[go: up one dir, main page]

WO2018082059A1 - Harq-ack反馈信息的传输方法及相关装置 - Google Patents

Harq-ack反馈信息的传输方法及相关装置 Download PDF

Info

Publication number
WO2018082059A1
WO2018082059A1 PCT/CN2016/104774 CN2016104774W WO2018082059A1 WO 2018082059 A1 WO2018082059 A1 WO 2018082059A1 CN 2016104774 W CN2016104774 W CN 2016104774W WO 2018082059 A1 WO2018082059 A1 WO 2018082059A1
Authority
WO
WIPO (PCT)
Prior art keywords
harq
harq process
feedback information
ack feedback
downlink
Prior art date
Application number
PCT/CN2016/104774
Other languages
English (en)
French (fr)
Inventor
罗之虎
吴毅凌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680089472.6A priority Critical patent/CN109716694B/zh
Priority to JP2019523548A priority patent/JP2020503723A/ja
Priority to PCT/CN2016/104774 priority patent/WO2018082059A1/zh
Priority to EP16920480.7A priority patent/EP3531599A4/en
Publication of WO2018082059A1 publication Critical patent/WO2018082059A1/zh
Priority to US16/402,238 priority patent/US20190260521A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1825Adaptation of specific ARQ protocol parameters according to transmission conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signalling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to the field of communication technologies, and in particular to a transmission technology of HARQ-ACK feedback information.
  • Hybrid Automatic Repeat Request (HARQ) can be used in the communication system for error control.
  • the downlink HARQ uses the stop mechanism to transmit data: Referring to FIG. 1a, after the base station device sends a data packet (0-4 in FIG. 1a is the data packet identifier), it stops and waits for the downlink HARQ-ACK feedback of the terminal device. Information (ACK or NACK). Wait until the feedback information of the terminal device is received before sending the data packet. For example, the base station transmits the data packet 0, then stops and waits for the terminal device to feed back the downlink HARQ-ACK feedback information for the data packet 0 (ie, ACK0 in FIG. 1a), and waits until the ACK0 is received, and then transmits the data packet 1.
  • Information ACK or NACK
  • the base station Since the base station has to wait for the downlink HARQ-ACK feedback information after each transmission of the data packet, and the channel is idle during the waiting for acknowledgement, no data is transmitted, so the throughput of the above method is very low.
  • FIG. 1b shows an exemplary illustration of four HARQ processes. Taking HARQ process 0 as an example, while HARQ process 0 is waiting for downlink HARQ-ACK feedback information (ACK0), other HARQ processes are transmitting data packets.
  • HARQ process 0 is waiting for downlink HARQ-ACK feedback information (ACK0)
  • ACK0 downlink HARQ-ACK feedback information
  • the purpose of the embodiments of the present invention is to provide a method for transmitting HARQ-ACK feedback information and related devices, so as to reduce uplink resources occupied by downlink multiple HARQ processes.
  • the embodiment of the present invention provides the following technical solutions:
  • an embodiment of the present application provides a method for transmitting HARQ-ACK feedback information.
  • the method is applied to a scenario of a downlink multi-HARQ process, where the method includes: acquiring, by the terminal device, downlink HARQ-ACK feedback information of each HARQ process in the multiple HARQ process, and using multiple downlink HARQ-ACK feedback information (of the multiple HARQ processes) Simultaneously transmitting on the same time-frequency resource, the base station simultaneously receives the multiple downlink HARQ-ACK feedback information on the same time-frequency resource.
  • the downlink HARQ-ACK feedback information of each HARQ-ACK process is independently transmitted on a time-frequency resource, and when there are multiple HARQ processes, multiple HARQ-ACK feedback information Transmission on different time-frequency resources, resulting in waste of resources.
  • the downlink HARQ-ACK feedback information of multiple HARQ processes is simultaneously transmitted on the same time-frequency resource, thereby greatly reducing the number of times the terminal device feeds back downlink HARQ-ACK feedback information and the downlink multi-HARQ process to uplink. The occupation of time-frequency resources, thereby reducing the power consumption of the terminal device.
  • the foregoing method may further include the following interaction step: the base station sends the foregoing multiple HARQ process to the terminal device.
  • the scheduling information is used to indicate the time-frequency resource for transmitting the downlink HARQ-ACK feedback information of the ith HARQ process, and the same time-frequency resource is for transmitting the downlink HARQ-ACK feedback information according to each HARQ process. Determined by time-frequency resources.
  • the terminal device may determine the NACK of the downlink HARQ-ACK feedback information corresponding to the HARQ process, and if the DCI of all the HARQ processes is lost, the terminal device cannot learn the downlink of any HARQ process.
  • the time-frequency resource of the HARQ-ACK feedback information the terminal device does not perform any transmission operation.
  • the DCIs of multiple HARQ processes are respectively sent, and the DCI transmission mode of the existing multiple HARQ processes is followed.
  • the time-frequency resource of the downlink HARQ-ACK feedback information of the multiple HARQ process is simultaneously determined according to the time-frequency resource scheduling information in each DCI, and how to determine the downlink HARQ-ACK for simultaneously transmitting the multiple HARQ process.
  • the time-frequency resources of the feedback information provide a specific way.
  • the foregoing method may further include the following interaction step: the base station sends the foregoing multiple HARQ to the terminal device.
  • the time-frequency resource scheduling information corresponding to the HARQ process is used to indicate that the i-th HARQ process transmits the downlink-time HARQ-ACK feedback information, and the same time-frequency resource is used to transmit the downlink HARQ-ACK feedback information according to each HARQ process. Time-frequency resources are determined.
  • the time-frequency resource scheduling information of multiple HARQ processes is carried by the DCI, so that the resources occupied by the time-frequency resource scheduling information of the multiple HARQ processes can be reduced.
  • the same time-frequency resource is determined by: selecting, by the first target HARQ process, the frequency domain resource location of the downlink HARQ-ACK feedback information as the frequency domain resource location of the same time-frequency resource; Selecting, by the second target HARQ process, the time domain resource location of the downlink HARQ-ACK feedback information as the time domain resource location of the same time-frequency resource; the first target HARQ process and the second target HARQ process being the multiple HARQ
  • the HARQ process in the process; the first target HARQ process and the second target HARQ process are different HARQ processes, or the first target HARQ process and the second target HARQ process are the same HARQ process.
  • the base station may send a simultaneous transmission configuration indication to the terminal device to indicate that multiple downlink HARQ-ACK feedback information of multiple HARQ processes are simultaneously transmitted on the same time-frequency resource, and the subsequent terminal device will process multiple HARQ processes.
  • Multiple downlink HARQ-ACK feedback information is simultaneously transmitted on the same time-frequency resource.
  • the base station may also send a non-simultaneous transmission configuration indication to the terminal device to indicate that multiple downlink HARQ-ACK feedback information of multiple HARQ processes are not simultaneously transmitted on the same time-frequency resource, and the subsequent terminal device shall specify the DCI of each HARQ process. And transmitting time-frequency resources of downlink HARQ-ACK feedback information, and feeding back downlink HARQ-ACK feedback information.
  • the base station can flexibly configure according to the coverage of the terminal device (or other situations). No transmission at the same time-frequency resource location. For example, for a terminal device with good coverage conditions, the base station may send a simultaneous transmission configuration indication thereto, so that the multi-process downlink HARQ-ACK feedback information of the terminal device is configured to be transmitted together; and for the terminal device with poor coverage conditions, The base station can send a non-simultaneous transmission configuration indication to the base station, and configure the multi-process downlink HARQ-ACK feedback information of the terminal device to be separately transmitted.
  • the foregoing simultaneous transmission configuration indication or the non-simultaneous transmission configuration indication may be controlled by the radio link, the RRC common signaling, the RRC dedicated signaling, the medium access control MAC control element CE signaling, and the physical layer control information DCI.
  • One or more signaling carries.
  • the simultaneous transmission configuration indication may be carried by the shared downlink DCI, or may be carried by the downlink DCI independently of each HARQ process.
  • the DCI carries the simultaneous transmission configuration indication, and does not occupy additional time-frequency resources.
  • the terminal device when the terminal device simultaneously transmits the multiple downlink HARQ-ACK feedback information on the same time-frequency resource, the terminal device may perform the following operations: modulating the multiple downlink HARQ-ACK feedback information, Obtaining a modulation symbol; transmitting the above modulation symbol on the same time-frequency resource as described above.
  • the following two HARQ processes are taken as an example.
  • the base station may adopt a modulation scheme of QPSK/binary ASK/binary FSK to modulate downlink HARQ-ACK feedback information of each HARQ process to obtain a QPSK/binary ASK/binary.
  • the FSK symbol is transmitted based on the time-frequency resource scheduling information corresponding to the process, and the QPSK/binary ASK/binary FSK symbol is transmitted.
  • the plurality of downlink HARQ-ACK feedback information is modulated to obtain modulation symbols, which can reduce the total time for transmitting downlink HARQ-ACK feedback information, and the total time reduction can reduce power consumption loss, thereby reducing terminal equipment. While feeding back the number of downlink HARQ-ACK feedback information, the power consumption loss of the terminal device is also reduced.
  • the multiple downlink HARQ-ACK feedback information is sorted according to a preset arrangement rule.
  • the preset arrangement rule may be configured to be arranged in ascending or descending order of the HARQ process index number.
  • the preset arrangement rule may be set according to any one of the full arrangement of the HARQ process index numbers.
  • the preset arrangement rule may be set: a parity arrangement of the HARQ process index number, an odd number before or after, and the like.
  • the embodiment of the invention provides a terminal device, which has the function of realizing the behavior of the terminal device in the actual method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more of the above functions Corresponding module.
  • the structure of the terminal device includes a processor and a memory that performs the above method by running a software program stored in the memory, invoking data stored in the memory.
  • an embodiment of the present invention provides a base station, where the base station has a function of implementing a behavior of a base station in the actual method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of the base station includes a processor and a memory that performs the above method by running a software program stored in the memory, invoking data stored in the memory.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use in the terminal device, including a program designed to perform the above aspects.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use by the base station, including a program designed to perform the above aspects.
  • the downlink HARQ-ACK feedback information of each HARQ-ACK process is independently transmitted on a time-frequency resource.
  • multiple HARQ-ACK feedback information is transmitted on different time-frequency resources. This results in wasted resources.
  • the downlink HARQ-ACK feedback information of multiple HARQ processes is simultaneously transmitted on the same time-frequency resource. Therefore, the number of times that the terminal device feeds back the downlink HARQ-ACK feedback information and the occupation of the uplink time-frequency resources by the downlink multiple HARQ process are greatly reduced, thereby reducing the power consumption of the terminal device.
  • 1a and 1b are schematic diagrams of existing transmission modes of downlink HARQ-ACK feedback information
  • FIGS. 2a and 2b are schematic diagrams of application scenarios provided by an embodiment of the present invention.
  • 3 and 10 are schematic structural diagrams of a terminal device according to an embodiment of the present disclosure.
  • FIGS. 4 and 11 are schematic structural diagrams of a base station according to an embodiment of the present invention.
  • 6 and 7 are schematic diagrams of simultaneous transmission of multiple downlink ARQ-ACK feedback information on the same time-frequency resource according to an embodiment of the present invention.
  • the embodiments of the present invention provide a method for transmitting HARQ-ACK feedback information and related devices, so as to reduce uplink resources occupied by downlink multiple HARQ processes.
  • Related devices related to embodiments of the present invention include a terminal device and a base station.
  • the above terminal device and base station can be applied to a Long Term Evolution (LTE) system or an advanced Long Term Evolution (LTE-A) (LTE Advanced) system.
  • LTE Long Term Evolution
  • LTE-A advanced Long Term Evolution
  • LTE Advanced Long Term Evolution
  • the present invention can also be applied to other communication systems as long as there is an entity in the communication system that can transmit information, and the communication system also has other entities that can receive information.
  • the base station 201 communicates with any number of terminals similar to the terminal device 202 and the terminal device 204.
  • FIG. 2a exemplarily shows two terminal devices.
  • the number of terminal devices is not limited to two, and may be less or more.
  • the terminal devices 202, 204, etc. may be various handheld devices, in-vehicle devices, wearable devices, computing devices, positioning devices, or other processing devices connected to the wireless modem, and various forms of user devices (including various types of wireless devices).
  • the terminal devices 202, 204 may also be devices that integrate sensors and communication modules, etc., for example, a smoke alarm that triggers reporting of alarm information, or a factory temperature measuring device that can periodically report data, a smart water meter, and the like.
  • the terminal devices 202, 204 and the like are mainly responsible for accessing the base station and receiving messages of the base station according to synchronization, broadcasting, control signals, and the like of the base station.
  • the terminal device 202 or 204 may obtain downlink HARQ-ACK feedback information of each HARQ process in the multiple HARQ process, and (the above-mentioned multiple HARQ process
  • the plurality of downlink HARQ-ACK feedback information are simultaneously transmitted on the same time-frequency resource.
  • the multiple HARQ processes described above may include two or more downlink HARQ processes.
  • the base station 201 is a device deployed in the radio access network to provide wireless communication functions for the terminal devices 202, 204, etc., which may include various forms of macro base stations, micro base stations, relay stations, access points, and the like.
  • the names of devices with base station functions may be different, for example, in an LTE network, called an evolved NodeB (eNB or eNodeB), in WCDMA ( Wideband Code Division Multiple Access, called NodeB, is called BTS (Base Transceiver Station) in GSM (Global System of Mobile communication) and CDMA (Code Division Multiple Access). Base station).
  • eNB evolved NodeB
  • WCDMA Wideband Code Division Multiple Access
  • BTS Base Transceiver Station
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • the base station may be responsible for receiving data, request information, and the like reported by each terminal, and transmitting synchronization, broadcast, and control signals to the terminal device, and allocating physical resources or scheduling terminal devices for the terminal device.
  • the base station may send a DCI (downlink control information).
  • the base station may simultaneously receive the multiple transmissions by the terminal device on the same time-frequency resource. Downlink HARQ-ACK feedback information.
  • the downlink HARQ-ACK feedback information of each HARQ-ACK process is independently transmitted on a time-frequency resource, and when multiple HARQ processes exist, multiple The HARQ-ACK feedback information is transmitted on different time-frequency resources, resulting in waste of resources.
  • downlink HARQ-ACK feedback information of multiple HARQ processes is simultaneously transmitted on the same time-frequency resource, thereby greatly reducing the number of times that the terminal device feeds back downlink HARQ-ACK feedback information and the downlink multiple HARQ process pair.
  • FIG. 2b shows another exemplary application scenario of the foregoing terminal device and a base station: Internet of Things (IoT, Internet of things).
  • IoT Internet of Things
  • This application scenario is only an example of the present invention.
  • the present invention includes and is not limited to the application scenario.
  • the downlink HARQ-ACK feedback information of multiple HARQ processes is simultaneously transmitted on the same time-frequency resource, it belongs to the scope to be protected by the embodiment of the present invention.
  • Typical IoT applications include possible applications including smart grid, smart agriculture, smart transportation, smart home, and environmental detection.
  • the Internet of Things extends the client side of the Internet between any item and item for information exchange and communication.
  • a communication method is also called Machine Type Communications (MTC)
  • MTC terminal that is, the terminal device mentioned in the aforementioned FIG. 2a.
  • the base station and the MTC terminal 1-MTC terminal 6 constitute a communication system in which the base station transmits information to one or more of the MTC terminal 1-MTC terminal 6.
  • the MTC terminal 4-MTC terminal 6 can also constitute a communication system in which the MTC terminal 6 can directly transmit information to one or more of the MTC terminal 4 and the MTC terminal 5.
  • FIG. 2b exemplarily shows six terminal devices.
  • the number of terminal devices is not limited to six, and may be less or more.
  • the MTC terminals may form a communication system or may not constitute a communication system.
  • the Internet of Things needs to be applied in a variety of scenarios, from outdoor to indoor, from above ground to underground, and thus has many special requirements for IoT applications, such as low energy consumption requirements.
  • the MTC terminal is powered by a battery, and in many cases, the MTC terminal is required to be used for more than ten years without replacing the battery. This requires the MTC device to work with very low power consumption.
  • the 3rd Generation Partnership Project (3GPP) has adopted a new research topic at the GERAN #62 plenary meeting to study the support of extremely low complexity in cellular networks.
  • NPDCCH Narrowband Physical Downlink Control CHannel, the narrowband physical downlink control channel
  • NPDSCH Narrowband Physical Downlink Shared CHannel
  • NPUSCH Narrowband Physical Uplink Shared CHannel, Narrowband physical downlink shared channel
  • NPUSCH format1 is another format of uplink data channel, which is mainly used for uplink data transmission
  • NPRACH The Narrowband Physical Random Access CHannel is an uplink random access channel.
  • the existing NB-IoT system is a single HARQ process.
  • the peak rate reduction delay is not excluded, and multiple HARQ processes are introduced, such as the practice of using a single HARQ process, that is, each HARQ-ACK process.
  • the downlink HARQ-ACK feedback information is transmitted independently on a time-frequency resource.
  • multiple HARQ-ACK feedback information is transmitted on different time-frequency resources, thereby causing resource waste and energy loss.
