[go: up one dir, main page]

WO2018055762A1 - System for measuring cell state - Google Patents

System for measuring cell state Download PDF

Info

Publication number
WO2018055762A1
WO2018055762A1 PCT/JP2016/078263 JP2016078263W WO2018055762A1 WO 2018055762 A1 WO2018055762 A1 WO 2018055762A1 JP 2016078263 W JP2016078263 W JP 2016078263W WO 2018055762 A1 WO2018055762 A1 WO 2018055762A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
cell
cell state
measurement
image
Prior art date
Application number
PCT/JP2016/078263
Other languages
French (fr)
Japanese (ja)
Inventor
靖展 伊賀
仁 越後
朗 松下
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2016/078263 priority Critical patent/WO2018055762A1/en
Publication of WO2018055762A1 publication Critical patent/WO2018055762A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters

Definitions

  • the present invention relates to a cell state measuring apparatus.
  • the tiling image is generated by acquiring a large number of images with a two-dimensional image sensor while changing the shooting position, and connecting the large number of images.
  • the present invention has been made in view of the above-described circumstances, and is capable of acquiring an image of a wide range of cells in a short time and can easily grasp the state of a wide range of cells.
  • An object is to provide an apparatus.
  • One embodiment of the present invention includes a linear line sensor that detects light from cells cultured in a container, and moves the line sensor in a scanning direction that intersects the longitudinal direction of the line sensor.
  • An image acquisition unit that acquires a two-dimensional image by a cell state
  • a cell state measurement unit that divides the image acquired by the image acquisition unit into a plurality of unit regions and measures a cell state in each of the plurality of unit regions
  • a display unit that displays a measurement result of the state of the cell in each of the unit regions measured by the cell state measurement unit.
  • the line sensor moves in the scanning direction with respect to the container while detecting light from the cells in the container, whereby a two-dimensional image of the cells in the container is acquired.
  • a short time is required. Can be obtained at.
  • the acquired image is divided into a plurality of unit regions, the cell state in each unit region is measured, and the measurement result of each unit region is displayed on the display unit.
  • the operator can easily grasp the state of a wide range of cells in the container based on the measurement result of each unit area displayed on the display unit.
  • the cell state measurement unit integrates the measurement results of the plurality of unit regions to calculate the cell state in the entire image, and the display unit measures the cell state in the entire image. May be further displayed.
  • the cell state measurement unit may calculate a cell state in the entire image by adding the measurement results of the plurality of unit regions. By doing in this way, based on the measured value of the whole image, the state of the cell over a wide range or the whole in the container can be further grasped.
  • the display unit may display a spatial distribution of measurement results of the plurality of unit regions.
  • the cell type information acquisition part which acquires the information of the cell type of the said cell cultured in the said container.
  • the said cell state measurement part of the cell type acquired by the said cell type information acquisition part The size of the unit area may be determined according to information. Cell size and colony-forming ability vary depending on the cell type. Especially in the case of cell types that form colonies, by determining the size of each unit area so that the size of each unit area is larger than the size of the colony, the image is converted into a unit area so that the colony spans multiple unit areas. It is possible to prevent division and improve the measurement accuracy of the cell state.
  • the cell state measurement unit measures at least one of the cell density and the cell number in each unit region as the cell state
  • the display unit displays the cell density in each unit region and At least one of the cell numbers may be displayed.
  • the cell state measurement unit further measures at least one of the cell density and the number of cells in the entire image as the cell state, and the display unit displays the cell density and cells in the entire image. At least one of the numbers may be further displayed.
  • the image acquisition unit acquires a plurality of the time-series images at time intervals, and the display unit calculates each of the plurality of images calculated by the cell state measurement unit. You may display the time-dependent change of the measured value of a unit area. By doing in this way, the time-dependent change of the state of the cell in each unit field in a container can be grasped easily based on the time-dependent change of the displayed measured value.
  • the present invention it is possible to acquire an image of a wide range of cells in a short time and to easily grasp the state of a wide range of cells.
  • FIG. 1 It is a block diagram which shows the whole structure of the cell state measuring apparatus which concerns on one Embodiment of this invention. It is a longitudinal cross-sectional view of the housing
  • the cell state measurement device 100 acquires an image that acquires a two-dimensional image of the bottom surface 1 a by scanning the line sensor 21 with respect to the bottom surface 1 a of the container 1.
  • a cell state measuring unit 3 that analyzes the image acquired by the image acquiring unit 2 and measures the state of the cells A distributed on the bottom surface 1 a, and displays the measurement result by the cell state measuring unit 3
  • a display unit 4 that displays the measurement result by the cell state measuring unit 3.
  • the cell state measuring apparatus 100 includes a casing 5 made of a substantially rectangular parallelepiped-shaped sealed container having a height, a width, and a depth.
  • the image acquisition unit 2 is accommodated in the housing 5, and the cell state measurement unit 3 and the display unit 4 are arranged outside the housing 5.
  • Transmission / reception units 6 and 7 are provided inside and outside the housing 5, respectively, and data of a two-dimensional image is transmitted from the image acquisition unit 2 to the cell state measurement unit 3 via the transmission / reception units 6 and 7. ing.
  • the top plate of the housing 5 provided on one side in the height direction is made of a flat plate-like member arranged horizontally, and the container 1 is placed thereon.
  • the stage 5a is configured.
  • the stage 5a is made of an optically transparent material such as glass so as to transmit illumination light from the illumination unit 23 described later.
  • the container 1 is a closed container formed of an entirely optically transparent material, such as a cell culture flask or dish, and contains cells A and a medium B.
  • the container 1 has an upper plate 1b and a bottom plate 1c facing each other, and the upper plate 1b is provided with a reflecting surface for reflecting illumination light downward.
  • the image acquisition unit 2 includes a linear line sensor 21 arranged along the depth direction of the housing 5 (in a direction perpendicular to the paper surface in FIG. 2) substantially parallel to the stage 5a, the line sensor 21 and the stage 5a.
  • the line sensor 21 has a plurality of light receiving elements arranged in the longitudinal direction, detects light incident on the plurality of light receiving elements, and acquires an image for one line at a time. It is preferable that the line sensor 21 extends over substantially the entire length of the depth dimension of the housing 5 so that substantially the entire range in the depth direction of the stage 5a is included in the imaging range by the line sensor 21.
  • the plurality of objective lenses 22 are arranged so that the optical axis is along the direction orthogonal to the stage 5a, and collects the light transmitted through the stage 5a.
  • the plurality of objective lenses 22 are arranged in a line along the longitudinal direction of the line sensor 21 and form an optical image on the same surface.
  • a line sensor 21 is arranged on the image plane of the plurality of objective lenses 22, and an optical image connected on the image plane by the plurality of objective lenses 22 is acquired by the line sensor 21.
  • the focal point of the objective lens 22 is adjusted by a focus adjustment mechanism (not shown) so as to match the bottom surface 1a.
  • the objective lens 22 having a large depth of field may be used so that the adjustment of the focal position is not necessary.
  • the illumination unit 23 is arranged side by side with the image acquisition unit 2 in the width direction of the housing 5 (lateral direction in FIG. 2), and emits illumination light upward.
  • the illumination light emitted from the illumination unit 23 passes through the stage 5a and the bottom plate 1c of the container 1, and is reflected downward on the reflection surface of the upper plate 1b of the container 1.
  • the field of view of the plurality of objective lenses 22 is illuminated from above, and the illumination light transmitted through the cell A, the bottom plate 1c, and the stage 5a is incident on the objective lens 22.
  • the scanning mechanism 24 scans the line sensor 21, the objective lens 22, and the illumination unit 23 integrally with the longitudinal direction of the line sensor 21 by a linear actuator (not shown), for example (that is, the width direction of the housing 5). Is moved one-dimensionally.
  • the scanning mechanism 24 includes the line sensor 21 and the objective over the entire length of the width direction from one end to the other end of the casing 5 so that substantially the entire range of the stage 5a in the width direction is included in the imaging range of the line sensor 21. It is preferable to move the lens 22 and the illumination unit 23.
