用、天井用エアバッグ等に使用され得る。得られるエアバッグは、特に、大きな拘束力が求められる運転席用、助手席用エアバッグとして好適に使用される。なお、織物の裁断は、通常、樹脂加工された織物を複数枚積層し、ナイフによる打ち抜きにより行われる。また、ノンコート基布の場合は、ナイフによる打ち抜き裁断では、裁断品の端がほつれやすいので、通常、レーザーカッターにより1枚ずつ裁断される。本実施形態の織物は耳端部近傍部にフレアがない。そのため、織物は、設計通りの形状に裁断されやすく、縫製も容易である。その結果、本実施形態のエアバッグは、エアバッグとしての形態が設計通りで、かつ、正確な形態に仕上げられることができ、高い破裂強度を有するなど機能的に優れる。また、エアバッグに使用された織物は、フレアが小さいため、廃棄ロスが少なく、最大限有効に利用でき、コスト的にも有利である。
In addition, the method of manufacturing an airbag from the fabric obtained by the fabric manufacturing method of the present embodiment is not particularly limited. As an example, an airbag can be manufactured by cutting a fabric according to a cutting pattern, sewing it into a bag shape, and attaching an accessory device such as an inflator. The obtained airbag can be used for a driver's seat, a passenger seat and a rear seat, a side surface, a knee, a ceiling airbag, and the like. The obtained airbag is particularly suitably used as a driver seat or passenger seat airbag requiring a large restraining force. Note that the cutting of the fabric is usually performed by stacking a plurality of resin processed fabrics and punching with a knife. In the case of a non-coated base fabric, the edge of the cut product is easily frayed by punching with a knife, and is usually cut one by one with a laser cutter. The fabric of this embodiment has no flare in the vicinity of the ear end. Therefore, the woven fabric is easily cut into a designed shape and is easy to sew. As a result, the airbag of the present embodiment is functionally superior in that the form of the airbag is as designed and can be finished in an accurate form, and has high burst strength. Further, since the woven fabric used for the air bag has a small flare, there is little waste loss, it can be used effectively as much as possible, and it is advantageous in terms of cost.
以上、本発明の一実施形態について説明した。本発明は、上記実施形態に格別限定されない。なお、上記した実施形態は、以下の構成を有する発明を主に説明するものである。
The embodiment of the present invention has been described above. The present invention is not particularly limited to the above embodiment. The above-described embodiments mainly describe the invention having the following configuration.
(1)織物の幅(W)を横軸にとり、前記織物の密度比((a-b)/b)に100を乗じた値(100×(a-b)/b)を縦軸にとる場合において、前記織物の幅(W)と前記織物の密度比に100を乗じた値(100×(a-b)/b)とが、以下の6点で区画される領域内にある、織物。
第1点(A) W=185、100×(a-b)/b=0.5
第2点(B) W=185、100×(a-b)/b=1.6
第3点(C) W=205、100×(a-b)/b=0.5
第4点(D) W=205、100×(a-b)/b=1.8
第5点(E) W=250、100×(a-b)/b=1.5
第6点(F) W=250、100×(a-b)/b=5.4
(ただし、aは、JIS L 1096:(1999)8.6.1に準拠して測定した、織物の両端部から100mmの位置におけるそれぞれの経密度(本/2.54cm)の平均値のうち、大きい方の値であり、bは織物の中央部100mm幅の経密度(本/2.54cm)の平均値である。) (1) The width (W) of the woven fabric is taken on the horizontal axis, and the value obtained by multiplying the density ratio ((ab) / b) of the woven fabric by 100 (100 × (ab) / b) is taken on the vertical axis. In this case, the woven fabric has a width (W) of the woven fabric and a value obtained by multiplying the density ratio of the woven fabric by 100 (100 × (ab) / b) within a region defined by the following six points. .
First point (A) W = 185, 100 × (ab) /b=0.5
Second point (B) W = 185, 100 × (ab) /b=1.6
Third point (C) W = 205, 100 × (ab) /b=0.5
Fourth point (D) W = 205, 100 × (ab) /b=1.8
Fifth point (E) W = 250, 100 × (ab) /b=1.5
Sixth point (F) W = 250, 100 × (ab) /b=5.4
(However, a is the average value of each warp density (line / 2.54 cm) at a position of 100 mm from both ends of the woven fabric, measured according to JIS L 1096: (1999) 8.6.1. The larger value is b, and b is the average value of warp density (line / 2.54 cm) of 100 mm width at the center of the fabric.)
第1点(A) W=185、100×(a-b)/b=0.5
第2点(B) W=185、100×(a-b)/b=1.6
第3点(C) W=205、100×(a-b)/b=0.5
第4点(D) W=205、100×(a-b)/b=1.8
第5点(E) W=250、100×(a-b)/b=1.5
第6点(F) W=250、100×(a-b)/b=5.4
(ただし、aは、JIS L 1096:(1999)8.6.1に準拠して測定した、織物の両端部から100mmの位置におけるそれぞれの経密度(本/2.54cm)の平均値のうち、大きい方の値であり、bは織物の中央部100mm幅の経密度(本/2.54cm)の平均値である。) (1) The width (W) of the woven fabric is taken on the horizontal axis, and the value obtained by multiplying the density ratio ((ab) / b) of the woven fabric by 100 (100 × (ab) / b) is taken on the vertical axis. In this case, the woven fabric has a width (W) of the woven fabric and a value obtained by multiplying the density ratio of the woven fabric by 100 (100 × (ab) / b) within a region defined by the following six points. .
First point (A) W = 185, 100 × (ab) /b=0.5
Second point (B) W = 185, 100 × (ab) /b=1.6
Third point (C) W = 205, 100 × (ab) /b=0.5
Fourth point (D) W = 205, 100 × (ab) /b=1.8
Fifth point (E) W = 250, 100 × (ab) /b=1.5
Sixth point (F) W = 250, 100 × (ab) /b=5.4
(However, a is the average value of each warp density (line / 2.54 cm) at a position of 100 mm from both ends of the woven fabric, measured according to JIS L 1096: (1999) 8.6.1. The larger value is b, and b is the average value of warp density (line / 2.54 cm) of 100 mm width at the center of the fabric.)
このような構成によれば、上記区画される領域内にある織物は、中央部と両端部との織密度差が小さく、通気度の差が小さくなる。また、織物は、充分な引張強度および破断伸度を示す。このような織物は、縫製されることにより、エアバッグ等として有用である。
According to such a configuration, the woven fabric in the partitioned region has a small woven density difference between the central portion and both end portions, and a small difference in air permeability. The fabric also exhibits sufficient tensile strength and elongation at break. Such a fabric is useful as an airbag or the like by being sewn.
(2)本体部と、前記本体部の両端に設けられた補強部とを備え、前記補強部は、前記本体部よりもヤング率が大きい部材で構成され、補強部の軸方向の全長は、10mm以上、60mm未満であり、かつ下記態様1または態様2の少なくともいずれか一方に記載の態様を有する、織物の製織用把持棒。
態様1:前記補強部は、外周面が、ローレット加工、または、ねじ切り加工が施された部分を含む。
態様2:前記補強部は、同軸上に形成された大径部と小径部とを有し、前記小径部が前記本体部中に埋設されることにより、前記本体部に装着されている。 (2) It comprises a main body part and reinforcing parts provided at both ends of the main body part, the reinforcing part is composed of a member having a Young's modulus larger than that of the main body part, and the total axial length of the reinforcing part is A gripping bar for weaving a woven fabric, which is 10 mm or more and less than 60 mm, and has at least one of the followingaspects 1 and 2.
Aspect 1: The reinforcing portion includes a portion whose outer peripheral surface is knurled or threaded.
Aspect 2: The reinforcing portion has a large-diameter portion and a small-diameter portion that are formed on the same axis, and the small-diameter portion is embedded in the main-body portion, thereby being attached to the main-body portion.