  • the downlink HARQ-ACK feedback information of multiple HARQ processes is simultaneously transmitted on the same time-frequency resource, which can greatly reduce the number of times the terminal device feeds back downlink HARQ-ACK feedback information, and the downlink multiple HARQ process pair.
  • FIG. 3 is a block diagram showing a partial configuration of a terminal device 300 (i.e., terminal device 202 or 204 in FIG. 2a, any one of MTC terminal 1 to MTC terminal 6 in FIG. 2b) related to an embodiment of the present invention.
  • a terminal device 300 i.e., terminal device 202 or 204 in FIG. 2a, any one of MTC terminal 1 to MTC terminal 6 in FIG. 2b
  • the terminal device 300 includes an RF (Radio Frequency) circuit 310, a memory 320, other input devices 330, a display screen 340, a sensor 350, an audio circuit 360, an I/O subsystem 370, and a processor 380. And components such as power supply 390.
  • RF Radio Frequency
  • the terminal device structure shown in FIG. 3 does not constitute a limitation thereto, and may include more or less components than those illustrated, or combine some components, or split some components. Or different parts arrangement.
  • the display screen 340 belongs to a user interface (UI), and the terminal device 300 can include a user interface that is smaller than the illustration or the like.
  • UI user interface
  • terminal device 300 The specific components of the terminal device 300 will be specifically described below with reference to FIG. 3:
  • the RF circuit 310 can be used for transmitting and receiving information or during a call, receiving and transmitting signals, in particular, After the downlink information of the base station is received, it is processed by the processor 380. In addition, the data designed for the uplink is sent to the base station.
  • RF circuits include, but are not limited to, an antenna, at least one amplifier, a transceiver, a coupler, an LNA (Low Noise Amplifier), a duplexer, and the like.
  • RF circuitry 310 can also communicate with the network and other devices via wireless communication.
  • the wireless communication may use any communication standard or protocol, including but not limited to GSM (Global System of Mobile communication), GPRS (General Packet Radio Service), CDMA (Code Division Multiple Access). , Code Division Multiple Access), WCDMA (Wideband Code Division Multiple Access), LTE (Long Term Evolution), e-mail, SMS (Short Messaging Service), and the like.
  • the memory 320 can be used to store software programs and modules, and the processor 380 executes various functional applications and data processing of the terminal device 300 by running software programs and modules stored in the memory 320.
  • the memory 320 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored. Data (such as audio data, phone book, etc.) created according to the use of the terminal device 300, and the like.
  • memory 320 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • Other input devices 330 can be used to receive input digital or character information, as well as generate key signal inputs related to user settings and function controls of terminal device 300.
  • other input devices 330 may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and light mice (the light mouse is not sensitive to display visual output).
  • function keys such as volume control buttons, switch buttons, etc.
  • trackballs mice, joysticks, and light mice (the light mouse is not sensitive to display visual output).
  • Other input devices 330 are coupled to other input device controllers 371 of I/O subsystem 370 for signal interaction with processor 380 under the control of other device input controllers 371.
  • the display screen 340 can be used to display information input by the user or information provided to the user as well as various menus of the terminal device 300, and can also accept user input.
  • the specific display screen 340 can include a display panel 341 and a touch panel 342.
  • the display panel 341 can be configured by using an LCD (Liquid Crystal Display), an OLED (Organic Light-Emitting Diode), or the like.
  • the touch panel 342 also called a touch screen, a touch sensitive screen, etc.
  • the operation of the contact or non-contact operation of the user on or near the user (such as the operation of the user using a finger, a stylus or the like on the touch panel 342 or in the vicinity of the touch panel 342 may also include a somatosensory operation;
  • the operation includes a single point control operation, a multi-point control operation, and the like, and drives the corresponding connection device according to a preset program.
  • the touch panel 342 can include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation and posture of the user, and detects a signal brought by the touch operation, and transmits a signal to the touch controller; the touch controller receives the touch information from the touch detection device, and converts the signal into a processor.
  • the processed information is sent to the processor 380 and can receive commands from the processor 380 and execute them.
  • the touch panel 342 can be implemented by using various types such as resistive, capacitive, infrared, and surface acoustic waves, and the touch panel 342 can be implemented by any technology developed in the future.
  • the touch panel 342 can cover the display panel 341, and the user can display the content according to the display panel 341 (the display content includes, but is not limited to, a soft keyboard, a virtual mouse, a virtual button, an icon, etc.) on the display panel 341. Operation is performed on or near the covered touch panel 342. After detecting the operation thereon or nearby, the touch panel 342 transmits to the processor 380 through the I/O subsystem 370 to determine user input, and then the processor 380 is based on the user. The input provides a corresponding visual output on display panel 341 via I/O subsystem 370.
  • the touch panel 342 and the display panel 341 are used as two independent components to implement the input and input functions of the terminal device 300, in some embodiments, the touch panel 342 and the display panel 341 may be The input and output functions of the terminal device 300 are implemented integrated.
  • Terminal device 300 may also include at least one type of sensor 350, such as a light sensor, motion sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor, wherein the ambient light sensor may adjust the brightness of the display panel 341 according to the brightness of the ambient light, and the proximity sensor may close the display panel 341 when the terminal device 300 moves to the ear. And / or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in all directions (usually three axes). When it is stationary, it can detect the magnitude and direction of gravity.
  • gesture of the mobile phone such as horizontal and vertical screen switching, related Game, magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tapping), etc.; as for the gyroscope, barometer, hygrometer, thermometer, infrared sensor and other sensors that can be configured in the terminal device 300, here No longer.
  • An audio circuit 360, a speaker 361, and a microphone 362 can provide an audio interface between the user and the terminal device 300.
  • the audio circuit 360 can transmit the converted audio data to the speaker 361 for conversion to the sound signal output by the speaker 361; on the other hand, the microphone 362 will collect
  • the sound signal is converted into a signal, which is received by the audio circuit 360 and converted into audio data, which is then output to the RF circuit 310 for transmission to, for example, another handset, or the audio data is output to the memory 320 for further processing.
  • the I/O subsystem 370 is used to control external devices for input and output, and may include other device input controllers 371, sensor controllers 372, and display controllers 373.
  • one or more other device input controllers 371 receive signals from other input devices 330 and/or send signals to other input devices 330, and other input devices 330 may include physical buttons (press buttons, rocker buttons, etc.), Dial, slide switch, joystick, click wheel, light mouse (light mouse is a touch-sensitive surface that does not display visual output, or an extension of a touch-sensitive surface formed by a touch screen). It is worth noting that the other device input controller 371 can be connected to any one or more of the above devices.
  • Display controller 373 in I/O subsystem 370 receives signals from display 340 and/or transmits signals to display 340. After the display screen 340 detects the user input, the display controller 373 converts the detected user input into an interaction with the user interface object displayed on the display screen 340, ie, implements human-computer interaction. Sensor controller 372 can receive signals from one or more sensors 350 and/or send signals to one or more sensors 350.
  • Processor 380 is the control center of terminal device 300, which connects various portions of the entire handset using various interfaces and lines, by running or executing software programs and/or modules stored in memory 320, and recalling data stored in memory 320.
  • the various functions and processing data of the terminal device 300 are executed to perform overall monitoring of the mobile phone.
  • the processor 380 may include one or more processing units; preferably, the processor 380 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, an application, and the like.
  • the modem processor primarily handles wireless communications. It will be appreciated that the above described modem processor may also not be integrated into the processor 380.
  • the terminal device 300 also includes a power source 390 (such as a battery) that supplies power to the various components.
  • a power source 390 such as a battery
  • the power source can be logically coupled to the processor 380 through a power management system to manage functions such as charging, discharging, and power consumption through the power management system.
  • the terminal device 300 may further include a camera, a Bluetooth module, and the like, and details are not described herein again.
  • Base station The 400 can include at least a receiver 401, a processor 403, and a transmitter 404.
  • Receiver 401 is operative to receive signals from, for example, a receiving antenna (not shown), perform typical actions (e.g., filter, amplify, downconvert, etc.) on the received signals, and digitize the conditioned signals to obtain samples.
  • Receiver 401 can be, for example, an MMSE (Minimum Mean-Squared Error) receiver.
  • MMSE Minimum Mean-Squared Error
  • the transmitter 404 is for transmitting a signal to, for example, a terminal device or the like.
  • Receiver 401 and transmitter 404 can also be integrated together in a practical application to form a transceiver (transceiver).
  • Demodulator 402 can be used to demodulate the received signals and provide them to processor 403.
  • Base station 400 can include a memory 405 operatively coupled to processor 403 and storing data for data to be transmitted, received data, and any other suitable information related to performing various actions and functions described herein.
  • Base station 400 can include multiple antenna groups, each of which can include one or more antennas.
  • Base station 400 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which may include multiple components associated with signal transmission and reception (e.g., processor, modulator, multiplexer, demodulation) , demultiplexer or antenna, etc.).
  • a transmitter chain and a receiver chain may include multiple components associated with signal transmission and reception (e.g., processor, modulator, multiplexer, demodulation) , demultiplexer or antenna, etc.).
  • Processor 403 may be a processor dedicated to analyzing information received by receiver 401 and/or generating information transmitted by transmitter 404, a processor for controlling one or more components of base station 400, and/or for analysis A signal received by receiver 404, a controller that generates information transmitted by transmitter 401 and controls one or more components of base station 400.
  • the processor 403 may include one or more processing units; preferably, the processor 403 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, an application, and the like.
  • the modem processor primarily handles wireless communications. It can be understood that the above modem processor may not be integrated into the processor 403.
  • FIG. 5 is a schematic diagram of an exemplary interaction of a HARQ-ACK feedback information transmission method according to an embodiment of the present invention.
  • the method shown in FIG. 5 is applied in the application scenario shown in FIG. 2a or 2b, by the terminal device and Base station interaction implementation.
  • the interaction process includes:
  • the base station sends a simultaneous transmission configuration indication to the terminal device.
  • processor 403 of base station 400 shown in FIG. 4 can perform 500 portions through transmitter 404.
  • the simultaneous transmission configuration indication can be used to indicate that multiple downlink HARQ-ACK feedback information of multiple HARQ processes are simultaneously transmitted on the same time-frequency resource.
  • the HARQ process in the present invention refers to a downlink HARQ process. Specific to each downlink HARQ process, it can be used to transmit initial downlink data, and can also be used to transmit retransmitted data.
  • the foregoing simultaneous transmission configuration indication may be carried by one or more of the RRC common signaling, the RRC dedicated signaling, and the medium access control MAC control element CE signaling by the radio link.
  • the base station transmits the DCI of each HARQ process in the multiple HARQ process to the terminal device.
  • the base station may send the downlink DCI of each of the two downlink HARQ processes to the MTC device.
  • the DCI corresponding to the i-th HARQ process includes the index number (also referred to as the number of processes) of the HARQ process, and the first time-frequency resource scheduling information corresponding to the index number. And second time-frequency resource scheduling information.
  • the number of the multiple HARQ processes may be controlled by the radio link, the RRC common signaling, the RRC dedicated signaling, the medium access control MAC control element CE signaling, and one or more signaling in the physical layer control information DCI.
  • a fixed value is specified in the notice or agreement. For example, the fixed value is 8.
  • the first time-frequency resource scheduling information is used to indicate that the i-th HARQ process receives time-frequency resources of downlink data.
  • the second time-frequency resource scheduling information is used to indicate that the ith HARQ process transmits the time-frequency resources of the downlink HARQ-ACK feedback information.
  • a time-frequency resource may be referred to as an RE (Resource Element).
  • the RE is the smallest time-frequency resource unit of LTE. It occupies 1 subcarrier in the frequency domain and occupies 1 OFDM symbol in the time domain.
  • the time-frequency resource of the downlink data can also be referred to as an RE.
  • RE is the smallest time-frequency resource unit of NB-IoT. It occupies 1 subcarrier in the frequency domain and occupies 1 OFDM symbol in the time domain, wherein the downlink subcarrier bandwidth is 15 kHz.
  • the downlink HARQ-ACK feedback information is transmitted through the NPUSCH format 2, and the subcarrier bandwidth of the NPUSCH format 2 may be 3.75 kHz or 15 kHz.
  • the minimum scheduling resource unit of the NPUSCH format 2 is a RU (Resource Unit), occupying one subcarrier in the frequency domain, occupying 4 consecutive time slots in the time domain, and 7 SC-FDMA symbols per time slot for the 15 kHz subcarrier. 3.75 kHz subcarrier, 7 SC-FDMA symbols per slot and one GP (Guard period).
  • any of the foregoing downlink DCIs further includes a format N3 and N4 distinguishing identifier, and an NPDCCH order identifier (the field indicates that the current DCI is used to trigger the terminal device to initiate random access at the designated NPRACH resource. ), scheduling delay, modulation and coding mechanism, number of repetitions, new data indication, number of DCI subframe repetitions, and so on.
  • the format N3 indicates that the DCI is the NB-IoT uplink DCI
  • the format N4 indicates that the DCI is the NB-IoT downlink DCI.
  • the terminal obtains the DCI by blindly detecting the NPDCCH resource location, and is designed to reduce the complexity. In the uplink and downlink DCI, try to ensure that the two bits are the same, so you need to have an identifier to distinguish between the uplink and downlink DCI.
  • the DCIs of multiple HARQ processes are sent separately, and the DCI transmission mode of the existing multiple HARQ processes is followed.
  • the downlink DCI corresponding to the i-th HARQ process may also carry the simultaneous transmission configuration indication mentioned in the foregoing 500 part. That is, the simultaneous transmission configuration indication is no longer sent separately.
  • the DCI carries the simultaneous transmission configuration indication, and does not occupy additional time-frequency resources.
  • portion 501 can be performed by transmitter 404 by processor 403 of base station 400 shown in FIG.
  • the terminal device listens to the downlink DCI of each HARQ process.
  • the terminal device may monitor the downlink DCI of each HARQ process, and may also The downlink DCI of one or more of the HARQ processes can be not monitored.
  • the MTC device can monitor the downlink DCI of each of the downlink two HARQ processes in the NPDCCH search space.
  • portion 502 can be performed in cooperation with other devices (e.g., RF circuitry 310) by processor 380 of terminal device 300 shown in FIG.
  • the terminal device receives downlink data according to the first time-frequency resource scheduling information corresponding to each HARQ process, completes decoding and verification of the received downlink data, and obtains downlink HARQ-ACK feedback of each HARQ process according to the verification result. information.
  • the terminal device b 0 and b 1 are obtained.
  • the above check is generally a CRC (Cyclic Redundancy Check) for detecting whether an error has occurred in the received downlink data. If no error is detected, the ACK (Acknowledgement) should be fed back. If an error is detected, the NACK (Negative Acknowledgement) should be fed back.
  • CRC Cyclic Redundancy Check
  • the terminal device can feed back a NACK.
  • the terminal device If the DCI of all the HARQ processes is lost and the terminal device cannot know the time-frequency resources of the downlink HARQ-ACK feedback information of any HARQ process, the terminal device does not perform any transmission operation.
  • the downlink HARQ-ACK feedback information of the i-th HARQ process may be an ACK or a NACK.
  • portion 503 can be performed in cooperation with other devices (e.g., RF circuitry 310) by processor 380 of terminal device 300 shown in FIG.
  • the terminal device simultaneously transmits the plurality of downlink HARQ-ACK feedback information of the multiple HARQ process on the same time-frequency resource.
  • portion 504 can be performed in cooperation with other devices (e.g., RF circuitry 310) by processor 380 of terminal device 300 shown in FIG.
  • the terminal device can transmit through an uplink data channel or an uplink control channel.
  • the uplink data channel may be a PUSCH (physical downlink shared channel), an NPUSCH, or the like.
  • the uplink control channel may be a PUCCH (physical downlink control channel), an NPUCCH, or the like.
  • the terminal device may modulate the plurality of downlink HARQ-ACK feedback information to obtain a modulation symbol, and transmit the modulation symbol on the same time-frequency resource.
  • the foregoing multiple downlink HARQ-ACK feedback information may be encoded and scrambled.
  • the multiple downlink HARQ-ACK feedback information is sorted according to a preset arrangement rule.
  • the preset arrangement rule may be configured to be arranged in ascending or descending order of the HARQ process index number.
  • index HARQ process 1 is that the downlink HARQ-ACK feedback information For b 1 , it is sorted as b 0 b 1 in ascending order and b 1 b 0 in descending order.
  • the preset arranging rule may be: arranging according to any one of the full array of the HARQ process index numbers, taking the three HARQ processes as an example, assuming that the index number of the HARQ process 0 is 0, and the downlink HARQ-ACK feedback information is c 0
  • the index number of HARQ process 1 is 1, the downlink HARQ-ACK feedback information is c 1
  • the index number of HARQ process 2 is 2, and the downlink HARQ-ACK feedback information is c 2 , then c 0 , c 1 and c are pressed.
  • the preset arrangement rule may be set: a parity arrangement of the HARQ process index number, an odd number before or after, and the like.
  • the invention is not specifically limited.
  • the foregoing preset arrangement rules may be rules defined in a standard protocol, or may be rules customized by an operator or a manufacturer. Just ensure that both the base station and the terminal device use the same preset arrangement rule.