  • the line sensor 21 acquires a wide range of two-dimensional images, preferably substantially the same as the stage 5a, by repeatedly acquiring images line by line while being moved in the scanning direction by the scanning mechanism 24.
  • the cell state measurement unit 3 When the cell state measurement unit 3 acquires a two-dimensional image from the image acquisition unit 2 via the transmission / reception units 6 and 7, the cell state measurement unit 3 divides the image into a plurality of unit regions Q, and the cell A in each unit region Q A measurement process for measuring the state and a map generation process for generating a spatial map (spatial distribution) of the obtained measurement values are executed.
  • the image P is equally divided into a predetermined number (5 ⁇ 5 in the example shown in FIG. 3) in the vertical and horizontal directions. Instead of dividing into a predetermined number, the image P may be divided so that each unit region Q has a predetermined size.
  • the measurement step the state of the cell A in each unit region Q is measured. Specifically, by extracting cells A from each unit region Q using known image processing, and counting the number of cells A in each unit region Q, at least one of the number of cells and the cell density is a cell. Measured as A state.
  • FIG. 3 shows a cell density distribution map as an example.
  • the cell density represents a value when the density of the cells in the confluent state is 100%.
  • the unit region Q in the distribution map may be color-coded according to the size of the measurement values.
  • the created distribution map is transmitted from the cell state measuring unit 3 to the display unit 4 and displayed on the display unit 4.
  • Such a cell state measuring unit 3 is realized by, for example, a computer arranged outside the housing 5.
  • the computer includes a central processing unit (CPU) and a storage device that stores a cell state measurement program.
  • the function of the cell state measurement unit 3 is realized by the CPU executing the above-described processing according to the cell state measurement program.
  • the housing 5 of the cell state measuring apparatus 100 is disposed in the incubator with the container 1 placed on the stage 5a with the bottom plate 1c facing downward.
  • the image acquisition unit 2 in the housing 5 executes photographing in an incubator according to a command signal transmitted by the operator or a preset program.
  • the command signal is transmitted from the input device (not shown) outside the housing 5 to the image acquisition unit 2 via the transmission / reception units 6 and 7.
  • the illumination light emitted from the illuminating unit 23 is transmitted through the stage 5a and the bottom plate 1c of the container 1, is reflected downward on the upper plate 1b, is transmitted through the cells A on the bottom surface 1a, the bottom plate 1c and the stage 5a,
  • the light is condensed by a plurality of objective lenses 22 and an optical image of the bottom surface 1 a is formed on the line sensor 21.
  • the optical image is taken by the line sensor 21, and an image for one line is acquired.
  • the image acquisition unit 2 repeats photographing the bottom surface 1 a line by line sensor 21 while scanning the line sensor 21, the objective lens 22 and the illumination unit 23 in the scanning direction with respect to the bottom surface 1 a by the operation of the scanning mechanism 24. Thereby, the two-dimensional image P of the bottom surface 1a of the container 1 is acquired.
  • the acquired image P is transmitted to the cell state measuring unit 3 arranged outside the incubator.
  • the image P is divided into a plurality of unit regions Q, the state of the cells A in each unit region Q is measured, and the measurement value of the state of the cells A is superimposed on each unit region Q in the image P.
  • a distribution map is created by being displayed.
  • the distribution map is displayed on the display unit 4. Thereby, the operator can observe the image of the bottom face 1a of the container 1 in the incubator outside the incubator.
  • the line scanning type image acquisition unit 2 that acquires the two-dimensional image P by scanning the line sensor 21
  • a wide range 2 such as the entire bottom surface 1 a of the container 1
  • the dimension image P is acquired in a short time for one scanning of the line sensor 21.
  • the cell state measurement unit 3 further calculates a measurement value of the state of the cell A in the entire image P, and the display unit 4 displays the measurement value of each unit region Q as shown in FIG.
  • the measurement value of the entire image P may be further displayed.
  • FIG. 4 shows the average cell density and the total number of cells as the measurement values of the entire image P.
  • the measurement value of the entire image P may be calculated by measuring the state of the cell A of the entire image P separately from the measurement of the unit region Q, or may be calculated by integrating the measurement values of the unit region Q. Good.
  • the average value of the cell densities of all unit regions Q may be calculated as the average cell density of the entire image P.
  • the sum of the numbers of cells in all unit regions Q may be calculated as the total number of cells in the entire image P.
  • the cell state measurement unit 3 uses an image P that has been subjected to image processing for color-coding the region where the cell A exists and the region where the cell A does not exist as a distribution map. May be used. By doing in this way, the operator can grasp
  • the cell state measuring unit 3 further includes a cell type information acquiring unit 8 that acquires cell type information of the cell A to be measured that is cultured in the container 1.
  • the size of the unit region Q may be determined based on the cell type information acquired by the cell type information acquisition unit 8, and the image P may be divided into the unit regions Q having the determined size.
  • the cell type information acquisition unit 8 is configured to acquire cell type information based on, for example, an operator's input operation. The cell type information acquired by the cell type information acquisition unit 8 is transmitted to the cell state measurement unit 3.
  • the cell state measuring unit 3 holds a table in which cell types and the sizes of the unit areas Q are associated with each other.
  • the size of the unit region Q is set for each cell type.
  • the cell type forming the colony C is set such that the size of one side of the unit region Q is larger than the diameter of the colony C as shown in FIG. In FIG. 7, a round dish-like container 1 is shown.
  • the size of the unit region Q is smaller than the diameter of the colony C, since one colony C extends over the plurality of unit regions Q, the number and size of the colonies C cannot be accurately measured.
  • the size of one side of the unit region Q is larger than the diameter of the colony C, the frequency with which one colony C extends over the plurality of unit regions Q is reduced, and the entire one colony C is the same.
  • the image P can be divided so as to exist in the unit region Q.
  • the measurement accuracy of the state of the cell A can be improved by determining the size of the unit region Q according to the cell type of the cell A cultured in the container 1.
  • the image acquisition unit 2 may acquire a plurality of time-series two-dimensional images P at predetermined time intervals.
  • the cell state measurement unit 3 obtains a plurality of time-series measurement values for the unit region Q at the same position by measuring the state of the cell A in each unit region Q in each of the plurality of images.
  • the display unit 4 displays the change over time of the measurement value of the unit region Q at the same position, for example, as a graph. Thereby, the operator can easily grasp the change with time of the state of the cell A over a wide area or the whole of the container 1 based on the change with time displayed on the display unit 4.
  • the cell number and the cell density are given as examples of the state of the cell A, but other indicators used for evaluating the state of the cell A may be measured. For example, in the case of cells that form colonies, the size, number, or density of the colonies may be measured.
  • the measurement result calculated by the cell state measurement unit 3 is superimposed on the image P and displayed on the display unit 4.
  • the measurement result and the image P are displayed on the display unit 4. May be displayed side by side in separate areas.
  • the illumination unit 23 is provided in the housing 5, but instead, an illumination unit may be provided outside the housing 5.
  • an illumination unit separate from the housing 5 may be provided above the container in the incubator.
  • the illumination unit may be fixed to the side plate or the upper plate of the container 1.
  • the light from the cells detected by the line sensor 21 is light by illumination light from the illuminating unit, but instead, light by fluorescence or light emission phenomenon generated in the cells. It may be.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

The system (100) according to the present invention for measuring cell state comprises: an image acquisition unit (2) which is provided with a linear line sensor (21) for detecting light from cells being cultured in a container and acquires a two-dimensional image by moving the line sensor (21) in a direction intersecting with the longitudinal direction of the line sensor (21); a cell state measurement unit (3) which divides the image into a plurality of unit areas and measures the cell state in each of the plurality of unit areas; and a display unit (4) which displays the result of the cell state measurement in each unit area.