態様1:前記補強部は、外周面が、ローレット加工、または、ねじ切り加工が施された部分を含む。
態様2:前記補強部は、同軸上に形成された大径部と小径部とを有し、前記小径部が前記本体部中に埋設されることにより、前記本体部に装着されている。 (2) It comprises a main body part and reinforcing parts provided at both ends of the main body part, the reinforcing part is composed of a member having a Young's modulus larger than that of the main body part, and the total axial length of the reinforcing part is A gripping bar for weaving a woven fabric, which is 10 mm or more and less than 60 mm, and has at least one of the following
Aspect 1: The reinforcing portion includes a portion whose outer peripheral surface is knurled or threaded.
Aspect 2: The reinforcing portion has a large-diameter portion and a small-diameter portion that are formed on the same axis, and the small-diameter portion is embedded in the main-body portion, thereby being attached to the main-body portion.
このような構成によれば、たとえば織物用の製織把持棒を備えるテンプル装置等を備える織機を用いることにより、織物は、織物把持棒の補強部によって把持される。その結果、高密度織物製織時において、耳端部の織り口が後退しにくく、中央部と両端部とにおける織密度の差が小さくなる。したがって、得られる織物は、中央部と両端部との織密度差が小さく、通気度の差が小さくなる。また、得られる織物は、充分な引張強度および破断伸度を示す。なお、本実施形態において、織物の「耳端部」とは、耳部が形成されている左右にある最外端部分をいう。
According to such a configuration, the fabric is gripped by the reinforcing portion of the fabric gripping rod by using, for example, a loom equipped with a temple device or the like including a woven gripping rod for fabric. As a result, at the time of weaving a high-density fabric, the weave at the end of the ear is difficult to recede, and the difference in weave density between the center and both ends is reduced. Therefore, the obtained woven fabric has a small woven density difference between the center portion and both end portions, and a difference in air permeability. The resulting woven fabric exhibits sufficient tensile strength and elongation at break. In the present embodiment, the “ear end portion” of the fabric refers to the outermost end portions on the left and right sides where the ear portions are formed.
(3)前記補強部が前記態様2の態様を有する場合において、前記大径部の外径と前記本体部の外径とは、同一である、(2)記載の織物の製織用把持棒。
(3) In the case where the reinforcing part has the aspect of the aspect 2, the outer diameter of the large-diameter part and the outer diameter of the main body part are the same.
このような構成によれば、たとえば織物用の製織把持棒を備えるテンプル装置等を備える織機を用いることにより、織物は、織物把持棒の補強部によって、より確実に把持される。その結果、織り口がより後退しにくく、中央部と両端部とにおける織密度の差がより小さくなる。したがって、得られる織物は、中央部と両端部との織密度差がより小さく、通気度の差がより小さくなる。また、得られる織物は、充分な引張強度および破断伸度を示す。
According to such a configuration, for example, by using a loom equipped with a temple device or the like having a weaving gripping rod for fabric, the fabric is gripped more reliably by the reinforcing portion of the fabric gripping rod. As a result, the weave is less likely to recede, and the difference in weave density between the center and both ends becomes smaller. Therefore, the resulting woven fabric has a smaller woven density difference between the center and both ends, and a smaller difference in air permeability. The resulting woven fabric exhibits sufficient tensile strength and elongation at break.
(4)前記補強部が前記態様2の態様を有する場合において、前記大径部は、外周面が、ローレット加工、または、ねじ切り加工が施されている、(2)または(3)記載の織物の製織用把持棒。
(4) The woven fabric according to (2) or (3), wherein, in the case where the reinforcing portion has the aspect of the aspect 2, the outer peripheral surface of the large diameter part is knurled or threaded. Gripping rod for weaving.
このような構成によれば、たとえば織物用の製織把持棒を備えるテンプル装置等を備える織機を用いることにより、織物は、織物把持棒の補強部(特に大径部)によって、より確実に把持される。その結果、織り口がより後退しにくく、中央部と両端部とにおける織密度の差がより小さくなる。したがって、得られる織物は、中央部と両端部との織密度差がより小さく、通気度の差がより小さくなる。また、得られる織物は、充分な引張強度および破断伸度を示す。
According to such a configuration, for example, by using a loom including a temple device including a weaving gripping rod for fabric, the fabric is gripped more reliably by the reinforcing portion (particularly the large diameter portion) of the fabric gripping rod. The As a result, the weave is less likely to recede, and the difference in weave density between the center and both ends becomes smaller. Therefore, the resulting woven fabric has a smaller woven density difference between the center and both ends, and a smaller difference in air permeability. The resulting woven fabric exhibits sufficient tensile strength and elongation at break.
(5)(2)~(4)のいずれかに記載の織物の製織用把持棒を備える織機用全幅テンプル装置であり、前記織物の製織用把持棒は、本体部と、前記本体部の両端に設けられた補強部とを備え、前記補強部は、前記本体部よりもヤング率が大きい部材で構成され、補強部の軸方向の全長は、10mm以上、60mm未満であり、かつ下記態様1または態様2の少なくともいずれか一方に記載の態様を有する、織機用全幅テンプル装置。
態様1:前記補強部は、外周面が、ローレット加工、または、ねじ切り加工が施された部分を含む。
態様2:前記補強部は、同軸上に形成された大径部と小径部とを有し、前記小径部が前記本体部中に埋設されることにより、前記本体部に装着されている。 (5) A full-width temple device for a loom comprising the weaving gripping rod for a woven fabric according to any one of (2) to (4), wherein the weaving gripping rod for the woven fabric has a main body portion and both ends of the main body portion. The reinforcing portion is formed of a member having a Young's modulus larger than that of the main body portion, and the axial total length of the reinforcing portion is 10 mm or more and less than 60 mm, and the following aspect 1 Or the full width temple apparatus for looms which has the aspect as described in at least any one ofaspect 2. FIG.
Aspect 1: The reinforcing portion includes a portion whose outer peripheral surface is knurled or threaded.
Aspect 2: The reinforcing portion has a large-diameter portion and a small-diameter portion that are formed on the same axis, and the small-diameter portion is embedded in the main-body portion, thereby being attached to the main-body portion.
態様1:前記補強部は、外周面が、ローレット加工、または、ねじ切り加工が施された部分を含む。
態様2:前記補強部は、同軸上に形成された大径部と小径部とを有し、前記小径部が前記本体部中に埋設されることにより、前記本体部に装着されている。 (5) A full-width temple device for a loom comprising the weaving gripping rod for a woven fabric according to any one of (2) to (4), wherein the weaving gripping rod for the woven fabric has a main body portion and both ends of the main body portion. The reinforcing portion is formed of a member having a Young's modulus larger than that of the main body portion, and the axial total length of the reinforcing portion is 10 mm or more and less than 60 mm, and the following aspect 1 Or the full width temple apparatus for looms which has the aspect as described in at least any one of
Aspect 1: The reinforcing portion includes a portion whose outer peripheral surface is knurled or threaded.
Aspect 2: The reinforcing portion has a large-diameter portion and a small-diameter portion that are formed on the same axis, and the small-diameter portion is embedded in the main-body portion, thereby being attached to the main-body portion.
このような構成によれば、織機用全幅テンプル装置は、上記織物の製織用把持棒を備える。そのため、このような織機用全幅テンプル装置を備える織機を用いることにより、織物は、織物把持棒の補強部によって、より確実に把持される。その結果、織り口がより後退しにくく、中央部と両端部とにおける織密度の差がより小さくなる。したがって、得られる織物は、中央部と両端部との織密度差がより小さく、通気度の差がより小さくなる。また、得られる織物は、充分な引張強度および破断伸度を示す。
According to such a configuration, the full-width temple device for a loom includes the above-mentioned weaving gripping rod for the fabric. Therefore, by using a loom including such a full width temple device for a loom, the fabric is more reliably gripped by the reinforcing portion of the fabric gripping bar. As a result, the weave is less likely to recede, and the difference in weave density between the center and both ends becomes smaller. Therefore, the resulting woven fabric has a smaller woven density difference between the center and both ends, and a smaller difference in air permeability. The resulting woven fabric exhibits sufficient tensile strength and elongation at break.
(6)(5)記載の織機用全幅テンプル装置を備える織機。
(6) A loom including the full-width temple device for a loom according to (5).
