[go: up one dir, main page]

WO2018062140A1 - ガラスパネルユニット、ガラス窓およびガラスパネルユニットの製造方法 - Google Patents

ガラスパネルユニット、ガラス窓およびガラスパネルユニットの製造方法 Download PDF

Info

Publication number
WO2018062140A1
WO2018062140A1 PCT/JP2017/034669 JP2017034669W WO2018062140A1 WO 2018062140 A1 WO2018062140 A1 WO 2018062140A1 JP 2017034669 W JP2017034669 W JP 2017034669W WO 2018062140 A1 WO2018062140 A1 WO 2018062140A1
Authority
WO
WIPO (PCT)
Prior art keywords
panel
glass
pillar
pillars
young
Prior art date
Application number
PCT/JP2017/034669
Other languages
English (en)
French (fr)
Inventor
阿部 裕之
瓜生 英一
長谷川 和也
野中 正貴
将 石橋
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2018542578A priority Critical patent/JP6865391B2/ja
Priority to EP17856090.0A priority patent/EP3521259B1/en
Priority to US16/337,880 priority patent/US11117831B2/en
Publication of WO2018062140A1 publication Critical patent/WO2018062140A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • C03C27/10Joining glass to glass by processes other than fusing with the aid of adhesive specially adapted for that purpose
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/6612Evacuated glazing units
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/66304Discrete spacing elements, e.g. for evacuated glazing units
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/677Evacuating or filling the gap between the panes ; Equilibration of inside and outside pressure; Preventing condensation in the gap between the panes; Cleaning the gap between the panes
    • E06B3/6775Evacuating or filling the gap during assembly
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/249Glazing, e.g. vacuum glazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/22Glazing, e.g. vaccum glazing

