[go: up one dir, main page]

WO2018060631A1 - Bande de roulement pour pneumatique comportant un élastomère thermoplastique - Google Patents

Bande de roulement pour pneumatique comportant un élastomère thermoplastique Download PDF

Info

Publication number
WO2018060631A1
WO2018060631A1 PCT/FR2017/052640 FR2017052640W WO2018060631A1 WO 2018060631 A1 WO2018060631 A1 WO 2018060631A1 FR 2017052640 W FR2017052640 W FR 2017052640W WO 2018060631 A1 WO2018060631 A1 WO 2018060631A1
Authority
WO
WIPO (PCT)
Prior art keywords
diene
styrene
styrenic
tread according
segment
Prior art date
Application number
PCT/FR2017/052640
Other languages
English (en)
Inventor
José-Carlos ARAUJO DA SILVA
Original Assignee
Compagnie Generale Des Etablissements Michelin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Generale Des Etablissements Michelin filed Critical Compagnie Generale Des Etablissements Michelin
Priority to CN201780060639.0A priority Critical patent/CN109789729A/zh
Priority to BR112019006296-3A priority patent/BR112019006296B1/pt
Priority to JP2019517265A priority patent/JP7194102B2/ja
Publication of WO2018060631A1 publication Critical patent/WO2018060631A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes

Definitions

  • the field of the present invention is that of treads for tires.
  • a tire tread undergoes mechanical stresses and aggression resulting from the direct contact with the ground, which has the effect of creating cracking primers in the tread. These stresses and aggressions are exerted on the tread cyclically at each turn of the wheel. This periodicity has the consequence that the crack initiators which are created in the tread, tend to propagate on the surface or inside the tread. Crack propagation in the tread can result in damage to the tread and thus reduce the life of the tread or the tire. It is therefore important to have tires whose tread has a resistance to crack propagation sufficiently high to minimize the effect of a crack initiation on the life of the tread.
  • the Applicant has discovered that the selection of a specific diene elastomer in the presence of a high concentration of thermoplastic styrene elastomer in a tread of a tire makes it possible to improve further the resistance to propagation. crack, rolling resistance and rigidity, while improving the cooking properties of the compositions.
  • a first object of the invention is a tire tread comprising a composition based on at least:
  • an elastomer matrix comprising between 50 and 100 phr of styrenic thermoplastic elastomer comprising at least one styrenic rigid segment and at least one diene flexible segment comprising at least 20% by weight of conjugated diene units relative to the weight of the diene flexible segment, the diene units conjugates which may be totally or partially hydrogenated,
  • the invention also relates to a tire which comprises the tread according to the invention.
  • thermoplastic styrene elastomers TPS are part of the elastomers. In the present, unless expressly indicated otherwise, all the percentages (%) indicated are percentages (%) by mass.
  • any range of values designated by the expression "between a and b" represents the range of values from more than a to less than b (i.e. terminals a and b excluded) while any range of values designated by the term “from a to b” means the range from a to b (i.e., including the strict limits a and b).
  • the interval represented by the expression "between a and b" is also designated and preferentially.
  • composition based on is understood to mean a composition comprising the mixture and / or the reaction product of the various constituents used, some of these basic constituents being capable of or intended to react between they, at least in part, during the various phases of manufacture of the composition, in particular during its crosslinking or vulcanization.
  • a composition based on an elastomeric and sulfur matrix comprises the elastomeric matrix and the sulfur before firing, whereas after firing the sulfur is no longer detectable because the latter has reacted with the elastomeric matrix in forming sulfur bridges (polysulfides, disulfides, mono-sulphide).
  • a majority compound in the sense of the present invention, it is understood that this compound is predominant among the compounds of the same type in the composition, that is to say it is the one which represents the largest quantity by mass among the compounds of the same type, for example more than 50%, 60%, 70%, 80%, 90% or even 100% % by weight relative to the total weight of the type of compound.
  • a majority reinforcing filler is the reinforcing filler representing the largest mass relative to the total weight of the reinforcing fillers in the composition.
  • a “minor” compound is a compound that does not represent the largest mass fraction among compounds of the same type.
  • the carbonaceous products mentioned in the description may be of fossil origin or biobased. In the latter case, they can be, partially or totally, derived from biomass or obtained from renewable raw materials derived from biomass. These include polymers, plasticizers, fillers, etc.
  • the elastomeric matrix (or elastomeric matrix) comprises:
  • styrenic thermoplastic elastomer comprising at least one styrenic rigid segment and at least one diene flexible segment comprising at least 20% by weight of conjugated diene units relative to the weight of the diene flexible segment, the diene units conjugates which may be totally or partially hydrogenated,
  • the styrenic thermoplastic elastomer comprises at least one styrenic rigid segment and at least one diene flexible segment comprising at least 20% by weight of conjugated diene units relative to the mass of the flexible segment, the conjugated diene units being able to be totally or partially hydrogenated .
  • the rigid and flexible segments can be arranged linearly, star or connected.
  • a flexible segment refers to an elastomeric type polymer block
  • a rigid segment refers to a thermoplastic type polymer block
  • the diene flexible comprises at least 20% by weight of conjugated diene monomer units (also called conjugated diene units).
  • the diene flexible segment may be the homopolymer of a conjugated diene or the random or block copolymer of several conjugated dienes or the copolymer of one or more conjugated dienes and at least one other non-diene monomer such as styrenic monomer.
  • the proportion of conjugated diene units which form the diene flexible segment is preferably at least 50%, more preferably at least 60%, even more preferably at least 70% by weight of the weight of the diene flexible segment.
  • it is at least 80% by weight of the mass of the diene flexible segment.
  • the conjugated diene units may be 1,3-butadiene units or / and isoprene units.
  • the diene flexible segment may be a polybutadiene, a polyisoprene or a copolymer of 1,3-butadiene and isoprene.
  • the copolymer of 1,3-butadiene and isoprene may be of a block or random nature.
  • the rigid styrenic segment advantageously has a glass transition temperature above 80 ° C.
  • the styrenic rigid is a polystyrene.
  • the styrenic rigid segment may be the homopolymer of a styrenic monomer or the block or random copolymer of several styrenic monomers or the copolymer of one or more styrenic monomers and of another non-styrenic monomer such as a 1,3 - diene.
  • styrene monomer is to be understood in the present description styrene or substituted styrene.
  • substituted styrenes which may be mentioned are methylstyrenes (for example ⁇ -methylstyrene, m-methylstyrene or p-methylstyrene, alpha-methylstyrene, alpha-2-dimethylstyrene, alpha-4-dimethylstyrene or diphenylethylene), para-tert-butylstyrene, chlorostyrenes (for example o-chlorostyrene, m-chlorostyrene, p-chlorostyrene, 2,4-dichlorostyrene, 2,6-dichlorostyrene or 2,4-dichlorostyrene).
  • methylstyrenes for example ⁇ -methylstyrene, m-methylstyrene or p-methylstyrene
  • bromostyrenes for example o-bromostyrene, m-bromostyrene, p-bromostyrene, 2,4-dibromostyrene, 2,6-dibromostyrene or 2,4,6-tribromostyrene
  • fluorostyrenes for example ⁇ -fluorostyrene, m-fluorostyrene, p-fluorostyrene, 2,4-difluorostyrene, 2,6-difluorostyrene or 2,4,6-trifluorostyrene
  • para-hydroxy- styrene for example o-bromostyrene, m-bromostyrene, p-bromostyrene, 2,4-dibromostyrene, 2,6-dibromostyrene or 2,4,6-trifluorostyrene
  • para-hydroxy- styrene for example o-bromostyrene, m-bromostyrene, p-bromostyren
  • the styrenic thermoplastic elastomer may comprise a diblock consisting of a single styrenic rigid segment connected to a single diene flexible segment.
  • the diblock consisting of a single rigid styrenic segment connected to a single diene flexible segment may be selected from the group consisting of or consisting of styrene / butadiene block copolymer (SB), styrene / isoprene (SI), styrene / butadiene / isoprene (SBI) and mixtures of these copolymers.
  • SB styrene / butadiene block copolymer
  • SI styrene / isoprene
  • SBI styrene / butadiene / isoprene
  • the diene soft block is a random or block copolymer.
  • the styrenic thermoplastic elastomer preferably comprises or is preferably constituted by a styrenic thermoplastic elastomer comprising at least two rigid styrenic segments. More preferably, the styrenic thermoplastic elastomer comprises predominantly a styrenic thermoplastic elastomer having at least two rigid styrenic segments.
  • the styrenic thermoplastic elastomer comprises a styrenic thermoplastic elastomer having at least two styrenic rigid segments
  • generally at least two chain ends of the styrenic thermoplastic elastomer are each provided with a styrenic rigid segment and the rigid styrenic segments are connected by the styrenic thermoplastic elastomer. or the flexible diene segments.
  • the styrenic thermoplastic elastomer comprising at least two rigid styrenic segments is a triblock. The triblock then consists of two rigid styrenic segments and a flexible diene segment.
  • the triblock consisting of two rigid styrenic segments and a diene flexible segment may be selected from the group consisting of or consisting of styrene / butadiene / styrene block copolymer (SBS), styrene / isoprene / styrene (SIS), styrene / butadiene / isoprene / styrene (SBIS) and mixtures of these copolymers.
  • SBS styrene / butadiene / styrene block copolymer
  • SIS styrene / isoprene / styrene
  • SBIS isoprene / styrene
  • the diene soft block can be a random or block copolymer.
  • the triblock consisting of two styrenic rigid segments and a diene flexible segment is selected from the group consisting of or consisting of a styrene / isoprene / styrene block copolymer (SIS), styrene / butadiene / isoprene / styrene (SBIS) and mixtures of these copolymers, more preferably the triblock consisting of two rigid styrenic segments and a diene flexible segment is a styrene / isoprene / styrene block copolymer (SIS).
  • SIS styrene / isoprene / styrene block copolymer
  • SI styrene / isoprene / styrene block copolymer
  • the denomination of "the at least one rigid segment” designates the rigid segment present in the styrenic thermoplastic elastomer.
  • the name "the at least one rigid segment” designates the rigid segments present in the thermoplastic styrene elastomer.
  • the name of "the at least one flexible segment” designates the flexible segment present in the thermoplastic styrene elastomer.
  • the denomination of "the at least one flexible segment" designates the flexible segments present in the thermoplastic styrene elastomer.
  • a fraction of the diene units of the diene flexible segment can be hydrogenated.
  • all of the diene units of the diene flexible segment can be hydrogenated. It will be appreciated by those skilled in the art that it may equivalently use a styrenic thermoplastic elastomer whose double bonds of a fraction of the diene units of the diene soft segment will have been reduced in a single bond by a process other than hydrogenation.
  • the diblock consisting of a single styrenic rigid segment connected to a single diene flexible segment may be selected from the group comprising or consisting of the styrene block copolymer / ethylene / butylene (SEB), styrene / ethylene / propylene (SEP), styrene / ethylene / ethylene / propylene (SEEP) and mixtures of these copolymers.
  • SEB styrene block copolymer / ethylene / butylene
  • SEP styrene / ethylene / propylene
  • SEEP styrene / ethylene / ethylene / propylene
  • the hydrogenated flexible diene block is a random or block copolymer.
  • the triblock consisting of two rigid styrenic segments and a diene flexible segment may be selected from the group comprising or consisting of the styrene / ethylene / block copolymer.
  • SEBS butylene / styrene
  • SEPS styrene / ethylene / propylene / styrene
  • SEEPS styrene / ethylene / ethylene / propylene / styrene
  • SEEPS hydrogenated flexible diene block is a random or block copolymer.
  • Styrene thermoplastic elastomers are also suitable mixtures of a triblock copolymer and a diblock copolymer described herein.
  • the triblock copolymer may contain a minority weight fraction of diblock copolymer consisting of a rigid styrenic segment and a diene flexible segment, the rigid block and the flexible block being respectively of the same chemical nature, in particular of the same microstructure, as the rigid and flexible blocks of the triblock.
  • the presence of diblock copolymer in the triblock copolymer generally results from the synthesis process of the triblock copolymer which can lead to the formation of a secondary product such as the diblock copolymer.
  • the mass ratio of the styrenic rigid segment is between 5 and 40% of the mass of the thermoplastic styrene elastomer.
  • the thermoplastic nature of the styrenic thermoplastic elastomer is likely to decrease significantly while above the maximum recommended, the elasticity of the composition can be affected.
  • the mass ratio of the styrenic rigid segment in the styrenic thermoplastic elastomer is preferably in a range from 10 to 35%, more preferably from 10 to 20% of the mass of the thermoplastic styrene elastomer.
  • the number-average molar mass (denoted Mn) of the styrenic thermoplastic elastomer is preferably between 50,000 and 500,000 g / mol, more preferably between 60,000 and 450,000 g / mol, more preferably between 80,000 and 300,000 g / mol.
  • Mn number-average molar mass
  • the molar mass is determined in a known manner by steric exclusion chromatography (SEC).
  • SEC steric exclusion chromatography
  • the sample is first solubilized in tetrahydrofuran at a concentration of about 1 g / l; then the solution is filtered on 0.45 ⁇ porosity filter before injection.
  • the apparatus used is a chromatographic chain "WATE S alliance”.
  • the elution solvent is tetrahydrofuran, the flow rate 0.7 ml / min, the system temperature 35 ° C and the analysis time 90 min.
  • a set of four WATERS columns in series, of trade names "STYRAGEL" ("HMW7", “HMW6E” and two "HT6E" is used.
  • the injected volume of the solution of the polymer sample is 100 ⁇ .
  • the detector is a differential refractometer "WATERS 2410" and its associated software for the exploitation of chromatographic data is the “WATERS MILLENIUM” system.
  • the calculated average molecular weights relate to a calibration curve made with polystyrene standards.
  • the styrenic thermoplastic elastomer is present in a mass proportion of between 50 and 100 phr, that is to say between 50% and 100% by weight of the mass of the elastomer matrix of the composition of the tread.
  • the level of thermoplastic styrene elastomer in the tread composition according to the invention is between 55 and 100 phr, preferably between 60 and 95 phr, more preferably between 65 and 90 phr.
  • thermoplastic styrene elastomer is a mixture of styrenic thermoplastic elastomers according to the invention
  • the rates indicated apply to the mixture and not to each of the thermoplastic styrene elastomers.
  • the styrenic thermoplastic elastomer may have a glass transition temperature of less than -20 ° C.
  • This glass transition temperature (Tg) is generally attributed to the glass temperature of the diene flexible segment of the thermoplastic styrene elastomer.
  • the glass transition temperature is measured by means of a Differential Scanning Calorimeter according to ASTM D3418 (1999).
  • the styrenic thermoplastic elastomer has a Tg preferably less than -30 ° C, more preferably less than -40 ° C, even more preferably less than -50 ° C.
  • composition of the tread according to the invention comprises between 0 and 50 phr of diene elastomer comprising predominantly at least one polyisoprene.
  • the composition according to the invention may contain, as diene elastomer, a single polyisoprene or a mixture of a polyisoprene with one or more other diene elastomers, the diene elastomer being predominantly composed of polyisoprene.
  • elastomer or "rubber”, the two terms being considered synonymous
  • diene monomers monomers bearing two carbon-carbon double bonds, conjugated or otherwise
  • diene elastomers can be classified into two categories: “essentially unsaturated” or “essentially saturated”.
  • the term “essentially unsaturated” is generally understood to mean a diene elastomer derived at least in part from conjugated diene monomers, having a level of units or units of diene origin (conjugated dienes) which is greater than 15% (mol%);
  • diene elastomers such as butyl rubbers or copolymers of dienes and alpha-olefins of the EPDM type do not fall within the above definition and may in particular be described as "essentially saturated” diene elastomers ( low or very low diene origin, always less than 15%).
  • the term “highly unsaturated” diene elastomer is particularly understood to mean a diene elastomer having a content of units of diene origin (conjugated dienes) which is greater than 50%.
  • iene elastomer can be understood more particularly to be used in the compositions according to the invention:
  • diene elastomer any type of diene elastomer
  • the person skilled in the tire art will understand that the present invention is preferably implemented with essentially unsaturated diene elastomers, in particular of the type (a) or (b). ) above.
  • conjugated dienes 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-di (C 1 -C 5 alkyl) -1,3-butadienes, such as for example 2,3-dimethyl-1,3-butadiene, 2,3-diethyl-1,3-butadiene, 2-methyl-3-ethyl-1,3-butadiene, 2-methyl-3-isopropyl-1 3-butadiene, aryl-1,3-butadiene, 1,3-pentadiene, 2,4-hexadiene.
  • Suitable vinylaromatic compounds are, for example, styrene, ortho-, meta-, para-methylstyrene, the "vinyl-toluene" commercial mixture, para-tert-butylstyrene, methoxystyrenes, chlorostyrenes, vinylmesitylene, divinylbenzene, vinylnaphthalene.
  • the copolymers may contain between 99% and 20% by weight of diene units and between 1% and 80% by weight of vinylaromatic units.
  • the elastomers may have any microstructure which is a function of the polymerization conditions used, in particular the presence or absence of a modifying and / or randomizing agent and the amounts of modifying and / or randomizing agent used.
  • the elastomers can be for example block, statistical, sequenced, microsequenced, and be prepared in dispersion or in solution; they may be coupled and / or starred or functionalized with a coupling agent and / or starring or functionalization.
  • alkoxysilane groups as described for example in FR 2,765,882 or US 5,977,238), carboxylic groups (as described for example in WO 01/92402 or US 6,815,473, WO 2004/096865 or US 2006/0089445) or still polyether groups (as described for example in EP 1 127 909 or US 6,503,973, WO 2009/000750 and WO 2009/000752).
  • elastomers such as SBR, BR, N R or IR of the epoxidized type.
  • the diene elastomer of the composition can be chosen, for example, from the group of highly unsaturated diene elastomers constituted by natural rubber (NR), synthetic polyisoprenes (IR) and polybutadienes (abbreviated to "BR"). ), the copolymers of butadiene, isoprene copolymers and mixtures of these elastomers.
  • NR natural rubber
  • IR synthetic polyisoprenes
  • BR polybutadienes
