[go: up one dir, main page]

WO2018072204A1 - 一种天线端口配置方法及装置 - Google Patents

一种天线端口配置方法及装置 Download PDF

Info

Publication number
WO2018072204A1
WO2018072204A1 PCT/CN2016/102927 CN2016102927W WO2018072204A1 WO 2018072204 A1 WO2018072204 A1 WO 2018072204A1 CN 2016102927 W CN2016102927 W CN 2016102927W WO 2018072204 A1 WO2018072204 A1 WO 2018072204A1
Authority
WO
WIPO (PCT)
Prior art keywords
rrus
rru
rsrp
target
access network
Prior art date
Application number
PCT/CN2016/102927
Other languages
English (en)
French (fr)
Inventor
徐超
王鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP16919416.4A priority Critical patent/EP3518430B1/en
Priority to CA3041151A priority patent/CA3041151C/en
Priority to PCT/CN2016/102927 priority patent/WO2018072204A1/zh
Priority to KR1020197014237A priority patent/KR102287732B1/ko
Priority to CN201680085381.5A priority patent/CN109076368B/zh
Publication of WO2018072204A1 publication Critical patent/WO2018072204A1/zh
Priority to HK19101027.4A priority patent/HK1258663A1/zh
Priority to US16/387,960 priority patent/US10673495B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/30003Arrangements for executing specific machine instructions
    • G06F9/3004Arrangements for executing specific machine instructions to perform operations on memory
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2643Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the present application relates to the field of antenna technologies, and in particular, to an antenna port configuration method and apparatus.
  • the Radio Remote Unit (RRU) in the digital indoor distribution system of the current network is a 2x2 antenna, that is, includes two transmitting antennas and two receiving antennas.
  • cell joint area the overlapping area between different RRUs
  • the signal to interference and noise ratio in the overlap region is high and the correlation is low correlation, and a higher ratio of 3 stream multiplexing/4 stream multiplexing can be obtained.
  • the current digital indoor distribution system network can configure the joint area between two RRUs by configuring the logical port numbers of the antenna ports of the two RRUs with overlapping coverage areas as different ports without increasing the number of RRUs.
  • the 4 receiving antenna (4R) terminal supports 4x4 virtual multiple input multiple output (MIMO), thereby improving the spatial multiplexing gain of the 4R terminal and obtaining a higher data transmission rate.
  • MIMO virtual multiple input multiple output
  • the embodiment of the present invention provides an antenna port configuration method and device, which is configured to configure an antenna port of each RRU, improve spatial multiplexing gain of the terminal in the coverage area of the RRU, and obtain a higher data transmission rate.
  • an embodiment of the present application provides a method for configuring an antenna port, including:
  • the access network device acquires M reference signal received power RSRP difference values; the M RSRP differences The value indicates the wireless signal strength of the N radio remote units RRU, and both M and N are positive integers greater than one;
  • the access network device configures the same antenna port for the two RRUs adjacent to the RRU in the traversal sequence, and the RRU is adjacent to the RRU.
  • the RRU is configured with different antenna ports.
  • the access network device obtains M RSRP difference values, determining, according to the M RSRP difference values, traversing the traversal order of the N RRUs, thereby performing the traversal sequence and the
  • the two RRUs adjacent to the RRU are configured with the same antenna port, and the RRU is configured with a different antenna port than the RRU adjacent to the RRU. Since the configuration of the antenna ports between two adjacent RRUs in the traversal sequence is different, the terminal can be more easily accessed when the terminal moves within the coverage area of the N RRUs, thereby enabling the terminal to support the cell joint region of 4 ⁇ 4 virtual MIMO.
  • the spatial multiplexing gain of the terminal in the coverage area of the RRU is improved, and a higher data transmission rate is obtained.
  • the N RRUs work in a time division multiplexing TDD mode
  • Any one of the M RSRP difference values is a difference between the downlink RSRPs of the two RRUs of the N RRUs;
  • Determining, by the access network device, the traversal sequence of traversing the N RRUs according to the M RSRP difference values including:
  • the access network device selects one RRU from the N RRUs as a target RRU;
  • the access network device uses, as the target RSRP difference, a minimum RSRP difference value determined by a downlink RSRP of the target RRU among the M RSRP difference values;
  • the access network device marks the target RRU, and determines another RRU that determines the target RSRP difference as a new target RRU, and returns the M RSRP difference from the target RRU.
  • the N RRUs work in a frequency division multiplexing FDD mode.
  • Any one of the M RSRP difference values is a difference between a downlink RSRP of one of the N RRUs and an uplink RSRP of the terminal;
  • Determining, by the access network device, the traversal sequence of traversing the N RRUs according to the M RSRP difference values including:
  • the access network device sorts the M RSRP differences according to size
  • the access network device sequentially marks the RRUs corresponding to each RSRP difference according to the ordered order of the M RSRP differences;
  • the access network device determines an order in which each of the N RRUs is marked as a traversal sequence of traversing the N RRUs.
  • the access network device configures the same antenna port for the two RRUs adjacent to the RRU in the traversal sequence, and configures different antenna ports for the RRU and the RRU adjacent to the RRU. include:
  • the access network device configures a logical port number of an antenna port of two RRUs adjacent to the RRU in the traversal sequence to 0 and 1, and configures a logical port number of the antenna port of the RRU as 2 and 3.
  • the access network device configures the same antenna port for the two RRUs adjacent to the RRU in the traversal sequence, and configures different antenna ports for the RRU and the RRU adjacent to the RRU.
  • Also includes:
  • the access network device acquires the number of terminals in the joint area of each of the K cell joint areas; the joint area of each of the K cell joint areas is formed by overlapping areas of two RRUs in the N RRUs. Area;
  • the access network device determines that the target cell joint region exists in the P cell joint region, configure the logical port number of the antenna ports of the two RRUs corresponding to the target cell joint region as The target cell joint area is configured as the same area for the logical port numbers of the antenna ports of the corresponding two RRUs.
  • An embodiment of the present application provides an antenna port configuration apparatus, including:
  • a transceiver unit configured to acquire M reference signal received power RSRP difference values;
  • the M RSRP difference values indicate wireless signal strengths of the N radio remote units RRU, and M and N are positive integers greater than 1;
  • a processing unit configured to determine, according to the M RSRP difference values, a traversal sequence of traversing the N RRUs; for any one of the N RRUs, two of the traversal sequences adjacent to the RRU
  • the RRUs are configured with the same antenna port, and the RRUs are configured with different antenna ports for the RRUs adjacent to the RRUs.
  • the N RRUs work in a time division multiplexing TDD mode
  • Any one of the M RSRP difference values is a difference between the downlink RSRPs of the two RRUs of the N RRUs;
  • the processing unit is specifically configured to:
  • the order in which each of the N RRUs are marked is determined as a traversal order of traversing the N RRUs.
  • the N RRUs work in a frequency division multiplexing FDD mode.
  • Any one of the M RSRP difference values is a difference between a downlink RSRP of one of the N RRUs and an uplink RSRP of the terminal;
  • the processing unit is specifically configured to:
  • the order in which each of the N RRUs are marked is determined as a traversal order of traversing the N RRUs.
  • processing unit is specifically configured to:
  • the logical port numbers of the antenna ports of the two RRUs adjacent to the RRU in the traversal sequence are configured to be 0 and 1, and the logical port numbers of the antenna ports of the RRU are configured to be 2 and 3.
  • processing unit is further configured to:
  • each of the joint areas of the K cell joint areas is an area formed by overlapping areas of two RRUs in the N RRUs;
  • the logical port numbers of the antenna ports of the two RRUs corresponding to the target cell joint area are configured to be different; the target cell joint area is the corresponding two RRUs.
  • the logical port number of the antenna port is configured to be the same area.
  • An embodiment of the present application provides an antenna port configuration apparatus, including:
  • the transceiver is configured to obtain M reference signal received power RSRP difference values; the M RSRP difference values indicate wireless signal strengths of the N radio remote units RRU, and M and N are positive integers greater than 1;
  • a processor configured to determine, according to the M RSRP difference values, a traversal sequence of traversing the N RRUs; for any one of the N RRUs, two of the traversal sequences adjacent to the RRU
