[go: up one dir, main page]

WO2018055985A1 - Polishing composition, polishing method in which same is used, and method for producing semiconductor substrate - Google Patents

Polishing composition, polishing method in which same is used, and method for producing semiconductor substrate Download PDF

Info

Publication number
WO2018055985A1
WO2018055985A1 PCT/JP2017/030786 JP2017030786W WO2018055985A1 WO 2018055985 A1 WO2018055985 A1 WO 2018055985A1 JP 2017030786 W JP2017030786 W JP 2017030786W WO 2018055985 A1 WO2018055985 A1 WO 2018055985A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
polishing composition
acid
accelerator
abrasive grains
Prior art date
Application number
PCT/JP2017/030786
Other languages
French (fr)
Japanese (ja)
Inventor
章太 鈴木
Original Assignee
株式会社フジミインコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジミインコーポレーテッド filed Critical 株式会社フジミインコーポレーテッド
Priority to JP2018540930A priority Critical patent/JP6916192B2/en
Publication of WO2018055985A1 publication Critical patent/WO2018055985A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a polishing composition, a polishing method using the same, and a method for manufacturing a semiconductor substrate.
  • the present invention mainly relates to a polishing composition preferably used for polishing a semiconductor substrate such as a silicon wafer, a polishing method using the same, and a method for manufacturing a semiconductor substrate.
  • CMP chemical mechanical polishing
  • Precise polishing using a polishing liquid is performed on the surface of materials such as metal, metalloid, nonmetal, and oxides thereof.
  • the surface of a silicon wafer used as a component of a semiconductor product is generally finished to a high-quality mirror surface through a lapping process (rough polishing process) and a polishing process (precision polishing process).
  • the polishing process typically includes a preliminary polishing process (preliminary polishing process) and a final polishing process (final polishing process).
  • a polishing composition used in polishing a silicon wafer generally contains abrasive grains and a polishing accelerator such as an alkali compound.
  • a polishing composition used for polishing a silicon wafer Patent Document 1 discloses a polishing composition for a silicon wafer containing water, silica particles, an alkali compound, a water-soluble polymer compound, and polyethylene glycol. ing.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a polishing composition that can effectively improve the polishing rate of an object to be polished.
  • the present inventor has conducted intensive research to solve the above problems. As a result, it was found that the above problems can be solved by using a polishing composition containing abrasive grains, a polishing accelerator having a nucleophilic parameter of 14.5 to 30 and water, and completed the present invention. It was.
  • the nucleophilic parameter is represented by the following formula (1).
  • a polishing composition capable of effectively improving the polishing rate of an object to be polished.
  • the polishing composition of the present invention contains abrasive grains, a polishing accelerator having a nucleophilic parameter represented by the following formula (1) of 14.5 to 30 and water.
  • the polishing rate of an object to be polished can be effectively improved.
  • the mechanism for obtaining such an effect is considered as follows. However, the following mechanism is just a guess, and the scope of the present invention is not limited thereby.
  • the object to be polished is a silicon wafer
  • Si (OH) x generated by nucleophilic reaction between silicon atoms and hydroxide ions (OH ⁇ ) and further hydrolysis by protons is generated. It is considered that the removal proceeds by scraping by mechanical action of abrasive grains or the like, or by dissolution by reaction with OH ⁇ . From this, it is considered that an important chemical reaction in polishing of an object to be polished is a nucleophilic reaction.
  • the present inventor has found that a polishing composition containing a polishing accelerator having a nucleophilic parameter represented by the above (1) in a specific range is a polishing object.
  • the present inventors have found that the polishing rate can be effectively improved.
  • the polishing accelerator having a nucleophilic parameter represented by the above formula (1) of 14.5 or more and 30 or less is a compound exhibiting nucleophilicity, and the polishing accelerator interacts with the surface of the object to be polished. It is considered that the covalent bond distance between atoms on the surface of the polishing object can be extended and the covalent bond can be weakened. Accordingly, it is considered that the polishing of the object to be polished is facilitated by the scraping by the mechanical action of the abrasive grains and the removal by the dissolution, and the polishing rate is improved.
  • the polishing composition of the present invention using a compound having a nucleophilic parameter in the range of 14.5 or more and 30 or less as a polishing accelerator can effectively improve the polishing rate of an object to be polished.
  • the polishing composition of the present invention contains abrasive grains, a polishing accelerator having a nucleophilic parameter represented by the above formula (1) of 14.5 or more and 30 or less, and water.
  • a polishing accelerator having a nucleophilic parameter represented by the above formula (1) of 14.5 or more and 30 or less and water.
  • the polishing composition of the present invention essentially contains abrasive grains.
  • the abrasive grains contained in the polishing composition have an action of mechanically polishing the object to be polished.
  • the abrasive used may be any of inorganic particles, organic particles, and organic-inorganic composite particles.
  • the inorganic particles include particles made of metal oxides such as silica, alumina, ceria, titania, silicon nitride particles, silicon carbide particles, and boron nitride particles.
  • Specific examples of the organic particles include polymethyl methacrylate (PMMA) particles.
  • PMMA polymethyl methacrylate
  • silica is preferable, and colloidal silica is particularly preferable.
  • Abrasive grains may be surface-modified. Since ordinary colloidal silica has a zeta potential value close to zero under acidic conditions, silica particles are not electrically repelled with each other under acidic conditions and are likely to agglomerate. In contrast, abrasive grains whose surfaces are modified so that the zeta potential has a relatively large negative value even under acidic conditions are strongly repelled from each other and dispersed well even under acidic conditions. As a result, the storage stability of the polishing composition can be improved.
  • Such surface-modified abrasive grains can be obtained, for example, by mixing a metal such as aluminum, titanium or zirconium or an oxide thereof with the abrasive grains and doping the surface of the abrasive grains. Further, the surface-modified abrasive grains may be colloidal silica obtained by chemically bonding a functional group of an organic acid to the surface of the abrasive grains and fixing an organic acid.
  • the lower limit of the average primary particle diameter of the abrasive grains is preferably 10 nm or more, more preferably 15 nm or more, and further preferably 20 nm or more.
  • the upper limit of the average primary particle diameter of the abrasive grains is preferably 200 nm or less, more preferably 150 nm or less, and further preferably 100 nm or less.
  • the polishing rate of the object to be polished by the polishing composition is further improved, and the occurrence of defects on the surface of the object to be polished after polishing with the polishing composition is further suppressed. be able to.
  • the average primary particle diameter of an abrasive grain is calculated based on the specific surface area of the abrasive grain measured by BET method, for example.
  • the lower limit of the average secondary particle diameter of the abrasive grains is preferably 15 nm or more, more preferably 20 nm or more, and further preferably 30 nm or more.
  • the upper limit of the average secondary particle diameter of the abrasive grains is preferably 300 nm or less, more preferably 260 nm or less, and further preferably 220 nm or less.
  • the secondary particles referred to here are particles formed by association of abrasive grains in the polishing composition, and the average secondary particle diameter of the secondary particles is measured by, for example, a dynamic light scattering method. be able to.
  • the lower limit of the content of the abrasive grains in the polishing composition is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, and 0.5% by mass or more. Further preferred. Further, the upper limit of the content of the abrasive grains in the polishing composition is preferably 50% by mass or less, more preferably 20% by mass or less, and further preferably 5% by mass or less. Within such a range, the polishing rate of the polishing object can be further improved, the cost of the polishing composition can be reduced, and the surface of the polishing object after polishing with the polishing composition can be reduced. It is possible to further suppress the occurrence of defects.
  • the polishing composition according to one embodiment of the present invention essentially contains water as a dispersion medium (solvent) in order to disperse or dissolve each component.
  • the dispersion medium may be a mixed solvent of water and an organic solvent for dispersing or dissolving each component.
  • organic solvent examples include acetone, acetonitrile, ethanol, methanol, isopropanol, glycerin, ethylene glycol, propylene glycol and the like, which are organic solvents miscible with water.
  • these organic solvents may be used without being mixed with water, and each component may be dispersed or dissolved and then mixed with water. These organic solvents can be used alone or in combination of two or more.
  • water does not contain impurities as much as possible from the viewpoint of inhibiting the contamination of the object to be cleaned and the action of other components.
  • water for example, water having a total content of transition metal ions of 100 ppb or less is preferable.
  • the purity of water can be increased by operations such as removal of impurity ions using an ion exchange resin, removal of foreign matters by a filter, distillation, and the like.
  • deionized water ion exchange water
  • pure water ultrapure water, distilled water, or the like is preferably used as the water.
  • the polishing composition of the present invention contains a polishing accelerator (hereinafter also simply referred to as a polishing accelerator) having a nucleophilic parameter represented by the following formula (1) of 14.5 or more and 30 or less.
  • the nucleophilic parameter is a parameter used as an index indicating the strength of nucleophilicity of a compound. From the test of amine reactivity with several benzhydryl derivatives having known electrophilicity, Calculated by equation (1). Moreover, since the polishing composition of the present invention essentially contains water, the nucleophilic parameter in the present invention is a value in water. In the present specification, the value of the nucleophilic parameter is specifically described in the reactivity parameter database (Mayr's Database of Reactivity Parameters) of Dr. Herbert Mayr of Ludwig-Maximilians-Universitat Munchen. (URL: http://www.cup.lmu.de/oc/mayr/reactionsdatebank2/). The value of the nucleophilic slope parameter is also described in the database.
  • the polishing accelerator used in the polishing composition of the present invention has a nucleophilic parameter of 14.5 or more and 30 or less.
  • Such a polishing accelerator is thought to be capable of extending the covalent bond distance between atoms on the surface of the polishing object and weakening the covalent bond by interacting with the surface of the polishing object. Therefore, it is considered that the polishing of the object to be polished is facilitated by the scraping by the mechanical action of the abrasive grains and the removal by the above-described dissolution, and the polishing rate is improved.
  • the nucleophilic parameter is preferably 16.5 or more, more preferably 17.0 or more, and even more preferably 17.5 or more, 18.2 The above is particularly preferable.
  • the nucleophilic parameter is preferably 24.0 or less, and more preferably 23.0 or less.
  • the nucleophilic parameter is preferably 14.5 or more and 24.0 or less, more preferably 14.5 or more and 23.0 or less, and 18.2 or more. More preferably, it is 23.0 or less.
  • the type of the polishing accelerator used in the polishing composition of the present invention is not particularly limited as long as the nucleophilic parameter is 14.5 or more and 30 or less.
  • it may be a compound such as an inorganic acid, an organic acid, an amine, or an amino acid, or a salt thereof.
  • the inorganic acid or salt thereof having a nucleophilic parameter of 14.5 or more and 30 or less include sulfurous acid and sodium sulfite.
  • Examples of the organic acid having a nucleophilic parameter of 14.5 or more and 30 or less include mercaptocarboxylic acid. Among mercaptocarboxylic acids, mercaptoacetic acid is preferable.
  • Examples of the amine having a nucleophilic parameter of 14.5 or more and 30 or less include dimethylamine, monomethylhydrazine, or cyclic amines such as piperazine, piperidine, hexamethyleneimine, and the like.
  • a cyclic amine having 7 to 10 ring members is preferable, and hexamethyleneimine is more preferable.
  • amino acids having a nucleophilic parameter of 14.5 or more and 30 or less include cysteine, proline and the like.
  • a polishing accelerator may be used independently and may use multiple types together.
  • the polishing accelerator used in the polishing composition of the present invention is at least one selected from the group consisting of cyclic amines having 7 to 10 ring members and mercaptocarboxylic acid.
  • the cyclic amine is hexamethyleneimine.
  • Hexamethyleneimine exhibits high stability in neutral to alkaline environments, and since hexamethyleneimine is difficult to adsorb on abrasive grains, each component in the polishing composition containing hexamethyleneimine is further stabilized. Thus, the polishing rate can be kept constant at a high level.