このような構成によれば、織機は、上記織物の製織用把持棒を備えた織機用全幅テンプル装置を備える。そのため、このような織機を用いることにより、織物は、織物把持棒の補強部によって、より確実に把持される。その結果、織り口がより後退しにくく、中央部と両端部とにおける織密度の差がより小さくなる。したがって、得られる織物は、中央部と両端部との織密度差がより小さく、通気度の差がより小さくなる。また、得られる織物は、充分な引張強度および破断伸度を示す。
According to such a configuration, the loom includes the full-width temple device for the loom including the above-mentioned weaving gripping rod for the woven fabric. Therefore, by using such a loom, the fabric is more reliably gripped by the reinforcing portion of the fabric gripping bar. As a result, the weave is less likely to recede, and the difference in weave density between the center and both ends becomes smaller. Therefore, the resulting woven fabric has a smaller woven density difference between the center and both ends, and a smaller difference in air permeability. The resulting woven fabric exhibits sufficient tensile strength and elongation at break.
(7)(6)記載の織機を用いる、織物の製造方法。
(7) A method for manufacturing a woven fabric using the loom described in (6).
このような構成によれば、織機は、上記織物の製織用把持棒を備えた織機用全幅テンプル装置を備える。そのため、このような織機を用いることにより、織物は、織物把持棒の補強部によって、より確実に把持される。その結果、織り口がより後退しにくく、中央部と両端部とにおける織密度の差がより小さくなる。したがって、得られる織物は、中央部と両端部との織密度差がより小さく、通気度の差がより小さくなる。また、得られる織物は、充分な引張強度および破断伸度を示す。
According to such a configuration, the loom includes the full-width temple device for the loom including the above-mentioned weaving gripping rod for the woven fabric. Therefore, by using such a loom, the fabric is more reliably gripped by the reinforcing portion of the fabric gripping bar. As a result, the weave is less likely to recede, and the difference in weave density between the center and both ends becomes smaller. Therefore, the resulting woven fabric has a smaller woven density difference between the center and both ends, and a smaller difference in air permeability. The resulting woven fabric exhibits sufficient tensile strength and elongation at break.
以下、実施例により本発明をより具体的に説明する。本発明は、これら実施例に何ら限定されない。なお、本発明の説明で使用した各種の物性値は、以下に記載する測定法によるものである。
Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited to these examples. Various physical property values used in the description of the present invention are based on the measurement methods described below.
[測定方法]
(1)総繊度
JIS L1013(2010) 8.3.1 B法に示される方法により、正量繊度を測定して総繊度とした。
(2)フィラメント数
JIS L1013(1999) 8.4の方法に基づいて算出した。
(3)強度および伸度
JIS L1013(2010) 8.5.1標準時試験に示される定速伸長形の条件で測定した。試料をオリエンテック社製“テンシロン”(TENSILON)UCT-100を用いて、掴み間隔は25cm、引張り速度は30cm/分で行った。なお、伸度はS-S曲線における最大強力を示した点の伸びから求めた。
(4)カバーファクター
経糸または緯糸に用いられる糸の総繊度と織密度から計算される値であり、以下の式(1)によって定義した。なお、式(1)において、Dwは経糸総繊度(dtex)であり、Dfは緯糸総繊度(dtex)であり、Nwは経糸の織密度(本/2.54cm)であり、Nfは緯糸の織密度(本/2.54cm)である。
CF=(Dw×)1/2×Nw+(Df×)1/2×Nf ・・・ (1)
(5)経糸・緯糸の織密度(経糸密度および緯糸密度)
JIS L 1096:(1999) 8.6.1に基づき、試料を平らな台上に置き、不自然なしわや張力を除いて、織物の幅方向の中央部の異なる5か所について2.54cmの区間の経糸および緯糸の本数を数え、それぞれの平均値を算出した。
(6)引張強力
JIS K 6404-3 6.試験方法B(ストリップ法)に基づき、経方向および緯方向のそれぞれについて、織物の幅方向に5等分した領域から試験片を5枚採取し、幅の両側から糸を取り除いて幅30mmとし、定速緊張型の試験機にて、つかみ間隔150mm、引張速度200mm/minで試験片が切断するまで引っ張った。その切断に至るまでの最大荷重を測定し、経方向及び緯方向のそれぞれについて平均値を算出した。
(7)破断伸度
JIS K 6404-3 6.試験方法B(ストリップ法)に基づき、経方向および緯方向のそれぞれについて、織物の幅方向に5等分した領域から試験片を5枚採取し、幅の両側から糸を取り除いて幅30mmとし、これら試験片の中央部に100mm間隔の標線を付け、定速緊張型の試験機にて、つかみ間隔150mm、引張速度200mm/minで試験片が切断するまで引っ張り、切断に至るときの標線間の距離を読み取り、下記式によって、破断伸度を算出し、経方向及び緯方向のそれぞれについて平均値を算出した。
E=[(L-100)/100]×100
(式中、Eは破断伸度(%)であり、Lは切断時の標線間の距離(mm)である)
(8)織物密度比
JIS L 1096:2010 8.6.1A法に準拠して、織物の経糸密度を測定した。織物を平らな台上に置き、不自然なしわや張力を除いて、図3に示される織物8の幅方向端から6cmまでの領域(端部領域R2)と、幅方向中央領域において、それぞれ3箇所について2.54cm間の経糸の本数を数え、それぞれの平均値を算出した。また、算出した平均値に基づいて、端部領域R2における経糸密度平均と、中央領域における経糸密度平均との差(経糸密度差)を算出した。
経糸密度差=[(端部領域の経糸密度-中央領域の経糸密度)/端部領域の経糸密度]×100(%)
(なお端部領域の経糸密度は、織物の幅方向の両端のうち、中央領域の経糸密度との差が大きい方を選択した。)
(9)通気度
通気性試験機FX3300-III(テクステスト社製)にて、試験差圧500Paで試験したときの通気量を測定した。試験片の大きさは約20cm×20cmとし、断面積100cm2の円筒の一端に試験片を取り付け、取り付け箇所から空気の漏れが無いように固定し、そのときに試験片を通過する空気量を流量計で計測・記録した。通気度c、dの定義は以下のとおりである。
通気度c:基布の耳端から10cmを除いた両耳端から、約20cm×20cmの試験片を基布の長さ方向に向かって5枚の試験片を採取して測定を実施した。両耳各5箇所平均値の大きい方を通気度cとした。
通気度d:基布の幅方向中心点から、約20cm×20cmの試験片を基布の長さ方向に向かって5枚の試験片を採取して測定を実施し、測定値は5箇所の平均値とした。 [Measuring method]
(1) Total fineness JIS L1013 (2010) 8.3.1 Positive fineness was measured by the method shown in the B method to obtain the total fineness.
(2) Number of filaments Calculated based on the method of JIS L1013 (1999) 8.4.
(3) Strength and elongation Measured under the conditions of constant speed extension shown in JIS L1013 (2010) 8.5.1 standard time test. The sample was “TENSILON” UCT-100 manufactured by Orientec Co., Ltd., and the gripping interval was 25 cm and the pulling speed was 30 cm / min. The elongation was obtained from the elongation at the point showing the maximum strength in the SS curve.
(4) Cover factor A cover factor is a value calculated from the total fineness and woven density of a yarn used for warp or weft, and is defined by the following equation (1). In Formula (1), Dw is the total warp fineness (dtex), Df is the total weft fineness (dtex), Nw is the weft density of warp yarns (2.52 cm), and Nf is the weft yarn The weave density (main / 2.54 cm).
CF = (Dw ×) 1/2 × Nw + (Df ×) 1/2 × Nf (1)
(5) Woven density of warp and weft (warp density and weft density)
In accordance with JIS L 1096: (1999) 8.6.1, the sample is placed on a flat table, 2.54 cm at 5 different points in the center in the width direction of the fabric, excluding unnatural wrinkles and tension. The number of warps and wefts in this section was counted, and the average value of each was calculated.