Definitions

  • the present invention relates to a glass panel unit, a glass window, and a method for manufacturing a glass panel unit.
  • Patent Document 1 discloses a multilayer glass.
  • the first panel 20 having the first glass plate 21 and the second glass disposed to face the first panel 20.
  • a second panel 30 having a plate 31 and a seal 40 for airtightly joining the first panel 20 and the second panel 30 are provided.
  • a plurality of pillars disposed in contact with the first panel 20 and the second panel 30 in an internal space 500 that is sealed by the first panel 20, the second panel 30, and the seal 40 to be a decompression space. (Spacer) 70 is provided.
  • the first panel 20 and the second panel 30 When the first panel 20 and the second panel 30 are subjected to atmospheric pressure, the first panel 20 and the second panel 30 try to bend in a direction approaching each other.
  • the pillar 70 contacts and supports both the first panel 20 and the second panel 30 to be bent, and maintains the internal space 500.
  • the first panel 20 when an impact force is applied to the plate surface (the plate surface of the first glass plate 21), the first panel 20 tends to bend in the direction approaching the second panel 30 due to the impact force. To do.
  • the first panel 20 when an impact force is applied by a falling steel ball 82, the first panel 20 is less likely to bend if the location where the impact force is applied is a location where the pillar 70 is located. Therefore, the first panel 20 is unlikely to contact the second panel 30, and the first panel 20 or the second panel 30 is not easily damaged due to the contact between the first panel 20 and the second panel 30.
  • An object of the present invention is to obtain a glass panel unit, a glass window, and a method for manufacturing a glass panel unit in which the first panel and the second panel do not easily come into contact with each other even when an impact force is applied.
  • a glass panel unit includes at least a first glass plate that is at least a first glass plate, and at least a second glass plate that is disposed to face the first panel with a predetermined interval.
  • the 2nd panel comprised by these.
  • the glass panel unit is disposed between the first panel and the second panel and seals the first panel and the second panel in an airtight manner, and the first panel and the second panel And an internal space that is hermetically sealed with the seal to form a decompressed space.
  • the glass panel unit includes a plurality of pillars made of a resin disposed at intersections of a rectangular lattice having a predetermined interval so as to come into contact with the first panel and the second panel in the internal space. And comprising.
  • the pillar includes the predetermined pitch, a compressive fracture load per one of the pillars, a Young's modulus of the first panel and the second panel, a thickness of the first panel and the second panel, The Poisson's ratio between the first panel and the second panel, and the deflection of the first panel and the second panel determined by using the first panel and the second panel is smaller than the distance between the first panel and the second panel.
  • a predetermined pitch is determined.
  • a glass window according to an embodiment of the present invention includes a glass panel unit according to an embodiment, and a window frame fitted in a peripheral portion of the glass panel unit.
  • the manufacturing method of the glass panel unit which concerns on one form of this invention is equipped with an adhesive arrangement
  • the adhesive placement step is a step of placing the thermal adhesive in a frame shape on at least the first panel made of the first glass plate.
  • the pillar arranging step is a step of arranging a plurality of pillars made of resin at intersections of a rectangular lattice having a predetermined interval including a predetermined pitch on the first panel.
  • the opposing placement step is a step of placing a second panel made of at least a second glass plate so as to face the first panel.
  • the internal space forming step heats a glass composite including the first panel, the second panel, and the thermal adhesive, melts the thermal adhesive, and removes an exhaust path that can be exhausted to an external space. And forming an internal space surrounded by the first panel, the second panel, and the melt of the thermal adhesive.
  • the depressurization step is a step of discharging the gas in the internal space to depressurize the internal space.
  • the decompression space forming step is a step of sealing the internal space while maintaining a decompressed state to form a sealed decompression space.
  • the pillar includes the predetermined pitch, a compressive fracture load per one of the pillars, a Young's modulus of the first panel and the second panel, a thickness of the first panel and the second panel, The Poisson's ratio between the first panel and the second panel, and the deflection of the first panel and the second panel determined by using the first panel and the second panel is smaller than the distance between the first panel and the second panel.
  • a predetermined pitch is determined.
  • FIG. 1 is a cross-sectional view of the glass panel unit according to the first embodiment of the present invention.
  • FIG. 2 is a partially broken plan view of the above glass panel unit.
  • FIG. 3 is a cross-sectional view of a temporary assembly of the glass panel unit same as above.
  • FIG. 4 is a schematic plan view, partly broken, of the temporary assembly.
  • FIG. 5 is a perspective view for explaining the manufacturing method of the glass panel unit.
  • FIG. 6 is a perspective view for explaining the manufacturing method of the glass panel unit.
  • FIG. 7 is a diagram showing a temperature time chart for explaining the manufacturing method of the glass panel unit.
  • FIG. 8 is a perspective view for explaining the manufacturing method of the glass panel unit.
  • FIG. 1 is a cross-sectional view of the glass panel unit according to the first embodiment of the present invention.
  • FIG. 2 is a partially broken plan view of the above glass panel unit.
  • FIG. 3 is a cross-sectional view of a temporary assembly of the glass panel unit same as above
  • FIG. 9 is a schematic cross-sectional view of the glass panel unit according to the second embodiment of the present invention.
  • FIG. 10 is a schematic plan view, partly broken, of the glass panel unit.
  • FIG. 11 is a schematic plan view of a glass window using the glass panel unit of the third embodiment of the present invention.
  • FIG. 12 is a plan view of a main part of a portion where the pillars of the glass panel unit are arranged for explaining the derivation of the deflection.
  • FIG. 13A is a cross-sectional view when an impact force is applied by a steel ball to a position where a pillar of the glass panel unit is located.
  • FIG. 13B is a cross-sectional view when an impact force is applied by a steel ball to a location between a pillar of the glass panel unit and an adjacent pillar.
  • first to third embodiments relate to a glass panel unit (and further to a glass window in the third embodiment).
  • the glass panel unit 10 of the first embodiment is a vacuum heat insulating glass unit.
  • the vacuum heat insulating glass unit is a kind of multilayer glass panel including at least a pair of glass panels, and has a vacuum space between the pair of glass panels.
  • the glass panel unit 10 of the first embodiment includes a first panel 20, a second panel 30, a seal 40, a vacuum space 50, a gas adsorber 60, a plurality of pillars 70, and a closing member 80. Prepare.
  • the glass panel unit (finished product) 10 is obtained by performing a predetermined process on the temporary assembly 100 shown in FIGS.
  • the temporary assembly 100 includes a first panel 20, a second panel 30, a frame 410, an internal space 500, a partition 420, a ventilation path 600, an exhaust port 700, a gas adsorbent 60, and a resin. And a plurality of pillars 70.
  • the first panel 20 includes a first glass plate 21 that defines a planar shape of the first panel 20 and a coating 22.
  • the first glass plate 21 is a rectangular flat plate, and has a first surface (a lower surface in FIG. 3) and a second surface (an upper surface in FIG. 3) that are parallel to each other in the direction of the thickness t1 (see FIG. 1). . Both the first surface and the second surface of the first glass plate 21 are flat surfaces.
  • the material of the first glass plate 21 is, for example, soda lime glass, high strain point glass, chemically tempered glass, alkali-free glass, quartz glass, neoceram, or physically tempered glass.
  • the coating 22 is formed on the first plane of the first glass plate 21.
  • the coating 22 is an infrared reflecting film.
  • the coating 22 is not limited to the infrared reflecting film, and may be a film having desired physical characteristics.
  • the first panel 20 may be configured only by the first glass plate 21. In short, the first panel 20 is composed of at least the first glass plate 21.
  • the second panel 30 includes a second glass plate 31 that defines the planar shape of the second panel 30.
  • the second glass plate 31 is a rectangular flat plate, and has a first surface (upper surface in FIG. 3) and a second surface (lower surface in FIG. 3) parallel to each other in the direction of the thickness t2 (see FIG. 1). . Both the first surface and the second surface of the second glass plate 31 are flat surfaces.
  • the planar shape and planar size of the second glass plate 31 are the same as those of the first glass plate 21 (that is, the planar shape of the second panel 30 is the same as that of the first panel 20).
  • the material of the second glass plate 31 is, for example, soda lime glass, high strain point glass, chemically tempered glass, alkali-free glass, quartz glass, neoceram, or physically tempered glass.
  • the second panel 30 is composed only of the second glass plate 31. That is, the second glass plate 31 is the second panel 30 itself.
  • the 2nd panel 30 may be provided with the coating in any surface.
  • the coating is a film having desired physical properties such as an infrared reflecting film.
  • the second panel 30 is constituted by the second glass plate 31 and the coating.
  • the second panel 30 is composed of at least the second glass plate 31.
  • the second panel 30 is disposed so as to face the first panel 20. Specifically, the first panel 20 and the second panel 30 are arranged such that the first surface of the first glass plate 21 and the first surface of the second glass plate 31 are parallel to and face each other.
  • the frame body 410 is disposed between the first panel 20 and the second panel 30, and airtightly joins the first panel 20 and the second panel 30. As a result, an internal space 500 surrounded by the frame body 410, the first panel 20, and the second panel 30 is formed.
  • the frame 410 is formed of a thermal adhesive (a first thermal adhesive having a first softening point).
  • the first thermal adhesive is, for example, a glass frit.
  • the glass frit is, for example, a low melting point glass frit.
  • the low melting point glass frit is, for example, a bismuth glass frit, a lead glass frit, or a vanadium glass frit.
  • the frame 410 has a rectangular frame shape.
  • the planar shape of the frame 410 is the same as the first glass plate 21 and the second glass plate 31, but the planar size of the frame 410 is smaller than the first glass plate 21 and the second glass plate 31.
  • the frame body 410 is formed along the outer periphery of the upper surface of the second panel 30 (the first surface of the second glass plate 31). That is, the frame body 410 is formed so as to surround almost the entire region of the upper surface of the second panel 30.
  • the first panel 20 and the second panel 30 are formed by once melting the first thermal adhesive of the frame 410 at a predetermined temperature (first melting temperature) Tm1 (see FIG. 6) equal to or higher than the first softening point.
  • the body 410 is airtightly joined.
  • the partition 420 is disposed in the internal space 500.
  • the partition 420 divides the internal space 500 into a sealed space, that is, a first space 510 that is sealed when the glass panel unit 10 is completed and becomes a vacuum space 50, and an exhaust space, that is, a second space 520 that communicates with the exhaust port 700.
  • the partition 420 has a first end side in the length direction of the second panel 30 (left-right direction in FIG. 4) from the center of the second panel 30 so that the first space 510 is larger than the second space 520 (see FIG. 4). 4 on the right end side).
  • the partition 420 is formed of a thermal adhesive (second thermal adhesive having a second softening point).
  • the second thermal adhesive is, for example, a glass frit.
  • the glass frit is, for example, a low melting point glass frit.
  • the low melting point glass frit is, for example, a bismuth glass frit, a lead glass frit, or a vanadium glass frit.
  • the second thermal adhesive is the same as the first thermal adhesive, and the second softening point and the first softening point are equal.
  • the exhaust port 700 is a hole that connects the second space 520 and the external space.
  • the exhaust port 700 is used for exhausting the first space 510 through the second space 520 and the ventilation path 600.
  • the exhaust port 700 is formed in the second panel 30 so as to connect the second space 520 and the external space. Specifically, the exhaust port 700 is located at a corner portion of the second panel 30.
  • the exhaust port 700 is provided in the second panel 30.
  • the exhaust port 700 may be provided in the first panel 20 or both the first panel 20 and the second panel 30. May be provided.
  • the gas adsorber 60 is disposed in the first space 510.
  • the gas adsorber 60 has a long shape and is formed on the second end side in the length direction of the second panel 30 (left end side in FIG. 4) along the width direction of the second panel 30.
  • the gas adsorber 60 is disposed at the end of the first space 510 (vacuum space 50). In this way, the gas adsorber 60 can be made inconspicuous.
  • the gas adsorber 60 is located away from the partition 420 and the ventilation path 600. For this reason, when the first space 510 is exhausted, the possibility that the gas adsorber 60 prevents the exhaust can be reduced.
  • the gas adsorber 60 is used for adsorbing unnecessary gas (residual gas or the like).
  • the unnecessary gas is, for example, a gas released from the frame body 410 and the partition 420 when the frame body 410 and the partition 420 are heated.
  • the gas adsorber 60 has a getter.
  • a getter is a material that has the property of adsorbing molecules smaller than a predetermined size.
  • the getter is, for example, an evaporation type getter.
  • the evaporable getter has a property of releasing adsorbed molecules when the temperature is higher than a predetermined temperature (activation temperature). Therefore, even if the adsorption ability of the evaporable getter is reduced, the adsorption ability of the evaporable getter can be recovered by heating the evaporable getter to the activation temperature or higher.
  • the evaporative getter is, for example, a zeolite or an ion exchanged zeolite (eg, a copper ion exchanged zeolite).
  • the gas adsorber 60 includes the getter powder. Specifically, the gas adsorber 60 is formed by applying a solution in which getter powder is dispersed. In this case, the gas adsorber 60 can be made small. Therefore, the gas adsorber 60 can be disposed even if the vacuum space 50 is narrow.
  • the plurality of pillars 70 are used to maintain the interval between the first panel 20 and the second panel 30 at a predetermined interval h (see FIG. 1). That is, the plurality of pillars 70 function as spacers for maintaining the distance between the first panel 20 and the second panel 30 at a desired value.
  • the plurality of pillars 70 are arranged in the first space 510. Specifically, the plurality of pillars 70 are arranged at intersections of rectangular (square or rectangular) lattices at regular intervals including the pitch p (see FIG. 12). In the first embodiment, pillars 70 are arranged at intersections of square-shaped lattices, and both the vertical and horizontal intervals are equal to the pitch p. Note that the fixed vertical interval may be equal to the pitch p, and the horizontal fixed interval may be slightly longer or slightly shorter than the pitch p. Further, the horizontal constant interval may be equal to the pitch p, and the vertical constant interval may be slightly longer or slightly shorter than the pitch p.
  • the pillar 70 is formed using a transparent material. However, each pillar 70 may be formed using an opaque material as long as it is sufficiently small.
  • the material of the pillar 70 is selected so that the pillar 70 is not deformed in a first melting process, an exhaust process, and a second melting process, which will be described later.
  • the material of the pillar 70 is selected to have a higher softening point (softening temperature) than the first softening point of the first thermal adhesive and the second softening point of the second thermal adhesive.
  • the first embodiment is characterized by the interval between the pillars 70 and will be described below.
  • pillars 70 are arranged at intersections of rectangular lattices having a pitch p (m).
  • p pitch
  • four pillars 701 located at the vertices of a square with a central pitch p are destroyed.
  • P (N) is a load
  • D (N ⁇ m) is the bending rigidity of the first panel 20 and the second panel 30.
  • is a coefficient determined by the load condition.
  • Eg (Pa) is the Young's modulus of the first panel 20 and the second panel 30
  • t (m) is the thickness of the first panel 20 and the second panel 30
  • is the first panel 20 and the second panel 30. Poisson's ratio.
