WO2018088416A1 - Thermally conductive silicone composition and cured product thereof, and manufacturing method - Google Patents
Thermally conductive silicone composition and cured product thereof, and manufacturing method Download PDFInfo
- Publication number
- WO2018088416A1 WO2018088416A1 PCT/JP2017/040202 JP2017040202W WO2018088416A1 WO 2018088416 A1 WO2018088416 A1 WO 2018088416A1 JP 2017040202 W JP2017040202 W JP 2017040202W WO 2018088416 A1 WO2018088416 A1 WO 2018088416A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- component
- silicone composition
- conductive silicone
- composition
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/40—Glass
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/541—Silicon-containing compounds containing oxygen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
Definitions
- the present invention relates to a silicone composition having excellent thermal conductivity, and particularly when used as a heat radiating member for electronic components, heat-generating electronic components such as power devices, transistors, thyristors, and CPUs (central processing units) are used.
- the present invention relates to a highly thermally conductive silicone composition having excellent insulating properties that can be incorporated into an electronic device without being damaged.
- a heat-generating electronic component such as power devices, transistors, thyristors, and CPUs
- how to remove heat generated during use is an important issue.
- a heat-generating electronic component is generally attached to a heat-radiating fin or a metal plate via an electrically insulating heat-dissipating sheet, and the heat is released.
- Patent Documents 1 to 6 JP-A-2005-162555, JP-A-2003-342021, JP-A-2002-280498, JP-A-2005-209765).
- the average sphericity, the amount of hydroxyl groups, and the spherical aluminum oxide powder having an average particle diameter of 10 to 50 ⁇ m and the average particle diameter of 0.3 to 1 ⁇ m are specified.
- a technique for a highly thermally conductive resin composition in which the mixing ratio and volume ratio of aluminum are defined is disclosed, if the average particle diameter of the spherical aluminum oxide powder is 50 ⁇ m at the maximum, there is a problem that thermal conductivity is insufficient. (Patent Document 5: Japanese Patent No. 5755777).
- the present invention has been made in view of the above circumstances, and is to provide a thermally conductive silicone composition excellent in insulation and thermal conductivity, and in particular, a thermally conductive silicone composition suitable as a heat radiating member for electronic components. Is to provide.
- a silicone composition containing an organopolysiloxane has (B) an average sphericity of 0.8 or more and a hydroxyl group of 30 / nm 2 or less.
- the thermally conductive silicone composition is 4.0 W / m ⁇ K or higher in the hot disk method in conformity with ISO 22007-2, so that the thermal conductivity at high temperatures is achieved. It is possible to obtain a heat conductive silicone composition having excellent resistance. Further, the present composition may be mixed with a curing agent to form a curable composition.
- the present invention provides the following inventions.
- a highly thermally conductive silicone composition comprising a shape aluminum oxide powder, The mixing ratio volume ratio ((B) :( C)) of the component (B) and the component (C) is 5: 5 to 9.5: 0.5, and the total amount of the component (B) and the component (C) Is 80 to 90% by volume in the composition,
- the composition has a thermal conductivity of 5.5 W / m ⁇ K or more, and the composition has a viscosity at 25 ° C.
- a high thermal conductive silicone composition which is s. 2.
- the component (D) is represented by the following general formula (1) -SiR 1 a (OR 2 ) 3-a (1) Wherein R 1 is independently an unsubstituted or substituted monovalent hydrocarbon group, R 2 is independently an alkyl group, an alkoxyalkyl group, an alkenyl group or an acyl group, and a is 0, 1 or 2 is there.) 3.
- the highly heat-conductive silicone composition according to 2 which is an organopolysiloxane containing at least one silyl group represented by the formula (1) in a molecule and having a viscosity at 25 ° C. of 0.01 to 30 Pa ⁇ s. 4). Further, (E) a spherical glass bead or amorphous glass having a maximum central particle diameter of 150 ⁇ m or more and a SiO 2 content of 50% by mass or more is contained in an amount of 10% by mass or less based on the total amount of the composition.
- the high heat conductive silicone composition in any one of. 5). 5.
- the “thermally conductive silicone composition” is sometimes abbreviated as “silicone composition”.
- the organopolysiloxane of component (A) is the main ingredient of the silicone composition of the present invention.
- Examples of the group bonded to the silicon atom in the organopolysiloxane include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, and undecyl.
- dodecyl group dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, eicosyl group and other linear alkyl groups; isopropyl group, tertiary butyl group, isobutyl group, 2-methyl Branched alkyl groups such as undecyl group and 1-hexylheptyl group; cyclic alkyl groups such as cyclopentyl group, cyclohexyl group and cyclododecyl group; alkenyl groups such as vinyl group, allyl group, butenyl group, pentenyl group and hexenyl group ; Aryl such as phenyl, tolyl, xylyl, etc.
- Aralkyl groups such as benzyl group, phenethyl group and 2- (2,4,6-trimethylphenyl) propyl group; halogenated alkyl groups such as 3,3,3-trifluoropropyl group and 3-chloropropyl group;
- An alkyl group, an alkenyl group, and an aryl group are preferable, and a methyl group, a vinyl group, and a phenyl group are particularly preferable.
- the viscosity of the organopolysiloxane at 25 ° C. is not limited, but is preferably in the range of 20 to 100,000 mPa ⁇ s, more preferably 50 to 100,000 mPa ⁇ s, and still more preferably 50 to 50,000 mPa ⁇ s. 100 to 50,000 mPa ⁇ s is particularly preferable. If the viscosity is too low, the physical properties of the silicone composition may be significantly reduced, and if the viscosity is too high, the handling workability of the silicone composition may be significantly reduced.
- the molecular structure of the organopolysiloxane is not limited, and examples thereof include linear, branched, partially branched linear, and dendritic (dendrimer), preferably linear and partially branched. Linear.
- examples of such an organopolysiloxane include a single polymer having these molecular structures, a copolymer having these molecular structures, or a mixture of these polymers.
- organopolysiloxane examples include molecular chain both ends dimethylvinylsiloxy group-capped dimethylpolysiloxane, molecular chain both ends methylphenylvinylsiloxy group-capped dimethylpolysiloxane, molecular chain both ends dimethylvinylsiloxy group-capped dimethylsiloxane, Methylphenylsiloxane copolymer, dimethylvinylsiloxy group-capped dimethylvinylsiloxy group-capped dimethylsiloxane / methylvinylsiloxane copolymer, trimethylsiloxy group-capped dimethylsiloxane / methylvinylsiloxane copolymer, dimethylvinylsiloxy group-capped methyl (3) , 3,3-trifluoropropyl) polysiloxane, silanol group-blocked dimethylsiloxane / methylvinylsiloxane copolymer
- the component (A) is (AI) an organopolysiloxane having an average of 0.1 or more silicon-bonded alkenyl groups in one molecule.
- An organopolysiloxane having an average of 0.5 or more silicon atom-bonded alkenyl groups in one molecule is more preferred, and an organopolysiloxane having an average of 0.8 or more silicon atom-bonded alkenyl groups in one molecule. More preferred is siloxane. This is because when the average value of silicon-bonded alkenyl groups in one molecule is less than the lower limit of the above range, the resulting silicone composition tends not to be cured sufficiently.
- Examples of the silicon atom-bonded alkenyl group in this organopolysiloxane include the same alkenyl groups as described above, preferably a vinyl group.
- Examples of the group bonded to the silicon atom other than the alkenyl group in the organopolysiloxane include the same linear alkyl group, branched alkyl group, cyclic alkyl group, aryl group, aralkyl group, halogen as described above.
- An alkyl group is exemplified, and an alkyl group and an aryl group are preferable, and a methyl group and a phenyl group are particularly preferable.
- the component (A) is (A-II) an organopolysiloxane having at least two silanol groups or silicon atom-bonded hydrolyzable groups in one molecule.
- the silicon atom-bonded hydrolyzable group in this organopolysiloxane include alkoxy groups such as methoxy group, ethoxy group and propoxy group; vinyloxy group, propenoxy group, isopropenoxy group, 1-ethyl-2-methylvinyloxy group Alkenoxy groups such as methoxyethoxy groups, ethoxyethoxy groups, methoxypropoxy groups, etc .; Acyloxy groups such as acetoxy groups, octanoyloxy groups, etc .; Ketoxime groups such as dimethyl ketoxime groups, methylethyl ketoxime groups; And amino groups such as diethylamino group and butylamino group; aminoxy groups such as dimethylaminoxy group and
- the same linear alkyl group, branched alkyl group, and cyclic alkyl group as described above are used.
- Alkenyl group, aryl group, aralkyl group, and halogenated alkyl group are used.
- the organopolysiloxane of component (A) is not limited, but preferably (A-III) at least one silicon atom in one molecule Organopolysiloxane having a bonded alkenyl group.
- the group bonded to the silicon atom in the organopolysiloxane include the same linear alkyl group, branched alkyl group, cyclic alkyl group, alkenyl group, aryl group, aralkyl group, and halogenated alkyl group as described above.
- an alkyl group, an alkenyl group, and an aryl group are preferable, and a methyl group, a vinyl group, and a phenyl group are more preferable.
- the compounding amount of the component (A) is preferably 1.0 to 6.0% by mass, more preferably 1.0 to 5.8% by mass in the silicone composition.
- Component (B) is a spherical aluminum oxide powder having an average sphericity of 0.8 or more, a hydroxyl group of 30 / nm 2 or less, and an average particle diameter of 50 to 150 ⁇ m. As long as the above range is satisfied, two or more types having different average particle diameters may be used in combination.
- the crystal structure of the aluminum oxide powder may be either a single crystal or a polycrystal, but the ⁇ phase is desirable from the viewpoint of high thermal conductivity and the specific gravity is preferably 3.7 or more. If the specific gravity is less than 3.7, the ratio of vacancies and low crystal phases existing inside the particles increases, and it may be difficult to increase the thermal conductivity.
- the particle size adjustment of the aluminum oxide powder can be performed by classification and mixing operations.
- the average sphericity is 0.8 or more, and more preferably 0.9 or more. If the average sphericity is less than 0.8, the fluidity may decrease. When the average sphericity is less than 0.8, the contact between the particles becomes remarkable, the unevenness of the sheet surface becomes large, the interface thermal resistance increases, and the thermal conductivity tends to deteriorate. Although an upper limit is not specifically limited, The closer it is to a sphere (average sphericity 1), the better.
- the average sphericity in the present invention can be measured as follows by taking a particle image taken with a scanning electron microscope into an image analyzer, for example, “JSM-7500F” manufactured by JEOL. That is, the projected area (X) and the perimeter (Z) of the particles are measured from the photograph. When the area of a perfect circle corresponding to the perimeter (Z) is (Y), the sphericity of the particle can be displayed as X / Y.
- the sphericity of 100 arbitrary particles thus obtained is obtained, and the average value is defined as the average sphericity.
- the number of hydroxyl groups is 30 / nm 2 or less, and preferably 25 / nm 2 or less.
- the lower limit is not particularly limited, but may be 5 / nm 2 .
- the number of hydroxyl groups can be measured by a Karl Fischer coulometric titration method, for example, “Trace Moisture Analyzer CA-100” manufactured by Mitsubishi Chemical Corporation. Specifically, 0.3 to 1.0 g of a sample is put in a moisture vaporizer, and heated with an electric heater while supplying dehydrated argon gas as a carrier gas. In the Karl Fischer coulometric method, water generated at a temperature exceeding 200 ° C. and up to 900 ° C. is defined as the surface hydroxyl group amount. The concentration of the surface hydroxyl group is calculated from the measured water content and specific surface area.
- the average particle diameter is 50 to 150 ⁇ m, preferably 60 to 140 ⁇ m.
- the average particle size is less than 50 ⁇ m, the contact between the particles decreases, and the thermal conductivity tends to deteriorate due to an increase in the interparticle contact thermal resistance.
- the thickness exceeds 150 ⁇ m, the unevenness of the sheet surface becomes large and the interfacial thermal resistance may increase.
- the average particle size can be measured using a laser diffraction particle size distribution measuring device, for example, “Laser diffraction particle size distribution measuring device SALD-2300” manufactured by Shimadzu Corporation.
- a laser diffraction particle size distribution measuring device SALD-2300 manufactured by Shimadzu Corporation.
- SALD-2300 As an evaluation sample, 5 g of 50 cc pure water and a heat conductive powder to be measured are added to a glass beaker and stirred using a spatula, and then subjected to a dispersion treatment for 10 minutes using an ultrasonic cleaner.
- the powder solution of the thermally conductive material that has been subjected to the dispersion treatment is added dropwise to the sampler portion of the apparatus with a dropper, and waits until the absorbance becomes measurable. The measurement is performed when the absorbance becomes stable in this way.
- the particle size distribution is calculated from the data of the light intensity distribution of the diffracted / scattered light by the particles detected by the sensor.
- the average particle size is obtained by multiplying the value of the measured particle size by the relative particle amount (difference%) and dividing by the total relative particle amount (100%).
- the average particle diameter is the average diameter of the particles.
- the component (C) is an aluminum oxide powder having an average particle size of 0.1 to 5 ⁇ m, preferably 0.5 to 2 ⁇ m, and may be spherical or irregular. Other than the spherical shape is an indefinite shape. As long as the present invention is not impaired, one kind may be used alone, or two or more kinds having different average particle diameters may be used in combination. When the average particle diameter is less than 0.1 ⁇ m, the contact between the particles decreases, and the thermal conductivity tends to deteriorate due to an increase in the interparticle contact thermal resistance.
- the average sphericity is 0.8 or more and the number of hydroxyl groups is 30 / nm 2 or less as in the case of the component (B).
- the measuring method of an average particle diameter, average sphericity, and a hydroxyl group is the same as (B) component.
- the mixing ratio volume ratio of the component (B) to the component (C) ((B) :( C)) is 5: 5 to 9.5: 0.5, more preferably 6: 4 to 9: 1. .
- the ratio of the component (B) is smaller than 5 by volume ratio (the sum of the components (B) and (C) is 10, the same applies hereinafter), the filling properties of the components (B) and (C) tend to deteriorate.
- the ratio of (C) component becomes larger than 9.5, it becomes difficult to pack (B) component and (C) component densely, and thermal conductivity tends to decrease.
- the total blending amount of the component (B) and the component (C) is 80 to 90% by volume, preferably 80 to 85% by volume in the silicone composition.
- the thermal conductivity of the silicone composition may be insufficient.
- it exceeds 90% by volume it is difficult to fill the thermally conductive filler.
- (D) In this invention, it is preferable that (D) silane coupling agent is further included and (B) component and (C) component are surface-treated with (D) silane coupling agent.
- Examples of (D) silane coupling agents include vinyl silane coupling agents, epoxy silane coupling agents, acrylic silane coupling agents, and long-chain alkyl silane coupling agents. Two or more kinds can be used in appropriate combination. Among these, a long chain alkyl silane coupling agent is preferable, and decyltrimethoxysilane is preferable.
- Component (B) component and (C) component surface treatment methods include spray methods using fluid nozzles, shearing stirring methods, dry methods such as ball mills and mixers, water-based or organic solvents A wet method such as a system can be adopted. The stirring method is performed so that the spherical aluminum oxide powder is not destroyed. The system temperature in the dry method or the drying temperature after the treatment is appropriately determined in the region where the surface treatment agent does not volatilize or decompose, depending on the type of the surface treatment agent, but is 80 to 180 ° C.
- the amount of the component (DI) used for treatment is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass in total of the component (B) and the component (C). If the amount is less than 0.1 parts by mass, the effect is small.
- (D-II) an organo having at least one silyl group represented by the following general formula (1) in one molecule and having a viscosity at 25 ° C. of 0.01 to 30 Pa ⁇ s Polysiloxane is mentioned.
- R 1 is independently an unsubstituted or substituted monovalent hydrocarbon group
- R 2 is independently an alkyl group, an alkoxyalkyl group, an alkenyl group or an acyl group, and a is 0, 1 or 2 is there.
- component (D-II) examples include organopolysiloxanes represented by the following general formula (2). Wherein R 1 is independently an unsubstituted or substituted monovalent hydrocarbon group, R 2 is independently an alkyl group, an alkoxyalkyl group, an alkenyl group or an acyl group, and b is an integer of 2 to 100 And a is 0, 1 or 2.)
- R 1 is independently an unsubstituted or substituted monovalent hydrocarbon group having preferably 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 1 to 3 carbon atoms.
- Examples thereof include a linear alkyl group, a branched alkyl group, a cyclic alkyl group, an alkenyl group, an aryl group, an aralkyl group, and a halogenated alkyl group.
- Examples of the linear alkyl group include a methyl group, an ethyl group, a propyl group, a hexyl group, an octyl group, and a decyl group.
- Examples of the branched alkyl group include isopropyl group, isobutyl group, tert-butyl group, 2-ethylhexyl group and the like.
- Examples of the cyclic alkyl group include a cyclopentyl group and a cyclohexyl group.
- Examples of the alkenyl group include a vinyl group and an allyl group.
- Examples of the aryl group include a phenyl group and a tolyl group.
- Examples of the aralkyl group include 2-phenylethyl group and 2-methyl-2-phenylethyl group.
- halogenated alkyl group examples include 3,3,3-trifluoropropyl group, 2- (nonafluorobutyl) ethyl group, 2- (heptadecafluorooctyl) ethyl group and the like.
- R 1 is preferably a methyl group or a phenyl group.
- R 2 is independently an alkyl group, an alkoxyalkyl group, an alkenyl group or an acyl group.
- alkyl group include linear alkyl groups, branched alkyl groups, and cyclic alkyl groups similar to those exemplified for R 1 .
- alkoxyalkyl group include a methoxyethyl group and a methoxypropyl group.
- alkenyl group include those similar to those exemplified for R 1 .
- the number of carbon atoms is preferably 1-8.
- the acyl group include an acetyl group and an octanoyl group.
- R 2 is preferably an alkyl group, particularly preferably a methyl group or an ethyl group.
- b is an integer of 2 to 100, preferably 5 to 50. a is 0, 1 or 2, preferably 0.
- organopolysiloxane of component (D-II) include the following. (In the formula, Me is a methyl group.)
- the viscosity of the (D-II) component organopolysiloxane at 25 ° C. is usually 0.01 to 30 Pa ⁇ s, preferably 0.01 to 10 Pa ⁇ s. If the viscosity is lower than 0.01 Pa ⁇ s, oil bleed is likely to occur from the silicone composition, and there is a risk that it will easily sag. When the viscosity is higher than 30 mPa ⁇ s, the fluidity of the resulting silicone composition becomes extremely poor, and the coating workability may be deteriorated. This viscosity is a value measured by a rotational viscometer (the same applies hereinafter).
- the blending amount of the component (D-II) is preferably 5 to 900 parts by weight, more preferably 10 to 900 parts by weight, and still more preferably 20 to 700 parts by weight with respect to 100 parts by weight of the component (A).
- (E) component In the silicone composition of the present invention, (E) spherical glass beads or amorphous glass having a maximum center particle diameter of 150 ⁇ m or more and a SiO 2 content of 50% by mass or more are added to the total amount of the silicone composition. It is preferable to blend 10% by mass or less.
- Component (E) is characterized in that the maximum value of the center particle diameter is larger than the average particle diameter of component (B), and the upper limit of the maximum value is not particularly limited, but can be 300 ⁇ m or less.
- blended even if it is a very small amount, a heat conductive silicone composition can be made into the desired cured thickness of 150 micrometers or more.
- the component (E) is preferably spherical rather than indefinite, and when the component (E) is spherical glass beads, the average sphericity is 0.8 or more, as in the component (B). Is preferred.
- the component (E) is preferably added in a small amount within the range not impairing the present invention.
- the total amount of the silicone composition is (
- the amount of component F) is preferably 10% by mass or less (0 to 10% by mass).
- the central particle diameter can be measured by a laser diffraction method using, for example, “Laser diffraction particle size distribution analyzer SALD-2300” manufactured by Shimadzu Corporation.
- the high thermal conductive silicone composition of the present invention may be used as it is, or may further be mixed with a curing agent to form a curable composition.
- the curable thermally conductive silicone composition includes the following three forms.
- the organopolysiloxane (A) as the base polymer is an organopolysiloxane having the above components (AI) to (A-III).
- Siloxane can be used and the above-mentioned thermally conductive fillers (B) and (C) can be blended.
- [I] Addition reaction curable thermal conductive silicone composition [II] Condensation reaction curable thermal conductive silicone composition
- [III] Organic peroxide curable thermal conductive silicone composition Therefore, [I] addition reaction curable heat conductive silicone composition is preferable. Below, each composition is shown concretely.
- the silicone composition is an addition reaction curable type thermal conductive silicone composition that cures by a hydrosilylation reaction
- the component I) is used, and the following components are further included.
- the curing agents are the following components (F) and (G).
- H Addition reaction control agent as required
- Organohydrogenpolysiloxane having at least two hydrogen atoms directly bonded to silicon atoms is a component that acts as a crosslinking agent.
- Examples of the group bonded to the silicon atom bond of the organohydrogenpolysiloxane include the same linear alkyl group, branched alkyl group, cyclic alkyl group, aryl group, aralkyl group, and halogenated alkyl group as described above.
- An alkyl group and an aryl group are preferable, and a methyl group and a phenyl group are particularly preferable.
- the molecular structure of the component (F) is not limited, but is preferably in the range of 1 to 100,000 mPa ⁇ s, more preferably in the range of 1 to 5,000 mPa ⁇ s.
- the molecular structure of the component (F) is not limited, and examples thereof include linear, branched, partially branched linear, cyclic, and dendritic (dendrimer). Examples of such organopolysiloxanes include single polymers having these molecular structures, copolymers comprising these molecular structures, or mixtures thereof.
- component (F) for example, molecular chain both ends dimethylhydrogensiloxy group-blocked dimethylpolysiloxane, molecular chain both ends trimethylsiloxy group-blocked dimethylsiloxane / methylhydrogensiloxane copolymer, molecular chain both ends dimethylhydrogensiloxy group-blocked Dimethylsiloxane / methylhydrogensiloxane copolymer, siloxane unit represented by the formula: (CH 3 ) 3 SiO 1/2 and siloxane unit represented by the formula: (CH 3 ) 2 HSiO 1/2 and formula: SiO 4 /
- the organosiloxane copolymer which consists of the siloxane unit represented by 2 is mentioned, It can use individually by 1 type or in combination of 2 or more types.
- the amount of the component (F) is an amount necessary for curing the silicone composition.
- the amount of the component (F) in the component (F) is 1 mol of silicon-bonded alkenyl groups in the component (AI).
- the amount of silicon-bonded hydrogen atoms is preferably in the range of 0.1 to 10 mol, more preferably in the range of 0.1 to 5 mol, particularly 0.1
- the amount is preferably in the range of ⁇ 3.0 mol. This is because when the content of this component is less than the lower limit of the above range, the resulting silicone composition tends not to be cured sufficiently, while when the upper limit of the above range is exceeded, it is obtained. In some cases, the silicone cured product becomes very hard and a large number of cracks are generated on the surface.
- the platinum group metal curing catalyst is a catalyst for accelerating the curing of the silicone composition.
- a catalyst for accelerating the curing of the silicone composition for example, chloroplatinic acid, chloroplatinic acid alcohol solution, platinum olefin complex, platinum alkenylsiloxane complex, platinum Of the carbonyl complex.
- the blending amount of the component (G) is an amount necessary for curing the silicone composition.
- the platinum metal in the component (G) is 0.01% by mass with respect to the component (AI).
- the amount is preferably in the range of ⁇ 1,000 ppm, and particularly preferably in the range of 0.1 to 500 ppm. This is because when the blending amount of the component (G) is less than the lower limit of the above range, the resulting silicone composition tends not to be cured sufficiently, and on the other hand, the blending amount exceeds the upper limit of the above range. The curing rate of the resulting silicone composition is not significantly improved.
- a curing reaction inhibitor can be blended in order to adjust the curing rate of the silicone composition and improve the handling workability.
- the curing reaction inhibitor include acetylene compounds such as 2-methyl-3-butyn-2-ol, 2-phenyl-3-butyn-2-ol, 1-ethynyl-1-cyclohexanol; 3-methyl-3 -Ene-in compounds such as pentene-1-in and 3,5-dimethyl-3-hexen-1-in; other examples include hydrazine compounds, phosphine compounds, mercaptan compounds, etc. Two or more kinds can be used in appropriate combination.
- the amount of component (H) is not particularly limited, but is preferably 0.0001 to 1.0% by mass with respect to the silicone composition. By setting it as the said range, the workability
- the silicone composition is a condensation reaction curable heat conductive silicone composition
- the component (A-II) shown above is used as (A) above, Furthermore, it contains the following components, and the curing agent is the following component (I).
- (J) If necessary, a catalyst for condensation reaction
- Examples of the silicon-bonded hydrolyzable group in component (I) include the same alkoxy groups, alkoxyalkoxy groups, acyloxy groups, ketoxime groups, alkenoxy groups, amino groups, aminoxy groups, and amide groups as described above.
- the silicon atom of the silane includes, for example, the same linear alkyl group, branched alkyl group, cyclic alkyl group, alkenyl group, aryl group, aralkyl group, halogen as described above.
- An alkyl group may be bonded.
- Examples of such silanes or partial hydrolysates thereof include methyltriethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, and ethyl orthosilicate.
- the amount of the component (I) is an amount necessary for curing the silicone composition, and specifically, within a range of 0.01 to 20 parts by mass with respect to 100 parts by mass of the component (A-II). In particular, it is preferably in the range of 0.1 to 10 parts by mass. If the content of this silane or its partial hydrolyzate is less than the lower limit of the above range, the storage stability of the resulting silicone composition may be lowered, whereas it exceeds the upper limit of the above range. If it is in an amount, curing of the resulting silicone composition may be remarkably slowed.
- the component (J) is an optional component, and is not essential when, for example, a silane having a hydrolyzable group such as an aminoxy group, an amino group, or a ketoxime group is used as a curing agent.
- condensation reaction catalysts include organic titanates such as tetrabutyl titanate and tetraisopropyl titanate; organic titanium such as diisopropoxybis (acetylacetate) titanium and diisopropoxybis (ethylacetoacetate) titanium.
- organoaluminum compounds such as aluminum tris (acetylacetonate) and aluminum tris (ethylacetoacetate); organoaluminum compounds such as zirconium tetra (acetylacetonate) and zirconium tetrabutyrate; dibutyltin dioctoate, dibutyltin dilaurate, Organic tin compounds such as butyltin-2-ethylhexoate; organics such as tin naphthenate, tin oleate, tin butyrate, cobalt naphthenate, zinc stearate Rubonic acid metal salts; amine compounds such as hexylamine and dodecylamine phosphate; and salts thereof; quaternary ammonium salts such as benzyltriethylammonium acetate; lower fatty acid salts of alkali metals such as potassium acetate and lithium nitrate; dimethylhydroxy
- the blending amount may be an amount necessary for curing the silicone composition, and specifically, 0.01 to 20 parts by mass with respect to 100 parts by mass of the component (A). It is preferably within the range, and particularly preferably within the range of 0.1 to 10 parts by mass. This is because when the catalyst is essential, if the content of the catalyst is less than the lower limit of the above range, the resulting silicone composition tends not to be sufficiently cured, whereas the above range. This is because the storage stability of the resulting silicone composition tends to decrease when the upper limit of the above is exceeded.
- (K) organic peroxides examples include benzoyl peroxide, dicumyl peroxide, 2,5-dimethylbis (2,5-t-butylperoxy) hexane, di-t-butyl peroxide, t- Butyl perbenzoate is mentioned.
- the amount of the component (K) is an amount necessary for curing the silicone composition. Specifically, the amount is 0.1 to 5 parts by mass with respect to 100 parts by mass of the organopolysiloxane of the component (A-III). The range of is preferable. When the blending amount of the component (K) is less than the lower limit of the above range, the resulting silicone composition tends not to be cured sufficiently, while the silicone composition obtained even when blending an amount exceeding the upper limit of the above range. The curing rate of the object is not significantly improved and may cause voids.
- a filler such as zinc oxide, fumed silica, precipitated silica, fumed titanium oxide, etc.
- this filler Filler whose surface is hydrophobized with an organosilicon compound
- Adhesive agent such as 3-glycidoxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane
- Other pigments, dyes, fluorescent dyes, heat-resistant additives In addition, a flame retardant imparting agent such as a triazole compound or a plasticizer may be contained.
- thermally conductive fillers other than (B) component for example, aluminum powder, copper powder, silver powder, nickel powder, gold powder, zinc oxide powder , Magnesium oxide powder, boron nitride powder, aluminum nitride powder, diamond powder, carbon powder and the like.
- the silicone composition of the present invention can be prepared by uniformly mixing a predetermined amount of each of the above components.
- A an organopolysiloxane
- B Spherical aluminum oxide powder having an average sphericity of 0.8 or more, hydroxyl groups of 30 / nm 2 or less, and an average particle diameter of 50 to 150 ⁇ m
- C a spherical or indefinite of average particle diameter of 0.1 to 5 ⁇ m
- the mixing ratio volume ratio of the component (B) to the component (C) ((B) :( C)) is 5: 5 to 9.5: 0.5
- the thermal conductivity of the composition is 5.5 W / m ⁇ K or more in the hot disk method according to ISO 22007-2
- Examples thereof include a method for producing a highly thermally conductive silicone composition having a
- the thermal conductivity of the thermally conductive silicone composition is a high thermal conductive silicone composition of 5.5 W / m ⁇ K or higher in the hot disk method according to ISO 22007-2, and 6.0 W / m ⁇ K or higher. More preferred.
- the upper limit is not particularly limited and may be high, but can be 10 W / m ⁇ K or less.
- the measurement temperature is 25 ° C.
- the viscosity at 25 ° C. of the heat conductive silicone composition is 30 to 800 Pa ⁇ s, preferably 30 to 600 Pa ⁇ s, when the rotational speed is 10 rpm measured with a spiral viscometer.
- the method for curing it is not limited.
- the silicone composition is molded and then allowed to stand at room temperature, the silicone composition is molded and then heated to 40 to 200 ° C. And a silicone elastomer molded article is obtained.
- the properties of the silicone rubber thus obtained are not limited, and examples thereof include a gel shape, a low hardness rubber shape, and a high hardness rubber shape.
- the cured thickness is preferably 150 ⁇ m or more. Although an upper limit is not specifically limited, When the magnitude
- the silicone composition was poured into a mold having a cured thickness of 6 mm and cured at 100 ° C. for 1 hour. Next, when two cured products having a thickness of 6 mm are stacked and measured with an Asker C hardness meter, 3 to 90 is preferable, and 5 to 80 is more preferable.
- the thermal conductivity of the cured product at 150 ° C. is preferably 4.0 W / m ⁇ K or more, more preferably 4.0 to 6.5, in the hot disk method in conformity with ISO 22007-2. Further, the thermal conductivity of the cured product at 25 ° C. is 5.5 W / m ⁇ K or more, more preferably 6.0 W / m ⁇ K or more, in the hot disk method in conformity with ISO 22007-2.
- the upper limit is not particularly limited and may be high, but can be 10 W / m ⁇ K or less.
- the temperature at 25 ° C. and 150 ° C. refers to the measurement temperature.
- the thermal conductivity estimated from each temperature in the linear line obtained by plotting the thermal conductivity obtained at 25 ° C. and 150 ° C. is also It is covered by the present invention.
- Component A-1 Dimethylpolysiloxane A-2 having a viscosity at 25 ° C. of 400 mPa ⁇ s, both ends blocked with dimethylvinylsilyl groups, and a Vi group amount of 0.018 mol / 100 g: Shin-Etsu Chemical Industrial KF-54, specific gravity (25 ° C.) of 1.07, kinematic viscosity (25 ° C.) 400 mm 2 / s molecular chain both ends trimethylsiloxy group-blocked dimethylsiloxane / diphenylsiloxane copolymer
- A-3 Shin-Etsu Chemical Industrial KF-50-1,000cs, specific gravity (25 ° C) is 1.00, kinematic viscosity (25 ° C) is 1,000 mm 2 / s molecular chain both ends trimethylsiloxy group-blocked dimethyls
- Component (C) Spherical or amorphous aluminum oxide having the properties shown in the table below
- Component E-1 GL particle size series M-9 manufactured by Potters Ballotini (maximum value of the center particle diameter is 180 ⁇ m), spherical glass beads having a SiO 2 content of 99.4% by mass
- Examples 1 to 7, Comparative Examples 1 to 7 Using the above components, a silicone composition was prepared by the method shown below, and a thermally conductive molded product was obtained using this silicone composition. Using these, evaluation was carried out by the method shown below. The results are also shown in the table.
- the above components were mixed as shown below in the amounts shown in Tables 3 and 4 to obtain a silicone composition. That is, the components (A), (B), (C), and (D) were added to a 5 liter gate mixer (Inoue Seisakusho Co., Ltd., trade name: 5 liter planetary mixer) at the blending amounts shown in the table, and 150 The mixture was deaerated and heated for 2 hours at ° C. Then, it cools until it becomes normal temperature (25 degreeC), (G) component is added, it mixes at room temperature (25 degreeC) so that it may become uniform, (H) component is added continuously, and it is room temperature so that it may become uniform (25 ° C).
- a 5 liter gate mixer Inoue Seisakusho Co., Ltd., trade name: 5 liter planetary mixer
- the components (E) and (F) were added and deaerated and mixed at room temperature so as to be uniform.
- the initial viscosity, the hardness after curing, and the thermal conductivity before and after curing were evaluated by the following methods. The results are also shown in the table.
- the initial viscosity of the silicone composition was a value at 25 ° C., and a spiral viscometer: Malcolm viscometer (type PC-10AA, rotation speed 10 rpm) was used for the measurement.
- a spiral viscometer Malcolm viscometer (type PC-10AA, rotation speed 10 rpm) was used for the measurement.
- the silicone composition was poured into a mold having a cured thickness of 6 mm and cured at 100 ° C. for 1 hour. Next, two 6 mm thick cured products were stacked and measured with an Asker C hardness meter.
- the thermal conductivity before curing of the silicone composition at 25 ° C. was measured using a hot disk method thermophysical property measuring apparatus TPS 2500 S manufactured by Kyoto Electronics Industry Co., Ltd.
- the silicone composition was poured into a mold having a cured thickness of 6 mm and cured at 100 ° C. for 1 hour.
- cured material in 25 degreeC and 150 degreeC was measured.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
A highly thermally conductive silicone composition including: (A) an organopolysiloxane;
(B) a spherical aluminum oxide powder with an average sphericity of 0.8 or greater, 30 hydroxyl groups/nm2 or less, and an average particle diameter of 50 to 150μm; and
(C) a spherical or amorphous aluminum oxide powder with an average particle diameter of 0.1 to 5μm, wherein the mixing ratio by volume of the (B) component and the (C) component is 5:5 to 9.5:0.5, the total quantity of the (B) component and the (C) component within the composition is 80 to 90vol%, the thermal conductivity of the composition according to a hot disk method conforming to ISO 22007-2 is 5.5W/m∙K or greater, and the viscosity of the composition at 25°C is 30 to 800Pa∙s when measured with a spiral viscometer at a rotational speed of 10rpm.
Description
本発明は、熱伝導性に優れたシリコーン組成物に関するものであり、特に電子部品用放熱部材として使用した際に、パワーデバイス、トランジスタ、サイリスタ、CPU(中央処理装置)等の発熱性電子部品を損傷させることなく、電子機器に組み込むことができる、絶縁性に優れた高熱伝導性シリコーン組成物に関するものである。
The present invention relates to a silicone composition having excellent thermal conductivity, and particularly when used as a heat radiating member for electronic components, heat-generating electronic components such as power devices, transistors, thyristors, and CPUs (central processing units) are used. The present invention relates to a highly thermally conductive silicone composition having excellent insulating properties that can be incorporated into an electronic device without being damaged.
パワーデバイス、トランジスタ、サイリスタ、CPU等の発熱性電子部品においては、使用時に発生する熱を如何に除去するかが重要な問題となっている。従来、このような除熱方法としては、発熱性電子部品を電気絶縁性の放熱シートを介して放熱フィンや金属板に取り付け、熱を逃がすことが一般的に行われており、その放熱シートとしてはシリコーン樹脂に熱伝導性フィラーを分散させたものが使用されている。
In heat-generating electronic components such as power devices, transistors, thyristors, and CPUs, how to remove heat generated during use is an important issue. Conventionally, as such a heat removal method, a heat-generating electronic component is generally attached to a heat-radiating fin or a metal plate via an electrically insulating heat-dissipating sheet, and the heat is released. Uses a silicone resin in which a thermally conductive filler is dispersed.
近年、電子部品内の回路の高集積化に伴いその発熱量も大きくなっており、例えば100℃以上、特には150℃環境といった高温時における熱伝導率が重要になる場合もある。このことから、従来にも増して高い熱伝導性を有する材料が求められてきている。熱伝導性材料の熱伝導性を向上させるためには、これまで酸化アルミニウム粉末、窒化アルミニウム粉末といった高い熱伝導性を示すフィラーをマトリックス樹脂へ含有する手法が一般的であった(特許文献1~4:特開2005-162555号公報、特開2003-342021号公報、特開2002-280498号公報、特開2005-209765号公報)。
In recent years, the amount of heat generated has increased with the high integration of circuits in electronic components. For example, the thermal conductivity at high temperatures such as 100 ° C. or higher, particularly 150 ° C., can be important. For this reason, a material having higher thermal conductivity than ever before has been demanded. In order to improve the thermal conductivity of the thermally conductive material, a method in which a filler having a high thermal conductivity such as an aluminum oxide powder and an aluminum nitride powder is contained in a matrix resin has been generally used (Patent Documents 1 to 6). 4: JP-A-2005-162555, JP-A-2003-342021, JP-A-2002-280498, JP-A-2005-209765).
そこで熱伝導率を向上させるために、平均球形度、水酸基量、並びに平均粒子径が10~50μmで規定された球状酸化アルミニウム粉末と平均粒子径が0.3~1μmで規定され、それぞれの酸化アルミニウムの配合割合と体積比が規定された高熱伝導性樹脂組成物の手法が開示されているが、球状酸化アルミニウム粉末の平均粒子径が最大で50μmでは、熱伝導率的に不十分な問題があった(特許文献5:特許第5755977号公報)。
Therefore, in order to improve the thermal conductivity, the average sphericity, the amount of hydroxyl groups, and the spherical aluminum oxide powder having an average particle diameter of 10 to 50 μm and the average particle diameter of 0.3 to 1 μm are specified. Although a technique for a highly thermally conductive resin composition in which the mixing ratio and volume ratio of aluminum are defined is disclosed, if the average particle diameter of the spherical aluminum oxide powder is 50 μm at the maximum, there is a problem that thermal conductivity is insufficient. (Patent Document 5: Japanese Patent No. 5755777).
また、平均粒径が0.1~100μmであるアルミナ粉末を使用した熱伝導性シリコーン組成物が提案されているものの、具体的な熱伝導率や粘度の規定はされていない。さらに、平均粒径が5~50μm(ただし5μmを含まない)の球状アルミナ粉末と平均粒径が0.1~5μmの球状もしくは不定形状のアルミナ粉末で規定され、それぞれの酸化アルミニウムの配合割合と重量比が規定された熱伝導性シリコーン組成物が開示されているものの、これも特許文献5と同様、平均粒径が大きい球状アルミナの平均球形度や水酸基量の規定がなく、高熱伝導率化させるためには不十分であるという問題があった(特許文献6:再公表特許2002-092693号公報)。
In addition, although a heat conductive silicone composition using an alumina powder having an average particle size of 0.1 to 100 μm has been proposed, specific heat conductivity and viscosity are not specified. Further, it is defined by a spherical alumina powder having an average particle diameter of 5 to 50 μm (but not including 5 μm) and a spherical or irregular-shaped alumina powder having an average particle diameter of 0.1 to 5 μm. Although a thermally conductive silicone composition with a specified weight ratio is disclosed, this also has no definition of the average sphericity and the amount of hydroxyl groups of spherical alumina having a large average particle size, as in Patent Document 5, and has a high thermal conductivity. There is a problem that it is insufficient for the purpose (Patent Document 6: Republished Patent No. 2002-092693).
本発明は上記事情に鑑みなされたもので、絶縁性と熱伝導性に優れた熱伝導性シリコーン組成物を提供することであり、特に電子部品用放熱部材として好適な熱伝導性シリコーン組成物を提供することである。
The present invention has been made in view of the above circumstances, and is to provide a thermally conductive silicone composition excellent in insulation and thermal conductivity, and in particular, a thermally conductive silicone composition suitable as a heat radiating member for electronic components. Is to provide.
本発明者らは、上記目的を達成するため鋭意検討した結果、(A)オルガノポリシロキサンを含有するシリコーン組成物に、(B)平均球形度0.8以上、水酸基が30個/nm2以下であり、平均粒子径50~150μmの球状酸化アルミニウム粉末と、(C)平均粒子径0.1~5μmの球状又は不定形状酸化アルミニウム粉末とを、特定比率で、特定量配合することで、上記課題を解決でき、取扱い性や作業性が良好となる熱伝導性シリコーン組成物を得ることができる。また、熱伝導性シリコーン組成物の硬化物の150℃における熱伝導率が、ISO 22007-2準拠のホットディスク法において、4.0W/m・K以上とすることで、高温時における熱伝導性に優れた熱伝導性シリコーン組成物を得ることができる。さらに本組成物には、硬化剤を配合して硬化性の組成物とすることもできる。
As a result of intensive studies to achieve the above object, the present inventors have found that (A) a silicone composition containing an organopolysiloxane has (B) an average sphericity of 0.8 or more and a hydroxyl group of 30 / nm 2 or less. By blending a specific amount of spherical aluminum oxide powder having an average particle diameter of 50 to 150 μm and (C) spherical or amorphous aluminum oxide powder having an average particle diameter of 0.1 to 5 μm at a specific ratio, A heat conductive silicone composition which can solve a subject and becomes easy to handle and workability can be obtained. In addition, the thermal conductivity at 150 ° C. of the cured product of the thermally conductive silicone composition is 4.0 W / m · K or higher in the hot disk method in conformity with ISO 22007-2, so that the thermal conductivity at high temperatures is achieved. It is possible to obtain a heat conductive silicone composition having excellent resistance. Further, the present composition may be mixed with a curing agent to form a curable composition.