(6) Tensile strength JIS K 6404-3 Based on test method B (strip method), for each of the warp direction and the weft direction, five test pieces were taken from the region divided into five equal parts in the width direction of the fabric, and the yarn was removed from both sides of the width to a width of 30 mm. The test piece was pulled with a constant-speed tension type testing machine at a holding interval of 150 mm and a tensile speed of 200 mm / min until the test piece was cut. The maximum load until the cutting was measured, and the average value was calculated for each of the warp direction and the weft direction.
(7) Elongation at break JIS K 6404-3 Based on test method B (strip method), for each of the warp direction and the weft direction, five test pieces were taken from the region divided into five equal parts in the width direction of the fabric, and the yarn was removed from both sides of the width to a width of 30 mm. Marks at intervals of 100 mm are attached to the center of these test pieces, and the test pieces are pulled with a constant-speed tension type tester at a gripping interval of 150 mm and a tensile speed of 200 mm / min until the test pieces are cut. The distance between them was read, the breaking elongation was calculated by the following formula, and the average value was calculated for each of the warp direction and the weft direction.
E = [(L-100) / 100] × 100
(In the formula, E is the elongation at break (%), and L is the distance (mm) between the marked lines at the time of cutting)
(8) Fabric density ratio The warp density of the fabric was measured according to JIS L 1096: 2010 8.6.1A method. Place the fabric on a flat table and remove unnatural wrinkles and tension, in the region (end region R2) from the widthwise end of thefabric 8 shown in FIG. The number of warp yarns between 2.54 cm was counted at three locations, and the average value of each was calculated. Further, based on the calculated average value, the difference (warp density difference) between the average warp density in the end region R2 and the average warp density in the central region was calculated.
Difference in warp density = [(warp density in end region−warp density in center region) / warp density in end region] × 100 (%)
(The warp density in the end region was selected from the two ends in the width direction of the woven fabric having the larger difference from the warp density in the central region.)
(9) Air permeability The air permeability when measured at a test differential pressure of 500 Pa was measured with an air permeability tester FX3300-III (manufactured by Textex). The size of the test piece is about 20 cm x 20 cm, and the test piece is attached to one end of a cylinder with a cross-sectional area of 100 cm 2 and fixed so that there is no air leakage from the attachment point. Measured and recorded with a flow meter. The definitions of the air permeability c and d are as follows.
Air permeability c: Measurement was performed by collecting five test pieces of about 20 cm × 20 cm from the ends of both ears except 10 cm from the ends of the base cloth in the length direction of the base fabric. The larger one of the average values for each of the five ears was defined as the air permeability c.
Air permeability d: From a center point in the width direction of the base fabric, about 20 cm × 20 cm test pieces were collected in the length direction of the base fabric and measured, and the measured values were measured at five locations. The average value was used.
(1)総繊度
JIS L1013(2010) 8.3.1 B法に示される方法により、正量繊度を測定して総繊度とした。
(2)フィラメント数
JIS L1013(1999) 8.4の方法に基づいて算出した。
(3)強度および伸度
JIS L1013(2010) 8.5.1標準時試験に示される定速伸長形の条件で測定した。試料をオリエンテック社製“テンシロン”(TENSILON)UCT-100を用いて、掴み間隔は25cm、引張り速度は30cm/分で行った。なお、伸度はS-S曲線における最大強力を示した点の伸びから求めた。
(4)カバーファクター
経糸または緯糸に用いられる糸の総繊度と織密度から計算される値であり、以下の式(1)によって定義した。なお、式(1)において、Dwは経糸総繊度(dtex)であり、Dfは緯糸総繊度(dtex)であり、Nwは経糸の織密度(本/2.54cm)であり、Nfは緯糸の織密度(本/2.54cm)である。
CF=(Dw×)1/2×Nw+(Df×)1/2×Nf ・・・ (1)
(5)経糸・緯糸の織密度(経糸密度および緯糸密度)
JIS L 1096:(1999) 8.6.1に基づき、試料を平らな台上に置き、不自然なしわや張力を除いて、織物の幅方向の中央部の異なる5か所について2.54cmの区間の経糸および緯糸の本数を数え、それぞれの平均値を算出した。
(6)引張強力
JIS K 6404-3 6.試験方法B(ストリップ法)に基づき、経方向および緯方向のそれぞれについて、織物の幅方向に5等分した領域から試験片を5枚採取し、幅の両側から糸を取り除いて幅30mmとし、定速緊張型の試験機にて、つかみ間隔150mm、引張速度200mm/minで試験片が切断するまで引っ張った。その切断に至るまでの最大荷重を測定し、経方向及び緯方向のそれぞれについて平均値を算出した。
(7)破断伸度
JIS K 6404-3 6.試験方法B(ストリップ法)に基づき、経方向および緯方向のそれぞれについて、織物の幅方向に5等分した領域から試験片を5枚採取し、幅の両側から糸を取り除いて幅30mmとし、これら試験片の中央部に100mm間隔の標線を付け、定速緊張型の試験機にて、つかみ間隔150mm、引張速度200mm/minで試験片が切断するまで引っ張り、切断に至るときの標線間の距離を読み取り、下記式によって、破断伸度を算出し、経方向及び緯方向のそれぞれについて平均値を算出した。
E=[(L-100)/100]×100
(式中、Eは破断伸度(%)であり、Lは切断時の標線間の距離(mm)である)
(8)織物密度比
JIS L 1096:2010 8.6.1A法に準拠して、織物の経糸密度を測定した。織物を平らな台上に置き、不自然なしわや張力を除いて、図3に示される織物8の幅方向端から6cmまでの領域(端部領域R2)と、幅方向中央領域において、それぞれ3箇所について2.54cm間の経糸の本数を数え、それぞれの平均値を算出した。また、算出した平均値に基づいて、端部領域R2における経糸密度平均と、中央領域における経糸密度平均との差(経糸密度差)を算出した。
経糸密度差=[(端部領域の経糸密度-中央領域の経糸密度)/端部領域の経糸密度]×100(%)
(なお端部領域の経糸密度は、織物の幅方向の両端のうち、中央領域の経糸密度との差が大きい方を選択した。)
(9)通気度
通気性試験機FX3300-III(テクステスト社製)にて、試験差圧500Paで試験したときの通気量を測定した。試験片の大きさは約20cm×20cmとし、断面積100cm2の円筒の一端に試験片を取り付け、取り付け箇所から空気の漏れが無いように固定し、そのときに試験片を通過する空気量を流量計で計測・記録した。通気度c、dの定義は以下のとおりである。
通気度c:基布の耳端から10cmを除いた両耳端から、約20cm×20cmの試験片を基布の長さ方向に向かって5枚の試験片を採取して測定を実施した。両耳各5箇所平均値の大きい方を通気度cとした。
通気度d:基布の幅方向中心点から、約20cm×20cmの試験片を基布の長さ方向に向かって5枚の試験片を採取して測定を実施し、測定値は5箇所の平均値とした。 [Measuring method]
(1) Total fineness JIS L1013 (2010) 8.3.1 Positive fineness was measured by the method shown in the B method to obtain the total fineness.
(2) Number of filaments Calculated based on the method of JIS L1013 (1999) 8.4.
(3) Strength and elongation Measured under the conditions of constant speed extension shown in JIS L1013 (2010) 8.5.1 standard time test. The sample was “TENSILON” UCT-100 manufactured by Orientec Co., Ltd., and the gripping interval was 25 cm and the pulling speed was 30 cm / min. The elongation was obtained from the elongation at the point showing the maximum strength in the SS curve.
(4) Cover factor A cover factor is a value calculated from the total fineness and woven density of a yarn used for warp or weft, and is defined by the following equation (1). In Formula (1), Dw is the total warp fineness (dtex), Df is the total weft fineness (dtex), Nw is the weft density of warp yarns (2.52 cm), and Nf is the weft yarn The weave density (main / 2.54 cm).