  • the mercaptocarboxylic acid is mercaptoacetic acid.
  • mercaptoacetic acid exhibits high stability in a neutral to alkaline environment, and since mercaptoacetic acid is difficult to adsorb to abrasive grains, each component in the polishing composition containing mercaptoacetic acid Is more stabilized and the polishing rate can be kept constant at a high level.
  • the content of the polishing accelerator contained in the polishing composition is not particularly limited, but is preferably 0.1% by mass or more with respect to the entire polishing composition. From the viewpoint of further effectively improving the polishing rate, the content of the polishing accelerator is more preferably 0.3% by mass or more, and further preferably 0.5% by mass or more.
  • the upper limit of the content of the polishing accelerator contained in the polishing composition is not particularly limited, but is preferably 5.0% by mass or less from the viewpoint of maintaining the surface quality of the object to be polished. The content is more preferably at most mass%, further preferably at most 1.0 mass%.
  • the content of the polishing accelerator refers to the kind of content when a kind of polishing accelerator is used alone. When two or more kinds of polishing accelerators are used in combination, it means the total content of two or more kinds of polishing accelerators.
  • the polishing composition of the present invention essentially contains abrasive grains, a polishing accelerator having a nucleophilic parameter represented by the above formula (1) of 14.5 to 30 and water, but in addition to the above components And may contain other additives. Here, it does not restrict
  • the polishing composition of the present invention can further contain a pH adjuster.
  • the pH can be adjusted by adding an appropriate amount of a pH adjusting agent.
  • the pH adjuster used as necessary to adjust the pH of the polishing composition to a desired value may be either acid or alkali, and may be either an inorganic compound or an organic compound. Good.
  • the acid include, for example, inorganic acids such as sulfuric acid, nitric acid, boric acid, carbonic acid, hypophosphorous acid, phosphorous acid and phosphoric acid; formic acid, acetic acid, propionic acid, butyric acid, valeric acid, 2-methylbutyric acid , N-hexanoic acid, 3,3-dimethylbutyric acid, 2-ethylbutyric acid, 4-methylpentanoic acid, n-heptanoic acid, 2-methylhexanoic acid, n-octanoic acid, 2-ethylhexanoic acid, benzoic acid, glycol Acids, salicylic acid, glyceric acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, maleic acid, phthalic acid, malic acid, tartaric acid, citric acid and lactic acid and other carboxylic acids, and methanesulf
  • alkali examples include alkali metal hydroxides or salts thereof such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, ammonia, amines, quaternary ammonium salts and the like. These pH regulators can be used alone or in combination of two or more.
  • the pH of the polishing composition according to one embodiment of the present invention is preferably 7.0 or more from the viewpoint of further improving the polishing rate of the object to be polished.
  • the pH of the polishing composition according to the present invention is more preferably 9.0 or more, and further preferably 10.0 or more.
  • the upper limit of the pH of the polishing composition of the present invention is not particularly limited, but is preferably 12.0 or less from the viewpoint of economy and handling safety of the polishing composition, and preferably 11.0 or less. More preferably.
  • pH of polishing composition uses the pH meter (For example, Horiba, Ltd.
  • LAQUA (trademark)
  • standard buffer solution phthalate pH buffer solution [pH: 4.01 (25)] ° C)
  • neutral phosphate pH buffer [pH: 6.86 (25 ° C)
  • carbonate pH buffer [pH: 10.01 (25 ° C)]
  • antiseptics and fungicides that may be included in the polishing composition if necessary include, for example, 2-methyl-4-isothiazolin-3-one and 5-chloro-2-methyl-4-isothiazoline-3 -Isothiazoline preservatives such as ON, paraoxybenzoates, phenoxyethanol and the like. These antiseptics and fungicides may be used alone or in combination of two or more.
  • the polishing composition of the present invention may be a one-component type or a multi-component type including a two-component type.
  • the polishing composition of the present invention may be prepared by diluting the stock solution of the polishing composition, for example, 10 times or more using a diluent such as water.
  • the polishing object to be polished using the polishing composition according to one embodiment of the present invention is not particularly limited, and examples include polishing objects having various materials and shapes.
  • the material of the object to be polished is, for example, silicon material, aluminum, nickel, tungsten, steel, tantalum, titanium, stainless steel or other metal or semimetal, or alloys thereof; quartz glass, aluminosilicate glass, glassy carbon Glass materials such as; ceramic materials such as alumina, silica, sapphire, silicon nitride, tantalum nitride, titanium carbide; compound semiconductor substrate materials such as silicon carbide, gallium nitride, gallium arsenide; resin materials such as polyimide resin; Can be mentioned.
  • polishing target object may be comprised with several material among the said materials.
  • a polishing object containing a silicon material is preferable. That is, it is preferable that the polishing composition according to one embodiment of the present invention is used for polishing a polishing object including a silicon material.
  • the silicon material preferably includes at least one material selected from the group consisting of silicon single crystal, amorphous silicon, and polysilicon.
  • the silicon material is more preferably a silicon single crystal or polysilicon, and particularly preferably a silicon single crystal, from the viewpoint that the effects of the present invention can be obtained more remarkably. That is, in one embodiment of the present invention, the polishing object is preferably a polishing object including single crystal silicon, and more preferably a single crystal silicon substrate (silicon wafer).
  • the shape of the object to be polished is not particularly limited.
  • the polishing composition according to the present invention can be preferably applied to polishing a polishing object having a flat surface such as a plate shape or a polyhedron shape.
  • the method for producing the polishing composition of the present invention is not particularly limited, and can be obtained, for example, by stirring and mixing abrasive grains, a polishing accelerator and, if necessary, other additives in water as a dispersion medium. it can. Moreover, when adding the pH adjuster containing a dispersion medium (water), an abrasive grain, a polishing accelerator, and other additives as needed are stirred and mixed in the pH adjuster containing a dispersion medium (water). A method may be adopted.
  • the temperature at which the abrasive grains and each component are mixed is not particularly limited, but is preferably 10 to 40 ° C. and may be heated to increase the dissolution rate. Further, the mixing time is not particularly limited as long as uniform mixing can be performed.
  • the polishing composition of the present invention is suitably used for polishing a polishing object containing single crystal silicon, particularly a single crystal silicon substrate (silicon wafer). That is, in one embodiment of the present invention, there is provided a polishing composition used for polishing a polishing object containing single crystal silicon. In another embodiment, a polishing composition used for polishing a single crystal silicon substrate (silicon wafer) is provided.
  • the present invention also provides a polishing method for polishing an object to be polished containing single crystal silicon using the polishing composition of the present invention.
  • a polishing method for polishing a single crystal silicon substrate using the polishing composition of the present invention is also provided.
  • the present invention also provides a method for manufacturing a semiconductor substrate including a step of polishing an object to be polished containing single crystal silicon by the polishing method.
  • a method of manufacturing a semiconductor substrate including a step of polishing a single crystal silicon substrate by the polishing method is also provided.
  • the polishing step in the polishing method according to the present invention is not particularly limited as long as it is a step of polishing a single crystal silicon substrate, but is preferably a chemical mechanical polishing (CMP) step.
  • the polishing step may be a polishing step consisting of a single step or a polishing step consisting of a plurality of steps.
  • a polishing process consisting of a plurality of processes for example, a process of performing a final polishing process after a preliminary polishing process (rough polishing process), a secondary polishing process of one or more times after a primary polishing process, The process etc. which perform a final polishing process after that are mentioned.
  • polishing apparatus used in the polishing method according to the present invention, a polishing surface plate on which a holder for holding a semiconductor substrate and the like, a motor capable of changing the number of rotations, and the like are attached and a polishing pad (polishing cloth) can be attached.
  • a general polishing apparatus having the following can be used.
  • the polishing apparatus any of a small table polishing machine, a single-side polishing apparatus, or a double-side polishing apparatus may be used.
  • polishing pad a general nonwoven fabric, polyurethane, porous fluororesin, or the like can be used without particular limitation. It is preferable that the polishing pad is grooved so that the polishing liquid accumulates.
  • the polishing conditions are not particularly limited.
  • the rotational speed of the polishing platen (platen) is preferably 10 to 500 rpm.
  • the rotational speed of the head (carrier) is preferably 10 to 500 rpm.
  • the pressure applied to the substrate having the object to be polished is preferably 0.5 to 10 psi.
  • the method of supplying the polishing composition to the polishing pad is not particularly limited, and for example, a method of continuously supplying with a pump or the like is employed. Although there is no restriction
  • the polishing time is not particularly limited, it is preferably 5 seconds or more and 180 seconds or less for the step using the polishing composition.
  • the substrate After completion of polishing, the substrate is washed in running water, and water droplets adhering to the substrate are removed by a spin dryer or the like, and dried to obtain a semiconductor substrate.
  • the average secondary particle size of the abrasive grains was measured using a dynamic light scattering type particle size / particle size distribution measuring device (manufactured by Nikkiso Co., Ltd., model number: UPA UT-151). First, abrasive grains were dispersed in pure water to prepare a dispersion having a loading index (laser scattering intensity) of 0.01. Next, using this dispersion, the value of the volume average particle diameter Mv (value of D50) in the UT mode was measured, and the obtained value was defined as the average secondary particle diameter.
  • polishing composition [Example 1] (Preparation of polishing composition (A-1)) Colloidal silica (average primary particle size 35 nm, average secondary particle size 63 nm) 0.5% by mass in water, sodium sulfite 0.05 mol / L as polishing accelerator, potassium hydroxide as pH adjuster Were added in an amount of pH 10.5 and mixed to prepare a polishing composition (A-1).
  • Example 2 to 6 and Comparative Examples 1 to 5 Preparation of polishing compositions (A-2) to (A-6) and (C-1) to (C-5)) Each polishing composition was prepared in the same manner as in Example 1 except that the type of polishing accelerator and the type of pH adjuster were changed as shown in Table 1 below (mixing temperature: about 25 ° C. , Mixing time: about 10 minutes).
  • nucleophilic parameters of polishing accelerator The nucleophilic parameter of each polishing accelerator is expressed by the following formula (1).
  • Polishing device small table polishing machine (Eng 380IN, manufactured by Nippon Engis Co., Ltd.) Polishing pad: Rigid polyurethane pad (Nitta Haas, IC1000) Platen rotation speed: 60 [rpm] Head (carrier) rotation speed: 60 [rpm] Polishing pressure: 3.0 [psi] Polishing composition (slurry) flow rate: 100 [ml / min] Polishing time: 1 [min] (3) Measurement of polishing rate The polishing rate was measured by the following procedure.
  • the thickness change ⁇ d Si (m) of the object to be polished before and after polishing was divided by the polishing time t (min), and the unit was further converted to ( ⁇ / min). This value was defined as the polishing rate v Si ( ⁇ / min).
  • Adsorption of polishing accelerator to silica (abrasive grains) was measured by the following method. Specifically, first, a polishing accelerator was added to a 1% by mass silica (abrasive) aqueous solution so as to be 0.05 mol / L. Thereafter, the adsorption reaction was promoted by storing at 80 ° C. in an air bath. One week later, after taking out and cooling, the solid-liquid was separated with a centrifuge (16,000 rpm for 1 hour), and only the supernatant was collected. The collected supernatant was measured for the residual amount of the polishing accelerator with a total carbon measuring device (TOC-5000A, manufactured by Shimadzu Corporation). The results are summarized in Table 1. Those with a residual amount of 80% or more are marked with ⁇ , and those with a residual amount of less than 80% are marked with ⁇ .
  • TOC-5000A total carbon measuring device

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

[Problem] To provide a polishing composition with which it is possible to effectively improve the polishing rate of an object to be polished. [Solution] A polishing composition containing abrasive grains, a polishing accelerator having a nucleophilic parameter represented by formula (1) of 14.5-30, and water.

Description

研磨用組成物、ならびにこれを用いた研磨方法および半導体基板の製造方法Polishing composition, polishing method using the same, and method for manufacturing semiconductor substrate
 本発明は研磨用組成物、ならびにこれを用いた研磨方法および半導体基板の製造方法に関する。詳しくは、主にシリコンウェハ等の半導体基板の研磨に好ましく用いられる研磨用組成物、ならびにこれを用いた研磨方法および半導体基板の製造方法に関する。 The present invention relates to a polishing composition, a polishing method using the same, and a method for manufacturing a semiconductor substrate. Specifically, the present invention mainly relates to a polishing composition preferably used for polishing a semiconductor substrate such as a silicon wafer, a polishing method using the same, and a method for manufacturing a semiconductor substrate.
 近年、LSI製造プロセスの微細化がもたらす高集積化によって、コンピューターをはじめとした電子機器は、小型化、多機能化、高速化等の高性能化を果たしてきた。このようなLSIの高集積化に伴う新たな微細加工技術において、化学機械研磨(CMP)法が使用される。CMP法は、LSI製造工程、特に多層配線形成工程における層間絶縁膜の平坦化、金属プラグ形成、埋め込み配線(ダマシン配線)形成において頻繁に利用される技術である。 In recent years, due to the high integration brought about by the miniaturization of LSI manufacturing processes, electronic devices such as computers have achieved high performance such as miniaturization, multi-functionality, and high speed. A chemical mechanical polishing (CMP) method is used in a new microfabrication technology accompanying such high integration of LSI. The CMP method is a technique frequently used in planarization of an interlayer insulating film, formation of a metal plug, and formation of a buried wiring (damascene wiring) in an LSI manufacturing process, particularly in a multilayer wiring forming process.
 金属や半金属、非金属、その酸化物等の材料表面に対して研磨液を用いた精密研磨が行われている。例えば、半導体製品の構成要素等として用いられるシリコンウェハの表面は、一般に、ラッピング工程(粗研磨工程)とポリシング工程(精密研磨工程)とを経て高品位の鏡面に仕上げられる。上記ポリシング工程は、典型的には、予備ポリシング工程(予備研磨工程)とファイナルポリシング工程(最終研磨工程)とを含む。 Precise polishing using a polishing liquid is performed on the surface of materials such as metal, metalloid, nonmetal, and oxides thereof. For example, the surface of a silicon wafer used as a component of a semiconductor product is generally finished to a high-quality mirror surface through a lapping process (rough polishing process) and a polishing process (precision polishing process). The polishing process typically includes a preliminary polishing process (preliminary polishing process) and a final polishing process (final polishing process).
 シリコンウェハ等の半導体基板その他の基板について、上記のような高集積化の技術動向から、より高品位の表面が要求されるようになってきている。特に、生産性やコスト等への配慮から、高品位の表面を得るとともに、ポリシング工程に要するトータルの研磨時間(合計研磨時間)を減らすことが望まれている。そのための一手法として、ポリシング工程に含まれる研磨工程について、該研磨工程における研磨レートを向上させることができれば有益である。 With respect to semiconductor substrates such as silicon wafers and other substrates, higher-quality surfaces have been required due to the above-mentioned high integration technology trends. In particular, in consideration of productivity and cost, it is desired to obtain a high-quality surface and reduce the total polishing time (total polishing time) required for the polishing process. As a technique for this, it is beneficial if the polishing rate in the polishing step can be improved for the polishing step included in the polishing step.
 従来、シリコンウェハの研磨において使用される研磨用組成物は、砥粒と、アルカリ化合物などの研磨促進剤を含むことが一般的である。例えば、シリコンウェハの研磨に用いられる研磨用組成物として、特許文献1には、水、シリカ粒子、アルカリ化合物、水溶性高分子化合物、およびポリエチレングリコールを含むシリコンウェハ用研磨液組成物が開示されている。 Conventionally, a polishing composition used in polishing a silicon wafer generally contains abrasive grains and a polishing accelerator such as an alkali compound. For example, as a polishing composition used for polishing a silicon wafer, Patent Document 1 discloses a polishing composition for a silicon wafer containing water, silica particles, an alkali compound, a water-soluble polymer compound, and polyethylene glycol. ing.
国際公開第2013/073025号International Publication No. 2013/073025
 しかしながら、特許文献1の研磨液組成物を使用した場合、研磨速度の促進効果は未だ不十分であり、良好な生産性が担保される研磨速度を実現できていないという問題があった。 However, when the polishing liquid composition of Patent Document 1 is used, there is a problem that the polishing rate promoting effect is still insufficient and a polishing rate that ensures good productivity cannot be realized.
 したがって、本発明は、上記課題を鑑みてなされたものであり、研磨対象物の研磨速度を効果的に向上させることができる研磨用組成物を提供することを目的とする。 Therefore, the present invention has been made in view of the above problems, and an object thereof is to provide a polishing composition that can effectively improve the polishing rate of an object to be polished.
 本発明者は、上記課題を解決すべく、鋭意研究を行った。その結果、砥粒、求核性パラメータが14.5以上30以下の研磨促進剤、および水を含有する研磨用組成物を使用することによって、上記課題を解決できることを見出し、本発明を完成させた。 The present inventor has conducted intensive research to solve the above problems. As a result, it was found that the above problems can be solved by using a polishing composition containing abrasive grains, a polishing accelerator having a nucleophilic parameter of 14.5 to 30 and water, and completed the present invention. It was.
 なお、前記求核性パラメータは、下記式(1)で表される。 The nucleophilic parameter is represented by the following formula (1).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 本発明によれば、研磨対象物の研磨速度を効果的に向上させることができる研磨用組成物が提供される。 According to the present invention, a polishing composition capable of effectively improving the polishing rate of an object to be polished is provided.
 本発明の研磨用組成物は、砥粒、下記式(1)で表される求核性パラメータが14.5以上30以下の研磨促進剤、および水を含有する。 The polishing composition of the present invention contains abrasive grains, a polishing accelerator having a nucleophilic parameter represented by the following formula (1) of 14.5 to 30 and water.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 本発明の研磨用組成物によれば、研磨対象物の研磨速度を効果的に向上させることができる。このような効果が得られるメカニズムは、以下の通りであると考えられる。ただし、下記メカニズムはあくまで推測であり、これによって本発明の範囲が限定されるものではない。 According to the polishing composition of the present invention, the polishing rate of an object to be polished can be effectively improved. The mechanism for obtaining such an effect is considered as follows. However, the following mechanism is just a guess, and the scope of the present invention is not limited thereby.
 一例として、研磨対象物がシリコンウェハである場合の研磨は、シリコン原子と水酸化物イオン(OH)とが求核反応し、さらにプロトンによって加水分解することで生成したSi(OH)を、砥粒等の機械的作用による掻き取りや、OHとの反応による溶解により除去することで進行すると考えられている。このことから、研磨対象物の研磨における重要な化学反応は、求核反応であると考えられる。本発明者は、研磨対象物の研磨について種々検討を行った結果、上記(1)で表される求核性パラメータが特定の範囲にある研磨促進剤を含む研磨用組成物が、研磨対象物の研磨速度を効果的に向上させることを見出した。上記式(1)で表される求核性パラメータが14.5以上30以下の研磨促進剤は、求核性を示す化合物であり、該研磨促進剤が研磨対象物表面と相互作用することにより、研磨対象物表面の原子間の共有結合距離を伸張し、共有結合をより弱めることができると考えられる。したがって、上記の砥粒の機械的作用による掻き取りや上記の溶解による除去により、研磨対象物の研磨が進行しやすくなり、研磨速度が向上すると考えられる。 As an example, in the case where the object to be polished is a silicon wafer, in the polishing, Si (OH) x generated by nucleophilic reaction between silicon atoms and hydroxide ions (OH ) and further hydrolysis by protons is generated. It is considered that the removal proceeds by scraping by mechanical action of abrasive grains or the like, or by dissolution by reaction with OH . From this, it is considered that an important chemical reaction in polishing of an object to be polished is a nucleophilic reaction. As a result of various investigations on polishing of a polishing object, the present inventor has found that a polishing composition containing a polishing accelerator having a nucleophilic parameter represented by the above (1) in a specific range is a polishing object. The present inventors have found that the polishing rate can be effectively improved. The polishing accelerator having a nucleophilic parameter represented by the above formula (1) of 14.5 or more and 30 or less is a compound exhibiting nucleophilicity, and the polishing accelerator interacts with the surface of the object to be polished. It is considered that the covalent bond distance between atoms on the surface of the polishing object can be extended and the covalent bond can be weakened. Accordingly, it is considered that the polishing of the object to be polished is facilitated by the scraping by the mechanical action of the abrasive grains and the removal by the dissolution, and the polishing rate is improved.
 したがって、求核性パラメータが14.5以上30以下の範囲である化合物を研磨促進剤として用いた本発明の研磨用組成物は、研磨対象物の研磨速度を効果的に向上させることができる。 Therefore, the polishing composition of the present invention using a compound having a nucleophilic parameter in the range of 14.5 or more and 30 or less as a polishing accelerator can effectively improve the polishing rate of an object to be polished.
 以下、本発明の実施の形態を説明する。なお、本発明は、以下の実施の形態のみには限定されない。 Hereinafter, embodiments of the present invention will be described. In addition, this invention is not limited only to the following embodiment.
 また、本明細書において、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%RHの条件で行う。 In this specification, unless otherwise specified, measurement of operation and physical properties is performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50% RH.
 [研磨用組成物]
 本発明の研磨用組成物は、砥粒、上記式(1)で表される求核性パラメータが14.5以上30以下である研磨促進剤、および水を含有する。以下、本発明の研磨用組成物の構成を説明する。
[Polishing composition]
The polishing composition of the present invention contains abrasive grains, a polishing accelerator having a nucleophilic parameter represented by the above formula (1) of 14.5 or more and 30 or less, and water. Hereinafter, the structure of the polishing composition of this invention is demonstrated.
 <砥粒>
 本発明の研磨用組成物は、砥粒を必須に含む。研磨用組成物中に含まれる砥粒は、研磨対象物を機械的に研磨する作用を有する。
<Abrasive>
The polishing composition of the present invention essentially contains abrasive grains. The abrasive grains contained in the polishing composition have an action of mechanically polishing the object to be polished.
 使用される砥粒は、無機粒子、有機粒子、および有機無機複合粒子のいずれであってもよい。無機粒子の具体例としては、例えば、シリカ、アルミナ、セリア、チタニア等の金属酸化物からなる粒子、窒化ケイ素粒子、炭化ケイ素粒子、窒化ホウ素粒子が挙げられる。有機粒子の具体例としては、例えば、ポリメタクリル酸メチル(PMMA)粒子が挙げられる。該砥粒は、単独でもまたは2種以上混合して用いてもよい。また、該砥粒は、市販品を用いてもよいし合成品を用いてもよい。 The abrasive used may be any of inorganic particles, organic particles, and organic-inorganic composite particles. Specific examples of the inorganic particles include particles made of metal oxides such as silica, alumina, ceria, titania, silicon nitride particles, silicon carbide particles, and boron nitride particles. Specific examples of the organic particles include polymethyl methacrylate (PMMA) particles. These abrasive grains may be used alone or in combination of two or more. The abrasive grains may be commercially available products or synthetic products.
 これら砥粒の中でも、シリカが好ましく、特に好ましいのはコロイダルシリカである。 Among these abrasive grains, silica is preferable, and colloidal silica is particularly preferable.
 砥粒は表面修飾されていてもよい。通常のコロイダルシリカは、酸性条件下でゼータ電位の値がゼロに近いために、酸性条件下ではシリカ粒子同士が互いに電気的に反発せず凝集を起こしやすい。これに対し、酸性条件でもゼータ電位が比較的大きな負の値を有するように表面修飾された砥粒は、酸性条件下においても互いに強く反発して良好に分散する。その結果、研磨用組成物の保存安定性を向上できる。このような表面修飾砥粒は、例えば、アルミニウム、チタンまたはジルコニウムなどの金属あるいはそれらの酸化物を砥粒と混合して砥粒の表面にドープさせることにより得ることができる。また、表面修飾砥粒は、砥粒の表面に有機酸の官能基を化学的に結合させて得られる、有機酸を固定化したコロイダルシリカであってもよい。 砥 Abrasive grains may be surface-modified. Since ordinary colloidal silica has a zeta potential value close to zero under acidic conditions, silica particles are not electrically repelled with each other under acidic conditions and are likely to agglomerate. In contrast, abrasive grains whose surfaces are modified so that the zeta potential has a relatively large negative value even under acidic conditions are strongly repelled from each other and dispersed well even under acidic conditions. As a result, the storage stability of the polishing composition can be improved. Such surface-modified abrasive grains can be obtained, for example, by mixing a metal such as aluminum, titanium or zirconium or an oxide thereof with the abrasive grains and doping the surface of the abrasive grains. Further, the surface-modified abrasive grains may be colloidal silica obtained by chemically bonding a functional group of an organic acid to the surface of the abrasive grains and fixing an organic acid.
 砥粒の平均一次粒子径の下限は、10nm以上であることが好ましく、15nm以上であることがより好ましく、20nm以上であることがさらに好ましい。また、砥粒の平均一次粒子径の上限は、200nm以下であることが好ましく、150nm以下であることがより好ましく、100nm以下であることがさらに好ましい。このような範囲であれば、研磨用組成物による研磨対象物の研磨速度はより向上し、また、研磨用組成物を用いて研磨した後の研磨対象物の表面に欠陥が生じるのをより抑えることができる。なお、砥粒の平均一次粒子径は、例えば、BET法で測定される砥粒の比表面積に基づいて算出される。 The lower limit of the average primary particle diameter of the abrasive grains is preferably 10 nm or more, more preferably 15 nm or more, and further preferably 20 nm or more. Further, the upper limit of the average primary particle diameter of the abrasive grains is preferably 200 nm or less, more preferably 150 nm or less, and further preferably 100 nm or less. Within such a range, the polishing rate of the object to be polished by the polishing composition is further improved, and the occurrence of defects on the surface of the object to be polished after polishing with the polishing composition is further suppressed. be able to. In addition, the average primary particle diameter of an abrasive grain is calculated based on the specific surface area of the abrasive grain measured by BET method, for example.
 砥粒の平均二次粒子径の下限は、15nm以上であることが好ましく、20nm以上であることがより好ましく、30nm以上であることがさらに好ましい。また、砥粒の平均二次粒子径の上限は、300nm以下であることが好ましく、260nm以下であることがより好ましく、220nm以下であることがさらに好ましい。このような範囲であれば、研磨用組成物による研磨対象物の研磨速度はより向上し、また、研磨用組成物を用いて研磨した後の研磨対象物の表面に欠陥が生じるのをより抑えることができる。なお、ここでいう二次粒子とは、砥粒が研磨用組成物中で会合して形成する粒子をいい、この二次粒子の平均二次粒子径は、例えば動的光散乱法により測定することができる。 The lower limit of the average secondary particle diameter of the abrasive grains is preferably 15 nm or more, more preferably 20 nm or more, and further preferably 30 nm or more. Further, the upper limit of the average secondary particle diameter of the abrasive grains is preferably 300 nm or less, more preferably 260 nm or less, and further preferably 220 nm or less. Within such a range, the polishing rate of the object to be polished by the polishing composition is further improved, and the occurrence of defects on the surface of the object to be polished after polishing with the polishing composition is further suppressed. be able to. The secondary particles referred to here are particles formed by association of abrasive grains in the polishing composition, and the average secondary particle diameter of the secondary particles is measured by, for example, a dynamic light scattering method. be able to.
 研磨用組成物中の砥粒の含有量の下限は、0.1質量%以上であることが好ましく、0.3質量%以上であることがより好ましく、0.5質量%以上であることがさらに好ましい。また、研磨用組成物中の砥粒の含有量の上限は、50質量%以下であることが好ましく、20質量%以下であることがより好ましく、5質量%以下であることがさらに好ましい。このような範囲であれば、研磨対象物の研磨速度がより向上し、また、研磨用組成物のコストを抑えることができ、研磨用組成物を用いて研磨した後の研磨対象物の表面に欠陥が生じるのをより抑えることができる。 The lower limit of the content of the abrasive grains in the polishing composition is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, and 0.5% by mass or more. Further preferred. Further, the upper limit of the content of the abrasive grains in the polishing composition is preferably 50% by mass or less, more preferably 20% by mass or less, and further preferably 5% by mass or less. Within such a range, the polishing rate of the polishing object can be further improved, the cost of the polishing composition can be reduced, and the surface of the polishing object after polishing with the polishing composition can be reduced. It is possible to further suppress the occurrence of defects.
 <水>
 本発明の一実施形態に係る研磨用組成物は、各成分を分散または溶解するために分散媒(溶媒)として水を必須に含む。
<Water>
The polishing composition according to one embodiment of the present invention essentially contains water as a dispersion medium (solvent) in order to disperse or dissolve each component.
 分散媒は、各成分の分散または溶解のために、水と有機溶媒との混合溶媒であってもよい。この場合、用いられる有機溶媒としては、水と混和する有機溶媒であるアセトン、アセトニトリル、エタノール、メタノール、イソプロパノール、グリセリン、エチレングリコール、プロピレングリコール等が挙げられる。また、これらの有機溶媒を水と混合せずに用いて、各成分を分散または溶解した後に、水と混合してもよい。これら有機溶媒は、単独でもまたは2種以上組み合わせても用いることができる。 The dispersion medium may be a mixed solvent of water and an organic solvent for dispersing or dissolving each component. In this case, examples of the organic solvent used include acetone, acetonitrile, ethanol, methanol, isopropanol, glycerin, ethylene glycol, propylene glycol and the like, which are organic solvents miscible with water. Further, these organic solvents may be used without being mixed with water, and each component may be dispersed or dissolved and then mixed with water. These organic solvents can be used alone or in combination of two or more.
 水は、洗浄対象物の汚染や他の成分の作用を阻害するという観点から、不純物をできる限り含有しないことが好ましい。このような水としては、例えば、遷移金属イオンの合計含有量が100ppb以下である水が好ましい。ここで、水の純度は、例えば、イオン交換樹脂を用いる不純物イオンの除去、フィルタによる異物の除去、蒸留等の操作によって高めることができる。具体的には、水としては、例えば、脱イオン水(イオン交換水)、純水、超純水、蒸留水などを用いることが好ましい。 It is preferable that water does not contain impurities as much as possible from the viewpoint of inhibiting the contamination of the object to be cleaned and the action of other components. As such water, for example, water having a total content of transition metal ions of 100 ppb or less is preferable. Here, the purity of water can be increased by operations such as removal of impurity ions using an ion exchange resin, removal of foreign matters by a filter, distillation, and the like. Specifically, as the water, for example, deionized water (ion exchange water), pure water, ultrapure water, distilled water, or the like is preferably used.
 <研磨促進剤>
 本発明の研磨用組成物は、下記式(1)で表される求核性パラメータが14.5以上30以下である研磨促進剤(以下、単に研磨促進剤とも称する)を含有する。
<Polishing accelerator>
The polishing composition of the present invention contains a polishing accelerator (hereinafter also simply referred to as a polishing accelerator) having a nucleophilic parameter represented by the following formula (1) of 14.5 or more and 30 or less.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 求核性パラメータとは、化合物の求核性の強さを示す指標として用いられるパラメータであり、求電子性度が既知であるベンズヒドリリウム誘導体数種とのアミンの反応性の試験から、上記式(1)によって算出される。また、本発明の研磨用組成物は水を必須に含むため、本発明における求核性パラメータは水中における値である。本明細書において、この求核性パラメータの値は、具体的には、Ludwig-Maximilians-Universitat MunchenのHerbert Mayr博士らの反応性パラメータデータベース(Mayr‘s Database of Reactivity Parameters)に記載の値を採用するものとする(URL:http://www.cup.lmu.de/oc/mayr/reaktionsdatenbank2/)。また、求核性傾きパラメータの値についても、前記データーベースに記載されている。 The nucleophilic parameter is a parameter used as an index indicating the strength of nucleophilicity of a compound. From the test of amine reactivity with several benzhydryl derivatives having known electrophilicity, Calculated by equation (1). Moreover, since the polishing composition of the present invention essentially contains water, the nucleophilic parameter in the present invention is a value in water. In the present specification, the value of the nucleophilic parameter is specifically described in the reactivity parameter database (Mayr's Database of Reactivity Parameters) of Dr. Herbert Mayr of Ludwig-Maximilians-Universitat Munchen. (URL: http://www.cup.lmu.de/oc/mayr/reactionsdatebank2/). The value of the nucleophilic slope parameter is also described in the database.
 本発明の研磨用組成物に用いられる研磨促進剤は、求核性パラメータが14.5以上30以下である。かような研磨促進剤は、研磨対象物表面と相互作用することにより、研磨対象物表面の原子間の共有結合距離を伸張し、共有結合をより弱めることができると考えられる。したがって、砥粒の機械的作用による掻き取りや上記の溶解による除去により、研磨対象物の研磨が進行しやすくなり、研磨速度が向上すると考えられる。 The polishing accelerator used in the polishing composition of the present invention has a nucleophilic parameter of 14.5 or more and 30 or less. Such a polishing accelerator is thought to be capable of extending the covalent bond distance between atoms on the surface of the polishing object and weakening the covalent bond by interacting with the surface of the polishing object. Therefore, it is considered that the polishing of the object to be polished is facilitated by the scraping by the mechanical action of the abrasive grains and the removal by the above-described dissolution, and the polishing rate is improved.
 該求核性パラメータが14.5以上の化合物を用いた場合、求核的相互作用が十分になり、共有結合を十分に弱めることができ、研磨速度を向上することができる。研磨速度を向上するという観点から、前記求核性パラメータは16.5以上であることが好ましく、17.0以上であることがより好ましく、17.5以上であることがさら好ましく、18.2以上であることが特に好ましい。 When a compound having a nucleophilic parameter of 14.5 or more is used, the nucleophilic interaction becomes sufficient, the covalent bond can be sufficiently weakened, and the polishing rate can be improved. From the viewpoint of improving the polishing rate, the nucleophilic parameter is preferably 16.5 or more, more preferably 17.0 or more, and even more preferably 17.5 or more, 18.2 The above is particularly preferable.
 一方、求核性パラメータが30を超える化合物は、入手または取扱いが困難である。入手または取扱いし易いという観点から、前記求核性パラメータは24.0以下であることが好ましく、23.0以下であることがより好ましい。 On the other hand, a compound having a nucleophilic parameter exceeding 30 is difficult to obtain or handle. From the viewpoint of easy acquisition or handling, the nucleophilic parameter is preferably 24.0 or less, and more preferably 23.0 or less.
 すなわち、本発明の一実施形態において、該求核性パラメータは、14.5以上24.0以下であることが好ましく、14.5以上23.0以下であることがより好ましく、18.2以上23.0以下であることがさらに好ましい。 That is, in one embodiment of the present invention, the nucleophilic parameter is preferably 14.5 or more and 24.0 or less, more preferably 14.5 or more and 23.0 or less, and 18.2 or more. More preferably, it is 23.0 or less.
 本発明の研磨用組成物に用いられる研磨促進剤は、求核性パラメータが14.5以上30以下のものであれば、その種類は特に制限されない。例えば、無機酸、有機酸、アミン、またはアミノ酸等の化合物またはそれらの塩であり得る。求核性パラメータが14.5以上30以下の無機酸またはその塩としては、亜硫酸、亜硫酸ナトリウム等が挙げられる。求核性パラメータが14.5以上30以下の有機酸としては、メルカプトカルボン酸等が挙げられ、メルカプトカルボン酸の中でも、メルカプト酢酸が好ましい。求核性パラメータが14.5以上30以下のアミンとして、ジメチルアミン、モノメチルヒドラジン、またはピペラジン、ピペリジン、ヘキサメチレンイミン等の環状アミン等が挙げられ、環状アミンの中でも、中性~アルカリ性環境下での安定性やスラリーへの吸着性の観点から、環員数7~10の環状アミンが好ましく、ヘキサメチレンイミンがより好ましい。求核性パラメータが14.5以上30以下のアミノ酸としては、システイン、プロリン等が挙げられる。研磨促進剤は、単独で使用してもよいし、複数種を併用してもよい。 The type of the polishing accelerator used in the polishing composition of the present invention is not particularly limited as long as the nucleophilic parameter is 14.5 or more and 30 or less. For example, it may be a compound such as an inorganic acid, an organic acid, an amine, or an amino acid, or a salt thereof. Examples of the inorganic acid or salt thereof having a nucleophilic parameter of 14.5 or more and 30 or less include sulfurous acid and sodium sulfite. Examples of the organic acid having a nucleophilic parameter of 14.5 or more and 30 or less include mercaptocarboxylic acid. Among mercaptocarboxylic acids, mercaptoacetic acid is preferable. Examples of the amine having a nucleophilic parameter of 14.5 or more and 30 or less include dimethylamine, monomethylhydrazine, or cyclic amines such as piperazine, piperidine, hexamethyleneimine, and the like. Among the cyclic amines, in a neutral to alkaline environment. From the viewpoint of the stability of the resin and the adsorptivity to the slurry, a cyclic amine having 7 to 10 ring members is preferable, and hexamethyleneimine is more preferable. Examples of amino acids having a nucleophilic parameter of 14.5 or more and 30 or less include cysteine, proline and the like. A polishing accelerator may be used independently and may use multiple types together.
 すなわち、本発明の一実施形態において、本発明の研磨用組成物に用いられる研磨促進剤は、環員数7~10の環状アミンおよびメルカプトカルボン酸からなる群より選ばれる少なくとも1種である。 That is, in one embodiment of the present invention, the polishing accelerator used in the polishing composition of the present invention is at least one selected from the group consisting of cyclic amines having 7 to 10 ring members and mercaptocarboxylic acid.
 一実施形態において、前記環状アミンは、ヘキサメチレンイミンである。ヘキサメチレンイミンは中性~アルカリ性環境下で高い安定性を示し、また、ヘキサメチレンイミンは砥粒へ吸着しにくいことから、ヘキサメチレンイミンを含む研磨用組成物中の各成分はより安定化されて、研磨速度を高い水準で一定に維持することができる。 In one embodiment, the cyclic amine is hexamethyleneimine. Hexamethyleneimine exhibits high stability in neutral to alkaline environments, and since hexamethyleneimine is difficult to adsorb on abrasive grains, each component in the polishing composition containing hexamethyleneimine is further stabilized. Thus, the polishing rate can be kept constant at a high level.
 他の一実施形態において、前記メルカプトカルボン酸は、メルカプト酢酸である。上記ヘキサメチレンイミンと同様に、メルカプト酢酸は中性~アルカリ性環境下で高い安定性を示し、また、メルカプト酢酸は砥粒へ吸着しにくいことから、メルカプト酢酸を含む研磨用組成物中の各成分はより安定化されて、研磨速度を高い水準で一定に維持することができる。 In another embodiment, the mercaptocarboxylic acid is mercaptoacetic acid. Like the above hexamethyleneimine, mercaptoacetic acid exhibits high stability in a neutral to alkaline environment, and since mercaptoacetic acid is difficult to adsorb to abrasive grains, each component in the polishing composition containing mercaptoacetic acid Is more stabilized and the polishing rate can be kept constant at a high level.
 研磨用組成物に含まれる研磨促進剤の含有量は、特に限定されないが、研磨用組成物全体に対して0.1質量%以上であることが好ましい。研磨速度をさらに効果的に向上させる観点から、研磨促進剤の含有量は0.3質量%以上であることがより好ましく、0.5質量%以上であることがさらに好ましい。研磨用組成物に含まれる研磨促進剤の含有量の上限は、特に限定されないが、研磨対象物の表面品質を維持するという観点から、5.0質量%以下であることが好ましく、2.0質量%以下であることがより好ましく、1.0質量%以下であることがさらに好ましい。 The content of the polishing accelerator contained in the polishing composition is not particularly limited, but is preferably 0.1% by mass or more with respect to the entire polishing composition. From the viewpoint of further effectively improving the polishing rate, the content of the polishing accelerator is more preferably 0.3% by mass or more, and further preferably 0.5% by mass or more. The upper limit of the content of the polishing accelerator contained in the polishing composition is not particularly limited, but is preferably 5.0% by mass or less from the viewpoint of maintaining the surface quality of the object to be polished. The content is more preferably at most mass%, further preferably at most 1.0 mass%.
 研磨促進剤の含有量は、一種の研磨促進剤を単独で使用する場合では、その一種の含有量を指す。2種以上の研磨促進剤を併用する場合では、2種以上の研磨促進剤の合計含有量を意味する。 The content of the polishing accelerator refers to the kind of content when a kind of polishing accelerator is used alone. When two or more kinds of polishing accelerators are used in combination, it means the total content of two or more kinds of polishing accelerators.
 <その他>
 本発明の研磨用組成物は、砥粒、上記式(1)で表される求核性パラメータが14.5以上30以下である研磨促進剤、および水を必須に含むが、上記成分に加えて他の添加剤を含んでもよい。ここで、他の添加剤としては、特に制限されず、研磨用組成物に通常に添加される添加剤が使用できる。具体的には、pH調整剤、錯化剤、金属防食剤、防腐剤、防カビ剤、還元剤、水溶性高分子、難溶性の有機物を溶解するための有機溶媒等が挙げられる。
<Others>
The polishing composition of the present invention essentially contains abrasive grains, a polishing accelerator having a nucleophilic parameter represented by the above formula (1) of 14.5 to 30 and water, but in addition to the above components And may contain other additives. Here, it does not restrict | limit especially as another additive, The additive normally added to polishing composition can be used. Specific examples include a pH adjuster, a complexing agent, a metal anticorrosive, an antiseptic, an antifungal agent, a reducing agent, a water-soluble polymer, an organic solvent for dissolving a hardly soluble organic substance, and the like.
 以下、上記他の添加剤のうち、pH調整剤、防腐剤、および防カビ剤について説明する。 Hereinafter, among the above-mentioned other additives, the pH adjuster, the preservative, and the fungicide will be described.
 <pH調整剤>
 本発明の研磨用組成物は、pH調整剤をさらに含むことができる。pHは、pH調節剤を適量添加することにより、調整することができる。研磨用組成物のpHを所望の値に調整するために必要に応じて使用されるpH調整剤は酸およびアルカリのいずれであってもよく、また、無機化合物および有機化合物のいずれであってもよい。酸の具体例としては、例えば、硫酸、硝酸、ホウ酸、炭酸、次亜リン酸、亜リン酸およびリン酸等の無機酸;ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、2-メチル酪酸、n-ヘキサン酸、3,3-ジメチル酪酸、2-エチル酪酸、4-メチルペンタン酸、n-ヘプタン酸、2-メチルヘキサン酸、n-オクタン酸、2-エチルヘキサン酸、安息香酸、グリコール酸、サリチル酸、グリセリン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フタル酸、リンゴ酸、酒石酸、クエン酸および乳酸などのカルボン酸、ならびにメタンスルホン酸、エタンスルホン酸およびイセチオン酸等の有機硫酸等の有機酸等が挙げられる。アルカリの具体例としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム等のアルカリ金属の水酸化物又はその塩、アンモニア、アミン、第4級アンモニウム塩等が挙げられる。これらpH調節剤は、単独でもまたは2種以上混合しても用いることができる。
<PH adjuster>
The polishing composition of the present invention can further contain a pH adjuster. The pH can be adjusted by adding an appropriate amount of a pH adjusting agent. The pH adjuster used as necessary to adjust the pH of the polishing composition to a desired value may be either acid or alkali, and may be either an inorganic compound or an organic compound. Good. Specific examples of the acid include, for example, inorganic acids such as sulfuric acid, nitric acid, boric acid, carbonic acid, hypophosphorous acid, phosphorous acid and phosphoric acid; formic acid, acetic acid, propionic acid, butyric acid, valeric acid, 2-methylbutyric acid , N-hexanoic acid, 3,3-dimethylbutyric acid, 2-ethylbutyric acid, 4-methylpentanoic acid, n-heptanoic acid, 2-methylhexanoic acid, n-octanoic acid, 2-ethylhexanoic acid, benzoic acid, glycol Acids, salicylic acid, glyceric acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, maleic acid, phthalic acid, malic acid, tartaric acid, citric acid and lactic acid and other carboxylic acids, and methanesulfonic acid, And organic acids such as organic sulfuric acid such as ethanesulfonic acid and isethionic acid. Specific examples of the alkali include alkali metal hydroxides or salts thereof such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, ammonia, amines, quaternary ammonium salts and the like. These pH regulators can be used alone or in combination of two or more.
 本発明の一実施形態に係る研磨用組成物のpHは、研磨対象物の研磨速度をより向上させるという観点から、7.0以上であることが好ましい。本発明に係る研磨用組成物のpHは、9.0以上であることがより好ましく、10.0以上であることがさらに好ましい。また、本発明の研磨用組成物のpHの上限値は特に制限されないが、経済性および研磨用組成物の取扱安全性の観点から、12.0以下であることが好ましく、11.0以下であることがより好ましい。なお、研磨用組成物のpHは、pHメータ(例えば、株式会社堀場製作所製 型番:LAQUA(登録商標))を使用し、標準緩衝液(フタル酸塩pH緩衝液〔pH:4.01(25℃)〕、中性リン酸塩pH緩衝液〔pH:6.86(25℃)〕、炭酸塩pH緩衝液〔pH:10.01(25℃)〕)を用いて3点校正した後で、ガラス電極を研磨用組成物に入れ、2分以上経過して安定した後の値を測定することにより得ることができる。 The pH of the polishing composition according to one embodiment of the present invention is preferably 7.0 or more from the viewpoint of further improving the polishing rate of the object to be polished. The pH of the polishing composition according to the present invention is more preferably 9.0 or more, and further preferably 10.0 or more. The upper limit of the pH of the polishing composition of the present invention is not particularly limited, but is preferably 12.0 or less from the viewpoint of economy and handling safety of the polishing composition, and preferably 11.0 or less. More preferably. In addition, pH of polishing composition uses the pH meter (For example, Horiba, Ltd. make and model number: LAQUA (trademark)), standard buffer solution (phthalate pH buffer solution [pH: 4.01 (25)] ° C)], neutral phosphate pH buffer [pH: 6.86 (25 ° C)], carbonate pH buffer [pH: 10.01 (25 ° C)]) It can be obtained by putting the glass electrode into the polishing composition and measuring the value after 2 minutes or more and stabilization.
 <防腐剤および防カビ剤>
 さらに、研磨用組成物に必要であれば含まれうる防腐剤および防カビ剤としては、例えば、2-メチル-4-イソチアゾリン-3-オンや5-クロロ-2-メチル-4-イソチアゾリン-3-オン等のイソチアゾリン系防腐剤、パラオキシ安息香酸エステル類、およびフェノキシエタノール等が挙げられる。これら防腐剤および防カビ剤は、単独でもまたは2種以上混合して用いてもよい。
<Preservatives and fungicides>
Further, antiseptics and fungicides that may be included in the polishing composition if necessary include, for example, 2-methyl-4-isothiazolin-3-one and 5-chloro-2-methyl-4-isothiazoline-3 -Isothiazoline preservatives such as ON, paraoxybenzoates, phenoxyethanol and the like. These antiseptics and fungicides may be used alone or in combination of two or more.
 本発明の研磨用組成物は一液型であってもよいし、二液型をはじめとする多液型であってもよい。また、本発明の研磨用組成物は、研磨用組成物の原液を水などの希釈液を使って、例えば10倍以上に希釈することによって調製されてもよい。 The polishing composition of the present invention may be a one-component type or a multi-component type including a two-component type. The polishing composition of the present invention may be prepared by diluting the stock solution of the polishing composition, for example, 10 times or more using a diluent such as water.
 [研磨対象物]
 本発明の一形態に係る研磨用組成物を用いて研磨する研磨対象物は、特に制限されず、種々の材質および形状を有する研磨対象物が挙げられる。研磨対象物の材料は、例えば、シリコン材料、アルミニウム、ニッケル、タングステン、鋼、タンタル、チタン、ステンレス鋼等の金属もしくは半金属、またはこれらの合金;石英ガラス、アルミノシリケー卜ガラス、ガラス状カーボン等のガラス状物質;アルミナ、シリカ、サファイア、窒化ケイ素、窒化タンタル、炭化チタン等のセラミック材料;炭化ケイ素、窒化ガリウム、ヒ化ガリウム等の化合物半導体基板材料;ポリイミド樹脂等の樹脂材料;等が挙げられる。また、研磨対象物は、上記材料のうち、複数の材料により構成されていてもよい。
[Polishing object]
The polishing object to be polished using the polishing composition according to one embodiment of the present invention is not particularly limited, and examples include polishing objects having various materials and shapes. The material of the object to be polished is, for example, silicon material, aluminum, nickel, tungsten, steel, tantalum, titanium, stainless steel or other metal or semimetal, or alloys thereof; quartz glass, aluminosilicate glass, glassy carbon Glass materials such as; ceramic materials such as alumina, silica, sapphire, silicon nitride, tantalum nitride, titanium carbide; compound semiconductor substrate materials such as silicon carbide, gallium nitride, gallium arsenide; resin materials such as polyimide resin; Can be mentioned. Moreover, the grinding | polishing target object may be comprised with several material among the said materials.
 これらの中でも、本発明に係る研磨用組成物の効果がより顕著に得られることから、シリコン材料を含む研磨対象物であることが好ましい。すなわち、本発明の一形態に係る研磨用組成物が、シリコン材料を含む研磨対象物の研磨に用いられることが好ましい。 Among these, since the effect of the polishing composition according to the present invention can be obtained more remarkably, a polishing object containing a silicon material is preferable. That is, it is preferable that the polishing composition according to one embodiment of the present invention is used for polishing a polishing object including a silicon material.
 また、前記シリコン材料は、シリコン単結晶、アモルファスシリコンおよびポリシリコンからなる群より選択される少なくとも一種の材料を含むことが好ましい。シリコン材料としては、本発明の効果をより顕著に得ることができるとの観点から、シリコン単結晶またはポリシリコンであることがより好ましく、シリコン単結晶であることが特に好ましい。すなわち、本発明の一実施形態において、研磨対象物は、単結晶シリコンを含む研磨対象物であることが好ましく、単結晶シリコン基板(シリコンウェハ)であることがより好ましい。 The silicon material preferably includes at least one material selected from the group consisting of silicon single crystal, amorphous silicon, and polysilicon. The silicon material is more preferably a silicon single crystal or polysilicon, and particularly preferably a silicon single crystal, from the viewpoint that the effects of the present invention can be obtained more remarkably. That is, in one embodiment of the present invention, the polishing object is preferably a polishing object including single crystal silicon, and more preferably a single crystal silicon substrate (silicon wafer).
 さらに、研磨対象物の形状は特に制限されない。本発明に係る研磨用組成物は、例えば、板状や多面体状等の、平面を有する研磨対象物の研磨に好ましく適用され得る。 Furthermore, the shape of the object to be polished is not particularly limited. The polishing composition according to the present invention can be preferably applied to polishing a polishing object having a flat surface such as a plate shape or a polyhedron shape.
 [研磨用組成物の製造方法]
 本発明の研磨用組成物の製造方法は、特に制限されず、例えば、砥粒、研磨促進剤および必要に応じて他の添加剤を、分散媒である水中で攪拌混合することにより得ることができる。また、分散媒(水)を含むpH調整剤を添加する場合は、砥粒、研磨促進剤および必要に応じて他の添加剤を、分散媒(水)を含むpH調整剤中で攪拌混合する方法を採用してもよい。砥粒、各成分を混合する際の温度は特に制限されないが、10~40℃が好ましく、溶解速度を上げるために加熱してもよい。また、混合時間も、均一混合できれば特に制限されない。
[Method for producing polishing composition]
The method for producing the polishing composition of the present invention is not particularly limited, and can be obtained, for example, by stirring and mixing abrasive grains, a polishing accelerator and, if necessary, other additives in water as a dispersion medium. it can. Moreover, when adding the pH adjuster containing a dispersion medium (water), an abrasive grain, a polishing accelerator, and other additives as needed are stirred and mixed in the pH adjuster containing a dispersion medium (water). A method may be adopted. The temperature at which the abrasive grains and each component are mixed is not particularly limited, but is preferably 10 to 40 ° C. and may be heated to increase the dissolution rate. Further, the mixing time is not particularly limited as long as uniform mixing can be performed.
 [研磨方法および半導体基板の製造方法]
 上述のように、本発明の研磨用組成物は、単結晶シリコンを含む研磨対象物、特に単結晶シリコン基板(シリコンウェハ)の研磨に好適に用いられる。すなわち、本発明の一実施形態では、単結晶シリコンを含む研磨対象物の研磨に用いられる、研磨用組成物を提供する。他の一実施形態では、単結晶シリコン基板(シリコンウェハ)の研磨に用いられる、研磨用組成物を提供する。
[Polishing method and semiconductor substrate manufacturing method]
As described above, the polishing composition of the present invention is suitably used for polishing a polishing object containing single crystal silicon, particularly a single crystal silicon substrate (silicon wafer). That is, in one embodiment of the present invention, there is provided a polishing composition used for polishing a polishing object containing single crystal silicon. In another embodiment, a polishing composition used for polishing a single crystal silicon substrate (silicon wafer) is provided.
 また、本発明は、本発明の研磨用組成物を用いて単結晶シリコンを含む研磨対象物を研磨する研磨方法も提供する。他の一実施形態では、本発明の研磨用組成物を用いて単結晶シリコン基板を研磨する研磨方法も提供する。 The present invention also provides a polishing method for polishing an object to be polished containing single crystal silicon using the polishing composition of the present invention. In another embodiment, a polishing method for polishing a single crystal silicon substrate using the polishing composition of the present invention is also provided.
 さらに、本発明は、単結晶シリコンを含む研磨対象物を前記研磨方法で研磨する工程を含む半導体基板の製造方法も提供する。他の一実施形態では、単結晶シリコン基板を前記研磨方法で研磨する工程を含む半導体基板の製造方法も提供する。 Furthermore, the present invention also provides a method for manufacturing a semiconductor substrate including a step of polishing an object to be polished containing single crystal silicon by the polishing method. In another embodiment, a method of manufacturing a semiconductor substrate including a step of polishing a single crystal silicon substrate by the polishing method is also provided.
 本発明に係る研磨方法における研磨工程は、単結晶シリコン基板を研磨する工程であれば特に制限されないが、化学機械研磨(CMP)工程であることが好ましい。また、研磨工程は、単一の工程からなる研磨工程であっても複数の工程からなる研磨工程であってもよい。複数の工程からなる研磨工程としては、例えば、予備研磨工程(粗研磨工程)の後に仕上げ研磨工程を行う工程や、1次研磨工程の後に1回または2回以上の2次研磨工程を行い、その後に仕上げ研磨工程を行う工程等が挙げられる。 The polishing step in the polishing method according to the present invention is not particularly limited as long as it is a step of polishing a single crystal silicon substrate, but is preferably a chemical mechanical polishing (CMP) step. The polishing step may be a polishing step consisting of a single step or a polishing step consisting of a plurality of steps. As a polishing process consisting of a plurality of processes, for example, a process of performing a final polishing process after a preliminary polishing process (rough polishing process), a secondary polishing process of one or more times after a primary polishing process, The process etc. which perform a final polishing process after that are mentioned.
 本発明に係る研磨方法に用いられる研磨装置としては、半導体基板等を保持するホルダーと回転数を変更可能なモータ等とが取り付けてあり、研磨パッド(研磨布)を貼り付け可能な研磨定盤を有する一般的な研磨装置を使用することができる。研磨装置としては、小型卓上研磨機、片面研磨装置または両面研磨装置のいずれを用いてもよい。 As a polishing apparatus used in the polishing method according to the present invention, a polishing surface plate on which a holder for holding a semiconductor substrate and the like, a motor capable of changing the number of rotations, and the like are attached and a polishing pad (polishing cloth) can be attached A general polishing apparatus having the following can be used. As the polishing apparatus, any of a small table polishing machine, a single-side polishing apparatus, or a double-side polishing apparatus may be used.
 前記研磨パッドとしては、一般的な不織布、ポリウレタン、および多孔質フッ素樹脂等を特に制限なく使用することができる。研磨パッドには、研磨液が溜まるような溝加工が施されていることが好ましい。 As the polishing pad, a general nonwoven fabric, polyurethane, porous fluororesin, or the like can be used without particular limitation. It is preferable that the polishing pad is grooved so that the polishing liquid accumulates.
 研磨条件にも特に制限はなく、例えば、研磨定盤(プラテン)の回転速度は、10~500rpmが好ましい。ヘッド(キャリア)回転数は、10~500rpmが好ましい。研磨対象物を有する基板にかける圧力(研磨圧力)は、0.5~10psiが好ましい。研磨パッドに研磨用組成物を供給する方法も特に制限されず、例えば、ポンプ等で連続的に供給する方法が採用される。この供給量に制限はないが、研磨パッドの表面が常に研磨用組成物で覆われていることが好ましく、例えば、10ml/分以上5000ml/分以下であることが好ましい。研磨時間も特に制限されないが、研磨用組成物を用いる工程については5秒間以上180秒間以下であることが好ましい。 The polishing conditions are not particularly limited. For example, the rotational speed of the polishing platen (platen) is preferably 10 to 500 rpm. The rotational speed of the head (carrier) is preferably 10 to 500 rpm. The pressure applied to the substrate having the object to be polished (polishing pressure) is preferably 0.5 to 10 psi. The method of supplying the polishing composition to the polishing pad is not particularly limited, and for example, a method of continuously supplying with a pump or the like is employed. Although there is no restriction | limiting in this supply amount, it is preferable that the surface of a polishing pad is always covered with polishing composition, for example, it is preferable that they are 10 ml / min or more and 5000 ml / min or less. Although the polishing time is not particularly limited, it is preferably 5 seconds or more and 180 seconds or less for the step using the polishing composition.
 研磨終了後、基板を流水中で洗浄し、スピンドライヤ等により基板上に付着した水滴を払い落として乾燥させることにより、半導体基板が得られる。 After completion of polishing, the substrate is washed in running water, and water droplets adhering to the substrate are removed by a spin dryer or the like, and dried to obtain a semiconductor substrate.
 本発明を、以下の実施例および比較例を用いてさらに詳細に説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。なお、特記しない限り、「%」および「部」は、それぞれ、「質量%」および「質量部」を意味する。また、下記実施例において、特記しない限り、操作は室温(25℃)/相対湿度40~50%RHの条件下で行われた。 The present invention will be described in further detail using the following examples and comparative examples. However, the technical scope of the present invention is not limited only to the following examples. Unless otherwise specified, “%” and “part” mean “% by mass” and “part by mass”, respectively. Further, in the following examples, unless otherwise specified, the operation was performed under conditions of room temperature (25 ° C.) / Relative humidity 40 to 50% RH.
 なお、砥粒の平均二次粒子径は、動的光散乱式 粒子径・粒度分布測定装置(日機装株式会社製 型番:UPA UT-151)を用いて測定した。まず、砥粒を純水中へ分散させ、ローディングインデックス(レーザーの散乱強度)が0.01である分散液を調製した。次いで、この分散液を用いて、UTモードでの体積平均粒子径Mvの値(D50の値)を測定し、得られた値を平均二次粒子径とした。 The average secondary particle size of the abrasive grains was measured using a dynamic light scattering type particle size / particle size distribution measuring device (manufactured by Nikkiso Co., Ltd., model number: UPA UT-151). First, abrasive grains were dispersed in pure water to prepare a dispersion having a loading index (laser scattering intensity) of 0.01. Next, using this dispersion, the value of the volume average particle diameter Mv (value of D50) in the UT mode was measured, and the obtained value was defined as the average secondary particle diameter.
 (1)研磨用組成物の調製
 [実施例1]
 (研磨用組成物(A-1)の調製)
 水に、砥粒としてのコロイダルシリカ(平均一次粒子径35nm、平均二次粒子径63nm)0.5質量%、研磨促進剤としての亜硫酸ナトリウム0.05mol/L、pH調整剤としての水酸化カリウムをpH10.5となる量でそれぞれ加えて混合し、研磨用組成物(A-1)を調製した。
(1) Preparation of polishing composition [Example 1]
(Preparation of polishing composition (A-1))
Colloidal silica (average primary particle size 35 nm, average secondary particle size 63 nm) 0.5% by mass in water, sodium sulfite 0.05 mol / L as polishing accelerator, potassium hydroxide as pH adjuster Were added in an amount of pH 10.5 and mixed to prepare a polishing composition (A-1).
 [実施例2~6、および比較例1~5]
 (研磨用組成物(A-2)~(A-6)、および(C-1)~(C-5)の調製)
 研磨促進剤の種類およびpH調整剤の種類を、下記表1のように変更したこと以外は、実施例1と同様に操作して、各研磨用組成物を調製した(混合温度:約25℃、混合時間:約10分)。
[Examples 2 to 6 and Comparative Examples 1 to 5]
(Preparation of polishing compositions (A-2) to (A-6) and (C-1) to (C-5))
Each polishing composition was prepared in the same manner as in Example 1 except that the type of polishing accelerator and the type of pH adjuster were changed as shown in Table 1 below (mixing temperature: about 25 ° C. , Mixing time: about 10 minutes).
 (研磨用組成物のpHの測定)
 各研磨用組成物(液温:25℃)のpHは、pHメータ(株式会社堀場製作所製 型番:LAQUA(登録商標))により確認した。
(Measurement of pH of polishing composition)
The pH of each polishing composition (liquid temperature: 25 ° C.) was confirmed by a pH meter (manufactured by Horiba, Ltd., model number: LAQUA (registered trademark)).
 (研磨促進剤の求核性パラメータ)
 各研磨促進剤の求核性パラメータは下記式(1)で表される。
(Nucleophilic parameters of polishing accelerator)
The nucleophilic parameter of each polishing accelerator is expressed by the following formula (1).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 この求核性パラメータの値は、Ludwig-Maximilians-Universitat MunchenのHerbert Mayr博士らの反応性パラメータデータベース(Mayr‘s Database of Reactivity Parameters)に記載の値を採用した(URL:http://www.cup.lmu.de/oc/mayr/reaktionsdatenbank2/)。各研磨促進剤の求核性パラメータの値を、下記表1に示す。 As the value of this nucleophilic parameter, the value described in Ludwig-Maximilians-Universitat Munchen Dr. Herbert Mayr et al.'S reactivity parameter database (Mayr's Database of Reactivity Parameters) (URL / w: t / w: t cup.lmu.de/oc/mayr/reactionsdatenbank2/). The values of the nucleophilic parameter of each polishing accelerator are shown in Table 1 below.
 (2)研磨
 上記で得られた各研磨用組成物を用い、8インチ単結晶シリコン基板を以下の研磨条件で研磨した。
(2) Polishing Using each of the polishing compositions obtained above, an 8-inch single crystal silicon substrate was polished under the following polishing conditions.
 <研磨条件>
 研磨装置:小型卓上研磨機(日本エンギス株式会社製、EJ380IN)
 研磨パッド:硬質ポリウレタン製パッド(ニッタ・ハース株式会社製、IC1000)
 プラテン(定盤)回転速度:60[rpm]
 ヘッド(キャリア)回転速度:60[rpm]
 研磨圧力:3.0[psi]
 研磨用組成物(スラリー)の流量:100[ml/min]
 研磨時間:1[min]
 (3)研磨速度の測定
 研磨速度は、以下の手順で測定された。
<Polishing conditions>
Polishing device: small table polishing machine (Eng 380IN, manufactured by Nippon Engis Co., Ltd.)
Polishing pad: Rigid polyurethane pad (Nitta Haas, IC1000)
Platen rotation speed: 60 [rpm]
Head (carrier) rotation speed: 60 [rpm]
Polishing pressure: 3.0 [psi]
Polishing composition (slurry) flow rate: 100 [ml / min]
Polishing time: 1 [min]
(3) Measurement of polishing rate The polishing rate was measured by the following procedure.
 1.電子天秤GH-202(株式会社エー・アンド・デイ製)を用いて、研磨前後の研磨対象物(単結晶シリコン基板)の質量を測定して、これらの差分から、研磨前後の研磨対象物の質量変化量ΔMSi(kg)を算出した。 1. Using an electronic balance GH-202 (manufactured by A & D Co., Ltd.), the mass of the object to be polished (single crystal silicon substrate) before and after polishing was measured. The mass change amount ΔM Si (kg) was calculated.
 2.研磨前後の研磨対象物の質量変化量ΔMSi(kg)をシリコンの比重2.33×10(kg/m)で除することで、研磨前後の研磨対象物の体積変化量ΔVSi(m)を算出した。 2. By dividing the mass change amount ΔM Si (kg) of the polishing object before and after polishing by the specific gravity of silicon 2.33 × 10 3 (kg / m 3 ), the volume change amount ΔV Si ( m 3 ) was calculated.
 3.研磨前後の研磨対象物の体積変化量ΔVSi(m)を研磨対象物の研磨面の面積SSi(m)で除することで、研磨前後の研磨対象物の厚み変化量ΔdSi(m)を算出した。 3. By dividing the volume change ΔV Si (m 3 ) of the polishing object before and after polishing by the area S Si (m 2 ) of the polishing surface of the polishing object, the thickness change Δd Si ( m) was calculated.
 4.研磨前後の研磨対象物の厚み変化量ΔdSi(m)を研磨時間t(min)で除し、さらに単位を(Å/min)へと換算した。この値を研磨速度vSi(Å/min)とした。 4). The thickness change Δd Si (m) of the object to be polished before and after polishing was divided by the polishing time t (min), and the unit was further converted to (Å / min). This value was defined as the polishing rate v Si (Å / min).
 各研磨用組成物を用いて研磨した結果を表1にまとめた。 The results of polishing using each polishing composition are summarized in Table 1.
 (4)研磨促進剤のアルカリ性環境下での安定性について
 表1中、アルカリ性環境下での安定性評価について、△は、研磨促進剤であるシステインが微量の重金属とアルカリとで空気酸化してシスチンになる恐れがあるため、アルカリ性環境下での使用の際、取扱に注意が必要であることを示す。
(4) About stability of polishing accelerator under alkaline environment In Table 1, regarding the stability evaluation under alkaline environment, △ indicates that cysteine as a polishing accelerator is oxidized by air with a trace amount of heavy metal and alkali. Indicates that handling is necessary when using in an alkaline environment, as it may become cystine.
 (5)研磨促進剤の砥粒への吸着性
 研磨促進剤のシリカ(砥粒)への吸着性は、下記方法によって測定した。詳細には、まず、1質量%のシリカ(砥粒)水溶液に0.05mol/Lになるように研磨促進剤を加えた。その後、エアバスにて80℃で保管して吸着反応を促進させた。1週間後、取り出して冷却した後、遠心分離機(26,000rpmで1時間)で固液を分離し、上澄みのみを採集した。採集された上澄みは全炭素測定装置(株式会社島津製作所製 TOC-5000A)で、研磨促進剤の残留量を測定した。その結果を表1にまとめた。残留量が80%以上のものは○、80%未満のものは△とする。
(5) Adsorption of polishing accelerator to abrasive grains Adsorption of polishing accelerator to silica (abrasive grains) was measured by the following method. Specifically, first, a polishing accelerator was added to a 1% by mass silica (abrasive) aqueous solution so as to be 0.05 mol / L. Thereafter, the adsorption reaction was promoted by storing at 80 ° C. in an air bath. One week later, after taking out and cooling, the solid-liquid was separated with a centrifuge (16,000 rpm for 1 hour), and only the supernatant was collected. The collected supernatant was measured for the residual amount of the polishing accelerator with a total carbon measuring device (TOC-5000A, manufactured by Shimadzu Corporation). The results are summarized in Table 1. Those with a residual amount of 80% or more are marked with ◯, and those with a residual amount of less than 80% are marked with △.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 上記表1中の「-」は未測定であることを表す。 “-” In Table 1 above indicates that no measurement was performed.
 上記表1に示す結果から、実施例に係る研磨用組成物は、比較例の研磨用組成物と比較して、優れた研磨速度の向上効果が得られることが確認された。
 
From the results shown in Table 1 above, it was confirmed that the polishing composition according to the example has an excellent polishing rate improvement effect as compared with the polishing composition of the comparative example.

Claims (8)

  1.  砥粒、下記式(1)で表される求核性パラメータが14.5以上30以下の研磨促進剤、および水を含有する研磨用組成物。
    Figure JPOXMLDOC01-appb-M000001
    A polishing composition comprising abrasive grains, a polishing accelerator having a nucleophilic parameter represented by the following formula (1) of 14.5 to 30 and water.
    Figure JPOXMLDOC01-appb-M000001
  2.  前記研磨促進剤が、環員数7以上10以下の環状アミンおよびメルカプトカルボン酸からなる群より選ばれる少なくとも1種である、請求項1に記載の研磨用組成物。 The polishing composition according to claim 1, wherein the polishing accelerator is at least one selected from the group consisting of cyclic amines having 7 to 10 ring members and mercaptocarboxylic acid.
  3.  前記環状アミンが、ヘキサメチレンイミンである、請求項2に記載の研磨用組成物。 The polishing composition according to claim 2, wherein the cyclic amine is hexamethyleneimine.
  4.  前記メルカプトカルボン酸が、メルカプト酢酸である、請求項2または3に記載の研磨用組成物。 The polishing composition according to claim 2 or 3, wherein the mercaptocarboxylic acid is mercaptoacetic acid.
  5.  pHが7.0以上である、請求項1~4のいずれか1項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 4, wherein the pH is 7.0 or more.
  6.  単結晶シリコン基板の研磨に用いられる、請求項1~5のいずれか1項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 5, which is used for polishing a single crystal silicon substrate.
  7.  請求項1~6のいずれか1項に記載の研磨用組成物を用いて単結晶シリコン基板を研磨する、研磨方法。 A polishing method for polishing a single crystal silicon substrate using the polishing composition according to any one of claims 1 to 6.
  8.  請求項7に記載の研磨方法によって単結晶シリコン基板を研磨する工程を含む、半導体基板の製造方法。
     
    A method for manufacturing a semiconductor substrate, comprising a step of polishing a single crystal silicon substrate by the polishing method according to claim 7.
PCT/JP2017/030786 2016-09-23 2017-08-28 Polishing composition, polishing method in which same is used, and method for producing semiconductor substrate WO2018055985A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018540930A JP6916192B2 (en) 2016-09-23 2017-08-28 Polishing composition, polishing method using it, and manufacturing method of semiconductor substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-185781 2016-09-23
JP2016185781 2016-09-23

Publications (1)

Publication Number Publication Date
WO2018055985A1 true WO2018055985A1 (en) 2018-03-29

Family

ID=61689913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030786 WO2018055985A1 (en) 2016-09-23 2017-08-28 Polishing composition, polishing method in which same is used, and method for producing semiconductor substrate

Country Status (3)

Country Link
JP (1) JP6916192B2 (en)
TW (1) TW201816061A (en)
WO (1) WO2018055985A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022108907A (en) * 2021-01-14 2022-07-27 株式会社フジミインコーポレーテッド Polishing composition, method for producing polishing composition, polishing method, method for producing substrate
CN115873507A (en) * 2022-12-06 2023-03-31 万华化学集团电子材料有限公司 Tungsten chemical mechanical polishing solution and application thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52112192A (en) * 1976-03-16 1977-09-20 Nakano Kiyoshi Grinding agent for metals
JPH09137155A (en) * 1995-11-16 1997-05-27 Tokyo Ohka Kogyo Co Ltd Polishing composition and polishing method
JP2002030276A (en) * 2000-05-12 2002-01-31 Kao Corp Polishing liquid composition
JP2003507895A (en) * 1999-08-13 2003-02-25 キャボット マイクロエレクトロニクス コーポレイション Chemical-mechanical polishing system with a stopping compound and method of use thereof
JP2006156825A (en) * 2004-11-30 2006-06-15 Kao Corp Polishing liquid composition for semiconductor substrate
JP2008147651A (en) * 2006-12-05 2008-06-26 Cheil Industries Inc Slurry composition for final polishing of silicon wafer, and final polishing method of silicon wafer using the same
WO2009025383A1 (en) * 2007-08-23 2009-02-26 Nitta Haas Incorporated Polishing composition
WO2009096495A1 (en) * 2008-02-01 2009-08-06 Fujimi Incorporated Polishing composition and polishing method using the same
WO2012005289A1 (en) * 2010-07-08 2012-01-12 株式会社Sumco Method for polishing silicon wafer, and polishing solution for use in the method
WO2012141145A1 (en) * 2011-04-13 2012-10-18 株式会社 フジミインコーポレーテッド Composition for polishing edge of substrate, and method for polishing edge of substrate using same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52112192A (en) * 1976-03-16 1977-09-20 Nakano Kiyoshi Grinding agent for metals
JPH09137155A (en) * 1995-11-16 1997-05-27 Tokyo Ohka Kogyo Co Ltd Polishing composition and polishing method
JP2003507895A (en) * 1999-08-13 2003-02-25 キャボット マイクロエレクトロニクス コーポレイション Chemical-mechanical polishing system with a stopping compound and method of use thereof
JP2002030276A (en) * 2000-05-12 2002-01-31 Kao Corp Polishing liquid composition
JP2006156825A (en) * 2004-11-30 2006-06-15 Kao Corp Polishing liquid composition for semiconductor substrate
JP2008147651A (en) * 2006-12-05 2008-06-26 Cheil Industries Inc Slurry composition for final polishing of silicon wafer, and final polishing method of silicon wafer using the same
WO2009025383A1 (en) * 2007-08-23 2009-02-26 Nitta Haas Incorporated Polishing composition
WO2009096495A1 (en) * 2008-02-01 2009-08-06 Fujimi Incorporated Polishing composition and polishing method using the same
WO2012005289A1 (en) * 2010-07-08 2012-01-12 株式会社Sumco Method for polishing silicon wafer, and polishing solution for use in the method
WO2012141145A1 (en) * 2011-04-13 2012-10-18 株式会社 フジミインコーポレーテッド Composition for polishing edge of substrate, and method for polishing edge of substrate using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022108907A (en) * 2021-01-14 2022-07-27 株式会社フジミインコーポレーテッド Polishing composition, method for producing polishing composition, polishing method, method for producing substrate
JP7681402B2 (en) 2021-01-14 2025-05-22 株式会社フジミインコーポレーテッド Polishing composition, method for producing polishing composition, polishing method, and method for producing substrate
CN115873507A (en) * 2022-12-06 2023-03-31 万华化学集团电子材料有限公司 Tungsten chemical mechanical polishing solution and application thereof

Also Published As

Publication number Publication date
TW201816061A (en) 2018-05-01
JPWO2018055985A1 (en) 2019-07-11
JP6916192B2 (en) 2021-08-11

Similar Documents

Publication Publication Date Title
JP6762390B2 (en) Polishing composition, polishing method and substrate manufacturing method
JP3457144B2 (en) Polishing composition
TWI736623B (en) Chemical mechanical polishing slurry composition
WO2011093153A1 (en) Aqueous dispersion for chemical mechanical polishing, and chemical mechanical polishing method using same
JP7133414B2 (en) Polishing composition
TWI828727B (en) Grinding compositions and grinding systems
CN101126012A (en) Composition for polishing semiconductor wafer, method for producing same, and method for polishing
CN112500798A (en) Polishing composition, method for producing polishing composition, polishing method, and method for producing semiconductor substrate
WO2018012176A1 (en) Polishing composition, method for producing polishing composition, and polishing method
US10414019B2 (en) Polishing composition
JP6916192B2 (en) Polishing composition, polishing method using it, and manufacturing method of semiconductor substrate
JP7697788B2 (en) Polishing composition for polishing silicon dioxide film and silicon nitride film, method for producing polishing composition for polishing silicon dioxide film and silicon nitride film, and polishing method
JPH10172937A (en) Composition for polishing
JP2019057635A (en) Method for manufacturing polishing composition
TWI819067B (en) Polishing composition and polishing system
JPH10172936A (en) Composition for polishing
KR20190064319A (en) Slurry composition for polishing and method for polishing semiconductor thin film of high aspect raio
JPH10172934A (en) Composition for polishing
KR20220055446A (en) Chemical-mechanical polishing slurry composition and method for manufacturing semiconductor by using the same
JP5373250B2 (en) Method for producing semiconductor wafer polishing composition
TW201610127A (en) Polishing liquid for cmp and polishing method using same
JP2015074737A (en) Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method
WO2018012175A1 (en) Process for producing polishing composition, and polishing method
JPH10172935A (en) Composition for polishing
JP2004111416A (en) Silicon wafer polishing particles and abrasives

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852764

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018540930

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17852764

Country of ref document: EP

Kind code of ref document: A1