  • Such copolymers are more preferably selected from the group consisting of butadiene-styrene copolymers (SBR), isoprene-butadiene copolymers (BIR), isoprene-styrene copolymers (SIR), isoprene-copolymers butadiene-styrene (SBIR), butadiene-acrylonitrile copolymers (NBR), butadiene-styrene-acrylonitrile copolymers (NSBR) or a mixture of two or more of these compounds.
  • SBR butadiene-styrene copolymers
  • BIR isoprene-butadiene copolymers
  • SIR isoprene-styrene copolymers
  • NBR butadiene-acrylonitrile copolymers
  • NSBR butadiene-styrene-acrylonitrile copolymers
  • the diene elastomer comprises predominantly at least one polyisoprene.
  • the diene elastomer comprises more than 50% by weight of polyisoprene relative to the diene elastomer mass.
  • the diene elastomer comprises from 60 to 100%, preferably from 70 to 100%, or more, by weight of polyisoprene relative to the diene elastomer mass.
  • polyisoprene in known manner a homopolymer or copolymer of isoprene, in other words a diene elastomer selected from the group consisting of natural rubber (NR) which can be plasticized or peptized, synthetic polyisoprenes (IR), the various isoprene copolymers and the mixtures of these elastomers.
  • NR natural rubber
  • IR synthetic polyisoprenes
  • isoprene copolymers examples include isobutene-isoprene (butyl rubber IIR), isoprene-styrene (SIR), isoprene-butadiene (BIR) or isoprene-butadiene-styrene ( SBIR).
  • IIR butyl rubber
  • SIR isoprene-styrene
  • BIR isoprene-butadiene
  • SBIR isoprene-butadiene-styrene
  • the polyisoprene is preferably selected from the group consisting of natural rubber, synthetic polyisoprenes and mixtures thereof.
  • the polyisoprene has a mass ratio of cis 1,4 units of at least 90%, more preferably at least 98% relative to the weight of the polyisoprene.
  • the polyisoprene is natural rubber, a synthetic polyisoprene or a mixture thereof. More preferably, the polyisoprene is natural rubber.
  • the diene elastomer content is between 0 and 50 phr.
  • the level of diene elastomer in the tread composition according to the invention is between 0 and 45, preferably between 5 and 40, more preferably between 10 and 35 phr.
  • compositions of the invention may be used in combination with any type of synthetic elastomer other than diene, or even with polymers other than elastomers, for example thermoplastic polymers, it being understood that the elastomeric matrix (including the diene and synthetic elastomers and the abovementioned polymers) mainly comprises polyisoprene.
  • the styrenic thermoplastic elastomer and the diene elastomer constitute the elastomer matrix, which means that the elastomer matrix does not contain other elastomers than the first diene elastomer and the thermoplastic styrene elastomer.
  • composition of the tire according to the invention advantageously comprises a reinforcing filler, known for its ability to reinforce a rubber composition that can be used for the manufacture of tires.
  • the reinforcing filler may comprise carbon black, an organic filler other than carbon black, an inorganic filler or a mixture of at least two of these filler.
  • the reinforcing filler comprises a carbon black, a reinforcing inorganic filler or a mixture thereof. More preferably still, the reinforcing filler mainly comprises carbon black and in a minor way an inorganic filler.
  • the reinforcing filler comprises from 50 to 100% by weight of carbon black, preferably from 55 to 90% by weight, preferably from 60 to 80% by weight.
  • Such a reinforcing filler typically consists of particles whose average size (in mass) is less than one micrometer, generally less than 500 nm, most often between 20 and 200 nm, in particular and more preferably between 20 and 150 nm.
  • the level of reinforcing filler preferably the reinforcing filler predominantly comprising carbon black, may be in a range from 10 to 160 phr, preferably from 25 to 100 phr, preferably from 35 to 85 phr. preferably 45 to 65 phr.
  • the blacks that can be used in the context of the present invention may be all black conventionally used in tires or their treads (so-called pneumatic grade blacks).
  • the reinforcing carbon blacks of the 100, 200, 300 series, or the 500, 600 or 700 series blacks (ASTM grades), for example the blacks NI 15, N134, N234, N326, are especially suitable.
  • These carbon blacks can be used in the isolated state, as commercially available, or in any other form, for example as a carrier for some of the rubber additives used.
  • the carbon blacks could for example already be incorporated into the diene elastomer, in particular isoprene in the form of a masterbatch (see for example applications WO 97/36724 or WO 99/16600).
  • the BET surface area of the carbon blacks is measured according to the D6556-10 standard [multipoint method (at least 5 points) - gas: nitrogen - relative pressure range ⁇ / ⁇ 0: 0.1 to 0.3].
  • organic fillers other than carbon blacks mention may be made of functionalized polyvinyl organic fillers as described in applications WO 2006/069792, WO 2006/069793, WO 2008/003434 and WO 2008/003435.
  • Reinforcing inorganic filler means any inorganic or mineral filler, irrespective of its color and origin (natural or synthetic), also called “white” filler, “clear” filler or even “non-black” filler. as opposed to carbon black, capable of reinforcing on its own, with no other means than an intermediate coupling agent, a rubber composition intended for the manufacture of pneumatic tires, in other words able to replace, in its function of reinforcement, a conventional carbon black of pneumatic grade; such a filler is generally characterized, in known manner, by the presence of hydroxyl groups (-OH) on its surface.
  • the inorganic filler does not make it possible to reinforce or not sufficiently the composition and is therefore not included in the definition of "reinforcing inorganic filler".
  • Suitable reinforcing inorganic fillers are in particular mineral fillers of the siliceous type, preferentially silica (SiO 2 ).
  • the silica used may be any reinforcing silica known to those skilled in the art, in particular any precipitated or fumed silica having a BET surface and a CTAB specific surface both less than 450 m 2 / g, preferably from 30 to 400 m 2 / g, in particular between 60 and 300 m 2 / g-A of highly dispersible precipitated silicas (called “HDS”), there may be mentioned for example the silicas “Ultrasil” 7000 and “Ultrasil” 7005 from the company Degussa, silicas “Zeosil” 1165MP, 1135MP and 1115MP from the company hodia, the silica "Hi-Sil” EZ150G from the company PPG, the "Zeopol” silicas 8715, 8745 and 8755 from
  • the BET surface area is determined in a known manner by gas adsorption using the method of Brunauer-Emmett-Teller described in "The Journal of the American Chemical Society” Flight . 60, page 309, February 1938, specifically according to the French standard NF ISO 9277 of December 1996 (multipoint volumetric method (5 points) - gas: nitrogen - degassing: time at 160 ° C - relative pressure range p / po: 0.05 at 0.17).
  • the CTAB specific surface is the external surface determined according to the French standard NF T 45-007 of November 1987 (method B).
  • Reinforcing inorganic fillers are also suitable for mineral fillers of the aluminous type, in particular alumina (Al 2 O 3 ) or aluminum (oxide) hydroxides, or reinforcing titanium oxides, for example described in US Pat. No. 6,610,261 and US Pat. US 6,747,087.
  • the physical state in which the reinforcing inorganic filler is present is indifferent whether in the form of powder, microbeads, granules, beads or any other suitable densified form.
  • the term "reinforcing inorganic filler” also refers to mixtures of different reinforcing inorganic fillers, in particular highly dispersible siliceous and / or aluminous fillers as described above.
  • an at least bifunctional coupling agent (or bonding agent) is used in a well-known manner to ensure a sufficient chemical and / or physical connection between the inorganic filler (surface of its particles) and the diene elastomer.
  • organosilanes or at least bifunctional polyorganosiloxanes are used.
  • coupling agent in the following documents: WO 02/083782, WO 02/30939, WO 02/31041, WO 2007/061550, WO 2006/125532, WO 2006/125533, WO 2006/125534, US 6,849,754, WO 99/09036, WO 2006/023815, WO 2007/098080, WO 2010/072685 and WO 2008/055986.
  • the content of coupling agent is advantageously less than 10 phr, it being understood that it is generally desirable to use as little as possible.
  • the level of coupling agent is from 0.5% to 15% by weight based on the amount of inorganic filler. Its level is preferably in a range from 0.5 to 7.5 phr. This level is easily adjusted by those skilled in the art according to the level of inorganic filler used in the composition.
  • the rubber composition in accordance with the invention may also contain, in addition to the coupling agents, coupling activators, inorganic charge-covering agents or, more generally, processing aid agents which can be used in a known manner, by improving the dispersion of the filler in the rubber matrix and lowering the viscosity of the compositions, to improve their ability to implement in the green state, these agents being for example hydrolysable silanes such as alkylalkoxysilanes (especially alkyltriethoxysilanes), polyols, polyethers (for example polyethylene glycols), primary, secondary or tertiary amines (for example trialkanol amines), hydroxylated or hydrolyzable POSs, for example ⁇ , ⁇ -dihydroxy - polyorganosiloxanes (especially ⁇ , ⁇ -dihydroxy-polydimethylsiloxanes), fatty acids such as stearic acid.
  • hydrolysable silanes such as alkylalkoxys
  • the tread composition according to the invention may also comprise all or part of the usual additives usually used in elastomer compositions, for example plasticizers, pigments, protective agents such as anti-ozone waxes, chemical ozonants, anti-oxidants, anti-fatigue agents, a crosslinking system, vulcanization accelerators or retarders, vulcanization activators.
  • the crosslinking system is preferably based on sulfur, but it may also be based on sulfur donors, peroxide, bismaleimides or their mixtures.
  • the present invention can be applied to any type of tire.
  • the tire according to the invention may be intended to equip motor vehicles of the tourism type, SUV ("Sport Utility Vehicles"), or two wheels (including motorcycles), or planes, or industrial vehicles chosen among vans, "Weight "heavy” - that is, metros, buses, road transport vehicles (trucks, tractors, trailers), off-the-road vehicles such as agricultural or civil engineering equipment, and others.
  • SUV Sport Utility Vehicles
  • two wheels including motorcycles
  • planes or industrial vehicles chosen among vans, "Weight "heavy” - that is, metros, buses, road transport vehicles (trucks, tractors, trailers), off-the-road vehicles such as agricultural or civil engineering equipment, and others.
  • the present invention also relates to a tire comprising a tread according to the invention.
  • a tire includes a tread whose tread surface is provided with a tread formed by a plurality of grooves delimiting relief elements (blocks, ribs) so as to generate material edges and troughs. These grooves represent a void volume which, relative to the total tread volume (including both the volume of relief elements and that of all grooves) is expressed as a percentage herein referred to as "rate". of hollow volume ". A trough volume of zero indicates a tread without grooves or recesses.
  • the present invention is particularly well suited to tires for civil engineering vehicles and trucks, especially civil engineering vehicles whose tires are subject to specific constraints.
  • the tire according to the invention is a tire for civil engineering vehicles or heavy goods vehicles, preferably civil engineering vehicles.
  • the tread according to the invention may have one or more grooves with an average depth of 15 to 120 mm, preferably 65 to 120 mm.
  • the tires according to the invention may have a diameter of from 20 to 63 inches, preferably from 35 to 63 inches.
  • the average rate of trough on the entire tread according to the invention can be in a range from 5 to 40%, preferably from 5 to 25%.
  • compositions used in the tires of the invention may be manufactured in appropriate mixers, using two successive preparation phases according to a general procedure well known to those skilled in the art: a first working phase or thermomechanical mixing (sometimes referred to as a "non-productive" phase) at a high temperature, up to a maximum temperature of between 80 ° C and 140 ° C, preferably between 100 ° C and 125 ° C, followed by a second mechanical working phase (sometimes referred to as a "productive" phase) at a lower temperature, typically below 100 ° C., for example between 60 ° C. and 100 ° C., a finishing phase during which the chemical crosslinking agent is incorporated, in particular the crosslinking system.
  • a first working phase or thermomechanical mixing sometimes referred to as a "non-productive" phase
  • a second mechanical working phase sometimes referred to as a "productive” phase
  • a finishing phase during which the chemical crosslinking agent is incorporated, in particular the crosslinking system.
  • the first (non-productive) phase is carried out in a single thermomechanical step during which all the necessary constituents and other various additives are introduced into a suitable mixer such as a conventional internal mixer. the exception of the crosslinking system.
  • the total mixing time, in this non-productive phase is preferably between 2 and 10 min.
  • the low temperature crosslinking system is then incorporated, generally in an external mixer such as a roll mill; the whole is then mixed (productive phase) for a few minutes, for example between 5 and 15 min.
  • the first kneading step is generally carried out by incorporating the reinforcing filler into the elastomeric matrix in one or more times by thermomechanically kneading.
  • the reinforcing filler in particular carbon black
  • the masterbatch is directly kneaded and if necessary is incorporated other elastomers or reinforcing fillers present in the composition that are not in the form of masterbatch, as well as additives other than the crosslinking system.
  • the final composition thus obtained is then calendered, for example in the form of a sheet or a plate, in particular for a characterization in the laboratory, or extruded in the form of a rubber profile that can be used, for example, as a tread.
  • the invention relates to tires and tire treads previously described both in the green state (that is to say, before firing) and in the fired state (that is to say, after crosslinking or vulcanization). .
  • T 0 is the induction time (expressed in min), that is to say the time required for the beginning of the vulcanization reaction
  • T a is the time required to reach a conversion of%, that is to say% (for example 99%) of the difference between the minimum and maximum couples.
  • K is the conversion rate constant denoted by K (expressed in min -1 ), of order 1, calculated between 30% and 80% of conversion, which makes it possible to evaluate the kinetics of vulcanization, is also measured.
  • the cracking rate was measured on specimens of rubber compositions, using a 381 type "Elastomer Test System" of the MTS company, as explained hereinafter. Resistance to cracking is measured by repeated tractions on a specimen initially accommodated (after a first traction cycle) and then scored.
  • the tensile test piece consists of a parallelepiped-shaped rubber plate, for example of thickness between 1 and 2 mm, of length between 130 and 170 mm and of width between 10 and 15 mm, the two lateral edges being each lengthwise covered with a cylindrical rubber bead (diameter 5 mm) allowing anchoring in the jaws of the traction machine. The test pieces thus prepared are tested in the new state.
  • the test was conducted in air at a temperature of 20 ° C, 60 ° C or 80 ° C. After accommodation, 3 very fine cuts of between 15 and 20 mm in length are made using a razor blade, at half width and aligned along the length of the test piece, one at each end and one in the center of the latter, before starting the test.
  • the rate of deformation of the specimen is adjusted automatically so as to keep the rate of energy restitution (amount of energy released during the progression of the crack) constant, at a value of less than or equal to approximately 500 J / m 2 .
  • the crack propagation rate is measured in nanometers per cycle.
  • Resistance to crack propagation is expressed in relative units (u.r.) by dividing the speed of propagation of the control by that of the mixture, the speeds being measured at the same rate of energy release.
  • the dynamic properties G * (50%) and tan (5) max are measured on a viscoanalyzer (Metravib V A4000), according to the ASTM D 5992 - 96 standard.
  • the response of a sample of vulcanized composition (cylindrical test specimen) is recorded. 4 mm thick and 400 mm 2 section), subjected to a sinusoidal stress in alternating simple shear, at a frequency of 10 Hz, at 60 ° C. according to ASTM D 1349-99.
  • a strain amplitude sweep is carried out. peak to peak of 0.1 to 50% (forward cycle), then 50% to 1% (return cycle).
  • the results exploited are the complex dynamic shear modulus (G *) and the loss factor tan (5).
  • the mixture thus obtained is recovered, cooled and then sulfur and a sulfenamide type accelerator are incorporated on a mixer (homo-finisher) at 30 ° C., mixing the whole (productive phase) for a suitable time (for example between 5 and 12 minutes).
  • compositions thus obtained are then calendered either in the form of plates (thickness of 2 to 3 mm) or thin sheets of rubber for the measurement of their physical or mechanical properties, or extruded in the form of a profile. 111-3 Testing of rubber compositions
  • compositions C and T are described in Table I. These compositions were prepared according to the process described in point 111-2 above.
  • Composition C is in accordance with the invention in that the elastomer matrix comprises natural rubber and more than 50 phr of a thermoplastic styrene elastomer.
  • Control composition T is not in accordance with the present invention because it contains exactly 50 phr of styrenic thermoplastic elastomer, which is outside the value page claimed for the styrene thermoplastic elastomer level.
  • the results show a very strong improvement in the crack propagation resistance of the tread composition according to the invention compared with the control composition. This improvement is also accompanied by a gain in safety at the early vulcanization without degrading the cooking speed as well as a gain in rigidity and an improvement in rolling resistance.
  • the present invention can significantly improve the life of tires, since these become much less sensitive to the crack propagation at their tread, while improving their baking properties, the resistance to rolling and stiffness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)