  • QPSK Quadrature Phase Shift Keying
  • Binary ASK Amplitude Shift Keying
  • Binary FSK Freqency Shift Keying
  • the modulation mode may be other modulation modes, for example, a modulation mode in which the modulation order and the number of processes are the same.
  • the modulation mode may be 8PSK, 8ASK, or 8PSK, the modulation order is 3, and the number of HARQ processes is the same;
  • the total time for transmitting downlink HARQ-ACK feedback information can be reduced, and the total time reduction can reduce power consumption loss, thereby reducing downlink device HARQ-ACK feedback at the terminal device.
  • the power consumption loss of the terminal device is also reduced.
  • the same time-frequency resource is determined according to the time-frequency resource of the downlink HARQ-ACK feedback information transmitted by each HARQ process.
  • the same time-frequency resource described above is determined as follows:
  • the first target HARQ process and the second target HARQ process are HARQ processes in the multiple HARQ process, and the first target HARQ process and the second target HARQ process may be different HARQ processes, or the first target HARQ process and The second target HARQ process can be the same HARQ process.
  • the domain resources are in the same location and the time domain resources are in different locations.
  • the above modulation symbols may be transmitted according to the chronological order of the positions of the two time domain resources, and the time domain position with the time relative to the front or the back is selected.
  • the frequency domain resource locations are the same.
  • One of the frequency domain locations can be selected to transmit the above modulation symbols.
  • FIG. 6 is a diagram showing an example of scheduling when the time-frequency resources of the downlink IQQ-ACK feedback information indicated by the DCI indication of the two processes are the same.
  • FIG. 7 is a diagram showing an example of scheduling when the time-frequency resources of the downlink IQQ-ACK feedback information of the two processes indicated by the DCI are the same and the frequency domain resources are different.
  • X0 represents the scheduling delay of the downlink data corresponding to the first process
  • X1 represents the scheduling delay of the downlink data corresponding to the second process
  • Y0 represents the downlink HARQ-ACK feedback corresponding to the first process.
  • Y1 represents the timing of the downlink HARQ-ACK feedback information of the second process relative to its downlink data
  • HARQ-ACK0 represents the time of transmitting the downlink HARQ-ACK feedback information indicated by the DCI of the first HARQ process.
  • the frequency position, HARQ-ACK1 indicates the time-frequency position of the downlink IQQ-ACK feedback information indicated by the DCI of the second process.
  • the DCI of the two HARQ processes indicates that the downlink HARQ-ACK feedback information has different time domain resource locations, and the frequency domain resource locations are also different.
  • the time domain resource location of process 0 is A0
  • the frequency domain resource location is B0
  • the time domain resource location of process 1 is A1
  • the frequency domain resource location is B1
  • A0B0, A0B1, A1B0, and A1B1 can be selected.
  • One of the combinations is combined as a time-frequency resource for transmitting the above modulation symbols.
  • the base station simultaneously receives multiple downlink HARQ-ACK feedback information of the multiple HARQ process on the same time-frequency resource.
  • the base station receives the modulation symbols on the same time-frequency resource as described above, and demodulates the same to obtain a plurality of downlink HARQ-ACK feedback information.
  • portion 505 can be performed in cooperation with other devices (e.g., receiver 401, demodulator 402, decoder 407, etc.) by processor 403 of base station 400 shown in FIG.
  • other devices e.g., receiver 401, demodulator 402, decoder 407, etc.
  • FIG. 8 is a schematic diagram of another exemplary interaction of a HARQ-ACK feedback information transmission method according to an embodiment of the present invention.
  • the method shown in FIG. 8 is applied in the application scenario shown in FIG. 2a or FIG. 2b, and is implemented by the terminal device interacting with the base station.
  • the interaction process includes:
  • the base station transmits the DCI shared by the multiple HARQ processes to the terminal device.
  • portion 801 can be performed by transmitter 404 by processor 403 of base station 400 shown in FIG.
  • multiple HARQ processes in this embodiment correspond to the same DCI. This can reduce the resources occupied by the time-frequency resource scheduling information of multiple HARQ processes.
  • the shared DCI carries a simultaneous transmission configuration indication, an index number of each HARQ process in the multiple HARQ process, and first time-frequency resource scheduling information and second time-frequency resource scheduling information corresponding to the index number.
  • the shared DCI carries a simultaneous transmission configuration indication, a starting index number of the multiple HARQ process, and first time-frequency resource scheduling information and second time-frequency resource scheduling information corresponding to each HARQ process in the multiple HARQ process. .
  • the above starting index number corresponds to one of the HARQ processes.
  • the shared DCI carries only the starting index number. If the starting index number is 00, it is used as the index number of the 0th process in the 4 HARQ processes.
  • the index number of the HARQ process can be obtained by estimating the starting index number.
  • the calculation method can be incremented or decremented. Taking the increment as an example, if the starting index number is 00, 01 can be used as the index number of the first process, 10 as the index number of the second process, and 11 as the index number of the third process.
  • first time-frequency resource scheduling information and the second time-frequency resource scheduling information For a description of the first time-frequency resource scheduling information and the second time-frequency resource scheduling information, refer to the foregoing section 501, which is not described herein.
  • the shared DCI carries the simultaneous transmission configuration indication, and may not occupy additional time-frequency resources.
  • the base station may also separately transmit the simultaneous transmission. Enter the configuration instructions.
  • the terminal device listens to the shared DCI described above.
  • the MTC device can listen to the shared downlink DCI in the NPDCCH search space.
  • the terminal device may monitor the shared DCI and may not be able to monitor it.
  • the 802 portion can be performed by the processor 380 of the terminal device 300 shown in FIG.
  • Parts 803-805 are the same as the aforementioned parts of 503-505, and are not described herein.
  • FIG. 9 is still another exemplary interaction diagram of a HARQ-ACK feedback information transmission method according to an embodiment of the present invention.
  • FIG. 9 can be understood as a flow branch of the HARQ-ACK feedback information transmission method provided by the embodiment of the present invention, and the embodiment shown in FIG. 5 or FIG. 8 can be understood as an embodiment of the present invention.
  • Another flow branch of the HARQ-ACK feedback information transmission method can be understood as a flow branch of the HARQ-ACK feedback information transmission method.
  • the method shown in FIG. 9 is applied in the application scenario shown in FIG. 2a or FIG. 2b, and is implemented by the terminal device interacting with the base station.
  • the interaction process includes:
  • the base station sends a non-simultaneous transmission configuration indication to the terminal device.
  • processor 403 of base station 400 shown in FIG. 4 can execute 900 portions through transmitter 404.
  • the non-simultaneous transmission configuration indication may be used to indicate that multiple downlink HARQ-ACK feedback information (or multiple downlink HARQ-ACK feedback information for indicating independent transmission of multiple HARQ processes) that does not simultaneously transmit multiple HARQ processes on the same time-frequency resource. .
  • the non-simultaneous transmission configuration indication may control one or more of RRC common signaling, RRC dedicated signaling, media access control MAC control element CE signaling, and physical layer control information DCI through a radio link.
  • RRC common signaling RRC dedicated signaling
  • media access control MAC control element CE signaling media access control MAC control element CE signaling
  • physical layer control information DCI through a radio link.
  • One or more kinds of signaling carried in the signaling bearer One or more kinds of signaling carried in the signaling bearer.
  • the simultaneous transmission configuration indication involved in the foregoing embodiment shown in FIG. 5 or FIG. 8 and the non-simultaneous transmission configuration indication in this embodiment may occupy RRC common signaling, RRC dedicated signaling, MAC CE signaling, and DCI.
  • a value in the field or bit is 1 to characterize the simultaneous transmission of the configuration indication
  • a value of 0 characterizes the non-simultaneous transmission configuration indication
  • the base station transmits the DCI of each HARQ process in the multiple HARQ process to the terminal device.
  • Section 901 is the same as Section 501 and will not be described here.
  • the downlink DCI corresponding to the i-th HARQ process may also carry the non-simultaneous transmission configuration indication mentioned in the foregoing 900 part. That is, the non-simultaneous transmission configuration indication is no longer sent separately.
  • the non-simultaneous transmission configuration indication carried by the DCI has the advantage of not occupying extra time-frequency resources.
  • Section 902-903 is the same as Section 502-503 and will not be described here.
  • the terminal equipment feeds the time-frequency resources of the downlink HARQ-ACK feedback information specified by the DCI of each HARQ process, and feeds back the downlink HARQ-ACK feedback information.
  • multiple HARQ-ACK feedback information is transmitted on different time-frequency resources because the base station sends a non-simultaneous transmission configuration indication.
  • the base station may adopt a BPSK modulation scheme to modulate downlink HARQ-ACK feedback information of each HARQ process to obtain a BPSK modulation symbol, and based on the process.
  • Corresponding second time-frequency resource scheduling information transmitting BPSK modulation symbols of each HARQ process.
  • the terminal device does not send downlink HARQ-ACK feedback information of the HARQ process.
  • portion 904 can be performed in cooperation with other devices (e.g., RF circuitry 310) by processor 380 of terminal device 300 shown in FIG.
  • the base station receives downlink HARQ-ACK feedback information on time-frequency resources in which the HARQ process transmits downlink HARQ-ACK feedback information.
  • the base station receives the modulation symbol on the time-frequency resource that transmits the downlink HARQ-ACK feedback information in each HARQ process, and demodulates the downlink symbol, and obtains the downlink HARQ-ACK feedback information of the HARQ process.
  • whether multiple downlink HARQ-ACK feedback information of multiple HARQ processes are transmitted together at the same time-frequency resource location may be configured by the base station.
  • the base station may flexibly configure whether to transmit together at the same time-frequency resource location according to the coverage condition of the terminal device (or other situations) to ensure the reliability of the downlink HARQ-ACK feedback information.
  • the base station can configure the terminal device.
  • the multi-process downlink HARQ-ACK feedback information is not transmitted together to ensure the reliability of the downlink HARQ-ACK feedback information transmission; and for the terminal equipment with good coverage conditions, the base station can configure the multi-process downlink HARQ-ACK of the terminal device.
  • the feedback information is transmitted together to reduce the number of times the terminal device with good coverage conditions transmits downlink HARQ-ACK feedback information, thereby reducing power consumption and increasing data rate.
  • FIG. 10 is a schematic diagram showing a possible structure of a terminal device involved in the foregoing embodiment, including a processing module 110 and a first sending module 120.
  • the processing module 110 is configured to: obtain downlink HARQ-ACK feedback information of each HARQ process in the foregoing multiple HARQ process, and indicate multiple downlink HARQ-ACK feedback information of the multiple HARQ process that the first sending module is to acquire, Simultaneous transmission on the same time-frequency resource;
  • the first sending module 120 is configured to: simultaneously transmit the multiple downlink HARQ-ACK feedback information on the same time-frequency resource according to the instruction of the processing module 110.
  • the foregoing processing module 110 is further configured to:
  • the DCI corresponding to the i-th HARQ process includes an index number of the ith HARQ process and time-frequency resource scheduling information corresponding to the index number, where the time-frequency resource scheduling information is used to indicate that the ith HARQ process is transmitted.
  • Time-frequency resources of downlink HARQ-ACK feedback information
  • the same time-frequency resource is determined according to the time-frequency resource of the downlink HARQ-ACK feedback information transmitted by each HARQ process.
  • the foregoing processing module 110 is further configured to:
  • the DCI carries the index number of each HARQ process in the multiple HARQ process and the time-frequency resource scheduling information corresponding to the index number; or the DCI carries the time-frequency resource scheduling information corresponding to each HARQ process in the multiple HARQ process. And a starting index number of the foregoing multiple HARQ process, where the foregoing starting index number corresponds to one of the HARQ processes;
  • the time-frequency resource scheduling information corresponding to the i-th HARQ process is used to indicate that the i-th HARQ process transmits the downlink-time HARQ-ACK feedback information.
  • the same time-frequency resource is determined according to the time-frequency resource of the downlink HARQ-ACK feedback information transmitted by each HARQ process.
  • the DCI monitored by the processing module 110 further carries a simultaneous transmission configuration indication.
  • the foregoing simultaneous transmission configuration indication is used to indicate that multiple simultaneous transmissions are performed on the same time-frequency resource as described above.
  • the DCI monitored by the processing module 110 may also carry a non-simultaneous transmission configuration indication.
  • a non-simultaneous transmission configuration indication please refer to the method section of this document, which will not be described here.
  • the terminal device further includes a first receiving module 130, configured to receive a simultaneous transmission configuration indication or a non-simultaneous transmission configuration indication before the processing module 110 listens to the DCI.
  • the processing module 110 is configured to perform the 502 part and the 503 part of the embodiment shown in FIG. 5 (decoding, verifying, obtaining downlink HARQ-ACK feedback information of each HARQ process according to the verification result), and instructing the first sending module 120 to complete. 504.
  • the 802 part and the 803 part of the embodiment shown in FIG. 8 may be performed, and the first sending module 120 is instructed to complete.
  • Section 804, and 902 part, 903 part of the embodiment shown in FIG. 9 instructing the first transmitting module 120 to complete the 904 part.
  • the first transmitting module 120 can be used to perform the portion 504 shown in FIG. 5, and in addition, the portion 804 of the embodiment shown in FIG. 8, and the portion 904 of the embodiment shown in FIG.
  • the first receiving module 130 can be used to perform the 503 part (receive downlink data) of the embodiment shown in FIG. 5, the 803 part (receive downlink data) of the embodiment shown in FIG. 8, and the 903 part of the ninth embodiment (receive Downstream data), and for performing the receiving simultaneous transmission configuration indication or the non-simultaneous transmission configuration indication in the embodiment shown in FIG. 5, FIG. 8, and FIG.
  • FIG. 11 is a schematic diagram of a possible structure of a base station involved in the foregoing embodiment, including a processing module 111 and a second receiving module 121.
  • the processing module 111 is configured to instruct the second receiving module 121 to simultaneously receive multiple downlink HARQ-ACK feedback information of multiple HARQ processes on the same time-frequency resource.
  • the second receiving module 121 is configured to receive multiple downlink HARQ-ACK feedback information simultaneously on the same time-frequency resource according to the indication of the processing module 111.
  • the foregoing multiple downlink HARQ-ACK feedback information is acquired and sent by the terminal device.
  • the foregoing base station may further include a second sending module 131.
  • the processing module 111 is further configured to: after the second receiving module 121 receives the multiple downlink HARQ-ACK feedback information, instruct the second sending module 131 to send, to the terminal device, a downlink DCI of each HARQ process in the multiple HARQ process, or The second sending module 131 transmits the downlink DCI shared by each HARQ process to the terminal device.
  • the second sending module 131 is configured to send, according to the instruction of the processing module 111, the downlink DCI of each HARQ process in the multiple HARQ process to the terminal device, or send the downlink DCI shared by each HARQ process to the terminal device.
  • the DCI sent by the second sending module 131 further carries a simultaneous transmission configuration indication, where the simultaneous transmission configuration indication is used to indicate that multiple downlink HARQs of multiple HARQ processes are simultaneously transmitted on the same time-frequency resource. - ACK feedback information.
  • the DCI sent by the second sending module 131 may also carry a non-simultaneous transmission configuration indication.
  • a non-simultaneous transmission configuration indication please refer to the method section of this document, which will not be described here.
  • the foregoing simultaneous transmission configuration indication or non-simultaneous transmission configuration indication may also be instructed by the processing module 111 to be separately transmitted by the second sending module 131.
  • the processing module 111 may instruct the second sending module 131 to complete the 500-501 part of the embodiment shown in FIG. 5, and instruct the second sending module 131 to send downlink data, and instruct the second receiving module 121 to perform the receiving operation of the 505 part, and process
  • the module 111 can also perform the demodulation, decoding operation, etc. of the 505 part; in addition, the processing module 111 can instruct the second sending module 131 to complete the transmission of the 801 part and the downlink data of the embodiment shown in FIG. 8, instructing the second receiving module 121 to perform
  • the processing module 111 can also perform the demodulation, decoding operation, and the like of the 805 part.
  • the processing module 111 can instruct the second sending module 131 to complete the 900-901 part and the downlink data of the embodiment shown in FIG. Sending, instructing the second receiving module 121 to perform the receiving operation of the 905 portion, the processing module 111 can also perform the demodulation, decoding operation, and the like of the 905 portion.
  • the second transmitting module 131 can be used to perform the 500-501 portion shown in FIG. 5, and in addition, the 801 portion of the embodiment shown in FIG. 8, the 900-901 portion of the embodiment shown in FIG. 9, and FIGS. 5 and 8 can be performed. , The transmission of downlink data in the embodiment shown in FIG.
  • the second receiving module 121 can be used to perform part 505 (receive downlink HARQ-ACK feedback information) of the embodiment shown in FIG. 5, and part 805 of the embodiment shown in FIG. 8 (receive downlink HARQ-ACK feedback information), as shown in FIG. Section 905 of the embodiment (receiving downlink HARQ-ACK feedback information).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本申请涉及通信技术领域,特别是涉及HARQ-ACK反馈信息的传输技术。在一种HARQ-ACK反馈信息的传输方法中,终端设备获取多HARQ进程中每一HARQ进程的下行HARQ-ACK反馈信息;所述终端设备将所述多HARQ进程的多个下行HARQ-ACK反馈信息在相同的时频资源上同时传输。通过本申请实施例提供的方案,多个HARQ进程的下行HARQ-ACK反馈信息在相同的时频资源上同时传输。从而大大减少了终端设备反馈下行HARQ-ACK反馈信息的次数以及下行多HARQ进程对上行时频资源的占用,进而降低终端设备的功耗。