  • w (Pa) is a pressure (atmospheric pressure).
  • the deflection ⁇ 2 in the case of this equally distributed load is expressed as [Equation 5].
  • the compressive fracture load per pillar 70 is P 0 (N).
  • the atmospheric pressure supported by each pillar 70 is represented by w ⁇ p 2 .
  • P 1 is expressed as [Equation 8].
  • Equation 12 is an equation in a model in which four sides of a rectangle of length a (m) are fixed. In reality, the pillars 70 are discretely arranged, and therefore [Equation 12] is corrected by the correction coefficient K. [Equation 13] is obtained.
  • Table 1 shows the experimental conditions, falling ball breaking heights, and discriminant values in Experiment 1 and Comparative Experiments 11-15.
  • the discriminant is the left side of [Equation 15].
  • the height of the pillar 70 is equal to the interval h between the first panel 20 and the second panel 30.
  • the glass panels in the table refer to the first panel 20 and the second panel 30, and the first panel 20 and the second panel 30 can be regarded as having the same physical quantities.
  • Comparative Experiment 11 Comparative Experiment 14, and Comparative Experiment 15, the value of the discriminant was negative, [Formula 15] was not satisfied, and the falling ball breaking height did not reach as much as 45 (cm) in Experiment 1. .
  • Comparative Experiment 12 the discriminant value slightly exceeded 16 and 0, but the falling ball breaking height was 12.5 (cm), which was far from the result of Experiment 1.
  • the material of the pillar 70 is SUS304.
  • the breakage of the first panel 20 or the second panel 30 is not due to the contact between the first panel 20 and the second panel 30, but the first panel 20 and the second panel 30 are not subjected to contact with each other. It is considered that the first panel 20 or the second panel 30 is damaged, and the mechanism of the damage is different. That is, [Equation 15] is unsuitable for application to the pillar 70 made of SUS304, and is considered to be particularly effective in the case of the pillar 70 made of resin.
  • Table 2 shows experimental conditions, falling ball breaking heights, and discriminant values in Experiment 2 and Comparative Experiments 21 to 23.
  • Comparative Experiment 21 and Comparative Experiment 23 the value of the discriminant is negative, [Formula 15] is not satisfied, and the falling ball breaking height does not reach 37.5 (cm) in Experiment 2.
  • Comparative Experiment 22 the discriminant value slightly exceeded 16 and 0, but the falling ball breaking height did not reach 37.5 (cm) in Experiment 2.
  • Table 3 shows experimental conditions, falling ball breaking heights, and discriminant values in Experiment 3 and Comparative Experiments 31 to 33.
  • Comparative Experiment 31 and Comparative Experiment 33 the value of the discriminant was negative and did not satisfy [Equation 15], and the falling ball breaking height did not reach 50 (cm) in Experiment 3.
  • Comparative Experiment 32 the discriminant value slightly exceeded 16 and 0, but the falling ball breaking height did not reach 50 (cm) in Experiment 3.
  • Esp (Pa) is the Young's modulus of the pillar 70
  • r (m) is the radius of the pillar 70
  • is the circumference.
  • ⁇ ⁇ r 2 in [Equation 18] means the cross-sectional area S (m 2 ) of the pillar 70. If the pillar 70 is not circular, the cross-sectional area S may be simply substituted.
  • Such a temporary assembly 100 is subjected to the predetermined processing in order to obtain a glass panel unit (finished product) 10.
  • the first space 510 is connected to the first space 510 through an exhaust path capable of exhausting to an external space including the ventilation path 600, the second space 520, and the exhaust port 700 at a predetermined temperature (exhaust temperature) Te (see FIG. 7).
  • a predetermined temperature (exhaust temperature) Te (see FIG. 7).
  • the exhaust temperature Te is set higher than the activation temperature of the getter of the gas adsorber 60.
  • the partition 420 is deformed to form the partition wall 42 that closes the air passage 600, so that the seal 40 surrounding the vacuum space 50 is formed. Since the partition 420 contains the second thermal adhesive, the partition 420 is melted once at a predetermined temperature (second melting temperature) Tm2 (see FIG. 7) equal to or higher than the second softening point.
  • the partition wall 42 can be formed by deforming.
  • the first melting temperature Tm1 is lower than the second melting temperature Tm2.
  • the partition 420 is deformed so as to block the ventilation path 600.
  • the partition wall 42 obtained by deforming the partition 420 in this way separates the vacuum space 50 from the second space 520 (spatially).
  • the partition (second portion) 42 and the portion (first portion) 41 corresponding to the vacuum space 50 in the frame 410 constitute the seal 40 surrounding the vacuum space 50.
  • the glass panel unit (finished product) 10 obtained in this way includes a first panel 20, a second panel 30, a seal 40, a vacuum space 50, and a second space 520.
  • the gas adsorber 60, the plurality of pillars 70, and the closing member 80 are provided.
  • the vacuum space 50 is formed by exhausting the first space 510 via the second space 520 and the exhaust port 700.
  • the vacuum space 50 is the first space 510 whose degree of vacuum is a predetermined value or less.
  • the predetermined value is, for example, 0.1 Pa. Since the vacuum space 50 is completely sealed by the first panel 20, the second panel 30, and the seal 40, the vacuum space 50 is separated from the second space 520 and the exhaust port 700.
  • the seal 40 completely surrounds the vacuum space 50 and airtightly bonds the first panel 20 and the second panel 30 together.
  • the seal 40 has a frame shape and includes a first portion 41 and a second portion 42.
  • the first portion 41 is a portion corresponding to the vacuum space 50 in the frame 410. That is, the first portion 41 is a portion facing the vacuum space 50 in the frame body 410.
  • the second portion 42 is a partition wall obtained by deforming the partition 420.
  • the closing member 80 makes it difficult for an object such as dust to enter the second space 520 from the exhaust port 700.
  • the closing member 80 is a cover 81 provided on the front side of the exhaust port 700 of the first panel 20 or the second panel 30.
  • Such a closing member 80 By providing such a closing member 80 at the exhaust port 700, it is difficult for an object such as dust to enter the second space 520 from the exhaust port 700. Thereby, it is suppressed that objects, such as garbage, penetrate
  • the manufacturing method of the glass panel unit 10 of 1st embodiment has a preparatory process, an assembly process, a sealing process, and a removal process. Note that the preparation step may be omitted.
  • the preparation step the first panel 20, the second panel 30, the frame body 410, the partition 420, the internal space 500, the ventilation path 600, the exhaust port 700, and the gas adsorber 60 are formed in order to obtain the temporary assembly 100. It is a process.
  • the preparation step includes first to sixth steps. Note that the order of the second to sixth steps may be changed as appropriate.
  • the first step is a step of forming the first panel 20 and the second panel 30 (substrate forming step). For example, in the first step, the first panel 20 and the second panel 30 are produced. In the first step, the first panel 20 and the second panel 30 are washed as necessary.
  • the second step is a step of forming the exhaust port 700.
  • the exhaust port 700 is formed in the second panel 30.
  • the second panel 30 is washed as necessary.
  • the third step is a step of forming the frame body 410 and the partition 420 (sealing material forming step).
  • the material of the frame 410 (first thermal adhesive) and the material of the partition 420 (second thermal adhesive) are used as the second panel 30 (first glass plate 31 first). On the surface).
  • the material of the frame 410 and the material of the partition 420 are dried and temporarily fired.
  • coated is heated.
  • the first panel 20 may be heated together with the second panel 30. That is, the first panel 20 may be heated under the same conditions as the second panel 30. Thereby, the difference of the curvature of the 1st panel 20 and the 2nd panel 30 can be reduced.
  • the fourth step is a step of forming the pillar 70 (pillar forming step).
  • a plurality of pillars 70 are formed in advance, and the plurality of pillars 70 are arranged at predetermined positions on the second panel 30 using a chip mounter or the like.
  • the plurality of pillars 70 may be formed using a photolithography technique and an etching technique. In this case, the plurality of pillars 70 are formed using a photocurable material or the like. Alternatively, the plurality of pillars 70 may be formed using a known thin film forming technique.
  • the pillar 70 is arranged so as to satisfy the above-described [Equation 15] or [Equation 18].
  • [Equation 15] is an expression when the elastic deformation of the pillar 70 is not considered
  • [Equation 18] is an expression when the elastic deformation of the pillar 70 is considered.
  • the fifth step is a step of forming the gas adsorbent 60 (gas adsorbent forming step).
  • the gas adsorber 60 is formed by applying a solution in which getter powder is dispersed to a predetermined position of the second panel 30 and drying the solution.
  • the frame 410, the partition 420, the ventilation path 600, the exhaust port 700, the gas adsorbent 60, and the plurality of pillars 70 are formed as shown in FIG. Two panels 30 are obtained.
  • the sixth step is a step of arranging the first panel 20 and the second panel 30 (arrangement step). As shown in FIG. 6, in the sixth step, in the first panel 20 and the second panel 30, the first surface of the first glass plate 21 and the first surface of the second glass plate 31 are parallel to and face each other. They are arranged and overlapped.
  • the assembly process is a process of preparing the temporary assembly 100. Specifically, in the assembly process, the temporary assembly 100 is prepared by joining the first panel 20 and the second panel 30 together. That is, the assembly process is a process (first melting process) in which the first panel 20 and the second panel 30 are joined in an airtight manner by the frame body 410.
  • the first thermal adhesive is temporarily melted at a predetermined temperature (first melting temperature) Tm1 that is equal to or higher than the first softening point, whereby the first panel 20 and the second panel 30 are joined in an airtight manner.
  • first melting temperature a predetermined temperature
  • the first panel 20 and the second panel 30 are arranged in a melting furnace and heated for a predetermined time (first melting time) tm1 at a first melting temperature Tm1, as shown in FIG. .
  • the first melting temperature Tm1 and the first melting time tm1 the first panel 20 and the second panel 30 are hermetically joined by the thermal adhesive of the frame body 410, but the ventilation path 600 is blocked by the partition 420. It is set so that there is no. That is, the lower limit of the first melting temperature Tm1 is the first softening point, but the upper limit of the first melting temperature Tm1 is set so that the ventilation path 600 is not blocked by the partition 420. For example, when the first softening point and the second softening point are 434 ° C., the first melting temperature Tm1 is set to 440 ° C.
  • the first melting time tm1 is, for example, 10 minutes.
  • gas is released from the frame 410, and this gas is adsorbed by the gas adsorber 60.
  • the temporary assembly 100 shown in FIG. 8 is obtained by the assembly process (first melting process) described above.
  • the sealing step is a step of obtaining the glass panel unit (finished product) 10 by performing the predetermined processing on the temporary assembly product 100.
  • the sealing process includes an exhaust process and a melting process (second melting process). That is, the exhaust process and the second melting process correspond to the predetermined process.
  • the evacuation step is a step of evacuating the first space 510 through the ventilation path 600, the second space 520, and the exhaust port 700 at the predetermined temperature (exhaust temperature) Te to form the vacuum space 50.
  • Exhaust is performed using, for example, a vacuum pump.
  • the vacuum pump is connected to the temporary assembly 100 by an exhaust pipe 810 and a seal head 820.
  • the exhaust pipe 810 is joined to the second panel 30 so that the inside of the exhaust pipe 810 and the exhaust port 700 communicate with each other.
  • a seal head 820 is attached to the exhaust pipe 810, whereby the suction port of the vacuum pump is connected to the exhaust port 700.
  • the first melting step, the exhausting step, and the second melting step include the first panel 20 and the second panel 30 (the frame 410, the partition 420, the air passage 600, the exhaust port 700, the gas adsorbent 60, and the plurality of pillars 70).
  • the second panel 30 thus formed is placed in the melting furnace. Therefore, the exhaust pipe 810 is joined to the second panel 30 at least before the first melting step.
  • the first space 510 is exhausted through the ventilation path 600, the second space 520, and the exhaust port 700 for a predetermined time (exhaust time) te at the exhaust temperature Te (see FIG. 7).
  • the exhaust temperature Te is set higher than the activation temperature of the getter of the gas adsorber 60 (for example, 350 ° C.) and lower than the first softening point and the second softening point (for example, 434 ° C.).
  • the exhaust temperature Te is 390 ° C.
  • the frame 410 and the partition 420 are not deformed. Further, the getter of the gas adsorber 60 is activated, and molecules (gas) adsorbed by the getter are released from the getter. Then, the molecules (that is, gas) released from the getter are discharged through the first space 510, the ventilation path 600, the second space 520, and the exhaust port 700. Therefore, in the exhaust process, the adsorption capacity of the gas adsorber 60 is recovered.
  • the exhaust time te is set so that a vacuum space 50 having a desired degree of vacuum (for example, a degree of vacuum of 0.1 Pa or less) is obtained.
  • a desired degree of vacuum for example, a degree of vacuum of 0.1 Pa or less
  • the exhaust time te is set to 120 minutes.
  • the degree of vacuum of the vacuum space 50 is not particularly limited. Further, instead of the vacuum space 50, a decompression space in which gas is sealed at a pressure lower than at least 1 atm, such as 0.5 atm, may be formed.
  • the second melting step is a step of forming the seal 40 that surrounds the vacuum space 50 by deforming the partition 420 to form the partition wall 42 that closes the ventilation path 600.
  • the partition wall 420 is formed by deforming the partition 420 by once melting the second thermal adhesive at a predetermined temperature (second melting temperature) Tm2 that is equal to or higher than the second softening point.
  • second melting temperature a predetermined temperature
  • the first panel 20 and the second panel 30 are heated in the melting furnace at the second melting temperature Tm2 for a predetermined time (second melting time) tm2 (see FIG. 7).
  • the second melting temperature Tm2 and the second melting time tm2 are set so that the second thermal adhesive softens and the partition wall 42 that blocks the air passage 600 is formed.
  • the lower limit of the second melting temperature Tm2 is the second softening point (434 ° C.).
  • the second melting temperature Tm2 is higher than the first melting temperature (440 ° C.) Tm1.
  • the second melting temperature Tm2 is set to 460 ° C.
  • the second melting time tm2 is, for example, 30 minutes.
  • the exhaust is performed only in the exhaust process before the second melting process, but the exhaust may be performed in the second melting process.
  • the first space 510 is exhausted through the ventilation path 600, the second space 520, and the exhaust port 700 continuously from the exhaust step. That is, in the second melting process, the partition 420 is deformed while the first space 510 is evacuated through the ventilation path 600, the second space 520, and the exhaust port 700 at the second melting temperature Tm2, and the ventilation path 600 is changed. A partition wall 42 for closing is formed. This further prevents the vacuum degree of the vacuum space 50 from being deteriorated during the second melting step. However, in the second melting step, it is not always necessary to exhaust the first space 510 through the air passage 600, the second space 520, and the exhaust port 700.
  • the glass panel unit 10 is obtained through the above-described preparation process, assembly process, sealing process, and removal process.
  • the pillars 70 are arranged on the glass panel unit 10 so as to satisfy the discriminant of [Expression 15] or [Expression 18] described above.
  • the discriminant of [Equation 15] is a discriminant when the elastic deformation of the pillar 70 is not considered
  • the discriminant of [Equation 18] is the discriminant when the elastic deformation of the pillar 70 is considered.
  • the first panel 20, the flexure, and the second panel 30 come into contact with each other even when the minimum theoretical concentrated load that destroys the four pillars 70 is applied. Therefore, the first panel 20 or the second panel 30 is not easily damaged.
  • the glass panel unit 10 according to the second embodiment will be described with reference to FIGS.
  • the glass panel unit 10 which concerns on 2nd embodiment has an additional structure in 1st embodiment.
  • the glass panel unit 10 in the second embodiment includes a third panel 90 disposed so as to face the second panel 30.
  • the third panel 90 faces the second panel 30 for convenience, but may face the first panel 20.