Abstract

L'invention concerne une bande de roulement de pneumatique comprenant une composition à base d'au moins, une matrice élastomère comprenant, entre 50 et 100 pce d'élastomère thermoplastique styrénique (TPS) comprenant au moins un segment rigide styrénique et au moins un segment souple diénique comprenant au moins 20% en masse d'unités diéniques conjuguées par rapport à la masse du segment souple diénique, les unités diéniques conjuguées pouvant être totalement ou partiellement hydrogénées, et entre 0 et 50 pce d'élastomère diénique comprenant plus de 50% en masse de polyisoprène par rapport à lamasse d'élastomère diénique, ladite composition étant également à base d'au moins une charge renforçante.

Description

BANDE DE ROULEMENT POUR PNEUMATIQUE COMPORTANT UN ÉLASTOMÈRE
THERMOPLASTIQUE
Le domaine de la présente invention est celui des bandes de roulement pour pneumatiques.
Au cours du roulage, une bande de roulement de pneumatique subit des sollicitations mécaniques et des agressions résultant du contact direct avec le sol, ce qui a pour effet de créer des amorces de fissure dans la bande de roulement. Ces sollicitations et ces agressions s'exercent sur la bande de roulement de façon cyclique à chaque tour de roue. Cette périodicité a pour conséquence que les amorces de fissure qui se créent dans la bande de roulement, ont tendance à se propager en surface ou à l'intérieur de la bande de roulement. La propagation de fissure dans la bande de roulement peut entraîner un endommagement de la bande de roulement et donc réduire la durée de vie de la bande de roulement ou du pneumatique. II est donc important de disposer de pneumatiques dont la bande de roulement présente une résistance à la propagation de fissure suffisamment forte pour minimiser l'effet d'une amorce de fissure sur la durée de vie de la bande de roulement. Pour résoudre ce problème, les manufacturiers de pneumatique utilisent par exemple du caoutchouc naturel dans les bandes de roulement en raison des propriétés de résistance à la propagation de fissure du caoutchouc naturel comme mentionné dans « Table 3.7 Comparison of elastomers properties » p. 162-163, Rubber Technology Handbook Hofmann, Hanser publishers (1989).
D'autres solutions ont été apportées pour améliorer la résistance à la propagation de fissure, notamment dans la demande WO 2015/091933 qui propose d'ajouter à la matrice élastomérique diénique un taux minoritaire d'élastomère thermoplastique styrénique.
Néanmoins il existe toujours un besoin d'améliorer encore la résistance à la propagation de fissure des bandes de roulement de pneumatique, sans pénaliser, voire en améliorant, la résistance au roulement. Ces améliorations ne devraient de préférence pas être réalisées au détriment d'autres propriétés des compositions, telle que les propriétés de cuisson.
De manière surprenante, la Demanderesse a découvert que la sélection d'un élastomère diénique spécifique en présence d'une forte concentration d'élastomère thermoplastique styrénique dans une bande de roulement d'un pneumatique permet d'améliorer d'avantage la résistance à la propagation de fissure, la résistance au roulement et la rigidité, tout en améliorant les propriétés de cuissons des compositions.
Ainsi un premier objet de l'invention est un bande de roulement de pneumatique comprenant une composition à base d'au moins :
- une matrice élastomère comprenant, o entre 50 et 100 pce d'élastomère thermoplastique styrénique comprenant au moins un segment rigide styrénique et au moins un segment souple diénique comprenant au moins 20% en masse d'unités diéniques conjuguées par rapport à la masse du segment souple diénique, les unités diéniques conjuguées pouvant être totalement ou partiellement hydrogénées,
o entre 0 et 50 pce d'élastomère diénique comprenant plus de 50% en masse de polyisoprène par rapport à la masse d'élastomère diénique,
une charge renforçante. L'invention a également pour objet un pneumatique qui comprend la bande de roulement conforme à l'invention.
I- DÉFINITIONS Par l'expression "partie en poids pour cent parties en poids d'élastomère" (ou pce), il faut entendre au sens de la présente invention, la partie, en masse pour cent parties en masse d'élastomère, thermoplastiques et non thermoplastiques confondus. Au sens de la présente invention, les élastomères thermoplastiques styréniques (TPS) font partie des élastomères. Dans la présente, sauf indication expresse différente, tous les pourcentages (%) indiqués sont des pourcentages (%) en masse.
D'autre part, tout intervalle de valeurs désigné par l'expression "entre a et b" représente le domaine de valeurs allant de plus de a à moins de b (c'est-à-dire bornes a et b exclues) tandis que tout intervalle de valeurs désigné par l'expression "de a à b" signifie le domaine de valeurs allant de a jusqu'à b (c'est-à-dire incluant les bornes strictes a et b). Dans la présente, lorsqu'on désigne un intervalle de valeurs par l'expression "de a à b", on désigne également et préférentiellement l'intervalle représenté par l'expression "entre a et b". Dans la présente, par l'expression composition "à base de", on entend une composition comportant le mélange et/ou le produit de réaction des différents constituants utilisés, certains de ces constituants de base étant susceptibles de, ou destinés à, réagir entre eux, au moins en partie, lors des différentes phases de fabrication de la composition, en particulier au cours de sa réticulation ou vulcanisation. A titre d'exemple, une composition à base d'une matrice élastomérique et de soufre comprend la matrice élastomérique et le soufre avant cuisson, alors qu'après cuisson le soufre n'est plus détectable car ce dernier a réagi avec la matrice élastomérique en formant des ponts soufrés (polysulfures, disulfures, mono-sulfure).
Lorsqu'on fait référence à un composé « majoritaire », on entend au sens de la présente invention, que ce composé est majoritaire parmi les composés du même type dans la composition, c'est-à-dire que c'est celui qui représente la plus grande quantité en masse parmi les composés du même type, par exemple plus de 50%, 60%, 70%, 80%, 90%, voire 100% en poids par rapport au poids total du type de composé. Ainsi, par exemple, une charge renforçante majoritaire est la charge renforçante représentant la plus grande masse par rapport à la masse totale des charges renforçantes dans la composition. Au contraire, un composé « minoritaire » est un composé qui ne représente pas la fraction massique la plus grande parmi les composés du même type.
Dans le cadre de l'invention, les produits carbonés mentionnés dans la description, peuvent être d'origine fossile ou biosourcés. Dans ce dernier cas, ils peuvent être, partiellement ou totalement, issus de la biomasse ou obtenus à partir de matières premières renouvelables issues de la biomasse. Sont concernés notamment les polymères, les plastifiants, les charges, etc.
Il- DESCRIPTION DÉTAILLÉE DE L'INVENTION l l-l Matrice élastomérique
Comme indiqué ci-dessus, la matrice élastomérique (ou matrice élastomère) comprend :
o entre 50 et 100 pce d'élastomère thermoplastique styrénique comprenant au moins un segment rigide styrénique et au moins un segment souple diénique comprenant au moins 20% en masse d'unités diéniques conjuguées par rapport à la masse du segment souple diénique, les unités diéniques conjuguées pouvant être totalement ou partiellement hydrogénées,
o entre 0 et 50 pce d'élastomère diénique comprenant plus de 50% en masse de polyisoprène par rapport à la masse d'élastomère diénique. ll-l-a Elastomère thermoplastique styrénique
L'élastomère thermoplastique styrénique comprend au moins un segment rigide styrénique et au moins un segment souple diénique comprenant au moins 20% en masse d'unités diéniques conjuguées par rapport à la masse du segment souple, les unités diéniques conjuguées pouvant être totalement ou partiellement hydrogénées. Les segments rigide et souple peuvent être disposés linéairement, en étoile ou branchés.
Un segment souple se réfère à un bloc polymère de type élastomère, un segment rigide se réfère à un bloc polymère de type thermoplastique.
Le souple diénique comprend au moins 20% en masse d'unités monomères diènes conjuguées (appelées aussi unités diéniques conjuguées). Le un segment souple diénique peut être l'homopolymère d'un diène conjugué ou le copolymère statistique ou bloc de plusieurs diènes conjugués ou encore le copolymère d'un ou plusieurs diènes conjugués et d'au moins un autre monomère non diénique tel qu'un monomère styrénique. Le taux d'unités diéniques conjuguées qui forment le segment souple diénique est préférentiellement d'au moins 50%, plus préférentiellement d'au moins 60%, encore plus préférentiellement d'au moins 70% en masse de la masse du segment souple diénique. Avantageusement, il est d'au moins 80% en masse de la masse du segment souple diénique. Ces taux qu'ils soient préférentiels ou non s'appliquent à l'un quelconque des modes de réalisation de l'invention.
Les unités diéniques conjuguées peuvent être des unités 1,3-butadiène ou/et des unités isoprène. Ainsi, le segment souple diénique peut être un polybutadiène, un polyisoprène ou un copolymère de 1,3-butadiène et d'isoprène. Le copolymère de 1,3-butadiène et d'isoprène peut être de nature bloc ou statistique.
Le segment rigide styrénique présente avantageusement une température de transition vitreuse supérieure à 80°C. De préférence, le rigide styrénique est un polystyrène.
Le segment rigide styrénique peut être l'homopolymère d'un monomère styrénique ou le copolymère bloc ou statistique de plusieurs monomères styréniques ou encore le copolymère d'un ou plusieurs monomères styréniques et d'un autre monomère non styrénique tel qu'un 1,3- diène.
Par monomère styrénique doit être entendu dans la présente description le styrène ou un styrène substitué. Parmi les styrènes substitués peuvent être cités par exemple les méthylstyrènes (par exemple Γο-méthylstyrène, le m-méthylstyrène ou le p-méthylstyrène, l'alpha-méthylstyrène, l'alpha-2-diméthylstyrène, l'alpha-4-diméthylstyrène ou le diphényléthylène), le para-tertio-butylstyrène, les chlorostyrènes (par exemple l'o- chlorostyrène, le m-chlorostyrène, le p-chlorostyrène, le 2,4-dichlorostyrène, le 2,6- dichlorostyrène ou le 2,4,6-trichlorostyrène), les bromostyrènes (par exemple l'o-bromostyrène, le m-bromostyrène, le p-bromostyrène, le 2,4-dibromostyrène, le 2,6-dibromostyrène ou les 2,4,6-tribromostyrène), les fluorostyrènes (par exemple Γο-fluorostyrène, le m-fluorostyrène, le p-fluorostyrène, le 2,4-difluorostyrène, le 2,6-difluorostyrène ou les 2,4,6-trifluorostyrène) ou encore le para-hydroxy-styrène.
L'élastomère thermoplastique styrénique peut comprendre un dibloc constitué d'un seul segment rigide styrénique relié à un seul segment souple diénique.
Le dibloc constitué d'un seul segment rigide styrénique relié à un seul segment souple diénique peut être choisi dans le groupe comprenant ou constitué par le copolymère bloc styrène/ butadiène (SB), le styrène/ isoprène (SI), le styrène/ butadiène/ isoprène (SBI) et les mélanges de ces copolymères. Dans cette désignation le bloc souple diénique est un copolymère statistique ou bloc.
L'élastomère thermoplastique styrénique comprend préférentiellement ou est préférentiellement constitué par un élastomère thermoplastique styrénique comportant au moins deux segments rigides styréniques. De préférence encore, l'élastomère thermoplastique styrénique comprend majoritairement un élastomère thermoplastique styrénique comportant au moins deux segments rigides styréniques. Lorsque l'élastomère thermoplastique styrénique comprend un élastomère thermoplastique styrénique comportant au moins deux segments rigides styréniques, généralement au moins deux extrémités de chaînes de l'élastomère thermoplastique styrénique sont pourvues chacune d'un segment rigide styrénique et les segments rigides styréniques sont reliés par le ou les segments souples diéniques. Préférentiellement, l'élastomère thermoplastique styrénique comportant au moins deux segments rigides styrénique est un tribloc. Le tribloc est alors constitué de deux segments rigides styréniques et d'un segment souple diénique.
Le tribloc constitué de deux segments rigides styréniques et d'un segment souple diénique peut être choisi dans le groupe comprenant ou constitué par le copolymère bloc styrène/ butadiène/ styrène (SBS), le styrène/ isoprène/ styrène (SIS), le styrène/ butadiène/ isoprène/ styrène (SBIS) et les mélanges de ces copolymères. Dans cette désignation le bloc souple diénique peut être un copolymère statistique ou bloc. De préférence, le tribloc constitué de deux segments rigides styréniques et d'un segment souple diénique est choisi dans le groupe comprenant ou constitué par un copolymère bloc styrène/ isoprène/ styrène (SIS), styrène/ butadiène/ isoprène/ styrène (SBIS) et les mélanges de ces copolymères, de préférence encore le tribloc constitué de deux segments rigides styréniques et d'un segment souple diénique est un copolymère bloc styrène/ isoprène/ styrène (SIS).
Dans le cas où l'élastomère thermoplastique styrénique est un dibloc, la dénomination de « l'au moins un segment rigide » désigne le segment rigide présent dans l'élastomère thermoplastique styrénique. Dans les cas différents d'un dibloc, par exemple dans le cas d'un tribloc, la dénomination de « l'au moins un segment rigide » désigne les segments rigides présents dans l'élastomère thermoplastique styrénique. Dans le cas où l'élastomère thermoplastique styrénique est un dibloc ou un tribloc, la dénomination de « l'au moins un segment souple » désigne le segment souple présent dans l'élastomère thermoplastique styrénique. Dans les cas où l'élastomère thermoplastique styrénique n'est ni un dibloc, ni un tribloc, la dénomination de « l'au moins un segment souple » désigne les segments souples présents dans l'élastomère thermoplastique styrénique. Selon l'invention, une fraction des unités diéniques du segment souple diénique peut être hydrogénée. Alternativement, la totalité des unités diéniques du segment souple diénique peut être hydrogénée. L'homme du métier comprendra qu'il peut utiliser de manière équivalente un élastomère thermoplastique styrénique dont les doubles liaisons d'une fraction des unités diéniques du segment souple diénique auront été réduites en liaison simple par un procédé autre qu'une hydrogénation. Parmi les procédés qui permettent de réduire les liaisons doubles des unités diéniques en liaison simple, on peut citer les réductions avec un hydrure d'aluminium ou avec la diimine par exemple. Lorsque la totalité des unités diéniques du segment souple diénique de l'élastomère thermoplastique est hydrogéné, le dibloc constitué d'un seul segment rigide styrénique relié à un seul segment souple diénique peut être choisi dans le groupe comprenant ou constitué par le copolymère blocs styrène/ éthylène/ butylène (SEB), le styrène/ éthylène/ propylène (SEP), le styrène/ éthylène/ éthylène/ propylène (SEEP) et les mélanges de ces copolymères. Dans cette désignation le bloc souple diénique hydrogéné est un copolymère statistique ou bloc.
Lorsque la totalité des unités diéniques du segment souple diénique de l'élastomère thermoplastique est hydrogéné, le tribloc constitué de deux segments rigides styréniques et d'un segment souple diénique peut être choisi dans le groupe comprenant ou constitué par le copolymère bloc styrène/ éthylène/ butylène/ styrène (SEBS), le styrène/ éthylène/ propylène/ styrène (SEPS), le styrène/ éthylène/ éthylène/ propylène/ styrène (SEEPS) et les mélanges de ces copolymères. Dans cette désignation le bloc souple diénique hydrogéné est un copolymère statistique ou bloc. Comme élastomère thermoplastique styrénique conviennent aussi les mélanges d'un copolymère tribloc et d'un copolymère dibloc décrits dans la présente. En effet le copolymère tribloc peut contenir une fraction minoritaire pondérale de copolymère dibloc constitué d'un segment rigide styrénique et d'un segment souple diénique, le bloc rigide et le bloc souple étant respectivement de même nature chimique, en particulier de même microstructure, que les blocs rigide et souple du tribloc. La présence de copolymère dibloc dans le copolymère tribloc résulte généralement du procédé de synthèse du copolymère tribloc qui peut conduire à la formation de produit secondaire comme le copolymère dibloc. Le plus souvent le pourcentage de copolymère dibloc dans le copolymère tribloc n'excède pas 40% en masse de copolymère tribloc. Avantageusement, le taux massique du segment rigide styrénique est compris entre 5 et 40% de la masse de l'élastomère thermoplastique styrénique. En dessous du minimum indiqué, le caractère thermoplastique de l'élastomère thermoplastique styrénique risque de diminuer de manière sensible tandis qu'au-dessus du maximum préconisé, l'élasticité de la composition peut être affectée. Pour ces raisons, le taux massique du segment rigide styrénique dans l'élastomère thermoplastique styrénique est préférentiellement compris dans un domaine allant de 10 à 35%, plus préférentiellement de 10 à 20% de la masse de l'élastomère thermoplastique styrénique. Ces taux qu'ils soient préférentiels ou non s'appliquent à l'un quelconque des modes de réalisation de l'invention, tout particulièrement lorsque le polystyrène forme le segment rigide styrénique de l'élastomère thermoplastique styrénique.