Description

HARQ-ACK反馈信息的传输方法及相关装置 技术领域
本发明涉及通信技术领域,特别是涉及HARQ-ACK反馈信息的传输技术。
背景技术
在通信系统中可采用混合自动重传(HARQ,Hybrid Automatic Repeat Request)方式来进行差错控制。
下行HARQ采用停等机制的方式来发送数据:请参见图1a,基站设备发送一个数据包(图1a中的0-4是数据包标识)后,就停下来等待终端设备的下行HARQ-ACK反馈信息(ACK或NACK)。等到接收到终端设备的反馈信息后再发送数据包。例如,基站发送了数据包0,然后停下来等待终端设备反馈针对数据包0的下行HARQ-ACK反馈信息(即图1a中的ACK0),等到接收到ACK0后,再发送数据包1。
由于每次传输数据包后基站都要停下来等待下行HARQ-ACK反馈信息,而在等待确认期间信道是空闲的,不发送任何数据,因此上述方式的吞吐量很低。
为了提高信道利用率,增加吞吐量,在LTE(Long Term Evolution,长期演进)系统中使用多个并行的HARQ进程,每一HARQ进程采用上述停等机制。但是,当一个HARQ进程在等待该进程的下行HARQ-ACK反馈信息时,基站可以使用另一个HARQ进程来继续发送数据包。图1b示出了4个HARQ进程的示例性图示。以HARQ进程0为例,当HARQ进程0在等待下行HARQ-ACK反馈信息(ACK0)的期间,其他HARQ进程在发送数据包。
一些场合对终端设备有着减少上行资源占用的需求,因此如何减少下行多HARQ进程占用的上行资源成为一种研发趋势。
发明内容
有鉴于此,本发明实施例的目的在于提供HARQ-ACK反馈信息的传输方法及相关装置,以减少下行多HARQ进程占用的上行资源。
为实现上述目的,本发明实施例提供如下技术方案:
一方面,本申请的实施例提供一种HARQ-ACK反馈信息的传输方法。该方法应用于下行多HARQ进程的场景,该方法包括终端设备获取多HARQ进程中每一HARQ进程的下行HARQ-ACK反馈信息,并将(上述多HARQ进程的)多个下行HARQ-ACK反馈信息在相同的时频资源上同时传输,基站则在上述相同的时频资源上同时接收上述多个下行HARQ-ACK反馈信息。在现有的HARQ-ACK反馈信息的传输过程中,每个HARQ-ACK进程的下行HARQ-ACK反馈信息独立在一时频资源上传输,当存在多个HARQ进程时,多个HARQ-ACK反馈信息在不同的时频资源上传输,从而造成资源浪费。本发明提供的方案中,多个HARQ进程的下行HARQ-ACK反馈信息在相同的时频资源上同时传输,从而可大大减少终端设备反馈下行HARQ-ACK反馈信息的次数以及下行多HARQ进程对上行时频资源的占用,进而降低终端设备的功耗。
在一个可能的设计中,在终端设备获取上述多HARQ进程中每一HARQ进程的下行HARQ-ACK反馈信息的步骤之前,上述方法还可包括如下交互步骤:基站向上述终端设备发送上述多HARQ进程中各HARQ进程的下行DCI;上述终端设备则监听各HARQ进程的下行DCI;其中,第i个HARQ进程对应的DCI包括上述第i个HARQ进程的索引号和与上述索引号对应的时频资源调度信息;上述时频资源调度信息用于指示传输上述第i个HARQ进程的下行HARQ-ACK反馈信息的时频资源;上述相同的时频资源上是根据各HARQ进程传输下行HARQ-ACK反馈信息的时频资源而确定的。如果某一个HARQ进程的DCI丢失,终端设备可将该HARQ进程对应的下行HARQ-ACK反馈信息确定NACK,而如果所有的HARQ进程的DCI都丢失,终端设备无法得知传输任一HARQ进程的下行HARQ-ACK反馈信息的时频资源,则终端设备不进行任何传输操作。在本发明实施例中,多个HARQ进程的DCI分别发送,沿袭了现有的多HARQ进程的DCI发送方式。同时,根据各DCI中的时频资源调度信息来确定同时传输多HARQ进程的下行HARQ-ACK反馈信息的时频资源,为如何确定同时传输多HARQ进程的下行HARQ-ACK 反馈信息的时频资源提供了具体的方式。
在一个可能的设计中,在终端设备获取上述多HARQ进程中每一HARQ进程的下行HARQ-ACK反馈信息的步骤之前,上述方法还可包括如下交互步骤:上述基站向上述终端设备发送上述多HARQ进程共用的DCI;上述终端设备则监听上述多HARQ进程共用的DCI;上述共用的DCI携带有上述多HARQ进程中每一HARQ进程的索引号以及与上述索引号对应的时频资源调度信息;或者,上述共用的DCI携带有上述多HARQ进程中各HARQ进程对应的时频资源调度信息和上述多HARQ进程的起始索引号,上述起始索引号与其中一个HARQ进程相对应;其中,第i个HARQ进程对应的时频资源调度信息用于指示第i个HARQ进程传输下行HARQ-ACK反馈信息的时频资源;上述相同的时频资源上是根据各HARQ进程传输下行HARQ-ACK反馈信息的时频资源确定的。在本实施例中,由DCI携带多个HARQ进程的时频资源调度信息,这样可减少发送多个HARQ进程的时频资源调度信息所占用的资源。
在一个可能的设计中,上述相同的时频资源通过如下方式确定:选择第一目标HARQ进程传输下行HARQ-ACK反馈信息的频域资源位置作为所述相同的时频资源的频域资源位置;选择第二目标HARQ进程传输下行HARQ-ACK反馈信息的时域资源位置作为所述相同的时频资源的时域资源位置;所述第一目标HARQ进程和第二目标HARQ进程为所述多HARQ进程中的HARQ进程;所述第一目标HARQ进程和第二目标HARQ进程为不同的HARQ进程,或者,所述第一目标HARQ进程和第二目标HARQ进程为同一HARQ进程。
在一个可能的设计中,基站可向终端设备发送同时传输配置指示,以指示在相同的时频资源上同时传输多HARQ进程的多个下行HARQ-ACK反馈信息,后续终端设备会将多HARQ进程的多个下行HARQ-ACK反馈信息在相同的时频资源上同时传输。此外,基站还可向终端设备发送非同时传输配置指示,以指示不在相同的时频资源上同时传输多HARQ进程的多个下行HARQ-ACK反馈信息,后续终端设备将按各HARQ进程的DCI指定的、传输下行HARQ-ACK反馈信息的时频资源,反馈下行HARQ-ACK反馈信息。这样,基站可以根据终端设备的覆盖情况(或综合其他情况)来灵活配置是 否在相同的时频资源位置一起传输。举例来讲,对于覆盖条件好的终端设备,基站可向其发送同时传输配置指示,从而配置该终端设备的多进程的下行HARQ-ACK反馈信息在一起传输;而对于覆盖条件差的终端设备,基站可向其发送非同时传输配置指示,配置该终端设备的多进程的下行HARQ-ACK反馈信息分开传输。更具体的,上述同时传输配置指示或非同时传输配置指示可通过无线链路控制RRC公共信令、RRC专有信令、媒体接入控制MAC控制元素CE信令、物理层控制信息DCI中的一种或者多种信令携带。以DCI为例,同时传输配置指示可由上述共用的下行DCI携带,或者,也可由各HARQ进程独立的下行DCI携带。由DCI携带同时传输配置指示,可不占用额外的时频资源。
在一个可能的设计中,终端设备在将上述多个下行HARQ-ACK反馈信息在相同的时频资源上同时传输时,具体可进行如下操作:对上述多个下行HARQ-ACK反馈信息进行调制,得到调制符号;在上述相同的时频资源上传输上述调制符号。在一个示例中,以下行两HARQ进程为例,基站可采用QPSK/二进制ASK/二进制FSK的调制方式,对每一HARQ进程的下行HARQ-ACK反馈信息进行调制,得到一个QPSK/二进制ASK/二进制FSK符号,并基于该进程对应的时频资源调度信息,传输该QPSK/二进制ASK/二进制FSK符号。在本实施例中,将多个下行HARQ-ACK反馈信息调制得到调制符号,可减少发送下行HARQ-ACK反馈信息的总时间,而总时间的减少可减少功耗损失,从而在减少了终端设备反馈下行HARQ-ACK反馈信息的次数的同时,还降低了终端设备的功耗损失。
在一个可能的设计中,上述多个下行HARQ-ACK反馈信息是按预设排列规则进行排序的。本领域技术人员可根据需要灵活设计预设排列规则。例如,可设计预设排列规则包括:按HARQ进程索引号的升序或降序顺序排列。或者,可设置预设排列规则包括:按HARQ进程索引号的全排列中任意一个排列。或者,可设置预设排列规则包括:按HARQ进程索引号的奇偶排列,奇数在前或在后,等等。
另一方面,本发明实施例提供了一种终端设备,该终端设备具有实现上述方法实际中终端设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相 对应的模块。
在一个可能的设计中,终端设备的结构包括:处理器和存储器,所述处理器通过运行存储在所述存储器内的软件程序、调用存储在所述存储器内的数据,执行上述方法。
又一方面,本发明实施例提供了一种基站,该基站具有实现上述方法实际中基站行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,基站的结构包括:处理器和存储器,所述处理器通过运行存储在所述存储器内的软件程序、调用存储在所述存储器内的数据,执行上述方法。
再一方面,本发明实施例提供了一种计算机存储介质,用于储存为上述终端设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
再一方面,本发明实施例提供了一种计算机存储介质,用于储存为上述基站所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
现有技术中,每个HARQ-ACK进程的下行HARQ-ACK反馈信息独立在一时频资源上传输,当存在多个HARQ进程时,多个HARQ-ACK反馈信息在不同的时频资源上传输,从而造成资源浪费。
而采用本发明提供的方案,多个HARQ进程的下行HARQ-ACK反馈信息在相同的时频资源上同时传输。从而大大减少了终端设备反馈下行HARQ-ACK反馈信息的次数,以及下行多HARQ进程对上行时频资源的占用,进而降低终端设备的功耗。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a和图1b为下行HARQ-ACK反馈信息的现有传输方式示意图;
图2a、2b为本发明实施例提供的应用场景示意图;
图3、10为本发明实施例提供的终端设备的示例性结构示意图;
图4、11为本发明实施例提供的基站的示例性结构示意图;
图5、8、9为本发明实施例提供的实现下行ARQ-ACK反馈信息的传输的交互流程示意图;
图6、7为本发明实施例提供的多个下行ARQ-ACK反馈信息在同一时频资源上同时传输的示意图。
具体实施方式
本发明实施例提供了HARQ-ACK反馈信息的传输方法及相关装置,以减少下行多HARQ进程占用的上行资源。
本发明实施例所涉及到的相关装置包括终端设备和基站。
上述终端设备和基站可应用于长期演进(LTE)系统或高级的长期演进LTE-A(LTE Advanced)系统。当然,本发明也可以应用于其它的通信系统,只要该通信系统中存在实体可以发送信息,该通信系统也存在其它实体可以接收信息即可。
图2a给出了上述终端设备和基站的一种示例性应用场景,基站201与类似于终端设备202、终端设备204的任意数目的终端通信。
需要说明的是,图2a示例性的显示了两个终端设备,在实际应用场景中,终端设备数目并不仅局限于两个,其可以更少或更多。
其中,终端设备202、204等可以是各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备、定位设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,简称UE)、移动台(Mobile station,简称MS)、手机、平板电脑、PDA(Personal Digital Assistant,个人数字助理)、POS(Point of Sales,销售终端)、车载电脑等等。此外,终端设备202、204还可以是集成传感器与通信模块的设备等,例如,触发上报报警信息的烟雾报警器、或者可以定期上报数据的厂区温度测量装置、智能水电表等。
终端设备202、204等主要负责根据基站的同步、广播、控制信号等,接入基站,接收基站的消息。在本发明提供的方案中,在HARQ-ACK反馈信息的传输过程中,终端设备202或204可获取多HARQ进程中每一HARQ进程的下行HARQ-ACK反馈信息,并将(上述多HARQ进程的)多个下行HARQ-ACK反馈信息在相同的时频资源上同时传输。上述多HARQ进程可包括两个或两个以上下行HARQ进程。
基站201是一种部署在无线接入网中用以为终端设备202、204等提供无线通信功能的装置,其可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在LTE网络中,称为演进的节点B(evolved NodeB,简称eNB或者eNodeB),在WCDMA(Wideband Code Division Multiple Access,宽带码分多址)中叫NodeB,在GSM(Global System of Mobile communication,全球移动通讯)和CDMA(Code Division Multiple Access,码分多址)中叫BTS(Base Transceiver Station,基站)。为方便描述,本申请中,上述为终端设备提供无线通信功能的装置统称为基站。
基站可负责接收各终端上报的数据和请求信息等,发送同步、广播、控制信号给终端设备,为终端设备分配物理资源或调度终端设备等。在HARQ-ACK反馈信息的传输过程中,基站可下发DCI(downlink control information,下行控制信息),在本发明提供的方案中,基站可在相同的时频资源上同时接收终端设备发送的多个下行HARQ-ACK反馈信息。
需要说明的是,在现有的HARQ-ACK反馈信息的传输过程中,每个HARQ-ACK进程的下行HARQ-ACK反馈信息独立在一时频资源上传输,当存在多个HARQ进程时,多个HARQ-ACK反馈信息在不同的时频资源上传输,从而造成资源浪费。
而采用本发明提供的方案,多个HARQ进程的下行HARQ-ACK反馈信息在相同的时频资源上同时传输,从而可大大减少终端设备反馈下行HARQ-ACK反馈信息的次数以及下行多HARQ进程对上行时频资源的占用,进而降低终端设备的功耗。
图2b给出了上述终端设备和基站的另一种示例性应用场景:可以应用于 物联网(IoT,Internet of things)。该应用场景只是本发明所举的例子,随着技术的发展,本发包括并不限于该应用场景。只要多个HARQ进程的下行HARQ-ACK反馈信息在相同的时频资源上同时传输,都属于本发明实施例所要保护的范围。
典型的物联网应用包括可能的应用包括智能电网、智能农业、智能交通、智能家居以及环境检测等各个方面。
物联网将互联网的用户端扩展到了任何物品与物品之间,进行信息交换和通信。这样的通信方式也称为机器间通信(Machine type communications,MTC),通信的节点称为MTC终端,也即前述图2a中提及的终端设备。
在图2b中,基站和MTC终端1-MTC终端6组成一个通信系统,在该通信系统中,基站发送信息给MTC终端1-MTC终端6中的一个或多个。
此外,MTC终端4-MTC终端6也可组成一个通信系统,在该通信系统中,MTC终端6可以直接发送信息给MTC终端4和MTC终端5中的一个或多个。
图2b示例性的显示了6个终端设备,在实际应用场景中,终端设备数目并不仅局限于6个,其可以更少或更多。而且,MTC终端间可以组成通信系统也可以不组成通信系统。
物联网需要应用在多种场景中,比如从室外到室内,从地上到地下,因而对物联网应用场景有很多特殊的要求,例如低能量消耗要求。在大多数情况下,MTC终端是通过电池来供电的,同时很多场景下又要求MTC终端能够使用十年以上而不需要更换电池。这就要求MTC设备能够以极低的电力消耗来工作。
为了满足这些特殊需求,移动通信标准化组织3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)在GERAN#62次全会上通过了一个新的研究课题来研究在蜂窝网络中支持极低复杂度和低成本的物联网的方法,并且在RAN#69次会议上立项为NB-IoT(Narrowband Internet of Things,窄带物联网)课题。
在NB-IoT系统中,NPDCCH(Narrowband Physical Downlink Control  CHannel,窄带物理下行控制信道)为NB-IoT系统的下行控制信道,NPDSCH(Narrowband Physical Downlink Shared CHannel,窄带物理下行共享信道)为NB-IoT系统的下行数据信道,NPUSCH(Narrowband Physical Uplink Shared CHannel,窄带物理下行共享信道)format2为NB-IoT上行数据信道的一种特殊格式,主要用于承载下行HARQ-ACK,NPUSCH format1为上行数据信道的另一种格式,主要用于上行数据传输,NPRACH(Narrowband Physical Random Access CHannel,窄带物理随机接入信道)是上行随机接入信道。
当然,现有NB-IoT系统是单个HARQ进程,在后续演进中为提升峰值速率降低时延不排除会引入多个HARQ进程,如沿用单个HARQ进程的做法,也就是每个HARQ-ACK进程的下行HARQ-ACK反馈信息独立在一时频资源上传输,当存在多个HARQ进程时,多个HARQ-ACK反馈信息在不同的时频资源上传输,从而造成资源浪费和能耗损失。
