[go: up one dir, main page]

WO2018088057A1 - Compressor and gas pumping system having compressor - Google Patents

Compressor and gas pumping system having compressor Download PDF

Info

Publication number
WO2018088057A1
WO2018088057A1 PCT/JP2017/035459 JP2017035459W WO2018088057A1 WO 2018088057 A1 WO2018088057 A1 WO 2018088057A1 JP 2017035459 W JP2017035459 W JP 2017035459W WO 2018088057 A1 WO2018088057 A1 WO 2018088057A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
flow pipe
side wall
bottom plate
swirl flow
Prior art date
Application number
PCT/JP2017/035459
Other languages
French (fr)
Japanese (ja)
Inventor
克年 小林
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2018088057A1 publication Critical patent/WO2018088057A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning

Definitions

  • the present invention relates to a compressor and a gas pumping system having the compressor.
  • a natural gas is mined by digging a well that is several thousand meters long toward the underground natural gas field.
  • Patent Document 1 discloses a cyclone separator that generates a swirling flow when a process gas is introduced from a gas inlet 3 into a cyclone chamber 2 and separates oil from the process gas by a centrifugal force effect. Is disclosed. The process gas from which the oil has been separated is recovered from the gas outlet 4 provided above.
  • the compressor which has the side wall which has a suction flow path inside, the swirl flow piping connected to this side wall, and the stator located in one side with respect to this swirl flow piping
  • the suction flow path and the compression have a bottom portion located on the other side with respect to the swirl flow pipe, a holding portion capable of holding droplets, and a discharge portion capable of discharging droplets.
  • the pressure loss when moving between the outside of the machine through the bottom portion is larger than the pressure loss when moving between the suction flow path and the outside of the compressor through the swirling flow pipe. It is characterized by.
  • FIG. 1 is an overall configuration diagram of a compressor according to Embodiment 1.
  • FIG. FIG. 2 is a sectional view taken along line AA in FIG. 1. It is a whole block diagram of the compressor of Example 2.
  • FIG. 6 is an overall configuration diagram of a compressor according to a third embodiment.
  • FIG. 6 is an overall configuration diagram of a compressor according to a fourth embodiment. It is the figure observed from the B arrow direction of FIG.
  • FIG. 6 is an overall configuration diagram of a compressor according to a fifth embodiment. It is a whole block diagram of the gas pressure feeding system which installed the compressor of each Example.
  • one component is composed of a plurality of members, a plurality of components are composed of one member, A part with another component is allowed to overlap each other.
  • FIG. 1 shows the overall configuration of the compressor 1 according to the first embodiment.
  • the compressor 1 includes an impeller 11 as a compression unit that pressurizes and pumps process gas, a shaft 12 that is a rotating shaft of the impeller 11, and a compression mechanism unit that includes a stator 13 that applies a rotational force to the shaft 12, and a cylinder. And a liquid droplet separation part (foreign matter separation part) having a suction flow path 14, a bottom part 15, and a swirl flow pipe 16, which is a space surrounded by a side wall 17.
  • the compressor 1 can be installed in a process gas atmosphere.
  • a part of the suction channel 14 may surround the compression mechanism as in this embodiment.
  • the side wall 17 has a compression mechanism part on one side and a bottom part 15 on the other side in the cylindrical axial direction.
  • the bottom 15 is located between the suction flow path 14 and the outside of the compressor 1.
  • the swirl flow pipe 16 is located between the suction flow path 14 and the outside of the compressor 1, and communicates the suction flow path 14 and the outside of the compressor 1.
  • the side wall 17 of this embodiment is cylindrical.
  • the suction channel 14 is arranged in a direction in which gravity acts in a direction from the impeller 11 side toward the bottom 15 side. That is, the substance in the suction flow path 14 is subjected to gravitational acceleration toward the bottom 15 side rather than the impeller 11 side.
  • the impeller 11, the shaft 12, and the stator 13 are arranged on one side with respect to the swirl flow pipe 16 inside the side wall 17. As will be described later, when a process gas is introduced inside the side wall 17, the stator 13 or the like that can be at a high temperature can be cooled by this process gas. Further, the bottom portion 15 is disposed on the other side with respect to the swirl flow pipe 16.
  • the bottom 15 is passed between the suction channel 14 and the outside of the suction channel 14.
  • the bottom portion 15 is configured so that the pressure loss during movement becomes a larger value.
  • the compressor 1 introduces a process gas containing droplets from the outside of the compressor 1 into the suction flow path 14 via the swirl flow pipe 16. Since the pressure loss when passing through the bottom 15 is large, the introduced process gas flows toward the impeller 11 side. The process gas reaches the impeller 11 through the space around the stator 13 and the shaft 12, is pressurized by the impeller 11, and is further pumped downstream. That is, a part of the process gas is used as a cooling gas for the motor heat generating part by flowing through a gap between the stator 13 and the shaft 12.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • the swirl flow pipe 16 is connected to the side wall 17 with the substantially tangential direction of the side wall 17 as the extending direction.
  • the process gas flows into the suction flow path 14 in a substantially tangential direction as shown by the arrow D1, and swirls along the inner periphery of the side wall 17 as shown by the arrow D2 in the suction flow path 14 to process gas.
  • the swirling flow is generated. Since the centrifugal force acts on the droplets in the process gas by this swirling flow, the droplets move to the outer diameter side of the suction flow path 14 and adhere to the inner surface of the side wall 17.
  • the adhering droplet forms a liquid film and descends toward the bottom 15 in the opposite direction to the impeller 11 by gravity. Accordingly, the liquid droplet proceeds toward the bottom 15.
  • the bottom 15 of the present embodiment is a lid that closes the lower side of the suction flow path 14. For this reason, since the process gas does not enter from the outside of the compressor 1 through the bottom portion 15, it can be effectively suppressed that the swirling flow of the process gas flowing in from the swirling flow pipe 16 is weakened.
  • the separated droplets are held on the bottom portion 15, so that the bottom portion 15 functions as a droplet holding portion.
  • the swirl flow pipe 16 is positioned above the bottom portion 15, when the droplets are stored up to the same height as the swirl flow pipe 16, the droplets are discharged to the outside of the compressor 1 through the swirl flow pipe 16. Is done. That is, in this embodiment, the swirl flow pipe 16 functions as a droplet discharge unit.
  • the swirl flow pipe 16 may be connected substantially horizontally to the side wall 17, but may be connected so as to be inclined so that the side wall 17 side faces upward. If it carries out like this, since it can suppress that the droplet which should be discharged
  • the compressor 1 is provided that can discharge the droplets to the outside while effectively forming the swirl flow by the swirl flow pipe 16, that is, effectively separating the droplets in the process gas. it can.
  • FIG. 3 is an overall configuration diagram of the compressor 1 of the present embodiment.
  • the bottom portion 15 has an upper surface 151 and a side surface 152 extending downward from the upper surface 151.
  • the side surface 152 is formed substantially parallel to the inner wall of the side wall 17, and in this embodiment, has a cylindrical shape similar to the shape of the side wall. Since the side surface 152 is formed to be slightly smaller than the inner wall of the side wall 17, a slit channel that functions as a droplet holding unit and a discharge unit is interposed between the side surface 152 and the side wall 17. 141 is formed.