La masse molaire moyenne en nombre (notée Mn) de l'élastomère thermoplastique styrénique est préférentiellement comprise entre 50 000 et 500 000 g/mol, plus préférentiellement comprise entre 60 000 et 450 000 g/mol, encore plus préférentiellement comprise entre 80 000 et 300 000 g/mol. Avantageusement elle est comprise entre 100 000 et 200 000 g/mol. Ces plages préférentielles de valeurs de masse molaire moyenne en nombre s'appliquent quel que soit le mode de réalisation de l'invention.
La masse molaire est déterminée de manière connue, par chromatographie d'exclusion stérique (SEC). L'échantillon est préalablement solubilisé dans du tétrahydrofuranne à une concentration d'environ 1 g/1 ; puis la solution est filtrée sur filtre de porosité 0,45 μιτι avant injection. L'appareillage utilisé est une chaîne chromatographique "WATE S alliance". Le solvant d'élution est le tétrahydrofuranne, le débit de 0,7 ml/min, la température du système de 35°C et la durée d'analyse de 90 min. On utilise un jeu de quatre colonnes WATERS en série, de dénominations commerciales "STYRAGEL" ("HMW7", "HMW6E" et deux "HT6E"). Le volume injecté de la solution de l'échantillon de polymère est de 100 μΙ. Le détecteur est un réfractomètre différentiel "WATERS 2410" et son logiciel associé d'exploitation des données chromatographiques est le système "WATERS MILLENIUM". Les masses molaires moyennes en nombre calculées sont relatives à une courbe d'étalonnage réalisée avec des étalons de polystyrène.
L'élastomère thermoplastique styrénique est présent dans une proportion massique compris entre 50 et 100 pce, c'est-à-dire entre 50% et 100% en masse de la masse de la matrice élastomère de la composition de la bande de roulement. Avantageusement, le taux d'élastomère thermoplastique styrénique dans la composition de bande de roulement selon l'invention est compris entre 55 et 100 pce, de préférence entre 60 et 95 pce, de préférence encore entre 65 et 90 pce.
Bien entendu, lorsque l'élastomère thermoplastique styrénique est un mélange d'élastomères thermoplastiques styréniques conformes à l'invention, les taux indiqués s'appliquent au mélange et non à chacun des élastomères thermoplastiques styréniques.
Selon l'invention, l'élastomère thermoplastique styrénique peut présenter une température de transition vitreuse inférieure à -20°C. Cette température de transition vitreuse (Tg) est généralement attribuée à la température vitreuse du segment souple diénique de l'élastomère thermoplastique styrénique. La température de transition vitreuse est mesurée au moyen d'un calorimètre différentiel ("Differential Scanning Calorimeter") selon la norme ASTM D3418 (1999). Préférentiellement, l'élastomère thermoplastique styrénique présente une Tg préférentiellement inférieure à -30°C, plus préférentiellement inférieure à -40°C, encore plus préférentiellement inférieure à -50°C. ll-l-b Elastomere diénique
La composition de la bande de roulement selon l'invention comprend entre 0 et 50 pce d'élastomère diénique comprenant majoritairement au moins un polyisoprène. Ainsi, la composition selon l'invention peut contenir, en tant qu'élastomère diénique, un seul polyisoprène ou un mélange d'un polyisoprène avec un ou plusieurs autres élastomères diéniques, l'élastomère diénique étant majoritairement constituée de polyisoprène.
Par élastomère (ou « caoutchouc », les deux termes étant considérés comme synonymes) du type "diénique", on rappelle ici que doit être compris de manière connue un (on entend un ou plusieurs) élastomère issu au moins en partie (Le., un homopolymère ou un copolymère) de monomères diènes (monomères porteurs de deux doubles liaisons carbone-carbone, conjuguées ou non).
Ces élastomères diéniques peuvent être classés dans deux catégories : "essentiellement insaturés" ou "essentiellement saturés". On entend en général par "essentiellement insaturé", un élastomère diénique issu au moins en partie de monomères diènes conjugués, ayant un taux de motifs ou unités d'origine diénique (diènes conjugués) qui est supérieur à 15% (% en moles) ; c'est ainsi que des élastomères diéniques tels que les caoutchoucs butyle ou les copolymères de diènes et d'alpha-oléfines type EPDM n'entrent pas dans la définition précédente et peuvent être notamment qualifiés d'élastomères diéniques "essentiellement saturés" (taux de motifs d'origine diénique faible ou très faible, toujours inférieur à 15%). Dans la catégorie des élastomères diéniques "essentiellement insaturés", on entend en particulier par élastomère diénique "fortement insaturé" un élastomère diénique ayant un taux de motifs d'origine diénique (diènes conjugués) qui est supérieur à 50%.
Ces définitions étant données, on entend plus particulièrement par élastomère diénique susceptible d'être utilisé dans les compositions conformes à l'invention :
(a) tout homopolymère obtenu par polymérisation d'un monomère diène conjugué ayant de 4 à 12 atomes de carbone;
(b) tout copolymère obtenu par copolymérisation d'un ou plusieurs diènes conjugués entre eux ou avec un ou plusieurs composés vinyle aromatique ayant de 8 à 20 atomes de carbone;
(c) un copolymère ternaire obtenu par copolymérisation d'éthylène, d'une α-oléfine ayant 3 à 6 atomes de carbone avec un monomère diène non conjugué ayant de 6 à 12 atomes de carbone, comme par exemple les élastomères obtenus à partir d'éthylène, de propylène avec un monomère diène non conjugué du type précité tel que notamment l'hexadiène- 1,4, l'éthylidène norbornène, le dicyclopentadiène;
(d) un copolymère d'isobutène et d'isoprène (caoutchouc butyle), ainsi que les versions halogénées, en particulier chlorées ou bromées, de ce type de copolymère.
Bien qu'elle s'applique à tout type d'élastomère diénique, l'homme du métier du pneumatique comprendra que la présente invention est de préférence mise en œuvre avec des élastomères diéniques essentiellement insaturés, en particulier du type (a) ou (b) ci-dessus.
A titre de diènes conjugués conviennent notamment le butadiène-1,3, le 2-méthyl-l,3- butadiène, les 2,3-di(alkyle en Ci-C5)-l,3-butadiènes tels que par exemple le 2,3-diméthyl-l,3- butadiène, le 2,3-diéthyl-l,3-butadiène, le 2-méthyl-3-éthyl-l,3-butadiène, le 2-méthyl-3- isopropyl-l,3-butadiène, l'aryl-l,3-butadiène, le 1,3-pentadiène, le 2,4-hexadiène. A titre de composés vinylaromatique conviennent par exemple le styrène, l'ortho-, méta-, para- méthylstyrène, le mélange commercial "vinyle-toluène", le para-tertiobutylstyrène, les méthoxystyrènes, les chlorostyrènes, le vinylmésitylène, le divinylbenzène, le vinylnaphtalène.
Les copolymères peuvent contenir entre 99% et 20% en poids d'unités diéniques et entre 1% et 80% en poids d'unités vinylaromatique. Les élastomères peuvent avoir toute microstructure qui est fonction des conditions de polymérisation utilisées, notamment de la présence ou non d'un agent modifiant et/ou randomisant et des quantités d'agent modifiant et/ou randomisant employées. Les élastomères peuvent être par exemple à blocs, statistiques, séquencés, microséquencés, et être préparés en dispersion ou en solution ; ils peuvent être couplés et/ou étoilés ou encore fonctionnalisés avec un agent de couplage et/ou d'étoilage ou de fonctionnalisation. Pour un couplage à du noir de carbone, on peut citer par exemple des groupes fonctionnels comprenant une liaison C-Sn ou des groupes fonctionnels aminés tels que aminobenzophénone par exemple ; pour un couplage à une charge inorganique renforçante telle que silice, on peut citer par exemple des groupes fonctionnels silanol ou polysiloxane ayant une extrémité silanol (tels que décrits par exemple dans F 2 740 778 ou US 6 013 718 et WO 2008/141702), des groupes alkoxysilane (tels que décrits par exemple dans FR 2 765 882 ou US 5,977,238), des groupes carboxyliques (tels que décrits par exemple dans WO 01/92402 ou US 6 815 473, WO 2004/096865 ou US 2006/0089445) ou encore des groupes polyéthers (tels que décrits par exemple dans EP 1 127 909 ou US 6,503,973, WO 2009/000750 et WO 2009/000752). Comme autres exemples d'élastomères fonctionnalisés, on peut citer également des élastomères (tels que SBR, BR, N R ou IR) du type époxydés.
En résumé, l'élastomère diénique de la composition peut être choisi, par exemple, dans le groupe des élastomères diéniques fortement insaturés constitué par le caoutchouc naturel (NR), les polyisoprènes (I R) de synthèse, les polybutadiènes (en abrégé "BR"), les copolymères de butadiène, les copolymères d'isoprène et les mélanges de ces élastomères. De tels copolymères sont plus préférentiellement choisis dans le groupe constitué par les copolymères de butadiène- styrène (SBR), les copolymères d'isoprène-butadiène (BIR), les copolymères d'isoprène-styrène (SIR), les copolymères d'isoprène-butadiène-styrène (SBIR), les copolymères de butadiène- acrylonitrile (NBR), les copolymères de butadiène-styrène-acrylonitrile (NSBR) ou un mélange de deux ou plus de ces composés.
Selon l'invention, l'élastomère diénique comprend majoritairement au moins un polyisoprène. En d'autres termes, l'élastomère diénique comprend plus de 50% en masse de polyisoprène par rapport à la masse d'élastomère diénique. De préférence, l'élastomère diénique comprend de 60 à 100%, de préférence, de 70 à 100%, voire plus, en masse de polyisoprène par rapport à la masse d'élastomère diénique.
Par "polyisoprène", on entend de manière connue un homopolymère ou un copolymère d'isoprène, en d'autres termes un élastomère diénique choisi dans le groupe constitué par le caoutchouc naturel (NR) qui peut être plastifié ou peptisé, les polyisoprènes de synthèse (IR), les différents copolymères d'isoprène et les mélanges de ces élastomères. Parmi les copolymères d'isoprène, on citera en particulier les copolymères d'isobutène-isoprène (caoutchouc butyle IIR), d'isoprène-styrène (SIR), d'isoprène-butadiène (BIR) ou d'isoprène-butadiène-styrène (SBIR).
Le polyisoprène est de préférence choisi dans le groupe constitué par le caoutchouc naturel, les polyisoprènes de synthèse et leurs mélanges. De préférence, le polyisoprène comporte un taux massique d'unités cis 1,4 d'au moins 90%, plus préférentiellement d'au moins 98% par rapport à la masse du polyisoprène.
De préférence encore, le polyisoprène est du caoutchouc naturel, un polyisoprène de synthèse ou un de leurs mélanges. De préférence encore, le polyisoprène est du caoutchouc naturel.
Le taux d'élastomère diénique est compris entre 0 et 50 pce. Avantageusement, le taux d'élastomère diénique dans la composition de bande de roulement selon l'invention est compris entre 0 et 45, de préférence entre 5 et 40, de préférence encore entre 10 et 35 pce.
Qu'elles contiennent un seul polyisoprène ou un mélange d'au moins polyisoprène et d'un ou plusieurs élastomères diéniques, les compositions de l'invention peuvent être utilisées en association avec tout type d'élastomère synthétique autre que diénique, voire avec des polymères autres que des élastomères, par exemple des polymères thermoplastiques, étant entendu que la matrice élastomérique (incluant les élastomères diéniques et synthétiques, et les polymères précités) comprenne majoritairement du polyisoprène. Toutefois, de manière avantageuse, seuls l'élastomère thermoplastique styrénique et l'élastomère diénique constituent la matrice élastomère, ce qui signifie que la matrice élastomère ne contient pas d'autres élastomères que le premier élastomère diénique et l'élastomère thermoplastique styrénique.
11-2 Charge renforçante
La composition du pneumatique selon l'invention comprend avantageusement une charge renforçante, connue pour ses capacités à renforcer une composition de caoutchouc utilisable pour la fabrication de pneumatiques.
La charge renforçante peut comprendre du noir de carbone, une charge organique autre que le noir de carbone, une charge inorganique ou le mélange d'au moins deux de ces charges. De préférence, la charge renforçante comprend un noir de carbone, une charge inorganique renforçante ou un de leurs mélanges. Plus préférentiellement encore la charge renforçante comprend majoritairement du noir de carbone et minoritairement une charge inorganique. De manière particulièrement avantageuse, la charge renforçante comprend de 50 à 100% en masse de noir de carbone, de préférence de 55 à 90% en masse, de préférence de 60 à 80% en masse.
Une telle charge renforçante consiste typiquement en des particules dont la taille moyenne (en masse) est inférieure au micromètre, généralement inférieure à 500 nm, le plus souvent comprise entre 20 et 200 nm, en particulier et plus préférentiellement comprise entre 20 et 150 nm.
Selon l'invention, le taux de charge renforçante, de préférence la charge renforçante comprenant majoritairement du noir de carbone, peut être compris dans un domaine allant de 10 à 160 pce, de préférence de 25 à 100 pce, de préférence de 35 à 85 pce, de préférence de 45 à 65 pce.
Les noirs utilisables dans le cadre de la présente invention peuvent être tout noir conventionnellement utilisé dans les pneumatiques ou leurs bandes de roulement (noirs dits de grade pneumatique). Parmi ces derniers, on citera plus particulièrement les noirs de carbone renforçants des séries 100, 200, 300, ou les noirs de série 500, 600 ou 700 (grades ASTM), comme par exemple les noirs NI 15, N134, N234, N326, N330, N339, N347, N375, N550, N683, N772). Ces noirs de carbone peuvent être utilisés à l'état isolé, tels que disponibles commercialement, ou sous tout autre forme, par exemple comme support de certains des additifs de caoutchouterie utilisés. Les noirs de carbone pourraient être par exemple déjà incorporés à l'élastomère diénique, notamment isoprénique sous la forme d'un masterbatch (voir par exemple demandes WO 97/36724 ou WO 99/16600). La surface spécifique BET des noirs de carbone est mesurée selon la norme D6556-10 [méthode multipoints (au minimum 5 points) - gaz : azote - domaine de pression relative Ρ/Ρ0 : 0.1 à 0.3]. Comme exemples de charges organiques autres que des noirs de carbone, on peut citer les charges organiques de polyvinyle fonctionnalisé telles que décrites dans les demandes WO 2006/069792, WO 2006/069793, WO 2008/003434 et WO 2008/003435. Par "charge inorganique renforçante", doit être entendu ici toute charge inorganique ou minérale, quelles que soient sa couleur et son origine (naturelle ou de synthèse), encore appelée charge "blanche", charge "claire" ou même charge "non noire" par opposition au noir de carbone, capable de renforcer à elle seule, sans autre moyen qu'un agent de couplage intermédiaire, une composition de caoutchouc destinée à la fabrication de bandages pneumatiques, en d'autres termes apte à remplacer, dans sa fonction de renforcement, un noir de carbone conventionnel de grade pneumatique ; une telle charge se caractérise généralement, de manière connue, par la présence de groupes hydroxyle (-OH) à sa surface. En d'autres termes, sans agent de couplage, la charge inorganique ne permet pas de renforcer, ou pas suffisamment, la composition et n'est par conséquent pas comprise dans la définition de « charge inorganique renforçante ».
Comme charges inorganiques renforçantes conviennent notamment des charges minérales du type siliceuse, préférentiellement la silice (Si02). La silice utilisée peut être toute silice renforçante connue de l'homme du métier, notamment toute silice précipitée ou pyrogénée présentant une surface BET ainsi qu'une surface spécifique CTAB toutes deux inférieures à 450 m2/g, de préférence de 30 à 400 m2/g, notamment entre 60 et 300 m2/g- A titres de silices précipitées hautement dispersibles (dites "HDS"), on citera par exemple les silices « Ultrasil » 7000 et « Ultrasil » 7005 de la société Degussa, les silices « Zeosil » 1165MP, 1135MP et 1115MP de la société hodia, la silice « Hi-Sil » EZ150G de la société PPG, les silices « Zeopol » 8715, 8745 et 8755 de la Société Huber, les silices à haute surface spécifique telles que décrites dans la demande WO 03/016387.
Dans le présent exposé, en ce qui concerne la silice, la surface spécifique BET est déterminée de manière connue par adsorption de gaz à l'aide de la méthode de Brunauer-Emmett-Teller décrite dans "The Journal of the American Chemical Society" Vol. 60, page 309, février 1938, plus précisément selon la norme française NF ISO 9277 de décembre 1996 (méthode volumétrique multipoints (5 points) - gaz: azote - dégazage: lheure à 160°C - domaine de pression relative p/po : 0.05 à 0.17). La surface spécifique CTAB est la surface externe déterminée selon la norme française NF T 45-007 de novembre 1987 (méthode B).