而采用本发明提供的方案,多个HARQ进程的下行HARQ-ACK反馈信息在相同的时频资源上同时传输,可大大减少终端设备反馈下行HARQ-ACK反馈信息的次数,以及下行多HARQ进程对上行时频资源的占用,进而降低终端设备的功耗。也即,本发明提供的方案可支持终端设备和基站满足物联网应用场景的特殊要求。
图3示出的是与本发明实施例相关的终端设备300(即图2a中的终端设备202或204,图2b中的MTC终端1~MTC终端6中的任一个)的部分结构的框图。
请参考图3,终端设备300包括:RF(Radio Frequency,射频)电路310、存储器320、其他输入设备330、显示屏340、传感器350、音频电路360、I/O子系统370、处理器380、以及电源390等部件。本领域技术人员可以理解,图3中示出的终端设备结构并不构成对其的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。本领领域技术人员可以理解显示屏340属于用户界面(UI,User Interface),且终端设备300可以包括比图示或者更少的用户界面。
下面结合图3对终端设备300的各个构成部件进行具体的介绍:
RF电路310可用于收发信息或通话过程中,信号的接收和发送,特别地, 将基站的下行信息接收后,给处理器380处理;另外,将设计上行的数据发送给基站。通常,RF电路包括但不限于天线、至少一个放大器、收发信机、耦合器、LNA(Low Noise Amplifier,低噪声放大器)、双工器等。此外,RF电路310还可以通过无线通信与网络和其他设备通信。所述无线通信可以使用任一通信标准或协议,包括但不限于GSM(Global System of Mobile communication,全球移动通讯系统)、GPRS(General Packet Radio Service,通用分组无线服务)、CDMA(Code Division Multiple Access,码分多址)、WCDMA(Wideband Code Division Multiple Access,宽带码分多址)、LTE(Long Term Evolution,长期演进)、电子邮件、SMS(Short Messaging Service,短消息服务)等。
存储器320可用于存储软件程序以及模块,处理器380通过运行存储在存储器320的软件程序以及模块,从而执行终端设备300的各种功能应用以及数据处理。存储器320可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图象播放功能等)等;存储数据区可存储根据终端设备300的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器320可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
其他输入设备330可用于接收输入的数字或字符信息,以及产生与终端设备300的用户设置以及功能控制有关的键信号输入。具体地,其他输入设备330可包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆、光鼠(光鼠是不显示可视输出的触摸敏感表面,或者是由触摸屏形成的触摸敏感表面的延伸)等中的一种或多种。其他输入设备330与I/O子系统370的其他输入设备控制器371相连接,在其他设备输入控制器371的控制下与处理器380进行信号交互。
显示屏340可用于显示由用户输入的信息或提供给用户的信息以及终端设备300的各种菜单,还可以接受用户输入。具体的显示屏340可包括显示面板341,以及触控面板342。其中显示面板341可以采用LCD(Liquid Crystal Display,液晶显示器)、OLED(Organic Light-Emitting Diode,有机发光二极管)等形式来配置显示面板341。触控面板342,也称为触摸屏、触敏屏等,可收 集用户在其上或附近的接触或者非接触操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板342上或在触控面板342附近的操作,也可以包括体感操作;该操作包括单点控制操作、多点控制操作等操作类型。),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板342可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位、姿势,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成处理器能够处理的信息,再送给处理器380,并能接收处理器380发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板342,也可以采用未来发展的任何技术实现触控面板342。进一步的,触控面板342可覆盖显示面板341,用户可以根据显示面板341显示的内容(该显示内容包括但不限于,软键盘、虚拟鼠标、虚拟按键、图标等等),在显示面板341上覆盖的触控面板342上或者附近进行操作,触控面板342检测到在其上或附近的操作后,通过I/O子系统370传送给处理器380以确定用户输入,随后处理器380根据用户输入通过I/O子系统370在显示面板341上提供相应的视觉输出。虽然在图3中,触控面板342与显示面板341是作为两个独立的部件来实现终端设备300的输入和输入功能,但是在某些实施例中,可以将触控面板342与显示面板341集成而实现终端设备300的输入和输出功能。
终端设备300还可包括至少一种传感器350,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板341的亮度,接近传感器可在终端设备300移动到耳边时,关闭显示面板341和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于终端设备300还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频电路360、扬声器361,麦克风362可提供用户与终端设备300之间的音频接口。音频电路360可将接收到的音频数据转换后的信号,传输到扬声器361,由扬声器361转换为声音信号输出;另一方面,麦克风362将收集 的声音信号转换为信号,由音频电路360接收后转换为音频数据,再将音频数据输出至RF电路310以发送给比如另一手机,或者将音频数据输出至存储器320以便进一步处理。
I/O子系统370用来控制输入输出的外部设备,可以包括其他设备输入控制器371、传感器控制器372、显示控制器373。可选的,一个或多个其他设备输入控制器371从其他输入设备330接收信号和/或者向其他输入设备330发送信号,其他输入设备330可以包括物理按钮(按压按钮、摇臂按钮等)、拨号盘、滑动开关、操纵杆、点击滚轮、光鼠(光鼠是不显示可视输出的触摸敏感表面,或者是由触摸屏形成的触摸敏感表面的延伸)。值得说明的是,其他设备输入控制器371可以与任一个或者多个上述设备连接。所述I/O子系统370中的显示控制器373从显示屏340接收信号和/或者向显示屏340发送信号。显示屏340检测到用户输入后,显示控制器373将检测到的用户输入转换为与显示在显示屏340上的用户界面对象的交互,即实现人机交互。传感器控制器372可以从一个或者多个传感器350接收信号和/或者向一个或者多个传感器350发送信号。
处理器380是终端设备300的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器320内的软件程序和/或模块,以及调用存储在存储器320内的数据,执行终端设备300的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器380可包括一个或多个处理单元;优选的,处理器380可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器380中。
终端设备300还包括给各个部件供电的电源390(比如电池),优选的,电源可以通过电源管理系统与处理器380逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗等功能。
尽管未示出,终端设备300还可以包括摄像头、蓝牙模块等,在此不再赘述。
图4示出的是与本发明实施例相关的基站400的部分结构的框图。基站 400至少可包括接收器401、处理器403、发射器404。
接收器401用于从例如接收天线(未示出)接收信号,并对所接收的信号执行典型的动作(例如过滤、放大、下变频等),并对调节后的信号进行数字化以获得采样。接收器401可以是例如MMSE(最小均方误差,Minimum Mean-Squared Error)接收器。
发射器404用于向例如终端设备等发送信号。接收器401和发射器404在实际应用时也可以集成在一起,形成一个收发机(收发器)。
解调器402可用于解调所接收的信号并将它们提供至处理器403。
基站400可以包括存储器405,后者可操作地耦合至处理器403,并存储以下数据:要发送的数据、接收的数据以及与执行本文所述的各种动作和功能相关的任意其它适合信息。
基站400可包括多个天线组,每个天线组可以包括一个或多个天线。
基站400可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
处理器403可以是专用于分析由接收器401接收的信息和/或生成由发射器404发送的信息的处理器、用于控制基站400一个或多个部件的处理器、和/或用于分析由接收器404接收的信号、生成由发射器401发送的信息并控制基站400的一个或多个部件的控制器。
可选的,处理器403可包括一个或多个处理单元;优选的,处理器403可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器403中。
下面将基于上面的本发明涉及的共性方面,对本发明实施例进一步详细说明。
图5为本发明实施例提供的HARQ-ACK反馈信息传输方法的一种示例性交互示意图。
图5所示的方法应用在图2a或图2b所示的应用场景中,由终端设备与 基站交互实现。
该交互流程包括:
在500部分:基站向终端设备发送同时传输配置指示。
在一个示例中,图4所示基站400的处理器403可通过发射器404执行500部分。
该同时传输配置指示可用于指示在相同的时频资源上同时传输多HARQ进程的多个下行HARQ-ACK反馈信息。
需要说明的是,如无特殊声明,本发明中的HARQ进程指的是下行HARQ进程。具体到每一下行HARQ进程,其可用于传输初传下行数据,也可用于传输重传数据。
在一个示例中,上述同时传输配置指示可通过无线链路控制RRC公共信令、RRC专有信令、媒体接入控制MAC控制元素CE信令中的一种或者多种信令携带。
在501部分:基站向上述终端设备发送多HARQ进程中各HARQ进程的DCI。
具体地,以NB-IoT系统的下行两HARQ进程为例,基站可向MTC设备发送两个下行HARQ进程各自的下行DCI。
以多HARQ进程中的第i个HARQ进程为例,第i个HARQ进程对应的DCI包括该HARQ进程的索引号(也称为进程数),与该索引号对应的第一时频资源调度信息以及第二时频资源调度信息。
而上述多HARQ进程的个数可通过无线链路控制RRC公共信令、RRC专有信令、媒体接入控制MAC控制元素CE信令,物理层控制信息DCI中的一种或者多种信令通知或者协议约定一个固定值。例如,固定值为8。
其中,第一时频资源调度信息用于指示第i个HARQ进程接收下行数据的时频资源。
第二时频资源调度信息用于指示上述第i个HARQ进程传输下行HARQ-ACK反馈信息的时频资源。
在LTE等系统中,时频资源可指RE(Resource Element)。RE为LTE最小的时频资源单位,频域上占用1个子载波,时域上占用1个OFDM符号。
至于在NB-IoT系统中,下行数据的时频资源也可指RE。RE为NB-IoT最小的时频资源单位,频域上占用1个子载波,时域上占用1个OFDM符号,其中下行子载波带宽为15kHz。
在NB-IoT系统中,下行HARQ-ACK反馈信息是通过NPUSCH format2进行传输的,NPUSCH format2的子载波带宽可以为3.75kHz或15kHz。NPUSCH format2的最小调度资源单位为RU(Resource Unit),频域上占用一个子载波,时域上占用4个连续的时隙,对于15kHz子载波,每个时隙7个SC-FDMA符号,对于3.75kHz子载波,每个时隙7个SC-FDMA符号和一个GP(Guard period)。
具体地,以NB-IoT为例,任一上述下行DCI中还包括format N3和N4区分标识、NPDCCH order标识(该域表示当前DCI是用于触发终端设备在指定的NPRACH资源处发起随机接入)、调度时延、调制和编码机制、重复次数、新数据指示、DCI子帧重复次数等。
需要说明的是,format N3表示该DCI是NB-IoT上行DCI,format N4表示该DCI是NB-IoT下行DCI,原因是终端是在NPDCCH资源位置盲检获取DCI的,为了降低复杂度,在设计上行和下行DCI时尽量保证两者位宽相同,所以需要有一个标识区分上下行DCI。
在本部分中,多个HARQ进程的DCI分别发送,沿袭了现有的多HARQ进程的DCI发送方式。
此外,在本发明其他实施例中,第i个HARQ进程对应的下行DCI还可携带前述500部分提及的同时传输配置指示。也即,同时传输配置指示不再单独发送。由DCI携带同时传输配置指示,可不占用额外的时频资源。
在一个示例中,可由图4所示基站400的处理器403通过发射器404执行501部分。
在502部分:终端设备监听各HARQ进程的下行DCI。
需要说明的是,终端设备可能监听到每一HARQ进程的下行DCI,也可 能监听不到其中一个或多个HARQ进程的下行DCI。
具体地,以NB-IoT系统的下行两HARQ进程为例,MTC设备可在NPDCCH搜索空间中监听下行两HARQ进程各自的下行DCI。
在一个示例中,可由图3所示终端设备300的处理器380与其他器件(例如RF电路310)协作执行502部分。
在503部分:终端设备根据各HARQ进程对应的第一时频资源调度信息接收下行数据,完成接收到的下行数据的解码和校验,并根据校验结果得到各HARQ进程的下行HARQ-ACK反馈信息。
具体地,以NB-IoT系统的下行两HARQ进程为例,假定其中一个HARQ进程的下行HARQ-ACK反馈信息为b0,另一个HARQ进程的下行HARQ-ACK反馈信息为b1,则终端设备可得到b0和b1
上述校验一般为CRC(Cyclic Redundancy Check,循环冗余校验),用于检测接收到的下行数据是否出现错误。如果没有检测到错误,后续应反馈ACK(Acknowledgement,肯定应答),如果检测到错误,后续应反馈NACK(Negative Acknowledgement,否定应答)。
如果某一个HARQ进程的DCI丢失,终端设备可反馈NACK。
而如果所有的HARQ进程的DCI都丢失,终端设备无法得知传输任一HARQ进程的下行HARQ-ACK反馈信息的时频资源,则终端设备不进行任何传输操作。
更具体的,以多HARQ进程中的第i个HARQ进程为例,第i个HARQ进程下行HARQ-ACK反馈信息可为ACK或NACK。
在一个示例中,可由图3所示终端设备300的处理器380与其他器件(例如RF电路310)协作执行503部分。
在504部分:终端设备将上述多HARQ进程的多个下行HARQ-ACK反馈信息在相同的时频资源上同时传输。
在一个示例中,可由图3所示终端设备300的处理器380与其他器件(例如RF电路310)协作执行504部分。
终端设备可通过上行数据信道或上行控制信道传输。
上行数据信道可为PUSCH(physical downlink shared channel,下行共享物理信道)、NPUSCH等等;上行控制信道可为PUCCH(physical downlink control channel,物理下行控制信道)、NPUCCH等等。
在一个示例中,终端设备可对上述多个下行HARQ-ACK反馈信息进行调制,得到调制符号,并在上述相同的时频资源上传输上述调制符号。当然,在调制之前,还可对上述多个下行HARQ-ACK反馈信息进行编码和加扰码。
更具体的,上述多个下行HARQ-ACK反馈信息是按预设排列规则进行排序的。
本领域技术人员可根据需要灵活设计预设排列规则。例如,可设计预设排列规则包括:按HARQ进程索引号的升序或降序顺序排列。
以NB-IoT系统的下行两HARQ进程为例,假定HARQ进程0的索引号为0,其下行HARQ-ACK反馈信息为b0;HARQ进程1的索引号为1,其下行HARQ-ACK反馈信息为b1,则按升序排序为b0b1,按降序排序为b1b0
或者,可设置预设排列规则包括:按HARQ进程索引号的全排列中任意一个排列,以三HARQ进程为例,假定HARQ进程0的索引号为0,其下行HARQ-ACK反馈信息为c0;HARQ进程1的索引号为1,其下行HARQ-ACK反馈信息为c1,HARQ进程2的索引号为2,其下行HARQ-ACK反馈信息为c2,则按c0,c1和c2的全排列{c0c1c2,c0c2c1,c1c0c2,c1c2c0,c2c0c1,c2c1c0}中的任意一种排列。