  • the third panel 90 includes a third glass plate 91.
  • the third glass plate 91 included in the third panel 90 has a flat surface and a predetermined thickness.
  • the third panel 90 is constituted by the third glass plate 91.
  • the third panel 90 may be provided with a coating on any surface.
  • the coating is a film having desired physical properties such as an infrared reflecting film.
  • the third panel 90 is constituted by the third glass plate 91 and the coating.
  • the third panel 90 is composed of at least the third glass plate 91.
  • the glass panel unit 10 includes a second seal 43 that is disposed between the second panel 30 and the third panel 90 and hermetically joins the second panel 30 and the third panel 90.
  • the seal 40 becomes the first seal.
  • the second seal 43 is annularly disposed between the peripheral edge of the second panel 30 and the peripheral edge of the third panel 90.
  • the second seal 43 may be made of the same material as the seal 40, or may be made of a different material.
  • the glass panel unit 10 includes a second internal space 540 that is sealed by the second panel 30, the third panel 90, and the second seal 43 and in which a dry gas is sealed.
  • the internal space 500 is the first internal space.
  • a dry rare gas such as argon, dry air, or the like is used, but it is not particularly limited.
  • a hollow frame member 92 is annularly arranged inside the second seal 43 between the peripheral edge of the second panel 30 and the peripheral edge of the third panel 90.
  • the frame member 92 is formed with a through-hole 921 that communicates with the second internal space 540, and a desiccant 93 such as silica gel is accommodated therein.
  • the joining of the second panel 30 and the third panel 90 can be performed in the same manner as the joining of the first panel 20 and the second panel 30, and an example will be described below.
  • a third panel 90 and an assembly having the first panel 20 and the second panel 30 (the glass panel unit 10 in the first embodiment) are prepared later.
  • the second thermal adhesive that will later become the second seal 43 is arranged in a frame shape on the peripheral edge of the surface of the third panel 90 or the second panel 30 (second thermal adhesive arranging step).
  • the thermal adhesive may be made of the same material as the thermal adhesive (first thermal adhesive) to be the frame 410, or may be made of a different material.
  • a ventilation path (second ventilation path) made of a through hole that allows the second adhesive to pass through the second internal space 540 and the external space is formed in the thermal adhesive.
  • the third panel 90 and the second panel 30 are arranged to face each other (third panel facing arrangement step).
  • the temperature is raised to a temperature at which the thermal adhesive to be the second seal 43 is melted, and the thermal adhesive is once melted, so that the second panel 30 and the third panel 90 are once melted. Airtight joining is performed by the second seal 43 (joining process). At this time, the second air passage is not completely blocked.
  • dry gas is caused to flow into the second internal space 540 through the second air passage (dry gas inflow step).
  • the second internal space 540 may be filled with only dry gas, or air may remain.
  • the second seal 43 is heated to close the second ventilation path and seal the second internal space 540 (second space sealing step).
  • the glass panel unit 10 is formed as described above. According to the glass panel unit 10 of the second embodiment, further heat insulation is obtained.
  • 3rd embodiment comprises the glass window 95 using the glass panel unit 10 of 1st embodiment and 2nd embodiment.
  • the same glass panel unit 10 as in either the first embodiment or the second embodiment is used, and a window frame having a U-shaped cross section outside the peripheral edge of the glass panel unit 10.
  • a glass window 95 is configured by fitting 96.
  • the glass panel unit 10 has a rectangular shape in the above-described embodiment (that is, the first embodiment to the third embodiment, the same applies hereinafter), the glass panel unit 10 may have a desired shape such as a circular shape or a polygonal shape.
  • sticker 40 may not be rectangular shape but desired shapes, such as circular shape and polygonal shape.
  • each shape of the 1st panel 20, the 2nd panel 30, the frame 410, and the partition 42 is not limited to the shape of the said embodiment, Shape which can obtain the glass panel unit 10 of desired shape. If it is.
  • the shape and size of the glass panel unit 10 are determined according to the application of the glass panel unit 10.
  • first surface and the second surface of the first glass plate 21 of the first panel 20 are not limited to planes. Similarly, neither the first surface nor the second surface of the second glass plate 31 of the second panel 30 is limited to a flat surface.
  • first glass plate 21 of the first panel 20 and the second glass plate 31 of the second panel 30 may not have the same planar shape and planar size. Moreover, the 1st glass plate 21 and the 2nd glass plate 31 do not need to have the same thickness. Moreover, the 1st glass plate 21 and the 2nd glass plate 31 do not need to be formed with the same material. Similarly, the first glass plate 21 of the first panel 20 and the second glass plate 31 of the second panel 30 may not have the same planar shape and planar size. Moreover, the 1st glass plate 21 and the 2nd glass plate 31 do not need to have the same thickness. The first glass plate 21 and the second glass plate 31 may not be formed of the same material.
  • seal 40 may not have the same planar shape as the first panel 20 and the second panel 30.
  • frame body 410 may not have the same planar shape as the first panel 20 and the second panel 30.
  • the first panel 20 may further include a coating having desired physical characteristics and formed on the second plane of the first glass plate 21.
  • the first panel 20 may not include the coating 22. That is, the first panel 20 may be configured only by the first glass plate 21.
  • the second panel 30 may further include a coating having desired physical characteristics.
  • the coating may include at least one of thin films formed on the first plane and the second plane of the second glass plate 31, respectively.
  • the coating is, for example, a film infrared reflecting film or an ultraviolet reflecting film that reflects light of a specific wavelength.
  • the frame 410 is formed of the first thermal adhesive.
  • the frame body 410 may include other elements such as a core material in addition to the first thermal adhesive.
  • the frame body 410 only needs to contain the first thermal adhesive.
  • the frame body 410 is formed so as to surround almost the entire region of the second panel 30.
  • the frame 410 need only be formed so as to surround a predetermined region on the second panel 30. That is, the frame body 410 does not need to be formed so as to surround almost the entire region of the second panel 30.
  • the partition 420 is formed of the second thermal adhesive.
  • the partition 420 may include other elements such as a core material in addition to the second thermal adhesive. In other words, the partition 420 only needs to contain the second thermal adhesive.
  • the internal space 500 is partitioned into one first space 510 and one second space 520.
  • the internal space 500 may be partitioned into one or more first spaces 510 and one or more second spaces 520.
  • the second thermal adhesive is the same as the first thermal adhesive, and the second softening point and the first softening point are equal.
  • the second thermal adhesive may be a material different from the first thermal adhesive.
  • the second thermal adhesive may have a second softening point different from the first softening point of the first thermal adhesive.
  • the second softening point is preferably higher than the first softening point.
  • the first melting temperature Tm1 can be set equal to or higher than the first softening point and lower than the second softening point. By doing so, it is possible to prevent the partition 420 from being deformed in the first melting step.
  • first adhesive and the second thermal adhesive are not limited to glass frit, and may be, for example, a low melting point metal or a hot melt adhesive.
  • a melting furnace is used to heat the frame 410, the gas adsorber 60, and the partition 420.
  • the heating can be performed by an appropriate heating means.
  • the heating means is, for example, a laser or a heat transfer plate connected to a heat source.
  • the exhaust port 700 is formed in the second panel 30.
  • the exhaust port 700 may be formed in the first glass plate 21 of the first panel 20 or may be formed in the frame 410.
  • the glass panel unit 10 of the first aspect according to the present invention includes the first panel 20 constituted by at least the first glass plate 21, and the first panel 20.
  • the glass panel unit 10 is disposed between the first panel 20 and the second panel 30 to seal the first panel 20 and the second panel 30 in an airtight manner, and the first panel 20 and the second panel 30. And an internal space 50 that is hermetically sealed with a seal 40 and serves as a decompression space.
  • the glass panel unit 10 is made of a plurality of resins arranged at intersections of rectangular lattices with a predetermined interval p including a predetermined pitch p so as to contact the first panel 20 and the second panel 30 in the internal space 50.
  • the pillar 70 is provided.
  • Pillar 70 has a predetermined pitch p, the first panel 20 and the distance h of the second panel 30, the compression breaking load P 0 per one pillar, the first panel 20 and the Young's modulus Eg of the second panel 30 And the deflection ⁇ of the first panel 20 and the second panel 30 determined by using the thickness t of the first panel 20 and the second panel 30 and the Poisson's ratio ⁇ of the first panel 20 and the second panel 30.
  • the predetermined pitch p is determined so as to be smaller than the interval h between the first panel 20 and the second panel 30.
  • the first panel 20 or the second panel 30 is not easily damaged by the contact between the first panel 20 and the second panel 30.
  • the pillar 70 has a predetermined pitch p, the first panel 20 and the distance h of the second panel 30, the compression breaking load P 0 per one pillar 70, the first panel 20 and the In addition to the Young's modulus Eg of the two panels 30, the thickness t of the first panel 20 and the second panel 30, and the Poisson's ratio ⁇ of the first panel 20 and the second panel 30, the Young's modulus Esp of the pillar 70 and the pillar
  • the predetermined pitch p is set so that the bending ⁇ of the first panel 20 and the second panel 30 obtained using the cross-sectional area S of 70 is smaller than the distance h between the first panel 20 and the second panel 30. It has been decided.
  • the damage of the first panel 20 or the second panel 30 due to the contact between the first panel 20 and the second panel 30 is much less likely to occur.
  • the pillar 70 has a predetermined pitch of p (m), a distance between the first panel 20 and the second panel 30 of h (m), and a compressive fracture load per pillar 70 of P 0 ( N), the Young's modulus of the first panel 20 and the second panel 30 is Eg (Pa), the thickness of the first panel 20 and the second panel 30 is t (m), and the Poisson's ratio of the first panel 20 and the second panel 30
  • is h ⁇ 0.232 ⁇ P 0 ⁇ p 2 / (Eg ⁇ t 3 / (12 ⁇ (1- ⁇ 2 ))> 0 It is arranged to satisfy.
  • the damage of the first panel 20 or the second panel 30 due to the contact between the first panel 20 and the second panel 30 is much less likely to occur.
  • the pillar 70 has a predetermined pitch of p (m), a distance between the first panel 20 and the second panel 30 of h (m), and a compression fracture load per pillar 70 of P 0 ( N), the Young's modulus of the first panel 20 and the second panel 30 is Eg (Pa), the thickness of the first panel 20 and the second panel 30 is t (m), and the Poisson's ratio of the first panel 20 and the second panel 30 Is ⁇ , the Young's modulus of the pillar 70 is Esp (Pa), and the cross-sectional area of the pillar 70 is S (m 2 ), h ⁇ 0.232 ⁇ P 0 ⁇ p 2 / (Eg ⁇ t 3 / (12 ⁇ (1 ⁇ 2 ))) ⁇ P 0 / (3 ⁇ Esp ⁇ S)> 0 .
  • the damage of the first panel 20 or the second panel 30 due to the contact between the first panel 20 and the second panel 30 is much less likely to occur.
  • the glass panel unit 10 of the fifth aspect according to the present invention is realized by a combination with any one of the first to fourth aspects.
  • the glass panel unit 10 includes the third panel 90 configured by at least the third glass plate 91 disposed so as to face the second panel 30.
  • the glass panel unit 10 includes a second seal 43 that is disposed between the second panel 30 and the third panel 90 and hermetically joins the second panel 30 and the third panel 90.
  • the glass panel unit 10 further includes a second internal space 540 that is sealed with the second panel 30, the third panel 90, and the second seal 43 and in which a dry gas is sealed.
  • the glass window 95 according to the sixth aspect of the present invention includes the glass panel unit 10 according to any one of the first to fifth aspects, and a window frame 96 fitted into the peripheral edge of the glass panel unit 10.
  • the manufacturing method of the glass panel unit 10 of the 7th aspect which concerns on this invention is an adhesive arrangement
  • the adhesive placement step is a step of placing a thermal adhesive in a frame shape on the first panel 20 made of at least the first glass plate 21.
  • the pillar arrangement step is a step of arranging a plurality of pillars 70 made of resin at intersections of a rectangular lattice having a predetermined interval including a predetermined pitch p on the first panel 20.
  • the opposing placement process is a process of placing the second panel 30 made of at least the second glass plate 31 so as to face the first panel 20.
  • the glass composite containing the first panel 20, the second panel 30, and the thermal adhesive is heated to melt the thermal adhesive and remove the exhaust path that can be exhausted to the external space.
  • This is a step of forming an internal space (vacuum space 50) surrounded by the panel 20, the second panel 30, and the melted thermal adhesive.
  • the decompression step is a step of decompressing the internal space by discharging the gas in the internal space.
  • the reduced pressure space forming step is a step of sealing the internal space while maintaining the reduced pressure state to form a sealed reduced pressure space.
  • Pillar 70 has a predetermined pitch p, the first panel 20 and the distance h of the second panel 30, the compression breaking load P 0 per one pillar, the first panel 20 and the Young's modulus Eg of the second panel 30 And the deflection ⁇ of the first panel 20 and the second panel 30 determined by using the thickness t of the first panel 20 and the second panel 30 and the Poisson's ratio ⁇ of the first panel 20 and the second panel 30.
  • the predetermined pitch p is determined so as to be smaller than the interval h between the first panel 20 and the second panel 30.
  • the first panel 20 or the second panel 30 is not easily damaged due to the contact between the first panel 20 and the second panel 30.
  • the pillar 70 has a predetermined pitch p, the first panel 20 and the distance h of the second panel 30, the compression breaking load P 0 per one pillar, the first panel 20 and the second
  • the Young's modulus Eg of the panel 30 the thickness t of the first panel 20 and the second panel 30, and the Poisson's ratio ⁇ of the first panel 20 and the second panel 30, the Young's modulus Esp of the pillar 70 and the pillar 70
  • the predetermined pitch p is determined so that the deflection ⁇ of the first panel 20 and the second panel 30 obtained using the cross-sectional area S of the first panel 20 and the second panel 30 is smaller than the distance h between the first panel 20 and the second panel 30. It is done.
  • the damage of the first panel 20 or the second panel 30 due to the contact between the first panel 20 and the second panel 30 is much less likely to occur.
  • the glass panel unit 10 of the ninth aspect according to the present invention is realized by a combination with the seventh aspect.
  • the pillar 70 has a predetermined pitch of p (m), a distance between the first panel 20 and the second panel 30 of h (m), and a compressive fracture load per pillar 70 of P 0 ( N)
  • the Young's modulus of the first panel 20 and the second panel 30 is Eg (Pa)
  • the thickness of the first panel 20 and the second panel 30 is t (m)
  • the Poisson's ratio of the first panel 20 and the second panel 30 Where ⁇ is h ⁇ 0.232 ⁇ P 0 ⁇ p 2 / (Eg ⁇ t 3 / (12 ⁇ (1- ⁇ 2 )))> 0 It is arranged to satisfy.
  • the damage of the first panel 20 or the second panel 30 due to the contact between the first panel 20 and the second panel 30 is much less likely to occur.
  • the pillar 70 has a predetermined pitch of p (m), a distance between the first panel 20 and the second panel 30 of h (m), and a compressive fracture load per pillar 70 of P 0 ( N), the Young's modulus of the first panel 20 and the second panel 30 is Eg (Pa), the thickness of the first panel 20 and the second panel 30 is t (m), and the Poisson's ratio of the first panel 20 and the second panel 30 Is ⁇ , the Young's modulus of the pillar 70 is Esp (Pa), and the cross-sectional area of the pillar 70 is S (m 2 ), h ⁇ 0.232 ⁇ P 0 ⁇ p 2 / (Eg ⁇ t 3 / (12 ⁇ (1 ⁇ 2 ))) ⁇ P 0 / (3 ⁇ Esp ⁇ S)> 0.
  • the damage of the first panel 20 or the second panel 30 due to the contact between the first panel 20 and the second panel 30 is much less likely to occur.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Securing Of Glass Panes Or The Like (AREA)