Conviennent également comme charges inorganiques renforçantes les charges minérales du type alumineuse, en particulier de l'alumine (Al203) ou des (oxyde) hydroxydes d'aluminium, ou encore des oxydes de titane renforçants, par exemple décrits dans US 6,610,261 et US 6,747,087. L'état physique sous lequel se présente la charge inorganique renforçante est indifférent, que ce soit sous forme de poudre, de microperles, de granulés, de billes ou toute autre forme densifiée appropriée. Bien entendu on entend également par charge inorganique renforçante des mélanges de différentes charges inorganiques renforçantes, en particulier de charges siliceuses et/ou alumineuses hautement dispersibles telles que décrites ci-dessus.
L'homme du métier comprendra qu'à titre de charge équivalente de la charge inorganique renforçante décrite dans le présent paragraphe, pourrait être utilisée une charge renforçante d'une autre nature, notamment organique, dès lors que cette charge renforçante serait recouverte d'une couche inorganique telle que silice, ou bien comporterait à sa surface des sites fonctionnels, notamment hydroxyles, nécessitant l'utilisation d'un agent de couplage pour établir la liaison entre la charge et l'élastomère.
Pour coupler la charge inorganique renforçante à l'élastomère diénique, on utilise de manière bien connue un agent de couplage (ou agent de liaison) au moins bifonctionnel destiné à assurer une connexion suffisante, de nature chimique et/ou physique, entre la charge inorganique (surface de ses particules) et l'élastomère diénique. On utilise en particulier des organosilanes ou des polyorganosiloxanes au moins bifonctionnels. L'homme du métier peut trouver des exemples d'agent de couplage dans les documents suivants : WO 02/083782, WO 02/30939, WO 02/31041, WO 2007/061550, WO 2006/125532, WO 2006/125533, WO 2006/125534, US 6 849 754, WO 99/09036, WO 2006/023815, WO 2007/098080, WO 2010/072685 et WO 2008/055986. La teneur en agent de couplage est avantageusement inférieure à 10 pce, étant entendu qu'il est en général souhaitable d'en utiliser le moins possible. Typiquement lorsque qu'une charge inorganique renforçante est présente, le taux d'agent de couplage représente de 0,5% à 15% en poids par rapport à la quantité de charge inorganique. Son taux est préférentiellement compris dans un domaine allant de 0,5 à 7,5 pce. Ce taux est aisément ajusté par l'homme du métier selon le taux de charge inorganique utilisé dans la composition.
La composition de caoutchouc conforme à l'invention peut également contenir, en complément des agents de couplage, des activateurs de couplage, des agents de recouvrement des charges inorganiques ou plus généralement des agents d'aide à la mise en œuvre susceptibles de manière connue, grâce à une amélioration de la dispersion de la charge dans la matrice de caoutchouc et à un abaissement de la viscosité des compositions, d'améliorer leur faculté de mise en œuvre à l'état cru, ces agents étant par exemple des silanes hydrolysables tels que des alkylaikoxysilanes (notamment des alkyltriéthoxysilanes), des polyols, des polyéthers (par exemple des polyéthylèneglycols), des aminés primaires, secondaires ou tertiaires (par exemple des trialcanol-amines), des POS hydroxylés ou hydrolysables, par exemple des α,ω-dihydroxy- polyorganosiloxanes (notamment des α,ω-dihydroxy-polydiméthylsiloxanes), des acides gras comme par exemple l'acide stéarique.
11-3 Additifs divers
La composition de de bande de roulement selon l'invention peut comporter également tout ou partie des additifs usuels habituellement utilisés dans les compositions d'élastomères comme par exemple des plastifiants, des pigments, des agents de protection tels que cires anti-ozone, anti-ozonants chimiques, anti-oxydants, des agents anti-fatigue, un système de réticulation, des accélérateurs ou retardateurs de vulcanisation, des activateurs de vulcanisation. Selon l'invention, le système de réticulation est de préférence à base de soufre, mais il peut être également à base de donneurs de soufre, de peroxyde, de bismaléimides ou de leurs mélanges.
11-4 Pneumatiques
La présente invention peut être appliquée à tout type de pneumatique. Le pneumatique selon l'invention peut être destiné à équiper des véhicules à moteur de type tourisme, SUV ("Sport Utility Vehicles"), ou deux roues (notamment motos), ou avions, ou encore des véhicules industriels choisis parmi camionnettes, « Poids-lourd » - c'est-à-dire métro, bus, engins de transport routier (camions, tracteurs, remorques), véhicules hors-la-route tels qu'engins agricoles ou de génie civil -, et autres.
Ainsi, la présente invention a également pour objet un pneumatique comprenant une bande de roulement selon l'invention.
Un pneumatique comprend notamment une bande de roulement dont la surface de roulement est pourvue d'une sculpture formée par une pluralité de rainures délimitant des éléments en relief (blocs, nervures) de façon à générer des arêtes de matière ainsi que des creux. Ces rainures représentent un volume de creux qui, rapporté au volume total de la bande de roulement (incluant à la fois le volume d'éléments en relief et celui de toutes les rainures) s'exprime par un pourcentage désigné dans la présente par "taux de creux volumique". Un taux de creux volumique égal à zéro indique une bande de roulement sans rainure ni creux.
La présente invention est particulièrement bien adaptée aux pneumatiques destinés aux véhicules de génie civil et aux poids lourds, plus particulièrement aux véhicules de génie civil dont les pneumatiques sont soumis à des contraintes bien spécifiques. Ainsi, avantageusement, le pneumatique selon l'invention est un pneumatique pour les véhicules de génie civil ou poids lourds, de préférence de génie civil.
La bande de roulement selon l'invention peut avoir une ou plusieurs rainures dont la profondeur moyenne va de 15 à 120 mm, de préférence 65 à 120 mm. Les pneumatiques selon l'invention peuvent avoir un diamètre allant de 20 à 63 pouces, de préférence de 35 à 63 pouces.
Par ailleurs, le taux moyen de creux volumique sur l'ensemble de la bande de roulement selon l'invention peut être compris dans un domaine allant de 5 à 40 %, de préférence de de 5 à 25 %.
11-5 Préparation des compositions de caoutchouc
Les compositions utilisées dans les pneumatiques de l'invention, peuvent être fabriquées dans des mélangeurs appropriés, en utilisant deux phases de préparation successives selon une procédure générale bien connue de l'homme du métier : une première phase de travail ou malaxage thermo-mécanique (parfois qualifiée de phase "non-productive") à haute température, jusqu'à une température maximale comprise entre 80°C et 140°C, de préférence entre 100°C et 125°C, suivie d'une seconde phase de travail mécanique (parfois qualifiée de phase "productive") à plus basse température, typiquement inférieure à 100°C, par exemple entre 60°C et 100°C, phase de finition au cours de laquelle est incorporé l'agent de réticulation chimique, en particulier le système de réticulation.
A titre d'exemple, la première phase (non-productive) est conduite en une seule étape thermomécanique au cours de laquelle on introduit, dans un mélangeur approprié tel qu'un mélangeur interne usuel, tous les constituants nécessaires et autres additifs divers, à l'exception du système de réticulation. La durée totale du malaxage, dans cette phase non-productive, est de préférence comprise entre 2 et 10 min. Après refroidissement du mélange ainsi obtenu au cours de la première phase non-productive, on incorpore alors le système de réticulation à basse température, généralement dans un mélangeur externe tel qu'un mélangeur à cylindres; le tout est alors mélangé (phase productive) pendant quelques minutes, par exemple entre 5 et 15 min.
La première étape de malaxage est généralement réalisée en incorporant la charge renforçante à la matrice élastomérique en une ou plusieurs fois en malaxant thermomécaniquement. Dans le cas où la charge renforçante, en particulier le noir de carbone, est déjà incorporée en totalité ou en partie à la matrice élastomérique sous la forme d'un masterbatch comme cela est décrit par exemple dans les demandes WO 97/36724 ou WO 99/16600, c'est le masterbatch qui est directement malaxé et le cas échéant on incorpore les autres élastomères ou charges renforçantes présents dans la composition qui ne sont pas sous la forme de masterbatch, ainsi que les additifs autres que le système de réticulation.
La composition finale ainsi obtenue est ensuite calandrée par exemple sous la forme d'une feuille ou d'une plaque, notamment pour une caractérisation au laboratoire, ou encore extrudée sous la forme d'un profilé de caoutchouc utilisable par exemple comme bande de roulement. L'invention concerne les pneumatiques et les bandes de roulement de pneumatique précédemment décrits tant à l'état cru (c'est à dire, avant cuisson) qu'à l'état cuit (c'est à dire, après réticulation ou vulcanisation). Les caractéristiques précitées de la présente invention, ainsi que d'autres, seront mieux comprises à la lecture de la description suivante de plusieurs exemples de réalisation de l'invention, donnés à titre illustratif et non limitatif.
III- EXEMPLES lll-l Mesures et tests utilisés héométrie :
Les mesures sont effectuées à 150°C avec un rhéomètre à chambre oscillante, selon la norme DIN 53529 - partie 3 (juin 1983). L'évolution du couple rhéométrique, ACouple, en fonction du temps décrit l'évolution de la rigidification de la composition par suite de la réaction de vulcanisation. Les mesures sont traitées selon la norme DIN 53529 - partie 2 (mars 1983) : T0 est le délai d'induction (exprimé en min), c'est-à-dire le temps nécessaire au début de la réaction de vulcanisation ; Ta (par exemple T99 ) est le temps nécessaire pour atteindre une conversion de %, c'est-à-dire % (par exemple 99%) de l'écart entre les couples minimum et maximum. On mesure également la constante de vitesse de conversion notée K (exprimée en min"1), d'ordre 1, calculée entre 30% et 80% de conversion, qui permet d'apprécier la cinétique de vulcanisation. Les résultats sont présentés en base 100. Résistance à la propagation de fissure :
La vitesse de fissuration a été mesurée sur des éprouvettes de compositions de caoutchouc, à l'aide d'une machine de fatigue cyclique (« Elastomer Test System ») du type 381, de la société MTS, comme expliqué ci-après. La résistance à la fissuration est mesurée à l'aide de tractions répétées sur une éprouvette initialement accommodée (après un premier cycle de traction), puis entaillée. L'éprouvette de traction est constituée par une plaque de caoutchouc de forme parallélépipédique, par exemple d'épaisseur comprise entre 1 et 2 mm, de longueur entre 130 et 170 mm et de largeur entre 10 et 15 mm, les deux bords latéraux étant chacun recouverts dans le sens de la longueur d'un bourrelet de caoutchouc cylindrique (diamètre 5 mm) permettant l'ancrage dans les mors de la machine de traction. Les éprouvettes ainsi préparées sont testées à l'état neuf. Le test a été conduit à l'air, à une température de 20°C, 60°C ou 80°C. Après accommodation, 3 entailles très fines de longueur comprise entre 15 et 20 mm sont réalisées à l'aide d'une lame de rasoir, à mi- largeur et alignées dans le sens de la longueur de l'éprouvette, une à chaque extrémité et une au centre de cette dernière, avant le démarrage du test. A chaque cycle de traction, le taux de déformation de l'éprouvette est ajusté automatiquement de manière à maintenir constant le taux de restitution d'énergie (quantité d'énergie libérée lors de la progression de la fissure), à une valeur inférieure ou égale à environ 500 J/m2. La vitesse de propagation de fissure est mesurée en nanomètre par cycle.
La résistance à la propagation de fissure est exprimée en unités relatives (u.r.) en divisant la vitesse de propagation du témoin par celle du mélange, les vitesses étant mesurées au même taux de restitution d'énergie.
Propriétés dynamiques (après cuisson) :
Les propriétés dynamiques G*(50%) et tan(5)max sont mesurées sur un viscoanalyseur (Metravib V A4000), selon la norme ASTM D 5992 - 96. On enregistre la réponse d'un échantillon de composition vulcanisée (éprouvette cylindrique de 4 mm d'épaisseur et de 400 mm2 de section), soumis à une sollicitation sinusoïdale en cisaillement simple alterné, à la fréquence de 10Hz, à 60°C selon la norme ASTM D 1349 - 99. On effectue un balayage en amplitude de déformation crête à crête de 0,1 à 50% (cycle aller), puis de 50% à 1 % (cycle retour). Les résultats exploités sont le module complexe de cisaillement dynamique (G*) et le facteur de perte tan(5). Pour le cycle retour, on indique la valeur maximale de tan(5) observée (tan(ô)max), ainsi que le module complexe de cisaillement dynamique G* à 50% de déformation à 60°C. On rappelle que la valeur de G* 50% retour à 60°C est représentative de la rigidité du matériau : plus G* 50% retour à 60°C est élevé, plus le matériau est rigide. Par ailleurs, plus la valeur de tan(5)max à 60°C est basse, plus la composition aura une hystérèse faible et donc une résistance au roulement améliorée. Les résultats sont présentés en base 100.
111-2 Préparation des compositions
On procède pour les essais qui suivent de la manière suivante : on introduit dans un mélangeur interne (taux de remplissage final : environ 70% en volume), dont la température initiale de cuve est d'environ 60 °C, successivement, l'élastomère diénique, l'élastomère thermoplastique styrénique, la charge renforçante ainsi que les divers autres ingrédients à l'exception du système de vulcanisation. On conduit alors un travail thermomécanique (phase non-productive) en une étape, qui dure au total environ 3 à 4 min, jusqu'à atteindre une température maximale de « tombée » de 165°C.
On récupère le mélange ainsi obtenu, on le refroidit puis on incorpore du soufre et un accélérateur type sulfénamide, sur un mélangeur (homo-finisseur) à 30 °C, en mélangeant le tout (phase productive) pendant un temps approprié (par exemple entre 5 et 12 min).
Les compositions ainsi obtenues sont ensuite calandrées soit sous la forme de plaques (épaisseur de 2 à 3 mm) ou de feuilles fines de caoutchouc pour la mesure de leurs propriétés physiques ou mécaniques, soit extrudées sous la forme d'un profilé. 111-3 Essais de compositions de caoutchouc
La formulation des compositions C et T est décrite dans le tableau I. Ces compositions ont été préparées conformément au procédé décrit au point 111-2 ci-dessus. La composition C est conforme à l'invention en ce que la matrice élastomère comprend du caoutchouc naturel et plus 50 pce d'un élastomère thermoplastique styrénique.
La composition témoin T n'est pas conforme à la présente invention car elle contient exactement 50 pce d'élastomère thermoplastique styrénique, qui est en-dehors de la page de valeur revendiquée pour le taux d'élastomère thermoplastique styrénique.
La résistance à la propagation de fissure, la rigidité et la résistance au roulement de ces compositions ont été mesurées conformément aux protocoles décrits au point lll-l ci-dessus. Les résultats sont donnés en base 100 par rapport à la composition témoin T. Pour le délai d'induction T0 et la constante de vitesse de conversion K, une valeur supérieure à celle du témoin indique respectivement, une meilleure sécurité à la vulcanisation précoce de la formulation et une meilleure vitesse de cuisson. Pour la résistance à la propagation de fissure et le G* 50% de déformation à 60°C, une valeur supérieure à celle du témoin indique un résultat amélioré c'est-à-dire respectivement une résistance supérieure à la propagation de fissure et une rigidité supérieure. Pour la valeur de tan(5)max à 60°C, plus la valeur est basse, plus la composition aura une hystérèse faible et donc une résistance au roulement améliorée. L'ensemble des résultats est consigné dans le tableau II.
Tableau I
Figure imgf000019_0001
(1) caoutchouc naturel
(2) SIS « D1161 » commercialisé par Kraton
(3) « Ultrasil VN3 » commercialisé par Evonik
(4) N115 polyéthylène glycol de Mn 6000-20000 g/mol de Sasol Mari
N-cyclohexyl-2-benzothiazol-sulfénamide, « Santocure CBS », commercialisé par Flexsys
Tableau II
Figure imgf000020_0001
Les résultats montrent une très forte amélioration de la résistance à la propagation de fissure de la composition de bande de roulement selon l'invention par rapport à la composition témoin. Cette amélioration s'accompagne également d'un gain en sécurité à la vulcanisation précoce sans dégrader la vitesse de cuisson ainsi que d'un gain en rigidité et une amélioration de la résistance au roulement. Ainsi, la présente invention permet d'améliorer significativement la durée de vie de pneumatiques, puisque ces ceux-ci deviennent beaucoup moins sensibles à la propagation de fissure au niveau de leur bande de roulement, tout en améliorant leurs propriétés de cuisson, la résistance au roulement et la rigidité.