  • the slit channel 141 is set to a size that allows the droplet to be held between the side wall 17 and the side surface 152.
  • a preferable range for such dimensions can be determined in advance in consideration of the viscosity of the droplets, the temperature around the compressor 1, and the like.
  • the extension length of the side surface 152 can be set to 170 mm or more and 210 mm or less to 3 mm or less.
  • water is assumed.
  • the environmental pressure is 10 MPa
  • the environmental temperature is 140 ° C.
  • the viscosity is 0.19805 mPa ⁇ s.
  • Providing such a bottom portion 15 that can hold and discharge droplets can increase the pressure loss when passing through the slit channel 141, so that entry of process gas can be suppressed. Therefore, it is possible to suppress the process gas from flowing in from the outside of the droplet separation unit 1 through the bottom 15 side and weakening the swirling flow.
  • various known methods can be adopted. For example, a structure in which a rib is provided between the side surface 152 and the side wall 17 to fix the side surface 152 is conceivable.
  • the impeller 11 when the impeller 11 is driven and the process gas flows into the swirling flow pipe 16 and turns into swirling flow, the droplets adhere to the side wall 17 by the centrifugal force effect to form the liquid film L.
  • the liquid film descends toward the bottom 15 due to gravity and is held in the slit channel 141.
  • the process gas can pass through the slit channel 141, but the slit channel 141 , And the pressure loss is larger than the pressure loss when passing through the swirling flow pipe 16, so that the amount of inflow is kept small. For this reason, it is possible to effectively form a swirling flow even at the beginning of operation of the impeller 11.
  • the droplet When the droplet is held in the slit channel 141, the droplet serves as a lid between the side wall 17 and the side surface 152, and the pressure loss value is further increased. Therefore, the suction through the slit channel 141 is performed. The process gas entry into the flow path 14 can be further suppressed.
  • the compressor 1 that has the same effects as the first embodiment and can effectively discharge the separated droplets to the outside.
  • the pressure loss value of the slit channel 141 in the state where the droplet L does not exist can be set to four times or more the pressure loss value of the swirling flow pipe 16, for example.
  • FIG. 4 is an overall configuration diagram of the compressor 1 of the present embodiment.
  • the compressor 1 of the present embodiment has a convex portion 171 that protrudes inward from the inner surface of the side wall 17 between the impeller 11 and the swirl flow pipe 16.
  • the convex portion 171 is provided over the entire inner surface of the side wall 17 and has a substantially annular shape in this embodiment.
  • the liquid can rise on the side wall 17 due to the force of the flow.
  • the convex portion 171 it is possible to suppress the rise of such a droplet.
  • the compressor 1 that has the same effects as those of the first embodiment and reduces the possibility that the droplets come into contact with the stator 13 and the like.
  • the configuration of the present embodiment can be configured in the same manner as any of Embodiments 1 to 3 except for the following points.
  • FIG. 5 is an overall configuration diagram of the compressor 1 of the present embodiment
  • FIG. 6 is a diagram observed from the direction of arrow B in FIG.
  • An obstacle 18 is provided above the swirl flow pipe 16 and between the impellers 11.
  • the obstacle 18 has a convex portion 181 that protrudes inward from the inner surface of the side wall 17 and a partial wall 182 that blocks a part of the suction flow path 14.
  • the convex portion 181 can be configured in the same manner as the convex portion 171 exemplified in Example 3, and can suppress the rise of the droplet.
  • the partial wall 182 is a structure provided in the vicinity of the side wall 17 or the central side of the suction channel 14 in the suction channel 14 when the suction channel 14 is observed along the channel direction (arrow B direction). is there. In this embodiment, it is formed in a cross shape when viewed from the flow path direction.
  • the partial flow of the process gas can be reduced by the partial wall 182.
  • the compression efficiency can be optimized by causing the impeller 11 to suck the process gas after decelerating the swirling flow of the process gas.
  • the obstacle 18 may be provided at a position away from the swirling flow piping 16 by, for example, 0.15 m or more.
  • the obstacle 18 is, for example, 5% or more, 10% or more, 15% or more, or 20% of the distance from the swirling flow pipe 16 to the impeller 11 along the flow path direction in order to sufficiently reduce the swirling flow. It may extend as described above. Further, the number of obstacles 18 is not limited to one, and a plurality of obstacles may be provided. In this way, the swirl flow can be decelerated more effectively.
  • the compressor 1 having the same effects as the first embodiment and improved boosting efficiency.
  • the convex portion 181 may be omitted and only the partial wall 182 may be provided.
  • FIG. 7 is an overall configuration diagram of the compressor 1 of the present embodiment.
  • the bottom portion 15 is constituted by a valve having a bottom plate 153 that slides substantially in contact with the inner surface of the side wall 17 and that functions as a droplet holding portion, and an elastic body 154 connected to the bottom plate 153.
  • the compressor 1 has a hole 19 below the swirl flow pipe 16 that communicates with the outside of the compressor 1 and functions as a droplet discharge unit.
  • the elastic body 154 for example, a spring can be employed.
  • the elastic body 154 is adjusted so that the hole 19 is positioned below the bottom plate 153 when only the weight of the bottom plate 153 is applied.
  • the bottom plate 153 Since the bottom plate 153 is provided so as to slide substantially on the side wall 17, the process gas that attempts to enter the compressor 1 through the hole 19 is suppressed from passing above the bottom plate 153. For this reason, a pressure loss is large and it can suppress that the swirling flow which approachs through the swirling flow piping 16 weakens. Further, when the liquid droplet starts to be held on the upper side of the bottom plate 153, even if a gap is generated between the side wall 17 and the bottom plate 153, the liquid droplet serves as a lid for that portion, and entry of the process gas can be suppressed.
  • the elastic body 153 is compressed according to the weight of the droplets, and the bottom plate 153 descends.
  • the weight of the droplet exceeds a predetermined value
  • the upper surface of the bottom plate 153 coincides with the height of the hole 19 and the droplet is discharged through the hole 19.
  • the weight of the droplets held on the bottom plate 153 is reduced, so that the elastic body 154 lifts the bottom plate 153 again, and the upper surface of the bottom plate 153 is positioned above the hole 19. Will come to do.
  • the shape of the bottom plate 153 is not particularly limited, but may be, for example, a flat shape or a convex shape that is inclined downward toward the hole 19.
  • the compressor 1 that has the same effects as the first embodiment and can effectively discharge the separated droplets to the outside.
  • FIG. 8 is an overall configuration diagram of the gas pressure feeding system 2 in which the compressor 1 according to the present invention exemplified in each embodiment is installed.
  • the compressor 1 can be installed in a natural gas field 22 located in a well 21 dug to a depth of several thousand m or more, for example, 1000 m or more.
  • the compressor 1 installed in such a place separates foreign substances in the natural gas at the droplet separator, cools the stator and the like using the natural gas, and pressurizes the natural gas with the impeller 11. Can be sent to the ground.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Separating Particles In Gases By Inertia (AREA)