Abstract

本発明の課題は、衝撃力がかかっても第1パネルと第2パネルとが接触しにくいガラスパネルユニット、ガラス窓およびガラスパネルユニットの製造方法を提供する。ガラスパネルユニット(10)においては、第1パネル(20)と第2パネル(30)の間隔、ピラーの1個あたりの圧縮破壊荷重、第1パネル(20)および第2パネル(30)のヤング率、第1パネル(20)および第2パネル(30)の厚み、第1パネル(20)および第2パネル(30)のポアソン比を用いて求められる第1パネル(20)および第2パネル(30)の撓みが、第1パネル(20)と第2パネル(30)の間隔よりも小さくなるように、ピラー(70)のピッチが決められる。

Description

ガラスパネルユニット、ガラス窓およびガラスパネルユニットの製造方法
 本発明は、ガラスパネルユニット、ガラス窓およびガラスパネルユニットの製造方法に関する。
 特許文献1は、複層ガラスを開示する。特許文献1に開示された複層ガラスでは、図13A、図13Bに示すように、第1ガラス板21を有する第1パネル20と、第1パネル20と対向するように配置される第2ガラス板31を有する第2パネル30と、第1パネル20と第2パネル30とを気密に接合するシール40と、を備える。さらに、第1パネル20と第2パネル30とシール40とで密閉されて減圧空間となる内部空間500内に、第1パネル20と第2パネル30とに接触するように配置される複数のピラー(スペーサ)70を備えている。
 第1パネル20および第2パネル30が大気圧を受けると、第1パネル20および第2パネル30が互いに近づく方向に撓もうとする。ピラー70は、撓もうとする第1パネル20および第2パネル30の双方に接触してこれらを支持し、内部空間500を維持させる。
 特許文献1に示す複層ガラスでは、板面(第1ガラス板21の板面)に衝撃力が加えられると、この衝撃力により第1パネル20が第2パネル30に近づく方向に撓もうとする。このとき、図13Aに示すように、たとえば落下する鋼球82により衝撃力が加えられる場合、衝撃力が加えられる箇所がピラー70が位置する箇所であると、第1パネル20は撓みにくい。このため、第1パネル20が第2パネル30に接触しにくく、第1パネル20と第2パネル30との接触による第1パネル20または第2パネル30の破損が生じにくい。
 しかしながら、図13Bに示すように、衝撃力が加えられる箇所がピラー70とピラー70の間の中間点である場合、第1パネル20は撓んで第2パネル30に接触しやすく、第1パネル20と第2パネル30との接触による第1パネル20または第2パネル30の破損が生じやすい。
日本国特許出願公開番号11-311069
 本発明の目的は、衝撃力がかかっても第1パネルと第2パネルとが接触しにくいガラスパネルユニット、ガラス窓およびガラスパネルユニットの製造方法を得ることである。
 本発明の一形態に係るガラスパネルユニットは、少なくとも第1ガラス板により構成される第1パネルと、前記第1パネルと所定の間隔をあけて対向するように配置される、少なくとも第2ガラス板により構成される第2パネルと、を備える。前記ガラスパネルユニットは、前記第1パネルと前記第2パネルとの間に配置されて前記第1パネルと前記第2パネルとを気密に接合するシールと、前記第1パネルと前記第2パネルと前記シールとで密閉されて減圧空間となる内部空間と、を備える。前記ガラスパネルユニットは、前記内部空間内に前記第1パネルと前記第2パネルとに接触するように所定のピッチを含む一定間隔の矩形状の格子の交差点に配置される樹脂からなる複数のピラーと、を備える。
 前記ピラーは、前記所定のピッチと、前記ピラーの1個あたりの圧縮破壊荷重と、前記第1パネルおよび前記第2パネルのヤング率と、前記第1パネルおよび前記第2パネルの厚みと、前記第1パネルおよび前記第2パネルのポアソン比と、を用いて求められる前記第1パネルおよび前記第2パネルの撓みが、前記第1パネルと前記第2パネルの間隔よりも小さくなるように、前記所定のピッチが決められている。
 本発明の一形態に係るガラス窓は、一形態のガラスパネルユニットと、前記ガラスパネルユニットの周縁部に嵌め込まれた窓枠と、を備える。
 本発明の一形態に係るガラスパネルユニットの製造方法は、接着剤配置工程と、ピラー配置工程と、対向配置工程と、内部空間形成工程と、減圧工程と、減圧空間形成工程と、を備える。
 前記接着剤配置工程は、少なくとも第1ガラス板からなる第1パネルの上に枠状に熱接着剤を配置する工程である。
 前記ピラー配置工程は、前記第1パネルの上に所定のピッチを含む一定間隔の矩形状の格子の交差点に樹脂からなる複数のピラーを配置する工程である。
 前記対向配置工程は、前記第1パネルに対向させて、少なくとも第2ガラス板からなる第2パネルを配置する工程である。
 前記内部空間形成工程は、前記第1パネルと前記第2パネルと前記熱接着剤とを含むガラス複合物を加熱して、前記熱接着剤を溶融させ、外部空間に排気可能な排気経路を除いて前記第1パネルと前記第2パネルと前記熱接着剤の溶融物とで囲まれた内部空間を形成する工程である。
 前記減圧工程は、前記内部空間の気体を排出して前記内部空間を減圧する工程である。
 前記減圧空間形成工程は、減圧した状態を維持したまま前記内部空間を封止し、密閉された減圧空間を形成する工程である。
 前記ピラーは、前記所定のピッチと、前記ピラーの1個あたりの圧縮破壊荷重と、前記第1パネルおよび前記第2パネルのヤング率と、前記第1パネルおよび前記第2パネルの厚みと、前記第1パネルおよび前記第2パネルのポアソン比と、を用いて求められる前記第1パネルおよび前記第2パネルの撓みが、前記第1パネルと前記第2パネルの間隔よりも小さくなるように、前記所定のピッチが決められる。
図1は、本発明の第一実施形態のガラスパネルユニットの断面図である。 図2は、同上のガラスパネルユニットの一部破断した平面図である。 図3は、同上のガラスパネルユニットの仮組立て品の断面図である。 図4は、同上の仮組立て品の一部破断した概略平面図である。 図5は、同上のガラスパネルユニットの製造方法を説明する斜視図である。 図6は、同上のガラスパネルユニットの製造方法を説明する斜視図である。 図7は、同上のガラスパネルユニットの製造方法を説明する温度のタイムチャートを示す図である。 図8は、同上のガラスパネルユニットの製造方法を説明する斜視図である。 図9は、本発明の第二実施形態のガラスパネルユニットの概略断面図である。 図10は、同上のガラスパネルユニットの一部破断した概略平面図である。 図11は、本発明の第三実施形態のガラスパネルユニットを用いたガラス窓の概略平面図である。 図12は、撓みの導出を説明するためのガラスパネルユニットのピラーを配置した部分の要部平面図である。 図13Aは、ガラスパネルユニットのピラーが位置する箇所に鋼球により衝撃力が加えられる場合の断面図である。図13Bは、ガラスパネルユニットのピラーと隣接するピラーの間の箇所に鋼球により衝撃力が加えられる場合の断面図である。
 以下の第一実施形態~第三実施形態は、ガラスパネルユニットに関する(第三実施形態にあってはさらにガラス窓に関する)。特に、第1パネルと、第2パネルと、第1パネルと第2パネルとを気密に接合するシールと、第1パネルと第2パネルとシールとで密閉される内部空間内に第1パネルと第2パネルとに接触するように配置されるピラーと、を備えるガラスパネルユニットに関する。
 図1および図2は、第一実施形態のガラスパネルユニット(ガラスパネルユニットの完成品)10を示す。第一実施形態のガラスパネルユニット10は、真空断熱ガラスユニットである。真空断熱ガラスユニットは、少なくとも一対のガラスパネルを備える複層ガラスパネルの一種であって、一対のガラスパネル間に真空空間を有している。
 第一実施形態のガラスパネルユニット10は、第1パネル20と、第2パネル30と、シール40と、真空空間50と、ガス吸着体60と、複数のピラー70と、閉塞部材80と、を備える。
 ガラスパネルユニット(完成品)10は、図3および図4に示される仮組立て品100に所定の処理を行うことによって得られる。
 仮組立て品100は、第1パネル20と、第2パネル30と、枠体410と、内部空間500と、仕切り420と、通気路600と、排気口700と、ガス吸着体60と、樹脂からなる複数のピラー70と、を備える。
 第1パネル20は、第1パネル20の平面形状を定める第1ガラス板21と、コーティング22と、を備える。
 第1ガラス板21は、矩形状の平板であり、厚みt1(図1参照)の方向の両側に互いに平行な第1面(図3における下面)および第2面(図3における上面)を有する。第1ガラス板21の第1面および第2面はいずれも平面である。第1ガラス板21の材料は、たとえば、ソーダライムガラス、高歪点ガラス、化学強化ガラス、無アルカリガラス、石英ガラス、ネオセラム、物理強化ガラスである。
 コーティング22は、第1ガラス板21の第1平面に形成される。コーティング22は、赤外線反射膜である。なお、コーティング22は、赤外線反射膜に限定されず、所望の物理特性を有する膜であってもよい。なお、第1パネル20は、第1ガラス板21のみにより構成されてもよい。要するに、第1パネル20は、少なくとも第1ガラス板21により構成される。
 第2パネル30は、第2パネル30の平面形状を定める第2ガラス板31を備える。第2ガラス板31は、矩形状の平板であり、厚みt2(図1参照)の方向の両側に互いに平行な第1面(図3における上面)および第2面(図3における下面)を有する。第2ガラス板31の第1面および第2面はいずれも平面である。
 第2ガラス板31の平面形状および平面サイズは、第1ガラス板21と同じである(つまり、第2パネル30の平面形状は、第1パネル20と同じである)。また、第2ガラス板31の厚みt2は、たとえば、第1ガラス板21の厚みt1と同じ厚みt(t=t1=t2)である。第2ガラス板31の材料は、たとえば、ソーダライムガラス、高歪点ガラス、化学強化ガラス、無アルカリガラス、石英ガラス、ネオセラム、物理強化ガラスである。
 第2パネル30は、第2ガラス板31のみで構成されている。つまり、第2ガラス板31が第2パネル30そのものである。なお、第2パネル30は、いずれかの表面にコーティングを備えていてもよい。コーティングは、赤外線反射膜等の所望の物理特性を有する膜である。この場合には、第2パネル30が第2ガラス板31およびコーティングにより構成される。要するに、第2パネル30は、少なくとも第2ガラス板31により構成される。
 第2パネル30は、第1パネル20に対向するように配置される。具体的には、第1パネル20と第2パネル30とは、第1ガラス板21の第1面と第2ガラス板31の第1面とが互いに平行かつ対向するように配置される。
 枠体410は、第1パネル20と第2パネル30との間に配置され、第1パネル20と第2パネル30とを気密に接合する。これによって、枠体410と第1パネル20と第2パネル30とで囲まれた内部空間500が形成される。
 枠体410は、熱接着剤(第1軟化点を有する第1熱接着剤)で形成されている。第1熱接着剤は、たとえば、ガラスフリットである。ガラスフリットは、たとえば、低融点ガラスフリットである。低融点ガラスフリットは、たとえば、ビスマス系ガラスフリット、鉛系ガラスフリット、バナジウム系ガラスフリットである。
 枠体410は、矩形の枠状である。枠体410の平面形状は、第1ガラス板21,第2ガラス板31と同じであるが、枠体410の平面サイズは第1ガラス板21,第2ガラス板31より小さい。枠体410は、第2パネル30の上面(第2ガラス板31の第1面)の外周に沿って形成されている。つまり、枠体410は、第2パネル30の上面のほぼすべての領域を囲うように形成されている。
 第1パネル20と第2パネル30とは、第1軟化点以上の所定温度(第1溶融温度)Tm1(図6参照)で枠体410の第1熱接着剤を一旦溶融させることで、枠体410によって気密に接合される。
 仕切り420は、内部空間500内に配置される。仕切り420は、内部空間500を、密閉空間、すなわちガラスパネルユニット10が完成したときに密閉されて真空空間50となる第1空間510と、排気空間、すなわち排気口700と通じる第2空間520とに仕切る。仕切り420は、第1空間510が第2空間520よりも大きくなるように、第2パネル30の中央よりも第2パネル30の長さ方向(図4における左右方向)の第1端側(図4における右端側)に形成される。
 仕切り420は、熱接着剤(第2軟化点を有する第2熱接着剤)で形成されている。第2熱接着剤は、たとえば、ガラスフリットである。ガラスフリットは、たとえば、低融点ガラスフリットである。低融点ガラスフリットは、たとえば、ビスマス系ガラスフリット、鉛系ガラスフリット、バナジウム系ガラスフリットである。第2熱接着剤は、第1熱接着剤と同じであり、第2軟化点と第1軟化点は等しい。
 排気口700は、第2空間520と外部空間とをつなぐ孔である。排気口700は、第2空間520および通気路600を介して第1空間510を排気するために用いられる。排気口700は、第2空間520と外部空間とをつなぐように第2パネル30に形成されている。具体的には、排気口700は、第2パネル30の角部分に位置している。なお、第一実施形態では排気口700は第2パネル30に設けられているが、排気口700は、第1パネル20に設けられてもよいし、第1パネル20および第2パネル30の両方に設けられてもよい。
 ガス吸着体60は、第1空間510内に配置される。具体的には、ガス吸着体60は、長尺状であり、第2パネル30の長さ方向の第2端側(図4における左端側)に、第2パネル30の幅方向に沿って形成されている。つまり、ガス吸着体60は、第1空間510(真空空間50)の端に配置される。このようにすれば、ガス吸着体60を目立たなくすることができる。また、ガス吸着体60は、仕切り420および通気路600から離れた位置にある。そのため、第1空間510の排気時に、ガス吸着体60が排気を妨げる可能性を低くできる。
 ガス吸着体60は、不要なガス(残留ガス等)を吸着するために用いられる。不要なガスは、たとえば、枠体410および仕切り420が加熱された際に、枠体410および仕切り420から放出されるガスである。
 ガス吸着体60は、ゲッタを有する。ゲッタは、所定の大きさより小さい分子を吸着する性質を有する材料である。ゲッタは、たとえば、蒸発型ゲッタである。蒸発型ゲッタは、所定温度(活性化温度)以上になると、吸着された分子を放出する性質を有している。そのため、蒸発型ゲッタの吸着能力が低下しても、蒸発型ゲッタを活性化温度以上に加熱することで、蒸発型ゲッタの吸着能力を回復させることができる。蒸発型ゲッタは、たとえば、ゼオライトまたはイオン交換されたゼオライト(たとえば、銅イオン交換されたゼオライト)である。
 ガス吸着体60は、このゲッタの粉体を備えている。具体的には、ガス吸着体60は、ゲッタの粉体が分散された溶液を塗布することにより形成される。この場合、ガス吸着体60を小さくできる。したがって、真空空間50が狭くてもガス吸着体60を配置できる。
 複数のピラー70は、第1パネル20と第2パネル30との間隔を所定間隔h(図1参照)に維持するために用いられる。つまり、複数のピラー70は、第1パネル20と第2パネル30との距離を所望の値に維持するためのスペーサとして機能する。
 複数のピラー70は、第1空間510内に配置されている。具体的には、複数のピラー70は、ピッチp(図12参照)を含む一定間隔の矩形(正方形または長方形)の格子の交差点に配置されている。第一実施形態では、正方形状の格子の交差点にピラー70が配置され、縦の一定間隔および横の一定間隔はともにピッチpに等しい。なお、縦の一定間隔がピッチpに等しくかつ横の一定間隔がピッチpよりも若干長いかまたは若干短くてもよい。また、横の一定間隔がピッチpに等しくかつ縦の一定間隔がピッチpよりも若干長いかまたは若干短くてもよい。
 ピラー70は、透明な材料を用いて形成される。ただし、各ピラー70は、十分に小さければ、不透明な材料を用いて形成されていてもよい。ピラー70の材料は、後述する第1溶融工程、排気工程、第2溶融工程において、ピラー70が変形しないように選択される。たとえば、ピラー70の材料は、第1熱接着剤の第1軟化点および第2熱接着剤の第2軟化点よりも高い軟化点(軟化温度)を有するように選択される。
 第一実施形態では、ピラー70の間隔に特徴を有するもので、以下に説明する。
 図12に示すように、ピラー70がピッチp(m)の矩形状の格子の交差点に配置されている。このうち、中央のピッチpの正方形の頂点に位置する四個のピラー701が破壊される場合につき考える。この四個のピラー701を囲む12個のピラー70を結ぶ、正方形702(長さa=3・p)の四辺を固定した場合の第1パネル20または第2パネル30の中央部(図中の×の位置)の撓みをδ(m)とすると、撓みδは[数1]のように表される。
Figure JPOXMLDOC01-appb-M000001
 P(N)は荷重で、D(N・m)は第1パネル20および第2パネル30の曲げ剛性である。αは荷重の条件により決まる係数である。
 また、曲げ剛性Dは、[数2]のように表される。
Figure JPOXMLDOC01-appb-M000002
 Eg(Pa)は第1パネル20および第2パネル30のヤング率で、t(m)は上述した第1パネル20および第2パネル30の厚み、νは第1パネル20および第2パネル30のポアソン比である。
 荷重が集中荷重の場合には、α=α(=0.00560)であり、撓みδは[数3]のように表される。
Figure JPOXMLDOC01-appb-M000003
 また、荷重が等分布荷重の場合にはα=α(=0.00126)であり、このときの荷重Pは[数4]のように表される。
Figure JPOXMLDOC01-appb-M000004
 w(Pa)は圧力(大気圧)である。この等分布荷重の場合の撓みδは[数5]のように表される。
Figure JPOXMLDOC01-appb-M000005
 このとき、第1パネル20の撓みと第2パネル30の撓みを考え合わせた総撓みをδ(m)とすると、δは[数6]のように表される。
Figure JPOXMLDOC01-appb-M000006
 すなわち、集中荷重は第1パネル20のみにかかり、大気圧による等分布荷重は第1パネル20と第2パネル30の両方にかかるため、[数6]において撓みδに2をかけている。
 [数6]に[数3]と[数5]を代入して、[数7]が得られる。
Figure JPOXMLDOC01-appb-M000007
 ここで、ピラー70の1個あたりの圧縮破壊荷重をP(N)とする。また、ピラー70が1個あたりで支持している大気圧は、w・pで表される。このため、ピラー70の1個あたりの圧縮破壊荷重に至るまでの余裕分を実質圧縮破壊荷重P(N)とすると、Pは[数8]のように表される。
Figure JPOXMLDOC01-appb-M000008
 第1パネル20のみにかかる集中荷重Pを4個のピラー70の実質圧縮破壊荷重Pとし、また、a=3・pなる関係を[数7]に代入すると、4個のピラー70が破壊される理論上の最小の集中荷重がかかったときの撓みδとして[数9]が得られる。
Figure JPOXMLDOC01-appb-M000009
 [数9]を整理すると、[数10]が得られる。
Figure JPOXMLDOC01-appb-M000010
 [数10]に、α=0.00560、α=0.00126を代入すると、[数11]が得られる。
Figure JPOXMLDOC01-appb-M000011
 0.2016・P≫0.00252・w・pの場合、0.00252・w・pは実質無視できるため、[数11]の近似式として、[数12]が得られる。
Figure JPOXMLDOC01-appb-M000012
 [数12]は長さa(m)の矩形の四辺を固定したモデルでの式であり、実際にはピラー70は離散的に配置されているため、[数12]を補正係数Kにより補正した[数13]が得られる。
Figure JPOXMLDOC01-appb-M000013
 補正係数Kは、実験から、1.15≦K≦1.71が得られている。K=1.15を代入して、[数14]が得られる。
Figure JPOXMLDOC01-appb-M000014
 第1パネル20の撓みと第2パネル30の撓みを考え合わせた総撓みδが、第1パネル20と第2パネル30の間隔hよりも小さければ、第1パネル20と撓みと第2パネル30とが接触することがない。このため、[数15]で表される関係を満たすときには、4個のピラー70が破壊される理論上の最小の集中荷重がかかっても、第1パネル20と撓みと第2パネル30とが接触しない。
Figure JPOXMLDOC01-appb-M000015
 このため、[数15]を満たす場合、4個のピラー70が破壊される理論上の最小の集中荷重がかかっても、第1パネル20と撓みと第2パネル30とが接触することによる第1パネル20または第2パネル30の破損が生じにくい。
 この[数15]の有効性を確認する実験1~3を行った。
 実験1~3では、図13Bに示すように、227gの鋼球82を第1パネル20のピラー70とピラー70の間の中間点に落下させ、このときに第1パネル20または第2パネル30の破壊が発生する最小の高さ(落球破壊高さ)を測っている。この落球破壊高さの平均値により、評価を行っている。すなわち、落球破壊高さが高い方が、耐衝撃性が高いといえる。
 実験1および比較実験11~15における実験条件、落球破壊高さおよび判別式の値を表1に示す。
 判別式は、[数15]の左辺である。
 また、ピラー70の高さは、第1パネル20と第2パネル30の間隔hに等しい。
 また、表中のガラスパネルとは、第1パネル20および第2パネル30を指すものとし、第1パネル20と第2パネル30とは、各物理量が同一とみなせる。
Figure JPOXMLDOC01-appb-T000016
 実験1では、判別式の値が40と0を大きく超えており、落球破壊高さが45(cm)となり、結果は良好であった。
 これに対し、比較実験11、比較実験14、比較実験15では判別式の値が負となり、[数15]を満たしておらず、落球破壊高さも実験1の45(cm)に遠く及ばなかった。また、比較実験12では、判別式の値が16と0を少し超えているが、落球破壊高さは12.5(cm)で実験1の結果に遠く及ばなかった。比較実験13では、判別式の値が66と0を大きく超えているが、落球破壊高さは15(cm)で実験1の結果に遠く及ばなかった。
 比較実験11~比較実験13では、ピラー70の材質がSUS304である。そして、比較実験11~比較実験13では、第1パネル20または第2パネル30の破損は、第1パネル20と第2パネル30の接触によるものではなく、ピラー70が設けられた部分での第1パネル20または第2パネル30の破損となっており、破損のメカニズムが異なると考えられる。すなわち、[数15]は、SUS304からなるピラー70に適用するには不適であり、樹脂からなるピラー70の場合に特に有効であると考えられる。
 次に、実験2および比較実験21~23における実験条件、落球破壊高さおよび判別式の値を表2に示す。
Figure JPOXMLDOC01-appb-T000017
 実験2では、判別式の値が48と0を大きく超えており、落球破壊高さが37.5(cm)となり、結果は良好であった。
 これに対し、比較実験21、比較実験23では判別式の値が負となり、[数15]を満たしておらず、落球破壊高さも実験2の37.5(cm)に及ばない。また、比較実験22では、判別式の値が16と0を少し超えているが、落球破壊高さは実験2の37.5(cm)に及ばなかった。
 次に、実験3および比較実験31~33における実験条件、落球破壊高さおよび判別式の値を表3に示す。
Figure JPOXMLDOC01-appb-T000018
 実験3では、判別式の値が41と0を大きく超えており、落球破壊高さが50(cm)となり、結果は良好であった。
 これに対し、比較実験31、比較実験33では判別式の値が負となり、[数15]を満たしておらず、落球破壊高さは実験3の50(cm)に及ばなかった。また、比較実験32では、判別式の値が16と0を少し超えているが、落球破壊高さは実験3の50(cm)に及ばなかった。
 次に、さらに精度を上げた式について説明する。これは、4個のピラー70が破壊される理論上の最小の集中荷重がかかった場合に、4個のピラー70を取り巻く周囲の12個のピラー70の弾性変形を考慮したものである。4個のピラー70が破壊される理論上の最小の集中荷重と、この4個のピラー70が支持していた大気圧による等分布荷重を、この12個のピラー70に分散させた際の変形量(圧縮量)をδsq(m)とすると、δsqは[数16]のように表される。
Figure JPOXMLDOC01-appb-M000019
 Esp(Pa)はピラー70のヤング率、r(m)はピラー70の半径、πは円周率である。
 これに、[数9]の関係を代入してまとめると、[数17]が得られる。
Figure JPOXMLDOC01-appb-M000020
 [数15]の左辺よりδsqを引くと、[数18]が得られる
Figure JPOXMLDOC01-appb-M000021
 なお、[数18]中のπ・rはピラー70の断面積S(m)を意味し、ピラー70が円形でない場合は単に断面積Sを代入すればよい。
 このような仮組立て品100は、ガラスパネルユニット(完成品)10を得るために、上記所定の処理に供される。
 上記所定の処理では、所定温度(排気温度)Te(図7参照)で、通気路600、第2空間520、および排気口700からなる外部空間に排気可能な排気経路を介して第1空間510を排気して第1空間510を真空空間50とする。排気温度Teは、ガス吸着体60のゲッタの活性化温度より高くしている。これによって、第1空間510の排気とゲッタの吸着能力の回復とが同時に行える。
 また、上記所定の処理では、図2に示されるように、仕切り420を変形させて、通気路600を塞ぐ隔壁42を形成することで、真空空間50を囲むシール40を形成する。仕切り420は、第2熱接着剤を含んでいるから、第2軟化点以上の所定温度(第2溶融温度)Tm2(図7参照)で第2熱接着剤を一旦溶融させることで、仕切り420を変形させて隔壁42を形成することができる。なお、第1溶融温度Tm1は、第2溶融温度Tm2より低くしている。これによって、枠体410で第1パネル20と第2パネル30とを接合する際に、仕切り420が変形して通気路600が塞がれることを防止できる。
 仕切り420は、図2に示されるように、通気路600を塞ぐように、変形される。このようにして仕切り420を変形することで得られた隔壁42は、真空空間50を第2空間520から(空間的に)分離する。隔壁(第2部分)42と枠体410において真空空間50に対応する部分(第1部分)41とが、真空空間50を囲むシール40を構成する。
 このようにして得られるガラスパネルユニット(完成品)10は、図2に示されるように、第1パネル20と、第2パネル30と、シール40と、真空空間50と、第2空間520と、ガス吸着体60と、複数のピラー70と、閉塞部材80と、を備える。
 真空空間50は、上述したように、第2空間520、および排気口700を介して第1空間510を排気することで形成される。換言すれば、真空空間50は、真空度が所定値以下の第1空間510である。所定値は、たとえば、0.1Paである。真空空間50は、第1パネル20と第2パネル30とシール40とで完全に密閉されているから、第2空間520および排気口700から分離されている。
 シール40は、真空空間50を完全に囲むとともに、第1パネル20と第2パネル30とを気密に接合する。シール40は、枠状であり、第1部分41と、第2部分42と、を有する。第1部分41は、枠体410において真空空間50に対応する部分である。つまり、第1部分41は、枠体410において真空空間50に面している部分である。第2部分42は、仕切り420を変形することで得られる隔壁である。
 閉塞部材80は、排気口700より第2空間520内に、ごみ等の物体が侵入しにくくするものである。第一実施形態では、閉塞部材80は、第1パネル20または第2パネル30の排気口700の表側に設けられるカバー81である。
 このような閉塞部材80が排気口700に設けられることにより、排気口700より第2空間520内に、ごみ等の物体が侵入しにくくなる。これにより、ごみ等の物体が排気口700内または第2空間520内に侵入してガラスパネルユニット10の見栄えが悪くなるのが抑制される。なお、このような閉塞部材80は設けられなくてもよい。
 次に、第一実施形態のガラスパネルユニット10の製造方法について、図5~図8を参照して説明する。
 第一実施形態のガラスパネルユニット10の製造方法は、準備工程と、組立工程と、密閉工程と、除去工程と、を有する。なお、準備工程は、省略してよい。
 準備工程は、仮組立て品100を得るために、第1パネル20、第2パネル30、枠体410、仕切り420、内部空間500、通気路600、排気口700、およびガス吸着体60を形成する工程である。準備工程は、第1~第6工程を有する。なお、第2~第6工程の順番は、適宜変更してもよい。
 第1工程は、第1パネル20および第2パネル30を形成する工程(基板形成工程)である。たとえば、第1工程では、第1パネル20および第2パネル30を作製する。また、第1工程では、必要に応じて、第1パネル20および第2パネル30を洗浄する。
 第2工程は、排気口700を形成する工程である。第2工程では、第2パネル30に、排気口700を形成する。また、第2工程では、必要に応じて、第2パネル30を洗浄する。
 第3工程は、枠体410および仕切り420を形成する工程(シール材形成工程)である。第3工程では、ディスペンサなどを利用して、枠体410の材料(第1熱接着剤)および仕切り420の材料(第2熱接着剤)を第2パネル30(第2ガラス板31の第1面)上に塗布する。
 枠体410の材料および仕切り420の材料を乾燥させるとともに、仮焼成する。たとえば、枠体410の材料および仕切り420の材料が塗布された第2パネル30を加熱する。なお、第1パネル20を第2パネル30と一緒に加熱してもよい。つまり、第1パネル20を第2パネル30と同じ条件で加熱してもよい。これにより、第1パネル20と第2パネル30との反りの差を低減できる。
 第4工程は、ピラー70を形成する工程(ピラー形成工程)である。第4工程では、複数のピラー70を予め形成しておき、チップマウンタなどを利用して、複数のピラー70を、第2パネル30の所定位置に配置する。なお、複数のピラー70は、フォトリソグラフィ技術およびエッチング技術を利用して形成されていてもよい。この場合、複数のピラー70は、光硬化性材料などを用いて形成される。あるいは、複数のピラー70は、周知の薄膜形成技術を利用して形成されていてもよい。
 このピラー形成工程において、上述した[数15]または[数18]を満たすように、ピラー70が配置される。上述したが、[数15]はピラー70の弾性変形を考慮しない場合、[数18]はピラー70の弾性変形を考慮する場合の式である。
 第5工程は、ガス吸着体60を形成する工程(ガス吸着体形成工程)である。第5工程では、ゲッタの粉体が分散された溶液を第2パネル30の所定位置に塗布し、乾燥させることで、ガス吸着体60を形成する。
 第1工程から第5工程が終了することで、図5に示されるような、枠体410、仕切り420、通気路600、排気口700、ガス吸着体60、複数のピラー70が形成された第2パネル30が得られる。
 第6工程は、第1パネル20と第2パネル30とを配置する工程(配置工程)である。図6に示されるように、第6工程では、第1パネル20と第2パネル30とは、第1ガラス板21の第1面と第2ガラス板31の第1面とが互いに平行かつ対向するように配置して、重ね合わせられる。
 組立工程は、仮組立て品100を用意する工程である。具体的には、組立工程では、第1パネル20と第2パネル30とを接合することで、仮組立て品100を用意する。つまり、組立工程は、第1パネル20と第2パネル30とを枠体410により気密に接合する工程(第1溶融工程)である。
 第1溶融工程では、第1軟化点以上の所定温度(第1溶融温度)Tm1で第1熱接着剤を一旦溶融させることで、第1パネル20と第2パネル30とを気密に接合する。具体的には、第1パネル20および第2パネル30は、溶融炉内に配置され、図7に示されるように、第1溶融温度Tm1で所定時間(第1溶融時間)tm1だけ加熱される。
 第1溶融温度Tm1および第1溶融時間tm1は、枠体410の熱接着剤によって第1パネル20と第2パネル30とが気密に接合されるが、仕切り420によって通気路600が塞がれることがないように、設定される。つまり、第1溶融温度Tm1の下限は、第1軟化点であるが、第1溶融温度Tm1の上限は、仕切り420によって通気路600が塞がれることがないように設定される。たとえば、第1軟化点および第2軟化点が434℃である場合、第1溶融温度Tm1は、440℃に設定される。また、第1溶融時間tm1は、たとえば、10分である。なお、第1溶融工程では、枠体410からガスが放出されるが、このガスはガス吸着体60によって吸着される。
 上述した組立工程(第1溶融工程)によって、図8に示される仮組立て品100が得られる。
 密閉工程は、仮組立て品100に上記所定の処理を行ってガラスパネルユニット(完成品)10を得る工程である。密閉工程は、排気工程と、溶融工程(第2溶融工程)と、を有する。つまり、排気工程および第2溶融工程が上記所定の処理に相当する。
 排気工程は、所定温度(排気温度)Teで、第1空間510を、通気路600と第2空間520と排気口700とを介して排気して真空空間50とする工程である。
 排気は、たとえば、真空ポンプを用いて行われる。真空ポンプは、図8に示されるように、排気管810と、シールヘッド820と、により仮組立て品100に接続される。排気管810は、たとえば、排気管810の内部と排気口700とが連通するように第2パネル30に接合される。そして、排気管810にシールヘッド820が取り付けられ、これによって、真空ポンプの吸気口が排気口700に接続される。
 第1溶融工程と排気工程と第2溶融工程とは、第1パネル20および第2パネル30(枠体410、仕切り420、通気路600、排気口700、ガス吸着体60、複数のピラー70が形成された第2パネル30)を溶融炉内に配置したまま行われる。そのため、排気管810は、少なくとも第1溶融工程の前に、第2パネル30に接合される。
 排気工程では、排気温度Teで所定時間(排気時間)teだけ、通気路600と第2空間520と排気口700とを介して第1空間510を排気する(図7参照)。
 排気温度Teは、ガス吸着体60のゲッタの活性化温度(たとえば、350℃)より高く、かつ、第1軟化点および第2軟化点(たとえば、434℃)より低く設定される。たとえば、排気温度Teは、390℃である。
 このようにすれば、枠体410および仕切り420は変形しない。また、ガス吸着体60のゲッタが活性化し、ゲッタが吸着していた分子(ガス)がゲッタから放出される。そして、ゲッタから放出された分子(つまりガス)は、第1空間510、通気路600、第2空間520、および、排気口700を通じて排出される。したがって、排気工程では、ガス吸着体60の吸着能力が回復する。
 排気時間teは、所望の真空度(たとえば、0.1Pa以下の真空度)の真空空間50が得られるように設定される。たとえば、排気時間teは、120分に設定される。
 なお、真空空間50の真空度は特に限定されない。また、真空空間50の代わりに、0.5気圧等、少なくとも1気圧より低い圧力で気体が封入されている減圧空間が形成されてもよい。
 第2溶融工程は、仕切り420を変形させて、通気路600を塞ぐ隔壁42を形成することで、真空空間50を囲むシール40を形成する工程である。第2溶融工程では、第2軟化点以上の所定温度(第2溶融温度)Tm2で第2熱接着剤を一旦溶融させることで、仕切り420を変形させて隔壁42を形成する。具体的には、第1パネル20および第2パネル30は、溶融炉内で、第2溶融温度Tm2で所定時間(第2溶融時間)tm2だけ加熱される(図7参照)。
 第2溶融温度Tm2および第2溶融時間tm2は、第2熱接着剤が軟化し、通気路600を塞ぐ隔壁42が形成されるように設定される。第2溶融温度Tm2の下限は、第2軟化点(434℃)である。ただし、第2溶融工程では、第1溶融工程とは異なり、仕切り420を変形させることを目的としているから、第2溶融温度Tm2は、第1溶融温度(440℃)Tm1より高くしている。たとえば、第2溶融温度Tm2は、460℃に設定される。また、第2溶融時間tm2は、たとえば、30分である。
 なお、第一実施形態では、排気は第2溶融工程の前の排気工程でのみ排気が行われているが、第2溶融工程において排気が行われてもよい。
 また、第2溶融工程では、排気工程から継続して、通気路600と第2空間520と排気口700とを介して第1空間510を排気する。つまり、第2溶融工程では、第2溶融温度Tm2で、通気路600と第2空間520と排気口700とを介して第1空間510を排気しながら、仕切り420を変形させて通気路600を塞ぐ隔壁42を形成する。これによって、第2溶融工程中に、真空空間50の真空度が悪化することがさらに防止される。ただし、第2溶融工程では、必ずしも、通気路600と第2空間520と排気口700とを介して第1空間510を排気する必要はない。
 上述した、準備工程、組立工程、密閉工程、および除去工程を経て、ガラスパネルユニット10が得られる。
 第一実施形態においては、上述した[数15]または[数18]の判別式を満たすように、ガラスパネルユニット10にピラー70が配置される。上述したが、[数15]の判別式はピラー70の弾性変形を考慮しない場合、[数18]の判別式はピラー70の弾性変形を考慮する場合の判別式である。
 ガラスパネルユニット10の各種要素が判別式を満たす場合、4個のピラー70が破壊される理論上の最小の集中荷重がかかっても、第1パネル20と撓みと第2パネル30とが接触することによる第1パネル20または第2パネル30の破損が生じにくい。
 次に、第二実施形態のガラスパネルユニット10について図9、図10に基いて説明する。なお、第二実施形態に係るガラスパネルユニット10は、第一実施形態において追加の構成を有するものである。
 第二実施形態におけるガラスパネルユニット10は、第2パネル30と対向するように配置される第3パネル90を備える。なお、第二実施形態においては、第3パネル90は、便宜上、第2パネル30と対向しているが、第1パネル20と対向してもよい。
 第3パネル90は、第3ガラス板91を備える。第3パネル90が備える第3ガラス板91は、平坦な表面を有し、所定の厚みを有する。第二実施形態では、第3ガラス板91により第3パネル90が構成される。
 なお、第3パネル90は、いずれかの表面にコーティングを備えていてもよい。コーティングは、赤外線反射膜等の所望の物理特性を有する膜である。この場合には、第3パネル90が第3ガラス板91およびコーティングにより構成される。要するに、第3パネル90は、少なくとも第3ガラス板91により構成される。
 さらに、ガラスパネルユニット10は、第2パネル30と第3パネル90との間に配置されて第2パネル30と第3パネル90とを気密に接合する第2シール43を備える。なお、この場合、シール40が第1シールとなる。第2シール43は、第2パネル30の周縁部と第3パネル90の周縁部との間に環状に配置されている。第2シール43は、シール40と同様の材質からなるものであってもよいし、異なる材質からなるものであってもよい。
 ガラスパネルユニット10は、第2パネル30と第3パネル90と第2シール43とで密閉され、乾燥ガスが封入された第2内部空間540を備える。なお、この場合、内部空間500が第1内部空間となる。乾燥ガスとしては、アルゴン等の乾燥した希ガス、乾燥空気等が用いられるが、特に限定されない。
 また、第2パネル30の周縁部と第3パネル90の周縁部との間の第2シール43の内側には、中空の枠部材92が環状に配置されている。枠部材92には、第2内部空間540に通じる貫通孔921が形成されており、内部にたとえばシリカゲル等の乾燥剤93が収容されている。
 また、第2パネル30と第3パネル90との接合は、第1パネル20と第2パネル30との接合と同様の要領で行うことが可能であり、一例について以下に説明する。
 まず、後に第3パネル90と、第1パネル20および第2パネル30を有する組立品(第一実施形態におけるガラスパネルユニット10)とを準備する。
 後に第2シール43となる第2熱接着剤が、第3パネル90または第2パネル30の表面の周縁部に枠状に配置される(第2熱接着剤配置工程)。熱接着剤は、枠体410となる熱接着剤(第1熱接着剤)と同様の材質からなるものであってもよいし、異なる材質からなるものであってもよい。さらにこの工程では、熱接着剤に、第2内部空間540と外部空間とを通じさせる貫通孔からなる通気路(第2通気路)形成される。
 次に、第3パネル90と、第2パネル30とを対向配置させる(第3パネル対向配置工程)。
 次に、第2シール43となる熱接着剤が溶融する温度まで温度を上昇させて熱接着剤を一旦溶融させることで、一旦溶融させることで、第2パネル30と第3パネル90ととが第2シール43によって気密に接合される(接合工程)。なお、このとき、第2通気路は完全に塞がれないようにする。
 次に、第2通気路を介して第2内部空間540に乾燥ガスを流入させる(乾燥ガス流入工程)。この工程では、第2内部空間540内を乾燥ガスのみで満たしてもよいし、空気が残ってもよい。
 次に、第2シール43を加熱して第2通気路を塞いで第2内部空間540を封止する(第2空間封止工程)。
 以上のようにして、ガラスパネルユニット10が形成される。第二実施形態のガラスパネルユニット10によれば、より一層の断熱性が得られる。
 次に、第三実施形態について図11に基いて説明する。なお、第三実施形態は、第一実施形態、第二実施形態のガラスパネルユニット10を用いてガラス窓95を構成したものである。
 第三実施形態では、第一実施形態、第二実施形態のいずれかにおけるのと同様のガラスパネルユニット10が用いられ、このガラスパネルユニット10の周縁部の外側に断面U字状をした窓枠96が嵌め込まれてガラス窓95が構成される。
 第三実施形態のガラス窓95によれば、より一層の断熱性が得られる。
 上記実施形態(すなわち第一実施形態~第三実施形態で、以下同じ)、ガラスパネルユニット10は矩形状であるが、ガラスパネルユニット10は、円形状や多角形状など所望の形状であってもよい。つまり、第1パネル20、第2パネル30、およびシール40は、矩形状ではなく、円形状や多角形状など所望の形状であってもよい。なお、第1パネル20、第2パネル30、枠体410、および、隔壁42のそれぞれの形状は、上記実施形態の形状に限定されず、所望の形状のガラスパネルユニット10が得られるような形状であればよい。なお、ガラスパネルユニット10の形状や大きさは、ガラスパネルユニット10の用途に応じて決定される。
 また、第1パネル20の第1ガラス板21の第1面および第2面はいずれも平面に限定されない。同様に、第2パネル30の第2ガラス板31の第1面および第2面はいずれも平面に限定されない。
 また、第1パネル20の第1ガラス板21と第2パネル30の第2ガラス板31とは同じ平面形状および平面サイズを有していなくてもよい。また、第1ガラス板21と第2ガラス板31とは同じ厚みを有していなくてもよい。また、第1ガラス板21と第2ガラス板31とは同じ材料で形成されていなくてもよい。同様に、第1パネル20の第1ガラス板21と第2パネル30の第2ガラス板31とは同じ平面形状および平面サイズを有していなくてもよい。また、第1ガラス板21と第2ガラス板31とは同じ厚みを有していなくてもよい。第1ガラス板21と第2ガラス板31とは同じ材料で形成されていなくてもよい。
 また、シール40は、第1パネル20および第2パネル30と同じ平面形状を有していなくてもよい。同様に、枠体410は、第1パネル20および第2パネル30と同じ平面形状を有していなくてもよい。
 また、第1パネル20は、さらに、所望の物理特性を有して第1ガラス板21の第2平面に形成されるコーティングを備えていてもよい。あるいは、第1パネル20は、コーティング22を備えていなくてもよい。つまり、第1パネル20は、第1ガラス板21のみで構成されていてもよい。
 また、第2パネル30は、さらに、所望の物理特性を有するコーティングを備えていてもよい。コーティングは、たとえば、第2ガラス板31の第1平面および第2平面にそれぞれ形成される薄膜の少なくとも一方を備えていればよい。コーティングは、たとえば、特定波長の光を反射する膜赤外線反射膜、紫外線反射膜などである。
 上記実施形態では、枠体410は、第1熱接着剤で形成されている。ただし、枠体410は、第1熱接着剤に加えて、芯材等の他の要素を備えていてもよい。つまり、枠体410は、第1熱接着剤を含んでいればよい。また、上記実施形態では、枠体410は、第2パネル30のほぼすべての領域を囲うように形成されている。しかしながら、枠体410は、第2パネル30上の所定の領域を囲うように形成されていればよい。つまり、枠体410は、第2パネル30のほぼすべての領域を囲うように形成されている必要はない。
 上記実施形態では、仕切り420は、第2熱接着剤で形成されている。ただし、仕切り420は、第2熱接着剤に加えて、芯材等の他の要素を備えていてもよい。つまり、仕切り420は、第2熱接着剤を含んでいればよい。
 上記実施形態では、内部空間500は、一つの第1空間510と一つの第2空間520とに仕切られている。ただし、内部空間500は、1以上の第1空間510と1以上の第2空間520とに仕切られていてもよい。
 上記実施形態では、第2熱接着剤は、第1熱接着剤と同じであり、第2軟化点と第1軟化点は等しい。ただし、第2熱接着剤は、第1熱接着剤と異なる材料であってもよい。たとえば、第2熱接着剤は、第1熱接着剤の第1軟化点と異なる第2軟化点を有していてもよい。ここで、第2軟化点は、第1軟化点より高いことが好ましい。この場合、第1溶融温度Tm1を、第1軟化点以上第2軟化点未満とすることができる。このようにすれば、第1溶融工程において、仕切り420が変形してしまうことを防止できる。
 また、第1接着剤および第2熱接着剤は、ガラスフリットに限定されず、たとえば、低融点金属や、ホットメルト接着材などであってもよい。
 上記実施形態では、枠体410、ガス吸着体60、および仕切り420の加熱に溶融炉を利用している。しかしながら、加熱は、適宜の加熱手段で行うことができる。加熱手段は、たとえば、レーザや、熱源に接続された伝熱板などである。
 上記実施形態では、排気口700は、第2パネル30に形成されている。しかし、排気口700は、第1パネル20の第1ガラス板21に形成されていてもよいし、枠体410に形成されていてもよい。
 以上述べた第一実施形態~第三実施形態から明らかなように、本発明に係る第1の態様のガラスパネルユニット10は、少なくとも第1ガラス板21により構成される第1パネル20と、第1パネル20と所定の間隔hをあけて対向するように配置される、少なくとも第2ガラス板31により構成される第2パネル30と、を備える。
 ガラスパネルユニット10は、第1パネル20と第2パネル30との間に配置されて第1パネル20と第2パネル30とを気密に接合するシール40と、第1パネル20と第2パネル30とシール40とで密閉されて減圧空間となる内部空間50と、を備える。
 ガラスパネルユニット10は、内部空間50内に第1パネル20と第2パネル30とに接触するように、所定のピッチpを含む一定間隔の矩形状の格子の交差点に配置される樹脂からなる複数のピラー70を備える。
 ピラー70は、所定のピッチpと、第1パネル20と第2パネル30の間隔hと、ピラーの1個あたりの圧縮破壊荷重Pと、第1パネル20および第2パネル30のヤング率Egと、第1パネル20および第2パネル30の厚みtと、第1パネル20および第2パネル30のポアソン比νと、を用いて求められる第1パネル20および第2パネル30の撓みδが、第1パネル20と第2パネル30の間隔hよりも小さくなるように、所定のピッチpが決められている。
 第1の態様のガラスパネルユニット10によれば、第1パネル20と第2パネル30とが接触することによる第1パネル20または第2パネル30の破損が生じにくい。
 本発明に係る第2の態様のガラスパネルユニット10では、第1の態様との組み合わせにより実現される。第2の態様では、ピラー70は、所定のピッチpと、第1パネル20と第2パネル30の間隔hと、ピラー70の1個あたりの圧縮破壊荷重Pと、第1パネル20および第2パネル30のヤング率Egと、第1パネル20および第2パネル30の厚みtと、第1パネル20および第2パネル30のポアソン比νとに加えて、ピラー70のヤング率Espと、ピラー70の断面積Sと、を用いて求められる第1パネル20および第2パネル30の撓みδが、第1パネル20と第2パネル30の間隔hよりも小さくなるように、所定のピッチpが決められている。
 第2の態様のガラスパネルユニット10によれば、第1パネル20と第2パネル30とが接触することによる第1パネル20または第2パネル30の破損がより一層生じにくい。
 本発明に係る第3の態様のガラスパネルユニット10では、第1の態様との組み合わせにより実現される。第3の態様では、ピラー70は、所定のピッチをp(m)、第1パネル20と第2パネル30の間隔をh(m)、ピラー70の1個あたりの圧縮破壊荷重をP(N)、第1パネル20および第2パネル30のヤング率をEg(Pa)、第1パネル20および第2パネル30の厚みをt(m)、第1パネル20および第2パネル30のポアソン比をνとしたとき、
h-0.232・P・p/(Eg・t/(12・(1-ν)))>0
を満たすように配置されている。
 第3の態様のガラスパネルユニット10によれば、第1パネル20と第2パネル30とが接触することによる第1パネル20または第2パネル30の破損がより一層生じにくい。
 本発明に係る第4の態様のガラスパネルユニット10では、第2の態様との組み合わせにより実現される。第4の態様では、ピラー70は、所定のピッチをp(m)、第1パネル20と第2パネル30の間隔をh(m)、ピラー70の1個あたりの圧縮破壊荷重をP(N)、第1パネル20および第2パネル30のヤング率をEg(Pa)、第1パネル20および第2パネル30の厚みをt(m)、第1パネル20および第2パネル30のポアソン比をν、ピラー70のヤング率をEsp(Pa)、ピラー70の断面積をS(m)としたとき、
h-0.232・P・p/(Eg・t/(12・(1-ν)))-P/(3・Esp・S)>0を満たすように配置されている。
 第4の態様のガラスパネルユニット10によれば、第1パネル20と第2パネル30とが接触することによる第1パネル20または第2パネル30の破損がより一層生じにくい。
 本発明に係る第5の態様のガラスパネルユニット10では、第1~4のいずれかの態様との組み合わせにより実現される。第5の態様では、ガラスパネルユニット10は、第2パネル30と対向するように配置される、少なくとも第3ガラス板91により構成される第3パネル90を備える。
 ガラスパネルユニット10は、第2パネル30と第3パネル90との間に配置されて第2パネル30と第3パネル90とを気密に接合する第2シール43を備える。
 ガラスパネルユニット10は、第2パネル30と第3パネル90と第2シール43とで密閉され、乾燥ガスが封入された第2内部空間540をさらに備える。
 第5の態様のガラスパネルユニット10によれば、より一層の断熱性が得られる。
 本発明に係る第6の態様のガラス窓95は、第1~第5のいずれかの態様のガラスパネルユニット10と、ガラスパネルユニット10の周縁部に嵌め込まれた窓枠96と、を備える。
 第4の態様のガラス窓95によれば、より一層の断熱性が得られる。
 本発明に係る第7の態様のガラスパネルユニット10の製造方法は、接着剤配置工程と、ピラー配置工程と、対向配置工程と、内部空間形成工程と、減圧工程と、減圧空間形成工程と、を備える。
 接着剤配置工程は、少なくとも第1ガラス板21からなる第1パネル20の上に枠状に熱接着剤を配置する工程である。
 ピラー配置工程は、第1パネル20の上に所定のピッチpを含む一定間隔の矩形状の格子の交差点に樹脂からなる複数のピラー70を配置する工程である。
 対向配置工程は、第1パネル20に対向させて、少なくとも第2ガラス板31からなる第2パネル30を配置する工程である。
 内部空間形成工程は、第1パネル20と第2パネル30と熱接着剤とを含むガラス複合物を加熱して、熱接着剤を溶融させ、外部空間に排気可能な排気経路を除いて第1パネル20と第2パネル30と熱接着剤の溶融物とで囲まれた内部空間(真空空間50)を形成する工程である。
 減圧工程は、内部空間の気体を排出して内部空間を減圧する工程である。
 減圧空間形成工程は、減圧した状態を維持したまま内部空間を封止し、密閉された減圧空間を形成する工程である。
 ピラー70は、所定のピッチpと、第1パネル20と第2パネル30の間隔hと、ピラーの1個あたりの圧縮破壊荷重Pと、第1パネル20および第2パネル30のヤング率Egと、第1パネル20および第2パネル30の厚みtと、第1パネル20および第2パネル30のポアソン比νと、を用いて求められる第1パネル20および第2パネル30の撓みδが、第1パネル20と第2パネル30の間隔hよりも小さくなるように、所定のピッチpが決められる。
 第7の態様のガラスパネルユニット10によれば、第1パネル20と第2パネル30とが接触することによる第1パネル20または第2パネル30の破損が生じにくい。
 本発明に係る第8の態様のガラスパネルユニット10では、第7の態様との組み合わせにより実現される。第8の態様では、ピラー70は、所定のピッチpと、第1パネル20と第2パネル30の間隔hと、ピラーの1個あたりの圧縮破壊荷重Pと、第1パネル20および第2パネル30のヤング率Egと、第1パネル20および第2パネル30の厚みtと、第1パネル20および第2パネル30のポアソン比νとに加えて、ピラー70のヤング率Espと、ピラー70の断面積Sと、を用いて求められる第1パネル20および第2パネル30の撓みδが、第1パネル20と第2パネル30の間隔hよりも小さくなるように、所定のピッチpが決められる。
 第8の態様のガラスパネルユニット10によれば、第1パネル20と第2パネル30とが接触することによる第1パネル20または第2パネル30の破損がより一層生じにくい。
 本発明に係る第9の態様のガラスパネルユニット10では、第7の態様との組み合わせにより実現される。第9の態様では、ピラー70は、所定のピッチをp(m)、第1パネル20と第2パネル30の間隔をh(m)、ピラー70の1個あたりの圧縮破壊荷重をP(N)、第1パネル20および第2パネル30のヤング率をEg(Pa)、第1パネル20および第2パネル30の厚みをt(m)、第1パネル20および第2パネル30のポアソン比をνとしたとき、
h-0.232・P・p/(Eg・t/(12・(1-ν)))>0
を満たすように配置される。
 第9の態様のガラスパネルユニット10によれば、第1パネル20と第2パネル30とが接触することによる第1パネル20または第2パネル30の破損がより一層生じにくい。
 本発明に係る第10の態様のガラスパネルユニット10では、第8の態様との組み合わせにより実現される。第10の態様では、ピラー70は、所定のピッチをp(m)、第1パネル20と第2パネル30の間隔をh(m)、ピラー70の1個あたりの圧縮破壊荷重をP(N)、第1パネル20および第2パネル30のヤング率をEg(Pa)、第1パネル20および第2パネル30の厚みをt(m)、第1パネル20および第2パネル30のポアソン比をν、ピラー70のヤング率をEsp(Pa)、ピラー70の断面積をS(m)としたとき、
h-0.232・P・p/(Eg・t/(12・(1-ν)))-P/(3・Esp・S)>0を満たすように配置される。
 第10の態様のガラスパネルユニット10によれば、第1パネル20と第2パネル30とが接触することによる第1パネル20または第2パネル30の破損がより一層生じにくい。
 10 ガラスパネルユニット
 20 第1パネル
 21 第1ガラス板
 30 第2パネル
 31 第2ガラス板
 40 シール
 43 第2シール
 70 ピラー
 90 第3パネル
 91 第3ガラス板
 95 ガラス窓
 96 窓枠
 500 内部空間
 540 第2内部空間
 

Claims (10)

  1.  少なくとも第1ガラス板により構成される第1パネルと、
     前記第1パネルと所定の間隔をあけて対向するように配置される、少なくとも第2ガラス板により構成される第2パネルと、
     前記第1パネルと前記第2パネルとの間に配置されて前記第1パネルと前記第2パネルとを気密に接合するシールと、
     前記第1パネルと前記第2パネルと前記シールとで密閉されて減圧空間となる内部空間と、
     前記内部空間内に前記第1パネルと前記第2パネルとに接触するように所定のピッチを含む一定間隔の矩形状の格子の交差点に配置される樹脂からなる複数のピラーと、を備え、
     前記ピラーは、前記所定のピッチと、前記ピラーの1個あたりの圧縮破壊荷重と、前記第1パネルおよび前記第2パネルのヤング率と、前記第1パネルおよび前記第2パネルの厚みと、前記第1パネルおよび前記第2パネルのポアソン比と、を用いて求められる前記第1パネルおよび前記第2パネルの撓みが、前記第1パネルと前記第2パネルの間隔よりも小さくなるように、前記所定のピッチが決められている
    ことを特徴とするガラスパネルユニット。
  2.  前記ピラーは、前記所定のピッチと、前記ピラーの1個あたりの圧縮破壊荷重と、前記第1パネルおよび前記第2パネルのヤング率と、前記第1パネルおよび前記第2パネルの厚みと、前記第1パネルおよび前記第2パネルのポアソン比とに加えて、前記ピラーのヤング率と、前記ピラーの断面積と、を用いて求められる前記第1パネルおよび前記第2パネルの撓みが、前記第1パネルと前記第2パネルの間隔よりも小さくなるように、前記所定のピッチが決められている
    ことを特徴とする請求項1記載のガラスパネルユニット。
  3.  前記ピラーは、所定のピッチをp(m)、前記第1パネルと前記第2パネルの間隔をh(m)、前記ピラーの1個あたりの圧縮破壊荷重をP(N)、前記第1パネルおよび前記第2パネルのヤング率をEg(Pa)、前記第1パネルおよび前記第2パネルの厚みをt(m)、前記第1パネルおよび前記第2パネルのポアソン比をνとしたとき、
    h-0.232・P・p/(Eg・t/(12・(1-ν)))>0
    を満たすように配置されている
    ことを特徴とする請求項1記載のガラスパネルユニット。
  4.  前記ピラーは、所定のピッチをp(m)、前記第1パネルと前記第2パネルの間隔をh(m)、前記ピラーの1個あたりの圧縮破壊荷重をP(N)、前記第1パネルおよび前記第2パネルのヤング率をEg(Pa)、前記第1パネルおよび前記第2パネルの厚みをt(m)、前記第1パネルおよび前記第2パネルのポアソン比をν、前記ピラーのヤング率をEsp(Pa)、前記ピラーの断面積をS(m)としたとき、
    h-0.232・P・p/(Eg・t/(12・(1-ν)))-P/(3・Esp・S)>0
    を満たすように配置されている
    ことを特徴とする請求項2記載のガラスパネルユニット。
  5.  前記第2パネルと対向するように配置される、少なくとも第3ガラス板により構成される第3パネルと、
     前記第2パネルと前記第3パネルとの間に配置されて前記第2パネルと前記第3パネルとを気密に接合する第2シールと、
     前記第2パネルと前記第3パネルと前記第2シールとで密閉され、乾燥ガスが封入された第2内部空間と、をさらに備えることを特徴とする請求項1~4のいずれか一項に記載のガラスパネルユニット。
  6.  請求項1~5のいずれか一項に記載のガラスパネルユニットと、
     前記ガラスパネルユニットの周縁部に嵌め込まれた窓枠と、を備えることを特徴とするガラス窓。
  7.  少なくとも第1ガラス板からなる第1パネルの上に枠状に熱接着剤を配置する接着剤配置工程と、
     前記第1パネルの上に所定のピッチを含む一定間隔の矩形状の格子の交差点に樹脂からなる複数のピラーを配置するピラー配置工程と、
     前記第1パネルに対向させて、少なくとも第2ガラス板からなる第2パネルを配置する対向配置工程と、
     前記第1パネルと前記第2パネルと前記熱接着剤とを含むガラス複合物を加熱して、前記熱接着剤を溶融させ、外部空間に排気可能な排気経路を除いて前記第1パネルと前記第2パネルと前記熱接着剤の溶融物とで囲まれた内部空間を形成する内部空間形成工程と、
     前記内部空間の気体を排出して前記内部空間を減圧する減圧工程と、
     減圧した状態を維持したまま前記内部空間を封止し、密閉された減圧空間を形成する減圧空間形成工程と、
    を備え、
     前記ピラーは、前記所定のピッチと、前記ピラーの1個あたりの圧縮破壊荷重と、前記第1パネルおよび前記第2パネルのヤング率と、前記第1パネルおよび前記第2パネルの厚みと、前記第1パネルおよび前記第2パネルのポアソン比と、を用いて求められる前記第1パネルおよび前記第2パネルの撓みが、前記第1パネルと前記第2パネルの間隔よりも小さくなるように、前記所定のピッチが決められる
    ことを特徴とするガラスパネルユニットの製造方法。
  8.  前記ピラーは、前記所定のピッチと、前記ピラーの1個あたりの圧縮破壊荷重と、前記第1パネルおよび前記第2パネルのヤング率と、前記第1パネルおよび前記第2パネルの厚みと、前記第1パネルおよび前記第2パネルのポアソン比とに加えて、前記ピラーのヤング率と、前記ピラーの断面積と、を用いて求められる前記第1パネルおよび前記第2パネルの撓みが、前記第1パネルと前記第2パネルの間隔よりも小さくなるように、前記所定のピッチが決められる
    ことを特徴とする請求項7記載のガラスパネルユニットの製造方法。
  9.  前記ピラーは、所定のピッチをp(m)、前記第1パネルと前記第2パネルの間隔をh(m)、前記ピラーの1個あたりの圧縮破壊荷重をP(N)、前記第1パネルおよび前記第2パネルのヤング率をEg(Pa)、前記第1パネルおよび前記第2パネルの厚みをt(m)、前記第1パネルおよび前記第2パネルのポアソン比をνとしたとき、
    h-0.232・P・p/(Eg・t/(12・(1-ν)))>0
    を満たすように配置される
    ことを特徴とする請求項7記載のガラスパネルユニットの製造方法。
  10.  前記ピラーは、所定のピッチをp(m)、前記第1パネルと前記第2パネルの間隔をh(m)、前記ピラーの1個あたりの圧縮破壊荷重をP(N)、前記第1パネルおよび前記第2パネルのヤング率をEg(Pa)、前記第1パネルおよび前記第2パネルの厚みをt(m)、前記第1パネルおよび前記第2パネルのポアソン比をν、前記ピラーのヤング率をEsp(Pa)、前記ピラーの断面積をS(m)としたとき、
    h-0.232・P・p/(Eg・t/(12・(1-ν)))-P/(3・Esp・S)>0
    を満たすように配置される
    ことを特徴とする請求項8記載のガラスパネルユニットの製造方法。
PCT/JP2017/034669 2016-09-30 2017-09-26 ガラスパネルユニット、ガラス窓およびガラスパネルユニットの製造方法 WO2018062140A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018542578A JP6865391B2 (ja) 2016-09-30 2017-09-26 ガラスパネルユニット、ガラス窓およびガラスパネルユニットの製造方法
EP17856090.0A EP3521259B1 (en) 2016-09-30 2017-09-26 Glass panel unit, glass window, and method for manufacturing glass panel unit
US16/337,880 US11117831B2 (en) 2016-09-30 2017-09-26 Glass panel unit, glass window, and method for manufacturing glass panel unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016194690 2016-09-30
JP2016-194690 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018062140A1 true WO2018062140A1 (ja) 2018-04-05

Family

ID=61759731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034669 WO2018062140A1 (ja) 2016-09-30 2017-09-26 ガラスパネルユニット、ガラス窓およびガラスパネルユニットの製造方法

Country Status (4)

Country Link
US (1) US11117831B2 (ja)
EP (1) EP3521259B1 (ja)
JP (1) JP6865391B2 (ja)
WO (1) WO2018062140A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208017A1 (ja) * 2018-04-27 2019-10-31 パナソニックIpマネジメント株式会社 ガラスパネルユニット及びガラス窓
WO2020003793A1 (ja) * 2018-06-28 2020-01-02 パナソニックIpマネジメント株式会社 ピラー供給方法、ガラスパネルユニットの製造方法、及びピラー供給装置
WO2020203012A1 (ja) * 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 ガラスパネルユニット及びガラス窓
WO2020209371A1 (ja) * 2019-04-10 2020-10-15 日本板硝子株式会社 ガラスユニット
JP7660442B2 (ja) 2021-06-11 2025-04-11 パナソニックホールディングス株式会社 複層ガラス

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102731789B1 (ko) * 2018-11-08 2024-11-21 엘지전자 주식회사 패널 어셈블리, 냉장고 및 가전제품
US12091908B2 (en) * 2022-10-21 2024-09-17 Joon Bu Park Negative poisson's ratio materials for doors and windows

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09329783A (ja) * 1996-06-10 1997-12-22 Nikon Corp 空間光変調素子
JP2003321255A (ja) * 2002-05-07 2003-11-11 Nippon Sheet Glass Co Ltd 透光性ガラスパネル
JP2008266059A (ja) * 2007-04-18 2008-11-06 Nippon Sheet Glass Co Ltd 減圧複層ガラスパネル
WO2016147604A1 (ja) * 2015-03-13 2016-09-22 パナソニックIpマネジメント株式会社 ガラスパネルユニットの製造方法、ガラス窓の製造方法、およびスペーサ付きガラス基板の製造装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1179799A (ja) * 1997-09-04 1999-03-23 Nippon Sheet Glass Co Ltd 複層ガラス
JP4049443B2 (ja) 1998-04-30 2008-02-20 日本板硝子株式会社 ガラスパネル
JP2002167249A (ja) * 2000-11-30 2002-06-11 Nippon Sheet Glass Co Ltd ガラスパネル
AU2003234996A1 (en) * 2002-08-12 2004-03-03 Nippon Sheet Glass Co., Ltd. Glass panel and method of manufacturing glass panel
US7919157B2 (en) * 2007-01-10 2011-04-05 Guardian Industries Corp. Vacuum IG window unit with metal member in hermetic edge seal
US7851034B2 (en) * 2007-12-03 2010-12-14 Guardian Industries Corp. Embedded vacuum insulating glass unit, and/or method of making the same
US20100279037A1 (en) * 2009-04-29 2010-11-04 Chung-Hsien Huang Multi-layered glass structure
US9228389B2 (en) * 2010-12-17 2016-01-05 Guardian Ig, Llc Triple pane window spacer, window assembly and methods for manufacturing same
US9309146B2 (en) * 2011-02-22 2016-04-12 Guardian Industries Corp. Vanadium-based frit materials, binders, and/or solvents and methods of making the same
KR101380486B1 (ko) * 2011-08-30 2014-04-01 (주)엘지하우시스 배열간격이 다른 필러를 포함하는 진공유리 및 그 제조방법
WO2013172033A1 (ja) * 2012-05-18 2013-11-21 パナソニック株式会社 複層ガラスの製造方法
US9371683B2 (en) * 2012-05-18 2016-06-21 Guardian Industries Corp. Method and apparatus for making vacuum insulated glass (VIG) window unit including pump-out tube
US9359808B2 (en) * 2012-09-21 2016-06-07 Ppg Industries Ohio, Inc. Triple-glazed insulating unit with improved edge insulation
US9441416B2 (en) * 2012-09-27 2016-09-13 Guardian Industries Corp. Low temperature hermetic sealing via laser
US10526244B2 (en) * 2014-10-20 2020-01-07 Pilkington Group Limited Insulated glazing unit
US10000407B2 (en) * 2014-10-20 2018-06-19 Icesun Vacuum Glass Ltd. Vacuum plate and method for manufacturing the same
EP3225602B1 (en) * 2014-11-27 2020-11-25 Panasonic Intellectual Property Management Co., Ltd. Glass panel unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09329783A (ja) * 1996-06-10 1997-12-22 Nikon Corp 空間光変調素子
JP2003321255A (ja) * 2002-05-07 2003-11-11 Nippon Sheet Glass Co Ltd 透光性ガラスパネル
JP2008266059A (ja) * 2007-04-18 2008-11-06 Nippon Sheet Glass Co Ltd 減圧複層ガラスパネル
WO2016147604A1 (ja) * 2015-03-13 2016-09-22 パナソニックIpマネジメント株式会社 ガラスパネルユニットの製造方法、ガラス窓の製造方法、およびスペーサ付きガラス基板の製造装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3521259A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208017A1 (ja) * 2018-04-27 2019-10-31 パナソニックIpマネジメント株式会社 ガラスパネルユニット及びガラス窓
WO2020003793A1 (ja) * 2018-06-28 2020-01-02 パナソニックIpマネジメント株式会社 ピラー供給方法、ガラスパネルユニットの製造方法、及びピラー供給装置
JPWO2020003793A1 (ja) * 2018-06-28 2021-08-02 パナソニックIpマネジメント株式会社 ピラー供給方法、ガラスパネルユニットの製造方法、及びピラー供給装置
US11911850B2 (en) 2018-06-28 2024-02-27 Panasonic Intellectual Property Management Co., Ltd. Pillar delivery method, method for manufacturing glass panel unit, and pillar delivery apparatus
WO2020203012A1 (ja) * 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 ガラスパネルユニット及びガラス窓
WO2020209371A1 (ja) * 2019-04-10 2020-10-15 日本板硝子株式会社 ガラスユニット
JPWO2020209371A1 (ja) * 2019-04-10 2020-10-15
JP7628490B2 (ja) 2019-04-10 2025-02-10 日本板硝子株式会社 ガラスユニット
JP7660442B2 (ja) 2021-06-11 2025-04-11 パナソニックホールディングス株式会社 複層ガラス

Also Published As

Publication number Publication date
EP3521259C0 (en) 2024-12-04
EP3521259B1 (en) 2024-12-04
US11117831B2 (en) 2021-09-14
JPWO2018062140A1 (ja) 2019-07-25
EP3521259A4 (en) 2019-10-23
JP6865391B2 (ja) 2021-04-28
EP3521259A1 (en) 2019-08-07
US20200024189A1 (en) 2020-01-23

Similar Documents

Publication Publication Date Title
WO2018062140A1 (ja) ガラスパネルユニット、ガラス窓およびガラスパネルユニットの製造方法
JP6471916B2 (ja) ガラスパネルユニット、ガラスパネルユニットの仮組立て品、ガラスパネルユニットの組立て品、ガラスパネルユニットの製造方法
WO2017056422A1 (ja) ガラスパネルユニットおよびガラス窓
JP6544692B2 (ja) ガラスパネルユニットの製造方法
US10787856B2 (en) Glass panel unit and glass window
JP6715485B2 (ja) ガラスパネルユニットの製造方法
JP6775190B2 (ja) ガラスパネルユニットおよびガラス窓
WO2019230218A1 (ja) ガラスパネルユニットの製造方法
WO2020003829A1 (ja) ガラスパネルユニットの製造方法
JP7113298B2 (ja) ガラスパネルユニットの製造方法及びガラス窓の製造方法
JP6854453B2 (ja) ガラスパネルユニットの製造方法およびガラス窓の製造方法
US11162297B2 (en) Glass panel unit assembly, and method for manufacturing glass panel unit
WO2019207971A1 (ja) ガラスパネルユニット、ガラスパネルユニットの仕掛り品、ガラスパネルユニットの組立て品、ガラスパネルユニットの製造方法
JP7228819B2 (ja) ガラスパネルユニットを得るための組立て品及びガラスパネルユニットの製造方法
JP7336728B2 (ja) ガラスパネルユニットの製造方法
WO2020003830A1 (ja) ガラスパネルユニットの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856090

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018542578

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017856090

Country of ref document: EP

Effective date: 20190430