Claims

REVENDICATIONS
Bande de roulement de pneumatique comprenant une composition à base d'au moins : une matrice élastomère comprenant,
o entre 50 et 100 pce d'élastomère thermoplastique styrénique comprenant au moins un segment rigide styrénique (TPS) et au moins un segment souple diénique comprenant au moins 20% en masse d'unités diéniques conjuguées par rapport à la masse du segment souple diénique, les unités diéniques conjuguées pouvant être totalement ou partiellement hydrogénées,
o entre 0 et 50 pce d'élastomère diénique comprenant plus de 50% en masse de polyisoprène par rapport à la masse d'élastomère diénique,
une charge renforçante.
Bande de roulement selon la revendication 1, dans laquelle l'élastomère diénique comprend de 60 à 100%, de préférence de 70 à 100%, en masse de polyisoprène par rapport à la masse d'élastomère diénique.
Bande de roulement selon la revendication 1 ou 2, dans laquelle le polyisoprène comporte un taux massique d'unités 1,4-cis d'au moins 90% de la masse du polyisoprène.
Bande de roulement selon la revendication 3, dans laquelle le polyisoprène est du caoutchouc naturel, un polyisoprène de synthèse ou un de leurs mélanges.
Bande de roulement selon l'une quelconque des revendications 1 à 4, dans laquelle le segment souple diénique du TPS comprend au moins 50% en masse, de préférence au moins 60% en masse, d'unités diéniques conjuguées par rapport à la masse du segment souple diénique du TPS.
Bande de roulement selon l'une quelconque des revendications 1 à 5, dans laquelle les unités diéniques conjuguées du segment souple diénique du TPS contiennent des unités 1,3- butadiène et/ou des unités isoprène.
Bande de roulement selon l'une quelconque des revendications 1 à 6, dans laquelle le segment rigide styrénique du TPS présente une température de transition vitreuse supérieure à 80°C.
8. Bande de roulement selon l'une quelconque des revendications 1 à 7, dans laquelle le segment rigide styrénique du TPS est un polystyrène.
9. Bande de roulement selon l'une quelconque des revendications 1 à 8, dans laquelle l'élastomère thermoplastique styrénique comprend un élastomère thermoplastique styrénique comportant au moins deux segments rigides styréniques.
10. Bande de roulement selon la revendication 9, dans laquelle l'élastomère thermoplastique styrénique comprend majoritairement un élastomère thermoplastique styrénique comportant au moins deux segments rigides styréniques.
11. Bande de roulement selon la revendication 9 ou 10, dans laquelle l'élastomère thermoplastique styrénique comportant au moins deux segments rigides styréniques est un tribloc constitué de deux segments rigides styréniques et d'un segment souple diénique.
12. Bande de roulement selon la revendication 11, dans laquelle le tribloc constitué de deux segments rigides styréniques et d'un segment souple diénique est choisi dans le groupe constitué par le copolymère bloc styrène/ butadiène/ styrène (SBS), le styrène/ isoprène/ styrène (SIS), le styrène/ butadiène/ isoprène/ styrène (SBIS) et les mélanges de ces copolymères.
13. Bande de roulement selon l'une quelconque des revendications 9 à 12, dans laquelle l'élastomère thermoplastique styrénique comprend en outre un dibloc comportant un segment rigide styrénique relié à un segment souple diénique.
14. Bande de roulement selon la revendication 13, dans laquelle le dibloc comportant un segment rigide styrénique relié à un segment souple diénique est choisi dans le groupe constitué par le copolymère bloc styrène/ butadiène (SB), le styrène/ isoprène (SI), styrène/ butadiène/ isoprène (SBI) et les mélanges de ces copolymères.
15. Bande de roulement selon l'une quelconque des revendications 1 à 14, dans laquelle une fraction des unités diéniques conjuguées du segment souple diénique du TPS est hydrogénée.
16. Bande de roulement selon l'une quelconque des revendications 1 à 14, dans laquelle la totalité des unités diéniques conjuguées du segment souple diénique du TPS est hydrogénée.
17. Bande de roulement selon les revendications 11 et 16, dans laquelle le tribloc constitué de deux segments rigides styréniques et d'un segment souple diénique est choisi dans le groupe constitué par le copolymère bloc styrène/ éthylène/ butylène/ styrène (SEBS), le styrène/ éthylène/ propylène/ styrène (SEPS), le styrène/ éthylène/ éthylène/ propylène/ styrène (SEEPS) et les mélanges de ces copolymères.
18. Bande de roulement selon les revendications 13 et 16, dans laquelle le dibloc comportant un segment rigide styrénique et un segment souple diénique est choisi dans le groupe constitué par le copolymère bloc styrène/ éthylène/ butylène (SEB), le styrène/ éthylène/ propylène (SEP), le styrène/ éthylène/ éthylène/ propylène (SEEP) et les mélanges de ces copolymères.
19. Bande de roulement selon l'une quelconque des revendications 1 à 18, dans laquelle l'élastomère thermoplastique styrénique présente une température de transition vitreuse inférieure à -20°C, préférentiellement inférieure à -30°C.
20. Bande de roulement selon l'une quelconque des revendications 1 à 19, dans laquelle le taux d'élastomère thermoplastique styrénique est compris entre 55 et 100 pce, préférentiellement entre 60 et 95 pce, plus préférentiellement entre 65 et 90 pce.
21. Bande de roulement selon l'une quelconque des revendications 1 à 20, dans laquelle la charge renforçante comprend un noir de carbone, une charge inorganique renforçante ou un de leurs mélanges.
22. Bande de roulement selon la revendication 21, dans laquelle la charge inorganique renforçante est une silice.
23. Bande de roulement selon la revendication 21 ou 22, dans laquelle la charge renforçante comprend de 50 à 100% en masse de noir de carbone, de préférence de 55 à 90% en masse, de préférence de 60 à 80% en masse.
24. Bande de roulement selon l'une quelconque des revendications 1 à 23, dans laquelle le taux de charge renforçante est compris dans un domaine allant de 10 à 160 pce, de préférence de 25 à 100 pce.
25. Pneumatique comprenant une bande de roulement selon l'une quelconque des revendications 1 à 24.
26. Pneumatique selon la revendication 25, dans lequel le pneumatique est un pneumatique hors la route, de préférence un pneumatique de véhicule de génie civil.
PCT/FR2017/052640 2016-09-29 2017-09-28 Bande de roulement pour pneumatique comportant un élastomère thermoplastique WO2018060631A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780060639.0A CN109789729A (zh) 2016-09-29 2017-09-28 包含热塑性弹性体的轮胎胎面
BR112019006296-3A BR112019006296B1 (pt) 2016-09-29 2017-09-28 Banda de rodagem para pneumático que compreende um elastômero termoplástico e pneumático compreendendo a mesma
JP2019517265A JP7194102B2 (ja) 2016-09-29 2017-09-28 熱可塑性エラストマーを含むタイヤトレッド

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1659337A FR3056595A1 (fr) 2016-09-29 2016-09-29 Bande de roulement pour pneumatique comportant un elastomere thermoplastique
FR1659337 2016-09-29

Publications (1)

Publication Number Publication Date
WO2018060631A1 true WO2018060631A1 (fr) 2018-04-05

Family

ID=57349031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2017/052640 WO2018060631A1 (fr) 2016-09-29 2017-09-28 Bande de roulement pour pneumatique comportant un élastomère thermoplastique

Country Status (4)

Country Link
JP (1) JP7194102B2 (fr)
CN (1) CN109789729A (fr)
FR (1) FR3056595A1 (fr)
WO (1) WO2018060631A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112218915A (zh) * 2018-05-31 2021-01-12 米其林集团总公司 具有包括一种或多种热塑性弹性体和一种或多种合成二烯弹性体的外胎侧的轮胎

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3104597B1 (fr) * 2019-12-16 2021-11-12 Michelin & Cie Composition de caoutchouc
FR3104487B1 (fr) * 2019-12-17 2021-11-05 Michelin & Cie Stratifie elastomerique

Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2740778A1 (fr) 1995-11-07 1997-05-09 Michelin & Cie Composition de caoutchouc a base de silice et de polymere dienique fonctionalise ayant une fonction silanol terminale
WO1997036724A2 (fr) 1996-04-01 1997-10-09 Cabot Corporation Nouveaux materiaux composites elastomeres, et procede et appareil s'y rapportant
FR2765882A1 (fr) 1997-07-11 1999-01-15 Michelin & Cie Composition de caoutchouc a base de noir de carbone ayant de la silice fixee a sa surface et de polymere dienique fonctionnalise alcoxysilane
WO1999009036A1 (fr) 1997-08-21 1999-02-25 Osi Specialties, Inc. Agents de couplage a base de mercaptosilanes bloques, utilises dans des caoutchoucs a charge
WO1999016600A1 (fr) 1997-09-30 1999-04-08 Cabot Corporation Melanges composites a base d'elastomere et procedes d'elaboration
EP1127909A1 (fr) 2000-02-24 2001-08-29 Société de Technologie Michelin Composition de caoutchouc vulcanisable, utilisable pour fabriquer un pneumatique, et pneumatique comprenant cette composition
WO2001092402A1 (fr) 2000-05-26 2001-12-06 Societe De Technologie Michelin Composition de caoutchouc utilisable comme bande de roulement de pneumatique
WO2002031041A1 (fr) 2000-10-13 2002-04-18 Societe De Technologie Michelin Composition de caoutchouc comportant a titre d'agent de couplage un organosilane polyfonctionnel
WO2002030939A1 (fr) 2000-10-13 2002-04-18 Societe De Technologie Michelin Organosilane polyfonctionnel utilisable comme agent de couplage et son procede d'obtention
WO2002083782A1 (fr) 2001-04-10 2002-10-24 Societe De Technologie Michelin Pneumatique et bande de roulement comportant comme agent de couplage un tetrasulfure de bis-alkoxysilane
WO2003016387A1 (fr) 2001-08-13 2003-02-27 Societe De Technologie Michelin Composition de caoutchouc dienique pour pneumatique comprenant une silice specifique comme charge renforcante
US6610261B1 (en) 1997-11-28 2003-08-26 COMPAGNIE GéNéRALE DES ETABLISSEMENTS MICHELIN - MICHELIN & CIE Reinforcing aluminum-based filler and rubber composition comprising such a filter
US6747087B2 (en) 1999-05-28 2004-06-08 Michelin Recherche Et Technique S.A. Rubber composition for a tire, based on diene elastomer and a reinforcing titanium oxide
WO2004096865A2 (fr) 2003-04-29 2004-11-11 Societe De Technologie Michelin Procede d’obtention d’un elastomere greffe a groupes fonctionnels le long de la chaîne et composition de caoutchouc
US6849754B2 (en) 2001-08-06 2005-02-01 Degussa Ag Organosilicon compounds
WO2006023815A2 (fr) 2004-08-20 2006-03-02 General Electric Company Compositions cycliques de silanes mercaptofonctionnels bloquees derivees de diol
WO2006069792A1 (fr) 2004-12-31 2006-07-06 Societe De Technologie Michelin Nanoparticules de polyvinylaromatique fonctionnalise
WO2006069793A1 (fr) 2004-12-31 2006-07-06 Societe De Technologie Michelin Composition elastomerique renforcee d'une charge de polyvinylaromatique fonctionnalise
WO2006125534A1 (fr) 2005-05-26 2006-11-30 Societe De Technologie Michelin Composition de caoutchouc pour pneumatique comportant un systeme de couplage organosilicique
WO2006125533A1 (fr) 2005-05-26 2006-11-30 Societe De Technologie Michelin Compostion de cautchouc pour pneumatique comportant un agent de couplage organosilicique et un agent de recouvrement de charge inorganique
WO2006125532A1 (fr) 2005-05-26 2006-11-30 Societe De Technologie Michelin Composition de caoutchouc pour pneumatique comportant un agent de couplage organosiloxane
WO2007061550A1 (fr) 2005-11-16 2007-05-31 Dow Corning Corporation Organosilanes et leur preparation et utilisation dans des compositions d’elastomere
WO2007098080A2 (fr) 2006-02-21 2007-08-30 Momentive Performance Materials Inc. Composition de matière de charge non agglomérante à base de silane organofonctionnel
WO2008003435A1 (fr) 2006-07-06 2008-01-10 Societe De Technologie Michelin Composition élastomèrique renforcée d'une charge de polymère vinylique non aromatique fonctionnalise
WO2008003434A1 (fr) 2006-07-06 2008-01-10 Societe De Technologie Michelin Nanoparticules de polymere vinylique fonctionnalise
WO2008055986A2 (fr) 2006-11-10 2008-05-15 Rhodia Operations Procede de preparation d'alcoxysilanes (poly)sulfures et nouveaux produits intermediaires dans ce procede
WO2008141702A1 (fr) 2007-04-18 2008-11-27 Societe De Technologie Michelin Elastomere dienique couple monomodal possedant une fonction silanol en milieu de chaine, son procede d'obtention et composition de caoutchouc le contenant
WO2009000752A1 (fr) 2007-06-28 2008-12-31 Societe De Technologie Michelin Procédé de préparation d'un copolymère diénique à bloc polyéther, composition de caoutchouc renforcée et pneumatique
WO2009000750A1 (fr) 2007-06-28 2008-12-31 Société de Technologie Michelin Procédé de préparation d'un copolymère diénique à bloc polyéther, copolymère diénique à bloc polyéther, composition de caoutchouc renforcée et pneumatique
WO2010072685A1 (fr) 2008-12-22 2010-07-01 Societe De Technologie Michelin Agent de couplage mercaptosilane bloque
FR2947275A1 (fr) * 2009-06-29 2010-12-31 Michelin Soc Tech Pneumatique dont la bande de roulement comprend un elastomere thermoplastique.
WO2015091926A1 (fr) * 2013-12-20 2015-06-25 Compagnie Generale Des Etablissements Michelin Bande de roulement pour pneumatique comportant un elastomere thermoplastique
WO2015091933A1 (fr) 2013-12-20 2015-06-25 Compagnie Generale Des Etablissements Michelin Pneumatique pour véhicules destinés a porter de lourdes charges
WO2016202970A1 (fr) * 2015-06-18 2016-12-22 Compagnie Generale Des Etablissements Michelin Pneumatique pour vehicules destines a porter de lourdes charges