CF = (Dw ×) 1/2 × Nw + (Df ×) 1/2 × Nf (1)
(5) Woven density of warp and weft (warp density and weft density)
In accordance with JIS L 1096: (1999) 8.6.1, the sample is placed on a flat table, 2.54 cm at 5 different points in the center in the width direction of the fabric, excluding unnatural wrinkles and tension. The number of warps and wefts in this section was counted, and the average value of each was calculated.
(6) Tensile strength JIS K 6404-3 Based on test method B (strip method), for each of the warp direction and the weft direction, five test pieces were taken from the region divided into five equal parts in the width direction of the fabric, and the yarn was removed from both sides of the width to a width of 30 mm. The test piece was pulled with a constant-speed tension type testing machine at a holding interval of 150 mm and a tensile speed of 200 mm / min until the test piece was cut. The maximum load until the cutting was measured, and the average value was calculated for each of the warp direction and the weft direction.
(7) Elongation at break JIS K 6404-3 Based on test method B (strip method), for each of the warp direction and the weft direction, five test pieces were taken from the region divided into five equal parts in the width direction of the fabric, and the yarn was removed from both sides of the width to a width of 30 mm. Marks at intervals of 100 mm are attached to the center of these test pieces, and the test pieces are pulled with a constant-speed tension type tester at a gripping interval of 150 mm and a tensile speed of 200 mm / min until the test pieces are cut. The distance between them was read, the breaking elongation was calculated by the following formula, and the average value was calculated for each of the warp direction and the weft direction.
E = [(L-100) / 100] × 100
(In the formula, E is the elongation at break (%), and L is the distance (mm) between the marked lines at the time of cutting)
(8) Fabric density ratio The warp density of the fabric was measured according to JIS L 1096: 2010 8.6.1A method. Place the fabric on a flat table and remove unnatural wrinkles and tension, in the region (end region R2) from the widthwise end of the
Difference in warp density = [(warp density in end region−warp density in center region) / warp density in end region] × 100 (%)
(The warp density in the end region was selected from the two ends in the width direction of the woven fabric having the larger difference from the warp density in the central region.)
(9) Air permeability The air permeability when measured at a test differential pressure of 500 Pa was measured with an air permeability tester FX3300-III (manufactured by Textex). The size of the test piece is about 20 cm x 20 cm, and the test piece is attached to one end of a cylinder with a cross-sectional area of 100 cm 2 and fixed so that there is no air leakage from the attachment point. Measured and recorded with a flow meter. The definitions of the air permeability c and d are as follows.
Air permeability c: Measurement was performed by collecting five test pieces of about 20 cm × 20 cm from the ends of both ears except 10 cm from the ends of the base cloth in the length direction of the base fabric. The larger one of the average values for each of the five ears was defined as the air permeability c.
Air permeability d: From a center point in the width direction of the base fabric, about 20 cm × 20 cm test pieces were collected in the length direction of the base fabric and measured, and the measured values were measured at five locations. The average value was used.
<実施例1>
〔全幅テンプル装置の織物把持棒〕
織物把持棒として、本体部と、本体部の両側にその軸方向の全長が5cmの補強部を備えるものを使用した。補強部は真鍮(銅65%、亜鉛35%)製で、その軸上に形成された長さ1.5cm、外径8mmの大径部と長さ3.5cm、外径4mmの小径部とを有し、小径部が本体部中に埋設されることにより、本体部に装着されたものを使用した。大径部の外周面には切削方法により、綾目40番手のローレット加工が施した。本体部は、表面にネジ切りを施したポリオキシメチレン製(第1の材料の一例)であり、外径が8.0mm、長さ211cmとした。織物把持棒の全長は、214cmであった。織物把持棒の詳細な物性を表1に示す。なお、織物把持棒の物性のうち、ヤング率はJIS Z 2280 ひずみゲージ法に基づいて測定した。真鍮のヤング率は、100GPaであり、ポリオキシメチレンのヤング率は3GPaであった。また、ロックウェル硬さは、ASTM D785の試験方法により測定した。真鍮のロックウェル硬さは、L、R、Mスケールで測定不能であり、ポリオキシメチレンのロックウェル硬さはMスケールで80であった。このような織物把持棒を備える全幅テンプル装置を準備した。 <Example 1>
[Textile gripping rod of full width temple device]
As the fabric gripping rod, a main body portion and a reinforcing portion having an axial total length of 5 cm on both sides of the main body portion were used. The reinforcement part is made of brass (65% copper, 35% zinc), and is formed on its axis with a length of 1.5 cm, an outer diameter of 8 mm, a large diameter part of 3.5 cm, and an outer diameter of 4 mm. The small diameter part was embedded in the main body part, and the one mounted on the main body part was used. The outer peripheral surface of the large-diameter portion was knurled by 40th thread by a cutting method. The main body is made of polyoxymethylene (an example of the first material) whose surface is threaded, and has an outer diameter of 8.0 mm and a length of 211 cm. The total length of the fabric gripping bar was 214 cm. Table 1 shows the detailed physical properties of the fabric gripping bar. Of the physical properties of the fabric gripping rod, the Young's modulus was measured based on the JIS Z 2280 strain gauge method. The Young's modulus of brass was 100 GPa, and the Young's modulus of polyoxymethylene was 3 GPa. The Rockwell hardness was measured by the test method of ASTM D785. The Rockwell hardness of brass was not measurable on the L, R, and M scales, and the Rockwell hardness of polyoxymethylene was 80 on the M scale. A full-width temple device provided with such a fabric gripping rod was prepared.
〔全幅テンプル装置の織物把持棒〕
織物把持棒として、本体部と、本体部の両側にその軸方向の全長が5cmの補強部を備えるものを使用した。補強部は真鍮(銅65%、亜鉛35%)製で、その軸上に形成された長さ1.5cm、外径8mmの大径部と長さ3.5cm、外径4mmの小径部とを有し、小径部が本体部中に埋設されることにより、本体部に装着されたものを使用した。大径部の外周面には切削方法により、綾目40番手のローレット加工が施した。本体部は、表面にネジ切りを施したポリオキシメチレン製(第1の材料の一例)であり、外径が8.0mm、長さ211cmとした。織物把持棒の全長は、214cmであった。織物把持棒の詳細な物性を表1に示す。なお、織物把持棒の物性のうち、ヤング率はJIS Z 2280 ひずみゲージ法に基づいて測定した。真鍮のヤング率は、100GPaであり、ポリオキシメチレンのヤング率は3GPaであった。また、ロックウェル硬さは、ASTM D785の試験方法により測定した。真鍮のロックウェル硬さは、L、R、Mスケールで測定不能であり、ポリオキシメチレンのロックウェル硬さはMスケールで80であった。このような織物把持棒を備える全幅テンプル装置を準備した。 <Example 1>
[Textile gripping rod of full width temple device]
As the fabric gripping rod, a main body portion and a reinforcing portion having an axial total length of 5 cm on both sides of the main body portion were used. The reinforcement part is made of brass (65% copper, 35% zinc), and is formed on its axis with a length of 1.5 cm, an outer diameter of 8 mm, a large diameter part of 3.5 cm, and an outer diameter of 4 mm. The small diameter part was embedded in the main body part, and the one mounted on the main body part was used. The outer peripheral surface of the large-diameter portion was knurled by 40th thread by a cutting method. The main body is made of polyoxymethylene (an example of the first material) whose surface is threaded, and has an outer diameter of 8.0 mm and a length of 211 cm. The total length of the fabric gripping bar was 214 cm. Table 1 shows the detailed physical properties of the fabric gripping bar. Of the physical properties of the fabric gripping rod, the Young's modulus was measured based on the JIS Z 2280 strain gauge method. The Young's modulus of brass was 100 GPa, and the Young's modulus of polyoxymethylene was 3 GPa. The Rockwell hardness was measured by the test method of ASTM D785. The Rockwell hardness of brass was not measurable on the L, R, and M scales, and the Rockwell hardness of polyoxymethylene was 80 on the M scale. A full-width temple device provided with such a fabric gripping rod was prepared.