Abstract

The compressor (1) has: a sidewall (17) having a suction flow passage (14) therein; a swirling flow pipe (16) connected to the sidewall (17); a stator (13) disposed on one side with respect to the swirling flow pipe (16); a bottom part (15) disposed on the other side with respect to the swirling flow pipe (16); a holding part capable of holding liquid droplets; and a discharge part capable of discharging the liquid droplets. The pressure loss that occurs when gas moves between the suction flow passage (14) and the outside of the compressor by passing through the bottom part (15) is greater than the pressure loss that occurs when the gas moves between the suction flow passage (14) and the outside of the compressor by passing through the swirling flow pipe (16).

Description

圧縮機及び圧縮機を有するガス圧送システムCompressor and gas pumping system having compressor
 本発明は、圧縮機及び圧縮機を有するガス圧送システムに関する。 The present invention relates to a compressor and a gas pumping system having the compressor.
 天然ガス(プロセスガス)を生産する生産プラントでは、地下の天然ガス田に向かう数千メートル長の井戸を掘り、天然ガスを採掘している。 In a production plant that produces natural gas (process gas), a natural gas is mined by digging a well that is several thousand meters long toward the underground natural gas field.
 生産プラントの稼動当初は、天然ガス田が持つ自噴圧力によって、地下から地上に向けて天然ガスが井戸を通って噴出する。しかしながら、例えば稼働から暫くすると自噴圧力が減衰していくため、天然ガスの噴出速度が低下して生産性が低下していく。 At the beginning of the operation of the production plant, natural gas gushes out from the underground through the well due to the self-injection pressure of the natural gas field. However, for example, since the self-injection pressure attenuates after a while from operation, the natural gas ejection speed decreases and productivity decreases.
 このため、井戸の中に圧縮機を設置して、天然ガスを地上に圧送するという方法が知られている。より天然ガス田に近い場所に圧縮機を設置することが生産効率改善の観点からは好ましいが、地下数千メートルの井戸元は高温であり、圧縮機のモータ等を冷却することが求められる。 For this reason, a method of installing a compressor in a well and pumping natural gas to the ground is known. Although it is preferable from the viewpoint of improving production efficiency to install a compressor at a location closer to the natural gas field, the well base at several thousand meters underground is hot, and it is required to cool the compressor motor and the like.
 そのような中、天然ガス田の天然ガスを用いてモータのステータ等を冷却する方法が検討されている。しかし、天然ガスには水や油などの液滴が異物として混入しており、これらの異物はモータの損傷の原因になるおそれがあることから、これら異物を除去した上でステータ側に流すことが望まれる。 Under such circumstances, a method for cooling the stator of a motor using natural gas from a natural gas field has been studied. However, since natural gas contains water and oil droplets as foreign substances, and these foreign substances may cause damage to the motor, remove these foreign substances before flowing them to the stator. Is desired.
 異物を除去するための方法として、特許文献1は、ガス導入口3からサイクロン室2にプロセスガスを導入する際に旋回流を発生させて、遠心力効果でプロセスガスから油分を分離するサイクロンセパレータを開示している。油分を分離したプロセスガスは、上方に設けられたガス排出口4から回収される。 As a method for removing foreign matter, Patent Document 1 discloses a cyclone separator that generates a swirling flow when a process gas is introduced from a gas inlet 3 into a cyclone chamber 2 and separates oil from the process gas by a centrifugal force effect. Is disclosed. The process gas from which the oil has been separated is recovered from the gas outlet 4 provided above.
特開2013-163143号公報JP 2013-163143 A
 遠心力効果で異物を除去する場合、効果的に異物を分離するには、旋回流速度を高速にすることが好ましい。そして同時に、分離した異物を外部に排出できるように構成することが好ましい。しかし、旋回流を形成するように配されたガス導入口以外から天然ガス田のプロセスガスが導入されると、旋回流速度が低減してしまい、異物分離効率が低下する。このため、旋回流速度への悪影響を抑制しつつ、異物を排出可能な構成が求められる。
この点について特許文献1は、何ら言及していない。
When removing foreign matters by the centrifugal force effect, in order to effectively separate foreign matters, it is preferable to increase the swirl flow velocity. At the same time, it is preferable that the separated foreign matter be discharged to the outside. However, when the process gas of the natural gas field is introduced from other than the gas inlet arranged so as to form the swirl flow, the swirl flow speed is reduced and the foreign matter separation efficiency is lowered. For this reason, the structure which can discharge | emit a foreign material is calculated | required, suppressing the bad influence to a swirl | vortex flow speed.
In this regard, Patent Document 1 does not mention anything.
 上記事情に鑑みてなされた本発明は、吸込流路を内側に有する側壁と、該側壁に接続した旋回流配管と、該旋回流配管に対して一方側に位置するステータと、を有する圧縮機であって、該旋回流配管に対して他方側に位置する底部と、液滴を保持可能な保持部と、液滴を排出可能な排出部と、を有し、前記吸込流路及び当該圧縮機外部の間を、前記底部を通過して移動する場合の圧力損失は、前記吸込流路及び当該圧縮機外部の間を、前記旋回流配管を通過して移動する場合の圧力損失より大きいことを特徴とする。 This invention made | formed in view of the said situation, the compressor which has the side wall which has a suction flow path inside, the swirl flow piping connected to this side wall, and the stator located in one side with respect to this swirl flow piping The suction flow path and the compression have a bottom portion located on the other side with respect to the swirl flow pipe, a holding portion capable of holding droplets, and a discharge portion capable of discharging droplets. The pressure loss when moving between the outside of the machine through the bottom portion is larger than the pressure loss when moving between the suction flow path and the outside of the compressor through the swirling flow pipe. It is characterized by.
実施例1の圧縮機の全体構成図である。1 is an overall configuration diagram of a compressor according to Embodiment 1. FIG. 図1のA-A線断面図である。FIG. 2 is a sectional view taken along line AA in FIG. 1. 実施例2の圧縮機の全体構成図である。It is a whole block diagram of the compressor of Example 2. 実施例3の圧縮機の全体構成図である。FIG. 6 is an overall configuration diagram of a compressor according to a third embodiment. 実施例4の圧縮機の全体構成図である。FIG. 6 is an overall configuration diagram of a compressor according to a fourth embodiment. 図5のB矢印方向から観察した図である。It is the figure observed from the B arrow direction of FIG. 実施例5の圧縮機の全体構成図である。FIG. 6 is an overall configuration diagram of a compressor according to a fifth embodiment. 各実施例の圧縮機を設置したガス圧送システムの全体構成図である。It is a whole block diagram of the gas pressure feeding system which installed the compressor of each Example.
 以下、添付の図面を参照しつつ、本発明の実施例を説明する。同様の構成要素には同様の符号を付し、また、同様の説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. Similar components are denoted by the same reference numerals, and the same description will not be repeated.
 本発明の各種の構成要素は、必ずしも一の部材から成る必要はなく、例えば、一の構成要素が複数の部材から成ること、複数の構成要素が一の部材から成ること、或る構成要素と別の構成要素との一部が互いに重複すること、等を許容する。 The various components of the present invention do not necessarily have to be composed of one member. For example, one component is composed of a plurality of members, a plurality of components are composed of one member, A part with another component is allowed to overlap each other.
 図1は、実施例1の圧縮機1の全体構成を示す。圧縮機1は、プロセスガスを昇圧し圧送する圧縮部としての羽根車11、羽根車11の回転軸であるシャフト12、及びシャフト12に回転力を付与するステータ13を有する圧縮機構部と、筒状の側壁17によって側周を囲まれた空間である吸込流路14、底部15、及び旋回流配管16を有する液滴分離部(異物分離部)とを備える。圧縮機1は、プロセスガス雰囲気中に設置することができる。吸込流路14の一部は、本実施例のように、圧縮機構部を取り囲んでいても良い。 FIG. 1 shows the overall configuration of the compressor 1 according to the first embodiment. The compressor 1 includes an impeller 11 as a compression unit that pressurizes and pumps process gas, a shaft 12 that is a rotating shaft of the impeller 11, and a compression mechanism unit that includes a stator 13 that applies a rotational force to the shaft 12, and a cylinder. And a liquid droplet separation part (foreign matter separation part) having a suction flow path 14, a bottom part 15, and a swirl flow pipe 16, which is a space surrounded by a side wall 17. The compressor 1 can be installed in a process gas atmosphere. A part of the suction channel 14 may surround the compression mechanism as in this embodiment.