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6598637B2 (en) * 2000-08-01 2003-07-29 The Goodyear Tire & Rubber Company Pneumatic tire having a rubber component containing a block styrene butadiene copolymer
JP4890834B2 (ja) 2005-10-27 2012-03-07 東洋ゴム工業株式会社 乗用車用空気入りタイヤ
JP5153254B2 (ja) * 2007-08-10 2013-02-27 住友ゴム工業株式会社 ゴム組成物
JP5657660B2 (ja) * 2009-07-31 2015-01-21 コンパニー ゼネラール デ エタブリッスマン ミシュラン はめ込みセルフシーリングプライを有する空気式タイヤ
BR112012015414A8 (pt) * 2009-12-23 2018-01-02 Michelin & Cie Composição de rodagem de pneu de avião, e, de veículo pesado
FR2954333B1 (fr) * 2009-12-23 2012-03-02 Michelin Soc Tech Pneumatique dont la zone sommet est pourvue d'une sous-couche comportant un elastomere thermoplastique
JP5529052B2 (ja) 2011-01-11 2014-06-25 東洋ゴム工業株式会社 ゴム組成物及び空気入りタイヤ
FR2975044B1 (fr) * 2011-05-12 2013-06-14 Michelin Soc Tech Pneumatique pourvu d'une bande de roulement comprenant un elastomere thermoplastique
KR20160052786A (ko) * 2011-08-31 2016-05-12 미쉐린 러쉐르슈 에 떼크니크 에스.에이. 개선된 눈길/건조 정지마찰력을 갖는 타이어 트레드
ITMI20112360A1 (it) 2011-12-22 2013-06-23 Pirelli Pneumatico auto-sigillante per ruote di veicoli
FR3015493B1 (fr) * 2013-12-20 2017-04-28 Michelin & Cie Pneumatique pour vehicules destines a porter de lourdes charges
FR3015492A1 (fr) * 2013-12-20 2015-06-26 Michelin & Cie Pneumatique pour vehicules destines a porter de lourdes charges

Patent Citations (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2740778A1 (fr) 1995-11-07 1997-05-09 Michelin & Cie Composition de caoutchouc a base de silice et de polymere dienique fonctionalise ayant une fonction silanol terminale
US6013718A (en) 1995-11-07 2000-01-11 Michelin & Cie Rubber composition based on silica and on functionalized diene polymer which has a silanol end functional group
WO1997036724A2 (fr) 1996-04-01 1997-10-09 Cabot Corporation Nouveaux materiaux composites elastomeres, et procede et appareil s'y rapportant
FR2765882A1 (fr) 1997-07-11 1999-01-15 Michelin & Cie Composition de caoutchouc a base de noir de carbone ayant de la silice fixee a sa surface et de polymere dienique fonctionnalise alcoxysilane
US5977238A (en) 1997-07-11 1999-11-02 Michelin & Cie Rubber composition based on carbon black having silica fixed to its surface and on diene polymer functionalized with alkoxysilane
WO1999009036A1 (fr) 1997-08-21 1999-02-25 Osi Specialties, Inc. Agents de couplage a base de mercaptosilanes bloques, utilises dans des caoutchoucs a charge
WO1999016600A1 (fr) 1997-09-30 1999-04-08 Cabot Corporation Melanges composites a base d'elastomere et procedes d'elaboration
US6610261B1 (en) 1997-11-28 2003-08-26 COMPAGNIE GéNéRALE DES ETABLISSEMENTS MICHELIN - MICHELIN & CIE Reinforcing aluminum-based filler and rubber composition comprising such a filter
US6747087B2 (en) 1999-05-28 2004-06-08 Michelin Recherche Et Technique S.A. Rubber composition for a tire, based on diene elastomer and a reinforcing titanium oxide
US6503973B2 (en) 2000-02-24 2003-01-07 Michelin Recherche Et Technique S.A. Vulcanizable rubber composition usable for the manufacture of a tire, and a tire comprising this composition
EP1127909A1 (fr) 2000-02-24 2001-08-29 Société de Technologie Michelin Composition de caoutchouc vulcanisable, utilisable pour fabriquer un pneumatique, et pneumatique comprenant cette composition
US6815473B2 (en) 2000-05-26 2004-11-09 Michelin Recherche Et Technique S.A. Rubber composition usable as a tire tread
WO2001092402A1 (fr) 2000-05-26 2001-12-06 Societe De Technologie Michelin Composition de caoutchouc utilisable comme bande de roulement de pneumatique
WO2002030939A1 (fr) 2000-10-13 2002-04-18 Societe De Technologie Michelin Organosilane polyfonctionnel utilisable comme agent de couplage et son procede d'obtention
WO2002031041A1 (fr) 2000-10-13 2002-04-18 Societe De Technologie Michelin Composition de caoutchouc comportant a titre d'agent de couplage un organosilane polyfonctionnel
WO2002083782A1 (fr) 2001-04-10 2002-10-24 Societe De Technologie Michelin Pneumatique et bande de roulement comportant comme agent de couplage un tetrasulfure de bis-alkoxysilane
US6849754B2 (en) 2001-08-06 2005-02-01 Degussa Ag Organosilicon compounds
WO2003016387A1 (fr) 2001-08-13 2003-02-27 Societe De Technologie Michelin Composition de caoutchouc dienique pour pneumatique comprenant une silice specifique comme charge renforcante
WO2004096865A2 (fr) 2003-04-29 2004-11-11 Societe De Technologie Michelin Procede d’obtention d’un elastomere greffe a groupes fonctionnels le long de la chaîne et composition de caoutchouc
US20060089445A1 (en) 2003-04-29 2006-04-27 Michelin Recherche Et Technique S.A. Process for obtaining a grafted elastomer having functional groups along the chain and a rubber composition
WO2006023815A2 (fr) 2004-08-20 2006-03-02 General Electric Company Compositions cycliques de silanes mercaptofonctionnels bloquees derivees de diol
WO2006069792A1 (fr) 2004-12-31 2006-07-06 Societe De Technologie Michelin Nanoparticules de polyvinylaromatique fonctionnalise
WO2006069793A1 (fr) 2004-12-31 2006-07-06 Societe De Technologie Michelin Composition elastomerique renforcee d'une charge de polyvinylaromatique fonctionnalise
WO2006125534A1 (fr) 2005-05-26 2006-11-30 Societe De Technologie Michelin Composition de caoutchouc pour pneumatique comportant un systeme de couplage organosilicique
WO2006125533A1 (fr) 2005-05-26 2006-11-30 Societe De Technologie Michelin Compostion de cautchouc pour pneumatique comportant un agent de couplage organosilicique et un agent de recouvrement de charge inorganique
WO2006125532A1 (fr) 2005-05-26 2006-11-30 Societe De Technologie Michelin Composition de caoutchouc pour pneumatique comportant un agent de couplage organosiloxane
WO2007061550A1 (fr) 2005-11-16 2007-05-31 Dow Corning Corporation Organosilanes et leur preparation et utilisation dans des compositions d’elastomere
WO2007098080A2 (fr) 2006-02-21 2007-08-30 Momentive Performance Materials Inc. Composition de matière de charge non agglomérante à base de silane organofonctionnel
WO2008003435A1 (fr) 2006-07-06 2008-01-10 Societe De Technologie Michelin Composition élastomèrique renforcée d'une charge de polymère vinylique non aromatique fonctionnalise
WO2008003434A1 (fr) 2006-07-06 2008-01-10 Societe De Technologie Michelin Nanoparticules de polymere vinylique fonctionnalise
WO2008055986A2 (fr) 2006-11-10 2008-05-15 Rhodia Operations Procede de preparation d'alcoxysilanes (poly)sulfures et nouveaux produits intermediaires dans ce procede
WO2008141702A1 (fr) 2007-04-18 2008-11-27 Societe De Technologie Michelin Elastomere dienique couple monomodal possedant une fonction silanol en milieu de chaine, son procede d'obtention et composition de caoutchouc le contenant
WO2009000752A1 (fr) 2007-06-28 2008-12-31 Societe De Technologie Michelin Procédé de préparation d'un copolymère diénique à bloc polyéther, composition de caoutchouc renforcée et pneumatique
WO2009000750A1 (fr) 2007-06-28 2008-12-31 Société de Technologie Michelin Procédé de préparation d'un copolymère diénique à bloc polyéther, copolymère diénique à bloc polyéther, composition de caoutchouc renforcée et pneumatique
WO2010072685A1 (fr) 2008-12-22 2010-07-01 Societe De Technologie Michelin Agent de couplage mercaptosilane bloque
FR2947275A1 (fr) * 2009-06-29 2010-12-31 Michelin Soc Tech Pneumatique dont la bande de roulement comprend un elastomere thermoplastique.
WO2015091926A1 (fr) * 2013-12-20 2015-06-25 Compagnie Generale Des Etablissements Michelin Bande de roulement pour pneumatique comportant un elastomere thermoplastique
WO2015091933A1 (fr) 2013-12-20 2015-06-25 Compagnie Generale Des Etablissements Michelin Pneumatique pour véhicules destinés a porter de lourdes charges
WO2016202970A1 (fr) * 2015-06-18 2016-12-22 Compagnie Generale Des Etablissements Michelin Pneumatique pour vehicules destines a porter de lourdes charges

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Rubber Technology Handbook Hofmann", 1989, HANSER PUBLISHERS, article "Table 3.7 Comparison of elastomers properties", pages: 162 - 163
THE JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 60, February 1938 (1938-02-01), pages 309

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112218915A (zh) * 2018-05-31 2021-01-12 米其林集团总公司 具有包括一种或多种热塑性弹性体和一种或多种合成二烯弹性体的外胎侧的轮胎

Also Published As

Publication number Publication date
JP2019530779A (ja) 2019-10-24
CN109789729A (zh) 2019-05-21
BR112019006296A2 (pt) 2019-07-02
JP7194102B2 (ja) 2022-12-21
FR3056595A1 (fr) 2018-03-30

Similar Documents

Publication Publication Date Title
EP3160759B1 (fr) Pneumatique pourvu d'une bande de roulement comprenant un élastomère thermoplastique et un élastomère diénique
EP3592808B1 (fr) Pneumatique muni d'une composition comprenant un elastomere riche en ethylene, un peroxyde et un acrylate de zinc
EP3310585B1 (fr) Pneumatique pourvu d'une bande de roulement comprenant un elastomere dienique et un systeme d'elastomeres thermoplastiques
WO2014016340A1 (fr) Pneumatique ayant une adherence sur sol mouille amelioree
FR3016886A1 (fr) Pneumatique pourvu d'une bande de roulement comprenant un elastomere thermoplastique
WO2018162855A1 (fr) Pneumatique muni d'une composition comprenant un elastomere riche en ethylene, un peroxyde et un derive d'acrylate polyfonctionnel
EP3310584B1 (fr) Pneumatique pourvu d'une bande de roulement comprenant un élastomère diénique, un élastomère thermoplastique et une résine thermoplastique comprenant des motifs polyphénylène éther
WO2011113899A1 (fr) Flanc pour pneumatique
WO2018104671A1 (fr) Pneumatique comprenant une composition de caoutchouc a base de polyisoprene epoxyde
WO2016202970A1 (fr) Pneumatique pour vehicules destines a porter de lourdes charges
WO2015091926A1 (fr) Bande de roulement pour pneumatique comportant un elastomere thermoplastique
WO2015091933A1 (fr) Pneumatique pour véhicules destinés a porter de lourdes charges
EP3541634B1 (fr) Pneumatique comprenant une bande de roulement comprenant un élastomère thermoplastique et un système de réticulation à base de soufre
WO2015091922A1 (fr) Pneumatique pour vehicules destines a porter de lourdes charges
FR3073858B1 (fr) Pneumatique pourvu d'un flanc externe comportant un plastifiant liquide presentant une basse temperature de transition vitreuse
WO2018060631A1 (fr) Bande de roulement pour pneumatique comportant un élastomère thermoplastique
WO2015091923A1 (fr) Pneumatique pour vehicules destines a porter de lourdes charges
WO2015091929A1 (fr) Pneumatique pour vehicules destines a porter de lourdes charges
WO2020079345A1 (fr) Pneumatique comprenant une composition de caoutchouc comprenant un polyurethane thermoplastique
WO2018104662A1 (fr) Composition de caoutchouc comprenant un élastomère dienique, un dérivé de polyacrylate et d'un élastomère thermoplastique spécifique
FR3099164A1 (fr) Composition de caoutchouc.
EP3083273B1 (fr) Pneumatique pour velocipede
FR3133857A1 (fr) Composition élastomérique aux propriétés améliorées
FR3081873A1 (fr) Pneumatique pourvu d'un flanc externe comportant un ou plusieurs elastomeres thermoplastiques et un ou plusieurs elastomeres dieniques synthetiques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17787495

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019517265

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019006296

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112019006296

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190328

122 Ep: pct application non-entry in european phase

Ref document number: 17787495

Country of ref document: EP

Kind code of ref document: A1