或者,可设置预设排列规则包括:按HARQ进程索引号的奇偶排列,奇数在前或在后,等等。本发明不作具体限制。
上述预设排列规则可为标准协议里制定的规则,也可为运营商或厂家自定义的规则。只要保证基站和终端设备均使用同一预设排列规则即可。
至于调制方式,对于下行两HARQ进程可为QPSK(Quadrature Phase Shift Keying,正交移相键控)、二进制ASK(Amplitude Shift Keying,振幅键控),二进制FSK(Freqency Shift Keying,振幅键控)调制方式等。
以ACK编码成二进制1,以NACK编码成二进制1为例,则下行两HARQ 进程的下行HARQ-ACK反馈信息在未调制前共占用2比特(bit),需要两个不同的RE资源来承载,采用QPSK/二进制ASK/二进制FSK调制后,可调制成一个QPSK/二进制ASK/二进制FSK符号,两HARQ进程的下行HARQ-ACK反馈信息可以用一个RE资源来承载。
对于进程个数大于2的情况,调制方式可以为其他调制方式,例如,调制阶数和进程个数相同的调制方式。比如对于三个HARQ进程,调制方式可以为8PSK、8ASK或8PSK等,调制阶数为3,和HARQ进程个数相同;对于N个HARQ进程,调制方式为MPSK、MASK或MPSK等,M=2N,调制阶数为N,和HARQ进程个数相同。
将多个下行HARQ-ACK反馈信息调制得到调制符号,可减少发送下行HARQ-ACK反馈信息的总时间,而总时间的减少可减少功耗损失,从而可在减少终端设备反馈下行HARQ-ACK反馈信息的次数的同时,还降低了终端设备的功耗损失。
需要说明的是,上述相同的时频资源是根据各HARQ进程传输下行HARQ-ACK反馈信息的时频资源而确定的。
在一个示例中,上述相同的时频资源通过如下方式确定:
选择第一目标HARQ进程传输下行HARQ-ACK反馈信息的频域资源位置作为该相同的时频资源的频域资源位置;
选择第二目标HARQ进程传输下行HARQ-ACK反馈信息的时域资源位置作为该相同的时频资源的时域资源位置;
其中,第一目标HARQ进程和第二目标HARQ进程为所述多HARQ进程中的HARQ进程,第一目标HARQ进程和第二目标HARQ进程可为不同的HARQ进程,或者,第一目标HARQ进程和第二目标HARQ进程可为同一HARQ进程。
以NB-IoT系统的下行两HARQ进程为例,若两个HARQ进程的DCI指示的传输下行HARQ-ACK反馈信息的时频资源相同,则在任一HARQ进程的传输下行HARQ-ACK反馈信息的时频资源上传输上述调制符号。
而若两个HARQ进程的DCI指示的传输下行HARQ-ACK反馈信息的频 域资源位置相同,时域资源位置不同。可根据两个时域资源位置的时间先后顺序,选择时间相对靠前或靠后的时域位置发送上述调制符号。
而若两个HARQ进程的DCI指示的传输下行HARQ-ACK反馈信息的时域资源位置不同,频域资源位置相同。可选择其中一个频域位置发送上述调制符号。
图6示出了两个进程的DCI指示的传输下行HARQ-ACK反馈信息的时频资源相同时的调度示例图。
图7示出了两个进程的DCI指示的传输下行HARQ-ACK反馈信息的时频资源相同、频域资源不同时的调度示例图。
在图6和7中,X0表示第一个进程对应的下行数据的调度时延,X1表示第二个进程对应的下行数据的调度时延,Y0表示第一个进程对应的下行HARQ-ACK反馈信息相对其下行数据的定时,Y1表示第二个进程的下行HARQ-ACK反馈信息相对其下行数据的定时,HARQ-ACK0表示第一个HARQ进程的DCI指示的传输下行HARQ-ACK反馈信息的时频位置,HARQ-ACK1表示第二个进程的DCI指示的传输下行HARQ-ACK反馈信息的时频位置。
当然,也可能两个HARQ进程的DCI指示的传输下行HARQ-ACK反馈信息的时域资源位置不同,频域资源位置也不同。举例来讲,进程0的时域资源位置为A0,频域资源位置为B0,进程1的时域资源位置为A1,频域资源位置为B1,则可选择A0B0、A0B1、A1B0、A1B1这四个组合中的其中一个组合作为传输上述调制符号的时频资源。
在505部分:基站在该相同的时频资源上同时接收上述多HARQ进程的多个下行HARQ-ACK反馈信息。
更具体的,基站是在上述相同的时频资源上接收调制符号,对其进行解调,得到多个下行HARQ-ACK反馈信息。
在一个示例中,可由图4所示基站400的处理器403与其他器件(例如接收器401、解调器402、解码器407等)协作执行505部分。
图8为本发明实施例提供的HARQ-ACK反馈信息传输方法的另一种示例性交互示意图。
图8所示的方法应用在图2a或图2b所示的应用场景中,由终端设备与基站交互实现。
该交互流程包括:
在801部分:基站向终端设备发送多HARQ进程共用的DCI。
在一个示例中,可由图4所示基站400的处理器403通过发射器404执行801部分。
与图5所示实施例不同的是,本实施例中多个HARQ进程对应同一DCI。这样可减少发送多个HARQ进程的时频资源调度信息所占用的资源。
在一个示例中,上述共用的DCI携带有同时传输配置指示、多HARQ进程中每一HARQ进程的索引号,以及与上述索引号对应的第一时频资源调度信息和第二时频资源调度信息。
在另一个示例,上述共用DCI携带有同时传输配置指示、多HARQ进程的起始索引号,以及,多HARQ进程中各HARQ进程对应的第一时频资源调度信息和第二时频资源调度信息。
上述起始索引号与其中一个HARQ进程相对应。
举例来讲,假定共有4个HARQ进程,其共用的DCI中仅携带了起始索引号,假定起始索引号是00,则将其作为4个HARQ进程中第0个进程的索引号,其他HARQ进程的索引号可通过起始索引号推算而得到。
推算方式可为递增或递减等。以递增为例,若起始索引号是00,可将01作为第1个进程的索引号、将10作为第2个进程的索引号、将11作为第3个进程的索引号。
第一时频资源调度信息、第二时频资源调度信息的相关描述可参见本文前述501部分,在此不作赘述。
在本实施例中,由上述共有的DCI携带了同时传输配置指示,可不占用额外的时频资源。当然,在本发明其他实施例中,基站也可单独发送同时传 输配置指示。
相关同时传输配置指示的描述可参见本文前述500部分,在此不作赘述。
在802部分:终端设备监听上述共用的DCI。
具体地,以NB-IoT系统的下行两HARQ进程为例,MTC设备可在NPDCCH搜索空间中监听共用的下行DCI。
需要说明的是,终端设备可能监听到上述共用的DCI,也可能监听不到。
在一个示例中,可由图3所示终端设备300的处理器380执行802部分。
803部分-805部分与前述的503-505部分相同,在此不作赘述。
图9为本发明实施例提供的HARQ-ACK反馈信息传输方法的又一种示例性交互示意图。
需要说明的是,图9所示实施例可理解为本发明实施例提供的HARQ-ACK反馈信息传输方法的一个流程分支,而图5或图8所示实施例可理解为本发明实施例提供的HARQ-ACK反馈信息传输方法的另一个流程分支。
图9所示的方法应用在图2a或图2b所示的应用场景中,由终端设备与基站交互实现。
该交互流程包括:
在900部分:基站向终端设备发送非同时传输配置指示。
在一个示例中,图4所示基站400的处理器403可通过发射器404执行900部分。
上述非同时传输配置指示可用于指示不在相同的时频资源上同时传输多HARQ进程的多个下行HARQ-ACK反馈信息(或用于指示独立传输多HARQ进程的多个下行HARQ-ACK反馈信息)。
在一个示例中,该非同时传输配置指示可通过无线链路控制RRC公共信令、RRC专有信令、媒体接入控制MAC控制元素CE信令、物理层控制信息DCI中的一种或者多种信令携带中的一种或者多种信令携带。
前述图5或图8所示实施例中涉及的同时传输配置指示,与本实施例中的非同时传输配置指示,可占用RRC公共信令、RRC专有信令、MAC CE信令、DCI中的同一字段或同一比特位。该字段或比特位中的不同取值可分别表征同时传输配置指示和非同时传输配置指示。
举例来讲,若该字段或比特位中的数值为1表征同时传输配置指示,数值为0则表征非同时传输配置指示。
在901部分:基站向上述终端设备发送多HARQ进程中各HARQ进程的DCI。
901部分与501部分相同,在此不作赘述。
需要说明的是,在本发明其他实施例中,第i个HARQ进程对应的下行DCI还可携带前述900部分提及的非同时传输配置指示。也即,非同时传输配置指示不再单独发送。由DCI携带非同时传输配置指示,具有不占用额外的时频资源的优势。
902部分-903部分与502部分-503部分相同,在此不作赘述。
在904部分:终端设备按各HARQ进程的DCI指定的、传输下行HARQ-ACK反馈信息的时频资源,反馈下行HARQ-ACK反馈信息。
也即,在本实施例中,由于基站下发了非同时传输配置指示,多个HARQ-ACK反馈信息在不同的时频资源上传输。
在一个示例中,以NB-IoT系统的下行两HARQ进程为例,基站可采用BPSK的调制方式,对每一HARQ进程的下行HARQ-ACK反馈信息进行调制,得到BPSK调制符号,并基于该进程对应的第二时频资源调度信息,传输各HARQ进程的BPSK调制符号。
当然,如果某一HARQ进程的DCI丢失,则终端设备不发送该HARQ进程的下行HARQ-ACK反馈信息。
在一个示例中,可由图3所示终端设备300的处理器380与其他器件(例如RF电路310)协作执行904部分。
在905部分:基站在各HARQ进程传输下行HARQ-ACK反馈信息的时频资源上接收下行HARQ-ACK反馈信息。
更具体的,基站是在每一HARQ进程传输下行HARQ-ACK反馈信息的时频资源上接收调制符号,对其进行解调,得到该HARQ进程的下行HARQ-ACK反馈信息。
结合前述实施例,在本发明提供的HARQ-ACK反馈信息传输技术中,多HARQ进程的多个下行HARQ-ACK反馈信息是否在相同的时频资源位置一起传输,可由基站配置。
在一个示例中,基站可以根据终端设备的覆盖情况(或综合其他情况)来灵活配置是否在相同的时频资源位置一起传输,以确保下行HARQ-ACK反馈信息的可靠性。
以NB-IoT系统的下行两HARQ进程为例,对于覆盖条件差的终端设备,由于低阶调制(比如BPSK)相对高阶调制(比如QPSK)性能更鲁棒,此时基站可配置该终端设备的多进程的下行HARQ-ACK反馈信息不在一起传输,以确保下行HARQ-ACK反馈信息传输的可靠性;而对于覆盖条件好的终端设备,基站可配置该终端设备的多进程的下行HARQ-ACK反馈信息在一起传输,以减少覆盖条件好的终端设备传输下行HARQ-ACK反馈信息的次数,从而降低功耗,提高数据率。
上述主要从各个装置之间交互的角度对本发明实施例提供的方案进行了介绍。可以理解的是,各个装置,例如终端设备、基站等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
图10示出了上述实施例中所涉及的终端设备的一种可能的结构示意图,包括处理模块110和第一发送模块120。
处理模块110可用于:获取上述多HARQ进程中每一HARQ进程的下行HARQ-ACK反馈信息,以及,指示上述第一发送模块将获取的上述多HARQ进程的多个下行HARQ-ACK反馈信息,在相同的时频资源上同时传输;
第一发送模块120可用于:根据处理模块110的指示,在上述相同的时频资源上同时传输上述多个下行HARQ-ACK反馈信息。
相关描述请参见本文方法部分,在此不作赘述。
在本发明其他实施例中,上述处理模块110还可用于:
在获取上述多HARQ进程中每一HARQ进程的下行HARQ-ACK反馈信息之前,监听各HARQ进程的下行控制信息DCI;
其中,第i个HARQ进程对应的DCI包括上述第i个HARQ进程的索引号和与上述索引号对应的时频资源调度信息;上述时频资源调度信息用于指示传输上述第i个HARQ进程的下行HARQ-ACK反馈信息的时频资源;
上述相同的时频资源上是根据各HARQ进程传输下行HARQ-ACK反馈信息的时频资源而确定的。
相关描述请参见本文方法部分,在此不作赘述。
在本发明其他实施例中,上述处理模块110还可用于:
在获取上述多HARQ进程中每一HARQ进程的下行HARQ-ACK反馈信息之前,监听上述多HARQ进程共用的下行控制信息DCI;
上述DCI携带有上述多HARQ进程中每一HARQ进程的索引号以及与上述索引号对应的时频资源调度信息;或者,上述DCI携带有上述多HARQ进程中各HARQ进程对应的时频资源调度信息和上述多HARQ进程的起始索引号,上述起始索引号与其中一个HARQ进程相对应;
其中,第i个HARQ进程对应的时频资源调度信息用于指示上述第i个HARQ进程传输下行HARQ-ACK反馈信息的时频资源;
上述相同的时频资源上是根据各HARQ进程传输下行HARQ-ACK反馈信息的时频资源确定的。
相关描述请参见本文方法部分,在此不作赘述。
在本发明其他实施例中,上述处理模块110监听的DCI还携带有同时传输配置指示。
上述同时传输配置指示用于指示在上述相同的时频资源上同时传输多 HARQ进程的多个下行HARQ-ACK反馈信息。
相关描述请参见本文方法部分,在此不作赘述。
在本发明其他实施例中,上述处理模块110监听的DCI还可携带非同时传输配置指示。相关描述请参见本文方法部分,在此不作赘述。
或者,上述同时传输配置指示或非同时传输配置指示也可由基站单独发送。则仍请参见图10,上述终端设备还包括第一接收模块130,用于在上述处理模块110监听上述DCI之前,接收同时传输配置指示或非同时传输配置指示。
其中,处理模块110可用于执行图5所示实施例的502部分、503部分(解码、校验、根据校验结果得到各HARQ进程的下行HARQ-ACK反馈信息)、指示第一发送模块120完成504部分;此外,还可执行图8所示实施例的802部分、803部分(解码、校验、根据校验结果得到各HARQ进程的下行HARQ-ACK反馈信息)、指示第一发送模块120完成804部分,以及图9所示实施例的902部分、903部分(解码、校验、根据校验结果得到各HARQ进程的下行HARQ-ACK反馈信息)、指示第一发送模块120完成904部分。
第一发送模块120可用于执行图5所示的504部分,此外,还可执行图8所示实施例的804部分、图9所示实施例的904部分。
第一接收模块130可用于执行图5所示实施例的503部分(接收下行数据)、图8所示实施例的803部分(接收下行数据),以及第9所示实施例的903部分(接收下行数据),以及用于执行图5、图8、图9所示实施例中接收同时传输配置指示或非同时传输配置指示。
图11示出了上述实施例中所涉及的基站的一种可能的结构示意图,包括处理模块111、第二接收模块121。
其中,处理模块111可用于指示第二接收模块121在相同的时频资源上同时接收多HARQ进程的多个下行HARQ-ACK反馈信息。
第二接收模块121,用于根据处理模块111的指示,在上述相同的时频资源上同时接收多个下行HARQ-ACK反馈信息。
其中,上述多个下行HARQ-ACK反馈信息是由终端设备获取并发送的。
在本发明其他实施例中,仍请参见图11,上述基站还可包括第二发送模块131。
上述处理模块111还用于在第二接收模块121接收上述多个下行HARQ-ACK反馈信息之前,指示第二发送模块131向上述终端设备发送上述多HARQ进程中各HARQ进程的下行DCI,或指示第二发送模块131向上述终端设备发送各HARQ进程共用的下行DCI。
第二发送模块131则用于,根据处理模块111的指示,向上述终端设备发送上述多HARQ进程中各HARQ进程的下行DCI,或向上述终端设备发送各HARQ进程共用的下行DCI。
DCI的相关描述请参见本文前述记载,在此不作赘述。
在本发明其他实施例中,第二发送模块131发送的DCI还携带有同时传输配置指示;该同时传输配置指示用于指示在上述相同的时频资源上同时传输多HARQ进程的多个下行HARQ-ACK反馈信息。
在本发明其他实施例中,第二发送模块131发送的DCI还可携带非同时传输配置指示。相关描述请参见本文方法部分,在此不作赘述。
或者,上述同时传输配置指示或非同时传输配置指示也可由处理模块111指示第二发送模块131单独发送。
其中,处理模块111可指示第二发送模块131完成图5所示实施例的500-501部分,以及指示第二发送模块131发送下行数据,指示第二接收模块121执行505部分的接收操作,处理模块111还可执行505部分的解调、解码操作等;此外,处理模块111可指示第二发送模块131完成图8所示实施例的801部分和下行数据的发送,指示第二接收模块121执行805部分的接收操作,处理模块111还可执行805部分的解调、解码操作等;另外,处理模块111可指示第二发送模块131完成图9所示实施例的900-901部分和下行数据的发送,指示第二接收模块121执行905部分的接收操作,处理模块111还可执行905部分的解调、解码操作等。
第二发送模块131可用于执行图5所示的500-501部分,此外,还可执行图8所示实施例的801部分、图9所示实施例的900-901部分,以及图5、8、 9所示实施例中下行数据的发送。
第二接收模块121可用于执行图5所示实施例的505部分(接收下行HARQ-ACK反馈信息)、图8所示实施例的805部分(接收下行HARQ-ACK反馈信息),图9所示实施例的905部分(接收下行HARQ-ACK反馈信息)。