従って、本発明は下記発明を提供する。
1.(A)オルガノポリシロキサン、
(B)平均球形度0.8以上、水酸基が30個/nm2以下であり、平均粒子径50~150μmの球状酸化アルミニウム粉末、及び
(C)平均粒子径0.1~5μmの球状又は不定形状酸化アルミニウム粉末
を含む高熱伝導性シリコーン組成物であって、
上記(B)成分と(C)成分の配合割合体積比((B):(C))が5:5~9.5:0.5、(B)成分と(C)成分との合計量が組成物中80~90体積%であり、
組成物の熱伝導率がISO 22007-2準拠のホットディスク法において、5.5W/m・K以上、組成物の25℃における粘度がスパイラル粘度計による回転数10rpm測定時において、30~800Pa・sである高熱伝導性シリコーン組成物。
2.さらに、(D)シランカップリング剤を含む1記載の高熱伝導性シリコーン組成物。
3.(D)成分が、下記一般式(1)
-SiR1 a(OR2)3-a (1)
(式中、R1は独立に非置換又は置換の1価炭化水素基であり、R2は独立にアルキル基、アルコキシアルキル基、アルケニル基又はアシル基であり、aは0、1又は2である。)
で表されるシリル基を1分子中に少なくとも1個含有し、25℃での粘度が0.01~30Pa・sであるオルガノポリシロキサンである2記載の高熱伝導性シリコーン組成物。
4.さらに、(E)中心粒子径の最大値が150μm以上であり、SiO2含有量が50質量%以上の球状ガラスビーズ又は不定形ガラスを、組成物の全量に対し10質量%以下含む1~3のいずれかに記載の高熱伝導性シリコーン組成物。
5.さらに、硬化剤を含む1~4のいずれかに記載の高熱伝導性シリコーン組成物。
6.高熱伝導性シリコーン組成物の硬化物の150℃における熱伝導率が、ISO 22007-2準拠のホットディスク法において、4.0W/m・K以上である5記載の熱伝導性シリコーン組成物。
7.付加反応硬化型、縮合反応硬化型又は有機過酸化物硬化型である6記載の高熱伝導性シリコーン組成物。
8.付加反応硬化型である7記載の高熱伝導性シリコーン組成物。
9.5~8のいずれかに記載の高熱伝導性シリコーン組成物の硬化物。
10.150℃における熱伝導率が、ISO 22007-2準拠のホットディスク法において、4.0W/m・K以上である9記載の硬化物。
11.(A)オルガノポリシロキサン、
(B)平均球形度0.8以上、水酸基が30個/nm2以下であり、平均粒子径50~150μmの球状酸化アルミニウム粉末、及び
(C)平均粒子径0.1~5μmの球状又は不定形状酸化アルミニウム粉末
を混合する工程を含む、上記(B)成分と(C)成分の配合割合体積比((B):(C))が5:5~9.5:0.5、(B)成分と(C)成分との合計量が組成物中80~90体積%であり、組成物の熱伝導率がISO 22007-2準拠のホットディスク法において、5.5W/m・K以上、組成物の25℃における粘度がスパイラル粘度計による回転数10rpm測定時において、30~800Pa・sである高熱伝導性シリコーン組成物を製造する方法。 Accordingly, the present invention provides the following inventions.
1. (A) organopolysiloxane,
(B) Spherical aluminum oxide powder having an average sphericity of 0.8 or more, hydroxyl groups of 30 / nm 2 or less, and an average particle diameter of 50 to 150 μm, and (C) a spherical or indefinite of average particle diameter of 0.1 to 5 μm A highly thermally conductive silicone composition comprising a shape aluminum oxide powder,
The mixing ratio volume ratio ((B) :( C)) of the component (B) and the component (C) is 5: 5 to 9.5: 0.5, and the total amount of the component (B) and the component (C) Is 80 to 90% by volume in the composition,
In the hot disk method according to ISO 22007-2, the composition has a thermal conductivity of 5.5 W / m · K or more, and the composition has a viscosity at 25 ° C. of 30 to 800 Pa · A high thermal conductive silicone composition which is s.
2. The high thermal conductive silicone composition according to 1, further comprising (D) a silane coupling agent.
3. The component (D) is represented by the following general formula (1)
-SiR 1 a (OR 2 ) 3-a (1)
Wherein R 1 is independently an unsubstituted or substituted monovalent hydrocarbon group, R 2 is independently an alkyl group, an alkoxyalkyl group, an alkenyl group or an acyl group, and a is 0, 1 or 2 is there.)
3. The highly heat-conductive silicone composition according to 2, which is an organopolysiloxane containing at least one silyl group represented by the formula (1) in a molecule and having a viscosity at 25 ° C. of 0.01 to 30 Pa · s.
4). Further, (E) a spherical glass bead or amorphous glass having a maximum central particle diameter of 150 μm or more and a SiO 2 content of 50% by mass or more is contained in an amount of 10% by mass or less based on the total amount of the composition. The high heat conductive silicone composition in any one of.
5). 5. The high thermal conductive silicone composition according to any one of 1 to 4, further comprising a curing agent.
6). 6. The thermally conductive silicone composition according to 5, wherein the cured product of the highly thermally conductive silicone composition has a thermal conductivity at 150 ° C. of 4.0 W / m · K or more in a hot disk method in conformity with ISO 22007-2.
7). 7. The high thermal conductive silicone composition according to 6, which is an addition reaction curable type, a condensation reaction curable type, or an organic peroxide curable type.
8). 8. The high thermal conductive silicone composition according to 7, which is an addition reaction curable type.
9. A cured product of the high thermal conductive silicone composition according to any one of 9.5 to 8.
10. Hardened | cured material of 9 whose thermal conductivity in 10.150 degreeC is 4.0 W / m * K or more in the hot disk method based on ISO22007-2.
11. (A) organopolysiloxane,
(B) Spherical aluminum oxide powder having an average sphericity of 0.8 or more, hydroxyl groups of 30 / nm 2 or less, and an average particle diameter of 50 to 150 μm, and (C) a spherical or indefinite of average particle diameter of 0.1 to 5 μm Including the step of mixing the shape aluminum oxide powder, the mixing ratio volume ratio of the component (B) to the component (C) ((B) :( C)) is 5: 5 to 9.5: 0.5, (B ) Component and (C) component in a total amount of 80 to 90% by volume in the composition, and the thermal conductivity of the composition is 5.5 W / m · K or more in the hot disk method according to ISO 22007-2, A method for producing a highly thermally conductive silicone composition having a viscosity of 30 to 800 Pa · s when the composition has a viscosity at 25 ° C. of 10 rpm measured with a spiral viscometer.
1.(A)オルガノポリシロキサン、
(B)平均球形度0.8以上、水酸基が30個/nm2以下であり、平均粒子径50~150μmの球状酸化アルミニウム粉末、及び
(C)平均粒子径0.1~5μmの球状又は不定形状酸化アルミニウム粉末
を含む高熱伝導性シリコーン組成物であって、
上記(B)成分と(C)成分の配合割合体積比((B):(C))が5:5~9.5:0.5、(B)成分と(C)成分との合計量が組成物中80~90体積%であり、
組成物の熱伝導率がISO 22007-2準拠のホットディスク法において、5.5W/m・K以上、組成物の25℃における粘度がスパイラル粘度計による回転数10rpm測定時において、30~800Pa・sである高熱伝導性シリコーン組成物。
2.さらに、(D)シランカップリング剤を含む1記載の高熱伝導性シリコーン組成物。
3.(D)成分が、下記一般式(1)
-SiR1 a(OR2)3-a (1)
(式中、R1は独立に非置換又は置換の1価炭化水素基であり、R2は独立にアルキル基、アルコキシアルキル基、アルケニル基又はアシル基であり、aは0、1又は2である。)
で表されるシリル基を1分子中に少なくとも1個含有し、25℃での粘度が0.01~30Pa・sであるオルガノポリシロキサンである2記載の高熱伝導性シリコーン組成物。
4.さらに、(E)中心粒子径の最大値が150μm以上であり、SiO2含有量が50質量%以上の球状ガラスビーズ又は不定形ガラスを、組成物の全量に対し10質量%以下含む1~3のいずれかに記載の高熱伝導性シリコーン組成物。
5.さらに、硬化剤を含む1~4のいずれかに記載の高熱伝導性シリコーン組成物。
6.高熱伝導性シリコーン組成物の硬化物の150℃における熱伝導率が、ISO 22007-2準拠のホットディスク法において、4.0W/m・K以上である5記載の熱伝導性シリコーン組成物。
7.付加反応硬化型、縮合反応硬化型又は有機過酸化物硬化型である6記載の高熱伝導性シリコーン組成物。
8.付加反応硬化型である7記載の高熱伝導性シリコーン組成物。
9.5~8のいずれかに記載の高熱伝導性シリコーン組成物の硬化物。
10.150℃における熱伝導率が、ISO 22007-2準拠のホットディスク法において、4.0W/m・K以上である9記載の硬化物。
11.(A)オルガノポリシロキサン、
(B)平均球形度0.8以上、水酸基が30個/nm2以下であり、平均粒子径50~150μmの球状酸化アルミニウム粉末、及び
(C)平均粒子径0.1~5μmの球状又は不定形状酸化アルミニウム粉末
を混合する工程を含む、上記(B)成分と(C)成分の配合割合体積比((B):(C))が5:5~9.5:0.5、(B)成分と(C)成分との合計量が組成物中80~90体積%であり、組成物の熱伝導率がISO 22007-2準拠のホットディスク法において、5.5W/m・K以上、組成物の25℃における粘度がスパイラル粘度計による回転数10rpm測定時において、30~800Pa・sである高熱伝導性シリコーン組成物を製造する方法。 Accordingly, the present invention provides the following inventions.
1. (A) organopolysiloxane,
(B) Spherical aluminum oxide powder having an average sphericity of 0.8 or more, hydroxyl groups of 30 / nm 2 or less, and an average particle diameter of 50 to 150 μm, and (C) a spherical or indefinite of average particle diameter of 0.1 to 5 μm A highly thermally conductive silicone composition comprising a shape aluminum oxide powder,
The mixing ratio volume ratio ((B) :( C)) of the component (B) and the component (C) is 5: 5 to 9.5: 0.5, and the total amount of the component (B) and the component (C) Is 80 to 90% by volume in the composition,
In the hot disk method according to ISO 22007-2, the composition has a thermal conductivity of 5.5 W / m · K or more, and the composition has a viscosity at 25 ° C. of 30 to 800 Pa · A high thermal conductive silicone composition which is s.
2. The high thermal conductive silicone composition according to 1, further comprising (D) a silane coupling agent.
3. The component (D) is represented by the following general formula (1)
-SiR 1 a (OR 2 ) 3-a (1)
Wherein R 1 is independently an unsubstituted or substituted monovalent hydrocarbon group, R 2 is independently an alkyl group, an alkoxyalkyl group, an alkenyl group or an acyl group, and a is 0, 1 or 2 is there.)
3. The highly heat-conductive silicone composition according to 2, which is an organopolysiloxane containing at least one silyl group represented by the formula (1) in a molecule and having a viscosity at 25 ° C. of 0.01 to 30 Pa · s.
4). Further, (E) a spherical glass bead or amorphous glass having a maximum central particle diameter of 150 μm or more and a SiO 2 content of 50% by mass or more is contained in an amount of 10% by mass or less based on the total amount of the composition. The high heat conductive silicone composition in any one of.
5). 5. The high thermal conductive silicone composition according to any one of 1 to 4, further comprising a curing agent.
6). 6. The thermally conductive silicone composition according to 5, wherein the cured product of the highly thermally conductive silicone composition has a thermal conductivity at 150 ° C. of 4.0 W / m · K or more in a hot disk method in conformity with ISO 22007-2.
7). 7. The high thermal conductive silicone composition according to 6, which is an addition reaction curable type, a condensation reaction curable type, or an organic peroxide curable type.
8). 8. The high thermal conductive silicone composition according to 7, which is an addition reaction curable type.
9. A cured product of the high thermal conductive silicone composition according to any one of 9.5 to 8.
10. Hardened | cured material of 9 whose thermal conductivity in 10.150 degreeC is 4.0 W / m * K or more in the hot disk method based on ISO22007-2.
11. (A) organopolysiloxane,
(B) Spherical aluminum oxide powder having an average sphericity of 0.8 or more, hydroxyl groups of 30 / nm 2 or less, and an average particle diameter of 50 to 150 μm, and (C) a spherical or indefinite of average particle diameter of 0.1 to 5 μm Including the step of mixing the shape aluminum oxide powder, the mixing ratio volume ratio of the component (B) to the component (C) ((B) :( C)) is 5: 5 to 9.5: 0.5, (B ) Component and (C) component in a total amount of 80 to 90% by volume in the composition, and the thermal conductivity of the composition is 5.5 W / m · K or more in the hot disk method according to ISO 22007-2, A method for producing a highly thermally conductive silicone composition having a viscosity of 30 to 800 Pa · s when the composition has a viscosity at 25 ° C. of 10 rpm measured with a spiral viscometer.
本発明によれば、絶縁性と熱伝導性に優れた高熱伝導性シリコーン組成物を提供することができる。
According to the present invention, it is possible to provide a highly thermally conductive silicone composition that is excellent in insulation and thermal conductivity.
以下、本発明について詳細に説明する。なお、「熱伝導性シリコーン組成物」を「シリコーン組成物」と略す場合がある。
[(A)成分]
(A)成分のオルガノポリシロキサンは本発明のシリコーン組成物の主剤である。このオルガノポリシロキサン中のケイ素原子に結合している基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基等の直鎖状アルキル基;イソプロピル基、ターシャリーブチル基、イソブチル基、2-メチルウンデシル基、1-ヘキシルヘプチル基等の分岐鎖状アルキル基;シクロペンチル基、シクロヘキシル基、シクロドデシル基等の環状アルキル基;ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基等のアルケニル基;フェニル基、トリル基、キシリル基等のアリール基;ベンジル基、フェネチル基、2-(2,4,6-トリメチルフェニル)プロピル基等のアラルキル基;3,3,3-トリフルオロプロピル基、3-クロロプロピル基等のハロゲン化アルキル基が挙げられ、好ましくは、アルキル基、アルケニル基、アリール基であり、特に好ましくは、メチル基、ビニル基、フェニル基である。 Hereinafter, the present invention will be described in detail. The “thermally conductive silicone composition” is sometimes abbreviated as “silicone composition”.
[(A) component]
The organopolysiloxane of component (A) is the main ingredient of the silicone composition of the present invention. Examples of the group bonded to the silicon atom in the organopolysiloxane include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, and undecyl. Group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, eicosyl group and other linear alkyl groups; isopropyl group, tertiary butyl group, isobutyl group, 2-methyl Branched alkyl groups such as undecyl group and 1-hexylheptyl group; cyclic alkyl groups such as cyclopentyl group, cyclohexyl group and cyclododecyl group; alkenyl groups such as vinyl group, allyl group, butenyl group, pentenyl group and hexenyl group ; Aryl such as phenyl, tolyl, xylyl, etc. Aralkyl groups such as benzyl group, phenethyl group and 2- (2,4,6-trimethylphenyl) propyl group; halogenated alkyl groups such as 3,3,3-trifluoropropyl group and 3-chloropropyl group; An alkyl group, an alkenyl group, and an aryl group are preferable, and a methyl group, a vinyl group, and a phenyl group are particularly preferable.
[(A)成分]
(A)成分のオルガノポリシロキサンは本発明のシリコーン組成物の主剤である。このオルガノポリシロキサン中のケイ素原子に結合している基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基等の直鎖状アルキル基;イソプロピル基、ターシャリーブチル基、イソブチル基、2-メチルウンデシル基、1-ヘキシルヘプチル基等の分岐鎖状アルキル基;シクロペンチル基、シクロヘキシル基、シクロドデシル基等の環状アルキル基;ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基等のアルケニル基;フェニル基、トリル基、キシリル基等のアリール基;ベンジル基、フェネチル基、2-(2,4,6-トリメチルフェニル)プロピル基等のアラルキル基;3,3,3-トリフルオロプロピル基、3-クロロプロピル基等のハロゲン化アルキル基が挙げられ、好ましくは、アルキル基、アルケニル基、アリール基であり、特に好ましくは、メチル基、ビニル基、フェニル基である。 Hereinafter, the present invention will be described in detail. The “thermally conductive silicone composition” is sometimes abbreviated as “silicone composition”.
[(A) component]
The organopolysiloxane of component (A) is the main ingredient of the silicone composition of the present invention. Examples of the group bonded to the silicon atom in the organopolysiloxane include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, and undecyl. Group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, eicosyl group and other linear alkyl groups; isopropyl group, tertiary butyl group, isobutyl group, 2-methyl Branched alkyl groups such as undecyl group and 1-hexylheptyl group; cyclic alkyl groups such as cyclopentyl group, cyclohexyl group and cyclododecyl group; alkenyl groups such as vinyl group, allyl group, butenyl group, pentenyl group and hexenyl group ; Aryl such as phenyl, tolyl, xylyl, etc. Aralkyl groups such as benzyl group, phenethyl group and 2- (2,4,6-trimethylphenyl) propyl group; halogenated alkyl groups such as 3,3,3-trifluoropropyl group and 3-chloropropyl group; An alkyl group, an alkenyl group, and an aryl group are preferable, and a methyl group, a vinyl group, and a phenyl group are particularly preferable.
オルガノポリシロキサンの25℃における粘度は限定されないが、20~100,000mPa・sの範囲内であることが好ましく、50~100,000mPa・sがより好ましく、50~50,000mPa・sがさらに好ましく、100~50,000mPa・sが特に好ましい。粘度が低すぎると、シリコーン組成物の物理的特性が著しく低下するおそれがあり、粘度が高すぎると、シリコーン組成物の取扱作業性が著しく低下するおそれがある。
The viscosity of the organopolysiloxane at 25 ° C. is not limited, but is preferably in the range of 20 to 100,000 mPa · s, more preferably 50 to 100,000 mPa · s, and still more preferably 50 to 50,000 mPa · s. 100 to 50,000 mPa · s is particularly preferable. If the viscosity is too low, the physical properties of the silicone composition may be significantly reduced, and if the viscosity is too high, the handling workability of the silicone composition may be significantly reduced.
オルガノポリシロキサンの分子構造は限定されず、例えば、直鎖状、分岐鎖状、一部分岐を有する直鎖状、樹枝状(デンドリマー状)が挙げられ、好ましくは、直鎖状、一部分岐を有する直鎖状である。このようなオルガノポリシロキサンとしては、例えば、これらの分子構造を有する単一の重合体、これらの分子構造からなる共重合体、又はこれらの重合体の混合物が挙げられる。
The molecular structure of the organopolysiloxane is not limited, and examples thereof include linear, branched, partially branched linear, and dendritic (dendrimer), preferably linear and partially branched. Linear. Examples of such an organopolysiloxane include a single polymer having these molecular structures, a copolymer having these molecular structures, or a mixture of these polymers.
このようなオルガノポリシロキサンとしては、例えば、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端メチルフェニルビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルフェニルシロキサンコポリマー、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサンコポリマー、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサンコポリマー、分子鎖両末端ジメチルビニルシロキシ基封鎖メチル(3,3,3-トリフルオロプロピル)ポリシロキサン、分子鎖両末端シラノール基封鎖ジメチルシロキサン・メチルビニルシロキサンコポリマー、分子鎖両末端シラノール基封鎖ジメチルシロキサン・メチルビニルシロキサン・メチルフェニルシロキサンコポリマー、式:(CH3)3SiO1/2で表されるシロキサン単位と式:(CH3)2(CH2=CH)SiO1/2で表されるシロキサン単位と式:CH3SiO3/2で表されるシロキサン単位と式:(CH3)2SiO2/2で表されるシロキサン単位からなるオルガノシロキサンコポリマー、分子鎖両末端シラノール基封鎖ジメチルポリシロキサン、分子鎖両末端シラノール基封鎖ジメチルシロキサン・メチルフェニルシロキサンコポリマー、分子鎖両末端トリメトキシシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端トリメトキシシリル基封鎖ジメチルシロキサン・メチルフェニルシロキサンコポリマー、分子鎖両末端メチルジメトキシシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端トリエトキシシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端トリメトキシシリルエチル基封鎖ジメチルポリシロキサンが挙げられ、1種単独で又は2種以上を適宜組み合わせて用いることができる。
Examples of such organopolysiloxane include molecular chain both ends dimethylvinylsiloxy group-capped dimethylpolysiloxane, molecular chain both ends methylphenylvinylsiloxy group-capped dimethylpolysiloxane, molecular chain both ends dimethylvinylsiloxy group-capped dimethylsiloxane, Methylphenylsiloxane copolymer, dimethylvinylsiloxy group-capped dimethylvinylsiloxy group-capped dimethylsiloxane / methylvinylsiloxane copolymer, trimethylsiloxy group-capped dimethylsiloxane / methylvinylsiloxane copolymer, dimethylvinylsiloxy group-capped methyl (3) , 3,3-trifluoropropyl) polysiloxane, silanol group-blocked dimethylsiloxane / methylvinylsiloxane copolymer, silanol at both ends Dimethylsiloxane-methylvinylsiloxane-methylphenylsiloxane copolymer, the formula: (CH 3) 3 siloxane units of the formula represented by SiO 1/2: Table with (CH 3) 2 (CH 2 = CH) SiO 1/2 Siloxane unit and a siloxane unit represented by the formula: CH 3 SiO 3/2 and a siloxane unit represented by the formula: (CH 3 ) 2 SiO 2/2 Dimethylpolysiloxane, molecular chain both ends silanol-blocked dimethylsiloxane / methylphenylsiloxane copolymer, molecular chain both ends trimethoxysiloxy-blocked dimethylpolysiloxane, molecular chain both ends trimethoxysilyl-blocked dimethylsiloxane / methylphenylsiloxane copolymer, molecule Methyl dimethoxysiloxy group blocking at both chain ends Examples include methylpolysiloxane, molecular chain both ends triethoxysiloxy group-capped dimethylpolysiloxane, and molecular chain both ends trimethoxysilylethyl group-capped dimethylpolysiloxane, which can be used alone or in appropriate combination of two or more. .
シリコーン組成物がヒドロシリル化反応により硬化する場合には、(A)成分は、(A-I)1分子中に平均0.1個以上のケイ素原子結合アルケニル基を有するオルガノポリシロキサンであることが好ましく、1分子中に平均0.5個以上のケイ素原子結合アルケニル基を有するオルガノポリシロキサンであることがさらに好ましく、1分子中に平均0.8個以上のケイ素原子結合アルケニル基を有するオルガノポリシロキサンであることがより好ましい。これは、1分子中のケイ素原子結合アルケニル基の平均値が上記範囲の下限未満であると、得られるシリコーン組成物が十分に硬化しなくなる傾向があるからである。このオルガノポリシロキサン中のケイ素原子結合アルケニル基としては、前記と同様のアルケニル基が例示され、好ましくはビニル基である。また、このオルガノポリシロキサン中のアルケニル基以外のケイ素原子に結合している基としては、前記と同様の直鎖状アルキル基、分岐鎖状アルキル基、環状アルキル基、アリール基、アラルキル基、ハロゲン化アルキル基が例示され、好ましくは、アルキル基、アリール基であり、特に好ましくは、メチル基、フェニル基である。
When the silicone composition is cured by a hydrosilylation reaction, the component (A) is (AI) an organopolysiloxane having an average of 0.1 or more silicon-bonded alkenyl groups in one molecule. An organopolysiloxane having an average of 0.5 or more silicon atom-bonded alkenyl groups in one molecule is more preferred, and an organopolysiloxane having an average of 0.8 or more silicon atom-bonded alkenyl groups in one molecule. More preferred is siloxane. This is because when the average value of silicon-bonded alkenyl groups in one molecule is less than the lower limit of the above range, the resulting silicone composition tends not to be cured sufficiently. Examples of the silicon atom-bonded alkenyl group in this organopolysiloxane include the same alkenyl groups as described above, preferably a vinyl group. Examples of the group bonded to the silicon atom other than the alkenyl group in the organopolysiloxane include the same linear alkyl group, branched alkyl group, cyclic alkyl group, aryl group, aralkyl group, halogen as described above. An alkyl group is exemplified, and an alkyl group and an aryl group are preferable, and a methyl group and a phenyl group are particularly preferable.
シリコーン組成物が縮合反応により硬化する場合には、(A)成分は、(A-II)1分子中に少なくとも2個のシラノール基もしくはケイ素原子結合加水分解性基を有するオルガノポリシロキサンである。このオルガノポリシロキサン中のケイ素原子結合加水分解性基としては、例えば、メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基;ビニロキシ基、プロペノキシ基、イソプロペノキシ基、1-エチル-2-メチルビニルオキシ基等のアルケノキシ基;メトキシエトキシ基、エトキシエトキシ基、メトキシプロポキシ基等のアルコキシアルコキシ基;アセトキシ基、オクタノイルオキシ基等のアシロキシ基;ジメチルケトオキシム基、メチルエチルケトオキシム基等のケトオキシム基;ジメチルアミノ基、ジエチルアミノ基、ブチルアミノ基等のアミノ基;ジメチルアミノキシ基、ジエチルアミノキシ基等のアミノキシ基;N-メチルアセトアミド基、N-エチルアセトアミド基等のアミド基が挙げられる。また、このオルガノポリシロキサン中のシラノール基及びケイ素原子結合加水分解性基以外のケイ素原子に結合している基としては、前記と同様の直鎖状アルキル基、分岐鎖状アルキル基、環状アルキル基、アルケニル基、アリール基、アラルキル基、ハロゲン化アルキル基が例示される。
When the silicone composition is cured by a condensation reaction, the component (A) is (A-II) an organopolysiloxane having at least two silanol groups or silicon atom-bonded hydrolyzable groups in one molecule. Examples of the silicon atom-bonded hydrolyzable group in this organopolysiloxane include alkoxy groups such as methoxy group, ethoxy group and propoxy group; vinyloxy group, propenoxy group, isopropenoxy group, 1-ethyl-2-methylvinyloxy group Alkenoxy groups such as methoxyethoxy groups, ethoxyethoxy groups, methoxypropoxy groups, etc .; Acyloxy groups such as acetoxy groups, octanoyloxy groups, etc .; Ketoxime groups such as dimethyl ketoxime groups, methylethyl ketoxime groups; And amino groups such as diethylamino group and butylamino group; aminoxy groups such as dimethylaminoxy group and diethylaminoxy group; and amide groups such as N-methylacetamide group and N-ethylacetamide group. In addition, as the group bonded to the silicon atom other than the silanol group and the silicon atom-bonded hydrolyzable group in the organopolysiloxane, the same linear alkyl group, branched alkyl group, and cyclic alkyl group as described above are used. Alkenyl group, aryl group, aralkyl group, and halogenated alkyl group.
シリコーン組成物が有機過酸化物によるフリーラジカル反応により硬化する場合には、(A)成分のオルガノポリシロキサンは限定されないが、好ましくは、(A-III)1分子中に少なくとも1個のケイ素原子結合アルケニル基を有するオルガノポリシロキサンである。このオルガノポリシロキサン中のケイ素原子に結合している基としては、前記と同様の直鎖状アルキル基、分岐鎖状アルキル基、環状アルキル基、アルケニル基、アリール基、アラルキル基、ハロゲン化アルキル基が例示され、アルキル基、アルケニル基、アリール基が好ましく、メチル基、ビニル基、フェニル基がより好ましい。
When the silicone composition is cured by a free radical reaction with an organic peroxide, the organopolysiloxane of component (A) is not limited, but preferably (A-III) at least one silicon atom in one molecule Organopolysiloxane having a bonded alkenyl group. Examples of the group bonded to the silicon atom in the organopolysiloxane include the same linear alkyl group, branched alkyl group, cyclic alkyl group, alkenyl group, aryl group, aralkyl group, and halogenated alkyl group as described above. And an alkyl group, an alkenyl group, and an aryl group are preferable, and a methyl group, a vinyl group, and a phenyl group are more preferable.
(A)成分の配合量は、シリコーン組成物中1.0~6.0質量%が好ましく、1.0~5.8質量%がより好ましい。
The compounding amount of the component (A) is preferably 1.0 to 6.0% by mass, more preferably 1.0 to 5.8% by mass in the silicone composition.
[(B)成分]
(B)成分は、平均球形度0.8以上、水酸基が30個/nm2以下であり、平均粒子径50~150μmの球状酸化アルミニウム粉末である。上記範囲を満たすのであれば、平均粒子径が異なる2種類以上の複数種を併用してもよい。 [(B) component]
Component (B) is a spherical aluminum oxide powder having an average sphericity of 0.8 or more, a hydroxyl group of 30 / nm 2 or less, and an average particle diameter of 50 to 150 μm. As long as the above range is satisfied, two or more types having different average particle diameters may be used in combination.
(B)成分は、平均球形度0.8以上、水酸基が30個/nm2以下であり、平均粒子径50~150μmの球状酸化アルミニウム粉末である。上記範囲を満たすのであれば、平均粒子径が異なる2種類以上の複数種を併用してもよい。 [(B) component]
Component (B) is a spherical aluminum oxide powder having an average sphericity of 0.8 or more, a hydroxyl group of 30 / nm 2 or less, and an average particle diameter of 50 to 150 μm. As long as the above range is satisfied, two or more types having different average particle diameters may be used in combination.
酸化アルミニウム粉末の結晶構造は、単結晶体、多結晶体の何れでもよいが、結晶相は高熱伝導性の点からα相が望ましく、また比重は3.7以上が望ましい。比重が3.7未満であると、粒子内部に存在する空孔と低結晶相の割合が多くなるため、熱伝導率を高めることが困難となるおそれがある。酸化アルミニウム粉末の粒度調整は、分級・混合操作によって行うことができる。
The crystal structure of the aluminum oxide powder may be either a single crystal or a polycrystal, but the α phase is desirable from the viewpoint of high thermal conductivity and the specific gravity is preferably 3.7 or more. If the specific gravity is less than 3.7, the ratio of vacancies and low crystal phases existing inside the particles increases, and it may be difficult to increase the thermal conductivity. The particle size adjustment of the aluminum oxide powder can be performed by classification and mixing operations.
平均球形度は0.8以上であり、0.9以上であることがより好ましい。平均球形度が0.8未満であると流動性が低下する場合がある。平均球形度が0.8未満であると粒子同士の接触が著しくなり、シート表面の凹凸が大きくなって界面熱抵抗が増大し熱伝導率が悪くなる傾向にある。上限は特に限定されないが、球(平均球形度1)に近ければ近いほどよい。
The average sphericity is 0.8 or more, and more preferably 0.9 or more. If the average sphericity is less than 0.8, the fluidity may decrease. When the average sphericity is less than 0.8, the contact between the particles becomes remarkable, the unevenness of the sheet surface becomes large, the interface thermal resistance increases, and the thermal conductivity tends to deteriorate. Although an upper limit is not specifically limited, The closer it is to a sphere (average sphericity 1), the better.
本発明における平均球形度は、走査型電子顕微鏡にて撮影した粒子像を画像解析装置、例えばJEOL社製商品名「JSM-7500F」に取り込み、次のようにして測定することができる。すなわち、写真から粒子の投影面積(X)と周囲長(Z)を測定する。周囲長(Z)に対応する真円の面積を(Y)とすると、その粒子の球形度はX/Yとして表示できる。そこで、試料粒子の周囲長(Z)と同一の周囲長をもつ真円を想定すると、Z=2πr、Y=πr2であるから、Y=π×(Z/2π)2となり、個々の粒子の球形度は、球形度=X/Y=X×4π/Z2として算出することができる。このようにして得られた任意の粒子100個の球形度を求め、その平均値を平均球形度とする。
The average sphericity in the present invention can be measured as follows by taking a particle image taken with a scanning electron microscope into an image analyzer, for example, “JSM-7500F” manufactured by JEOL. That is, the projected area (X) and the perimeter (Z) of the particles are measured from the photograph. When the area of a perfect circle corresponding to the perimeter (Z) is (Y), the sphericity of the particle can be displayed as X / Y. Therefore, assuming a perfect circle having the same circumference as the circumference of the sample particle (Z), Z = 2πr and Y = πr 2 , so that Y = π × (Z / 2π) 2 , and each particle Can be calculated as sphericity = X / Y = X × 4π / Z 2 . The sphericity of 100 arbitrary particles thus obtained is obtained, and the average value is defined as the average sphericity.
水酸基は30個/nm2以下であり、25個/nm2以下が好ましい。下限は特に限定されないが、5個/nm2としてもよい。表面水酸基が30個/nm2を超えると、シリコーン組成物への充填性が悪くなり、熱伝導率が悪くなる傾向にある。
The number of hydroxyl groups is 30 / nm 2 or less, and preferably 25 / nm 2 or less. The lower limit is not particularly limited, but may be 5 / nm 2 . When the surface hydroxyl group exceeds 30 / nm 2 , the filling property into the silicone composition is deteriorated and the thermal conductivity tends to be deteriorated.
本発明における上記水酸基数、つまり表面水酸基濃度はカールフィッシャー電量滴定法、例えば、三菱化学社製商品名「微量水分測定装置CA-100」にて測定することができる。具体的には、試料0.3~1.0gを水分気化装置に入れ、脱水処理されたアルゴンガスをキャリアガスとして供給しながら電気ヒーターで加熱昇温する。カールフィッシャー電量測定法において、温度200℃を超え、900℃までに発生した水分を表面水酸基量と定義する。測定された水分量と比表面積から、表面水酸基の濃度を算出する。
In the present invention, the number of hydroxyl groups, that is, the surface hydroxyl group concentration, can be measured by a Karl Fischer coulometric titration method, for example, “Trace Moisture Analyzer CA-100” manufactured by Mitsubishi Chemical Corporation. Specifically, 0.3 to 1.0 g of a sample is put in a moisture vaporizer, and heated with an electric heater while supplying dehydrated argon gas as a carrier gas. In the Karl Fischer coulometric method, water generated at a temperature exceeding 200 ° C. and up to 900 ° C. is defined as the surface hydroxyl group amount. The concentration of the surface hydroxyl group is calculated from the measured water content and specific surface area.
平均粒子径は50~150μmであり、60~140μmが好ましい。平均粒子径が50μm未満では、粒子同士の接触が少なくなり、粒子間接触熱抵抗の増大により熱伝導率が悪くなる傾向にある。また、150μmを超えると、シート表面の凹凸が大きくなって界面熱抵抗が増大する場合がある。
The average particle diameter is 50 to 150 μm, preferably 60 to 140 μm. When the average particle size is less than 50 μm, the contact between the particles decreases, and the thermal conductivity tends to deteriorate due to an increase in the interparticle contact thermal resistance. On the other hand, when the thickness exceeds 150 μm, the unevenness of the sheet surface becomes large and the interfacial thermal resistance may increase.
本発明における平均粒子径はレーザー回折式粒度分布測定装置、例えば、島津製作所製「レーザー回折式粒度分布測定装置SALD-2300」を用いて測定することができる。評価サンプルは、ガラスビーカーに50ccの純水と測定する熱伝導性粉末を5g添加して、スパチュラを用いて撹拌し、その後超音波洗浄機で10分間、分散処理を行う。分散処理を行った熱伝導性材料の粉末の溶液をスポイトにて、装置のサンプラ部に一滴ずつ添加して、吸光度が測定可能になるまで安定するのを待つ。このようにして吸光度が安定になった時点で測定を行う。レーザー回折式粒度分布測定装置では、センサで検出した粒子による回折/散乱光の光強度分布のデータから粒度分布を計算する。平均粒子径は測定される粒子径の値に相対粒子量(差分%)を掛けて、相対粒子量の合計(100%)で割って求められる。なお、平均粒子径は粒子の平均直径である。
In the present invention, the average particle size can be measured using a laser diffraction particle size distribution measuring device, for example, “Laser diffraction particle size distribution measuring device SALD-2300” manufactured by Shimadzu Corporation. As an evaluation sample, 5 g of 50 cc pure water and a heat conductive powder to be measured are added to a glass beaker and stirred using a spatula, and then subjected to a dispersion treatment for 10 minutes using an ultrasonic cleaner. The powder solution of the thermally conductive material that has been subjected to the dispersion treatment is added dropwise to the sampler portion of the apparatus with a dropper, and waits until the absorbance becomes measurable. The measurement is performed when the absorbance becomes stable in this way. In the laser diffraction type particle size distribution measuring device, the particle size distribution is calculated from the data of the light intensity distribution of the diffracted / scattered light by the particles detected by the sensor. The average particle size is obtained by multiplying the value of the measured particle size by the relative particle amount (difference%) and dividing by the total relative particle amount (100%). The average particle diameter is the average diameter of the particles.
[(C)成分]
(C)成分は、平均粒子径0.1~5μm、好ましくは0.5~2μmの酸化アルミニウム粉末であり、球状でも不定形状でもよい。なお、球状以外のものが不定形状である。本発明を損なわない範囲で、1種単独でも、平均粒子径が異なる2種類以上の複数種を併用してもよい。平均粒子径が0.1μm未満では、粒子同士の接触が少なくなり、粒子間接触熱抵抗の増大により熱伝導率が悪くなる傾向にある。また、5μm超であると、シート表面の凹凸が大きくなって界面熱抵抗が増大し熱伝導率が悪くなる傾向にある。なお、(C)成分が球状の場合、(B)成分と同様、平均球形度0.8以上、水酸基が30個/nm2以下であることが好ましい。なお、平均粒子径、平均球形度、水酸基の測定方法は(B)成分と同じである。 [Component (C)]
The component (C) is an aluminum oxide powder having an average particle size of 0.1 to 5 μm, preferably 0.5 to 2 μm, and may be spherical or irregular. Other than the spherical shape is an indefinite shape. As long as the present invention is not impaired, one kind may be used alone, or two or more kinds having different average particle diameters may be used in combination. When the average particle diameter is less than 0.1 μm, the contact between the particles decreases, and the thermal conductivity tends to deteriorate due to an increase in the interparticle contact thermal resistance. On the other hand, if it exceeds 5 μm, the unevenness of the sheet surface becomes large, the interfacial thermal resistance increases, and the thermal conductivity tends to deteriorate. When the component (C) is spherical, it is preferable that the average sphericity is 0.8 or more and the number of hydroxyl groups is 30 / nm 2 or less as in the case of the component (B). In addition, the measuring method of an average particle diameter, average sphericity, and a hydroxyl group is the same as (B) component.
(C)成分は、平均粒子径0.1~5μm、好ましくは0.5~2μmの酸化アルミニウム粉末であり、球状でも不定形状でもよい。なお、球状以外のものが不定形状である。本発明を損なわない範囲で、1種単独でも、平均粒子径が異なる2種類以上の複数種を併用してもよい。平均粒子径が0.1μm未満では、粒子同士の接触が少なくなり、粒子間接触熱抵抗の増大により熱伝導率が悪くなる傾向にある。また、5μm超であると、シート表面の凹凸が大きくなって界面熱抵抗が増大し熱伝導率が悪くなる傾向にある。なお、(C)成分が球状の場合、(B)成分と同様、平均球形度0.8以上、水酸基が30個/nm2以下であることが好ましい。なお、平均粒子径、平均球形度、水酸基の測定方法は(B)成分と同じである。 [Component (C)]
The component (C) is an aluminum oxide powder having an average particle size of 0.1 to 5 μm, preferably 0.5 to 2 μm, and may be spherical or irregular. Other than the spherical shape is an indefinite shape. As long as the present invention is not impaired, one kind may be used alone, or two or more kinds having different average particle diameters may be used in combination. When the average particle diameter is less than 0.1 μm, the contact between the particles decreases, and the thermal conductivity tends to deteriorate due to an increase in the interparticle contact thermal resistance. On the other hand, if it exceeds 5 μm, the unevenness of the sheet surface becomes large, the interfacial thermal resistance increases, and the thermal conductivity tends to deteriorate. When the component (C) is spherical, it is preferable that the average sphericity is 0.8 or more and the number of hydroxyl groups is 30 / nm 2 or less as in the case of the component (B). In addition, the measuring method of an average particle diameter, average sphericity, and a hydroxyl group is the same as (B) component.
上記(B)成分と(C)成分の配合割合体積比((B):(C))は、5:5~9.5:0.5であり、6:4~9:1がより好ましい。(B)成分の割合が体積比で5((B)成分と(C)成分合計で10、以下同様)より小さくなると、(B)成分及び(C)成分の充填性が悪くなる傾向にある。一方、(C)成分の割合が、9.5より大きくなると、(B)成分及び(C)成分が緻密に充填し難くなり、熱伝導性が減少する傾向にある。
The mixing ratio volume ratio of the component (B) to the component (C) ((B) :( C)) is 5: 5 to 9.5: 0.5, more preferably 6: 4 to 9: 1. . When the ratio of the component (B) is smaller than 5 by volume ratio (the sum of the components (B) and (C) is 10, the same applies hereinafter), the filling properties of the components (B) and (C) tend to deteriorate. . On the other hand, when the ratio of (C) component becomes larger than 9.5, it becomes difficult to pack (B) component and (C) component densely, and thermal conductivity tends to decrease.
(B)成分と(C)成分との合計配合量はシリコーン組成物中80~90体積%であり、80~85体積%が好ましい。配合量が80体積%未満では、シリコーン組成物の熱伝導性が不十分となる場合があり、90体積%を超えると、熱伝導性フィラーの充填が困難となる。
The total blending amount of the component (B) and the component (C) is 80 to 90% by volume, preferably 80 to 85% by volume in the silicone composition. When the blending amount is less than 80% by volume, the thermal conductivity of the silicone composition may be insufficient. When it exceeds 90% by volume, it is difficult to fill the thermally conductive filler.
[(D)成分]
本発明においては、さらに(D)シランカップリング剤を含み、(B)成分及び(C)成分が(D)シランカップリング剤で表面処理されていることが好ましい。 [Component (D)]
In this invention, it is preferable that (D) silane coupling agent is further included and (B) component and (C) component are surface-treated with (D) silane coupling agent.
本発明においては、さらに(D)シランカップリング剤を含み、(B)成分及び(C)成分が(D)シランカップリング剤で表面処理されていることが好ましい。 [Component (D)]
In this invention, it is preferable that (D) silane coupling agent is further included and (B) component and (C) component are surface-treated with (D) silane coupling agent.
(D-I)
(D)シランカップリング剤としては、ビニル系シランカップリング剤、エポキシ系シランカップリング剤、アクリル系シランカップリング剤、並びに長鎖アルキル系シランカップリング剤等が挙げられ、1種単独で又は2種以上を適宜組み合わせて用いることができる。中でも、長鎖アルキル系シランカップリング剤が好ましく、デシルトリメトキシシランが好ましい。 (DI)
Examples of (D) silane coupling agents include vinyl silane coupling agents, epoxy silane coupling agents, acrylic silane coupling agents, and long-chain alkyl silane coupling agents. Two or more kinds can be used in appropriate combination. Among these, a long chain alkyl silane coupling agent is preferable, and decyltrimethoxysilane is preferable.
(D)シランカップリング剤としては、ビニル系シランカップリング剤、エポキシ系シランカップリング剤、アクリル系シランカップリング剤、並びに長鎖アルキル系シランカップリング剤等が挙げられ、1種単独で又は2種以上を適宜組み合わせて用いることができる。中でも、長鎖アルキル系シランカップリング剤が好ましく、デシルトリメトキシシランが好ましい。 (DI)
Examples of (D) silane coupling agents include vinyl silane coupling agents, epoxy silane coupling agents, acrylic silane coupling agents, and long-chain alkyl silane coupling agents. Two or more kinds can be used in appropriate combination. Among these, a long chain alkyl silane coupling agent is preferable, and decyltrimethoxysilane is preferable.
(D-I)成分による(B)成分、(C)成分の表面処理方法としては、流体ノズルを用いた噴霧方式、せん断力のある攪拌方式、ボールミル、ミキサー等の乾式法、水系又は有機溶剤系等の湿式法を採用することができる。攪拌式は、球状酸化アルミニウム粉末の破壊が起こらない程度にして行う。乾式法における系内温度又は処理後の乾燥温度は、表面処理剤の種類に応じ、表面処理剤の揮発や分解しない領域で適宜決定されるが、80~180℃である。
(DI) Component (B) component and (C) component surface treatment methods include spray methods using fluid nozzles, shearing stirring methods, dry methods such as ball mills and mixers, water-based or organic solvents A wet method such as a system can be adopted. The stirring method is performed so that the spherical aluminum oxide powder is not destroyed. The system temperature in the dry method or the drying temperature after the treatment is appropriately determined in the region where the surface treatment agent does not volatilize or decompose, depending on the type of the surface treatment agent, but is 80 to 180 ° C.
(D-I)成分の処理使用量は、(B)成分及び(C)成分の合計100質量部に対して、0.1~5質量部であることが好ましい。0.1質量部より少ないとその効果は小さく、5質量部より多くても使用量にあった効果は発現しない。
The amount of the component (DI) used for treatment is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass in total of the component (B) and the component (C). If the amount is less than 0.1 parts by mass, the effect is small.
(D)成分として、(D-II)下記一般式(1)で表されるシリル基を1分子中に少なくとも1個含有し、25℃での粘度が0.01~30Pa・sであるオルガノポリシロキサンが挙げられる。
-SiR1 a(OR2)3-a (1)
(式中、R1は独立に非置換又は置換の1価炭化水素基であり、R2は独立にアルキル基、アルコキシアルキル基、アルケニル基又はアシル基であり、aは0、1又は2である。) As the component (D), (D-II) an organo having at least one silyl group represented by the following general formula (1) in one molecule and having a viscosity at 25 ° C. of 0.01 to 30 Pa · s Polysiloxane is mentioned.
-SiR 1 a (OR 2 ) 3-a (1)
Wherein R 1 is independently an unsubstituted or substituted monovalent hydrocarbon group, R 2 is independently an alkyl group, an alkoxyalkyl group, an alkenyl group or an acyl group, and a is 0, 1 or 2 is there.)
-SiR1 a(OR2)3-a (1)
(式中、R1は独立に非置換又は置換の1価炭化水素基であり、R2は独立にアルキル基、アルコキシアルキル基、アルケニル基又はアシル基であり、aは0、1又は2である。) As the component (D), (D-II) an organo having at least one silyl group represented by the following general formula (1) in one molecule and having a viscosity at 25 ° C. of 0.01 to 30 Pa · s Polysiloxane is mentioned.
-SiR 1 a (OR 2 ) 3-a (1)
Wherein R 1 is independently an unsubstituted or substituted monovalent hydrocarbon group, R 2 is independently an alkyl group, an alkoxyalkyl group, an alkenyl group or an acyl group, and a is 0, 1 or 2 is there.)
(D-II)成分としては、下記一般式(2)で表されるオルガノポリシロキサンが挙げられる。
(式中、R1は独立に非置換又は置換の1価炭化水素基であり、R2は独立にアルキル基、アルコキシアルキル基、アルケニル基又はアシル基であり、bは2~100の整数であり、aは0、1又は2である。)
Examples of the component (D-II) include organopolysiloxanes represented by the following general formula (2).
Wherein R 1 is independently an unsubstituted or substituted monovalent hydrocarbon group, R 2 is independently an alkyl group, an alkoxyalkyl group, an alkenyl group or an acyl group, and b is an integer of 2 to 100 And a is 0, 1 or 2.)
式(1),(2)中、R1は独立に非置換又は置換の、好ましくは炭素数1~10、より好ましくは1~6、さらに好ましくは1~3の1価炭化水素基であり、その例としては、直鎖状アルキル基、分岐鎖状アルキル基、環状アルキル基、アルケニル基、アリール基、アラルキル基、ハロゲン化アルキル基が挙げられる。直鎖状アルキル基としては、例えば、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基、デシル基等が挙げられる。分岐鎖状アルキル基としては、例えば、イソプロピル基、イソブチル基、tert-ブチル基、2-エチルヘキシル基等が挙げられる。環状アルキル基としては、例えば、シクロペンチル基、シクロヘキシル基等が挙げられる。アルケニル基としては、例えば、ビニル基、アリル基等が挙げられる。アリール基としては、例えば、フェニル基、トリル基等が挙げられる。アラルキル基としては、例えば、2-フェニルエチル基、2-メチル-2-フェニルエチル基等が挙げられる。ハロゲン化アルキル基としては、例えば、3,3,3-トリフルオロプロピル基、2-(ノナフルオロブチル)エチル基、2-(ヘプタデカフルオロオクチル)エチル基等が挙げられる。R1として、メチル基、フェニル基が好ましい。
In the formulas (1) and (2), R 1 is independently an unsubstituted or substituted monovalent hydrocarbon group having preferably 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 1 to 3 carbon atoms. Examples thereof include a linear alkyl group, a branched alkyl group, a cyclic alkyl group, an alkenyl group, an aryl group, an aralkyl group, and a halogenated alkyl group. Examples of the linear alkyl group include a methyl group, an ethyl group, a propyl group, a hexyl group, an octyl group, and a decyl group. Examples of the branched alkyl group include isopropyl group, isobutyl group, tert-butyl group, 2-ethylhexyl group and the like. Examples of the cyclic alkyl group include a cyclopentyl group and a cyclohexyl group. Examples of the alkenyl group include a vinyl group and an allyl group. Examples of the aryl group include a phenyl group and a tolyl group. Examples of the aralkyl group include 2-phenylethyl group and 2-methyl-2-phenylethyl group. Examples of the halogenated alkyl group include 3,3,3-trifluoropropyl group, 2- (nonafluorobutyl) ethyl group, 2- (heptadecafluorooctyl) ethyl group and the like. R 1 is preferably a methyl group or a phenyl group.
式(1),(2)中、R2は独立にアルキル基、アルコキシアルキル基、アルケニル基又はアシル基である。アルキル基としては、例えば、R1において例示したのと同様の直鎖状アルキル基、分岐鎖状アルキル基、環状アルキル基が挙げられる。アルコキシアルキル基としては、例えば、メトキシエチル基、メトキシプロピル基等が挙げられる。アルケニル基としては、例えば、R1において例示したのと同様のものが挙げられる。炭素数は1~8のものが好ましい。アシル基としては、例えば、アセチル基、オクタノイル基等が挙げられる。R2はアルキル基であることが好ましく、特にはメチル基、エチル基であることが好ましい。bは2~100の整数であり、好ましくは5~50である。aは0、1又は2であり、好ましくは0である。
In formulas (1) and (2), R 2 is independently an alkyl group, an alkoxyalkyl group, an alkenyl group or an acyl group. Examples of the alkyl group include linear alkyl groups, branched alkyl groups, and cyclic alkyl groups similar to those exemplified for R 1 . Examples of the alkoxyalkyl group include a methoxyethyl group and a methoxypropyl group. Examples of the alkenyl group include those similar to those exemplified for R 1 . The number of carbon atoms is preferably 1-8. Examples of the acyl group include an acetyl group and an octanoyl group. R 2 is preferably an alkyl group, particularly preferably a methyl group or an ethyl group. b is an integer of 2 to 100, preferably 5 to 50. a is 0, 1 or 2, preferably 0.
(D-II)成分のオルガノポリシロキサンの好適な具体例としては、下記のものを挙げることができる。
(式中、Meはメチル基である。)
Preferable specific examples of the organopolysiloxane of component (D-II) include the following.
(In the formula, Me is a methyl group.)
(D-II)成分のオルガノポリシロキサンの25℃における粘度は、通常、0.01~30Pa・sであり、0.01~10Pa・sが好ましい。粘度が0.01Pa・sより低いと、シリコーン組成物からオイルブリードが発生し易くなってしまい、また垂れ易くなってしまうおそれがある。粘度が30mPa・sより大きいと、得られるシリコーン組成物の流動性が著しく乏しくなり、塗布作業性が悪化してしまうおそれがある。なお、この粘度は、回転粘度計による測定値である(以下同様)。
The viscosity of the (D-II) component organopolysiloxane at 25 ° C. is usually 0.01 to 30 Pa · s, preferably 0.01 to 10 Pa · s. If the viscosity is lower than 0.01 Pa · s, oil bleed is likely to occur from the silicone composition, and there is a risk that it will easily sag. When the viscosity is higher than 30 mPa · s, the fluidity of the resulting silicone composition becomes extremely poor, and the coating workability may be deteriorated. This viscosity is a value measured by a rotational viscometer (the same applies hereinafter).
(D-II)成分の配合量は、(A)成分100質量部に対して5~900質量部が好ましく、10~900質量部がより好ましく、20~700質量部がさらに好ましい。
The blending amount of the component (D-II) is preferably 5 to 900 parts by weight, more preferably 10 to 900 parts by weight, and still more preferably 20 to 700 parts by weight with respect to 100 parts by weight of the component (A).
[(E)成分]
本発明のシリコーン組成物には、(E)中心粒子径の最大値が150μm以上であり、SiO2含有量が50質量%以上の球状ガラスビーズ又は不定形ガラスを、シリコーン組成物の全量に対し10質量%以下配合することが好ましい。(E)成分は、中心粒子径の最大値が(B)成分の平均粒子径よりも大きいことが特徴であり、最大値の上限は特に限定されないが、300μm以下とすることもできる。(E)成分を配合すると、極少量であっても熱伝導性シリコーン組成物を、所望される150μm以上の硬化厚みとすることができる。材料としては、ソーダ石灰ガラス、ソーダ石灰シリカガラス、又はホウケイ酸ガラスが挙げられる。硬化厚みの均一性の観点から、(E)成分は不定形よりも球状の方が好ましく、(E)成分が球状ガラスビーズの場合、平均球形度は(B)成分と同様、0.8以上が好ましい。 [(E) component]
In the silicone composition of the present invention, (E) spherical glass beads or amorphous glass having a maximum center particle diameter of 150 μm or more and a SiO 2 content of 50% by mass or more are added to the total amount of the silicone composition. It is preferable to blend 10% by mass or less. Component (E) is characterized in that the maximum value of the center particle diameter is larger than the average particle diameter of component (B), and the upper limit of the maximum value is not particularly limited, but can be 300 μm or less. When (E) component is mix | blended, even if it is a very small amount, a heat conductive silicone composition can be made into the desired cured thickness of 150 micrometers or more. Examples of the material include soda lime glass, soda lime silica glass, or borosilicate glass. From the viewpoint of uniformity of the cured thickness, the component (E) is preferably spherical rather than indefinite, and when the component (E) is spherical glass beads, the average sphericity is 0.8 or more, as in the component (B). Is preferred.
本発明のシリコーン組成物には、(E)中心粒子径の最大値が150μm以上であり、SiO2含有量が50質量%以上の球状ガラスビーズ又は不定形ガラスを、シリコーン組成物の全量に対し10質量%以下配合することが好ましい。(E)成分は、中心粒子径の最大値が(B)成分の平均粒子径よりも大きいことが特徴であり、最大値の上限は特に限定されないが、300μm以下とすることもできる。(E)成分を配合すると、極少量であっても熱伝導性シリコーン組成物を、所望される150μm以上の硬化厚みとすることができる。材料としては、ソーダ石灰ガラス、ソーダ石灰シリカガラス、又はホウケイ酸ガラスが挙げられる。硬化厚みの均一性の観点から、(E)成分は不定形よりも球状の方が好ましく、(E)成分が球状ガラスビーズの場合、平均球形度は(B)成分と同様、0.8以上が好ましい。 [(E) component]
In the silicone composition of the present invention, (E) spherical glass beads or amorphous glass having a maximum center particle diameter of 150 μm or more and a SiO 2 content of 50% by mass or more are added to the total amount of the silicone composition. It is preferable to blend 10% by mass or less. Component (E) is characterized in that the maximum value of the center particle diameter is larger than the average particle diameter of component (B), and the upper limit of the maximum value is not particularly limited, but can be 300 μm or less. When (E) component is mix | blended, even if it is a very small amount, a heat conductive silicone composition can be made into the desired cured thickness of 150 micrometers or more. Examples of the material include soda lime glass, soda lime silica glass, or borosilicate glass. From the viewpoint of uniformity of the cured thickness, the component (E) is preferably spherical rather than indefinite, and when the component (E) is spherical glass beads, the average sphericity is 0.8 or more, as in the component (B). Is preferred.
(E)成分は本発明を損なわない範囲で少量添加することが好ましく、具体的に熱伝導性シリコーン組成物の熱伝導率を顕著に低下させないためには、シリコーン組成物の全量に対し、(F)成分量は10質量%以下(0~10質量%)であることが好ましい。なお、中心粒子径の測定は、レーザー回折法で、例えば、島津製作所製「レーザー回折式粒度分布測定装置SALD-2300」を用いて測定することができる。
The component (E) is preferably added in a small amount within the range not impairing the present invention. Specifically, in order not to significantly reduce the thermal conductivity of the thermally conductive silicone composition, the total amount of the silicone composition is ( The amount of component F) is preferably 10% by mass or less (0 to 10% by mass). The central particle diameter can be measured by a laser diffraction method using, for example, “Laser diffraction particle size distribution analyzer SALD-2300” manufactured by Shimadzu Corporation.
本発明の高熱伝導性シリコーン組成物はそのままでもよいし、さらに硬化剤を配合し、硬化性の組成物とすることもできる。
The high thermal conductive silicone composition of the present invention may be used as it is, or may further be mixed with a curing agent to form a curable composition.
硬化性熱伝導性シリコーン組成物とする際には、以下の3形態が挙げられ、ベースポリマーであるオルガノポリシロキサン(A)として、上記(A-I)~(A-III)成分のオルガノポリシロキサンを用い、上述した熱伝導性充填材(B)及び(C)を配合したものとすることができる。
[I]付加反応硬化型熱伝導性シリコーン組成物
[II]縮合反応硬化型熱伝導性シリコーン組成物
[III]有機過酸化物硬化型熱伝導性シリコーン組成物
中でも、速やかに硬化し副生成物が発生しないことから、[I]付加反応硬化型熱伝導性シリコーン組成物であることが好ましい。以下に、それぞれの組成物について具体的に示す。 The curable thermally conductive silicone composition includes the following three forms. The organopolysiloxane (A) as the base polymer is an organopolysiloxane having the above components (AI) to (A-III). Siloxane can be used and the above-mentioned thermally conductive fillers (B) and (C) can be blended.
[I] Addition reaction curable thermal conductive silicone composition [II] Condensation reaction curable thermal conductive silicone composition [III] Organic peroxide curable thermal conductive silicone composition Therefore, [I] addition reaction curable heat conductive silicone composition is preferable. Below, each composition is shown concretely.
[I]付加反応硬化型熱伝導性シリコーン組成物
[II]縮合反応硬化型熱伝導性シリコーン組成物
[III]有機過酸化物硬化型熱伝導性シリコーン組成物
中でも、速やかに硬化し副生成物が発生しないことから、[I]付加反応硬化型熱伝導性シリコーン組成物であることが好ましい。以下に、それぞれの組成物について具体的に示す。 The curable thermally conductive silicone composition includes the following three forms. The organopolysiloxane (A) as the base polymer is an organopolysiloxane having the above components (AI) to (A-III). Siloxane can be used and the above-mentioned thermally conductive fillers (B) and (C) can be blended.
[I] Addition reaction curable thermal conductive silicone composition [II] Condensation reaction curable thermal conductive silicone composition [III] Organic peroxide curable thermal conductive silicone composition Therefore, [I] addition reaction curable heat conductive silicone composition is preferable. Below, each composition is shown concretely.
[I]付加反応硬化型熱伝導性シリコーン組成物
シリコーン組成物がヒドロシリル化反応により硬化する付加反応硬化型熱伝導性シリコーン組成物である場合には、上記(A)として上記に示す(A-I)成分を用い、さらに、下記成分を含むものであり、硬化剤は下記(F)及び(G)成分である。
(F)ケイ素原子に直接結合した水素原子を少なくとも2個有するオルガノハイドロジェンポリシロキサン、
(G)白金族金属系硬化触媒、
(H)必要に応じて、付加反応制御剤 [I] Addition Reaction Curing Type Thermally Conductive Silicone Composition When the silicone composition is an addition reaction curable type thermal conductive silicone composition that cures by a hydrosilylation reaction, (A-) The component I) is used, and the following components are further included. The curing agents are the following components (F) and (G).
(F) an organohydrogenpolysiloxane having at least two hydrogen atoms directly bonded to silicon atoms,
(G) a platinum group metal curing catalyst,
(H) Addition reaction control agent as required
シリコーン組成物がヒドロシリル化反応により硬化する付加反応硬化型熱伝導性シリコーン組成物である場合には、上記(A)として上記に示す(A-I)成分を用い、さらに、下記成分を含むものであり、硬化剤は下記(F)及び(G)成分である。
(F)ケイ素原子に直接結合した水素原子を少なくとも2個有するオルガノハイドロジェンポリシロキサン、
(G)白金族金属系硬化触媒、
(H)必要に応じて、付加反応制御剤 [I] Addition Reaction Curing Type Thermally Conductive Silicone Composition When the silicone composition is an addition reaction curable type thermal conductive silicone composition that cures by a hydrosilylation reaction, (A-) The component I) is used, and the following components are further included. The curing agents are the following components (F) and (G).
(F) an organohydrogenpolysiloxane having at least two hydrogen atoms directly bonded to silicon atoms,
(G) a platinum group metal curing catalyst,
(H) Addition reaction control agent as required
[(F)成分]
ケイ素原子に直接結合した水素原子を少なくとも2個有するオルガノハイドロジェンポリシロキサンは架橋剤として作用する成分である。オルガノハイドロジェンポリシロキサンのケイ素原子結合に結合している基としては、前記と同様の直鎖状アルキル基、分岐鎖状アルキル基、環状アルキル基、アリール基、アラルキル基、ハロゲン化アルキル基が例示され、好ましくは、アルキル基、アリール基であり、特に好ましくは、メチル基、フェニル基である。(F)成分の25℃における粘度は限定されないが、1~100,000mPa・sの範囲が好ましく、1~5,000mPa・sの範囲がより好ましい。(F)成分の分子構造は限定されず、例えば、直鎖状、分岐鎖状、一部分岐を有する直鎖状、環状、樹枝状(デンドリマー状)が挙げられる。このようなオルガノポリシロキサンとしては、例えば、これらの分子構造を有する単一重合体、これらの分子構造からなる共重合体、またはこれらの混合物が挙げられる。 [(F) component]
Organohydrogenpolysiloxane having at least two hydrogen atoms directly bonded to silicon atoms is a component that acts as a crosslinking agent. Examples of the group bonded to the silicon atom bond of the organohydrogenpolysiloxane include the same linear alkyl group, branched alkyl group, cyclic alkyl group, aryl group, aralkyl group, and halogenated alkyl group as described above. An alkyl group and an aryl group are preferable, and a methyl group and a phenyl group are particularly preferable. The viscosity of component (F) at 25 ° C. is not limited, but is preferably in the range of 1 to 100,000 mPa · s, more preferably in the range of 1 to 5,000 mPa · s. The molecular structure of the component (F) is not limited, and examples thereof include linear, branched, partially branched linear, cyclic, and dendritic (dendrimer). Examples of such organopolysiloxanes include single polymers having these molecular structures, copolymers comprising these molecular structures, or mixtures thereof.
ケイ素原子に直接結合した水素原子を少なくとも2個有するオルガノハイドロジェンポリシロキサンは架橋剤として作用する成分である。オルガノハイドロジェンポリシロキサンのケイ素原子結合に結合している基としては、前記と同様の直鎖状アルキル基、分岐鎖状アルキル基、環状アルキル基、アリール基、アラルキル基、ハロゲン化アルキル基が例示され、好ましくは、アルキル基、アリール基であり、特に好ましくは、メチル基、フェニル基である。(F)成分の25℃における粘度は限定されないが、1~100,000mPa・sの範囲が好ましく、1~5,000mPa・sの範囲がより好ましい。(F)成分の分子構造は限定されず、例えば、直鎖状、分岐鎖状、一部分岐を有する直鎖状、環状、樹枝状(デンドリマー状)が挙げられる。このようなオルガノポリシロキサンとしては、例えば、これらの分子構造を有する単一重合体、これらの分子構造からなる共重合体、またはこれらの混合物が挙げられる。 [(F) component]
Organohydrogenpolysiloxane having at least two hydrogen atoms directly bonded to silicon atoms is a component that acts as a crosslinking agent. Examples of the group bonded to the silicon atom bond of the organohydrogenpolysiloxane include the same linear alkyl group, branched alkyl group, cyclic alkyl group, aryl group, aralkyl group, and halogenated alkyl group as described above. An alkyl group and an aryl group are preferable, and a methyl group and a phenyl group are particularly preferable. The viscosity of component (F) at 25 ° C. is not limited, but is preferably in the range of 1 to 100,000 mPa · s, more preferably in the range of 1 to 5,000 mPa · s. The molecular structure of the component (F) is not limited, and examples thereof include linear, branched, partially branched linear, cyclic, and dendritic (dendrimer). Examples of such organopolysiloxanes include single polymers having these molecular structures, copolymers comprising these molecular structures, or mixtures thereof.
(F)成分としては、例えば、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサンコポリマー、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサンコポリマー、式:(CH3)3SiO1/2で表されるシロキサン単位と式:(CH3)2HSiO1/2で表されるシロキサン単位と式:SiO4/2で表されるシロキサン単位からなるオルガノシロキサンコポリマーが挙げられ、1種単独で又は2種以上を適宜組み合わせて用いることができる。
As the component (F), for example, molecular chain both ends dimethylhydrogensiloxy group-blocked dimethylpolysiloxane, molecular chain both ends trimethylsiloxy group-blocked dimethylsiloxane / methylhydrogensiloxane copolymer, molecular chain both ends dimethylhydrogensiloxy group-blocked Dimethylsiloxane / methylhydrogensiloxane copolymer, siloxane unit represented by the formula: (CH 3 ) 3 SiO 1/2 and siloxane unit represented by the formula: (CH 3 ) 2 HSiO 1/2 and formula: SiO 4 / The organosiloxane copolymer which consists of the siloxane unit represented by 2 is mentioned, It can use individually by 1 type or in combination of 2 or more types.
(F)成分の配合量は、シリコーン組成物の硬化に必要な量であり、具体的には、(A-I)成分中のケイ素原子結合アルケニル基1モルに対して、(F)成分中のケイ素原子結合水素原子が0.1~10モルの範囲内となる量であることが好ましく、さらに、0.1~5モルの範囲内となる量であることが好ましく、特に、0.1~3.0モルの範囲内となる量であることが好ましい。これは本成分の含有量が上記範囲の下限未満となる量であると、得られるシリコーン組成物が十分に硬化しなくなる傾向があるからであり、一方、上記範囲の上限を超えると、得られるシリコーン硬化物が非常に硬質となり、表面に多数のクラックを生じたりする場合がある。
The amount of the component (F) is an amount necessary for curing the silicone composition. Specifically, the amount of the component (F) in the component (F) is 1 mol of silicon-bonded alkenyl groups in the component (AI). The amount of silicon-bonded hydrogen atoms is preferably in the range of 0.1 to 10 mol, more preferably in the range of 0.1 to 5 mol, particularly 0.1 The amount is preferably in the range of ˜3.0 mol. This is because when the content of this component is less than the lower limit of the above range, the resulting silicone composition tends not to be cured sufficiently, while when the upper limit of the above range is exceeded, it is obtained. In some cases, the silicone cured product becomes very hard and a large number of cracks are generated on the surface.
(G)白金族金属系硬化触媒は、シリコーン組成物の硬化を促進するための触媒であり、例えば、塩化白金酸、塩化白金酸のアルコール溶液、白金のオレフィン錯体、白金のアルケニルシロキサン錯体、白金のカルボニル錯体が挙げられる。
(G) The platinum group metal curing catalyst is a catalyst for accelerating the curing of the silicone composition. For example, chloroplatinic acid, chloroplatinic acid alcohol solution, platinum olefin complex, platinum alkenylsiloxane complex, platinum Of the carbonyl complex.
(G)成分の配合量は、シリコーン組成物の硬化に必要な量であり、具体的には、(A-I)成分に対して(G)成分中の白金金属が質量単位で0.01~1,000ppmの範囲内となる量であることが好ましく、特に、0.1~500ppmの範囲内となる量であることが好ましい。これは、(G)成分の配合量が上記範囲の下限未満であると、得られるシリコーン組成物が十分に硬化しなくなる傾向があり、一方、上記範囲の上限を超える量を配合しても得られるシリコーン組成物の硬化速度は顕著に向上しない。
The blending amount of the component (G) is an amount necessary for curing the silicone composition. Specifically, the platinum metal in the component (G) is 0.01% by mass with respect to the component (AI). The amount is preferably in the range of ˜1,000 ppm, and particularly preferably in the range of 0.1 to 500 ppm. This is because when the blending amount of the component (G) is less than the lower limit of the above range, the resulting silicone composition tends not to be cured sufficiently, and on the other hand, the blending amount exceeds the upper limit of the above range. The curing rate of the resulting silicone composition is not significantly improved.
(H)硬化反応抑制剤
シリコーン組成物の硬化速度を調節し、取扱作業性を向上させるために、硬化反応抑制剤を配合することができる。硬化反応抑制剤としては、2-メチル-3-ブチン-2-オール、2-フェニル-3-ブチン-2-オール、1-エチニル-1-シクロヘキサノール等のアセチレン系化合物;3-メチル-3-ペンテン-1-イン、3,5-ジメチル-3-ヘキセン-1-イン等のエン-イン化合物;その他、ヒドラジン系化合物、フォスフィン系化合物、メルカプタン系化合物等が挙げられ、1種単独で又は2種以上を適宜組み合わせて用いることができる。 (H) Curing Reaction Inhibitor A curing reaction inhibitor can be blended in order to adjust the curing rate of the silicone composition and improve the handling workability. Examples of the curing reaction inhibitor include acetylene compounds such as 2-methyl-3-butyn-2-ol, 2-phenyl-3-butyn-2-ol, 1-ethynyl-1-cyclohexanol; 3-methyl-3 -Ene-in compounds such as pentene-1-in and 3,5-dimethyl-3-hexen-1-in; other examples include hydrazine compounds, phosphine compounds, mercaptan compounds, etc. Two or more kinds can be used in appropriate combination.
シリコーン組成物の硬化速度を調節し、取扱作業性を向上させるために、硬化反応抑制剤を配合することができる。硬化反応抑制剤としては、2-メチル-3-ブチン-2-オール、2-フェニル-3-ブチン-2-オール、1-エチニル-1-シクロヘキサノール等のアセチレン系化合物;3-メチル-3-ペンテン-1-イン、3,5-ジメチル-3-ヘキセン-1-イン等のエン-イン化合物;その他、ヒドラジン系化合物、フォスフィン系化合物、メルカプタン系化合物等が挙げられ、1種単独で又は2種以上を適宜組み合わせて用いることができる。 (H) Curing Reaction Inhibitor A curing reaction inhibitor can be blended in order to adjust the curing rate of the silicone composition and improve the handling workability. Examples of the curing reaction inhibitor include acetylene compounds such as 2-methyl-3-butyn-2-ol, 2-phenyl-3-butyn-2-ol, 1-ethynyl-1-cyclohexanol; 3-methyl-3 -Ene-in compounds such as pentene-1-in and 3,5-dimethyl-3-hexen-1-in; other examples include hydrazine compounds, phosphine compounds, mercaptan compounds, etc. Two or more kinds can be used in appropriate combination.
(H)成分の配合量は特に限定されないが、シリコーン組成物に対して0.0001~1.0質量%が好ましい。上記範囲とすることで、シリコーン組成物の作業性や、硬化速度がより好適となる。
The amount of component (H) is not particularly limited, but is preferably 0.0001 to 1.0% by mass with respect to the silicone composition. By setting it as the said range, the workability | operativity and hardening rate of a silicone composition become more suitable.
[II]縮合反応硬化型熱伝導性シリコーン組成物
シリコーン組成物が縮合反応硬化型熱伝導性シリコーン組成物である場合には、上記(A)として上記に示す(A-II)成分を用い、さらに、下記成分を含むものであり、硬化剤は下記(I)成分である。
(I)1分子中に少なくとも3個のケイ素原子結合加水分解性基を有するシランもしくはその部分加水分解物、
(J)必要に応じて、縮合反応用触媒 [II] Condensation reaction curable heat conductive silicone composition When the silicone composition is a condensation reaction curable heat conductive silicone composition, the component (A-II) shown above is used as (A) above, Furthermore, it contains the following components, and the curing agent is the following component (I).
(I) a silane having at least three silicon-bonded hydrolyzable groups in one molecule or a partial hydrolyzate thereof,
(J) If necessary, a catalyst for condensation reaction
シリコーン組成物が縮合反応硬化型熱伝導性シリコーン組成物である場合には、上記(A)として上記に示す(A-II)成分を用い、さらに、下記成分を含むものであり、硬化剤は下記(I)成分である。
(I)1分子中に少なくとも3個のケイ素原子結合加水分解性基を有するシランもしくはその部分加水分解物、
(J)必要に応じて、縮合反応用触媒 [II] Condensation reaction curable heat conductive silicone composition When the silicone composition is a condensation reaction curable heat conductive silicone composition, the component (A-II) shown above is used as (A) above, Furthermore, it contains the following components, and the curing agent is the following component (I).
(I) a silane having at least three silicon-bonded hydrolyzable groups in one molecule or a partial hydrolyzate thereof,
(J) If necessary, a catalyst for condensation reaction
(I)成分中のケイ素原子結合加水分解性基としては、前記と同様のアルコキシ基、アルコキシアルコキシ基、アシロキシ基、ケトオキシム基、アルケノキシ基、アミノ基、アミノキシ基、アミド基が例示される。また、このシランのケイ素原子には上記の加水分解性基以外に、例えば、前記と同様の直鎖状アルキル基、分岐鎖状アルキル基、環状アルキル基、アルケニル基、アリール基、アラルキル基、ハロゲン化アルキル基を結合していてもよい。このようなシランもしくはその部分加水分解物としては、例えば、メチルトリエトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、エチルオルソシリケートが挙げられる。
Examples of the silicon-bonded hydrolyzable group in component (I) include the same alkoxy groups, alkoxyalkoxy groups, acyloxy groups, ketoxime groups, alkenoxy groups, amino groups, aminoxy groups, and amide groups as described above. In addition to the hydrolyzable group, the silicon atom of the silane includes, for example, the same linear alkyl group, branched alkyl group, cyclic alkyl group, alkenyl group, aryl group, aralkyl group, halogen as described above. An alkyl group may be bonded. Examples of such silanes or partial hydrolysates thereof include methyltriethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, and ethyl orthosilicate.
(I)成分の配合量は、シリコーン組成物の硬化に必要な量であり、具体的には、(A-II)成分100質量部に対して0.01~20質量部の範囲内であることが好ましく、特に、0.1~10質量部の範囲内であることが好ましい。これは、このシランもしくはその部分加水分解物の含有量が上記範囲の下限未満の量であると、得られるシリコーン組成物の貯蔵安定性が低下するおそれがあり、一方、上記範囲の上限を超える量であると、得られるシリコーン組成物の硬化が著しく遅くなったりするおそれがある。
The amount of the component (I) is an amount necessary for curing the silicone composition, and specifically, within a range of 0.01 to 20 parts by mass with respect to 100 parts by mass of the component (A-II). In particular, it is preferably in the range of 0.1 to 10 parts by mass. If the content of this silane or its partial hydrolyzate is less than the lower limit of the above range, the storage stability of the resulting silicone composition may be lowered, whereas it exceeds the upper limit of the above range. If it is in an amount, curing of the resulting silicone composition may be remarkably slowed.
(J)成分は任意の成分であり、例えば、アミノキシ基、アミノ基、ケトオキシム基等の加水分解性基を有するシランを硬化剤として用いる場合には必須ではない。このような縮合反応用触媒としては、例えば、テトラブチルチタネート、テトライソプロピルチタネート等の有機チタン酸エステル;ジイソプロポキシビス(アセチルアセテート)チタン、ジイソプロポキシビス(エチルアセトアセテート)チタン等の有機チタンキレート化合物;アルミニウムトリス(アセチルアセトネート)、アルミニウムトリス(エチルアセトアセテート)等の有機アルミニウム化合物;ジルコニウムテトラ(アセチルアセトネート)、ジルコニウムテトラブチレート等の有機アルミニウム化合物;ジブチルスズジオクトエート、ジブチルスズジラウレート、ブチルスズ-2-エチルヘキソエート等の有機スズ化合物;ナフテン酸スズ、オレイン酸スズ、ブチル酸スズ、ナフテン酸コバルト、ステアリン酸亜鉛等の有機カルボン酸の金属塩;ヘキシルアミン、燐酸ドデシルアミン等のアミン化合物、及びその塩;ベンジルトリエチルアンモニウムアセテート等の4級アンモニウム塩;酢酸カリウム、硝酸リチウム等のアルカリ金属の低級脂肪酸塩;ジメチルヒドロキシルアミン、ジエチルヒドロキシルアミン等のジアルキルヒドロキシルアミン;グアニジル基含有有機ケイ素化合物が挙げられる。
The component (J) is an optional component, and is not essential when, for example, a silane having a hydrolyzable group such as an aminoxy group, an amino group, or a ketoxime group is used as a curing agent. Examples of such condensation reaction catalysts include organic titanates such as tetrabutyl titanate and tetraisopropyl titanate; organic titanium such as diisopropoxybis (acetylacetate) titanium and diisopropoxybis (ethylacetoacetate) titanium. Chelate compounds; organoaluminum compounds such as aluminum tris (acetylacetonate) and aluminum tris (ethylacetoacetate); organoaluminum compounds such as zirconium tetra (acetylacetonate) and zirconium tetrabutyrate; dibutyltin dioctoate, dibutyltin dilaurate, Organic tin compounds such as butyltin-2-ethylhexoate; organics such as tin naphthenate, tin oleate, tin butyrate, cobalt naphthenate, zinc stearate Rubonic acid metal salts; amine compounds such as hexylamine and dodecylamine phosphate; and salts thereof; quaternary ammonium salts such as benzyltriethylammonium acetate; lower fatty acid salts of alkali metals such as potassium acetate and lithium nitrate; dimethylhydroxylamine; And dialkylhydroxylamine such as diethylhydroxylamine; guanidyl group-containing organosilicon compounds.
(J)成分を配合する場合、その配合量はシリコーン組成物の硬化に必要な量であればよく、具体的には、(A)成分100質量部に対して0.01~20質量部の範囲内であることが好ましく、特に0.1~10質量部の範囲内であることが好ましい。これは、この触媒が必須である場合、この触媒の含有量が上記範囲の下限未満の量であると、得られるシリコーン組成物が十分に硬化しなくなる傾向があるからであり、一方、上記範囲の上限を超えると、得られるシリコーン組成物の貯蔵安定性が低下する傾向があるからである。
When the component (J) is blended, the blending amount may be an amount necessary for curing the silicone composition, and specifically, 0.01 to 20 parts by mass with respect to 100 parts by mass of the component (A). It is preferably within the range, and particularly preferably within the range of 0.1 to 10 parts by mass. This is because when the catalyst is essential, if the content of the catalyst is less than the lower limit of the above range, the resulting silicone composition tends not to be sufficiently cured, whereas the above range. This is because the storage stability of the resulting silicone composition tends to decrease when the upper limit of the above is exceeded.
[III]有機過酸化物硬化型熱伝導性シリコーン組成物
シリコーン組成物が有機過酸化物硬化型熱伝導性シリコーン組成物である場合には、上記(A)として上記に示す(A-III)成分を用い、さらに、下記成分を含むものであり、硬化剤は下記(K)成分である。
(K)有機過酸化物 [III] Organic peroxide-curable heat conductive silicone composition When the silicone composition is an organic peroxide-curable heat conductive silicone composition, (A-III) shown above as (A) above The following components are used, and the curing agent is the following (K) component.
(K) Organic peroxide
シリコーン組成物が有機過酸化物硬化型熱伝導性シリコーン組成物である場合には、上記(A)として上記に示す(A-III)成分を用い、さらに、下記成分を含むものであり、硬化剤は下記(K)成分である。
(K)有機過酸化物 [III] Organic peroxide-curable heat conductive silicone composition When the silicone composition is an organic peroxide-curable heat conductive silicone composition, (A-III) shown above as (A) above The following components are used, and the curing agent is the following (K) component.
(K) Organic peroxide
(K)有機過酸化物としては、例えば、ベンゾイルパーオキサイド、ジクミルパーオキサイド、2,5-ジメチルビス(2,5-t-ブチルパーオキシ)ヘキサン、ジ-t-ブチルパーオキサイド、t-ブチルパーベンゾエートが挙げられる。
Examples of (K) organic peroxides include benzoyl peroxide, dicumyl peroxide, 2,5-dimethylbis (2,5-t-butylperoxy) hexane, di-t-butyl peroxide, t- Butyl perbenzoate is mentioned.
(K)成分の配合量は、シリコーン組成物の硬化に必要な量であり、具体的には、上記(A-III)成分のオルガノポリシロキサン100質量部に対して0.1~5質量部の範囲が好ましい。(K)成分の配合量が上記範囲の下限未満であると、得られるシリコーン組成物が十分に硬化しなくなる傾向があり、一方、上記範囲の上限を超える量を配合しても得られるシリコーン組成物の硬化速度は顕著に向上せず、寧ろボイドの原因となるおそれがある。
The amount of the component (K) is an amount necessary for curing the silicone composition. Specifically, the amount is 0.1 to 5 parts by mass with respect to 100 parts by mass of the organopolysiloxane of the component (A-III). The range of is preferable. When the blending amount of the component (K) is less than the lower limit of the above range, the resulting silicone composition tends not to be cured sufficiently, while the silicone composition obtained even when blending an amount exceeding the upper limit of the above range. The curing rate of the object is not significantly improved and may cause voids.
さらに、本発明のシリコーン組成物には、本発明の目的を損なわない限り、その他任意の成分として、例えば、酸化亜鉛、ヒュームドシリカ、沈降性シリカ、ヒュームド酸化チタン等の充填剤、この充填剤の表面を有機ケイ素化合物により疎水化処理した充填剤;3-グリシドキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン等の接着付与剤;その他、顔料、染料、蛍光染料、耐熱添加剤、トリアゾール系化合物等の難燃性付与剤、可塑剤を含有してもよい。なお、本発明の効果を損なわない範囲において、(B)成分以外の熱伝導性充填材を配合してもよく、例えば、アルミニウム粉末、銅粉末、銀粉末、ニッケル粉末、金粉末、酸化亜鉛粉末、酸化マグネシム粉末、窒化ホウ素粉末、窒化アルミニウム粉末、ダイヤモンド粉末、カーボン粉末等が挙げられる。
Further, in the silicone composition of the present invention, as long as the object of the present invention is not impaired, as other optional components, for example, a filler such as zinc oxide, fumed silica, precipitated silica, fumed titanium oxide, etc., this filler Filler whose surface is hydrophobized with an organosilicon compound; Adhesive agent such as 3-glycidoxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane; Other pigments, dyes, fluorescent dyes, heat-resistant additives In addition, a flame retardant imparting agent such as a triazole compound or a plasticizer may be contained. In addition, in the range which does not impair the effect of this invention, you may mix | blend thermally conductive fillers other than (B) component, for example, aluminum powder, copper powder, silver powder, nickel powder, gold powder, zinc oxide powder , Magnesium oxide powder, boron nitride powder, aluminum nitride powder, diamond powder, carbon powder and the like.
[製造方法]
本発明のシリコーン組成物は、上記各成分の所定量を均一に混合することにより調製できる。例えば、(A)オルガノポリシロキサン、
(B)平均球形度0.8以上、水酸基が30個/nm2以下であり、平均粒子径50~150μmの球状酸化アルミニウム粉末、及び
(C)平均粒子径0.1~5μmの球状又は不定形状酸化アルミニウム粉末
を混合する工程を含む、上記(B)成分と(C)成分の配合割合体積比((B):(C))が5:5~9.5:0.5、(B)成分と(C)成分との合計量が組成物中80~90体積%であり、組成物の熱伝導率がISO 22007-2準拠のホットディスク法において、5.5W/m・K以上、組成物の25℃における粘度がスパイラル粘度計による回転数10rpm測定時において、30~800Pa・sである高熱伝導性シリコーン組成物を製造する方法が挙げられる。さらに、任意成分を混合する工程を含んでいてもよい。 [Production method]
The silicone composition of the present invention can be prepared by uniformly mixing a predetermined amount of each of the above components. For example, (A) an organopolysiloxane,
(B) Spherical aluminum oxide powder having an average sphericity of 0.8 or more, hydroxyl groups of 30 / nm 2 or less, and an average particle diameter of 50 to 150 μm, and (C) a spherical or indefinite of average particle diameter of 0.1 to 5 μm Including the step of mixing the shape aluminum oxide powder, the mixing ratio volume ratio of the component (B) to the component (C) ((B) :( C)) is 5: 5 to 9.5: 0.5, (B ) Component and (C) component in a total amount of 80 to 90% by volume in the composition, and the thermal conductivity of the composition is 5.5 W / m · K or more in the hot disk method according to ISO 22007-2, Examples thereof include a method for producing a highly thermally conductive silicone composition having a viscosity at 25 ° C. of 30 to 800 Pa · s when the composition has a viscosity at 25 ° C. measured by a spiral viscometer. Furthermore, the process of mixing arbitrary components may be included.
本発明のシリコーン組成物は、上記各成分の所定量を均一に混合することにより調製できる。例えば、(A)オルガノポリシロキサン、
(B)平均球形度0.8以上、水酸基が30個/nm2以下であり、平均粒子径50~150μmの球状酸化アルミニウム粉末、及び
(C)平均粒子径0.1~5μmの球状又は不定形状酸化アルミニウム粉末
を混合する工程を含む、上記(B)成分と(C)成分の配合割合体積比((B):(C))が5:5~9.5:0.5、(B)成分と(C)成分との合計量が組成物中80~90体積%であり、組成物の熱伝導率がISO 22007-2準拠のホットディスク法において、5.5W/m・K以上、組成物の25℃における粘度がスパイラル粘度計による回転数10rpm測定時において、30~800Pa・sである高熱伝導性シリコーン組成物を製造する方法が挙げられる。さらに、任意成分を混合する工程を含んでいてもよい。 [Production method]
The silicone composition of the present invention can be prepared by uniformly mixing a predetermined amount of each of the above components. For example, (A) an organopolysiloxane,
(B) Spherical aluminum oxide powder having an average sphericity of 0.8 or more, hydroxyl groups of 30 / nm 2 or less, and an average particle diameter of 50 to 150 μm, and (C) a spherical or indefinite of average particle diameter of 0.1 to 5 μm Including the step of mixing the shape aluminum oxide powder, the mixing ratio volume ratio of the component (B) to the component (C) ((B) :( C)) is 5: 5 to 9.5: 0.5, (B ) Component and (C) component in a total amount of 80 to 90% by volume in the composition, and the thermal conductivity of the composition is 5.5 W / m · K or more in the hot disk method according to ISO 22007-2, Examples thereof include a method for producing a highly thermally conductive silicone composition having a viscosity at 25 ° C. of 30 to 800 Pa · s when the composition has a viscosity at 25 ° C. measured by a spiral viscometer. Furthermore, the process of mixing arbitrary components may be included.
[高熱伝導性シリコーン組成物]
熱伝導性シリコーン組成物の熱伝導率は、ISO 22007-2準拠のホットディスク法において、5.5W/m・K以上の高熱伝導性シリコーン組成物であり、6.0W/m・K以上がより好ましい。上限は特に限定されず、高くてもよいが、10W/m・K以下とすることができる。測定温度は25℃である。 [High thermal conductive silicone composition]
The thermal conductivity of the thermally conductive silicone composition is a high thermal conductive silicone composition of 5.5 W / m · K or higher in the hot disk method according to ISO 22007-2, and 6.0 W / m · K or higher. More preferred. The upper limit is not particularly limited and may be high, but can be 10 W / m · K or less. The measurement temperature is 25 ° C.
熱伝導性シリコーン組成物の熱伝導率は、ISO 22007-2準拠のホットディスク法において、5.5W/m・K以上の高熱伝導性シリコーン組成物であり、6.0W/m・K以上がより好ましい。上限は特に限定されず、高くてもよいが、10W/m・K以下とすることができる。測定温度は25℃である。 [High thermal conductive silicone composition]
The thermal conductivity of the thermally conductive silicone composition is a high thermal conductive silicone composition of 5.5 W / m · K or higher in the hot disk method according to ISO 22007-2, and 6.0 W / m · K or higher. More preferred. The upper limit is not particularly limited and may be high, but can be 10 W / m · K or less. The measurement temperature is 25 ° C.
また、熱伝導性シリコーン組成物の25℃における粘度は、スパイラル粘度計による回転数10rpm測定時において、30~800Pa・sであり、30~600Pa・sが好ましい。
Further, the viscosity at 25 ° C. of the heat conductive silicone composition is 30 to 800 Pa · s, preferably 30 to 600 Pa · s, when the rotational speed is 10 rpm measured with a spiral viscometer.
[硬化物]
シリコーン組成物が硬化性のものである場合、それを硬化させる方法は限定されず、例えば、シリコーン組成物を成形後、常温で放置する方法、シリコーン組成物を成形後、40~200℃に加熱する方法が挙げられ、シリコーンエラストマー成形品が得られる。また、このようにして得られるシリコーンゴムの性状は限定されないが、例えば、ゲル状、低硬度のゴム状、あるいは高硬度のゴム状が挙げられる。その硬化厚みは150μm以上が好ましい。上限は特に限定されないが、本組成物を使用した発熱性電子部品の大きさを考慮した場合、5mm以下が好ましい。なお、硬化物の硬度は、シリコーン組成物を6mm硬化厚みとなるような成形型に流し込み、100℃で1時間硬化させた。次に6mm厚みの硬化物を2枚重ねてアスカーC硬度計で測定した場合、3~90が好ましく、5~80がより好ましい。 [Cured product]
When the silicone composition is curable, the method for curing it is not limited. For example, the silicone composition is molded and then allowed to stand at room temperature, the silicone composition is molded and then heated to 40 to 200 ° C. And a silicone elastomer molded article is obtained. The properties of the silicone rubber thus obtained are not limited, and examples thereof include a gel shape, a low hardness rubber shape, and a high hardness rubber shape. The cured thickness is preferably 150 μm or more. Although an upper limit is not specifically limited, When the magnitude | size of the exothermic electronic component which uses this composition is considered, 5 mm or less is preferable. As for the hardness of the cured product, the silicone composition was poured into a mold having a cured thickness of 6 mm and cured at 100 ° C. for 1 hour. Next, when two cured products having a thickness of 6 mm are stacked and measured with an Asker C hardness meter, 3 to 90 is preferable, and 5 to 80 is more preferable.
シリコーン組成物が硬化性のものである場合、それを硬化させる方法は限定されず、例えば、シリコーン組成物を成形後、常温で放置する方法、シリコーン組成物を成形後、40~200℃に加熱する方法が挙げられ、シリコーンエラストマー成形品が得られる。また、このようにして得られるシリコーンゴムの性状は限定されないが、例えば、ゲル状、低硬度のゴム状、あるいは高硬度のゴム状が挙げられる。その硬化厚みは150μm以上が好ましい。上限は特に限定されないが、本組成物を使用した発熱性電子部品の大きさを考慮した場合、5mm以下が好ましい。なお、硬化物の硬度は、シリコーン組成物を6mm硬化厚みとなるような成形型に流し込み、100℃で1時間硬化させた。次に6mm厚みの硬化物を2枚重ねてアスカーC硬度計で測定した場合、3~90が好ましく、5~80がより好ましい。 [Cured product]
When the silicone composition is curable, the method for curing it is not limited. For example, the silicone composition is molded and then allowed to stand at room temperature, the silicone composition is molded and then heated to 40 to 200 ° C. And a silicone elastomer molded article is obtained. The properties of the silicone rubber thus obtained are not limited, and examples thereof include a gel shape, a low hardness rubber shape, and a high hardness rubber shape. The cured thickness is preferably 150 μm or more. Although an upper limit is not specifically limited, When the magnitude | size of the exothermic electronic component which uses this composition is considered, 5 mm or less is preferable. As for the hardness of the cured product, the silicone composition was poured into a mold having a cured thickness of 6 mm and cured at 100 ° C. for 1 hour. Next, when two cured products having a thickness of 6 mm are stacked and measured with an Asker C hardness meter, 3 to 90 is preferable, and 5 to 80 is more preferable.
硬化物の150℃における熱伝導率は、ISO 22007-2準拠のホットディスク法において、4.0W/m・K以上が好ましく、4.0~6.5がより好ましい。さらに、硬化物の25℃における熱伝導率は、ISO 22007-2準拠のホットディスク法において、5.5W/m・K以上であり、6.0W/m・K以上がより好ましい。上限は特に限定されず、高くてもよいが、10W/m・K以下とすることができる。なお、25℃における、150℃におけるとは、測定温度をいい、150℃において上記のような熱伝導率を有することで、高温時における熱伝導性に優れたものが得られる。
また、横軸を温度、縦軸を熱伝導率とした際、25℃と150℃で得られた熱伝導率をプロットして得られた一次直線において、各温度から推定される熱伝導率も本発明に網羅される。 The thermal conductivity of the cured product at 150 ° C. is preferably 4.0 W / m · K or more, more preferably 4.0 to 6.5, in the hot disk method in conformity with ISO 22007-2. Further, the thermal conductivity of the cured product at 25 ° C. is 5.5 W / m · K or more, more preferably 6.0 W / m · K or more, in the hot disk method in conformity with ISO 22007-2. The upper limit is not particularly limited and may be high, but can be 10 W / m · K or less. The temperature at 25 ° C. and 150 ° C. refers to the measurement temperature. By having the above-described thermal conductivity at 150 ° C., a material having excellent thermal conductivity at high temperatures can be obtained.
In addition, when the horizontal axis is the temperature and the vertical axis is the thermal conductivity, the thermal conductivity estimated from each temperature in the linear line obtained by plotting the thermal conductivity obtained at 25 ° C. and 150 ° C. is also It is covered by the present invention.
また、横軸を温度、縦軸を熱伝導率とした際、25℃と150℃で得られた熱伝導率をプロットして得られた一次直線において、各温度から推定される熱伝導率も本発明に網羅される。 The thermal conductivity of the cured product at 150 ° C. is preferably 4.0 W / m · K or more, more preferably 4.0 to 6.5, in the hot disk method in conformity with ISO 22007-2. Further, the thermal conductivity of the cured product at 25 ° C. is 5.5 W / m · K or more, more preferably 6.0 W / m · K or more, in the hot disk method in conformity with ISO 22007-2. The upper limit is not particularly limited and may be high, but can be 10 W / m · K or less. The temperature at 25 ° C. and 150 ° C. refers to the measurement temperature. By having the above-described thermal conductivity at 150 ° C., a material having excellent thermal conductivity at high temperatures can be obtained.
In addition, when the horizontal axis is the temperature and the vertical axis is the thermal conductivity, the thermal conductivity estimated from each temperature in the linear line obtained by plotting the thermal conductivity obtained at 25 ° C. and 150 ° C. is also It is covered by the present invention.
以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、下記式において、Meはメチル基である。
Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example. In the following formulae, Me is a methyl group.
実施例及び比較例に用いられている成分を下記に示す。
まず、以下の各成分を用意した。
(A)成分
A-1:25℃における粘度が400mPa・sであり、両末端がジメチルビニルシリル基で封鎖され、Vi基量が0.018moL/100gであるジメチルポリシロキサン
A-2:信越化学工業製KF-54、比重(25℃)が1.07であり、動粘度(25℃)が400mm2/sの分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサンコポリマー
A-3:信越化学工業製KF-50-1,000cs、比重(25℃)が1.00であり、動粘度(25℃)が1,000mm2/sの分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサンコポリマー The components used in the examples and comparative examples are shown below.
First, the following components were prepared.
(A) Component A-1: Dimethylpolysiloxane A-2 having a viscosity at 25 ° C. of 400 mPa · s, both ends blocked with dimethylvinylsilyl groups, and a Vi group amount of 0.018 mol / 100 g: Shin-Etsu Chemical Industrial KF-54, specific gravity (25 ° C.) of 1.07, kinematic viscosity (25 ° C.) 400 mm 2 / s molecular chain both ends trimethylsiloxy group-blocked dimethylsiloxane / diphenylsiloxane copolymer A-3: Shin-Etsu Chemical Industrial KF-50-1,000cs, specific gravity (25 ° C) is 1.00, kinematic viscosity (25 ° C) is 1,000 mm 2 / s molecular chain both ends trimethylsiloxy group-blocked dimethylsiloxane-diphenylsiloxane copolymer
まず、以下の各成分を用意した。
(A)成分
A-1:25℃における粘度が400mPa・sであり、両末端がジメチルビニルシリル基で封鎖され、Vi基量が0.018moL/100gであるジメチルポリシロキサン
A-2:信越化学工業製KF-54、比重(25℃)が1.07であり、動粘度(25℃)が400mm2/sの分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサンコポリマー
A-3:信越化学工業製KF-50-1,000cs、比重(25℃)が1.00であり、動粘度(25℃)が1,000mm2/sの分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサンコポリマー The components used in the examples and comparative examples are shown below.
First, the following components were prepared.
(A) Component A-1: Dimethylpolysiloxane A-2 having a viscosity at 25 ° C. of 400 mPa · s, both ends blocked with dimethylvinylsilyl groups, and a Vi group amount of 0.018 mol / 100 g: Shin-Etsu Chemical Industrial KF-54, specific gravity (25 ° C.) of 1.07, kinematic viscosity (25 ° C.) 400 mm 2 / s molecular chain both ends trimethylsiloxy group-blocked dimethylsiloxane / diphenylsiloxane copolymer A-3: Shin-Etsu Chemical Industrial KF-50-1,000cs, specific gravity (25 ° C) is 1.00, kinematic viscosity (25 ° C) is 1,000 mm 2 / s molecular chain both ends trimethylsiloxy group-blocked dimethylsiloxane-diphenylsiloxane copolymer
(B)成分
下記表に示す性質を有する球状酸化アルミニウム
(B) Component Spherical aluminum oxide having the properties shown in the following table
下記表に示す性質を有する球状酸化アルミニウム
(C)成分
下記表に示す性質を有する球状又は不定形状酸化アルミニウム
Component (C) Spherical or amorphous aluminum oxide having the properties shown in the table below
下記表に示す性質を有する球状又は不定形状酸化アルミニウム
(D)成分
D-1:下記式で表されるオルガノポリシロキサン
(D) Component D-1: Organopolysiloxane represented by the following formula
D-1:下記式で表されるオルガノポリシロキサン
(E)成分
E-1:ポッターズ・バロティーニ製MIL粒度シリーズM-9(中心粒子径の最大値が180μm)、SiO2含有量が99.4質量%の球状ガラスビーズ (E) Component E-1: GL particle size series M-9 manufactured by Potters Ballotini (maximum value of the center particle diameter is 180 μm), spherical glass beads having a SiO 2 content of 99.4% by mass
E-1:ポッターズ・バロティーニ製MIL粒度シリーズM-9(中心粒子径の最大値が180μm)、SiO2含有量が99.4質量%の球状ガラスビーズ (E) Component E-1: GL particle size series M-9 manufactured by Potters Ballotini (maximum value of the center particle diameter is 180 μm), spherical glass beads having a SiO 2 content of 99.4% by mass
(F)成分
F-1:下記式で表されるオルガノハイドロジェンポリシロキサン
F-2:下記式で表されるオルガノハイドロジェンポリシロキサン
(F) Component F-1: Organohydrogenpolysiloxane represented by the following formula
F-2: Organohydrogenpolysiloxane represented by the following formula
F-1:下記式で表されるオルガノハイドロジェンポリシロキサン
F-2:下記式で表されるオルガノハイドロジェンポリシロキサン
F-2: Organohydrogenpolysiloxane represented by the following formula
(G)成分
G-1:白金濃度が1質量%である塩化白金酸-1,3-ジビニルテトラメチルジシロキサン錯体 (G) Component G-1: Chloroplatinic acid-1,3-divinyltetramethyldisiloxane complex having a platinum concentration of 1% by mass
G-1:白金濃度が1質量%である塩化白金酸-1,3-ジビニルテトラメチルジシロキサン錯体 (G) Component G-1: Chloroplatinic acid-1,3-divinyltetramethyldisiloxane complex having a platinum concentration of 1% by mass
(H)成分
H-1:1-エチニル-1-シクロヘキサノールの50%トルエン溶液 (H) Component H-1: 1-ethynyl-1-cyclohexanol in 50% toluene
H-1:1-エチニル-1-シクロヘキサノールの50%トルエン溶液 (H) Component H-1: 1-ethynyl-1-cyclohexanol in 50% toluene
[実施例1~7、比較例1~7]
上記成分を用い、下記に示す方法でシリコーン組成物を調製し、このシリコーン組成物を用いて熱伝導性成型物を得た。これらを用いて下記に示す方法により評価した。結果を表中に併記する。 [Examples 1 to 7, Comparative Examples 1 to 7]
Using the above components, a silicone composition was prepared by the method shown below, and a thermally conductive molded product was obtained using this silicone composition. Using these, evaluation was carried out by the method shown below. The results are also shown in the table.
上記成分を用い、下記に示す方法でシリコーン組成物を調製し、このシリコーン組成物を用いて熱伝導性成型物を得た。これらを用いて下記に示す方法により評価した。結果を表中に併記する。 [Examples 1 to 7, Comparative Examples 1 to 7]
Using the above components, a silicone composition was prepared by the method shown below, and a thermally conductive molded product was obtained using this silicone composition. Using these, evaluation was carried out by the method shown below. The results are also shown in the table.
上記成分を下記表3,4に示す配合量で以下のように混合して、シリコーン組成物を得た。即ち、5リットルゲートミキサー(井上製作所(株)製、商品名:5リットルプラネタリミキサー)に、(A)、(B)、(C)、(D)成分を表に示す配合量で取り、150℃で2時間脱気加熱混合した。その後、常温(25℃)になるまで冷却し、(G)成分を加え、均一になるように室温(25℃)にて混合し、続けて(H)成分を加え、均一になるように室温(25℃)にて混合した。さらに(E)及び(F)成分を加え、均一になるように室温にて脱気混合した。このようにして得られたシリコーン組成物について、初期粘度、硬化後硬度、硬化前後の熱伝導率を下記に示す方法により評価した。結果を表中に併記する。
The above components were mixed as shown below in the amounts shown in Tables 3 and 4 to obtain a silicone composition. That is, the components (A), (B), (C), and (D) were added to a 5 liter gate mixer (Inoue Seisakusho Co., Ltd., trade name: 5 liter planetary mixer) at the blending amounts shown in the table, and 150 The mixture was deaerated and heated for 2 hours at ° C. Then, it cools until it becomes normal temperature (25 degreeC), (G) component is added, it mixes at room temperature (25 degreeC) so that it may become uniform, (H) component is added continuously, and it is room temperature so that it may become uniform (25 ° C). Further, the components (E) and (F) were added and deaerated and mixed at room temperature so as to be uniform. With respect to the silicone composition thus obtained, the initial viscosity, the hardness after curing, and the thermal conductivity before and after curing were evaluated by the following methods. The results are also shown in the table.
〔初期粘度評価〕
シリコーン組成物の初期粘度は25℃における値であり、その測定はスパイラル粘度計:マルコム粘度計(タイプPC-10AA、回転数10rpm)を用いた。
〔硬化後硬度評価〕
シリコーン組成物を6mm硬化厚みとなるような成形型に流し込み、100℃で1時間硬化させた。次に6mm厚みの硬化物を2枚重ねてアスカーC硬度計で測定した。
〔熱伝導率評価〕
京都電子工業(株)製ホットディスク法熱物性測定装置TPS 2500 Sを用いて25℃におけるシリコーン組成物の硬化前の熱伝導率を測定した(ISO 22007-2準拠のホットディスク法)。
さらに、シリコーン組成物を6mm硬化厚みとなるような成形型に流し込み、100℃で1時間硬化させた。得られた6mm厚みの硬化物について、25℃及び150℃における硬化物の熱伝導率を測定した。 (Initial viscosity evaluation)
The initial viscosity of the silicone composition was a value at 25 ° C., and a spiral viscometer: Malcolm viscometer (type PC-10AA, rotation speed 10 rpm) was used for the measurement.
[Evaluation of hardness after curing]
The silicone composition was poured into a mold having a cured thickness of 6 mm and cured at 100 ° C. for 1 hour. Next, two 6 mm thick cured products were stacked and measured with an Asker C hardness meter.
[Evaluation of thermal conductivity]
The thermal conductivity before curing of the silicone composition at 25 ° C. was measured using a hot disk method thermophysical property measuring apparatus TPS 2500 S manufactured by Kyoto Electronics Industry Co., Ltd. (hot disk method based on ISO 22007-2).
Furthermore, the silicone composition was poured into a mold having a cured thickness of 6 mm and cured at 100 ° C. for 1 hour. About the obtained hardened | cured material of 6 mm thickness, the heat conductivity of the hardened | cured material in 25 degreeC and 150 degreeC was measured.
シリコーン組成物の初期粘度は25℃における値であり、その測定はスパイラル粘度計:マルコム粘度計(タイプPC-10AA、回転数10rpm)を用いた。
〔硬化後硬度評価〕
シリコーン組成物を6mm硬化厚みとなるような成形型に流し込み、100℃で1時間硬化させた。次に6mm厚みの硬化物を2枚重ねてアスカーC硬度計で測定した。
〔熱伝導率評価〕
京都電子工業(株)製ホットディスク法熱物性測定装置TPS 2500 Sを用いて25℃におけるシリコーン組成物の硬化前の熱伝導率を測定した(ISO 22007-2準拠のホットディスク法)。
さらに、シリコーン組成物を6mm硬化厚みとなるような成形型に流し込み、100℃で1時間硬化させた。得られた6mm厚みの硬化物について、25℃及び150℃における硬化物の熱伝導率を測定した。 (Initial viscosity evaluation)
The initial viscosity of the silicone composition was a value at 25 ° C., and a spiral viscometer: Malcolm viscometer (type PC-10AA, rotation speed 10 rpm) was used for the measurement.
[Evaluation of hardness after curing]
The silicone composition was poured into a mold having a cured thickness of 6 mm and cured at 100 ° C. for 1 hour. Next, two 6 mm thick cured products were stacked and measured with an Asker C hardness meter.
[Evaluation of thermal conductivity]
The thermal conductivity before curing of the silicone composition at 25 ° C. was measured using a hot disk method thermophysical property measuring apparatus TPS 2500 S manufactured by Kyoto Electronics Industry Co., Ltd. (hot disk method based on ISO 22007-2).
Furthermore, the silicone composition was poured into a mold having a cured thickness of 6 mm and cured at 100 ° C. for 1 hour. About the obtained hardened | cured material of 6 mm thickness, the heat conductivity of the hardened | cured material in 25 degreeC and 150 degreeC was measured.
Claims (11)
- (A)オルガノポリシロキサン、
(B)平均球形度0.8以上、水酸基が30個/nm2以下であり、平均粒子径50~150μmの球状酸化アルミニウム粉末、及び
(C)平均粒子径0.1~5μmの球状又は不定形状酸化アルミニウム粉末
を含む高熱伝導性シリコーン組成物であって、
上記(B)成分と(C)成分の配合割合体積比((B):(C))が5:5~9.5:0.5、(B)成分と(C)成分との合計量が組成物中80~90体積%であり、
組成物の熱伝導率がISO 22007-2準拠のホットディスク法において、5.5W/m・K以上、組成物の25℃における粘度がスパイラル粘度計による回転数10rpm測定時において、30~800Pa・sである高熱伝導性シリコーン組成物。 (A) organopolysiloxane,
(B) Spherical aluminum oxide powder having an average sphericity of 0.8 or more, hydroxyl groups of 30 / nm 2 or less, and an average particle diameter of 50 to 150 μm, and (C) a spherical or indefinite of average particle diameter of 0.1 to 5 μm A highly thermally conductive silicone composition comprising a shape aluminum oxide powder,
The mixing ratio volume ratio ((B) :( C)) of the component (B) and the component (C) is 5: 5 to 9.5: 0.5, and the total amount of the component (B) and the component (C) Is 80 to 90% by volume in the composition,
In the hot disk method according to ISO 22007-2, the composition has a thermal conductivity of 5.5 W / m · K or more, and the composition has a viscosity at 25 ° C. of 30 to 800 Pa · A high thermal conductive silicone composition which is s. - さらに、(D)シランカップリング剤を含む請求項1記載の高熱伝導性シリコーン組成物。 The high thermal conductive silicone composition according to claim 1, further comprising (D) a silane coupling agent.
- (D)成分が、下記一般式(1)
-SiR1 a(OR2)3-a (1)
(式中、R1は独立に非置換又は置換の1価炭化水素基であり、R2は独立にアルキル基、アルコキシアルキル基、アルケニル基又はアシル基であり、aは0、1又は2である。)
で表されるシリル基を1分子中に少なくとも1個含有し、25℃での粘度が0.01~30Pa・sであるオルガノポリシロキサンである請求項2記載の高熱伝導性シリコーン組成物。 The component (D) is represented by the following general formula (1)
-SiR 1 a (OR 2 ) 3-a (1)
Wherein R 1 is independently an unsubstituted or substituted monovalent hydrocarbon group, R 2 is independently an alkyl group, an alkoxyalkyl group, an alkenyl group or an acyl group, and a is 0, 1 or 2 is there.)
3. The highly heat-conductive silicone composition according to claim 2, which is an organopolysiloxane having at least one silyl group represented by the formula below and having a viscosity at 25 ° C. of 0.01 to 30 Pa · s. - さらに、(E)中心粒子径の最大値が150μm以上であり、SiO2含有量が50質量%以上の球状ガラスビーズ又は不定形ガラスを、組成物の全量に対し10質量%以下含む請求項1~3のいずれか1項記載の高熱伝導性シリコーン組成物。 Furthermore, (E) 10% by mass or less of spherical glass beads or amorphous glass having a maximum center particle diameter of 150 μm or more and a SiO 2 content of 50% by mass or more based on the total amount of the composition. 4. The high thermal conductive silicone composition according to any one of items 1 to 3.
- さらに、硬化剤を含む請求項1~4のいずれか1項記載の高熱伝導性シリコーン組成物。 The high thermal conductive silicone composition according to any one of claims 1 to 4, further comprising a curing agent.
- 高熱伝導性シリコーン組成物の硬化物の150℃における熱伝導率が、ISO 22007-2準拠のホットディスク法において、4.0W/m・K以上である請求項5記載の熱伝導性シリコーン組成物。 6. The thermally conductive silicone composition according to claim 5, wherein the cured product of the highly thermally conductive silicone composition has a thermal conductivity at 150 ° C. of 4.0 W / m · K or more in a hot disk method conforming to ISO 22007-2. .
- 付加反応硬化型、縮合反応硬化型又は有機過酸化物硬化型である請求項6記載の高熱伝導性シリコーン組成物。 The high thermal conductive silicone composition according to claim 6, which is an addition reaction curable type, a condensation reaction curable type or an organic peroxide curable type.
- 付加反応硬化型である請求項7記載の高熱伝導性シリコーン組成物。 The high thermal conductive silicone composition according to claim 7, which is an addition reaction curable type.
- 請求項5~8のいずれか1項記載の高熱伝導性シリコーン組成物の硬化物。 A cured product of the high thermal conductive silicone composition according to any one of claims 5 to 8.
- 150℃における熱伝導率が、ISO 22007-2準拠のホットディスク法において、4.0W/m・K以上である請求項9記載の硬化物。 The cured product according to claim 9, wherein the thermal conductivity at 150 ° C. is 4.0 W / m · K or more in a hot disk method in conformity with ISO 22007-2.
- (A)オルガノポリシロキサン、
(B)平均球形度0.8以上、水酸基が30個/nm2以下であり、平均粒子径50~150μmの球状酸化アルミニウム粉末、及び
(C)平均粒子径0.1~5μmの球状又は不定形状酸化アルミニウム粉末
を混合する工程を含む、上記(B)成分と(C)成分の配合割合体積比((B):(C))が5:5~9.5:0.5、(B)成分と(C)成分との合計量が組成物中80~90体積%であり、組成物の熱伝導率がISO 22007-2準拠のホットディスク法において、5.5W/m・K以上、組成物の25℃における粘度がスパイラル粘度計による回転数10rpm測定時において、30~800Pa・sである高熱伝導性シリコーン組成物を製造する方法。 (A) organopolysiloxane,
(B) Spherical aluminum oxide powder having an average sphericity of 0.8 or more, hydroxyl groups of 30 / nm 2 or less, and an average particle diameter of 50 to 150 μm, and (C) a spherical or indefinite of average particle diameter of 0.1 to 5 μm Including the step of mixing the shape aluminum oxide powder, the mixing ratio volume ratio of the component (B) to the component (C) ((B) :( C)) is 5: 5 to 9.5: 0.5, (B ) Component and (C) component in a total amount of 80 to 90% by volume in the composition, and the thermal conductivity of the composition is 5.5 W / m · K or more in the hot disk method according to ISO 22007-2, A method for producing a highly thermally conductive silicone composition having a viscosity of 30 to 800 Pa · s when the composition has a viscosity at 25 ° C. of 10 rpm measured with a spiral viscometer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018550221A JP6648837B2 (en) | 2016-11-09 | 2017-11-08 | Thermal conductive silicone composition, cured product thereof, and production method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016218552 | 2016-11-09 | ||
JP2016-218552 | 2016-11-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018088416A1 true WO2018088416A1 (en) | 2018-05-17 |
Family
ID=62110299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/040202 WO2018088416A1 (en) | 2016-11-09 | 2017-11-08 | Thermally conductive silicone composition and cured product thereof, and manufacturing method |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6648837B2 (en) |
TW (1) | TWI743247B (en) |
WO (1) | WO2018088416A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019150944A1 (en) * | 2018-01-31 | 2019-08-08 | 積水ポリマテック株式会社 | Thermally conductive composition and thermally conductive molded body |
WO2020217634A1 (en) * | 2019-04-24 | 2020-10-29 | 信越化学工業株式会社 | Thermally conductive silicone composition, method for producing same and thermally conductive silicone cured product |
WO2020261958A1 (en) * | 2019-06-24 | 2020-12-30 | 信越化学工業株式会社 | Highly thermally-conductive silicone composition and cured product thereof |
CN112334542A (en) * | 2018-06-27 | 2021-02-05 | 美国陶氏有机硅公司 | Thermal gap filler and its application in battery management system |
JP2021095569A (en) * | 2019-12-18 | 2021-06-24 | 富士高分子工業株式会社 | Thermally conductive composition, thermally conductive sheet and method for producing the same |
JP2021176945A (en) * | 2020-05-08 | 2021-11-11 | 信越化学工業株式会社 | Thermally conductive silicone composition and cured product thereof |
JP7015424B1 (en) * | 2021-01-25 | 2022-02-02 | 富士高分子工業株式会社 | Thermally conductive silicone grease composition and its manufacturing method |
CN114539780A (en) * | 2020-11-24 | 2022-05-27 | 深圳先进电子材料国际创新研究院 | Single-component thermal interface material and preparation method thereof |
WO2022158029A1 (en) * | 2021-01-25 | 2022-07-28 | 富士高分子工業株式会社 | Thermally conductive silicone grease composition and production method for same |
WO2023135857A1 (en) | 2022-01-14 | 2023-07-20 | 富士高分子工業株式会社 | Thermally conductive composition, thermally conductive sheet obtained from same, and production method therefor |
JP7346761B1 (en) * | 2023-04-27 | 2023-09-19 | 旭化成ワッカーシリコーン株式会社 | Thermally conductive silicone composition and method for producing the thermally conductive silicone composition |
WO2024195569A1 (en) * | 2023-03-22 | 2024-09-26 | 信越化学工業株式会社 | Thermally conductive silicone composition, cured product thereof, and method for producing same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007277405A (en) * | 2006-04-06 | 2007-10-25 | Micron:Kk | Highly heat-conductive resin compound, highly heat-conductive resin molded article, compounding particle for heat-releasing sheet, highly heat-conductive resin compound, highly heat-conductive resin molded article, heat-releasing sheet, and method for producing the same |
JP2008095001A (en) * | 2006-10-13 | 2008-04-24 | Nippon Electric Glass Co Ltd | Composition for sealing |
JP2010013521A (en) * | 2008-07-02 | 2010-01-21 | Shin-Etsu Chemical Co Ltd | Heat conductive silicone composition |
JP2015065330A (en) * | 2013-09-25 | 2015-04-09 | 信越化学工業株式会社 | Heat dissipation sheet, sheet-like cured product with high heat dissipation, and method for application of heat dissipation sheet |
JP2016150967A (en) * | 2015-02-17 | 2016-08-22 | 学校法人立教学院 | Method for bonding mirror used for optical equipment to plate |
-
2017
- 2017-11-08 WO PCT/JP2017/040202 patent/WO2018088416A1/en active Application Filing
- 2017-11-08 JP JP2018550221A patent/JP6648837B2/en active Active
- 2017-11-09 TW TW106138717A patent/TWI743247B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007277405A (en) * | 2006-04-06 | 2007-10-25 | Micron:Kk | Highly heat-conductive resin compound, highly heat-conductive resin molded article, compounding particle for heat-releasing sheet, highly heat-conductive resin compound, highly heat-conductive resin molded article, heat-releasing sheet, and method for producing the same |
JP2008095001A (en) * | 2006-10-13 | 2008-04-24 | Nippon Electric Glass Co Ltd | Composition for sealing |
JP2010013521A (en) * | 2008-07-02 | 2010-01-21 | Shin-Etsu Chemical Co Ltd | Heat conductive silicone composition |
JP2015065330A (en) * | 2013-09-25 | 2015-04-09 | 信越化学工業株式会社 | Heat dissipation sheet, sheet-like cured product with high heat dissipation, and method for application of heat dissipation sheet |
JP2016150967A (en) * | 2015-02-17 | 2016-08-22 | 学校法人立教学院 | Method for bonding mirror used for optical equipment to plate |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019150944A1 (en) * | 2018-01-31 | 2019-08-08 | 積水ポリマテック株式会社 | Thermally conductive composition and thermally conductive molded body |
JPWO2019150944A1 (en) * | 2018-01-31 | 2020-04-02 | 積水ポリマテック株式会社 | Heat conductive composition and heat conductive molded article |
US11781052B2 (en) | 2018-01-31 | 2023-10-10 | Sekisui Polymatech Co., Ltd. | Thermally conductive composition and thermally conductive molded body |
KR102578330B1 (en) * | 2018-06-27 | 2023-09-18 | 다우 실리콘즈 코포레이션 | Thermal gap fillers and their applications for battery management systems |
JP2021534262A (en) * | 2018-06-27 | 2021-12-09 | ダウ シリコーンズ コーポレーション | Its application to thermal gap fillers and battery management systems |
US11814520B2 (en) | 2018-06-27 | 2023-11-14 | Dow Silicones Corporation | Thermal gap filler and its application for battery management system |
CN112334542A (en) * | 2018-06-27 | 2021-02-05 | 美国陶氏有机硅公司 | Thermal gap filler and its application in battery management system |
KR20210023970A (en) * | 2018-06-27 | 2021-03-04 | 다우 실리콘즈 코포레이션 | Thermal Gap Fillers and Their Applications for Battery Management Systems |
JP7144542B2 (en) | 2018-06-27 | 2022-09-29 | ダウ シリコーンズ コーポレーション | Thermal gap filler and its application in battery management systems |
EP3814426A4 (en) * | 2018-06-27 | 2022-01-26 | Dow Silicones Corporation | THERMAL GAP FILLER AND ITS APPLICATION FOR A BATTERY MANAGEMENT SYSTEM |
JP7116703B2 (en) | 2019-04-24 | 2022-08-10 | 信越化学工業株式会社 | Thermally conductive silicone composition, method for producing the same, and cured thermally conductive silicone |
JP2020180200A (en) * | 2019-04-24 | 2020-11-05 | 信越化学工業株式会社 | Heat-conductive silicone composition and method for producing the same, and heat-conductive silicone cured product |
TWI822954B (en) * | 2019-04-24 | 2023-11-21 | 日商信越化學工業股份有限公司 | Thermal conductive silicone composition and manufacturing method thereof, and thermally conductive silicone hardened material |
WO2020217634A1 (en) * | 2019-04-24 | 2020-10-29 | 信越化学工業株式会社 | Thermally conductive silicone composition, method for producing same and thermally conductive silicone cured product |
CN113993939A (en) * | 2019-06-24 | 2022-01-28 | 信越化学工业株式会社 | Highly thermally conductive silicone composition and cured product thereof |
CN113993939B (en) * | 2019-06-24 | 2024-07-16 | 信越化学工业株式会社 | High thermal conductivity silicone composition and cured product thereof |
JPWO2020261958A1 (en) * | 2019-06-24 | 2020-12-30 | ||
WO2020261958A1 (en) * | 2019-06-24 | 2020-12-30 | 信越化学工業株式会社 | Highly thermally-conductive silicone composition and cured product thereof |
JP7168084B2 (en) | 2019-06-24 | 2022-11-09 | 信越化学工業株式会社 | High thermal conductivity silicone composition and cured product thereof |
JP2021095569A (en) * | 2019-12-18 | 2021-06-24 | 富士高分子工業株式会社 | Thermally conductive composition, thermally conductive sheet and method for producing the same |
JP7285231B2 (en) | 2020-05-08 | 2023-06-01 | 信越化学工業株式会社 | Thermally conductive silicone composition and cured product thereof |
JP2021176945A (en) * | 2020-05-08 | 2021-11-11 | 信越化学工業株式会社 | Thermally conductive silicone composition and cured product thereof |
CN114539780A (en) * | 2020-11-24 | 2022-05-27 | 深圳先进电子材料国际创新研究院 | Single-component thermal interface material and preparation method thereof |
WO2022158029A1 (en) * | 2021-01-25 | 2022-07-28 | 富士高分子工業株式会社 | Thermally conductive silicone grease composition and production method for same |
JP7015424B1 (en) * | 2021-01-25 | 2022-02-02 | 富士高分子工業株式会社 | Thermally conductive silicone grease composition and its manufacturing method |
WO2023135857A1 (en) | 2022-01-14 | 2023-07-20 | 富士高分子工業株式会社 | Thermally conductive composition, thermally conductive sheet obtained from same, and production method therefor |
WO2024195569A1 (en) * | 2023-03-22 | 2024-09-26 | 信越化学工業株式会社 | Thermally conductive silicone composition, cured product thereof, and method for producing same |
JP7346761B1 (en) * | 2023-04-27 | 2023-09-19 | 旭化成ワッカーシリコーン株式会社 | Thermally conductive silicone composition and method for producing the thermally conductive silicone composition |
Also Published As
Publication number | Publication date |
---|---|
TWI743247B (en) | 2021-10-21 |
JPWO2018088416A1 (en) | 2019-06-24 |
TW201829588A (en) | 2018-08-16 |
JP6648837B2 (en) | 2020-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6648837B2 (en) | Thermal conductive silicone composition, cured product thereof, and production method | |
JP7168084B2 (en) | High thermal conductivity silicone composition and cured product thereof | |
JP5619487B2 (en) | Thermally conductive silicone grease composition | |
JP4727017B2 (en) | Thermally conductive silicone rubber composition | |
JP4937494B2 (en) | Thermally conductive silicone composition | |
JP6183319B2 (en) | Thermally conductive silicone composition and thermally conductive sheet | |
JP5940325B2 (en) | Thermally conductive silicone composition | |
EP3632987B1 (en) | Thermally conductive polysiloxane composition | |
JP2020512465A (en) | Heat dissipation gel type silicone rubber composition | |
JP2004262972A (en) | Thermally conductive silicone composition | |
JP6166488B1 (en) | Method for producing thermally conductive polysiloxane composition | |
JP2017075202A (en) | Additional one-pack type curable thermoconductive silicone grease composition | |
JP2011122000A (en) | Silicone composition for high thermal conductivity potting material and method for selecting high thermal conductivity potting material | |
WO2018088417A1 (en) | Thermally conductive silicone composition and cured product thereof, and manufacturing method | |
JPWO2016047219A1 (en) | UV thickening type thermally conductive silicone grease composition | |
KR20160150290A (en) | Silicone polymer composition having an excellent heat-radiating function | |
CN110234711B (en) | Thermally conductive polysiloxane composition | |
JP2006143978A (en) | Thermally conductive silicone composition | |
WO2024195569A1 (en) | Thermally conductive silicone composition, cured product thereof, and method for producing same | |
JP7034980B2 (en) | Surface-treated Alumina powder manufacturing method | |
JP2002188010A (en) | Addition reaction-curable polyorganosiloxane composition | |
WO2024162030A1 (en) | Highly thermally conductive silicone composition and cured product thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17868959 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018550221 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17868959 Country of ref document: EP Kind code of ref document: A1 |