Description

細胞状態計測装置Cell state measurement device
 本発明は、細胞状態計測装置に関するものである。 The present invention relates to a cell state measuring apparatus.
 従来、培養容器内で培養中の細胞やコロニーの分布を観察するために、培養容器の底面全体のタイリング画像を生成する方法が用いられている(例えば、特許文献1参照。)。タイリング画像は、撮影位置を変更しながら2次元イメージセンサによって多数の画像を取得し、多数の画像をつなぎ合わせることによって生成される。 Conventionally, a method of generating a tiling image of the entire bottom surface of a culture container has been used to observe the distribution of cells and colonies being cultured in the culture container (see, for example, Patent Document 1). The tiling image is generated by acquiring a large number of images with a two-dimensional image sensor while changing the shooting position, and connecting the large number of images.
特開2012-173725号公報JP 2012-173725 A
 しかしながら、培養容器の底面全体のような広範囲のタイリング画像を生成するためには数十~数百枚の画像が必要であり、多数の画像の取得に長い時間を要する。したがって、画像の取得時刻に差が生じ、細胞の状態を正確に把握することが難しいという問題がある。
 また、タイリング画像の全体をモニタに表示した際に、個々の細胞は非常に小さく表示される。例えば、直径100mmの培養ディッシュの底面全体のタイリング画像をモニタに表示した場合、1個の細胞(直径約20μm)のモニタ上のサイズは、1画素程度の直径約40μmとなる。そのため、容器全体の細胞の状態をタイリング画像から把握することが難しいという問題がある。
However, in order to generate a wide range of tiling images such as the entire bottom surface of the culture vessel, several tens to several hundreds of images are required, and it takes a long time to acquire many images. Therefore, there is a problem that a difference occurs in image acquisition time, and it is difficult to accurately grasp the cell state.
In addition, when the entire tiling image is displayed on the monitor, individual cells are displayed very small. For example, when a tiling image of the entire bottom surface of a culture dish having a diameter of 100 mm is displayed on the monitor, the size of one cell (diameter about 20 μm) on the monitor is about 40 μm in diameter of about one pixel. Therefore, there is a problem that it is difficult to grasp the state of cells in the entire container from the tiling image.
 本発明は、上述した事情に鑑みてなされたものであって、広範囲の細胞の画像を短時間で取得することができ、かつ、広範囲の細胞の状態を容易に把握することができる細胞状態計測装置を提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and is capable of acquiring an image of a wide range of cells in a short time and can easily grasp the state of a wide range of cells. An object is to provide an apparatus.
 上記目的を達成するため、本発明は以下の手段を提供する。
 本発明の一態様は、容器内で培養される細胞からの光を検出する直線状のラインセンサを有し、該ラインセンサを該ラインセンサの長手方向に対して交差する走査方向に移動させることによって2次元の画像を取得する画像取得部と、該画像取得部によって取得された前記画像を複数の単位領域に分割し、該複数の単位領域の各々における細胞の状態を計測する細胞状態計測部と、該細胞状態計測部によって計測された各前記単位領域における前記細胞の状態の計測結果を表示する表示部とを備える細胞状態計測装置である。
In order to achieve the above object, the present invention provides the following means.
One embodiment of the present invention includes a linear line sensor that detects light from cells cultured in a container, and moves the line sensor in a scanning direction that intersects the longitudinal direction of the line sensor. An image acquisition unit that acquires a two-dimensional image by a cell state, and a cell state measurement unit that divides the image acquired by the image acquisition unit into a plurality of unit regions and measures a cell state in each of the plurality of unit regions And a display unit that displays a measurement result of the state of the cell in each of the unit regions measured by the cell state measurement unit.
 本態様によれば、画像取得部において、ラインセンサが容器内の細胞からの光を検出しながら容器に対して走査方向に移動することによって、容器内の細胞の2次元画像が取得される。このように、ライン走査型の画像取得部を用いることによって、2次元イメージセンサを用いて多数の画像を取得する場合に比べて、容器の底面全体のような広範囲の画像であっても短時間で取得することができる。 According to this aspect, in the image acquisition unit, the line sensor moves in the scanning direction with respect to the container while detecting light from the cells in the container, whereby a two-dimensional image of the cells in the container is acquired. In this way, by using the line scanning type image acquisition unit, even in the case of a wide range of images such as the entire bottom surface of the container, compared to a case where a large number of images are acquired using a two-dimensional image sensor, a short time is required. Can be obtained at.
 続いて、細胞状態計測部において、取得された画像が複数の単位領域に分割され、各単位領域における細胞の状態が計測され、各単位領域の計測結果が表示部に表示される。これにより、操作者は、表示部に表示された各単位領域の計測結果に基づいて、容器内の広範囲の細胞の状態を容易に把握することができる。 Subsequently, in the cell state measurement unit, the acquired image is divided into a plurality of unit regions, the cell state in each unit region is measured, and the measurement result of each unit region is displayed on the display unit. Thereby, the operator can easily grasp the state of a wide range of cells in the container based on the measurement result of each unit area displayed on the display unit.
 上記態様においては、前記細胞状態計測部が、前記複数の単位領域の計測結果を統合して前記画像全体における細胞の状態を算出し、前記表示部が、前記画像全体における細胞の状態の計測結果をさらに表示してもよい。前記細胞状態計測部は、前記複数の単位領域の計測結果を加算することによって、前記画像全体における細胞の状態を算出してもよい。
 このようにすることで、画像全体の計測値に基づいて、容器内の広範囲または全体にわたる細胞の状態をさらに把握することができる。
In the above aspect, the cell state measurement unit integrates the measurement results of the plurality of unit regions to calculate the cell state in the entire image, and the display unit measures the cell state in the entire image. May be further displayed. The cell state measurement unit may calculate a cell state in the entire image by adding the measurement results of the plurality of unit regions.
By doing in this way, based on the measured value of the whole image, the state of the cell over a wide range or the whole in the container can be further grasped.
 上記態様においては、前記表示部が、前記複数の単位領域の計測結果の空間分布を表示してもよい。
 このようにすることで、表示された空間分布に基づいて、容器内の細胞の状態の分布を容易に把握することができる。
In the above aspect, the display unit may display a spatial distribution of measurement results of the plurality of unit regions.
By doing in this way, distribution of the state of the cell in a container can be grasped | ascertained easily based on the displayed spatial distribution.
 上記態様においては、前記容器内で培養される前記細胞の細胞種の情報を取得する細胞種情報取得部を備え、前記細胞状態計測部が、前記細胞種情報取得部によって取得された細胞種の情報に応じて前記単位領域のサイズを決定してもよい。
 細胞のサイズやコロニーの形成能は細胞種によって異なる。特にコロニー形成する細胞種の場合には各単位領域のサイズがコロニーのサイズよりも大きくなるように単位領域のサイズを決定することで、コロニーが複数の単位領域をまたぐように画像が単位領域に分割されることを防ぎ、細胞の状態の計測精度を向上することができる。
In the said aspect, the cell type information acquisition part which acquires the information of the cell type of the said cell cultured in the said container is provided, The said cell state measurement part of the cell type acquired by the said cell type information acquisition part The size of the unit area may be determined according to information.
Cell size and colony-forming ability vary depending on the cell type. Especially in the case of cell types that form colonies, by determining the size of each unit area so that the size of each unit area is larger than the size of the colony, the image is converted into a unit area so that the colony spans multiple unit areas. It is possible to prevent division and improve the measurement accuracy of the cell state.
 上記態様においては、前記細胞状態計測部が、前記細胞の状態として、各前記単位領域における細胞の密度および細胞数の少なくとも一方を計測し、前記表示部が、各前記単位領域における細胞の密度および細胞数の少なくとも一方を表示してもよい。
 このようにすることで、容器内の細胞の空間的な分布や粗密を、表示部に表示された計測値の空間分布に基づいて容易に把握することができる。
In the above aspect, the cell state measurement unit measures at least one of the cell density and the cell number in each unit region as the cell state, and the display unit displays the cell density in each unit region and At least one of the cell numbers may be displayed.
By doing in this way, the spatial distribution and density of the cells in the container can be easily grasped based on the spatial distribution of the measurement values displayed on the display unit.
 上記態様においては、前記細胞状態計測部が、前記細胞の状態として、前記画像全体における細胞の密度および細胞数の少なくとも一方をさらに計測し、前記表示部が、前記画像全体における細胞の密度および細胞数の少なくとも一方をさらに表示してもよい。
 このようにすることで、容器内の細胞の全体的な状態を、表示部に表示された画像全体の計測値に基づいて容易に把握することができる。
In the above aspect, the cell state measurement unit further measures at least one of the cell density and the number of cells in the entire image as the cell state, and the display unit displays the cell density and cells in the entire image. At least one of the numbers may be further displayed.
By doing in this way, the whole state of the cell in a container can be grasped | ascertained easily based on the measured value of the whole image displayed on the display part.