  • the RRUs are configured with the same antenna port, and the RRUs are configured with different antenna ports for the RRUs adjacent to the RRUs.
  • the N RRUs work in a time division multiplexing TDD mode
  • any one of the M RSRP difference values which is two of the N RRUs The difference between the downlink RSRPs of the RRUs;
  • the processor is specifically configured to:
  • the order in which each of the N RRUs are marked is determined as a traversal order of traversing the N RRUs.
  • the N RRUs work in a frequency division multiplexing FDD mode.
  • Any one of the M RSRP difference values is a difference between a downlink RSRP of one of the N RRUs and an uplink RSRP of the terminal;
  • the processor is specifically configured to:
  • the order in which each of the N RRUs are marked is determined as a traversal order of traversing the N RRUs.
  • the processor is specifically configured to:
  • the logical port numbers of the antenna ports of the two RRUs adjacent to the RRU in the traversal sequence are configured to be 0 and 1, and the logical port numbers of the antenna ports of the RRU are configured to be 2 and 3.
  • the processor is further configured to:
  • each of the joint areas of the K cell joint areas is an area formed by overlapping areas of two RRUs in the N RRUs;
  • the logical port numbers of the antenna ports of the two RRUs corresponding to the target cell joint area are configured to be different; the target cell joint area is the corresponding two RRUs.
  • the logical port number of the antenna port is configured to be the same area.
  • FIG. 1 is a schematic diagram of a communication architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a method for configuring an antenna port according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a network architecture according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an antenna port configuration apparatus according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an antenna port configuration apparatus according to an embodiment of the present disclosure.
  • the embodiments of the present application are applicable to a 4G (fourth generation mobile communication system) evolution system, such as an LTE (Long Term Evolution) system; a 5G (fifth generation mobile communication system) system; and a CRAN (Cloud Radio Access Network) Access network) and other communication networks.
  • 4G fourth generation mobile communication system
  • LTE Long Term Evolution
  • 5G fifth generation mobile communication system
  • CRAN Cloud Radio Access Network
  • terminal includes but is not limited to a mobile station, a fixed or mobile subscriber unit, a pager, a cellular phone, a Personal Digital Assistant (PDA), a computer or any other type of wireless environment.
  • PDA Personal Digital Assistant
  • access network device includes, but is not limited to, a base station, a node, a base station controller, an Access Point (AP), a remote node, or any other type of interface device capable of operating in a wireless environment.
  • the terminal can only transmit and receive data through up to 2 antennas at a time, resulting in the transmission rate of data transmitted and received by the terminal.
  • the terminal can only transmit and receive data through up to 2 antennas at a time, resulting in the transmission rate of data transmitted and received by the terminal.
  • different antenna ports can be configured for the adjacent two RRUs. When two RRUs configured with different antenna ports are in the same terminal for communication, the terminals can respectively pass different antenna ports at the same time.
  • FIG. 1 it is a schematic diagram of a communication architecture provided by an embodiment of the present application.
  • the logical port number of the antenna port of the RRU 101 is configured to be 0 and 1
  • the logical port number of the antenna port of the RRU 102 is configured to be 2 and 3.
  • the terminal 103 in the coverage area of the RRU 102 can only communicate with the RRU 102 through the antenna ports 2 and 3, and the terminal 104 in the coverage area where the RRU 101 overlaps the RRU 102 can simultaneously communicate with the RRU 101 through the antenna ports 0 and 1, and Communication with the RRU 102 is through antenna ports 2 and 3.
  • FIG. 2 a schematic flowchart of an antenna port configuration method according to an embodiment of the present application includes:
  • Step 201 The access network device obtains M RSRP difference values; the M RSRP difference values indicate the wireless signal strengths of the N radio remote units RRU, and both M and N are positive integers greater than 1.
  • RSRP Reference Signal Receiving Power
  • Step 202 The access network device determines, according to the M RSRP difference values, a traversal sequence of traversing the N RRUs.
  • Step 203 For any one of the N RRUs, the access network device configures the same antenna port for the two RRUs adjacent to the RRU in the traversal sequence, and is the RRU and the RRUs adjacent to the RRU are configured with different antenna ports.
  • the access network device may obtain the M RSRP difference values in different manners.
  • any one of the M RSRP differences is an RSRP difference, which is two of the N RRUs.
  • the N RRUs can send signals to each other. Since the RSRP can be used to measure the power of the downlink reference signal, each RRU can be sent by receiving other RRUs. The sent signal determines the RSRP difference between the RRU and the other RRUs, and the access network device can determine the M RSRP difference values of the N RRUs.
  • any one of the M RSRP difference values is the N RRUs.
  • each RRU of the N RRUs sends a signal to the same terminal, and receives a signal sent by the terminal, and accesses the network device to obtain a downlink RSRP of each RRU and an uplink RSRP of the terminal. The difference between the two, thereby determining the M RSRP difference values.
  • the N RRUs may not be RRUs connected to the access network device through an interface such as a Common Public Radio Interface (CPRI), and the N RRUs may be in the same preset. RRU within the area.
  • CPRI Common Public Radio Interface
  • the access network device specifically obtains the M RSRP difference values, which is not limited in this embodiment.
  • the access network device determines, according to the mode in which the N RRUs work, traversing the traversal sequence of the N RRUs. Specifically, when the N RRUs work in the TDD mode, the access network device may The traversal order of traversing the N RRUs is determined according to the following steps:
  • Step 1 The access network device selects one RRU from the N RRUs as the target RRU.
  • Step 2 The access network device uses, as the target RSRP difference, a minimum RSRP difference value determined by a downlink RSRP of the target RRU among the M RSRP difference values.
  • Step 3 The access network device marks the target RRU, and determines another RRU that determines the target RSRP difference as a new target RRU, and returns the M RSRP difference values by the The minimum RSRP difference value determined by the downlink RSRP of the target RRU is used as the target RSRP difference value until all RRUs in the N RRUs are marked.
  • the process returns to step 2, that is, the M is returned.
  • the smallest of the RSRP differences determined by the downlink RSRP of the target RRU The RSRP difference is used as the step of the target RSRP difference.
  • Step 4 The access network device determines an order in which each of the N RRUs is marked as a traversal sequence of traversing the N RRUs.
  • the access network device can determine the shortest path of each RRU to other RRUs in the N RRUs, thereby determining the relative positional relationship of each RRU.
  • the access network device may determine a traversal sequence of traversing the N RRUs according to the following steps:
  • Step 1 The access network device sorts the M RSRP differences according to size.
  • the access network device may sort the M RSRP differences in descending order, or may sort the M RSRP differences in order from small to large. Apply for an embodiment.
  • Step 2 The access network device sequentially marks the RRUs corresponding to each RSRP difference according to the ordered order of the M RSRP differences.
  • Step 3 The access network device determines an order in which each of the N RRUs is marked as a traversal sequence of traversing the N RRUs.
  • the access network device configures an antenna port for each RRU according to the traversal sequence of traversing the N RRUs. Specifically, for any one of the N RRUs, the access network device Configuring a logical port number of an antenna port of two RRUs adjacent to the RRU in the traversal sequence to 0 and 1, and configuring a logical port number of an antenna port of the RRU as 2 and 3; An RRU of any one of the N RRUs, where the access network device configures logical port numbers of antenna ports of two RRUs adjacent to the RRU in the traversal sequence to 2 and 3, and the RRU The logical port number of the antenna port is configured as 0 and 1.
  • the access network device may further configure a logical port number of an antenna port of two RRUs adjacent to the RRU in the traversal sequence to 0 and 1 Configuring a logical port number of the antenna port of the RRU to be 2 and 3; or, for any one of the N RRUs, the access network device is adjacent to the RRU in the traversal sequence
  • the transmission mode (TM) of the two RRUs is set to TM4, and the transmission mode of the RRU is Set to TM9.
  • the N RRUs may also be numbered in the order of traversal, and then the logical port number of the antenna port of the even-numbered RRU may be configured as 0 and 1, configure the logical port number of the antenna port of the odd-numbered RRU to 2 and 3, thereby completing the configuration of the antenna port.
  • the access network device can also set the transmission mode of the even-numbered RRU to TM4 and the transmission mode of the odd-numbered RRU to TM9.
  • the access network device may also configure the logical port number of the antenna port of the even-numbered RRU to be 2 and 3, and configure the logical port number of the antenna port of the odd-numbered RRU to be 0 and 1.
  • JT non-coherent joint transmission
  • the access network device determines the traversal order of the N RRUs according to the M RSRP difference values, so that the two adjacent RRUs in the traversal sequence are configured differently according to the traversal sequence of the N RRUs. port. Since the traversal order of the N RRUs determined according to the M RSRP difference values reflects the spatial isolation between the RRUs, the N RRUs after the antenna ports are configured can obtain more cell joint regions supporting the 4 ⁇ 4 virtual MIMO. Thereby, the spatial multiplexing gain of the terminal in the coverage area of the N RRUs is improved, so that the terminal obtains a higher data transmission rate.
  • the antenna ports of the RRUs may also be adjusted.
  • the following describes an example in which the K cell joint areas are included in the coverage area of the N RRUs, where each cell joint area is an area formed by overlapping areas of two RRUs.
  • the access network device can periodically collect terminal information of each RRU; where the terminal information includes but is not limited to information such as the number of terminals and the quality of the terminal signal.
  • step 2 the access network device acquires the number of terminals in the joint area of each cell in the K cell joint area.
  • the access network device determines, in the K cell joint area, the P cell joint area with the largest number of terminals, P is less than or equal to K;
  • step 4 if the access network device determines that the target cell joint region exists in the P cell joint region, the logical port numbers of the antenna ports of the two RRUs corresponding to the target cell joint region are configured to be different.
  • the logical port number of the antenna port of the corresponding two RRUs is configured to be the same area.
  • FIG. 3 it is a schematic diagram of a network architecture provided by an embodiment of the present application.
  • RRU 1 to RRU 6 are both 2 ⁇ 2 antennas.
  • the RRU1 and RRU2 are configured with the same antenna ports, both of which are 0 and 1.
  • the RRU 3 and RRU 4 are configured with the same antenna ports, both of which are 2 and 3.
  • the RRU 5 and RRU 6 are configured with the same antenna ports, both 0 and 1.
  • the cell joint area exists between the RRU 3 and the RRU 1 and the RRU 2.
  • the access network device periodically counts the number of terminals in each RRU.
  • the access network device determines that the number of terminals in the cell joint area between the RRU 2 and the RRU 5 and the RRU 6 is greater than that between the RRU 2 and the RRU 3
  • the access network device can reconfigure the antenna port of the RRU 2 to be an antenna port different from the RRU 5 and the RRU 6, for example, configured as 2 and 3, thereby implementing more terminal access support. 4x4 virtual MIMO cell joint area.
  • the antenna port of the RRU may be re-determined according to the quality of the terminal signal, and details are not described herein again.
  • the embodiment of the present application further provides an antenna port configuration apparatus, which can perform the foregoing method embodiments.
  • FIG. 4 a schematic structural diagram of an antenna port configuration apparatus is provided in this embodiment of the present application.
  • the apparatus includes:
  • the transceiver unit 401 is configured to acquire M reference signal received power RSRP difference values; the M RSRP difference values indicate wireless signal strengths of the N radio remote units RRU, and M and N are both large a positive integer of 1;
  • the processing unit 402 is configured to determine, according to the M RSRP difference values, a traversal sequence of traversing the N RRUs, and for any one of the N RRUs, adjacent to the RRU in the traversal sequence
  • the two RRUs are configured with the same antenna port, and the RRUs are configured with different antenna ports for the RRUs adjacent to the RRUs.
  • the N RRUs work in a time division multiplexing TDD mode
  • Any one of the M RSRP difference values is a difference between the downlink RSRPs of the two RRUs of the N RRUs;
  • the processing unit 402 is specifically configured to:
  • the order in which each of the N RRUs are marked is determined as a traversal order of traversing the N RRUs.
  • the N RRUs work in a frequency division multiplexing FDD mode.
  • Any one of the M RSRP difference values is a difference between a downlink RSRP of one of the N RRUs and an uplink RSRP of the terminal;
  • the processing unit 402 is specifically configured to:
  • the order in which each of the N RRUs are marked is determined as a traversal order of traversing the N RRUs.
  • processing unit 402 is specifically configured to:
  • the logical port numbers of the antenna ports of the two RRUs adjacent to the RRU in the traversal sequence are configured to be 0 and 1, and the logical port numbers of the antenna ports of the RRU are configured to be 2 and 3.
  • processing unit 402 is further configured to:
  • each of the joint areas of the K cell joint areas is an area formed by overlapping areas of two RRUs in the N RRUs;
  • the logical port numbers of the antenna ports of the two RRUs corresponding to the target cell joint area are configured to be different; the target cell joint area is the corresponding two RRUs.
  • the logical port number of the antenna port is configured to be the same area.
  • the embodiment of the present application further provides an antenna port configuration apparatus, which can perform the foregoing method embodiments.
  • FIG. 5 a schematic structural diagram of an antenna port configuration apparatus is provided in this embodiment of the present application.
  • the device includes:
  • the transceiver 501 is configured to obtain M reference signal received power RSRP difference values; the M RSRP difference values indicate wireless signal strengths of the N radio remote units RRU, and M and N are positive integers greater than 1.
  • the processor 502 is configured to determine, according to the M RSRP difference values, a traversal sequence of traversing the N RRUs, and for any one of the N RRUs, adjacent to the RRU in the traversal sequence
  • the two RRUs are configured with the same antenna port, and the RRUs are configured with different antenna ports for the RRUs adjacent to the RRUs.
  • the N RRUs work in a time division multiplexing TDD mode
  • Any one of the M RSRP difference values is a difference between the downlink RSRPs of the two RRUs of the N RRUs;
  • the processor 502 is specifically configured to:
  • the order in which each of the N RRUs are marked is determined as a traversal order of traversing the N RRUs.
  • the N RRUs work in a frequency division multiplexing FDD mode.
  • Any one of the M RSRP difference values is a difference between a downlink RSRP of one of the N RRUs and an uplink RSRP of the terminal;
  • the processor 502 is specifically configured to:
  • the order in which each of the N RRUs are marked is determined as a traversal order of traversing the N RRUs.
  • the processor 502 is specifically configured to:
  • the logical port numbers of the antenna ports of the two RRUs adjacent to the RRU in the traversal sequence are configured to be 0 and 1, and the logical port numbers of the antenna ports of the RRU are configured to be 2 and 3.
  • processor 502 is further configured to:
  • each of the joint areas of the K cell joint areas is an area formed by overlapping areas of two RRUs in the N RRUs;
  • the logical port numbers of the antenna ports of the two RRUs corresponding to the target cell joint area are configured to be different; the target cell joint area is the corresponding two RRUs.
  • the logical port number of the antenna port is configured to be the same area.
  • bus interface that provides an interface.
  • the bus interface can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by the processor and various circuits of memory represented by the memory.
  • the bus interface can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is known in the art and, therefore, will not be further described herein.
  • embodiments of the present application can be provided as a method, or a computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the computer readable memory is stored in the computer readable memory.
  • the instructions in the production result include an article of manufacture of an instruction device that implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种天线端口配置方法及装置,包括,接入网设备获取M个参考信号接收功率RSRP差值;所述M个RSRP差值指示出N个射频拉远单元RRU的无线信号强度,M以及N均为大于1的正整数;所述接入网设备根据所述M个RSRP差值确定遍历所述N个RRU的遍历顺序;针对所述N个RRU中的任意一个RRU,所述接入网设备为所述遍历顺序中与所述RRU相邻的两个RRU配置相同的天线端口、为所述RRU与所述RRU相邻的RRU配置不同的天线端口。

Description

一种天线端口配置方法及装置 技术领域
本申请涉及天线技术领域,尤其涉及一种天线端口配置方法及装置。
背景技术
现网的数字化室内分布系统中的射频拉远单元(Radio Remote Unit,RRU)都是2x2天线,即包括2个发射天线和2个接收天线。室内场景平层的空间隔离度较低时,不同RRU之间重叠区域(以下称之为“小区联合区域”)较大,同时由于室内空间相对封闭,小区联合区域受到的来自外部的干扰较小,重叠区域内的信干噪比高且相关性为低相关,可以获得较高的3流复用/4流复用的比例。
目前的数字化室内分布系统网络,在不增加RRU数量的情况下,可以通过将具有重叠的覆盖区域的两个RRU的天线端口的逻辑端口号配置为不同端口,使得两个RRU之间的联合区域内的4接收天线(4R)终端支持4x4虚拟多输入多输出(Multiple Input Multiple Output,MIMO),从而提高4R终端的空间复用增益,获得更高的数据传输速率。
然而,当多个RRU共存时,如何配置每个RRU的天线端口,使得终端在所述多个RRU的覆盖区域内移动时,更容易进入使得终端支持4x4虚拟MIMO的小区联合区域,是亟待解决的问题。
发明内容
本申请实施例提供一种天线端口配置方法及装置,用以配置每个RRU的天线端口,提高终端在RRU的覆盖区域内的空间复用增益,获得更高的数据传输速率。
第一方面,本申请实施例提供一种天线端口配置方法,包括:
接入网设备获取M个参考信号接收功率RSRP差值;所述M个RSRP差 值指示出N个射频拉远单元RRU的无线信号强度,M以及N均为大于1的正整数;
所述接入网设备根据所述M个RSRP差值确定遍历所述N个RRU的遍历顺序;
针对所述N个RRU中的任意一个RRU,所述接入网设备为所述遍历顺序中与所述RRU相邻的两个RRU配置相同的天线端口、为所述RRU与所述RRU相邻的RRU配置不同的天线端口。
根据本申请实施例提供的方法,接入网设备获取M个RSRP差值之后,根据所述M个RSRP差值确定遍历所述N个RRU的遍历顺序,从而将所述遍历顺序中与所述RRU相邻的两个RRU配置相同的天线端口、将所述RRU与所述RRU相邻的RRU配置不同的天线端口。由于遍历顺序中相邻的两个RRU之间的天线端口的配置不同,可以使得终端在所述N个RRU的覆盖区域内移动时,更容易进入使得终端支持4x4虚拟MIMO的小区联合区域,从而提高终端在RRU的覆盖区域内的空间复用增益,获得更高的数据传输速率。
可选的,所述N个RRU工作于时分复用TDD模式;
所述M个RSRP差值中的任意一个RSRP差值,为所述N个RRU中两个RRU的下行RSRP之间的差值;
所述接入网设备根据所述M个RSRP差值确定遍历所述N个RRU的遍历顺序,包括:
所述接入网设备从所述N个RRU中选择一个RRU作为目标RRU;
所述接入网设备将所述M个RSRP差值中由所述目标RRU的下行RSRP确定的最小的RSRP差值作为目标RSRP差值;
所述接入网设备将所述目标RRU进行标记,并将确定所述目标RSRP差值的另一个RRU作为新的目标RRU,并返回将所述M个RSRP差值中由所述目标RRU的下行RSRP确定的最小的RSRP差值作为目标RSRP差值的步骤,直至所述N个RRU中的所有RRU被标记;
所述接入网设备将所述N个RRU中每个RRU被标记的顺序确定为遍历 所述N个RRU的遍历顺序。
可选的,所述N个RRU工作于频分复用FDD模式;
所述M个RSRP差值中的任意一个RSRP差值,为所述N个RRU中一个RRU的下行RSRP与终端的上行RSRP之间的差值;
所述接入网设备根据所述M个RSRP差值确定遍历所述N个RRU的遍历顺序,包括:
所述接入网设备将所述M个RSRP差值按照大小进行排序;
所述接入网设备按照排序后的所述M个RSRP差值的顺序,依次对每个RSRP差值对应的RRU进行标记;
所述接入网设备将所述N个RRU中每个RRU被标记的顺序确定为遍历所述N个RRU的遍历顺序。
可选的,所述接入网设备为所述遍历顺序中与所述RRU相邻的两个RRU配置相同的天线端口、为所述RRU与所述RRU相邻的RRU配置不同的天线端口,包括:
所述接入网设备将所述遍历顺序中与所述RRU相邻的两个RRU的天线端口的逻辑端口号配置为0和1、将所述RRU的天线端口的逻辑端口号配置为2和3。
可选的,所述接入网设备为所述遍历顺序中与所述RRU相邻的两个RRU配置相同的天线端口、为所述RRU与所述RRU相邻的RRU配置不同的天线端口之后,还包括:
所述接入网设备获取K个小区联合区域中每个小区联合区域内的终端数量;所述K个小区联合区域中每个小区联合区域为所述N个RRU中两个RRU的重叠区域形成的区域;
所述接入网设备确定所述K个小区联合区域内终端数量最多的P个小区联合区域,P小于或等于K;
所述接入网设备若确定所述P个小区联合区域中存在目标小区联合区域,则将所述目标小区联合区域对应的两个RRU的天线端口的逻辑端口号配置为 不同;目标小区联合区域为对应的两个RRU的天线端口的逻辑端口号配置为相同的区域。
本申请实施例提供一种天线端口配置装置,包括:
收发单元,用于获取M个参考信号接收功率RSRP差值;所述M个RSRP差值指示出N个射频拉远单元RRU的无线信号强度,M以及N均为大于1的正整数;
处理单元,用于根据所述M个RSRP差值确定遍历所述N个RRU的遍历顺序;针对所述N个RRU中的任意一个RRU,为所述遍历顺序中与所述RRU相邻的两个RRU配置相同的天线端口、为所述RRU与所述RRU相邻的RRU配置不同的天线端口。
可选的,所述N个RRU工作于时分复用TDD模式;
所述M个RSRP差值中的任意一个RSRP差值,为所述N个RRU中两个RRU的下行RSRP之间的差值;
所述处理单元具体用于:
从所述N个RRU中选择一个RRU作为目标RRU;
将所述M个RSRP差值中由所述目标RRU的下行RSRP确定的最小的RSRP差值作为目标RSRP差值;
将所述目标RRU进行标记,并将确定所述目标RSRP差值的另一个RRU作为新的目标RRU,并返回将所述M个RSRP差值中由所述目标RRU的下行RSRP确定的最小的RSRP差值作为目标RSRP差值的步骤,直至所述N个RRU中的所有RRU被标记;
将所述N个RRU中每个RRU被标记的顺序确定为遍历所述N个RRU的遍历顺序。
可选的,所述N个RRU工作于频分复用FDD模式;
所述M个RSRP差值中的任意一个RSRP差值,为所述N个RRU中一个RRU的下行RSRP与终端的上行RSRP之间的差值;
所述处理单元具体用于:
将所述M个RSRP差值按照大小进行排序;
按照排序后的所述M个RSRP差值的顺序,依次对每个RSRP差值对应的RRU进行标记;
将所述N个RRU中每个RRU被标记的顺序确定为遍历所述N个RRU的遍历顺序。
可选的,所述处理单元具体用于:
将所述遍历顺序中与所述RRU相邻的两个RRU的天线端口的逻辑端口号配置为0和1、将所述RRU的天线端口的逻辑端口号配置为2和3。
可选的,所述处理单元还用于:
获取K个小区联合区域中每个小区联合区域内的终端数量;所述K个小区联合区域中每个小区联合区域为所述N个RRU中两个RRU的重叠区域形成的区域;
确定所述K个小区联合区域内终端数量最多的P个小区联合区域,P小于或等于K;
若确定所述P个小区联合区域中存在目标小区联合区域,则将所述目标小区联合区域对应的两个RRU的天线端口的逻辑端口号配置为不同;目标小区联合区域为对应的两个RRU的天线端口的逻辑端口号配置为相同的区域。
本申请实施例提供一种天线端口配置装置,包括:
收发机,用于获取M个参考信号接收功率RSRP差值;所述M个RSRP差值指示出N个射频拉远单元RRU的无线信号强度,M以及N均为大于1的正整数;
处理器,用于根据所述M个RSRP差值确定遍历所述N个RRU的遍历顺序;针对所述N个RRU中的任意一个RRU,为所述遍历顺序中与所述RRU相邻的两个RRU配置相同的天线端口、为所述RRU与所述RRU相邻的RRU配置不同的天线端口。
可选的,所述N个RRU工作于时分复用TDD模式;
所述M个RSRP差值中的任意一个RSRP差值,为所述N个RRU中两 个RRU的下行RSRP之间的差值;
所述处理器具体用于:
从所述N个RRU中选择一个RRU作为目标RRU;
将所述M个RSRP差值中由所述目标RRU的下行RSRP确定的最小的RSRP差值作为目标RSRP差值;
将所述目标RRU进行标记,并将确定所述目标RSRP差值的另一个RRU作为新的目标RRU,并返回将所述M个RSRP差值中由所述目标RRU的下行RSRP确定的最小的RSRP差值作为目标RSRP差值的步骤,直至所述N个RRU中的所有RRU被标记;
将所述N个RRU中每个RRU被标记的顺序确定为遍历所述N个RRU的遍历顺序。
可选的,所述N个RRU工作于频分复用FDD模式;
所述M个RSRP差值中的任意一个RSRP差值,为所述N个RRU中一个RRU的下行RSRP与终端的上行RSRP之间的差值;
所述处理器具体用于:
将所述M个RSRP差值按照大小进行排序;
按照排序后的所述M个RSRP差值的顺序,依次对每个RSRP差值对应的RRU进行标记;
将所述N个RRU中每个RRU被标记的顺序确定为遍历所述N个RRU的遍历顺序。
可选的,所述处理器具体用于:
将所述遍历顺序中与所述RRU相邻的两个RRU的天线端口的逻辑端口号配置为0和1、将所述RRU的天线端口的逻辑端口号配置为2和3。
可选的,所述处理器还用于:
获取K个小区联合区域中每个小区联合区域内的终端数量;所述K个小区联合区域中每个小区联合区域为所述N个RRU中两个RRU的重叠区域形成的区域;
确定所述K个小区联合区域内终端数量最多的P个小区联合区域,P小于或等于K;
若确定所述P个小区联合区域中存在目标小区联合区域,则将所述目标小区联合区域对应的两个RRU的天线端口的逻辑端口号配置为不同;目标小区联合区域为对应的两个RRU的天线端口的逻辑端口号配置为相同的区域。
附图说明
图1为本申请实施例提供的一种通信架构示意图;
图2为本申请实施例提供的一种天线端口配置方法流程示意图;
图3为本申请实施例提供的一种网络架构示意图;
图4为本申请实施例提供的一种天线端口配置装置结构示意图;
图5为本申请实施例提供的一种天线端口配置装置结构示意图。
具体实施方式
本申请实施例适用于4G(第四代移动通信系统)演进系统,如LTE(Long Term Evolution,长期演进)系统;5G(第五代移动通信系统)系统;CRAN(Cloud Radio Access Network,云无线接入网)等通信网络。
本申请实施例中,术语“终端”包括但不限于移动站、固定或移动用户单元、寻呼机、蜂窝电话、个人数字助理(Personal Digital Assistant,简称PDA)、计算机或任何其它类型的能在无线环境中工作的用户设备(user equipment)。术语“接入网设备”包括但不限于基站、节点、基站控制器、接入点(Access Point,AP)、远端节点或任何其它类型的能够在无线环境中工作的接口设备。
目前,4×4终端逐渐开始流行,但是现网中的数字化室内分布系统中的RRU还是2×2天线,因此终端每次只能最多通过2根天线进行收发数据,导致终端收发数据的传输速率受制于RRU。为了使得终端获得更高的数据传输速率,可以为相邻的两个RRU配置不同的天线端口。配置了不同天线端口的两个RRU在于同一个终端进行通信时,终端可以同时分别通过不同天线端口 与每个RRU通信,因此这两个RRU之间的小区联合区域内的终端能够通过4根天线进行收发数据,从而提高终端在RRU的覆盖区域内的空间复用增益,获得更高的数据传输速率。具体,如图1所示,为本申请实施例提供的一种通信架构示意图。图1中,RRU 101的天线端口的逻辑端口号配置为0和1,RRU 102的天线端口的逻辑端口号配置为2和3。RRU 102覆盖区域内的终端103只能通过天线端口2和3与RRU 102进行通信,而RRU 101与RRU102重叠的覆盖区域内的终端104可以同时通过天线端口0和1与RRU 101进行通信、以及通过天线端口2和3与RRU 102进行通信。
然而,当多个RRU共存时,如何合理配置每个RRU的天线端口,使得尽可能多的相邻的RRU之间配置为不同的天线端口,是亟待解决的问题。
基于上述描述,如图2所示,为本申请实施例提供的一种天线端口配置方法流程示意图,包括:
步骤201:接入网设备获取M个RSRP差值;所述M个RSRP差值指示出N个射频拉远单元RRU的无线信号强度,M以及N均为大于1的正整数。
其中,RSRP的英文全称为Reference Signal Receiving Power,即参考信号接收功率,以下均简称为RSRP。
步骤202:所述接入网设备根据所述M个RSRP差值确定遍历所述N个RRU的遍历顺序。
步骤203:针对所述N个RRU中的任意一个RRU,所述接入网设备为所述遍历顺序中与所述RRU相邻的两个RRU配置相同的天线端口、为所述RRU与所述RRU相邻的RRU配置不同的天线端口。
步骤201中,接入网设备可以通过不同方式获取所述M个RSRP差值。
一种可能的实现方式中,所述N个RRU工作于时分复用(Time DivisionDuplexing,TDD)模式时,所述M个RSRP差值中的任意一个RSRP差值,为所述N个RRU中两个RRU的下行RSRP之间的差值。
在该实现方式中,所述N个RRU之间可以互相发送信号,由于RSRP可以用来衡量下行参考信号的功率,每个RRU从而可以通过接收其他RRU发 送的信号确定该RRU和其他RRU之间的RSRP差值,接入网设备从而能够确定出所述N个RRU的M个RSRP差值。
一种可能的实现方式中,所述N个RRU工作于频分复用(Frequency Division Duplexing,FDD)模式时,所述M个RSRP差值中的任意一个RSRP差值,为所述N个RRU中一个RRU的下行RSRP与终端的上行RSRP之间的差值。
在该实现方式中,所述N个RRU中的每个RRU向同一个终端发送信号,并接收所述终端发送的信号,接入网设备从而获得每个RRU的下行RSRP与终端的上行RSRP之间的差值,从而确定出M个RSRP差值。
需要说明的是,所述N个RRU可以不是与所述接入网设备通过通用公共无线电接口(Common Public Radio Interface,CPRI)等接口连接的RRU,所述N个RRU可以为处于同一个预设区域内的RRU。
接入网设备具体如何获取所述M个RSRP差值,本申请实施例并不限定。
步骤202中,接入网设备根据所述N个RRU工作的模式确定遍历所述N个RRU的遍历顺序,具体的,在所述N个RRU工作于TDD模式时,所述接入网设备可以根据以下步骤确定遍历所述N个RRU的遍历顺序:
步骤一、所述接入网设备从所述N个RRU中选择一个RRU作为目标RRU;
步骤二、所述接入网设备将所述M个RSRP差值中由所述目标RRU的下行RSRP确定的最小的RSRP差值作为目标RSRP差值。
步骤三、所述接入网设备将所述目标RRU进行标记,并将确定所述目标RSRP差值的另一个RRU作为新的目标RRU,并返回将所述M个RSRP差值中由所述目标RRU的下行RSRP确定的最小的RSRP差值作为目标RSRP差值的步骤,直至所述N个RRU中的所有RRU被标记。
需要说明的是,若确定出的新的目标RRU为被标记过的RRU,则重新在所述N个RRU中选择一个未标记的RRU作为目标RRU,并返回步骤二,即返回将所述M个RSRP差值中由所述目标RRU的下行RSRP确定的最小的 RSRP差值作为目标RSRP差值的步骤。
步骤四、所述接入网设备将所述N个RRU中每个RRU被标记的顺序确定为遍历所述N个RRU的遍历顺序。
通过上述方法,接入网设备可以确定每个RRU到所述N个RRU中其他RRU的最短路径,从而确定每个RRU的相对位置关系。
相应的,在所述N个RRU工作于FDD模式时,所述接入网设备可以根据以下步骤确定遍历所述N个RRU的遍历顺序:
步骤一、所述接入网设备将所述M个RSRP差值按照大小进行排序。
需要说明的是,所述接入网设备可以按照从大到小的顺序将所述M个RSRP差值进行排序,也可以按照从小到大的顺序将所述M个RSRP差值进行排序,本申请实施例。
步骤二、所述接入网设备按照排序后的所述M个RSRP差值的顺序,依次对每个RSRP差值对应的RRU进行标记;
步骤三、所述接入网设备将所述N个RRU中每个RRU被标记的顺序确定为遍历所述N个RRU的遍历顺序。
最后,在步骤203中,接入网设备根据遍历所述N个RRU的遍历顺序为每个RRU配置天线端口,具体的,针对所述N个RRU中的任意一个RRU,所述接入网设备将所述遍历顺序中与所述RRU相邻的两个RRU的天线端口的逻辑端口号配置为0和1、将所述RRU的天线端口的逻辑端口号配置为2和3;或者,针对所述N个RRU中的任意一个RRU,所述接入网设备将所述遍历顺序中与所述RRU相邻的两个RRU的天线端口的逻辑端口号配置为2和3、将所述RRU的天线端口的逻辑端口号配置为0和1。同时,针对所述N个RRU中的任意一个RRU,所述接入网设备还可以将所述遍历顺序中与所述RRU相邻的两个RRU的天线端口的逻辑端口号配置为0和1、将所述RRU的天线端口的逻辑端口号配置为2和3;或者,针对所述N个RRU中的任意一个RRU,所述接入网设备将所述遍历顺序中与所述RRU相邻的两个RRU的传输模式(transmission mode,TM)设置为TM4、将所述RRU的传输模式 设置为TM9。
可选的,接入网设备确定所述N个RRU的遍历顺序之后,也可以将所述N个RRU按照遍历的顺序编号,然后可以将编号为偶数的RRU的天线端口的逻辑端口号配置为0和1,将编号为奇数的RRU的天线端口的逻辑端口号配置为2和3,从而完成天线端口的配置。同时接入网设备也可以将编号为偶数的RRU的传输模式设置为TM4、将编号为奇数的RRU的传输模式设置为TM9。当然,接入网设备也可以将编号为偶数的RRU的天线端口的逻辑端口号配置为2和3、将编号为奇数的RRU的天线端口的逻辑端口号配置为0和1。
需要说明的是,天线端口的逻辑端口号配置相同的RRU之间进行非相干联合传输(Joint Transmission,JT),天线端口的逻辑端口号配置不相同的RRU之间进行相干JT。
通过上述方法,接入网设备通过根据M个RSRP差值,确定N个RRU的遍历顺序,从而根据N个RRU的遍历顺序,将所述遍历顺序中相邻的两个RRU配置不相同的天线端口。由于根据M个RSRP差值确定出的N个RRU的遍历顺序反映了RRU之间的空间隔离度,因此配置天线端口后的所述N个RRU能够获得较多的支持4x4虚拟MIMO的小区联合区域,从而提高终端在所述N个RRU的覆盖区域内的空间复用增益,使得终端获得更高的数据传输速率。
结合前面的描述,可选的,在对N个RRU的天线端口进行配置之后,还可以对RRU的天线端口进行调整。下面以所述N个RRU的覆盖区域内包括K个小区联合区域为例进行描述,其中,每个小区联合区域为两个RRU的重叠区域形成的区域。
具体的,步骤一、接入网设备可以周期性的统计每个RRU下的终端信息;其中终端信息包括但不限于终端数量、终端信号质量等信息。
然后,步骤二、接入网设备获取K个小区联合区域中每个小区联合区域内的终端数量。
然后,步骤三、所述接入网设备确定所述K个小区联合区域内终端数量最多的P个小区联合区域,P小于或等于K;
最后,步骤四、所述接入网设备若确定所述P个小区联合区域中存在目标小区联合区域,则将所述目标小区联合区域对应的两个RRU的天线端口的逻辑端口号配置为不同;其中目标小区联合区域为对应的两个RRU的天线端口的逻辑端口号配置为相同的区域。
当然,上述步骤二和步骤三中,也可以用终端信号质量替换终端数量,在此不再赘述。
举例来说,如图3所示,为本申请实施例提供的一种网络架构示意图。图3中,RRU 1至RRU 6均为2×2天线。RRU1与RRU2配置的天线端口相同,均为0和1;RRU 3与RRU 4配置的天线端口相同,均为2和3;RRU 5与RRU 6配置的天线端口相同,均为0和1。RRU 2分别与RRU 5、RRU 6之间存在小区联合区域;RRU 3分别与RRU 1、RRU 2之间存在小区联合区域;RRU 5分别与RRU 3、RRU 4之间存在小区联合区域。
接入网设备周期性的统计每个RRU中的终端数量,当接入网设备确定RRU 2与RRU 5、RRU 6之间的小区联合区域中的终端数量均大于RRU 2与RRU 3之间的小区联合区域中的终端数量时,接入网设备可以将RRU 2的天线端口重新配置为与RRU 5、RRU 6不同的天线端口,例如配置为2和3,从而实现为更多的终端进入支持4x4虚拟MIMO的小区联合区域。当然,以上只是示例,也可以根据终端信号质量重新确定RRU的天线端口,在此不再赘述。
基于相同的技术构思,本申请实施例还提供一种天线端口配置装置,该装置可执行上述方法实施例。
如图4所示,为本申请实施例提供一种天线端口配置装置结构示意图。
参见图4,该装置包括:
收发单元401,用于获取M个参考信号接收功率RSRP差值;所述M个RSRP差值指示出N个射频拉远单元RRU的无线信号强度,M以及N均为大 于1的正整数;
处理单元402,用于根据所述M个RSRP差值确定遍历所述N个RRU的遍历顺序;针对所述N个RRU中的任意一个RRU,为所述遍历顺序中与所述RRU相邻的两个RRU配置相同的天线端口、为所述RRU与所述RRU相邻的RRU配置不同的天线端口。
可选的,所述N个RRU工作于时分复用TDD模式;
所述M个RSRP差值中的任意一个RSRP差值,为所述N个RRU中两个RRU的下行RSRP之间的差值;
所述处理单元402具体用于:
从所述N个RRU中选择一个RRU作为目标RRU;
将所述M个RSRP差值中由所述目标RRU的下行RSRP确定的最小的RSRP差值作为目标RSRP差值;
将所述目标RRU进行标记,并将确定所述目标RSRP差值的另一个RRU作为新的目标RRU,并返回将所述M个RSRP差值中由所述目标RRU的下行RSRP确定的最小的RSRP差值作为目标RSRP差值的步骤,直至所述N个RRU中的所有RRU被标记;
将所述N个RRU中每个RRU被标记的顺序确定为遍历所述N个RRU的遍历顺序。
可选的,所述N个RRU工作于频分复用FDD模式;
所述M个RSRP差值中的任意一个RSRP差值,为所述N个RRU中一个RRU的下行RSRP与终端的上行RSRP之间的差值;
所述处理单元402具体用于:
将所述M个RSRP差值按照大小进行排序;
按照排序后的所述M个RSRP差值的顺序,依次对每个RSRP差值对应的RRU进行标记;
将所述N个RRU中每个RRU被标记的顺序确定为遍历所述N个RRU的遍历顺序。
可选的,所述处理单元402具体用于:
将所述遍历顺序中与所述RRU相邻的两个RRU的天线端口的逻辑端口号配置为0和1、将所述RRU的天线端口的逻辑端口号配置为2和3。
可选的,所述处理单元402还用于:
获取K个小区联合区域中每个小区联合区域内的终端数量;所述K个小区联合区域中每个小区联合区域为所述N个RRU中两个RRU的重叠区域形成的区域;
确定所述K个小区联合区域内终端数量最多的P个小区联合区域,P小于或等于K;
若确定所述P个小区联合区域中存在目标小区联合区域,则将所述目标小区联合区域对应的两个RRU的天线端口的逻辑端口号配置为不同;目标小区联合区域为对应的两个RRU的天线端口的逻辑端口号配置为相同的区域。
基于相同的技术构思,本申请实施例还提供一种天线端口配置装置,该装置可执行上述方法实施例。
如图5所示,为本申请实施例提供一种天线端口配置装置结构示意图。
参见图5,该装置包括:
收发机501,用于获取M个参考信号接收功率RSRP差值;所述M个RSRP差值指示出N个射频拉远单元RRU的无线信号强度,M以及N均为大于1的正整数;
处理器502,用于根据所述M个RSRP差值确定遍历所述N个RRU的遍历顺序;针对所述N个RRU中的任意一个RRU,为所述遍历顺序中与所述RRU相邻的两个RRU配置相同的天线端口、为所述RRU与所述RRU相邻的RRU配置不同的天线端口。
可选的,所述N个RRU工作于时分复用TDD模式;
所述M个RSRP差值中的任意一个RSRP差值,为所述N个RRU中两个RRU的下行RSRP之间的差值;
所述处理器502具体用于:
从所述N个RRU中选择一个RRU作为目标RRU;
将所述M个RSRP差值中由所述目标RRU的下行RSRP确定的最小的RSRP差值作为目标RSRP差值;
将所述目标RRU进行标记,并将确定所述目标RSRP差值的另一个RRU作为新的目标RRU,并返回将所述M个RSRP差值中由所述目标RRU的下行RSRP确定的最小的RSRP差值作为目标RSRP差值的步骤,直至所述N个RRU中的所有RRU被标记;
将所述N个RRU中每个RRU被标记的顺序确定为遍历所述N个RRU的遍历顺序。
可选的,所述N个RRU工作于频分复用FDD模式;
所述M个RSRP差值中的任意一个RSRP差值,为所述N个RRU中一个RRU的下行RSRP与终端的上行RSRP之间的差值;
所述处理器502具体用于:
将所述M个RSRP差值按照大小进行排序;
按照排序后的所述M个RSRP差值的顺序,依次对每个RSRP差值对应的RRU进行标记;
将所述N个RRU中每个RRU被标记的顺序确定为遍历所述N个RRU的遍历顺序。
可选的,所述处理器502具体用于:
将所述遍历顺序中与所述RRU相邻的两个RRU的天线端口的逻辑端口号配置为0和1、将所述RRU的天线端口的逻辑端口号配置为2和3。
可选的,所述处理器502还用于:
获取K个小区联合区域中每个小区联合区域内的终端数量;所述K个小区联合区域中每个小区联合区域为所述N个RRU中两个RRU的重叠区域形成的区域;
确定所述K个小区联合区域内终端数量最多的P个小区联合区域,P小于或等于K;
若确定所述P个小区联合区域中存在目标小区联合区域,则将所述目标小区联合区域对应的两个RRU的天线端口的逻辑端口号配置为不同;目标小区联合区域为对应的两个RRU的天线端口的逻辑端口号配置为相同的区域。
图5中还可以包括总线接口,总线接口提供接口。总线接口可以包括任意数量的互联的总线和桥,具体由处理器代表的一个或多个处理器和存储器代表的存储器的各种电路链接在一起。总线接口还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。
本所属领域的技术人员可以清楚地了解到,本发明提供的各实施例的描述可以相互参照,为描述的方便和简洁,关于本发明实施例提供的各装置、设备的功能以及执行的步骤可以参照本发明方法实施例的相关描述,在此不做赘述。
本领域内的技术人员应明白,本申请的实施例可提供为方法、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包括有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的设备。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器 中的指令产生包括指令设备的制造品,该指令设备实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (15)

  1. 一种天线端口配置方法,其特征在于,包括:
    接入网设备获取M个参考信号接收功率RSRP差值;所述M个RSRP差值指示出N个射频拉远单元RRU的无线信号强度,M以及N均为大于1的正整数;
    所述接入网设备根据所述M个RSRP差值确定遍历所述N个RRU的遍历顺序;
    针对所述N个RRU中的任意一个RRU,所述接入网设备为所述遍历顺序中与所述RRU相邻的两个RRU配置相同的天线端口、为所述RRU与所述RRU相邻的RRU配置不同的天线端口。
  2. 根据权利要求1所述的方法,其特征在于,所述N个RRU工作于时分复用TDD模式;
    所述M个RSRP差值中的任意一个RSRP差值,为所述N个RRU中两个RRU的下行RSRP之间的差值;
    所述接入网设备根据所述M个RSRP差值确定遍历所述N个RRU的遍历顺序,包括:
    所述接入网设备从所述N个RRU中选择一个RRU作为目标RRU;
    所述接入网设备将所述M个RSRP差值中由所述目标RRU的下行RSRP确定的最小的RSRP差值作为目标RSRP差值;
    所述接入网设备将所述目标RRU进行标记,并将确定所述目标RSRP差值的另一个RRU作为新的目标RRU,并返回将所述M个RSRP差值中由所述目标RRU的下行RSRP确定的最小的RSRP差值作为目标RSRP差值的步骤,直至所述N个RRU中的所有RRU被标记;
    所述接入网设备将所述N个RRU中每个RRU被标记的顺序确定为遍历所述N个RRU的遍历顺序。
  3. 根据权利要求1所述的方法,其特征在于,所述N个RRU工作于频 分复用FDD模式;
    所述M个RSRP差值中的任意一个RSRP差值,为所述N个RRU中一个RRU的下行RSRP与终端的上行RSRP之间的差值;
    所述接入网设备根据所述M个RSRP差值确定遍历所述N个RRU的遍历顺序,包括:
    所述接入网设备将所述M个RSRP差值按照大小进行排序;
    所述接入网设备按照排序后的所述M个RSRP差值的顺序,依次对每个RSRP差值对应的RRU进行标记;
    所述接入网设备将所述N个RRU中每个RRU被标记的顺序确定为遍历所述N个RRU的遍历顺序。
  4. 根据权利要求1至3任一所述的方法,其特征在于,所述接入网设备为所述遍历顺序中与所述RRU相邻的两个RRU配置相同的天线端口、为所述RRU与所述RRU相邻的RRU配置不同的天线端口,包括:
    所述接入网设备将所述遍历顺序中与所述RRU相邻的两个RRU的天线端口的逻辑端口号配置为0和1、将所述RRU的天线端口的逻辑端口号配置为2和3。
  5. 根据权利要求1至4任一所述的方法,其特征在于,所述接入网设备为所述遍历顺序中与所述RRU相邻的两个RRU配置相同的天线端口、为所述RRU与所述RRU相邻的RRU配置不同的天线端口之后,还包括:
    所述接入网设备获取K个小区联合区域中每个小区联合区域内的终端数量;所述K个小区联合区域中每个小区联合区域为所述N个RRU中两个RRU的重叠区域形成的区域;
    所述接入网设备确定所述K个小区联合区域内终端数量最多的P个小区联合区域,P小于或等于K;
    所述接入网设备若确定所述P个小区联合区域中存在目标小区联合区域,则将所述目标小区联合区域对应的两个RRU的天线端口的逻辑端口号配置为不同;目标小区联合区域为对应的两个RRU的天线端口的逻辑端口号配置为 相同的区域。
  6. 一种天线端口配置装置,其特征在于,包括:
    收发单元,用于获取M个参考信号接收功率RSRP差值;所述M个RSRP差值指示出N个射频拉远单元RRU的无线信号强度,M以及N均为大于1的正整数;
    处理单元,用于根据所述M个RSRP差值确定遍历所述N个RRU的遍历顺序;针对所述N个RRU中的任意一个RRU,为所述遍历顺序中与所述RRU相邻的两个RRU配置相同的天线端口、为所述RRU与所述RRU相邻的RRU配置不同的天线端口。
  7. 根据权利要求6所述的装置,其特征在于,所述N个RRU工作于时分复用TDD模式;
    所述M个RSRP差值中的任意一个RSRP差值,为所述N个RRU中两个RRU的下行RSRP之间的差值;
    所述处理单元具体用于:
    从所述N个RRU中选择一个RRU作为目标RRU;
    将所述M个RSRP差值中由所述目标RRU的下行RSRP确定的最小的RSRP差值作为目标RSRP差值;
    将所述目标RRU进行标记,并将确定所述目标RSRP差值的另一个RRU作为新的目标RRU,并返回将所述M个RSRP差值中由所述目标RRU的下行RSRP确定的最小的RSRP差值作为目标RSRP差值的步骤,直至所述N个RRU中的所有RRU被标记;
    将所述N个RRU中每个RRU被标记的顺序确定为遍历所述N个RRU的遍历顺序。
  8. 根据权利要求6所述的装置,其特征在于,所述N个RRU工作于频分复用FDD模式;
    所述M个RSRP差值中的任意一个RSRP差值,为所述N个RRU中一个RRU的下行RSRP与终端的上行RSRP之间的差值;
    所述处理单元具体用于:
    将所述M个RSRP差值按照大小进行排序;
    按照排序后的所述M个RSRP差值的顺序,依次对每个RSRP差值对应的RRU进行标记;
    将所述N个RRU中每个RRU被标记的顺序确定为遍历所述N个RRU的遍历顺序。
  9. 根据权利要求6至8任一所述的装置,其特征在于,所述处理单元具体用于:
    将所述遍历顺序中与所述RRU相邻的两个RRU的天线端口的逻辑端口号配置为0和1、将所述RRU的天线端口的逻辑端口号配置为2和3。
  10. 根据权利要求6至9任一所述的装置,其特征在于,所述处理单元还用于:
    获取K个小区联合区域中每个小区联合区域内的终端数量;所述K个小区联合区域中每个小区联合区域为所述N个RRU中两个RRU的重叠区域形成的区域;
    确定所述K个小区联合区域内终端数量最多的P个小区联合区域,P小于或等于K;
    若确定所述P个小区联合区域中存在目标小区联合区域,则将所述目标小区联合区域对应的两个RRU的天线端口的逻辑端口号配置为不同;目标小区联合区域为对应的两个RRU的天线端口的逻辑端口号配置为相同的区域。
  11. 一种天线端口配置装置,其特征在于,包括:
    收发机,用于获取M个参考信号接收功率RSRP差值;所述M个RSRP差值指示出N个射频拉远单元RRU的无线信号强度,M以及N均为大于1的正整数;
    处理器,用于根据所述M个RSRP差值确定遍历所述N个RRU的遍历顺序;针对所述N个RRU中的任意一个RRU,为所述遍历顺序中与所述RRU相邻的两个RRU配置相同的天线端口、为所述RRU与所述RRU相邻的RRU 配置不同的天线端口。
  12. 根据权利要求11所述的装置,其特征在于,所述N个RRU工作于时分复用TDD模式;
    所述M个RSRP差值中的任意一个RSRP差值,为所述N个RRU中两个RRU的下行RSRP之间的差值;
    所述处理器具体用于:
    从所述N个RRU中选择一个RRU作为目标RRU;
    将所述M个RSRP差值中由所述目标RRU的下行RSRP确定的最小的RSRP差值作为目标RSRP差值;
    将所述目标RRU进行标记,并将确定所述目标RSRP差值的另一个RRU作为新的目标RRU,并返回将所述M个RSRP差值中由所述目标RRU的下行RSRP确定的最小的RSRP差值作为目标RSRP差值的步骤,直至所述N个RRU中的所有RRU被标记;
    将所述N个RRU中每个RRU被标记的顺序确定为遍历所述N个RRU的遍历顺序。
  13. 根据权利要求11所述的装置,其特征在于,所述N个RRU工作于频分复用FDD模式;
    所述M个RSRP差值中的任意一个RSRP差值,为所述N个RRU中一个RRU的下行RSRP与终端的上行RSRP之间的差值;
    所述处理器具体用于:
    将所述M个RSRP差值按照大小进行排序;
    按照排序后的所述M个RSRP差值的顺序,依次对每个RSRP差值对应的RRU进行标记;
    将所述N个RRU中每个RRU被标记的顺序确定为遍历所述N个RRU的遍历顺序。
  14. 根据权利要求11至13任一所述的装置,其特征在于,所述处理器具体用于:
    将所述遍历顺序中与所述RRU相邻的两个RRU的天线端口的逻辑端口号配置为0和1、将所述RRU的天线端口的逻辑端口号配置为2和3。
  15. 根据权利要求11至14任一所述的装置,其特征在于,所述处理器还用于:
    获取K个小区联合区域中每个小区联合区域内的终端数量;所述K个小区联合区域中每个小区联合区域为所述N个RRU中两个RRU的重叠区域形成的区域;
    确定所述K个小区联合区域内终端数量最多的P个小区联合区域,P小于或等于K;
    若确定所述P个小区联合区域中存在目标小区联合区域,则将所述目标小区联合区域对应的两个RRU的天线端口的逻辑端口号配置为不同;目标小区联合区域为对应的两个RRU的天线端口的逻辑端口号配置为相同的区域。
PCT/CN2016/102927 2016-10-21 2016-10-21 一种天线端口配置方法及装置 WO2018072204A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP16919416.4A EP3518430B1 (en) 2016-10-21 2016-10-21 Method and device for assigning antenna port
CA3041151A CA3041151C (en) 2016-10-21 2016-10-21 Antenna port configuration method and apparatus
PCT/CN2016/102927 WO2018072204A1 (zh) 2016-10-21 2016-10-21 一种天线端口配置方法及装置
KR1020197014237A KR102287732B1 (ko) 2016-10-21 2016-10-21 안테나 포트 구성 방법 및 장치
CN201680085381.5A CN109076368B (zh) 2016-10-21 2016-10-21 一种天线端口配置方法及装置
HK19101027.4A HK1258663A1 (zh) 2016-10-21 2019-01-21 一種天線端口配置方法及裝置
US16/387,960 US10673495B2 (en) 2016-10-21 2019-04-18 Antenna port configuration method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/102927 WO2018072204A1 (zh) 2016-10-21 2016-10-21 一种天线端口配置方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/387,960 Continuation US10673495B2 (en) 2016-10-21 2019-04-18 Antenna port configuration method and apparatus

Publications (1)

Publication Number Publication Date
WO2018072204A1 true WO2018072204A1 (zh) 2018-04-26

Family

ID=62018215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/102927 WO2018072204A1 (zh) 2016-10-21 2016-10-21 一种天线端口配置方法及装置

Country Status (7)

Country Link
US (1) US10673495B2 (zh)
EP (1) EP3518430B1 (zh)
KR (1) KR102287732B1 (zh)
CN (1) CN109076368B (zh)
CA (1) CA3041151C (zh)
HK (1) HK1258663A1 (zh)
WO (1) WO2018072204A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3957103A1 (en) * 2019-04-15 2022-02-23 Telefonaktiebolaget Lm Ericsson (Publ) Methods, systems and antenna reference points of a wireless communication network for synchronizing transmission of signals

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103391576A (zh) * 2012-05-11 2013-11-13 华为技术有限公司 参考信号接收功率的上报方法和设备
CN103813376A (zh) * 2012-11-14 2014-05-21 株式会社日立制作所 信号测量装置及信号测量方法
CN105636219A (zh) * 2014-10-29 2016-06-01 华为技术有限公司 资源调度方法和装置
US9462520B2 (en) * 2013-01-21 2016-10-04 Telefonaktiebolaget L M Ericsson (Publ) Systems and methods for using enhanced receiver and gaps when handling interference

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8670432B2 (en) * 2009-06-22 2014-03-11 Qualcomm Incorporated Methods and apparatus for coordination of sending reference signals from multiple cells
JP5469250B2 (ja) * 2010-08-27 2014-04-16 株式会社日立製作所 分散アンテナシステム、および同システムにおける無線通信方法
US20120208541A1 (en) * 2011-02-14 2012-08-16 Qualcomm Incorporated Mobility procedures in wireless networks with distributed remote radio heads
CN102984746A (zh) * 2011-09-05 2013-03-20 爱立信(中国)通信有限公司 提高网络中性能的参考信号功率测量和报告
US9520929B2 (en) * 2012-02-29 2016-12-13 Kyocera Corporation Communication control method, user terminal, and base station
CN103222299B (zh) * 2012-12-06 2016-09-28 华为技术有限公司 下行方向射频拉远单元选择判决方法和装置
CN103051370B (zh) * 2012-12-28 2016-12-28 华为技术有限公司 一种用户设备的工作拉远射频单元选择方法和基站
US10334662B2 (en) * 2013-04-16 2019-06-25 Qualcomm Incorporated Enhanced antenna management by a base station
CN103688585B (zh) * 2013-06-07 2017-04-26 华为技术有限公司 多射频拉远单元rru共小区的信号传输方法及装置
US10608722B2 (en) * 2016-04-01 2020-03-31 Apple Inc. Communication device and a method for determining an information from another apparatus
US10454541B2 (en) * 2016-08-12 2019-10-22 Qualcomm Incorporated Dynamic uplink antenna port management

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103391576A (zh) * 2012-05-11 2013-11-13 华为技术有限公司 参考信号接收功率的上报方法和设备
CN103813376A (zh) * 2012-11-14 2014-05-21 株式会社日立制作所 信号测量装置及信号测量方法
US9462520B2 (en) * 2013-01-21 2016-10-04 Telefonaktiebolaget L M Ericsson (Publ) Systems and methods for using enhanced receiver and gaps when handling interference
CN105636219A (zh) * 2014-10-29 2016-06-01 华为技术有限公司 资源调度方法和装置

Also Published As

Publication number Publication date
HK1258663A1 (zh) 2019-11-15
CN109076368B (zh) 2020-07-28
US20190245589A1 (en) 2019-08-08
EP3518430B1 (en) 2020-07-29
CA3041151C (en) 2022-06-14
KR102287732B1 (ko) 2021-08-06
KR20190069516A (ko) 2019-06-19
EP3518430A1 (en) 2019-07-31
CA3041151A1 (en) 2018-04-26
EP3518430A4 (en) 2019-07-31
US10673495B2 (en) 2020-06-02
CN109076368A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
CN110880958B (zh) 一种射频参数的上报方法及装置
JP2021505045A (ja) 無線ネットワーク用の結合ビーム報告
EP3531736B1 (en) Method and apparatus for transmitting reference signals
JP6437094B2 (ja) 発見信号伝送方法、セル発見方法及び装置
JP2019524023A (ja) 参照信号伝送方法、並びに関連するデバイスおよびシステム
JPWO2020031358A1 (ja) ユーザ装置及び送信方法
CN113141607A (zh) 一种ims紧急服务状态指示方法及装置
WO2019029356A1 (zh) 一种波束训练方法及装置、通信系统
JP6843971B2 (ja) ビームフォーミング情報の交換方法及びネットワーク機器
CN114126055B (zh) 波束指示方法、网络设备、终端、装置及存储介质
WO2019214355A1 (zh) 一种确定rrm测量配置的方法及设备
CN115707021A (zh) 一种通信方法和通信装置
WO2018072204A1 (zh) 一种天线端口配置方法及装置
WO2016061824A1 (zh) 用于数据传输的方法和基站
CN111818552A (zh) 一种基于cu-du架构的定位方法及装置
WO2013138984A1 (en) Transmission point selection
EP4046312A1 (en) Wireless communication system
CN106162816A (zh) 网络发现方法、站点及接入点
WO2024073948A1 (en) Method and apparatus of supporting artificial intelligence
CN111512664B (zh) 功率测量方法及设备
WO2022067702A1 (zh) 一种上报及其实现多连接切换能力的方法及装置
KR20160086928A (ko) D2d 신호 검출 방법 및 장치
WO2023061602A1 (en) Beam management
JP2021078158A (ja) ビーム測定方法およびネットワーク機器
CN116963204A (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919416

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3041151

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016919416

Country of ref document: EP

Effective date: 20190425

ENP Entry into the national phase

Ref document number: 20197014237

Country of ref document: KR

Kind code of ref document: A