〔経糸、緯糸〕
ナイロン6・6からなり、円形の断面形状を有し、単繊維繊度6.52dtex、フィラメント数72、総繊度470dtex、無撚りで、強度8.5cN/dtex、伸度23.5%の合成繊維マルチフィラメントを準備した。 [War, Weft]
Synthetic fiber made of nylon 6,6, with a circular cross-section, single fiber fineness 6.52 dtex, 72 filaments, total fineness 470 dtex, no twist, strength 8.5 cN / dtex, elongation 23.5% A multifilament was prepared.
ナイロン6・6からなり、円形の断面形状を有し、単繊維繊度6.52dtex、フィラメント数72、総繊度470dtex、無撚りで、強度8.5cN/dtex、伸度23.5%の合成繊維マルチフィラメントを準備した。 [War, Weft]
Synthetic fiber made of
〔製織〕
上記の糸を地部糸として経糸、緯糸に用い、上記全幅テンプル装置を備えたウォータージェットルーム織機を使用して、筬通し幅を214cm、織機回転数は800rpm、経糸密度53本/2.54cm、緯糸密度を53本/2.54cmとした織物を製織した。絡み糸としては、22dtexのナイロンモノフィラメントを使用し、遊星装置から経糸両端部に各2本ずつ経糸端部のところのヘルド、筬に引き通した。増糸も、絡み糸と同様の22dtexのナイロンモノフィラメントを使用し、経糸両端部に各6本ずつ経糸端部のところのヘルド、筬に引き通した。筬と織り口の接触タイミングは表1に記載の通りとした。機上での迫り出し量は実用上充分な程度に抑制されていた。 [Weaving]
Using the above-mentioned yarn as a base yarn for warp and weft, using a water jet loom equipped with the full width temple device, the threading width is 214 cm, the loom rotation speed is 800 rpm, the warp density is 53 yarns / 2.54 cm. A woven fabric with a weft density of 53 / 2.54 cm was woven. As the entanglement yarn, 22 dtex nylon monofilament was used, and two pieces of warp yarns were passed from the planetary device to each of the warp yarn ends. For the yarn addition, a 22 dtex nylon monofilament similar to the entangled yarn was used, and 6 pieces of warp yarns were passed through the healds and heels at the warp end portions. The contact timing between the heel and the weave was as shown in Table 1. The amount of protrusion on the machine was suppressed to a practically sufficient level.
上記の糸を地部糸として経糸、緯糸に用い、上記全幅テンプル装置を備えたウォータージェットルーム織機を使用して、筬通し幅を214cm、織機回転数は800rpm、経糸密度53本/2.54cm、緯糸密度を53本/2.54cmとした織物を製織した。絡み糸としては、22dtexのナイロンモノフィラメントを使用し、遊星装置から経糸両端部に各2本ずつ経糸端部のところのヘルド、筬に引き通した。増糸も、絡み糸と同様の22dtexのナイロンモノフィラメントを使用し、経糸両端部に各6本ずつ経糸端部のところのヘルド、筬に引き通した。筬と織り口の接触タイミングは表1に記載の通りとした。機上での迫り出し量は実用上充分な程度に抑制されていた。 [Weaving]
Using the above-mentioned yarn as a base yarn for warp and weft, using a water jet loom equipped with the full width temple device, the threading width is 214 cm, the loom rotation speed is 800 rpm, the warp density is 53 yarns / 2.54 cm. A woven fabric with a weft density of 53 / 2.54 cm was woven. As the entanglement yarn, 22 dtex nylon monofilament was used, and two pieces of warp yarns were passed from the planetary device to each of the warp yarn ends. For the yarn addition, a 22 dtex nylon monofilament similar to the entangled yarn was used, and 6 pieces of warp yarns were passed through the healds and heels at the warp end portions. The contact timing between the heel and the weave was as shown in Table 1. The amount of protrusion on the machine was suppressed to a practically sufficient level.
〔精錬〕
平織物を製織した後、この織物をアルキルベンゼンスルホン酸ソーダ0.5g/Lおよびソーダ灰0.5g/Lを含んだ80℃温水浴中に1分間浸漬し精練処理を行った。 〔smelting〕
After weaving the plain woven fabric, the woven fabric was immersed in an 80 ° C. warm water bath containing 0.5 g / L of alkylbenzenesulfonic acid soda and 0.5 g / L of soda ash for scouring treatment.
平織物を製織した後、この織物をアルキルベンゼンスルホン酸ソーダ0.5g/Lおよびソーダ灰0.5g/Lを含んだ80℃温水浴中に1分間浸漬し精練処理を行った。 〔smelting〕
After weaving the plain woven fabric, the woven fabric was immersed in an 80 ° C. warm water bath containing 0.5 g / L of alkylbenzenesulfonic acid soda and 0.5 g / L of soda ash for scouring treatment.
〔熱セット〕
引き続きピンテンター乾燥機を用いて幅入れ率0%、オーバーフィード率0%の寸法規制の下でこの織物を180℃で1分間乾燥させ、経糸密度を54.80本/2.54cm、緯糸密度を54.52本/2.54cm、幅205cmの織物ロールを得た。得られた織物のカバーファクターは、2384であった。 [Heat set]
Subsequently, this woven fabric was dried at 180 ° C. for 1 minute under the dimensional regulation of 0% width filling and 0% overfeed using a pin tenter dryer, and the warp density was 54.80 pieces / 2.54 cm and the weft density was A fabric roll of 54.52 pieces / 2.54 cm and a width of 205 cm was obtained. The cover factor of the obtained woven fabric was 2384.
引き続きピンテンター乾燥機を用いて幅入れ率0%、オーバーフィード率0%の寸法規制の下でこの織物を180℃で1分間乾燥させ、経糸密度を54.80本/2.54cm、緯糸密度を54.52本/2.54cm、幅205cmの織物ロールを得た。得られた織物のカバーファクターは、2384であった。 [Heat set]
Subsequently, this woven fabric was dried at 180 ° C. for 1 minute under the dimensional regulation of 0% width filling and 0% overfeed using a pin tenter dryer, and the warp density was 54.80 pieces / 2.54 cm and the weft density was A fabric roll of 54.52 pieces / 2.54 cm and a width of 205 cm was obtained. The cover factor of the obtained woven fabric was 2384.
<実施例2~12、比較例1~4>
使用した織物把持棒、製織条件等を表1に記載のものに変更した以外は、実施例1と同様の方法により、織物を作製した。実施例2~12においては織機上での迫り出し量は実用上充分な程度に抑制されていた。比較例1においては織機上での迫出し量は実施例よりも大きかった。 <Examples 2 to 12, Comparative Examples 1 to 4>
A woven fabric was produced in the same manner as in Example 1 except that the used fabric gripping rod, weaving conditions, etc. were changed to those shown in Table 1. In Examples 2 to 12, the amount of protrusion on the loom was suppressed to a practically sufficient level. In Comparative Example 1, the amount of protrusion on the loom was larger than that of the example.
使用した織物把持棒、製織条件等を表1に記載のものに変更した以外は、実施例1と同様の方法により、織物を作製した。実施例2~12においては織機上での迫り出し量は実用上充分な程度に抑制されていた。比較例1においては織機上での迫出し量は実施例よりも大きかった。 <Examples 2 to 12, Comparative Examples 1 to 4>
A woven fabric was produced in the same manner as in Example 1 except that the used fabric gripping rod, weaving conditions, etc. were changed to those shown in Table 1. In Examples 2 to 12, the amount of protrusion on the loom was suppressed to a practically sufficient level. In Comparative Example 1, the amount of protrusion on the loom was larger than that of the example.
実施例1~12および比較例1~4において得られたそれぞれの織物について、上記評価方法により、引張強度および破断伸度を評価した。結果を表1に示す。なお、実施例1、実施例10、比較例1および比較例3に関して、通気度を評価した。結果を表2に示す。また、それぞれの実施例および比較例について、織物の幅(W)と、織物の密度比に100を乗じた値(100×(a-b)/b)とを、図7および図8上に記載した。図7は、図1に関連して示した第1点(A)~第6点(F)で区画される領域に、それぞれの実施例および比較例の織物の幅および密度比に100を乗じた値を重畳配置したグラフである。図8は、図1に関連して示した第1点(A1)~第6点(F1)で区画される領域に、それぞれの実施例および比較例の織物の幅および密度比に100を乗じた値を重畳配置したグラフである。
The tensile strength and elongation at break of each woven fabric obtained in Examples 1 to 12 and Comparative Examples 1 to 4 were evaluated by the above evaluation methods. The results are shown in Table 1. The air permeability was evaluated for Example 1, Example 10, Comparative Example 1, and Comparative Example 3. The results are shown in Table 2. For each of the examples and comparative examples, the width (W) of the fabric and the value obtained by multiplying the density ratio of the fabric by 100 (100 × (ab) / b) are shown in FIGS. Described. FIG. 7 shows the area defined by the first point (A) to the sixth point (F) shown in FIG. 1 multiplied by 100 for the width and density ratio of the fabrics of the examples and comparative examples. FIG. FIG. 8 shows that the area defined by the first point (A1) to the sixth point (F1) shown in FIG. 1 is multiplied by 100 to the width and density ratio of the fabrics of the respective examples and comparative examples. FIG.
表1、図7および図8に示されるように、実施例1~12の織物は、いずれも図1に示される第1点(A)~第6点(F)によって区画された領域に含まれており、かつ、それらの織物は、いずれも引張強力および破断伸度が大きくなった。そのため、これらの織物は、たとえば縫製されることにより、エアバッグ等として有用であると考えられた。一方、比較例1~4の織物は、いずれも図1に示される第1点(A)~第6点(F)によって区画された領域に含まれておらず、かつ、それらの織物は、破断伸度が小さくなった。中でも、補強部の長さが6cm以上であった比較例2~4の織物は、引張強力が小さくなった。
As shown in Table 1, FIG. 7 and FIG. 8, the fabrics of Examples 1 to 12 are all included in the region defined by the first point (A) to the sixth point (F) shown in FIG. All of these woven fabrics had high tensile strength and elongation at break. Therefore, these woven fabrics were thought to be useful as airbags or the like by being sewn, for example. On the other hand, the woven fabrics of Comparative Examples 1 to 4 are not included in the region defined by the first point (A) to the sixth point (F) shown in FIG. The elongation at break decreased. In particular, the tensile strength of the woven fabrics of Comparative Examples 2 to 4 in which the length of the reinforcing portion was 6 cm or more was small.
また、表2に示されるように、実施例1の織物の通気度比は、同じ織物の幅である比較例1の織物の通気度比と比較して小さくなった。同様に、実施例10の織物の通気度比は、同じ織物の幅である比較例3の織物の通気度比と比較して、小さくなった。そのため、同幅の他の織物との比較において、このような実施例1および実施例10の織物は、縫製されることにより、エアバッグ等として有用であることが分かった。
Also, as shown in Table 2, the air permeability ratio of the fabric of Example 1 was smaller than the air permeability ratio of the fabric of Comparative Example 1 having the same fabric width. Similarly, the air permeability ratio of the fabric of Example 10 was smaller than the air permeability ratio of the fabric of Comparative Example 3 having the same width of the fabric. Therefore, in comparison with other woven fabrics having the same width, it has been found that the woven fabrics of Examples 1 and 10 are useful as airbags or the like by being sewn.
1 織機
10 支持部材
10a 取付部
10b 縁部
10c 被係合部
11 押さえ部材
11a 押さえ部本体
11b 係合部
12 支持台
2 経糸
3 筬
4 テンプル装置
5 緯糸ノズル
6 緯糸
7 緯糸カッター
8 織物
9、9a 織物把持棒
91、91a 本体部
92、92a 補強部
92b 大径部
92c 小径部
A1 筬打ち方向
A2 軸方向
d1、d2 迫出し量
R1中央領域
R2、R3 端部領域 DESCRIPTION OF SYMBOLS 1Loom 10 Support member 10a Attachment part 10b Edge part 10c Engagement part 11 Press member 11a Press part main body 11b Engagement part 12 Support stand 2 Warp 3 筬 4 Temple device 5 Weft nozzle 6 Weft 7 Weft cutter 8 Textile 9, 9a Textile gripping rod 91, 91a Main body 92, 92a Reinforcement part 92b Large diameter part 92c Small diameter part A1 Strike direction A2 Axial direction d1, d2 Extrusion amount R1 central region R2, R3 End region
10 支持部材
10a 取付部
10b 縁部
10c 被係合部
11 押さえ部材
11a 押さえ部本体
11b 係合部
12 支持台
2 経糸
3 筬
4 テンプル装置
5 緯糸ノズル
6 緯糸
7 緯糸カッター
8 織物
9、9a 織物把持棒
91、91a 本体部
92、92a 補強部
92b 大径部
92c 小径部
A1 筬打ち方向
A2 軸方向
d1、d2 迫出し量
R1中央領域
R2、R3 端部領域 DESCRIPTION OF SYMBOLS 1
Claims (7)
- 織物の幅(W)を横軸にとり、前記織物の密度比((a-b)/b)に100を乗じた値(100×(a-b)/b))を縦軸にとる場合において、前記織物の幅(W)と前記織物の密度比に100を乗じた値(100×(a-b)/b)とが、以下の6点で区画される領域内にある、織物。
第1点(A) W=185、100×(a-b)/b=0.5
第2点(B) W=185、100×(a-b)/b=1.6
第3点(C) W=205、100×(a-b)/b=0.5
第4点(D) W=205、100×(a-b)/b=1.8
第5点(E) W=250、100×(a-b)/b=1.5
第6点(F) W=250、100×(a-b)/b=5.4
(ただし、aは、JIS L 1096:(1999)8.6.1に準拠して測定した、織物の両端部から100mmの位置におけるそれぞれの経密度(本/2.54cm)の平均値のうち、大きい方の値であり、bは織物の中央部100mm幅の経密度(本/2.54cm)の平均値である。) In the case where the width (W) of the woven fabric is taken on the horizontal axis and the density ratio ((ab) / b) of the woven fabric is multiplied by 100 (100 × (ab) / b)) is taken on the vertical axis. A woven fabric in which the width (W) of the woven fabric and the density ratio of the woven fabric multiplied by 100 (100 × (ab) / b) are within a region defined by the following six points.
First point (A) W = 185, 100 × (ab) /b=0.5
Second point (B) W = 185, 100 × (ab) /b=1.6
Third point (C) W = 205, 100 × (ab) /b=0.5
Fourth point (D) W = 205, 100 × (ab) /b=1.8
Fifth point (E) W = 250, 100 × (ab) /b=1.5
Sixth point (F) W = 250, 100 × (ab) /b=5.4
(However, a is the average value of each warp density (line / 2.54 cm) at a position of 100 mm from both ends of the woven fabric, measured according to JIS L 1096: (1999) 8.6.1. The larger value is b, and b is the average value of warp density (line / 2.54 cm) of 100 mm width at the center of the fabric.) - 本体部と、前記本体部の両端に設けられた補強部とを備え、
前記補強部は、前記本体部よりもヤング率が大きい部材で構成され、補強部の軸方向の全長は、10mm以上、60mm未満であり、かつ下記態様1または態様2の少なくともいずれか一方に記載の態様を有する、織物の製織用把持棒。
態様1:前記補強部は、外周面が、ローレット加工、または、ねじ切り加工が施された部分を含む。
態様2:前記補強部は、同軸上に形成された大径部と小径部とを有し、前記小径部が前記本体部中に埋設されることにより、前記本体部に装着されている。 A main body, and reinforcing portions provided at both ends of the main body,
The reinforcing part is made of a member having a Young's modulus larger than that of the main body part, and the total axial length of the reinforcing part is not less than 10 mm and less than 60 mm, and is described in at least one of the following aspects 1 and 2. A gripping bar for weaving a woven fabric having the following aspect.
Aspect 1: The reinforcing portion includes a portion whose outer peripheral surface is knurled or threaded.