 上記態様においては、前記画像取得部が、時間間隔をあけて時系列の複数の前記画像を取得し、前記表示部が、前記細胞状態計測部によって前記複数の画像の各々から算出された各前記単位領域の計測値の経時変化を表示してもよい。
 このようにすることで、表示された計測値の経時変化に基づいて、容器内の各単位領域における細胞の状態の経時変化を容易に把握することができる。
In the above aspect, the image acquisition unit acquires a plurality of the time-series images at time intervals, and the display unit calculates each of the plurality of images calculated by the cell state measurement unit. You may display the time-dependent change of the measured value of a unit area.
By doing in this way, the time-dependent change of the state of the cell in each unit field in a container can be grasped easily based on the time-dependent change of the displayed measured value.
 本発明によれば、広範囲の細胞の画像を短時間で取得することができ、かつ、広範囲の細胞の状態を容易に把握することができるという効果を奏する。 According to the present invention, it is possible to acquire an image of a wide range of cells in a short time and to easily grasp the state of a wide range of cells.
本発明の一実施形態に係る細胞状態計測装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the cell state measuring apparatus which concerns on one Embodiment of this invention. 図1の細胞状態計測装置の筐体と該筐体上に載置された容器の縦断面図である。It is a longitudinal cross-sectional view of the housing | casing of the cell state measuring apparatus of FIG. 1, and the container mounted on this housing | casing. 図1の細胞状態計測部によって生成される分布マップの一例を示す図である。It is a figure which shows an example of the distribution map produced | generated by the cell state measurement part of FIG. 図1の表示部上の表示の変形例を示す図である。It is a figure which shows the modification of the display on the display part of FIG. 図1の細胞状態計測部によって生成される分布マップの変形例を示す図である。It is a figure which shows the modification of the distribution map produced | generated by the cell state measurement part of FIG. 図1の細胞状態計測装置の変形例の機能ブロック図である。It is a functional block diagram of the modification of the cell state measuring apparatus of FIG. 図6の細胞状態計測装置の細胞状態計測部により画像を複数の単位領域に分割する方法を説明する図である。It is a figure explaining the method of dividing | segmenting an image into a several unit area | region by the cell state measurement part of the cell state measuring apparatus of FIG.
 本発明の一実施形態に係る細胞状態計測装置100について図面を参照して以下に説明する。
 本実施形態に係る細胞状態計測装置100は、図1および図2に示されるように、容器1の底面1aに対してラインセンサ21を走査することによって底面1aの2次元画像を取得する画像取得部2と、該画像取得部2によって取得された画像を解析して底面1a上に分布する細胞Aの状態を計測する細胞状態計測部3と、該細胞状態計測部3による計測結果を表示する表示部4とを備えている。
A cell state measuring apparatus 100 according to an embodiment of the present invention will be described below with reference to the drawings.
As shown in FIGS. 1 and 2, the cell state measurement device 100 according to the present embodiment acquires an image that acquires a two-dimensional image of the bottom surface 1 a by scanning the line sensor 21 with respect to the bottom surface 1 a of the container 1. Unit 2, a cell state measuring unit 3 that analyzes the image acquired by the image acquiring unit 2 and measures the state of the cells A distributed on the bottom surface 1 a, and displays the measurement result by the cell state measuring unit 3 And a display unit 4.
 また、細胞状態計測装置100は、高さ、幅および奥行きを有する略直方体状の密閉容器からなる筐体5を備えている。画像取得部2は筐体5内に収容され、細胞状態計測部3および表示部4は筐体5の外部に配置されている。筐体5の内部および外部にはそれぞれ送受信部6,7が設けられ、送受信部6,7を介して画像取得部2から細胞状態計測部3へ2次元画像のデータが送信されるようになっている。 Moreover, the cell state measuring apparatus 100 includes a casing 5 made of a substantially rectangular parallelepiped-shaped sealed container having a height, a width, and a depth. The image acquisition unit 2 is accommodated in the housing 5, and the cell state measurement unit 3 and the display unit 4 are arranged outside the housing 5. Transmission / reception units 6 and 7 are provided inside and outside the housing 5, respectively, and data of a two-dimensional image is transmitted from the image acquisition unit 2 to the cell state measurement unit 3 via the transmission / reception units 6 and 7. ing.
 図2に示されるように、高さ方向(図2において縦方向)の一側に設けられた筐体5の天板は、水平に配置される平板状の部材からなり、容器1が載置されるステージ5aを構成している。ステージ5aは、後述する照明部23からの照明光を透過させるように光学的に透明な材質、例えばガラスからなる。 As shown in FIG. 2, the top plate of the housing 5 provided on one side in the height direction (vertical direction in FIG. 2) is made of a flat plate-like member arranged horizontally, and the container 1 is placed thereon. The stage 5a is configured. The stage 5a is made of an optically transparent material such as glass so as to transmit illumination light from the illumination unit 23 described later.
 容器1は、細胞培養用のフラスコまたはディッシュのような、全体的に光学的に透明な材料から形成された密閉容器であり、細胞Aおよび培地Bを収容している。容器1は、互いに対向する上板1bおよび底板1cを有し、上板1bには、照明光を下方へ反射するための反射面が設けられている。 The container 1 is a closed container formed of an entirely optically transparent material, such as a cell culture flask or dish, and contains cells A and a medium B. The container 1 has an upper plate 1b and a bottom plate 1c facing each other, and the upper plate 1b is provided with a reflecting surface for reflecting illumination light downward.
 画像取得部2は、ステージ5aと略平行に筐体5の奥行き方向(図2において紙面に垂直な方向)に沿って配置された直線状のラインセンサ21と、該ラインセンサ21とステージ5aとの間に配置された複数の対物レンズ22と、該複数の対物レンズ22の視野を照明する照明部23と、ラインセンサ21を移動させる走査機構24とを備える。 The image acquisition unit 2 includes a linear line sensor 21 arranged along the depth direction of the housing 5 (in a direction perpendicular to the paper surface in FIG. 2) substantially parallel to the stage 5a, the line sensor 21 and the stage 5a. A plurality of objective lenses 22, an illumination unit 23 that illuminates the field of view of the plurality of objective lenses 22, and a scanning mechanism 24 that moves the line sensor 21.
 ラインセンサ21は、長手方向に配列された複数の受光素子を有し、複数の受光素子に入射した光を検出して一度に1ライン分の画像を取得する。ラインセンサ21は、ステージ5aの奥行き方向の略全範囲がラインセンサ21による撮影範囲に含まれるように、筐体5の奥行き寸法の略全長にわたって延びていることが好ましい。 The line sensor 21 has a plurality of light receiving elements arranged in the longitudinal direction, detects light incident on the plurality of light receiving elements, and acquires an image for one line at a time. It is preferable that the line sensor 21 extends over substantially the entire length of the depth dimension of the housing 5 so that substantially the entire range in the depth direction of the stage 5a is included in the imaging range by the line sensor 21.
 複数の対物レンズ22は、光軸がステージ5aに直交する方向に沿うように配置され、ステージ5aを透過してきた光を集光する。複数の対物レンズ22は、ラインセンサ21の長手方向に沿って一列に配列され、同一面上に光学像を結ぶ。複数の対物レンズ22の像面上にはラインセンサ21が配置され、複数の対物レンズ22によって像面上に結ばれた光学像がラインセンサ21によって取得されるようになっている。対物レンズ22の焦点は、底面1aに合うように図示しない焦点調節機構によって調整される。焦点位置の調節が不要となるように、大きな被写界深度を有する対物レンズ22を使用してもよい。 The plurality of objective lenses 22 are arranged so that the optical axis is along the direction orthogonal to the stage 5a, and collects the light transmitted through the stage 5a. The plurality of objective lenses 22 are arranged in a line along the longitudinal direction of the line sensor 21 and form an optical image on the same surface. A line sensor 21 is arranged on the image plane of the plurality of objective lenses 22, and an optical image connected on the image plane by the plurality of objective lenses 22 is acquired by the line sensor 21. The focal point of the objective lens 22 is adjusted by a focus adjustment mechanism (not shown) so as to match the bottom surface 1a. The objective lens 22 having a large depth of field may be used so that the adjustment of the focal position is not necessary.
 照明部23は、筐体5の幅方向(図2において横方向)に画像取得部2と並んで配置され、上方に向けて照明光を発する。照明部23から発せられた照明光は、ステージ5aおよび容器1の底板1cを透過し、容器1の上板1bの反射面において下方へ反射される。これにより、複数の対物レンズ22の視野が上方から照明され、細胞A、底板1cおよびステージ5aを透過した照明光が対物レンズ22に入射するようになっている。 The illumination unit 23 is arranged side by side with the image acquisition unit 2 in the width direction of the housing 5 (lateral direction in FIG. 2), and emits illumination light upward. The illumination light emitted from the illumination unit 23 passes through the stage 5a and the bottom plate 1c of the container 1, and is reflected downward on the reflection surface of the upper plate 1b of the container 1. Thereby, the field of view of the plurality of objective lenses 22 is illuminated from above, and the illumination light transmitted through the cell A, the bottom plate 1c, and the stage 5a is incident on the objective lens 22.
 走査機構24は、例えば図示しない直動アクチュエータによって、ラインセンサ21、対物レンズ22および照明部23を一体的にラインセンサ21の長手方向に直交する走査方向(すなわち、筐体5の幅方向。)に1次元的に移動させる。走査機構24は、ステージ5aの幅方向の略全範囲がラインセンサ21による撮影範囲に含まれるように、筐体5の幅方向の一端から他端まで幅寸法の略全長にわたってラインセンサ21、対物レンズ22および照明部23を移動させることが好ましい。ラインセンサ21は、走査機構24によって走査方向に移動させられながら1ラインずつ画像の取得を繰り返すことにより、好ましくはステージ5aと略同等の広範囲の2次元の画像を取得するようになっている。 The scanning mechanism 24 scans the line sensor 21, the objective lens 22, and the illumination unit 23 integrally with the longitudinal direction of the line sensor 21 by a linear actuator (not shown), for example (that is, the width direction of the housing 5). Is moved one-dimensionally. The scanning mechanism 24 includes the line sensor 21 and the objective over the entire length of the width direction from one end to the other end of the casing 5 so that substantially the entire range of the stage 5a in the width direction is included in the imaging range of the line sensor 21. It is preferable to move the lens 22 and the illumination unit 23. The line sensor 21 acquires a wide range of two-dimensional images, preferably substantially the same as the stage 5a, by repeatedly acquiring images line by line while being moved in the scanning direction by the scanning mechanism 24.
 細胞状態計測部3は、送受信部6,7を介して画像取得部2から2次元の画像を取得すると、画像を複数の単位領域Qに分割する分割工程と、各単位領域Qにおける細胞Aの状態を計測する計測工程と、得られた計測値の空間マップ(空間分布)を生成するマップ生成工程とを実行する。 When the cell state measurement unit 3 acquires a two-dimensional image from the image acquisition unit 2 via the transmission / reception units 6 and 7, the cell state measurement unit 3 divides the image into a plurality of unit regions Q, and the cell A in each unit region Q A measurement process for measuring the state and a map generation process for generating a spatial map (spatial distribution) of the obtained measurement values are executed.
 分割工程において、画像Pは、縦方向および横方向に所定の数(図3に示される例では、5×5)に均等に分割される。所定の数に分割することに代えて、各単位領域Qが所定のサイズを有するように画像Pを分割してもよい。
 次に、計測工程において、各単位領域Qにおける細胞Aの状態が計測される。具体的には、各単位領域Q内から公知の画像処理を用いて細胞Aを抽出し、各単位領域Q内の細胞Aの数をカウントすることによって、細胞数および細胞密度の少なくとも一方が細胞Aの状態として計測される。
In the dividing step, the image P is equally divided into a predetermined number (5 × 5 in the example shown in FIG. 3) in the vertical and horizontal directions. Instead of dividing into a predetermined number, the image P may be divided so that each unit region Q has a predetermined size.
Next, in the measurement step, the state of the cell A in each unit region Q is measured. Specifically, by extracting cells A from each unit region Q using known image processing, and counting the number of cells A in each unit region Q, at least one of the number of cells and the cell density is a cell. Measured as A state.
 次に、マップ生成工程において、計測工程において算出された各単位領域Qの細胞Aの状態の計測値を、画像P内の対応する単位領域Qに重畳表示することによって、図3に示されるように、画像P内における計測値の空間分布を表す分布マップを作成する。図3には、細胞密度の分布マップが一例として示されている。この分布マップにおいて、細胞密度は、コンフルエント状態での細胞の密度を100%としたときの値を表している。測定値の空間分布を視覚的により認識し易くするために、分布マップ内の単位領域Qを測定値の大きさに応じて色分けしてもよい。
 作成された分布マップは、細胞状態計測部3から表示部4に送信され、表示部4に表示される。
Next, in the map generation step, the measurement value of the state of the cell A in each unit region Q calculated in the measurement step is superimposed and displayed on the corresponding unit region Q in the image P, as shown in FIG. Next, a distribution map representing the spatial distribution of the measurement values in the image P is created. FIG. 3 shows a cell density distribution map as an example. In this distribution map, the cell density represents a value when the density of the cells in the confluent state is 100%. In order to make it easier to visually recognize the spatial distribution of measurement values, the unit region Q in the distribution map may be color-coded according to the size of the measurement values.
The created distribution map is transmitted from the cell state measuring unit 3 to the display unit 4 and displayed on the display unit 4.
 このような細胞状態計測部3は、例えば、筐体5の外部に配置されたコンピュータによって実現される。コンピュータは、中央演算処理装置(CPU)と、細胞状態計測プログラムを格納する記憶装置とを備える。細胞状態計測プログラムに従ってCPUが上述した処理を実行することによって、細胞状態計測部3の機能が実現されるようになっている。 Such a cell state measuring unit 3 is realized by, for example, a computer arranged outside the housing 5. The computer includes a central processing unit (CPU) and a storage device that stores a cell state measurement program. The function of the cell state measurement unit 3 is realized by the CPU executing the above-described processing according to the cell state measurement program.
 次に、このように構成された細胞状態計測装置100の作用について説明する。
 本実施形態に係る細胞状態計測装置100の筐体5は、底板1cを下側に向けて容器1をステージ5a上に載置した状態でインキュベータ内に配置される。筐体5内の画像取得部2は、操作者が送信する指令信号または予め設定されたプログラムに従ってインキュベータ内で撮影を実行する。指令信号は、筐体5の外部の入力装置(図示略)から送受信部6,7を介して画像取得部2へ送信される。
Next, the operation of the cell state measuring apparatus 100 configured as described above will be described.
The housing 5 of the cell state measuring apparatus 100 according to the present embodiment is disposed in the incubator with the container 1 placed on the stage 5a with the bottom plate 1c facing downward. The image acquisition unit 2 in the housing 5 executes photographing in an incubator according to a command signal transmitted by the operator or a preset program. The command signal is transmitted from the input device (not shown) outside the housing 5 to the image acquisition unit 2 via the transmission / reception units 6 and 7.
 照明部23から発せられた照明光は、ステージ5aおよび容器1の底板1cを透過し、上板1bにおいて下方に向けて反射され、底面1a上の細胞A、底板1cおよびステージ5aを透過し、複数の対物レンズ22によって集光され、ラインセンサ21上に底面1aの光学像を結ぶ。光学像はラインセンサ21によって撮影されて1ライン分の画像が取得される。画像取得部2は、走査機構24の作動によって底面1aに対してラインセンサ21、対物レンズ22および照明部23を走査方向に走査しながら、ラインセンサ21によって1ラインずつ底面1aの撮影を繰り返す。これにより、容器1の底面1aの2次元の画像Pが取得される。取得された画像Pは、インキュベータの外部に配置された細胞状態計測部3に送信される。 The illumination light emitted from the illuminating unit 23 is transmitted through the stage 5a and the bottom plate 1c of the container 1, is reflected downward on the upper plate 1b, is transmitted through the cells A on the bottom surface 1a, the bottom plate 1c and the stage 5a, The light is condensed by a plurality of objective lenses 22 and an optical image of the bottom surface 1 a is formed on the line sensor 21. The optical image is taken by the line sensor 21, and an image for one line is acquired. The image acquisition unit 2 repeats photographing the bottom surface 1 a line by line sensor 21 while scanning the line sensor 21, the objective lens 22 and the illumination unit 23 in the scanning direction with respect to the bottom surface 1 a by the operation of the scanning mechanism 24. Thereby, the two-dimensional image P of the bottom surface 1a of the container 1 is acquired. The acquired image P is transmitted to the cell state measuring unit 3 arranged outside the incubator.
 細胞状態計測部3において、画像Pが複数の単位領域Qに分割され、各単位領域Qにおける細胞Aの状態が計測され、画像P内の各単位領域Qに細胞Aの状態の計測値が重畳表示されることによって、分布マップが作成される。分布マップは、表示部4に表示される。これにより、操作者は、インキュベータ内の容器1の底面1aの画像をインキュベータの外部で観察することができる。 In the cell state measurement unit 3, the image P is divided into a plurality of unit regions Q, the state of the cells A in each unit region Q is measured, and the measurement value of the state of the cells A is superimposed on each unit region Q in the image P. A distribution map is created by being displayed. The distribution map is displayed on the display unit 4. Thereby, the operator can observe the image of the bottom face 1a of the container 1 in the incubator outside the incubator.
 この場合に、本実施形態によれば、ラインセンサ21を走査して2次元画像Pを取得するライン走査型の画像取得部2を用いることによって、容器1の底面1a全体のような広範囲の2次元画像Pがラインセンサ21の一走査分の短い時間で取得される。これにより、広範囲に分布する細胞Aがわずかな時間差で撮影されるので、経時変化する細胞Aの状態を正確に計測することができるという利点がある。また、画像P上に表示される各単位領域Qの計測値に基づいて、操作者は、底面1aの広範囲における細胞Aの状態を容易に把握することができるという利点がある。 In this case, according to the present embodiment, by using the line scanning type image acquisition unit 2 that acquires the two-dimensional image P by scanning the line sensor 21, a wide range 2 such as the entire bottom surface 1 a of the container 1 can be obtained. The dimension image P is acquired in a short time for one scanning of the line sensor 21. Thereby, since the cells A distributed over a wide range are photographed with a slight time difference, there is an advantage that the state of the cells A changing with time can be accurately measured. Further, there is an advantage that the operator can easily grasp the state of the cell A in the wide range of the bottom surface 1a based on the measurement value of each unit region Q displayed on the image P.
 本実施形態においては、細胞状態計測部3が、画像P全体における細胞Aの状態の計測値をさらに算出し、表示部4が、図4に示されるように、各単位領域Qの計測値に加えて画像P全体の計測値をさらに表示してもよい。図4には、画像P全体の計測値として、平均細胞密度および総細胞数が示されている。このように画像P全体の計測値を表示部4に表示することによって、細胞Aの総数や平均密度のような、容器1内の細胞Aの全体的な状態を容易に把握することができる。 In the present embodiment, the cell state measurement unit 3 further calculates a measurement value of the state of the cell A in the entire image P, and the display unit 4 displays the measurement value of each unit region Q as shown in FIG. In addition, the measurement value of the entire image P may be further displayed. FIG. 4 shows the average cell density and the total number of cells as the measurement values of the entire image P. Thus, by displaying the measured values of the entire image P on the display unit 4, the overall state of the cells A in the container 1 such as the total number and average density of the cells A can be easily grasped.
 画像P全体の計測値は、単位領域Qの計測とは別に画像P全体の細胞Aの状態を計測することによって算出してもよいが、単位領域Qの計測値を統合して算出してもよい。例えば、全ての単位領域Qの細胞密度の平均値を画像P全体の平均細胞密度として算出してもよい。また、全ての単位領域Qの細胞数を加算した和を画像P全体の総細胞数として算出してもよい。 The measurement value of the entire image P may be calculated by measuring the state of the cell A of the entire image P separately from the measurement of the unit region Q, or may be calculated by integrating the measurement values of the unit region Q. Good. For example, the average value of the cell densities of all unit regions Q may be calculated as the average cell density of the entire image P. Alternatively, the sum of the numbers of cells in all unit regions Q may be calculated as the total number of cells in the entire image P.
 本実施形態においては、細胞状態計測部3が、図5に示されるように、細胞Aが存在する領域と細胞Aが存在しない領域とで色分けする画像処理が施された画像Pを分布マップに使用してもよい。
 このようにすることで、操作者は、細胞Aの存在する領域の面積を視覚的により容易に把握することができる。
In the present embodiment, as shown in FIG. 5, the cell state measurement unit 3 uses an image P that has been subjected to image processing for color-coding the region where the cell A exists and the region where the cell A does not exist as a distribution map. May be used.
By doing in this way, the operator can grasp | ascertain the area of the area | region where the cell A exists visually more easily.
 本実施形態においては、図6に示されるように、容器1内で培養されている計測対象の細胞Aの細胞種の情報を取得する細胞種情報取得部8をさらに備え、細胞状態計測部3が、細胞種情報取得部8によって取得された細胞種の情報に基づいて単位領域Qのサイズを決定し、決定されたサイズの単位領域Qに画像Pを分割してもよい。
 細胞種情報取得部8は、例えば操作者の入力操作に基づいて、細胞種の情報を取得するように構成されている。細胞種情報取得部8によって取得された細胞種の情報は、細胞状態計測部3に送信される。
In this embodiment, as shown in FIG. 6, the cell state measuring unit 3 further includes a cell type information acquiring unit 8 that acquires cell type information of the cell A to be measured that is cultured in the container 1. However, the size of the unit region Q may be determined based on the cell type information acquired by the cell type information acquisition unit 8, and the image P may be divided into the unit regions Q having the determined size.
The cell type information acquisition unit 8 is configured to acquire cell type information based on, for example, an operator's input operation. The cell type information acquired by the cell type information acquisition unit 8 is transmitted to the cell state measurement unit 3.
 細胞状態計測部3は、細胞種と単位領域Qのサイズとが対応付けられたテーブルを保持している。単位領域Qのサイズは、細胞種毎に設定されている。例えば、コロニーCを形成する細胞種については、図7に示されるように、単位領域Qの一辺のサイズがコロニーCの直径よりも大きくなるように設定されている。図7において、丸いディッシュ状の容器1が示されている。 The cell state measuring unit 3 holds a table in which cell types and the sizes of the unit areas Q are associated with each other. The size of the unit region Q is set for each cell type. For example, the cell type forming the colony C is set such that the size of one side of the unit region Q is larger than the diameter of the colony C as shown in FIG. In FIG. 7, a round dish-like container 1 is shown.
 単位領域QのサイズがコロニーCの直径よりも小さい場合、1つのコロニーCが複数の単位領域Qにまたがってしまうため、コロニーCの数やサイズを正確に計測することができない。これに対し、単位領域Qの一辺のサイズをコロニーCの直径よりも大きくすることで、1つのコロニーCが複数の単位領域Qにまたがってしまう頻度を低減し、1つのコロニーC全体が同一の単位領域Q内に存在するように画像Pを分割することができる。
 このように、容器1内で培養されている細胞Aの細胞種に応じて単位領域Qのサイズを決定することによって、細胞Aの状態の計測精度を向上することができる。
When the size of the unit region Q is smaller than the diameter of the colony C, since one colony C extends over the plurality of unit regions Q, the number and size of the colonies C cannot be accurately measured. On the other hand, by making the size of one side of the unit region Q larger than the diameter of the colony C, the frequency with which one colony C extends over the plurality of unit regions Q is reduced, and the entire one colony C is the same. The image P can be divided so as to exist in the unit region Q.
Thus, the measurement accuracy of the state of the cell A can be improved by determining the size of the unit region Q according to the cell type of the cell A cultured in the container 1.
 本実施形態においては、画像取得部2が、所定の時間間隔をあけて時系列の複数の2次元画像Pの取得を実行してもよい。
 この場合、細胞状態計測部3は、複数の画像の各々において各単位領域Qの細胞Aの状態を計測することによって、同一の位置の単位領域Qについて時系列の複数の計測値を得る。表示部4は、分布マップに代えて、またはこれに加えて、同一の位置の単位領域Qの計測値の経時変化を、例えばグラフとして表示する。これにより、操作者は、表示部4に表示された経時変化に基づいて、容器1の広範囲または全体の細胞Aの状態の経時変化を容易に把握することができる。
In the present embodiment, the image acquisition unit 2 may acquire a plurality of time-series two-dimensional images P at predetermined time intervals.
In this case, the cell state measurement unit 3 obtains a plurality of time-series measurement values for the unit region Q at the same position by measuring the state of the cell A in each unit region Q in each of the plurality of images. Instead of or in addition to the distribution map, the display unit 4 displays the change over time of the measurement value of the unit region Q at the same position, for example, as a graph. Thereby, the operator can easily grasp the change with time of the state of the cell A over a wide area or the whole of the container 1 based on the change with time displayed on the display unit 4.
 本実施形態においては、細胞Aの状態の例として細胞数および細胞密度を挙げたが、細胞Aの状態の評価に用いられる他の指標を計測してもよい。例えば、コロニーを形成する細胞の場合には、コロニーのサイズ、数または密度を計測してもよい。 In the present embodiment, the cell number and the cell density are given as examples of the state of the cell A, but other indicators used for evaluating the state of the cell A may be measured. For example, in the case of cells that form colonies, the size, number, or density of the colonies may be measured.
 本実施形態においては、細胞状態計測部3によって算出された計測結果を画像Pに重畳して表示部4に表示することとしたが、これに代えて、計測結果と画像Pとを表示部4の別々の領域に並べて表示してもよい。 In the present embodiment, the measurement result calculated by the cell state measurement unit 3 is superimposed on the image P and displayed on the display unit 4. Instead, the measurement result and the image P are displayed on the display unit 4. May be displayed side by side in separate areas.
 本実施形態においては、筐体5内に照明部23を設けることとしたが、これに代えて、筐体5の外部に照明部を設けてもよい。例えば、筐体5とは別体の照明部が、インキュベータ内の容器よりも上方に設けられていてもよい。あるいは、容器1の側板または上板に照明部が固定されていてもよい。 In the present embodiment, the illumination unit 23 is provided in the housing 5, but instead, an illumination unit may be provided outside the housing 5. For example, an illumination unit separate from the housing 5 may be provided above the container in the incubator. Alternatively, the illumination unit may be fixed to the side plate or the upper plate of the container 1.
 本実施形態においては、ラインセンサ21によって検出される細胞からの光が、照明部からの照明光による光であることとしたが、これに代えて、細胞内で発生する蛍光または発光現象による光であってもよい。 In the present embodiment, the light from the cells detected by the line sensor 21 is light by illumination light from the illuminating unit, but instead, light by fluorescence or light emission phenomenon generated in the cells. It may be.
100 細胞状態計測装置
1 容器
1a 底面
2 画像取得部
21 ラインセンサ
22 対物レンズ
23 照明部
24 走査機構
3 細胞状態計測部
4 表示部
5 筐体
6,7 送受信部
8 細胞種情報取得部
DESCRIPTION OF SYMBOLS 100 Cell state measuring device 1 Container 1a Bottom surface 2 Image acquisition part 21 Line sensor 22 Objective lens 23 Illumination part 24 Scanning mechanism 3 Cell state measurement part 4 Display part 5 Case 6, 7 Transmission / reception part 8 Cell type information acquisition part

Claims (8)

  1.  容器内で培養される細胞からの光を検出する直線状のラインセンサを有し、該ラインセンサを該ラインセンサの長手方向に対して交差する走査方向に移動させることによって2次元の画像を取得する画像取得部と、
     該画像取得部によって取得された前記画像を複数の単位領域に分割し、該複数の単位領域の各々における細胞の状態を計測する細胞状態計測部と、
     該細胞状態計測部によって計測された各前記単位領域における前記細胞の状態の計測結果を表示する表示部とを備える細胞状態計測装置。
    It has a linear line sensor that detects light from cells cultured in a container, and acquires a two-dimensional image by moving the line sensor in a scanning direction that intersects the longitudinal direction of the line sensor. An image acquisition unit to
    A cell state measurement unit that divides the image acquired by the image acquisition unit into a plurality of unit regions and measures the state of cells in each of the plurality of unit regions;
    A cell state measurement apparatus comprising: a display unit that displays a measurement result of the state of the cell in each unit region measured by the cell state measurement unit.
  2.  前記細胞状態計測部が、前記複数の単位領域の計測結果を統合して前記画像全体における細胞の状態を算出し、
     前記表示部が、前記画像全体における細胞の状態の計測結果をさらに表示する請求項1に記載の細胞状態計測装置。
    The cell state measurement unit calculates the cell state in the entire image by integrating the measurement results of the plurality of unit regions,
    The cell state measurement device according to claim 1, wherein the display unit further displays a measurement result of a cell state in the entire image.
  3.  前記細胞状態計測部が、前記複数の単位領域の計測結果を加算する請求項2に記載の細胞状態計測装置。 The cell state measuring device according to claim 2, wherein the cell state measuring unit adds measurement results of the plurality of unit regions.
  4.  前記表示部が、前記複数の単位領域の計測結果の空間分布を表示する請求項1から請求項3のいずれかに記載の細胞状態計測装置。 The cell state measurement device according to any one of claims 1 to 3, wherein the display unit displays a spatial distribution of measurement results of the plurality of unit regions.
  5.  前記容器内で培養される前記細胞の細胞種の情報を取得する細胞種情報取得部を備え、
     前記細胞状態計測部が、前記細胞種情報取得部によって取得された細胞種の情報に応じて前記単位領域のサイズを決定する請求項1から請求項4のいずれかに記載の細胞状態計測装置。
    A cell type information acquisition unit for acquiring information on the cell type of the cells cultured in the container;
    The cell state measuring device according to any one of claims 1 to 4, wherein the cell state measuring unit determines a size of the unit region according to information on a cell type acquired by the cell type information acquiring unit.
  6.  前記細胞状態計測部が、前記細胞の状態として、各前記単位領域における細胞の密度および細胞数の少なくとも一方を計測し、
     前記表示部が、各前記単位領域における細胞の密度および細胞数の少なくとも一方を表示する請求項1から請求項5のいずれかに記載の細胞状態計測装置。
    The cell state measurement unit measures at least one of the density and the number of cells in each unit region as the state of the cells,
    The cell state measuring device according to any one of claims 1 to 5, wherein the display unit displays at least one of a cell density and a cell number in each unit region.
  7.  前記細胞状態計測部が、前記細胞の状態として、前記画像全体における細胞の密度および細胞数の少なくとも一方をさらに計測し、
     前記表示部が、前記画像全体における細胞の密度および細胞数の少なくとも一方をさらに表示する請求項6に記載の細胞状態計測装置。
    The cell state measurement unit further measures at least one of the density and the number of cells in the entire image as the state of the cells,
    The cell state measurement apparatus according to claim 6, wherein the display unit further displays at least one of a cell density and a cell number in the entire image.
  8.  前記画像取得部が、時間間隔をあけて時系列の複数の前記画像を取得し、
     前記表示部が、前記細胞状態計測部によって前記複数の画像の各々から算出された各前記単位領域の計測値の経時変化を表示する請求項1から請求項7のいずれかに記載の細胞状態計測装置。
    The image acquisition unit acquires a plurality of time-series images at time intervals,
    The cell state measurement according to any one of claims 1 to 7, wherein the display unit displays a time-dependent change in a measurement value of each unit region calculated from each of the plurality of images by the cell state measurement unit. apparatus.
PCT/JP2016/078263 2016-09-26 2016-09-26 System for measuring cell state WO2018055762A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/078263 WO2018055762A1 (en) 2016-09-26 2016-09-26 System for measuring cell state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/078263 WO2018055762A1 (en) 2016-09-26 2016-09-26 System for measuring cell state

Publications (1)

Publication Number Publication Date
WO2018055762A1 true WO2018055762A1 (en) 2018-03-29

Family

ID=61689411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078263 WO2018055762A1 (en) 2016-09-26 2016-09-26 System for measuring cell state

Country Status (1)

Country Link
WO (1) WO2018055762A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018062125A1 (en) * 2016-09-28 2019-07-18 オリンパス株式会社 Cell condition measuring device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006095896A1 (en) * 2005-03-08 2006-09-14 Nihon University Cultured cell monitoring system
JP2012105631A (en) * 2010-10-19 2012-06-07 Sony Corp Image processing apparatus, method, and program
WO2012111236A1 (en) * 2011-02-17 2012-08-23 三洋電機株式会社 Image identification device and program
JP2013039113A (en) * 2011-08-19 2013-02-28 Nagoya Univ Method for controlling cell quality and method for producing cell
JP2015065812A (en) * 2013-09-26 2015-04-13 株式会社Screenホールディングス Culture quality evaluation method
JP2016077226A (en) * 2014-10-17 2016-05-16 オリンパス株式会社 Culture observation apparatus and culture observation system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006095896A1 (en) * 2005-03-08 2006-09-14 Nihon University Cultured cell monitoring system
JP2012105631A (en) * 2010-10-19 2012-06-07 Sony Corp Image processing apparatus, method, and program
WO2012111236A1 (en) * 2011-02-17 2012-08-23 三洋電機株式会社 Image identification device and program
JP2013039113A (en) * 2011-08-19 2013-02-28 Nagoya Univ Method for controlling cell quality and method for producing cell
JP2015065812A (en) * 2013-09-26 2015-04-13 株式会社Screenホールディングス Culture quality evaluation method
JP2016077226A (en) * 2014-10-17 2016-05-16 オリンパス株式会社 Culture observation apparatus and culture observation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018062125A1 (en) * 2016-09-28 2019-07-18 オリンパス株式会社 Cell condition measuring device

Similar Documents

Publication Publication Date Title
US20190180080A1 (en) Cell-state measurement device
KR101283858B1 (en) Shape measuring device, observation device, and image processing method
CN109154563B (en) Device and method for detecting particles present in a sample
JP6046929B2 (en) Optical measuring device
US11131839B2 (en) Sample observation device and sample observation method
JP6000010B2 (en) Laser scanning microscope
EP3441812B1 (en) Pattern based autofocus method for a microscopy
US20230314782A1 (en) Sample observation device and sample observation method
JP6363477B2 (en) 3D shape measuring device
WO2018055762A1 (en) System for measuring cell state
WO2019176048A1 (en) Cell image processing device
US10054781B2 (en) Microscope, sheet-illumination microscope, and microscope-image acquiring method
US11852792B2 (en) Sample observation device
JP2011017620A (en) Shape measuring method, image processing program, and observation device
JP6980898B2 (en) Cell image processing device
WO2019049837A1 (en) Observation device
JP2007286147A (en) Infrared microscope
US11892706B2 (en) Observation device
JP7037636B2 (en) Observation device
WO2019065144A1 (en) Observation device, observation method, and observation program
US20170371138A1 (en) Microscope and microscope-image acquisition method
JP2019158767A (en) measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916829

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16916829

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP