WO2018066613A1 - 飲料用粉末植物エキスとその製造方法 - Google Patents
飲料用粉末植物エキスとその製造方法 Download PDFInfo
- Publication number
- WO2018066613A1 WO2018066613A1 PCT/JP2017/036184 JP2017036184W WO2018066613A1 WO 2018066613 A1 WO2018066613 A1 WO 2018066613A1 JP 2017036184 W JP2017036184 W JP 2017036184W WO 2018066613 A1 WO2018066613 A1 WO 2018066613A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plant extract
- branched
- glucose
- powdered
- glucan
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23F—COFFEE; TEA; THEIR SUBSTITUTES; MANUFACTURE, PREPARATION, OR INFUSION THEREOF
- A23F3/00—Tea; Tea substitutes; Preparations thereof
- A23F3/16—Tea extraction; Tea extracts; Treating tea extract; Making instant tea
- A23F3/30—Further treatment of dried tea extract; Preparations produced thereby, e.g. instant tea
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L2/00—Non-alcoholic beverages; Dry compositions or concentrates therefor; Preparation or treatment thereof
- A23L2/385—Concentrates of non-alcoholic beverages
- A23L2/39—Dry compositions
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23F—COFFEE; TEA; THEIR SUBSTITUTES; MANUFACTURE, PREPARATION, OR INFUSION THEREOF
- A23F3/00—Tea; Tea substitutes; Preparations thereof
- A23F3/16—Tea extraction; Tea extracts; Treating tea extract; Making instant tea
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23F—COFFEE; TEA; THEIR SUBSTITUTES; MANUFACTURE, PREPARATION, OR INFUSION THEREOF
- A23F5/00—Coffee; Coffee substitutes; Preparations thereof
- A23F5/24—Extraction of coffee; Coffee extracts; Making instant coffee
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L2/00—Non-alcoholic beverages; Dry compositions or concentrates therefor; Preparation or treatment thereof
- A23L2/52—Adding ingredients
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2002/00—Food compositions, function of food ingredients or processes for food or foodstuffs
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2250/00—Food ingredients
- A23V2250/60—Sugars, e.g. mono-, di-, tri-, tetra-saccharides
- A23V2250/61—Glucose, Dextrose
Definitions
- the present invention relates to a powdery plant extract for beverages, and more specifically, a powdery plant extract for beverages that has excellent solubility and gives a flavor and flavor equivalent to those of ordinary plant extract beverages (green tea, tea, coffee, etc.) when dissolved. It relates to the manufacturing method.
- Powdered plant extracts for beverages which are pulverized extracts extracted from plants (drinkable plant extracts), such as powdered green tea, are relatively easy to store because they are in powder form, and are then placed in a container such as a cup of tea. Therefore, it is useful because a plant extract beverage can be prepared simply by pouring hot water or the like.
- Patent Document 1 manufactures instant tea having excellent flavor and solubility by spray-drying an aqueous solution containing a tea extract and a dextrin of DE 10 to 25 in the presence of carbon dioxide gas. A method is disclosed. However, since dextrin is added, there is a problem that the original flavor of tea is impaired due to the paste odor and viscosity derived from dextrin.
- Patent Document 2 discloses an instant tea that retains the flavor of tea leaves and is excellent in storage stability, obtained by blending a maltooligosaccharide having a specific degree of polymerization. However, since many maltooligosaccharides such as maltotetraose, maltopentaose, and maltohexaose are used, the original flavor of tea may be impaired due to the sweetness derived from these maltooligosaccharides.
- Patent Document 3 instant tea with excellent storage stability having a flavor almost the same as that of a tea bath obtained by a normal tea method is obtained by using cyclodextrin so that it does not change in flavor components even when stored for a long time.
- a method of manufacturing is disclosed. However, since this method contains cyclodextrin, the bitterness peculiar to tea extract is masked, and as a result, there is a concern that the original flavor of tea is impaired.
- Patent Document 4 the use of indigestible dextrin as a pulverizing base material, carbon dioxide gas is dissolved in a solution containing tea extract and indigestible dextrin and spray-dried, so that the aroma when dissolved is good.
- a method for producing instant tea excellent in palatability is disclosed.
- simply mixing indigestible dextrin with tea extract to make instant tea has poor solubility in water and hot water, and the insoluble tea dextrin is added and carbon dioxide is further dissolved in the dissolved tea extract.
- the present invention has been made in view of the current state of the prior art, and provides a powdery plant extract for beverages that retains the original flavor and aroma of a drinking plant extract and is excellent in solubility, and a method for producing the same. Let it be an issue.
- the present inventors have found that the branched ⁇ -glucan mixture disclosed by the present applicant in International Publication No. WO2008 / 136331 has a constant mass relative to the drinking plant extract.
- the powdered plant extracts for beverages blended and powdered so that the ratio is surprisingly high not only in the original flavor and aroma of drinking plant extracts but also in water
- the present invention was completed by finding that it has solubility and establishing its production method.
- the present invention is a powdery plant extract for beverages comprising a drinking plant extract and a branched ⁇ -glucan mixture having the following characteristics (A) to (C), and the drinking plant contained in the powdered plant extract for beverages:
- the above-mentioned problems are solved by providing a powdered plant extract for beverages in which the mass ratio of the extract and the branched ⁇ -glucan mixture in terms of solid matter is 1: 0.1 to 1:20.
- Isomaltose is produced by digestion with isomaltodextranase to produce 5% by mass or more of the solids of the digested product.
- the present invention provides a branched ⁇ -glucan mixture having the following characteristics (A) to (C) with respect to a drinking plant extract in the presence of an aqueous solvent: a drinking plant extract and a branched ⁇ -glucan mixture.
- Production of a powdery plant extract for beverages comprising a step of mixing so that the mass ratio in terms of solids is 1: 0.1 to 1:20 to obtain a mixed solution, and a step of pulverizing the obtained mixed solution
- the problem is solved by providing a method.
- the powdered plant extract for beverages of the present invention exhibits superior solubility compared to conventional powdered plant extracts for beverages when dissolved in a liquid such as water without impairing the original flavor and aroma of the drinking plant extract.
- the powdered plant extract for beverages can be prepared by a simple process of mixing and pulverizing, the powdered plant extract for beverages can be industrially easily produced in large quantities and stably at low cost. Can be manufactured.
- the present invention relates to a powdery plant extract for beverages comprising a drinking plant extract and a branched ⁇ -glucan mixture having the following characteristics (A) to (C), and the drinking plant extract contained in the powdered plant extract for beverages:
- the invention relates to the powdered plant extract for beverages and a method for producing the same, wherein the mass ratio of the branched ⁇ -glucan mixture in terms of solid matter is 1: 0.1 to 1:20.
- Isomaltose is produced by digestion with isomaltodextranase to produce 5% by mass or more of the solids of the digested product.
- the powdered plant extract for beverages means a dried plant extract extracted from a plant with an aqueous solvent and powdered.
- the plant include chanoki (camellia sinensis) and assam; chamomile, hibiscus, lavender, mint, rosehip, peppermint, lemongrass, dodomi, gymnema, banaba, ginkgo, morroheia, alfalfa , Wormwood, yerba mate, gavalon, tochu, rooibos, aloe, cherry leaves, perilla and other herbs; wheat, wheat, rice, soybeans, buckwheat and other grains; ginseng, burdock and other root vegetables; coffee tree Etc.
- the potable plant extract as used herein refers to one or more parts selected from the leaves, stems, flowers, gourd, roots, seeds, etc. of the above plants, if necessary, such as drying, roasting and fermentation. , Means something extracted and made.
- Specific examples of such drinking plant extracts include green tea, oolong tea, black tea, roasted tea, sayha, herbal tea, tochu tea, rooibos tea, dodomi tea, barley tea, hato barley, brown rice tea, buckwheat tea, burdock tea, coffee Examples include green bean tea.
- the branched ⁇ -glucan mixture as used in the present specification is, for example, a branched ⁇ -glucan mixture (hereinafter simply referred to as “branched ⁇ -glucan mixture”) disclosed by the same applicant as the present application in International Publication No. WO2008 / 136331. Means.)
- the branched ⁇ -glucan mixture is obtained by using starch as a raw material and reacting with various enzymes, and is usually a mixture mainly composed of a plurality of types of branched ⁇ -glucan having various branched structures and glucose polymerization degrees. Is in form.
- ⁇ -glucosyltransferase disclosed in the pamphlet of International Publication No.
- WO2008 / 136331 is allowed to act on starch, or in addition to the ⁇ -glucosyltransferase, maltotetra Amylases such as ose-producing amylase (EC 3.2.1.60), starch debranching enzymes such as pullulanase (EC 3.2.1.41), isoamylase (EC 3.2.1.68), , Cyclomaltodextrin glucanotransferase (EC 2.4.1.19), starch branching enzyme (EC 2.4.1.18), or degree of polymerization 2 disclosed in Japanese Patent Application Laid-Open No.
- maltotetra Amylases such as ose-producing amylase (EC 3.2.1.60), starch debranching enzymes such as pullulanase (EC 3.2.1.41), isoamylase (EC 3.2.1.68), , Cyclomaltodextrin glucanotransferase (EC 2.4.1.19), starch branching enzyme (EC 2.4.1.18), or degree
- One or more enzymes such as an enzyme having the activity of transferring the above ⁇ -1,4 glucan to a glucose residue inside starch based on ⁇ -1,6
- the method of making it act on starchy substance together can be illustrated.
- the branched ⁇ -glucan mixture used in the present invention is isolated and quantified into individual branched ⁇ -glucan molecules, and the structure thereof, that is, the binding mode of the glucose residue that is its constituent unit It is impossible or extremely difficult to determine the binding order, and the branched ⁇ -glucan mixture can be obtained by various physical methods, chemical methods, or enzymatic methods generally used in the art. Can be characterized as a whole mixture.
- the structure of the branched ⁇ -glucan mixture used in the present invention is characterized by the characteristics (A) to (C) as a whole.
- This branched ⁇ -glucan mixture is a glucan having glucose as a constituent sugar (feature (A)), and is located at one end of a linear glucan having a glucose polymerization degree of 3 or more linked via ⁇ -1,4 bonds. It has a branched structure with a glucose polymerization degree of 1 or more linked to a non-reducing terminal glucose residue via a bond other than an ⁇ -1,4 bond (feature (B)).
- non-reducing terminal glucose residue in the feature (B) means a glucose residue located at the terminal that does not exhibit reducing property among the glucan chains linked through ⁇ -1,4 bonds.
- “Bonds other than ⁇ -1,4 bonds” are literally “bonds other than ⁇ -1,4 bonds” and include ⁇ -1,2 bonds, ⁇ -1,3 bonds, ⁇ -1,6 bonds. It means bonds other than ⁇ -1,4 bonds such as.
- the branched ⁇ -glucan mixture used in the present invention has a feature (characteristic (C)) that isomaltose is produced in an amount of 5% by mass or more per digested solid by digestion with isomalt dextranase. .
- the branched ⁇ -glucan mixture used in the present invention is a glucan mixture characterized by the features (A) to (C). Of these features, the feature (C) will be supplemented as follows.
- the isomaltdextranase digestion means that isomaltdextranase is allowed to act on the branched ⁇ -glucan mixture to cause hydrolysis.
- Isomalt dextranase is an enzyme to which the enzyme number (EC) 3.2.1.94 is assigned, and ⁇ -1,2, ⁇ -1 adjacent to the reducing end of the isomaltose structure in ⁇ -glucan. , 3, ⁇ -1,4, and ⁇ -1,6 linkages, the enzyme has the characteristic of hydrolyzing.
- isomaltdextranase digestion preferably isomaltdextranase from Arthrobacter globiformis (eg, Sawai et al., Agricultural and Biological Chemistry), Vol. 52, No. 2, pages 495-501 (1988)).
- the ratio of isomaltose per solid of the digest produced by the isomalt dextranase digestion is the ratio of isomaltose that can be hydrolyzed with isomalt dextranase in the structure of the branched ⁇ -glucan constituting the branched ⁇ -glucan mixture.
- the ratio of the structure is shown, and according to the feature (C), the structure of the branched ⁇ -glucan mixture as a whole can be characterized by an enzymatic method.
- the branched ⁇ -glucan mixture used in the present invention is usually 5% by mass or more, preferably 10% by mass or more, more preferably 15% by mass with respect to the solid content of the isomaltose by digestion with isomaltodextranase. More preferably, 20% by mass or more and 70% by mass or less, and still more preferably 20% by mass or more and 60% by mass or less, which is the original flavor of a plant extract when a potable plant extract is powdered using this.
- the holding effect is strong, and it is more preferably used in carrying out the present invention.
- a branched ⁇ -glucan mixture with an isomaltose production amount of less than 5% by mass in digestion with isomalt dextranase has a structure close to maltodextrin having a small branched structure, and maintains the flavor when dissolving powdered plant extracts for beverages.
- the structural features that are thought to be involved are less preferred, and there is a preferred range for the amount of isomaltose by isomaltdextranase digestion.
- the water-soluble dietary fiber content determined by high performance liquid chromatography is 40% by mass or more (D) The thing which has is mentioned.
- “high-performance liquid chromatographic method” for determining the water-soluble dietary fiber content (hereinafter simply referred to as “enzyme-HPLC method”) .) Means the nutrition labeling standard of the Ministry of Health and Welfare Notification No. 146, May 1996, “Analysis Method of Nutrients, etc. (Methods listed in the third column of the Table 1 of the Nutrition Labeling Standard Annex)”, “ It is the method described in "Food fiber”, and the outline is demonstrated as follows.
- a sample for gel filtration chromatography is prepared by decomposing the sample by a series of enzyme treatments with heat-stable ⁇ -amylase, protease, and glucoamylase, and removing proteins, organic acids, and inorganic salts from the treatment solution with an ion exchange resin. Prepare the solution. Next, it is subjected to gel filtration chromatography, and the peak areas of undigested glucan and glucose in the chromatogram are obtained. The respective peak areas and glucose in the sample solution obtained separately by the glucose oxidase method by a conventional method are obtained. The amount is used to calculate the water soluble dietary fiber content of the sample.
- water-soluble dietary fiber content means the water-soluble dietary fiber content determined by the “enzyme-HPLC method” unless otherwise specified.
- the water-soluble dietary fiber content indicates the content of ⁇ -amylase and ⁇ -glucan that is not decomposed by glucoamylase, and the feature (D) shows that the structure of the branched ⁇ -glucan mixture as a whole is expressed by an enzymatic method. It is one of the indices that characterize.
- the water-soluble dietary fiber content is 40% by mass or more and less than 100% by mass, preferably 50% by mass or more and less than 95% by mass, more preferably 60% by mass or more and less than 90% by mass. More preferably, the branched ⁇ -glucan mixture that is 70% by mass or more and less than 85% by mass has a strong flavor retention effect when the powdered plant extract for beverages is dissolved in water or the like, and is more suitable for practicing the present invention. Used.
- a more preferable embodiment of the present branched ⁇ -glucan mixture includes those having the following characteristics (E) and (F), which can be determined by methylation analysis.
- E the ratio of ⁇ -1,4 linked glucose residues to ⁇ -1,6 linked glucose residues is in the range of 1: 0.6 to 1: 4;
- F The sum of ⁇ -1,4-bonded glucose residues and ⁇ -1,6-bonded glucose residues accounts for 55% or more of all glucose residues.
- methylation analysis is a generally used method for determining the binding mode of monosaccharides constituting a polysaccharide or oligosaccharide (Ciucanu et al., Carbohydrate). -Research (Carbohydrate Research), Vol. 131, No. 2, pp. 209-217 (1984)).
- methylation analysis is applied to analysis of glucose binding mode in glucan, first, all free hydroxyl groups in glucose residues constituting glucan are methylated, and then fully methylated glucan is hydrolyzed.
- methylated glucose obtained by hydrolysis is reduced to form methylated glucitol from which the anomeric form has been eliminated, and further, a free hydroxyl group in this methylated glucitol is acetylated to give partially methylated glucitol acetate (note that , “Partially methylated glucitol acetate” is sometimes simply referred to as “partially methylated product”).
- Partially methylated glucitol acetate is sometimes simply referred to as “partially methylated product”.
- the abundance ratio of glucose residues having different binding modes in the glucan that is, the abundance ratio of each glucoside bond can be determined from the peak area%.
- “Ratio” for partially methylated product means “ratio” of peak area in gas chromatogram of methylation analysis
- “%” for partially methylated product means “area%” in gas chromatogram of methylated analysis.
- the “ ⁇ -1,4-bonded glucose residue” in the above (E) and (F) means the glucose residue bonded to other glucose residues only through the hydroxyl groups bonded to the 1st and 4th carbon atoms. It is detected as 2,3,6-trimethyl-1,4,5-triacetylglucitol in methylation analysis.
- the “ ⁇ -1,6-bonded glucose residue” in the above (E) and (F) is bonded to other glucose residues only through the hydroxyl groups bonded to the 1st and 6th carbon atoms. It is a glucose residue and is detected as 2,3,4-trimethyl-1,5,6-triacetylglucitol in methylation analysis.
- Ratio of ⁇ -1,4-bonded glucose residue and ⁇ -1,6-bonded glucose residue obtained by methylation analysis, and ⁇ -1,4-bonded glucose residue and ⁇ -1,6 bond The ratio of the glucose residues to the total glucose residues can be used as one of the indicators for characterizing the structure of the branched ⁇ -glucan mixture as a whole by chemical methods.
- a branched ⁇ -glucan mixture is used in methylation analysis for 2,3,6-trimethyl-1,4,5-triacetylglucitol and 2,3,4-trimethyl-1,5,6-triacetylglucitol. It means that the total with Toll accounts for 55% or more of partially methylated glucitol acetate.
- starch does not have glucose residues bonded only at the 1- and 6-positions, and ⁇ -1,4-bonded glucose residues occupy most of all glucose residues.
- the requirements of (E) and (F) mean that the branched ⁇ -glucan mixture has a completely different structure from starch.
- the present branched ⁇ -glucan mixture corresponds to an “ ⁇ -1,6-linked glucose residue” that is not usually present in starch in a preferred embodiment. If there is a need for a high flavor retention effect, the more complex branch structure can be expected to have a higher effect, so ⁇ -1,4 bond and ⁇ -1,6 bond.
- ⁇ -1,3 bonds and ⁇ -1,3,6 bonds are preferable.
- ⁇ -1,3 bonded glucose residues are preferably 0.5% or more and less than 10% of all glucose residues, and ⁇ -1,3,6 bonded glucose residues are preferably It is preferably 0.5% or more of the total glucose residues.
- “ ⁇ -1,3,6 bond” means “residue of glucose that is bonded to other glucose ( ⁇ -1,3,6 bond) at three positions of hydroxyl groups at the 1-position, 3-position and 6-position”. Means "group”.
- ⁇ -1,3-linked glucose residues are 0.5% or more and less than 10% of all glucose residues.
- 2,4 , 6-trimethyl-1,3,5-triacetylglucitol can be confirmed by the presence of 0.5% to less than 10% of the partially methylated glucitol acetate.
- the fact that “the ⁇ -1,3,6-linked glucose residues are 0.5% or more of the total glucose residues” means that the branched ⁇ -glucan mixture is 2,4- This can be confirmed by the presence of dimethyl-1,3,5,6-tetraacetylglucitol in an amount of 0.5% to less than 10% of the partially methylated glucitol acetate.
- This branched ⁇ -glucan mixture can also be characterized by the weight average molecular weight (Mw) and the value (Mw / Mn) obtained by dividing the weight average molecular weight (Mw) by the number average molecular weight (Mn).
- the weight average molecular weight (Mw) and the number average molecular weight (Mn) can be determined using, for example, size exclusion chromatography.
- the average glucose polymerization degree of the branched ⁇ -glucan constituting the branched ⁇ -glucan mixture can be calculated based on the weight average molecular weight (Mw), the branched ⁇ -glucan mixture is characterized by the average glucose polymerization degree. It can also be attached.
- the average glucose polymerization degree can be determined by subtracting 18 from the weight average molecular weight (Mw) and dividing the molecular weight by 162 which is the amount of glucose residue.
- the branched ⁇ -glucan mixture used in powdered plant extracts for beverages preferably has an average glucose polymerization degree of usually 8 to 500, preferably 15 to 400, more preferably 20 to 300.
- the branched ⁇ -glucan mixture exhibits the same properties as ordinary glucan in that the viscosity increases as the average glucose polymerization degree increases, and the viscosity decreases as the average glucose polymerization degree decreases. Therefore, according to the embodiment of the powdered plant extract for beverages of the present invention, the present branched ⁇ -glucan mixture having an average degree of glucose polymerization suitable for the viscosity required for beverages can be appropriately selected and used.
- Mw / Mn which is a value obtained by dividing the weight average molecular weight (Mw) by the number average molecular weight (Mn), is a variation in the degree of glucose polymerization of the branched ⁇ -glucan molecules constituting the branched ⁇ -glucan mixture that is closer to 1 Means small.
- the branched ⁇ -glucan mixture used for the drinking plant extract can be used without any problem if the Mw / Mn is usually 20 or less, but preferably 10 or less, more preferably 5 or less. .
- branched ⁇ -glucan mixture used in the present invention is as described above.
- various branched ⁇ -glucan mixtures disclosed in the above-mentioned International Publication No. WO2008 / 136331 pamphlet are used. Can be used.
- ⁇ -glucosyltransferase derived from Bacillus circulans PP710 (FERM BP-10771) and / or Arthrobacter globiformis PP349 (FERM BP-10770) alone, or the ⁇ -glucosyltransferase and pullulanase ( EC 3.2.1.41), isoamylase (EC 3.2.1.68) and other starch debranching enzymes and / or cyclomaltodextrin glucanotransferase (EC 2.4.1.19 (CGTase))
- a branched ⁇ -glucan mixture obtained by acting on a starch raw material in combination can be used more suitably, and is also sold as isomaltextrin (registered trademark “Fiber Rixa”) from Hayashibara Co., Ltd. Branched ⁇ -glucan mixture It can be used especially advantageously.
- the amount of the branched ⁇ -glucan mixture contained in the powdered plant extract for beverages of the present invention is such that the mass ratio in terms of solids to the drinking plant extract is 1: 0.1 to 1:20, preferably It is contained in a ratio of 1: 0.33 to 1: 5.
- Powdered plant extract for beverages containing a branched ⁇ -glucan mixture in the above numerical range is excellent in solubility and has the same flavor and aroma as plant extract beverages (green tea, tea, coffee, etc.) when dissolved. It is. If the mass ratio is less than 0.1, the above-described effects due to the branched ⁇ -glucan mixture cannot be exhibited sufficiently, which is not preferable.
- the ⁇ -glucan mixture contained in the powdered plant extract for beverages of the present invention is usually added to the plant extract in the form of a powder, but if necessary, also added in the form of a solution dissolved in water or the like. Even those in syrup form can be added.
- the powdered plant extract for beverages targeted by the present invention contains a branched ⁇ -glucan mixture, so that when the powdered plant extract for beverages is dissolved in a liquid such as water, the original flavor and aroma of the plant extract beverage can be obtained. It is characterized by being well held. Although the mechanism by which the flavor and aroma of the powdered plant extract for beverages are effectively maintained by containing the branched ⁇ -glucan mixture is not clear, the branched ⁇ having the characteristics (A) to (C) above is not clear. -The glucan mixture retains its flavor by interacting with terpenes, aldehydes, pyrazines, pyrroles and furans, which are the main flavor and aroma components of plant extract beverages (especially teas). It is estimated that.
- the powdery plant extract for beverages of the present invention contains a predetermined amount of the branched ⁇ -glucan mixture, so that the flavor is effectively maintained, and in addition, it has excellent solubility.
- an appropriate amount of other components other than the branched ⁇ -glucan mixture may be optionally added. Examples of other components include preservatives, colorants, excipients, binders, flavoring agents, antioxidants, pH adjusters, sweeteners, flavorings, acidulants, seasonings, and the like. Species or two or more appropriate amounts can be used in appropriate combination.
- the blending amount of the other components may be appropriately set depending on the type and the type of the powdered plant extract for beverages to which it is blended.
- blend the required quantity of the said other component suitably in the 1 or several process until the powdered plant extract for drinks of this invention is completed.
- preservative examples include edible organic acids such as acetic acid, citric acid, malic acid, fumaric acid, and lactic acid; alcohols such as ethyl alcohol, propylene glycol, and glycerin; amino acids such as glycine and alanine, salt, and acetic acid.
- examples thereof include salts such as salts, citrates, sodium carbonate, potassium carbonate, calcium oxide, calcium hydroxide, calcium carbonate, disodium phosphate, and tripotassium phosphate.
- colorant examples include red potato, crab shell powder, astaxanthin, vegetable pigment, red potato pigment, concentrated faffia pigment oil, gardenia yellow, brownish brown, cochineal pigment, gardenia yellow pigment, gardenia blue pigment, flavonoid pigment, caramel Pigments, ⁇ -carotene, carotenoid pigments, natural pigments such as charcoal; and Red No. 2, Red No. 3, Red No. 104, Red No. 105, Red No. 106, Yellow No. 4, Yellow No. 5, Blue No. 1, Dioxide
- a synthetic colorant such as titanium can be exemplified.
- sweetener examples include sugar, glucose, fructose, isomerized liquid sugar, glycyrrhizin, stevia, aspartame, fructooligosaccharide and the like.
- the powdered plant extract for beverages of the present invention is dissolved in water, hot water, milk, etc., biscuits such as cookies, crackers, biscuits, jelly, mousse, bavaroa, pudding, ice, bracken, dumpling, steamed bread , Pound cake, chiffon cake, souffle, etc. It can also be added to supplements such as tablets and granules.
- biscuits such as cookies, crackers, biscuits, jelly, mousse, bavaroa, pudding, ice, bracken, dumpling, steamed bread , Pound cake, chiffon cake, souffle, etc. It can also be added to supplements such as tablets and granules.
- the original flavor of the plant extract can be imparted to various foods, foods, granules, granules and the like.
- the content of the powdered plant extract for beverage in these foods varies depending on the type of food, but is generally 1 to 100% by mass, particularly 5 to 80% by mass.
- the manufacturing method of the powder plant extract for drinks which concerns on this invention> relates to a branched ⁇ -glucan mixture having the characteristics (A) to (C) described above for a drinking plant extract in the presence of an aqueous solvent, and a solid mixture of a drinking plant extract and a branched ⁇ -glucan mixture.
- Manufacture of a powdery plant extract for beverages comprising a step of obtaining a mixed solution by mixing so that a mass ratio in terms of product is 1: 0.1 to 1:20, and a step of powdering the obtained mixed solution It is an invention related to the method.
- an aqueous solvent will be added to a plant raw material, and it will extract, and coarsely isolate
- the method of blending the branched ⁇ -glucan mixture with the extract (plant extract) is any of the method of adding to an aqueous solvent in advance, the method of adding to the extract, and the method of adding to the concentrate of the extract However, it can be advantageously implemented. Moreover, it can also add by these several methods.
- the extraction step is a step of obtaining an extract by adding an aqueous solvent to a plant material and performing extraction by immersion, stirring or heating.
- aqueous solvent water such as tap water, deionized water, distilled water, deoxygenated water, ethanol, and a mixed solvent thereof can be used. You may mix
- extraction temperature is not specifically limited, 15 degreeC or more and 100 degrees C or less are preferable. When the extraction temperature is less than 15 ° C., the extraction efficiency is remarkably reduced, and when the extraction temperature is higher than 100 ° C., unnecessary components are excessively extracted and the aroma components are easily denatured.
- the concentration step is a step of selectively removing the aqueous solvent from the plant extract to increase the concentration of the extract.
- the concentration step itself is not an essential step, it can be efficiently dried in the drying step by concentrating the extract in advance.
- Concentration can be performed by known methods such as vacuum concentration, freeze concentration, and reverse osmosis membrane concentration. Among them, reverse osmosis membrane concentration and freeze concentration with less volatilization of aroma components derived from plant extracts, less denaturation are preferred.
- the drying step is a step of performing dry powdering by evaporating the aqueous solvent in the extract (or concentrated solution) containing the branched ⁇ -glucan mixture.
- Dry pulverization can be performed by an appropriate method such as hot air drying, vacuum drying, spray drying, freeze vacuum drying, drum drying, extrusion granulation, and fluidized granulation. Of these, freeze vacuum drying and spray drying are preferred because there is little loss of flavor components derived from the plant extract during drying.
- each of the obtained branched ⁇ -glucan mixture-containing oolong tea extract was freeze-dried to obtain a powdered plant extract for beverages (powdered oolong tea) (test samples 1 to 8).
- powder was prepared in the same manner as above except that a commercially available indigestible dextrin (trade name “Fibersol 2”, sold by Matsutani Chemical Industry Co., Ltd.) was used instead of the branched ⁇ -glucan mixture.
- Oolong tea was prepared (test samples 9 to 16).
- test samples 1 to 8 and 9 to 16 were prepared by adding 0.1%, 0.33, 0 of the branched ⁇ -glucan mixture or indigestible dextrin to 1 part by mass of oolong tea extract solids, respectively. .5, 1, 5, 10, 20 or 40 parts by mass.
- powdered oolong tea prepared using a branched ⁇ -glucan mixture as a pulverizing base material and added in an amount of 0.1 to 20 parts by weight to 1 part by weight of solids in oolong tea extract (test sample 1 To 7)
- oolong tea obtained by dissolving in warm water is excellent in aroma and flavor like the control oolong tea
- powdered oolong tea prepared by adding 0.33 to 5 parts by mass (test samples 2 to 5) Turned out to be particularly good.
- the powdered oolong tea of the present invention using a branched ⁇ -glucan mixture as a powdered base material had the highest solubility and was completely dissolved in 5 minutes or more and less than 10 minutes.
- powdered oolong tea using an indigestible dextrin as a pulverized base material requires 10 minutes or more and less than 15 minutes to dissolve, and the solubility is somewhat inferior.
- powdered oolong tea using dextrin as a pulverized base material became dull when added to cold water, requiring 20 minutes or more to completely dissolve, and its solubility was extremely low.
- the branched ⁇ -glucan mixture of the present invention is used in conventional powdered oolong teas because of the solubility of powdered oolong tea and the retention of aroma and flavor when dissolved in hot water. It has been proved that it is superior to conventional dextrins and indigestible dextrins currently marketed as water-soluble dietary fibers.
- Such a branched ⁇ -glucan mixture has a high solubility and a flavor maintaining effect at the time of dissolution, including not only oolong tea, but also teas made by processing and extracting similar tea leaves, and has aroma and flavor. It is thought that it is similarly exerted in general plant extract beverages.
- this branched ⁇ -glucan mixture retains the flavor derived from the drinking plant extract more effectively than the conventionally known powdered base materials are unknown.
- it has structural features of (A) to (C) above.
- isomaltose is digested with isomaltdextranase to obtain 5% by mass of digested solids per solid. It is considered that having the structural characteristics generated as described above is necessary for exerting the function, and the structural characteristics of the present branched ⁇ -glucan mixture act on the flavor and aroma components of the plant extract. Is estimated.
- ⁇ Powdered green tea> 0.5 kg of green tea leaves was added to 10 kg of warm water at 80 ° C., and extracted at 80 ° C. for 15 minutes. The cake was separated to obtain 8 kg of a tea extract of Brix 2.5 degrees. The obtained extract was clarified with a centrifuge and then subjected to membrane concentration. 150 g of a powder of a branched ⁇ -glucan mixture having the following characteristics (a) to (co) obtained according to the method disclosed in Example 5 of International Publication No. WO2008 / 136331 is added to the concentrated liquid obtained. The solution was lyophilized to obtain powdered green tea. The mass ratio of the tea extract and the branched ⁇ -glucan mixture in terms of solid matter was 1: 0.75.
- Isomaltose is produced by digestion with isomalt dextranase to produce 38.0% by mass of the digest of the digested solids.
- D The water-soluble dietary fiber content determined by high performance liquid chromatography (enzyme-HPLC method) is 81.2% by mass.
- E The ratio of ⁇ -1,4-bonded glucose residues to ⁇ -1,6-bonded glucose residues is 1: 2.6.
- F The sum of ⁇ -1,4-bonded glucose residues and ⁇ -1,6-bonded glucose residues occupies 70.3% of all glucose residues.
- G ⁇ -1,3-linked glucose residues are 2.8% of all glucose residues.
- H The ⁇ -1,3,6-linked glucose residues are 7.2% of the total glucose residues.
- G The weight average molecular weight is 4,600.
- E Mw / Mn is 2.3.
- the mass ratio of the black tea extract and the branched ⁇ -glucan mixture in terms of solid matter was 1: 1.5.
- A Glucose is used as a constituent sugar.
- B Linked to a non-reducing terminal glucose residue located at one end of a linear glucan having a degree of glucose polymerization of 3 or more linked via an ⁇ -1,4 bond via a bond other than an ⁇ -1,4 bond. It has a branched structure with a glucose polymerization degree of 1 or more.
- Isomaltose is produced by digestion with isomaltodextranase to produce 36.4% by mass of isomaltose based on the solid content of the digest.
- D The water-soluble dietary fiber content determined by high performance liquid chromatography (enzyme-HPLC method) is 75.2% by mass.
- E The ratio of ⁇ -1,4-bonded glucose residues to ⁇ -1,6-bonded glucose residues is 1: 1.5.
- F The sum of ⁇ -1,4-bonded glucose residues and ⁇ -1,6-bonded glucose residues occupies 68.0% of all glucose residues.
- G The ⁇ -1,3-linked glucose residues are 3.5% of the total glucose residues.
- H The ⁇ -1,3,6-linked glucose residues are 4.5% of the total glucose residues.
- G The weight average molecular weight is 6,300.
- Ko Mw / Mn is 2.2.
- the mass ratio of the chamomile tea extract and the branched ⁇ -glucan mixture in terms of solid matter was 1: 0.8.
- A Glucose is used as a constituent sugar.
- B Linked to a non-reducing terminal glucose residue located at one end of a linear glucan having a degree of glucose polymerization of 3 or more linked via an ⁇ -1,4 bond via a bond other than an ⁇ -1,4 bond.
- Isomaltose is produced by digestion with isomaltodextranase to produce 41.8% by mass of isomaltose per solid of digested material.
- D The water-soluble dietary fiber content determined by high performance liquid chromatography (enzyme-HPLC method) is 68.5% by mass.
- E The ratio of ⁇ -1,4-bonded glucose residues to ⁇ -1,6-bonded glucose residues is 1: 1.9.
- F The sum of ⁇ -1,4-bonded glucose residues and ⁇ -1,6-bonded glucose residues occupies 78.9% of all glucose residues.
- ⁇ Powder dokudami tea> 0.5 kg of Dodomi tea leaves was added to 10 kg of warm water at 90 ° C. and extracted at 90 ° C. for 15 minutes. Separation was performed to obtain 8 kg of an extract having a Brix of 1.9 °. The obtained extract was clarified with a centrifuge and then subjected to membrane concentration. 250 g of a branched ⁇ -glucan mixture powder having the following characteristics (a) to (co) obtained according to the method disclosed in Example 6 of International Publication No. WO2008 / 136331 is added to the concentrated solution The solution was freeze-dried to obtain powdered dodomi tea.
- the mass ratio in terms of solids between the dodomi tea extract and the branched ⁇ -glucan mixture was 1: 1.2.
- the obtained powder dokudami tea was dissolved in warm water at 70 ° C. and quickly dissolved, and the original aroma and flavor of dodomi tea were felt.
- ⁇ Characteristics of branched ⁇ -glucan mixture> (A) Glucose is used as a constituent sugar. (B) Linked to a non-reducing terminal glucose residue located at one end of a linear glucan having a degree of glucose polymerization of 3 or more linked via an ⁇ -1,4 bond via a bond other than an ⁇ -1,4 bond. It has a branched structure with a glucose polymerization degree of 1 or more.
- Isomaltose is produced by digestion with isomaltodextranase to produce 40.1% by mass of isomaltose based on the solids of the digested product.
- D The water-soluble dietary fiber content determined by high performance liquid chromatography (enzyme-HPLC method) is 83.8% by weight.
- E The ratio of ⁇ -1,4-bonded glucose residues to ⁇ -1,6-bonded glucose residues is 1: 3.8.
- F The sum of ⁇ -1,4-bonded glucose residues and ⁇ -1,6-bonded glucose residues occupies 66.6% of the total glucose residues.
- G ⁇ -1,3-linked glucose residues are 2.6% of all glucose residues.
- H ⁇ -1,3,6-linked glucose residues are 5.6% of all glucose residues.
- G The weight average molecular weight is 3,200.
- Ko Mw / Mn is 2.1.
- DE25 dextrin (trade name “Paindex # 3”, sold by Matsutani Chemical Co., Ltd.) and DE20 dextrin (trade name “trade name”) are common dextrins.
- the six types of powdered plant extracts for beverages (powdered green tea) obtained in this example and the powdered plant extracts for beverages (powdered green tea) of the present invention obtained in Example 1 each had a solid content derived from the green tea extract of 0. It was put in a hot water drinker so as to be 33 g, dissolved in 100 ml of hot water at 70 ° C., and the flavors were compared. As a result, all of the six types of powdered plant extracts for beverages obtained in this example were obtained in Example 1. Compared with the powdery plant extract for beverages of the present invention, it was clearly inferior in terms of flavor, flavor, bitterness unique to green tea, taste derived from the base material, and the like.
- the present invention provides a powdered plant extract for beverages with improved flavor and solubility compared to conventional powdered plant extracts for beverages and a method for producing the same.
- the influence of the present invention on the world is so great that the industrial applicability of the present invention is extremely large.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Nutrition Science (AREA)
- Non-Alcoholic Beverages (AREA)
- Tea And Coffee (AREA)
Abstract
Description
(A)グルコースを構成糖とし、
(B)α-1,4結合を介して連結したグルコース重合度3以上の直鎖状グルカンの一端に位置する非還元末端グルコース残基にα-1,4結合以外の結合を介して連結したグルコース重合度1以上の分岐構造を有し、
(C)イソマルトデキストラナーゼ消化により、イソマルトースを消化物の固形物当たり5質量%以上生成する。
(A)グルコースを構成糖とし、
(B)α-1,4結合を介して連結したグルコース重合度3以上の直鎖状グルカンの一端に位置する非還元末端グルコース残基にα-1,4結合以外の結合を介して連結したグルコース重合度1以上の分岐構造を有し、
(C)イソマルトデキストラナーゼ消化により、イソマルトースを消化物の固形物当たり5質量%以上生成する。
(E)α-1,4結合したグルコース残基とα-1,6結合したグルコース残基の比が1:0.6乃至1:4の範囲にあり、
(F)α-1,4結合したグルコース残基とα-1,6結合したグルコース残基との合計が全グルコース残基の55%以上を占める。
本発明は、水性溶媒の共存下で、飲用植物エキスに対して、上述した(A)乃至(C)の特徴を有する分岐α-グルカン混合物を、飲用植物エキスと分岐α-グルカン混合物との固形物換算での質量比が1:0.1~1:20となるように混合して、混合溶液を得る工程及び、得られた混合溶液を粉末化する工程を含む飲料用粉末植物エキスの製造方法に係る発明である。
(1)概要
飲用植物エキスに分岐α-グルカン混合物又は難消化デキストリンを粉末化基材として配合することにより、飲料用粉末植物エキスを調製し、粉末化基材の違いが、それぞれを温水に溶解させたときの植物エキス飲料の風味に及ぼす影響を調べた。
(2)実験方法
(ア)被験試料の調製
ウーロン茶エキス(商品名『ウーロン茶エキスM水性』、ウーロン茶抽出物固形物10質量%含有溶液、丸善製薬株式会社販売)50g(固形物5g)に、後述する実施例1で用いたと同じ分岐α-グルカン混合物(以下、「分岐α-グルカン混合物」と言う。)の粉末を、0.5、1.65、2.5、5.0、25.0、50.0、100.0、200.0gを添加、混合し、必要に応じて適宜水を追加し、分岐α-グルカン混合物の配合割合の異なる8種のウーロン茶エキスを得た。その後、得られた分岐α-グルカン混合物配合ウーロン茶エキスのそれぞれを凍結乾燥し、飲料用粉末植物エキス(粉末ウーロン茶)とした(被験試料1乃至8)。比較対象として、分岐α-グルカン混合物に代えて、市販されている難消化性デキストリン(商品名『ファイバーソル2』、松谷化学工業株式会社販売)を配合した以外は、上記と同様の方法で粉末ウーロン茶を調製した(被験試料9乃至16)。なお、得られた被験試料1乃至8及び9乃至16は、ウーロン茶エキス固形物1質量部に対して、分岐α-グルカン混合物もしくは、難消化性デキストリンをそれぞれ、0.1、0.33、0.5、1、5、10、20又は40質量部含有するものである。
上述した方法で得られた粉末ウーロン茶の被験試料1乃至16及び、原料であるウーロン茶エキス(対照)について、ウーロン茶エキス由来の固形物が各々0.33gとなるように湯呑に入れ、70℃の温水100mlで溶解し、その風味について5名のパネラーにより、表1に示す評価基準に基づいて官能評価を行った。評価パネラー数が最も多かった点数を評価点数とした。評価人数が同数の場合は、その評価の中間点を評価点数として採用した。対照及び被験試料1乃至16のそれぞれの組成及び官能評価の結果を表2に示す。
(1)概要
飲用植物エキスに分岐α-グルカン混合物、難消化デキストリン又はデキストリンを粉末化基材として添加、配合し、粉末化基材の種類の違いが飲料用粉末植物エキスの溶解性に及ぼす影響について調べた。冷水での植物エキス飲料の利用を想定し、比較的溶解しにくい低温条件下で実験を行った。
(ア)被験試料の調製
分岐α-グルカン混合物又は難消化性デキストリンに代えて、一般的なデキストリン(商品名『パインデックス#1』、DE7.5の澱粉分解物、松谷化学工業株式会社販売)を、ウーロン茶エキス固形物1質量部に対して固形物換算で、5質量部となるように配合した以外は実験1と同様の方法で、デキストリン配合粉末ウーロン茶を得た。
(イ)溶解性試験
上記(ア)で得たデキストリン配合粉末ウーロン茶、実験1で得た被験試料5及び13(ウーロン茶エキス由来固形物1質量部に対して5質量部の分岐α-グルカン混合物又は難消化性デキストリンを含む粉末ウーロン茶)を各々0.5gずつ、5℃の冷水50mlに加えて、それぞれ回転数200rpmで撹拌し、目視により完全に溶解するまでの時間を測定した。実験は2回行い、2回の平均時間を基にして、溶解性を4段階で評価した結果を表3に示す。なお、5分以上10分未満で溶解したものを「4」、10分以上15分未満で溶解したものを「3」、15分以上20分未満で溶解したものを「2」、20分以上で溶解したものを「1」として評価した。
80℃の温水10kgに緑茶葉0.5kgを加え、80℃で15分間抽出した。粕分離し、ブリックス2.5度の茶抽出液8kgを得た。得られた抽出液を、遠心分離機で清澄化後、膜濃縮に供した。得られた濃縮液に国際公開第WO2008/136331号パンフレットの実施例5に開示された方法に準じて得た下記(ア)乃至(コ)の特性を有する分岐α-グルカン混合物の粉末150gを添加、溶解し、当該溶液を凍結乾燥し、粉末緑茶を得た。茶抽出物と分岐α-グルカン混合物との固形物換算での質量比は、1:0.75であった。得られた粉末緑茶を70℃の温水に溶解させたところ、速やかに溶解し、緑茶本来のさわやかな香気並びに風味が感じられた。
<分岐α-グルカン混合物の特性>
(ア)グルコースを構成糖とする。
(イ)α-1,4結合を介して連結したグルコース重合度3以上の直鎖状グルカンの一端に位置する非還元末端グルコース残基にα-1,4結合以外の結合を介して連結したグルコース重合度1以上の分岐構造を有する。
(ウ)イソマルトデキストラナーゼ消化により、イソマルトースを消化物の固形物当たり38.0質量%生成する。
(エ)高速液体クロマトグラフ法(酵素-HPLC法)により求めた水溶性食物繊維含量が81.2質量%である。
(オ)α-1,4結合したグルコース残基とα-1,6結合したグルコース残基の比が1:2.6である。
(カ)α-1,4結合したグルコース残基とα-1,6結合したグルコース残基との合計が全グルコース残基の70.3%を占める。
(キ)α-1,3結合したグルコース残基が全グルコース残基の2.8%である。
(ク)α-1,3,6結合したグルコース残基が全グルコース残基の7.2%である。
(ケ)重量平均分子量が4,600である。
(コ)Mw/Mnが2.3である。
80℃の温水10kgに紅茶葉0.75kgを加え、80℃で15分間抽出した。粕分離し、ブリックス3.8度の抽出液8kgを得た。得られた抽出液を、遠心分離機で清澄化後、膜濃縮に供した。得られた濃縮液に国際公開第WO2008/136331号パンフレットの実施例3に開示された方法に準じて得た下記(ア)乃至(コ)の特性を有する分岐α-グルカン混合物の粉末300gを添加し、当該溶液を凍結乾燥し、粉末紅茶を得た。紅茶抽出液と分岐α-グルカン混合物との固形物換算での質量比は、1:1.5であった。得られた粉末紅茶は、70℃の温水に溶解させたところ、速やかに溶解し、紅茶本来の香気並びに風味が感じられた。
<分岐α-グルカン混合物の特性>
(ア)グルコースを構成糖とする。
(イ)α-1,4結合を介して連結したグルコース重合度3以上の直鎖状グルカンの一端に位置する非還元末端グルコース残基にα-1,4結合以外の結合を介して連結したグルコース重合度1以上の分岐構造を有する。
(ウ)イソマルトデキストラナーゼ消化により、イソマルトースを消化物の固形物当たり36.4質量%生成する。
(エ)高速液体クロマトグラフ法(酵素-HPLC法)により求めた水溶性食物繊維含量が75.2質量%である。
(オ)α-1,4結合したグルコース残基とα-1,6結合したグルコース残基の比が1:1.5である。
(カ)α-1,4結合したグルコース残基とα-1,6結合したグルコース残基との合計が全グルコース残基の68.0%を占める。
(キ)α-1,3結合したグルコース残基が全グルコース残基の3.5%である。
(ク)α-1,3,6結合したグルコース残基が全グルコース残基の4.5%である。
(ケ)重量平均分子量が6,300である。
(コ)Mw/Mnが2.2である。
80℃の温水10kgにカモミール茶葉1.5kgを加え、80℃で15分間抽出した。粕分離し、ブリックス1.6度の抽出液16kgを得た。得られた抽出液を、遠心分離機で清澄化後、膜濃縮に供した。得られた濃縮液に国際公開第WO2008/136331号パンフレットの実施例4に開示された方法に準じて得た下記(ア)乃至(コ)の特性を有する分岐α-グルカン混合物の粉末300gを添加し、当該溶液を凍結乾燥し、粉末カモミール茶を得た。カモミール茶抽出液と分岐α-グルカン混合物との固形物換算での質量比は、1:0.8であった。得られた粉末カモミール茶は、70℃の温水に溶解させたところ、速やかに溶解し、カモミール茶本来のさわやかな香気並びに風味が感じられた。
<分岐α-グルカン混合物の特性>
(ア)グルコースを構成糖とする。
(イ)α-1,4結合を介して連結したグルコース重合度3以上の直鎖状グルカンの一端に位置する非還元末端グルコース残基にα-1,4結合以外の結合を介して連結したグルコース重合度1以上の分岐構造を有する。
(ウ)イソマルトデキストラナーゼ消化により、イソマルトースを消化物の固形物当たり41.8質量%生成する。
(エ)高速液体クロマトグラフ法(酵素-HPLC法)により求めた水溶性食物繊維含量が68.5質量%である。
(オ)α-1,4結合したグルコース残基とα-1,6結合したグルコース残基の比が1:1.9である。
(カ)α-1,4結合したグルコース残基とα-1,6結合したグルコース残基との合計が全グルコース残基の78.9%を占める。
(キ)α-1,3結合したグルコース残基が全グルコース残基の1.7%である。
(ク)α-1,3,6結合したグルコース残基が全グルコース残基の2.2%である。
(ケ)重量平均分子量が10,000である。
(コ)Mw/Mnが2.7である。
90℃の温水10kgに、どくだみ茶葉0.5kgを加え、90℃で15分間抽出した。粕分離し、ブリックス1.9度の抽出液8kgを得た。得られた抽出液を、遠心分離機で清澄化後、膜濃縮に供した。得られた濃縮液に国際公開第WO2008/136331号パンフレットの実施例6に開示された方法に準じて得た下記(ア)乃至(コ)の特性を有する分岐α-グルカン混合物の粉末250gを添加し、当該溶液を凍結乾燥し、粉末どくだみ茶を得た。どくだみ茶抽出液と分岐α-グルカン混合物との固形物換算での質量比は、1:1.2であった。得られた粉末どくだみ茶は、70℃の温水に溶解させたところ、速やかに溶解し、どくだみ茶本来の香気並びに風味が感じられた。
<分岐α-グルカン混合物の特性>
(ア)グルコースを構成糖とする。
(イ)α-1,4結合を介して連結したグルコース重合度3以上の直鎖状グルカンの一端に位置する非還元末端グルコース残基にα-1,4結合以外の結合を介して連結したグルコース重合度1以上の分岐構造を有する。
(ウ)イソマルトデキストラナーゼ消化により、イソマルトースを消化物の固形物当たり40.1質量%生成する。
(エ)高速液体クロマトグラフ法(酵素-HPLC法)により求めた水溶性食物繊維含量が83.8量%である。
(オ)α-1,4結合したグルコース残基とα-1,6結合したグルコース残基の比が1:3.8である。
(カ)α-1,4結合したグルコース残基とα-1,6結合したグルコース残基との合計が全グルコース残基の66.6%を占める。
(キ)α-1,3結合したグルコース残基が全グルコース残基の2.6%である。
(ク)α-1,3,6結合したグルコース残基が全グルコース残基の5.6%である。
(ケ)重量平均分子量が3,200である。
(コ)Mw/Mnが2.1である。
実施例1で用いた分岐α-グルカン混合物に代えて、一般的なデキストリンである、DE25のデキストリン(商品名『パインデックス#3』、松谷化学工業株式会社販売)、DE20のデキストリン(商品名『LDX35-20』、昭和産業株式会社販売)、DE15のデキストリン(商品名『グリスター』、松谷化学工業株式会社販売)、DE14のデキストリン(商品名『液状デキストリン』、松谷化学工業株式会社販売)、DE11のデキストリン(商品名『パインデックス#2』、松谷化学工業株式会社販売)、又はDE4のデキストリン(商品名『パインデックス#100』、松谷化学工業株式会社販売)を用いた以外は、実施例1と同様にして6種類の粉末緑茶を調製した。
Claims (10)
- 飲用植物エキスと下記(A)乃至(C)の特徴を有する分岐α-グルカン混合物とを含む飲料用粉末植物エキスであって、前記飲料用粉末植物エキスに含まれる飲用植物エキスと分岐α-グルカン混合物との固形物換算での質量比が1:0.1~1:20である、飲料用粉末植物エキス;
(A)グルコースを構成糖とし、
(B)α-1,4結合を介して連結したグルコース重合度3以上の直鎖状グルカンの一端に位置する非還元末端グルコース残基にα-1,4結合以外の結合を介して連結したグルコース重合度1以上の分岐構造を有し、
(C)イソマルトデキストラナーゼ消化により、イソマルトースを消化物の固形物当たり5質量%以上生成する。 - 前記分岐α-グルカン混合物が、下記(D)の特徴を有する分岐α-グルカン混合物である請求項1記載の飲料用粉末植物エキス:
(D)高速液体クロマトグラフ法(酵素-HPLC法)により求めた水溶性食物繊維含量が40質量%以上である。 - 前記分岐α-グルカン混合物が、下記(E)及び(F)の特性を有する分岐α-グルカン混合物であることを特徴とする請求項1又は2記載の飲料用粉末植物エキス;
(E)α-1,4結合したグルコース残基とα-1,6結合したグルコース残基の比が1:0.6乃至1:4の範囲にある;及び
(F)α-1,4結合したグルコース残基とα-1,6結合したグルコース残基との合計が全グルコース残基の55%以上を占める。 - 前記分岐α-グルカン混合物の平均グルコース重合度が、8乃至500であることを特徴とする請求項1乃至3のいずれかに記載の飲料用粉末植物エキス。
- 前記飲用植物エキスと分岐α-グルカン混合物との固形物換算での質量比が、1:0.33~1:5であることを特徴とする請求項1乃至4のいずれかに記載の飲料用粉末植物エキス。
- 前記飲用植物エキスの植物が、チャノキ、カモミール、ハイビスカス、ラベンダー、ミント、ローズヒップ、ペパーミント、レモングラス、どくだみ、ギムネマ、バナバ、イチョウ、モロヘイヤ、アルファルファ、よもぎ、マテ、ギャバロン、杜仲、ルイボス、アロエ、桜葉、シソ、麦、はと麦、稲、大豆、そば、朝鮮人参、ごぼう、コーヒーノキから選択される一種以上であることを特徴とする請求項1乃至5のいずれかに記載の飲料用粉末植物エキス。
- 前記飲用植物エキスが、植物の葉、茎、花、ガク、根、種子などから選択される一種以上を抽出したものであることを特徴とする請求項1乃至6のいずれかに記載の飲料用粉末植物エキス。
- 前記飲用植物エキスの植物が、チャノキであることを特徴とする請求項1乃至7のいずれかに記載の飲料用粉末植物エキス。
- 前記飲用植物エキスが、緑茶、ウーロン茶、又は紅茶であることを特徴とする請求項1乃至8のいずれかに記載の飲料用粉末植物エキス。
- 水性溶媒の共存下で、飲用植物エキスに対して、下記(A)乃至(C)の特徴を有する分岐α-グルカン混合物を、飲用植物エキスと分岐α-グルカン混合物との固形物換算での質量比が1:0.1~1:20となるように混合して、混合溶液を得る工程、得られた混合溶液を粉末化する工程を含む飲料用粉末植物エキスの製造方法:
(A)グルコースを構成糖とし、
(B)α-1,4結合を介して連結したグルコース重合度3以上の直鎖状グルカンの一端に位置する非還元末端グルコース残基にα-1,4結合以外の結合を介して連結したグルコース重合度1以上の分岐構造を有し、
(C)イソマルトデキストラナーゼ消化により、イソマルトースを消化物の固形物当たり5質量%以上生成する。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17858450.4A EP3508069A4 (en) | 2016-10-07 | 2017-10-04 | POWDERED PLANT EXTRACT FOR DRINKS AND METHOD FOR THE PRODUCTION THEREOF |
KR1020197011788A KR102567601B1 (ko) | 2016-10-07 | 2017-10-04 | 음료용 분말 식물 엑기스와 그 제조방법 |
US16/339,436 US11330828B2 (en) | 2016-10-07 | 2017-10-04 | Powdery plant extract for beverages and process for producing the same |
CN201780072112.XA CN109982578A (zh) | 2016-10-07 | 2017-10-04 | 饮料用粉末植物提取物和其制造方法 |
JP2018543942A JP7018019B2 (ja) | 2016-10-07 | 2017-10-04 | 飲料用粉末植物エキスとその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016199504 | 2016-10-07 | ||
JP2016-199504 | 2016-10-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018066613A1 true WO2018066613A1 (ja) | 2018-04-12 |
Family
ID=61831085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/036184 WO2018066613A1 (ja) | 2016-10-07 | 2017-10-04 | 飲料用粉末植物エキスとその製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11330828B2 (ja) |
EP (1) | EP3508069A4 (ja) |
JP (1) | JP7018019B2 (ja) |
KR (1) | KR102567601B1 (ja) |
CN (1) | CN109982578A (ja) |
TW (1) | TWI753025B (ja) |
WO (1) | WO2018066613A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020217849A1 (ja) * | 2019-04-26 | 2020-10-29 | サントリーホールディングス株式会社 | 粉末組成物 |
WO2021065719A1 (ja) * | 2019-09-30 | 2021-04-08 | サントリーホールディングス株式会社 | ジメチルスルフィド及びデキストリンを含有する固形組成物 |
EP4039097A4 (en) * | 2019-09-30 | 2023-09-27 | Suntory Holdings Limited | Solid composition containing linalool, geraniol, and dextrin |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114766574B (zh) * | 2022-04-15 | 2023-12-26 | 江苏农牧科技职业学院 | 一种银杏芦荟复合功能茶饮及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000253820A (ja) * | 1999-03-09 | 2000-09-19 | Sato Shokuhin Kogyo Kk | インスタント茶類の製造方法 |
WO2008136331A1 (ja) * | 2007-04-26 | 2008-11-13 | Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo | 分岐α-グルカン及びこれを生成するα-グルコシル転移酵素とそれらの製造方法並びに用途 |
JP2009028019A (ja) * | 2007-07-24 | 2009-02-12 | Sato Shokuhin Kogyo Kk | 難消化性デキストリン含有コーヒーエキス粉末の製造法 |
JP2009517352A (ja) * | 2005-11-25 | 2009-04-30 | ズートツッカー アクチェンゲゼルシャフト マンハイム/オクセンフルト | ポリフェノール含有組成物およびイソマルツロースを含む調製品 |
JP2012217361A (ja) * | 2011-04-06 | 2012-11-12 | Kataoka & Co Ltd | 粉末清涼飲料 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60210949A (ja) | 1984-04-04 | 1985-10-23 | Sato Shokuhin Kogyo Kk | インスタント茶類の製造法 |
US6248566B1 (en) * | 1994-09-13 | 2001-06-19 | Ezaki Glico Co., Ltd. | Glucan having cyclic structure and method for producing the same |
JP4290815B2 (ja) | 1999-06-24 | 2009-07-08 | 味の素ゼネラルフーヅ株式会社 | 風味の改良された即席茶 |
JP2008118933A (ja) | 2006-11-13 | 2008-05-29 | Taiyo Kagaku Co Ltd | ポリフェノール組成物 |
JP2009017867A (ja) | 2007-07-13 | 2009-01-29 | Sato Shokuhin Kogyo Kk | 難消化性デキストリン含有インスタント茶の製造法 |
JP5828589B2 (ja) * | 2010-12-07 | 2015-12-09 | 江崎グリコ株式会社 | 環状構造保有分岐状グルカンの工業的製造方法 |
US20160008392A1 (en) * | 2013-03-01 | 2016-01-14 | Hayashibara Co., Ltd. | Agent for lifestyle-related disease and oral composition comprising same |
WO2015183714A1 (en) * | 2014-05-29 | 2015-12-03 | E. I. Du Pont De Nemours And Company | Enzymatic synthesis of soluble glucan fiber |
-
2017
- 2017-10-04 KR KR1020197011788A patent/KR102567601B1/ko active Active
- 2017-10-04 JP JP2018543942A patent/JP7018019B2/ja active Active
- 2017-10-04 EP EP17858450.4A patent/EP3508069A4/en not_active Withdrawn
- 2017-10-04 US US16/339,436 patent/US11330828B2/en active Active
- 2017-10-04 CN CN201780072112.XA patent/CN109982578A/zh active Pending
- 2017-10-04 WO PCT/JP2017/036184 patent/WO2018066613A1/ja unknown
- 2017-10-06 TW TW106134451A patent/TWI753025B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000253820A (ja) * | 1999-03-09 | 2000-09-19 | Sato Shokuhin Kogyo Kk | インスタント茶類の製造方法 |
JP2009517352A (ja) * | 2005-11-25 | 2009-04-30 | ズートツッカー アクチェンゲゼルシャフト マンハイム/オクセンフルト | ポリフェノール含有組成物およびイソマルツロースを含む調製品 |
WO2008136331A1 (ja) * | 2007-04-26 | 2008-11-13 | Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo | 分岐α-グルカン及びこれを生成するα-グルコシル転移酵素とそれらの製造方法並びに用途 |
JP2009028019A (ja) * | 2007-07-24 | 2009-02-12 | Sato Shokuhin Kogyo Kk | 難消化性デキストリン含有コーヒーエキス粉末の製造法 |
JP2012217361A (ja) * | 2011-04-06 | 2012-11-12 | Kataoka & Co Ltd | 粉末清涼飲料 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020217849A1 (ja) * | 2019-04-26 | 2020-10-29 | サントリーホールディングス株式会社 | 粉末組成物 |
CN113747798A (zh) * | 2019-04-26 | 2021-12-03 | 三得利控股株式会社 | 粉末组合物 |
US20220211067A1 (en) * | 2019-04-26 | 2022-07-07 | Suntory Holdings Limited | Powder composition |
EP3959988A4 (en) * | 2019-04-26 | 2023-01-04 | Suntory Holdings Limited | POWDER COMPOSITION |
WO2021065719A1 (ja) * | 2019-09-30 | 2021-04-08 | サントリーホールディングス株式会社 | ジメチルスルフィド及びデキストリンを含有する固形組成物 |
CN114554871A (zh) * | 2019-09-30 | 2022-05-27 | 三得利控股株式会社 | 含有二甲基硫醚及糊精的固体组合物 |
EP4039097A4 (en) * | 2019-09-30 | 2023-09-27 | Suntory Holdings Limited | Solid composition containing linalool, geraniol, and dextrin |
EP4039100A4 (en) * | 2019-09-30 | 2023-10-04 | Suntory Holdings Limited | Solid composition containing dimethyl sulfide and dextrin |
JP7623946B2 (ja) | 2019-09-30 | 2025-01-29 | サントリーホールディングス株式会社 | ジメチルスルフィド及びデキストリンを含有する固形組成物 |
Also Published As
Publication number | Publication date |
---|---|
EP3508069A1 (en) | 2019-07-10 |
KR102567601B1 (ko) | 2023-08-17 |
US20190230951A1 (en) | 2019-08-01 |
EP3508069A4 (en) | 2020-06-17 |
US11330828B2 (en) | 2022-05-17 |
KR20190067187A (ko) | 2019-06-14 |
CN109982578A (zh) | 2019-07-05 |
JP7018019B2 (ja) | 2022-02-09 |
JPWO2018066613A1 (ja) | 2019-07-25 |
TWI753025B (zh) | 2022-01-21 |
TW201828821A (zh) | 2018-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2006323689B2 (en) | Isohumulone compound clathrate and composition containing the same | |
CN104323268A (zh) | 从甘蔗中获得的提取物及其生产方法 | |
JP7018019B2 (ja) | 飲料用粉末植物エキスとその製造方法 | |
HUT57557A (en) | Fruit-concentrate sweetener and method for producing same | |
JP2009017867A (ja) | 難消化性デキストリン含有インスタント茶の製造法 | |
CN107404911A (zh) | 莱鲍迪苷m生物合成生产和回收方法 | |
EP1057416B1 (en) | Soluble isoflavone composition and method for preparing the same | |
JP3547553B2 (ja) | 羅漢果エキス及びその用途 | |
JP2002371002A (ja) | 生理活性大麦エキス、その製造方法、及び該エキスを含む飲食品 | |
BR112018010555B1 (pt) | Glicosídeos de terpeno glicosilado | |
CA2915103A1 (en) | Stable sweetener compositions | |
JP6024899B2 (ja) | 不快味低減方法 | |
JP6156657B2 (ja) | 塩味増強剤 | |
KR101493733B1 (ko) | 쌀 발효물을 이용한 인삼 쌀음료 및 이의 제조방법 | |
TWI610629B (zh) | 加熱處理香草萃取物之製造方法 | |
KR101590858B1 (ko) | 천연과즙 및 팥분말을 이용한 항혈전 활성 강화 과립형 팥분말 및 그 제조방법 | |
CN105146262B (zh) | 一种甜菊餐桌糖及其制备方法 | |
JP5883316B2 (ja) | 糖化物、その製造方法、飲食品およびその風味向上方法 | |
KR20170137371A (ko) | 커피추출박을 이용한 커피조청 및 그 제조방법 | |
JP2014236678A (ja) | 糖加熱品粉末 | |
JP2023014933A (ja) | 野菜含有組成物のためのフコースの利用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17858450 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018543942 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017858450 Country of ref document: EP Effective date: 20190404 |
|
ENP | Entry into the national phase |
Ref document number: 20197011788 Country of ref document: KR Kind code of ref document: A |