Aspect 2: The reinforcing portion has a large-diameter portion and a small-diameter portion that are formed on the same axis, and the small-diameter portion is embedded in the main-body portion, thereby being attached to the main-body portion. - 前記補強部が前記態様2の態様を有する場合において、前記大径部の外径と前記本体部の外径とは、同一である、請求項2記載の織物の製織用把持棒。 The woven weaving gripping rod according to claim 2, wherein the outer diameter of the large diameter portion and the outer diameter of the main body portion are the same when the reinforcing portion has the aspect of the aspect 2.
- 前記補強部が前記態様2の態様を有する場合において、前記大径部は、外周面が、ローレット加工、または、ねじ切り加工が施されている、請求項2または3記載の織物の製織用把持棒。 When the said reinforcement part has the aspect of the said aspect 2, as for the said large diameter part, the knurling process or the threading process is given to the outer peripheral surface, The gripping rod for the weaving of the textile fabric of Claim 2 or 3 .
- 請求項2~4のいずれか1項に記載の織物の製織用把持棒を備える織機用全幅テンプル装置であり、
前記織物の製織用把持棒は、
本体部と、前記本体部の両端に設けられた補強部とを備え、
前記補強部は、前記本体部よりもヤング率が大きい部材で構成され、補強部の軸方向の全長は、10mm以上、60mm未満であり、かつ下記態様1または態様2の少なくともいずれか一方に記載の態様を有する、織機用全幅テンプル装置。
態様1:前記補強部は、外周面が、ローレット加工、または、ねじ切り加工が施された部分を含む。
態様2:前記補強部は、同軸上に形成された大径部と小径部とを有し、前記小径部が前記本体部中に埋設されることにより、前記本体部に装着されている。 A full width temple apparatus for a loom comprising the gripping rod for weaving a woven fabric according to any one of claims 2 to 4,
The weaving gripping rod for the fabric is
A main body, and reinforcing portions provided at both ends of the main body,
The reinforcing part is made of a member having a Young's modulus larger than that of the main body part, and the total axial length of the reinforcing part is not less than 10 mm and less than 60 mm, and is described in at least one of the following aspects 1 and 2. A full-width temple device for a loom having the following aspect.
Aspect 1: The reinforcing portion includes a portion whose outer peripheral surface is knurled or threaded.
Aspect 2: The reinforcing portion has a large-diameter portion and a small-diameter portion that are formed on the same axis, and the small-diameter portion is embedded in the main-body portion, thereby being attached to the main-body portion. - 請求項5記載の織機用全幅テンプル装置を備える織機。 A loom comprising the full-width temple device for a loom according to claim 5.
- 請求項6記載の織機を用いる、織物の製造方法。 A method for producing a woven fabric using the loom according to claim 6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018515164A JPWO2018088473A1 (en) | 2016-11-09 | 2017-11-09 | Woven fabric, gripping rod for weaving fabric, full-width temple device for loom, loom, method for producing fabric |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-219222 | 2016-11-09 | ||
JP2016219222 | 2016-11-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018088473A1 true WO2018088473A1 (en) | 2018-05-17 |
Family
ID=62110756
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/040427 WO2018088473A1 (en) | 2016-11-09 | 2017-11-09 | Textile, holding rod for textile weaving, full-width temple device for loom, loom, and method for producing textile |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2018088473A1 (en) |
WO (1) | WO2018088473A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022030505A1 (en) * | 2020-08-04 | 2022-02-10 | 東洋紡株式会社 | Airbag base fabric, and method for manufacturing airbag base fabric |
JP7535434B2 (en) | 2020-10-21 | 2024-08-16 | 津田駒工業株式会社 | Ring bar temple on the loom |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57117989A (en) * | 1981-01-16 | 1982-07-22 | Asahi Chem Ind Co Ltd | Manufacture of ink ribbon substrate with uniform set of warp |
JPS57128241A (en) * | 1981-01-28 | 1982-08-09 | Yousu Kogyo Kk | Temple apparatus in loom |
JPH10226946A (en) * | 1997-02-13 | 1998-08-25 | Nissan Tecsys Kk | Whole-width temple apparatus in loom |
JP2014181430A (en) * | 2013-03-21 | 2014-09-29 | Asahi Kasei Fibers Corp | High-density fabric |
JP2016191158A (en) * | 2015-03-30 | 2016-11-10 | 東レ株式会社 | Breadth temple for loom, manufacturing method of woven fabric and woven fabric |
-
2017
- 2017-11-09 JP JP2018515164A patent/JPWO2018088473A1/en active Pending
- 2017-11-09 WO PCT/JP2017/040427 patent/WO2018088473A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57117989A (en) * | 1981-01-16 | 1982-07-22 | Asahi Chem Ind Co Ltd | Manufacture of ink ribbon substrate with uniform set of warp |
JPS57128241A (en) * | 1981-01-28 | 1982-08-09 | Yousu Kogyo Kk | Temple apparatus in loom |
JPH10226946A (en) * | 1997-02-13 | 1998-08-25 | Nissan Tecsys Kk | Whole-width temple apparatus in loom |
JP2014181430A (en) * | 2013-03-21 | 2014-09-29 | Asahi Kasei Fibers Corp | High-density fabric |
JP2016191158A (en) * | 2015-03-30 | 2016-11-10 | 東レ株式会社 | Breadth temple for loom, manufacturing method of woven fabric and woven fabric |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022030505A1 (en) * | 2020-08-04 | 2022-02-10 | 東洋紡株式会社 | Airbag base fabric, and method for manufacturing airbag base fabric |
CN116057218A (en) * | 2020-08-04 | 2023-05-02 | 东洋纺株式会社 | Base fabric for airbag and method for producing base fabric for airbag |
US20230264647A1 (en) * | 2020-08-04 | 2023-08-24 | Toyobo Co., Ltd. | Airbag base fabric, and method for manufacturing airbag base fabric |
JP7459948B2 (en) | 2020-08-04 | 2024-04-02 | 東洋紡株式会社 | Airbag base fabric and method for manufacturing airbag base fabric |
JP7535434B2 (en) | 2020-10-21 | 2024-08-16 | 津田駒工業株式会社 | Ring bar temple on the loom |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018088473A1 (en) | 2019-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9211865B2 (en) | Woven fabric and process of producing same | |
US9012340B2 (en) | Woven fabric for air bags, air bags and process for production of the woven fabric | |
US9834167B2 (en) | Airbag fabric and airbag | |
JP7447787B2 (en) | Airbag fabric and method for producing airbag fabric | |
JP7272270B2 (en) | Non-coated base fabric for airbag, method for manufacturing airbag and non-coated base fabric for airbag | |
JP2007224486A (en) | Woven fabric for air bag, air bag and method for producing the woven fabric for air bag | |
JP5088013B2 (en) | Airbag fabric, airbag and method for manufacturing airbag fabric | |
WO2018088473A1 (en) | Textile, holding rod for textile weaving, full-width temple device for loom, loom, and method for producing textile | |
CN113015826B (en) | Fabric for airbag and method for producing fabric for airbag | |
JP2016191158A (en) | Breadth temple for loom, manufacturing method of woven fabric and woven fabric | |
CN111655915B (en) | Base fabric, jet loom and method for producing base fabric | |
WO2015129684A1 (en) | Woven fabric, and airbag | |
WO2018088474A1 (en) | Full-width temple device for loom, method for producing textile, textile, and textile roll made from said textile | |
JP7380549B2 (en) | Airbag base fabric and method for manufacturing airbag base fabric | |
JPH09105047A (en) | Woven fabric for noncoated air bag | |
WO2022196191A1 (en) | Non-coated textile for airbag | |
WO2022181136A1 (en) | Woven fabric for non-coated airbag | |
JP2024108406A (en) | Airbag fabric and method for producing the same | |
JP2022147171A (en) | Manufacturing method of coated airbag fabric | |
CN116783342A (en) | Fabric for air bags | |
JP2023137278A (en) | Woven fabric for air-bag | |
JP2025082344A (en) | Woven fabric and method for producing same | |
JP2008025090A (en) | Woven fabric for air bag, air bag, and method for producing woven for air bag |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2018515164 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17870496 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17870496 Country of ref document: EP Kind code of ref document: A1 |