 側壁17は、筒状の軸線方向について、一方側に圧縮機構部を有し、他方側に底部15を有する。底部15は、吸込流路14及び圧縮機1の外部の間に位置している。旋回流配管16は、吸込流路14及び圧縮機1の外部の間に位置し、吸込流路14及び圧縮機1の外部を連通している。 The side wall 17 has a compression mechanism part on one side and a bottom part 15 on the other side in the cylindrical axial direction. The bottom 15 is located between the suction flow path 14 and the outside of the compressor 1. The swirl flow pipe 16 is located between the suction flow path 14 and the outside of the compressor 1, and communicates the suction flow path 14 and the outside of the compressor 1.
 本実施例の側壁17は円筒状である。吸込流路14は、羽根車11側から底部15側に向かう方向に重力が作用する向きで配されている。すなわち、吸込流路14中の物質は、羽根車11側ではなく底部15側に向かう重力加速度を受ける。 The side wall 17 of this embodiment is cylindrical. The suction channel 14 is arranged in a direction in which gravity acts in a direction from the impeller 11 side toward the bottom 15 side. That is, the substance in the suction flow path 14 is subjected to gravitational acceleration toward the bottom 15 side rather than the impeller 11 side.
 羽根車11、シャフト12、及びステータ13は、側壁17の内側のうち、旋回流配管16に対して一方側に配されている。後述するように、側壁17の内側にはプロセスガスが導入されるところ、高温になり得るステータ13等をこのプロセスガスによって冷却できる。また、底部15は、旋回流配管16に対して他方側に配されている。 The impeller 11, the shaft 12, and the stator 13 are arranged on one side with respect to the swirl flow pipe 16 inside the side wall 17. As will be described later, when a process gas is introduced inside the side wall 17, the stator 13 or the like that can be at a high temperature can be cooled by this process gas. Further, the bottom portion 15 is disposed on the other side with respect to the swirl flow pipe 16.
 吸込流路14及び吸込流路14外部の間を、羽根車11を通過して移動する際の圧力損失よりも、吸込流路14及び吸込流路14外部の間を、底部15を通過して移動する際の圧力損失の方が大きい値になるように、底部15は構成されている。 Rather than passing through the impeller 11 and moving between the suction channel 14 and the outside of the suction channel 14, the bottom 15 is passed between the suction channel 14 and the outside of the suction channel 14. The bottom portion 15 is configured so that the pressure loss during movement becomes a larger value.
 圧縮機1は、液滴を含んだプロセスガスを、圧縮機1の外部から、旋回流配管16を介して吸込流路14に導入する。底部15を通過する際の圧力損失は大きいため、導入されたプロセスガスは羽根車11側へ流れていく。プロセスガスは、ステータ13、シャフト12周囲の空間を経て羽根車11に到達し、羽根車11で昇圧されてさらに下流へ圧送される。すなわち、一部のプロセスガスは、ステータ13とシャフト12の間にある隙間を流れることで、モータ発熱部の冷却ガスとして使用される。 The compressor 1 introduces a process gas containing droplets from the outside of the compressor 1 into the suction flow path 14 via the swirl flow pipe 16. Since the pressure loss when passing through the bottom 15 is large, the introduced process gas flows toward the impeller 11 side. The process gas reaches the impeller 11 through the space around the stator 13 and the shaft 12, is pressurized by the impeller 11, and is further pumped downstream. That is, a part of the process gas is used as a cooling gas for the motor heat generating part by flowing through a gap between the stator 13 and the shaft 12.
 また、吸込流路14及び吸込流路14外部を、底部15を通過して移動する際の圧力損失は、吸込流路14及び吸込流路14外部を、旋回流配管16を通過して移動する際の圧力損失より大きい。このため、圧縮機1周囲のプロセスガスは、略全部又は全部が旋回流配管16を介して吸込流路14に進入し、羽根車11に流れる。 Moreover, the pressure loss at the time of moving through the bottom 15 through the suction channel 14 and the outside of the suction channel 14 moves through the swirling flow pipe 16 through the suction channel 14 and the outside of the suction channel 14. Greater than pressure loss. For this reason, almost all or all of the process gas around the compressor 1 enters the suction flow path 14 via the swirl flow pipe 16 and flows to the impeller 11.
 図2は、図1のA-A線断面図である。旋回流配管16は、側壁17の略接線方向を延在方向として側壁17に接続している。これにより、矢印D1に示すように略接線方向でプロセスガスが吸込流路14内に流入し、吸込流路14内で矢印D2に示すように側壁17の内周に沿って旋回し、プロセスガスの旋回流が発生する。この旋回流によってプロセスガス中の液滴に遠心力が作用するため、液滴が吸込流路14の外径側に移動し、側壁17内面に付着する。付着した液滴は液膜を形成し、重力によって、羽根車11に対して反対の方向の底部15に向かって下降していく。したがって、底部15に向かって液滴が進む。 FIG. 2 is a cross-sectional view taken along line AA in FIG. The swirl flow pipe 16 is connected to the side wall 17 with the substantially tangential direction of the side wall 17 as the extending direction. As a result, the process gas flows into the suction flow path 14 in a substantially tangential direction as shown by the arrow D1, and swirls along the inner periphery of the side wall 17 as shown by the arrow D2 in the suction flow path 14 to process gas. The swirling flow is generated. Since the centrifugal force acts on the droplets in the process gas by this swirling flow, the droplets move to the outer diameter side of the suction flow path 14 and adhere to the inner surface of the side wall 17. The adhering droplet forms a liquid film and descends toward the bottom 15 in the opposite direction to the impeller 11 by gravity. Accordingly, the liquid droplet proceeds toward the bottom 15.
 本実施例の底部15は、吸込流路14の下方を塞ぐ蓋である。このため、底部15を介して圧縮機1の外部からプロセスガスが進入することはないので、旋回流配管16から流入したプロセスガスの旋回流が弱まることを効果的に抑制できる。 The bottom 15 of the present embodiment is a lid that closes the lower side of the suction flow path 14. For this reason, since the process gas does not enter from the outside of the compressor 1 through the bottom portion 15, it can be effectively suppressed that the swirling flow of the process gas flowing in from the swirling flow pipe 16 is weakened.
 本実施例の場合、分離された液滴は、底部15に保持されていくため、底部15が液滴の保持部としての機能を果たす。一方、旋回流配管16は、底部15より上側に位置しているため、液滴が旋回流配管16と同じ高さまで貯留されると、液滴は旋回流配管16を通じて圧縮機1の外部に排出される。すなわち、本実施例では旋回流配管16が液滴の排出部としての機能を果たす。 In the case of the present embodiment, the separated droplets are held on the bottom portion 15, so that the bottom portion 15 functions as a droplet holding portion. On the other hand, since the swirl flow pipe 16 is positioned above the bottom portion 15, when the droplets are stored up to the same height as the swirl flow pipe 16, the droplets are discharged to the outside of the compressor 1 through the swirl flow pipe 16. Is done. That is, in this embodiment, the swirl flow pipe 16 functions as a droplet discharge unit.
 旋回流配管16は、側壁17に対して略水平に接続しても良いが、側壁17側が上向きとなるように傾斜して接続しても良い。こうすると、排出されるべき液滴が旋回流配管16内に溜まることを抑制できるので、効果的に液滴を排出できる。 The swirl flow pipe 16 may be connected substantially horizontally to the side wall 17, but may be connected so as to be inclined so that the side wall 17 side faces upward. If it carries out like this, since it can suppress that the droplet which should be discharged | emitted accumulates in the swirling flow piping 16, a droplet can be discharged | emitted effectively.
 本実施例によれば、旋回流配管16による旋回流の形成を効果的に行いつつ、すなわちプロセスガス中の液滴を効果的に分離しつつ、液滴を外部に排出できる圧縮機1を提供できる。 According to the present embodiment, the compressor 1 is provided that can discharge the droplets to the outside while effectively forming the swirl flow by the swirl flow pipe 16, that is, effectively separating the droplets in the process gas. it can.
 本実施例の構成は、以下の点を除き実施例1と同様に構成できる。
 図3は、本実施例の圧縮機1の全体構成図である。本実施例では、底部15は、上面151と、上面151から下方に向かって延在する側面152とを有している。側面152は、側壁17の内壁と略平行に形成されており、本実施例では側壁の形状と同様の円筒状である。側面152は、側壁17の内壁に比べて、いわば一回り小さい形状にされているため、側面152及び側壁17の間には、液滴の保持部及び排出部としての機能を果たす細隙流路141が形成されている。細隙流路141は、液滴が側壁17及び側面152の間に保持される寸法に設定されている。このような寸法として好ましい範囲は、液滴の粘度、圧縮機1周囲の温度等を考慮して予め求めておくことができるが、例えば、側壁17の内面から側面152の外面の寸法を2mm以上3mm以下に、側面152の延在長さを170mm以上210mm以下にすることができる。液滴としては水が想定され、例えば環境圧力は10MPa、環境温度は140℃、粘度は0.19805mPa・sである。液滴を保持及び排出できるこのような底部15を設けることで、細隙流路141を通過する際の圧力損失を大きくできることからプロセスガスの進入を抑制できる。よって、液滴分離部1外部から底部15側を通じてプロセスガスが流入し、旋回流が弱まることを抑制できる。なお、このような細隙流路141を形成するためには、種々公知の方法を採用できるが、例えば側面152と側壁17の間にリブを設けて、側面152を固定する構造が考えられる。
The configuration of the present embodiment can be configured in the same manner as in the first embodiment except for the following points.
FIG. 3 is an overall configuration diagram of the compressor 1 of the present embodiment. In the present embodiment, the bottom portion 15 has an upper surface 151 and a side surface 152 extending downward from the upper surface 151. The side surface 152 is formed substantially parallel to the inner wall of the side wall 17, and in this embodiment, has a cylindrical shape similar to the shape of the side wall. Since the side surface 152 is formed to be slightly smaller than the inner wall of the side wall 17, a slit channel that functions as a droplet holding unit and a discharge unit is interposed between the side surface 152 and the side wall 17. 141 is formed. The slit channel 141 is set to a size that allows the droplet to be held between the side wall 17 and the side surface 152. A preferable range for such dimensions can be determined in advance in consideration of the viscosity of the droplets, the temperature around the compressor 1, and the like. The extension length of the side surface 152 can be set to 170 mm or more and 210 mm or less to 3 mm or less. As the droplet, water is assumed. For example, the environmental pressure is 10 MPa, the environmental temperature is 140 ° C., and the viscosity is 0.19805 mPa · s. Providing such a bottom portion 15 that can hold and discharge droplets can increase the pressure loss when passing through the slit channel 141, so that entry of process gas can be suppressed. Therefore, it is possible to suppress the process gas from flowing in from the outside of the droplet separation unit 1 through the bottom 15 side and weakening the swirling flow. In order to form such a slit channel 141, various known methods can be adopted. For example, a structure in which a rib is provided between the side surface 152 and the side wall 17 to fix the side surface 152 is conceivable.
 さて、羽根車11が駆動して、プロセスガスが旋回流配管16から流入して旋回流になると、遠心力効果で液滴が側壁17に付着して液膜Lを形成する。この液膜は重力により底部15に向かって下降し、細隙流路141に保持されていく。細隙流路141に保持され得る液滴の量には上限があり、液滴の自重によって一部が保持され、残部は細隙流路141をさらに下降して外部に排出される。 Now, when the impeller 11 is driven and the process gas flows into the swirling flow pipe 16 and turns into swirling flow, the droplets adhere to the side wall 17 by the centrifugal force effect to form the liquid film L. The liquid film descends toward the bottom 15 due to gravity and is held in the slit channel 141. There is an upper limit to the amount of droplets that can be held in the slit channel 141, a part is held by the weight of the droplets, and the remaining part further descends the slit channel 141 and is discharged to the outside.
 例えばプロセスガスを昇圧する羽根車11の運転当初は、液滴が細隙流路141に保持されていないため、細隙流路141をプロセスガスが通過できる状態ではあるが、細隙流路141の寸法が小さく、旋回流配管16を通過する際の圧力損失より大きい圧力損失にされているため、その流入量は小さく抑えられる。このため、羽根車11の運転当初も効果的に旋回流を形成することができる。そして、液滴が細隙流路141に保持されると、液滴が側壁17及び側面152の間の蓋の役割を果たして、圧力損失値がさらに大きくなるので、細隙流路141を通じての吸込流路14へのプロセスガス進入をさらに抑制できる。 For example, at the beginning of the operation of the impeller 11 that pressurizes the process gas, since the droplets are not held in the slit channel 141, the process gas can pass through the slit channel 141, but the slit channel 141 , And the pressure loss is larger than the pressure loss when passing through the swirling flow pipe 16, so that the amount of inflow is kept small. For this reason, it is possible to effectively form a swirling flow even at the beginning of operation of the impeller 11. When the droplet is held in the slit channel 141, the droplet serves as a lid between the side wall 17 and the side surface 152, and the pressure loss value is further increased. Therefore, the suction through the slit channel 141 is performed. The process gas entry into the flow path 14 can be further suppressed.
 本実施例によれば、実施例1と同様の効果を奏するとともに、分離した液滴を外部に効果的に排出可能な圧縮機1を提供できる。なお、液滴Lが存在しない状態の細隙流路141の圧力損失値は、例えば、旋回流配管16の圧力損失値の4倍以上にすることができる。 According to the present embodiment, it is possible to provide the compressor 1 that has the same effects as the first embodiment and can effectively discharge the separated droplets to the outside. In addition, the pressure loss value of the slit channel 141 in the state where the droplet L does not exist can be set to four times or more the pressure loss value of the swirling flow pipe 16, for example.
 本実施例の構成は、以下の点を除き実施例1又は2と同様に構成できる。
 図4は、本実施例の圧縮機1の全体構成図である。本実施例の圧縮機1は、旋回流配管16より上側かつ羽根車11の間に、側壁17の内面から内側に向けて突出した凸部171を有している。凸部171は、側壁17の内面全周に亘って設けられており、本実施例においては略円環状である。
The configuration of the present embodiment can be configured in the same manner as in the first or second embodiment except for the following points.
FIG. 4 is an overall configuration diagram of the compressor 1 of the present embodiment. The compressor 1 of the present embodiment has a convex portion 171 that protrudes inward from the inner surface of the side wall 17 between the impeller 11 and the swirl flow pipe 16. The convex portion 171 is provided over the entire inner surface of the side wall 17 and has a substantially annular shape in this embodiment.
 吸込流路14に流入したプロセスガスは、旋回流配管16よりも上側に位置する羽根車11に向かうため、その流れに力を受けて、側壁17を液滴が上昇し得る。凸部171を設けることで、そのような液滴の上昇を抑制することができる。 Since the process gas that has flowed into the suction flow path 14 is directed to the impeller 11 located above the swirl flow pipe 16, the liquid can rise on the side wall 17 due to the force of the flow. By providing the convex portion 171, it is possible to suppress the rise of such a droplet.
 本実施例によれば、実施例1と同様の効果を奏するとともに、液滴がステータ13等に接触するおそれを低減した圧縮機1を提供できる。 According to the present embodiment, it is possible to provide the compressor 1 that has the same effects as those of the first embodiment and reduces the possibility that the droplets come into contact with the stator 13 and the like.
 本実施例の構成は、以下の点を除き実施例1乃至3何れかと同様に構成できる。 The configuration of the present embodiment can be configured in the same manner as any of Embodiments 1 to 3 except for the following points.
 図5は本実施例の圧縮機1の全体構成図、図6は図5のB矢印方向から観察した図である。旋回流配管16より上側かつ羽根車11の間には、障害物18が設けられている。障害物18は、側壁17の内面から内側に向けて突出した凸部181と、吸込流路14の一部を塞ぐ部分壁182とを有している。 FIG. 5 is an overall configuration diagram of the compressor 1 of the present embodiment, and FIG. 6 is a diagram observed from the direction of arrow B in FIG. An obstacle 18 is provided above the swirl flow pipe 16 and between the impellers 11. The obstacle 18 has a convex portion 181 that protrudes inward from the inner surface of the side wall 17 and a partial wall 182 that blocks a part of the suction flow path 14.
 凸部181は、実施例3に例示した凸部171と同様に構成でき、液滴の上昇を抑制できる。部分壁182は、吸込流路14を流路方向(矢印B方向)に沿って観察した場合、吸込流路14のうち、側壁17近傍又は吸込流路14の中央側に設けられた構造物である。本実施例では、流路方向視で十字型に形成されている。部分壁182によってプロセスガスの旋回流を減速させることができる。プロセスガスの旋回流を減速させた上で羽根車11にプロセスガスを吸引させることで、圧縮効率を好適にすることができる。 The convex portion 181 can be configured in the same manner as the convex portion 171 exemplified in Example 3, and can suppress the rise of the droplet. The partial wall 182 is a structure provided in the vicinity of the side wall 17 or the central side of the suction channel 14 in the suction channel 14 when the suction channel 14 is observed along the channel direction (arrow B direction). is there. In this embodiment, it is formed in a cross shape when viewed from the flow path direction. The partial flow of the process gas can be reduced by the partial wall 182. The compression efficiency can be optimized by causing the impeller 11 to suck the process gas after decelerating the swirling flow of the process gas.
 旋回流によって液滴を分離した後に旋回流を減速させることが好ましいため、障害物18は、旋回流配管16から例えば0.15m以上離れた位置に設けると良い。 Since it is preferable to decelerate the swirling flow after the droplets are separated by the swirling flow, the obstacle 18 may be provided at a position away from the swirling flow piping 16 by, for example, 0.15 m or more.
 障害物18は、旋回流の減速を充分に行うべく、流路方向に沿って、例えば旋回流配管16から羽根車11までの距離の5%以上、10%以上、15%以上、又は20%以上延在しても良い。また、障害物18を1つに限らず複数個設けても良い。このようにすると、旋回流の減速をより効果的に行うことができる。 The obstacle 18 is, for example, 5% or more, 10% or more, 15% or more, or 20% of the distance from the swirling flow pipe 16 to the impeller 11 along the flow path direction in order to sufficiently reduce the swirling flow. It may extend as described above. Further, the number of obstacles 18 is not limited to one, and a plurality of obstacles may be provided. In this way, the swirl flow can be decelerated more effectively.
 本実施例によれば、実施例1と同様の効果を奏するとともに、昇圧効率を改善した圧縮機1を提供できる。なお、凸部181を省略して部分壁182のみを設けても良い。 According to the present embodiment, it is possible to provide the compressor 1 having the same effects as the first embodiment and improved boosting efficiency. Note that the convex portion 181 may be omitted and only the partial wall 182 may be provided.
 本実施例の構成は、以下の点を除き実施例1乃至4何れかと同様にできる。
 図7は、本実施例の圧縮機1の全体構成図である。本実施例では、底部15は、側壁17の内面に略接して摺動する、液滴の保持部としての機能を果たす底板153と、底板153に接続した弾性体154とを有する弁によって構成されている。圧縮機1は、旋回流配管16より下方に、圧縮機1の外部に連通した、液滴の排出部としての機能を果たす孔19を有している。
The configuration of this embodiment can be the same as that of any of Embodiments 1 to 4 except for the following points.
FIG. 7 is an overall configuration diagram of the compressor 1 of the present embodiment. In the present embodiment, the bottom portion 15 is constituted by a valve having a bottom plate 153 that slides substantially in contact with the inner surface of the side wall 17 and that functions as a droplet holding portion, and an elastic body 154 connected to the bottom plate 153. ing. The compressor 1 has a hole 19 below the swirl flow pipe 16 that communicates with the outside of the compressor 1 and functions as a droplet discharge unit.
 弾性体154としては、例えばバネを採用することができる。弾性体154は、底板153の自重のみが加わっている場合、底板153より下方に孔19が位置するように調整されている。 As the elastic body 154, for example, a spring can be employed. The elastic body 154 is adjusted so that the hole 19 is positioned below the bottom plate 153 when only the weight of the bottom plate 153 is applied.
 底板153が側壁17に略摺動するように設けられているため、孔19を通じて圧縮機1内に進入しようとするプロセスガスは、底板153より上側に通過することを抑制されている。このため、圧力損失は大きく、旋回流配管16を通じて進入する旋回流が弱まることを抑制できる。また、液滴が底板153の上側に保持され始めると、側壁17及び底板153の間に隙間が生じていても、液滴がその部分の蓋となり、プロセスガスの進入を抑制できる。 Since the bottom plate 153 is provided so as to slide substantially on the side wall 17, the process gas that attempts to enter the compressor 1 through the hole 19 is suppressed from passing above the bottom plate 153. For this reason, a pressure loss is large and it can suppress that the swirling flow which approachs through the swirling flow piping 16 weakens. Further, when the liquid droplet starts to be held on the upper side of the bottom plate 153, even if a gap is generated between the side wall 17 and the bottom plate 153, the liquid droplet serves as a lid for that portion, and entry of the process gas can be suppressed.
 そして、底板153の上側に保持される液滴の量が増加していくと、液滴の重量に応じて弾性体153が圧縮され、底板153が下降していく。そして、液滴の重量が所定以上になると、底板153の上面が孔19の高さに一致するようになり、孔19を介して液滴が排出される。液滴の一部又は全部が排出されることで、底板153に保持される液滴の重量が軽くなるため、弾性体154は再び底板153を持上げ、底板153の上面が孔19より上側に位置するようになる。 Then, as the amount of droplets held on the upper side of the bottom plate 153 increases, the elastic body 153 is compressed according to the weight of the droplets, and the bottom plate 153 descends. When the weight of the droplet exceeds a predetermined value, the upper surface of the bottom plate 153 coincides with the height of the hole 19 and the droplet is discharged through the hole 19. By discharging a part or all of the droplets, the weight of the droplets held on the bottom plate 153 is reduced, so that the elastic body 154 lifts the bottom plate 153 again, and the upper surface of the bottom plate 153 is positioned above the hole 19. Will come to do.
 底板153の形状は特に限られないが、例えば、平面状でも良いし、孔19に向かって下り傾斜となる凸形状でも良い。 The shape of the bottom plate 153 is not particularly limited, but may be, for example, a flat shape or a convex shape that is inclined downward toward the hole 19.
 本実施例によれば、実施例1と同様の効果を奏するとともに、分離した液滴を外部に効果的に排出可能な圧縮機1を提供できる。 According to the present embodiment, it is possible to provide the compressor 1 that has the same effects as the first embodiment and can effectively discharge the separated droplets to the outside.
 [ガス圧送システム]
 図8は、各実施例で例示した本発明に係る圧縮機1を設置したガス圧送システム2の全体構成図である。圧縮機1は、地下数千m以上、例えば1000m以上の深さにまで掘られた井戸21中に位置する天然ガス田22に設置することができる。このような場所に設置された圧縮機1は、液滴分離部にて天然ガス中の異物を分離し、この天然ガスを利用してステータ等を冷却し、この天然ガスを羽根車11で昇圧して地上に向けて送ることができる。
[Gas pressure feeding system]
FIG. 8 is an overall configuration diagram of the gas pressure feeding system 2 in which the compressor 1 according to the present invention exemplified in each embodiment is installed. The compressor 1 can be installed in a natural gas field 22 located in a well 21 dug to a depth of several thousand m or more, for example, 1000 m or more. The compressor 1 installed in such a place separates foreign substances in the natural gas at the droplet separator, cools the stator and the like using the natural gas, and pressurizes the natural gas with the impeller 11. Can be sent to the ground.
1  圧縮機
11  羽根車(昇圧部)
12  シャフト
13  ステータ
14  吸込流路
141  細隙流路(保持部及び排出部)
15  底部
151  上面
152  側面
153  底板(保持部)
154  弾性体
16  旋回流配管(排出部)
17  側壁
171  凸部
18  障害物
181  凸部
182  部分壁
19  孔(排出部)
2  ガス圧送システム
21  井戸
22  天然ガス田
1 Compressor 11 Impeller (Pressure Booster)
12 Shaft 13 Stator 14 Suction channel 141 Narrow channel (holding part and discharge part)
15 Bottom portion 151 Top surface 152 Side surface 153 Bottom plate (holding portion)
154 Elastic body 16 Swirl pipe (discharge section)
17 Side wall 171 Convex part 18 Obstacle 181 Convex part 182 Partial wall 19 Hole (discharge part)
2 Gas pumping system 21 Well 22 Natural gas field

Claims (8)

  1.  吸込流路を内側に有する側壁と、
     該側壁に接続した旋回流配管と、
     該旋回流配管に対して一方側に位置するステータと、を有する圧縮機であって、
     該旋回流配管に対して他方側に位置する底部と、
     液滴を保持可能な保持部と、
     液滴を排出可能な排出部と、を有し、
     前記吸込流路及び当該圧縮機外部の間を、前記底部を通過して移動する場合の圧力損失は、前記吸込流路及び当該圧縮機外部の間を、前記旋回流配管を通過して移動する場合の圧力損失より大きいことを特徴とする圧縮機。
    A side wall having a suction channel inside;
    A swirl flow pipe connected to the side wall;
    A compressor having a stator located on one side with respect to the swirl flow pipe,
    A bottom portion located on the other side with respect to the swirling flow pipe;
    A holding unit capable of holding a droplet;
    A discharge part capable of discharging droplets,
    The pressure loss when moving between the suction flow path and the outside of the compressor through the bottom portion moves between the suction flow path and the outside of the compressor through the swirl flow pipe. Compressor characterized by greater than case pressure loss.
  2.  前記底部は、蓋であり、
     該蓋が、前記保持部として機能することが可能で、
     前記旋回流配管が前記排出部として機能することが可能なことを特徴とする請求項1に記載の圧縮機。
    The bottom is a lid;
    The lid can function as the holding unit,
    The compressor according to claim 1, wherein the swirl flow pipe can function as the discharge unit.
  3.  前記旋回流配管は、前記側壁側が上向きになるよう傾斜していることを特徴とする請求項2に記載の圧縮機。 The compressor according to claim 2, wherein the swirl flow pipe is inclined so that the side wall side faces upward.
  4.  前記底部は、前記側壁との間に細隙流路を形成し、
     該細隙流路が、前記保持部及び前記排出部として機能することが可能なことを特徴とする請求項1に記載の圧縮機。
    The bottom portion forms a slit channel between the side wall,
    The compressor according to claim 1, wherein the slit channel can function as the holding unit and the discharge unit.
  5.  さらに、前記側壁に孔を有するとともに、
     前記底部は、底板と、該底板に接続した弾性体と、を有し、
     前記弾性体は、前記底板の重量が加わっている場合、前記底板を前記孔及び前記旋回流配管の間に位置させ、前記底板の重量より大きい所定値以上の重量が加わっている場合、前記底板を前記孔と同じ高さに位置させ、
     前記底板が前記保持部として機能することが可能であり、
     前記孔が前記排出部として機能することが可能であることを特徴とする請求項1に記載の圧縮機。
    Furthermore, the side wall has a hole,
    The bottom portion includes a bottom plate and an elastic body connected to the bottom plate,
    When the weight of the bottom plate is added, the elastic body positions the bottom plate between the hole and the swirl flow pipe, and when the weight more than a predetermined value larger than the weight of the bottom plate is added, the bottom plate At the same height as the hole,
    The bottom plate can function as the holding portion;
    The compressor according to claim 1, wherein the hole can function as the discharge unit.
  6.  前記旋回流配管及びモータの間に、前記側壁内面から内側に突出した凸部を有することを特徴とする請求項1に記載の圧縮機。 2. The compressor according to claim 1, further comprising a convex portion protruding inward from the inner surface of the side wall between the swirl flow pipe and the motor.
  7.  前記旋回流配管及び前記ステータの間に、前記吸込流路の流路方向視において、該吸込流路の中央側を塞ぐ部分壁を有することを特徴とする請求項1に記載の圧縮機。 2. The compressor according to claim 1, further comprising: a partial wall between the swirl flow pipe and the stator that closes a central side of the suction flow path when viewed from the flow path direction of the suction flow path.
  8.  請求項1乃至7何れか一項に記載の圧縮機を、地下1000m以上の深さのガス田に設置し、ガスを昇圧して地上に向けて送るガス圧送システム。 A gas pressure feeding system in which the compressor according to any one of claims 1 to 7 is installed in a gas field having a depth of 1000 m or more underground, and the pressure of the gas is increased and sent to the ground.
PCT/JP2017/035459 2016-11-14 2017-09-29 Compressor and gas pumping system having compressor WO2018088057A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016221120A JP2020029770A (en) 2016-11-14 2016-11-14 Compressor, and gas pumping system having compressor
JP2016-221120 2016-11-14