Claims (25)

  1. 一种HARQ-ACK反馈信息的传输方法,其特征在于,应用于下行多HARQ进程的场景,所述方法包括:
    终端设备获取所述多HARQ进程中每一HARQ进程的下行HARQ-ACK反馈信息;
    所述终端设备将所述多HARQ进程的多个下行HARQ-ACK反馈信息在相同的时频资源上同时传输。
  2. 如权利要求1所述的方法,其特征在于,
    在所述获取所述多HARQ进程中每一HARQ进程的下行HARQ-ACK反馈信息的步骤之前,还包括:
    所述终端设备监听各HARQ进程的下行控制信息DCI;
    其中,第i个HARQ进程对应的DCI包括所述第i个HARQ进程的索引号和与所述索引号对应的时频资源调度信息;
    所述时频资源调度信息用于指示传输所述第i个HARQ进程的下行HARQ-ACK反馈信息的时频资源;
    所述相同的时频资源上是根据各HARQ进程传输下行HARQ-ACK反馈信息的时频资源而确定的。
  3. 如权利要求1所述的方法,其特征在于,在所述获取所述多HARQ进程中每一HARQ进程的下行HARQ-ACK反馈信息的步骤之前,还包括:
    所述终端设备监听所述多HARQ进程共用的DCI;所述DCI携带有所述多HARQ进程中每一HARQ进程的索引号以及与所述索引号对应的时频资源调度信息;或者,所述DCI携带有所述多HARQ进程中各HARQ进程对应的时频资源调度信息和所述多HARQ进程的起始索引号,所述起始索引号与其中一个HARQ进程相对应;
    其中,第i个HARQ进程对应的时频资源调度信息用于指示所述第i个HARQ进程传输下行HARQ-ACK反馈信息的时频资源;
    所述相同的时频资源上是根据各HARQ进程传输下行HARQ-ACK反馈信息的时频资源确定的。
  4. 如权利要求2或3所述的方法,其特征在于,所述DCI还携带有同时传输配置指示;其中,所述同时传输配置指示用于指示在所述相同的时频资源上同时传输多HARQ进程的多个下行HARQ-ACK反馈信息。
  5. 如权利要求2或3所述的方法,其特征在于,在监听所述DCI之前,还包括:
    所述终端设备接收同时传输配置指示,所述同时传输配置指示用于指示在所述相同的时频资源上同时传输多HARQ进程的多个下行HARQ-ACK反馈信息。
  6. 如权利要求1-5任一项所述的方法,其特征在于,所述将所述多HARQ进程的多个下行HARQ-ACK反馈信息在相同的时频资源上同时传输包括:
    对所述多个下行HARQ-ACK反馈信息进行调制,得到调制符号;
    在所述相同的时频资源上传输所述调制符号。
  7. 如权利要求6所述的方法,其特征在于,所述多个下行HARQ-ACK反馈信息是按预设排列规则进行排序的。
  8. 如权利要求7所述的方法,其特征在于,所述预设排列规则包括:按HARQ进程索引号的升序或降序顺序排列。
  9. 一种终端设备,其特征在于,应用于下行多HARQ进程的场景,包括处理模块和第一发送模块,其中:
    所述处理模块用于,获取所述多HARQ进程中每一HARQ进程的下行HARQ-ACK反馈信息,以及,指示所述第一发送模块将获取的所述多HARQ进程的多个下行HARQ-ACK反馈信息,在相同的时频资源上同时传输;
    所述第一发送模块用于,根据所述处理模块的指示,在所述相同的时频资源上同时传输所述多个下行HARQ-ACK反馈信息。
  10. 如权利要求9所述的终端设备,其特征在于,所述处理模块还用于:
    在获取所述多HARQ进程中每一HARQ进程的下行HARQ-ACK反馈信息之前,监听各HARQ进程的下行控制信息DCI;
    其中,第i个HARQ进程对应的DCI包括所述第i个HARQ进程的索引号和与所述索引号对应的时频资源调度信息;
    所述时频资源调度信息用于指示传输所述第i个HARQ进程的下行HARQ-ACK反馈信息的时频资源;
    所述相同的时频资源上是根据各HARQ进程传输下行HARQ-ACK反馈信息的时频资源而确定的。
  11. 如权利要求9所述的终端设备,其特征在于,所述处理模块还用于:
    在获取所述多HARQ进程中每一HARQ进程的下行HARQ-ACK反馈信息之前,监听所述多HARQ进程共用的下行控制信息DCI;所述DCI携带有所述多HARQ进程中每一HARQ进程的索引号以及与所述索引号对应的时频资源调度信息;或者,所述DCI携带有所述多HARQ进程中各HARQ进程对应的时频资源调度信息和所述多HARQ进程的起始索引号,所述起始索引号与其中一个HARQ进程相对应;
    其中,第i个HARQ进程对应的时频资源调度信息用于指示所述第i个HARQ进程传输下行HARQ-ACK反馈信息的时频资源;
    所述相同的时频资源上是根据各HARQ进程传输下行HARQ-ACK反馈信息的时频资源确定的。
  12. 如权利要求9或11所述的终端设备,其特征在于,所述处理模块监听的DCI还携带有同时传输配置指示;所述同时传输配置指示用于指示在所述相同的时频资源上同时传输多HARQ进程的多个下行HARQ-ACK反馈信息。
  13. 如权利要求9或11所述的终端设备,其特征在于,还包括:
    第一接收模块,用于在所述处理模块监听所述DCI之前,接收同时传输 配置指示,所述同时传输配置指示用于指示在所述相同的时频资源上同时传输多HARQ进程的多个下行HARQ-ACK反馈信息。
  14. 如权利要求9-13任一项所述的终端设备,其特征在于,在所述指示所述第一发送模块将获取的所述多HARQ进程的多个下行HARQ-ACK反馈信息在相同的时频资源上同时传输的方向,所述处理模块具体用于:
    对所述多个下行HARQ-ACK反馈信息进行调制,得到调制符号;
    指示所述第一发送模块在所述相同的时频资源上传输所述调制符号。
  15. 如权利要求14所述的终端设备,其特征在于,被所述处理模块进行调制的所述多个下行HARQ-ACK反馈信息是按预设排列规则进行排序的。
  16. 如权利要求14所述的终端设备,其特征在于,所述预设排列规则包括:按HARQ进程索引号的升序或降序顺序排列。
  17. 一种HARQ-ACK反馈信息的传输方法,其特征在于,应用于下行多HARQ进程的场景,所述方法包括:
    基站在相同的时频资源上同时接收所述多HARQ进程的多个下行HARQ-ACK反馈信息;
    所述多个下行HARQ-ACK反馈信息由终端设备获取并发送。
  18. 如权利要求17所述的方法,其特征在于,在接收所述多HARQ进程的多个下行HARQ-ACK反馈信息的步骤之前,还包括:
    所述基站向所述终端设备发送所述多HARQ进程中各HARQ进程的下行控制信息DCI;
    其中,第i个HARQ进程对应的DCI包括所述第i个HARQ进程的索引号和与所述索引号对应的时频资源调度信息;
    所述时频资源调度信息用于指示传输所述第i个HARQ进程的下行HARQ-ACK反馈信息的时频资源;
    所述相同的时频资源上是根据各HARQ进程传输下行HARQ-ACK反馈 信息的时频资源而确定的。
  19. 如权利要求17所述的方法,其特征在于,在接收所述多HARQ进程的多个下行HARQ-ACK反馈信息的步骤之前,还包括:
    所述基站向所述终端设备发送所述多HARQ进程共用的DCI;所述DCI携带有所述多HARQ进程中每一HARQ进程的索引号以及与所述索引号对应的时频资源调度信息;或者,所述DCI携带有所述多HARQ进程中各HARQ进程对应的时频资源调度信息和所述多HARQ进程的起始索引号,所述起始索引号与其中一个HARQ进程相对应;
    其中,第i个HARQ进程对应的时频资源调度信息用于指示所述第i个HARQ进程传输下行HARQ-ACK反馈信息的时频资源;
    所述相同的时频资源上是根据各HARQ进程传输下行HARQ-ACK反馈信息的时频资源确定的。
  20. 如权利要求17或18所述的方法,其特征在于,
    所述DCI还携带有同时传输配置指示;
    其中,所述同时传输配置指示用于指示在所述相同的时频资源上同时传输多HARQ进程的多个下行HARQ-ACK反馈信息。
  21. 如权利要求17或18所述的方法,其特征在于,在发送所述DCI之前,还包括:
    所述基站向所述终端设备发送同时传输配置指示,所述同时传输配置指示用于指示在所述相同的时频资源上同时传输多HARQ进程的多个下行HARQ-ACK反馈信息。
  22. 一种传输基站,其特征在于,应用于下行多HARQ进程的场景,所述基站包括:
    第二接收模块,用于在相同的时频资源上同时接收所述多HARQ进程的多个下行HARQ-ACK反馈信息;
    所述多个下行HARQ-ACK反馈信息由终端设备获取并发送。
  23. 如权利要求22所述的基站,其特征在于,还包括第二发送模块;
    所述第二发送模块用于,在所述第二接收模块接收所述多HARQ进程的多个下行HARQ-ACK反馈信息之前,向所述终端设备发送所述多HARQ进程中各HARQ进程的下行控制信息DCI;其中,第i个HARQ进程对应的DCI包括所述第i个HARQ进程的索引号,以及,与所述索引号对应的、第i个HARQ进程的时频资源调度信息;或者,
    所述第二发送模块用于,在所述第二接收模块接收所述多HARQ进程的多个下行HARQ-ACK反馈信息之前,向所述终端设备发送所述多HARQ进程共用的DCI;所述多HARQ进程共用的DCI携带有所述多HARQ进程中每一HARQ进程的索引号以及与所述索引号对应的时频资源调度信息;或者,所述多HARQ进程共用的DCI携带有所述多HARQ进程中各HARQ进程对应的时频资源调度信息和所述多HARQ进程的起始索引号,所述起始索引号与其中一个HARQ进程相对应;
    其中,第i个HARQ进程对应的时频资源调度信息用于指示所述第i个HARQ进程传输下行HARQ-ACK反馈信息的时频资源;
    所述相同的时频资源上是根据各HARQ进程传输下行HARQ-ACK反馈信息的时频资源确定的。
  24. 如权利要求23所述的基站,其特征在于,所述第二发送模块发送的DCI还携带有同时传输配置指示;其中,所述同时传输配置指示用于指示在所述相同的时频资源上同时传输多HARQ进程的多个下行HARQ-ACK反馈信息。
  25. 如权利要求23所述的基站,其特征在于,所述第二发送模块还用于:
    在发送所述DCI之前,向所述终端设备发送同时传输配置指示,所述同时传输配置指示用于指示在所述相同的时频资源上同时传输多HARQ进程的多个下行HARQ-ACK反馈信息。
PCT/CN2016/104774 2016-11-04 2016-11-04 Harq-ack反馈信息的传输方法及相关装置 WO2018082059A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680089472.6A CN109716694B (zh) 2016-11-04 2016-11-04 Harq-ack反馈信息的传输方法及相关装置
JP2019523548A JP2020503723A (ja) 2016-11-04 2016-11-04 Harqフィードバック−ack情報送信方法及び関連装置
PCT/CN2016/104774 WO2018082059A1 (zh) 2016-11-04 2016-11-04 Harq-ack反馈信息的传输方法及相关装置
EP16920480.7A EP3531599A4 (en) 2016-11-04 2016-11-04 METHOD FOR TRANSMITTING HARQ-ACK FEEDBACK INFORMATION AND APPARATUS THEREOF
US16/402,238 US20190260521A1 (en) 2016-11-04 2019-05-03 Harq-ack feedback information transmission method and related apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/104774 WO2018082059A1 (zh) 2016-11-04 2016-11-04 Harq-ack反馈信息的传输方法及相关装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/402,238 Continuation US20190260521A1 (en) 2016-11-04 2019-05-03 Harq-ack feedback information transmission method and related apparatus

Publications (1)

Publication Number Publication Date
WO2018082059A1 true WO2018082059A1 (zh) 2018-05-11

Family

ID=62075481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104774 WO2018082059A1 (zh) 2016-11-04 2016-11-04 Harq-ack反馈信息的传输方法及相关装置

Country Status (5)

Country Link
US (1) US20190260521A1 (zh)
EP (1) EP3531599A4 (zh)
JP (1) JP2020503723A (zh)
CN (1) CN109716694B (zh)
WO (1) WO2018082059A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109565836A (zh) * 2018-11-01 2019-04-02 北京小米移动软件有限公司 资源位置确定方法、装置、基站及存储介质
WO2020019215A1 (zh) * 2018-07-25 2020-01-30 北京小米移动软件有限公司 传输harq反馈信息的方法、终端及基站
CN111226409A (zh) * 2018-09-27 2020-06-02 联发科技股份有限公司 推迟混合自动重复请求确认反馈的机制
CN111406395A (zh) * 2018-11-02 2020-07-10 联发科技(新加坡)私人有限公司 无线通信系统中混合自动重传请求反馈资源的配置和选择
CN112311515A (zh) * 2019-08-01 2021-02-02 北京华为数字技术有限公司 一种反馈信息传输方法及装置
EP3823194A4 (en) * 2018-09-04 2021-08-18 Huawei Technologies Co., Ltd. METHOD AND APPARATUS FOR SENDING AND RECEIVING FEEDBACK INFORMATION
WO2021204275A1 (zh) * 2020-04-10 2021-10-14 华为技术有限公司 一种反馈信息的发送方法及装置
EP3991336A1 (en) * 2019-06-27 2022-05-04 Qualcomm Incorporated Harq process identification
CN115868135A (zh) * 2021-07-23 2023-03-28 北京小米移动软件有限公司 载波切换方法、装置、设备及存储介质

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10965430B2 (en) * 2016-11-04 2021-03-30 Lg Electronics Inc. Method for transmitting HARQ ACK/NACK signal in NB IoT
CN108206731A (zh) * 2016-12-16 2018-06-26 上海诺基亚贝尔股份有限公司 一种用于ack/nack报告的方法、设备与系统
CN108271262B (zh) * 2017-01-03 2024-03-15 北京三星通信技术研究有限公司 分配上行控制信道的方法及设备
US10123322B1 (en) * 2017-09-18 2018-11-06 Qualcomm Incorporated Transmission of beam switch commands through control channel signaling
CN109699074B (zh) * 2017-10-20 2021-11-23 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
WO2020037616A1 (zh) * 2018-08-23 2020-02-27 北京小米移动软件有限公司 混合自动重传请求反馈方法及装置、用户设备和基站
WO2020133445A1 (zh) * 2018-12-29 2020-07-02 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备
CN110505042B (zh) * 2019-08-16 2022-03-22 中国信息通信研究院 一种对上行数据harq反馈方法和设备
WO2021081935A1 (en) * 2019-10-31 2021-05-06 Nokia Shanghai Bell Co., Ltd. Resource mapping for sidelink channel
CN111245579B (zh) * 2020-01-19 2021-03-19 北京邮电大学 基于sidelink的HARQ反馈时间段确定方法
CN113328834B (zh) * 2020-02-28 2025-03-14 华为技术有限公司 一种通信方法及装置
US20220046669A1 (en) * 2020-08-05 2022-02-10 Qualcomm Incorporated Configuration of uplink hybrid automatic repeat request processes and process types

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101227703A (zh) * 2007-01-17 2008-07-23 北京三星通信技术研究有限公司 分配多种类型的ack/nack信道的设备和方法
CN101399646A (zh) * 2007-09-30 2009-04-01 大唐移动通信设备有限公司 Lte-tdd系统指示ack/nack传输的方法和装置
CN101754252A (zh) * 2008-12-19 2010-06-23 大唐移动通信设备有限公司 多载波升级系统及其反馈ack/nack的方法及设备
CN101997659A (zh) * 2009-08-25 2011-03-30 大唐移动通信设备有限公司 配置上行控制资源以及上行控制信息的传输方法及装置

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7532600B2 (en) * 2003-04-25 2009-05-12 Alcatel-Lucent Usa Inc. Method and system for using hybrid ARQ in communication systems that use multiple input multiple output antenna systems
EP1938538B1 (en) * 2005-08-19 2019-10-23 Samsung Electronics Co., Ltd. Method for variable sub-carrier mapping and device using the same
US7668188B2 (en) * 2006-02-14 2010-02-23 Broadcom Corporation Method and system for HSDPA bit level processor engine
KR100905385B1 (ko) * 2008-03-16 2009-06-30 엘지전자 주식회사 무선통신 시스템에서 제어신호의 효율적인 전송방법
WO2010107674A2 (en) * 2009-03-16 2010-09-23 Research In Motion Limited Harq process number management for downlink carrier aggregation
WO2010113214A1 (ja) * 2009-03-31 2010-10-07 富士通株式会社 通信方法、通信システム、通信端末装置、及び通信基地局装置
WO2010144245A1 (en) * 2009-06-08 2010-12-16 Research In Motion Limited Harq process management for carrier aggregation and mapping between harq processes and transmission resources
CN101932089A (zh) * 2009-06-24 2010-12-29 宏达国际电子股份有限公司 改善功率控制机制的方法及其相关通讯装置
CN101841398B (zh) * 2010-05-06 2015-10-21 中兴通讯股份有限公司 一种上行控制信令的传输方法及用户设备
KR101191216B1 (ko) * 2010-11-24 2012-10-16 엘지전자 주식회사 상향링크 제어정보 전송방법 및 사용자기기와, 상향링크 제어정보 수신방법 및 기지국
KR101907528B1 (ko) * 2011-02-18 2018-10-12 삼성전자 주식회사 이동 통신 시스템 및 그 이동 통신 시스템에서 채널 송수신 방법
CN107104761B (zh) * 2011-05-12 2020-07-31 Lg电子株式会社 发送控制信息的方法及其设备
US9288013B2 (en) * 2011-07-06 2016-03-15 Lg Electronics Inc. Method and apparatus for transceiving an uplink HARQ in a wireless communication system
KR101979849B1 (ko) * 2011-09-23 2019-05-17 엘지전자 주식회사 제어 정보를 전송하는 방법 및 이를 위한 장치
US9232517B2 (en) * 2011-10-04 2016-01-05 Lg Electronics Inc. Method for scheduling bundling in wireless access system and apparatus for same
CA2876581A1 (en) * 2012-06-14 2013-12-19 Telefonaktiebolaget L M Ericsson (Publ) Methods of mapping retransmissions responsive to bundled nack messages and related devices for multi-layer mimo transmission
CN103516499B (zh) * 2012-06-19 2017-06-13 电信科学技术研究院 一种ack/nack反馈比特数确定方法及装置
US9504037B2 (en) * 2012-08-01 2016-11-22 Lg Electronics Inc. Method and apparatus for transmitting and receiving data
CN103581891B (zh) * 2012-08-06 2019-01-25 中兴通讯股份有限公司 信息的处理方法及装置
WO2014048472A1 (en) * 2012-09-27 2014-04-03 Huawei Technologies Co., Ltd. Methods and nodes in a wireless communication system
CN103875192B (zh) * 2012-10-12 2018-08-14 华为技术有限公司 Harq反馈的传输方法和装置
US11245507B2 (en) * 2012-11-02 2022-02-08 Texas Instruments Incorporated Efficient allocation of uplink HARQ-ACK resources for LTE enhanced control channel
JP6431043B2 (ja) * 2013-04-05 2018-11-28 エルジー エレクトロニクス インコーポレイティド 無線接続システムにおいて上りリンク制御情報送信方法及び装置
GB2513904A (en) * 2013-05-10 2014-11-12 Nec Corp Communication system
WO2014194474A1 (zh) * 2013-06-04 2014-12-11 华为技术有限公司 数据传输方法、装置和用户设备
CN104854904B (zh) * 2013-10-25 2019-06-21 华为技术有限公司 数据调度方法和装置
KR20150051063A (ko) * 2013-11-01 2015-05-11 주식회사 아이티엘 하향링크 harq-ack와 sr동시 전송 방법 및 장치
US10326560B2 (en) * 2014-11-03 2019-06-18 Lg Electronics Inc. Data buffering method and apparatus for hybrid automatic repeat request in wireless access system supporting non-orthogonal multiple access scheme
US11818717B2 (en) * 2014-12-31 2023-11-14 Texas Instruments Incorporated Method and apparatus for uplink control signaling with massive Carrier Aggregation
CN112073158B (zh) * 2015-01-28 2023-08-22 交互数字专利控股公司 用于操作大量载波的上行链路反馈方法
US20180041301A1 (en) * 2015-02-09 2018-02-08 Telefonaktiebolaget Lm Ericsson (Publ) HARQ on PUSCH for Multiple Carriers
US10749656B2 (en) * 2015-03-06 2020-08-18 Lg Electronics Inc. Method and apparatus for handling starting subframe of control channel for MTC UE in wireless communication system
CN113438060A (zh) * 2015-04-09 2021-09-24 北京三星通信技术研究有限公司 一种增强载波聚合系统的harq-ack传输方法和设备
EP3348012B1 (en) * 2015-09-11 2024-12-25 Apple Inc. Transmission of multiple harq-ack feedback bits corresponding to multiple downlink cells and one or two transport blocks per cell
CN105451164A (zh) * 2015-11-30 2016-03-30 深圳市金立通信设备有限公司 一种数据传输控制方法、装置、系统及相关设备
WO2017116132A1 (ko) * 2015-12-31 2017-07-06 엘지전자 주식회사 비면허 대역을 지원하는 무선 통신 시스템에서 상향링크 신호를 송수신하는 방법 및 이를 지원하는 장치
EP3445118B1 (en) * 2016-04-13 2020-12-16 LG Electronics Inc. Method for transmitting and receiving uplink signal in wireless communication system supporting unlicensed band and device supporting same
CN107332646B (zh) * 2016-04-29 2021-05-11 中兴通讯股份有限公司 Harq-ack的发送方法及装置
US10833829B2 (en) * 2016-05-03 2020-11-10 Lg Electronics Inc. Method of transmitting ACK/NACK message in wireless communication system and terminal using same method
CN105978671A (zh) * 2016-06-27 2016-09-28 深圳市金立通信设备有限公司 一种harq重传的指示方法及相关设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101227703A (zh) * 2007-01-17 2008-07-23 北京三星通信技术研究有限公司 分配多种类型的ack/nack信道的设备和方法
CN101399646A (zh) * 2007-09-30 2009-04-01 大唐移动通信设备有限公司 Lte-tdd系统指示ack/nack传输的方法和装置
CN101754252A (zh) * 2008-12-19 2010-06-23 大唐移动通信设备有限公司 多载波升级系统及其反馈ack/nack的方法及设备
CN101997659A (zh) * 2009-08-25 2011-03-30 大唐移动通信设备有限公司 配置上行控制资源以及上行控制信息的传输方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3531599A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020019215A1 (zh) * 2018-07-25 2020-01-30 北京小米移动软件有限公司 传输harq反馈信息的方法、终端及基站
US12010065B2 (en) 2018-07-25 2024-06-11 Beijing Xiaomi Mobile Software Co., Ltd. Method for transmitting HARQ feedback information, terminal, and base station
EP3823194A4 (en) * 2018-09-04 2021-08-18 Huawei Technologies Co., Ltd. METHOD AND APPARATUS FOR SENDING AND RECEIVING FEEDBACK INFORMATION
US11968047B2 (en) 2018-09-04 2024-04-23 Huawei Technologies Co., Ltd. Method and apparatus for sending feedback information, and method and apparatus for receiving feedback information
CN111226409A (zh) * 2018-09-27 2020-06-02 联发科技股份有限公司 推迟混合自动重复请求确认反馈的机制
CN109565836B (zh) * 2018-11-01 2023-06-20 北京小米移动软件有限公司 资源位置确定方法、装置、基站及存储介质
US12213108B2 (en) 2018-11-01 2025-01-28 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus for determining resource position, base station and storage medium
CN109565836A (zh) * 2018-11-01 2019-04-02 北京小米移动软件有限公司 资源位置确定方法、装置、基站及存储介质
EP3869879A4 (en) * 2018-11-01 2022-06-08 Beijing Xiaomi Mobile Software Co., Ltd. METHOD AND APPARATUS FOR POSITIONING RESOURCES, BASE STATION, AND STORAGE MEDIA
CN111406395A (zh) * 2018-11-02 2020-07-10 联发科技(新加坡)私人有限公司 无线通信系统中混合自动重传请求反馈资源的配置和选择
US11336402B2 (en) 2018-11-02 2022-05-17 Mediatek Singapore Pte. Ltd. Configuration and selection of HARQ feedback resources in a wireless communication system
EP3991336A1 (en) * 2019-06-27 2022-05-04 Qualcomm Incorporated Harq process identification
CN112311515B (zh) * 2019-08-01 2022-03-29 北京华为数字技术有限公司 一种反馈信息传输方法及装置
CN112311515A (zh) * 2019-08-01 2021-02-02 北京华为数字技术有限公司 一种反馈信息传输方法及装置
WO2021204275A1 (zh) * 2020-04-10 2021-10-14 华为技术有限公司 一种反馈信息的发送方法及装置
CN115868135A (zh) * 2021-07-23 2023-03-28 北京小米移动软件有限公司 载波切换方法、装置、设备及存储介质

Also Published As

Publication number Publication date
US20190260521A1 (en) 2019-08-22
CN109716694A (zh) 2019-05-03
JP2020503723A (ja) 2020-01-30
EP3531599A1 (en) 2019-08-28
CN109716694B (zh) 2021-03-30
EP3531599A4 (en) 2019-11-06

Similar Documents

Publication Publication Date Title
WO2018082059A1 (zh) Harq-ack反馈信息的传输方法及相关装置
US12096427B2 (en) Methods, devices, and systems for device to device (D2D) data transmission and retransmission
JP2022501920A (ja) サイドリンクのリンク障害検出方法及び端末
US12069640B2 (en) Correspondence between transport block and codeword, related device, and system
EP3952408B1 (en) Radio link monitoring method, terminal, base station and storage medium
JP6754003B2 (ja) ダウンリンク制御チャネル送信方法、受信ネットワーク要素、および送信ネットワーク要素
CN106954276B (zh) 一种重传调度的方法、设备及系统
WO2019051715A1 (zh) 带宽部分bwp的激活方法及相关产品
CN111277381A (zh) 物理下行控制信道监听、监听配置方法、终端及网络设备
CN109150476A (zh) 反馈信息的输出方法、通知信息的输出方法及相关产品
CN111436154A (zh) 一种非授权频段的上行传输方法、终端及网络设备
CN108064083A (zh) Csi上报方法、装置以及设备
CN111800867A (zh) 半持续调度物理下行共享信道的反馈方法及终端设备
WO2014206355A1 (zh) 反馈信息的传输方法和相关设备及通信系统
CN109873689A (zh) 混合自动重传请求应答消息的传输方法及终端
KR102755867B1 (ko) Pucch의 송신 방법, 수신 방법, 단말 및 네트워크 측 장치
EP3780458B1 (en) Uplink transmission method and terminal
JP7325539B2 (ja) 情報決定方法及びユーザ機器
WO2016045062A1 (zh) 数据包传输的装置、系统及方法
CN112804033B (zh) 一种harq-ack处理方法及相关设备
US20170150370A1 (en) Method, Device and System for Implementing Wireless Coverage
CN115399011A (zh) 一种通信方法、终端设备和网络设备
WO2022022349A1 (zh) 一种通信方法、装置及系统
CN112825495A (zh) Harq-ack处理方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920480

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019523548

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016920480

Country of ref document: EP

Effective date: 20190520