Publications (1)

Publication Number Publication Date
WO2018088057A1 true WO2018088057A1 (en) 2018-05-17

Family

ID=62109783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035459 WO2018088057A1 (en) 2016-11-14 2017-09-29 Compressor and gas pumping system having compressor

Country Status (2)

Country Link
JP (1) JP2020029770A (en)
WO (1) WO2018088057A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021210219A1 (en) * 2021-09-15 2023-03-16 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Liquid separator for a compressor system, coarse separator for such a liquid separator and liquid separator system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09220421A (en) * 1996-02-13 1997-08-26 Miura Co Ltd Slewing gas-liquid separator
JP2002119815A (en) * 2000-10-16 2002-04-23 Samson Co Ltd Centrifugal steam separator having double-tube
US20130277065A1 (en) * 2010-12-30 2013-10-24 Welltec A/S Artificial lift tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09220421A (en) * 1996-02-13 1997-08-26 Miura Co Ltd Slewing gas-liquid separator
JP2002119815A (en) * 2000-10-16 2002-04-23 Samson Co Ltd Centrifugal steam separator having double-tube
US20130277065A1 (en) * 2010-12-30 2013-10-24 Welltec A/S Artificial lift tool

Also Published As

Publication number Publication date
JP2020029770A (en) 2020-02-27

Similar Documents

Publication Publication Date Title
US20150226241A1 (en) Separation removal and circulation system of air bubbles in fluid
CN105899763B (en) Turbine bearing(s) shell
JP6205107B2 (en) Inlet particle separation system
EP2943264B1 (en) Gas desander
US8967954B2 (en) Intermediate floor for a radial turbine engine
EA027388B1 (en) Froth pump and method
US9909597B2 (en) Supersonic compressor with separator
CN105849482A (en) External separator
WO2018088057A1 (en) Compressor and gas pumping system having compressor
JP2017518173A (en) centrifuge
CN101835522B (en) Device for the precipitation of liquid droplets from a gas stream
KR101632522B1 (en) A cleaning in place system and a method of cleaning a centrifugal separator
KR20140056813A (en) Cyclone separator
JP5917329B2 (en) Steam turbine seal structure
TW202122149A (en) Packed tower
CN106660057A (en) Centrifugal abatement separator
EP2590723B1 (en) Multistage separation system
RU2703858C2 (en) Device and method of conditioning flow of fatty gas
EP3322900B1 (en) Motorcompressor comprising a drainage apparatus
KR101460425B1 (en) Oil separation means and freezer equipped therewith
RU2551454C1 (en) Gas turbine engine rotary breather
CN110831700B (en) Swirler with guide vanes
US10890353B2 (en) Centrifugal pump flow modifier
WO2015107610A1 (en) Gas-liquid separator and air compressor provided therewith
RU2607576C2 (en) Wet gas compression system with thermoacoustic resonator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17868931

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17868931

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP