WO2018051849A1 - Water purification dispersion, production method for water purification dispersion, and waste water treatment method - Google Patents
Water purification dispersion, production method for water purification dispersion, and waste water treatment method Download PDFInfo
- Publication number
- WO2018051849A1 WO2018051849A1 PCT/JP2017/031967 JP2017031967W WO2018051849A1 WO 2018051849 A1 WO2018051849 A1 WO 2018051849A1 JP 2017031967 W JP2017031967 W JP 2017031967W WO 2018051849 A1 WO2018051849 A1 WO 2018051849A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dispersion
- water
- water purification
- hemp
- wastewater
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F1/54—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
- C02F1/56—Macromolecular compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/01—Separation of suspended solid particles from liquids by sedimentation using flocculating agents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/286—Treatment of water, waste water, or sewage by sorption using natural organic sorbents or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/42—Treatment of water, waste water, or sewage by ion-exchange
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F1/5263—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using natural chemical compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F1/5272—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using specific organic precipitants
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/58—Treatment of water, waste water, or sewage by removing specified dissolved compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/103—Arsenic compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/12—Halogens or halogen-containing compounds
- C02F2101/14—Fluorine or fluorine-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/20—Heavy metals or heavy metal compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/20—Heavy metals or heavy metal compounds
- C02F2101/203—Iron or iron compound
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/20—Heavy metals or heavy metal compounds
- C02F2101/22—Chromium or chromium compounds, e.g. chromates
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/09—Viscosity
Definitions
- the present invention relates to a plant-derived water purification dispersion used for purification of water such as industrial wastewater, a method for producing the water purification dispersion, and a wastewater treatment method using the water purification dispersion.
- a step of adding a base to wastewater in which heavy metal ions are dissolved, making the wastewater basic, insolubilizing at least part of the heavy metal ions to form a suspended solid, and an inorganic flocculant Contains a cation exchanger consisting of leafy vegetables such as Morohaya and Komatsuna.
- a method of performing an adsorption process of passing wastewater through an adsorbed layer see, for example, Patent Document 1).
- a coagulation method is proposed in which fine particles in a suspension are coagulated and separated by mixing or using a coagulant containing at least one of moroheiya, this dried product, or this extract and a polymer coagulant.
- Patent Document 2 a water purification agent comprising a granulated product containing a mixture of a plant powder and a polymer flocculant, and a water purification method using the water purification agent have been proposed (for example, see Patent Document 3).
- an automated purification apparatus is an effective means. Therefore, in the use of the automated purification apparatus, it is desired to construct a purification process system that can stably purify a large amount of waste water at a high speed and exhibits superior purification performance.
- Patent Documents 1 to 3 provides a detailed description of the dispersion used for drainage. From the description of Patent Documents 1 to 3, a water purifier for use in drainage is used as water. It was not possible to produce a dispersion liquid that was excellent in water purification performance, did not deteriorate water purification performance even after long-term storage, and could satisfy low cost.
- an object of the present invention is to provide a dispersion for water purification that exhibits excellent water purification performance, does not deteriorate water purification performance even after long-term storage, and can satisfy low cost.
- Means for solving the problems are as follows. That is, ⁇ 1> A water-purifying dispersion liquid containing water, and further containing 0.01% by mass to 0.5% by mass of a combination of powder of a long burlap and a polymer flocculant with respect to the water.
- the dispersion for water purification is characterized in that the viscosity is 20 mPa ⁇ S to 500 mPa ⁇ S, and the median diameter of the solid content in the dispersion for water purification is 100 ⁇ m to 400 ⁇ m.
- ⁇ 3> The water purifying dispersion liquid according to ⁇ 1>, wherein the Nagatoro Hemp is “Chinese Hemp No. 3” having an appraisal number by the Chinese Institute of Agricultural Sciences of Agricultural Sciences No. 1900006. is there.
- ⁇ 4> The water purifying dispersion liquid according to ⁇ 1>, wherein the Nagatoro Hemp is “Chinese red hemp” having an appraisal number by Chinese Academy of Agricultural Sciences hemp laboratory of 1900001. .
- ⁇ 5> The water purification dispersion according to any one of ⁇ 1> to ⁇ 4>, wherein the polymer flocculant is polyacrylamide.
- ⁇ 6> The water purifying dispersion liquid according to any one of ⁇ 1> to ⁇ 5>, wherein a mass composition ratio of the long straw burlap and the polymer flocculant is 9: 1 to 1: 9.
- ⁇ 7> The dispersion for water purification according to any one of ⁇ 1> to ⁇ 6>, wherein the viscosity is 150 mPa ⁇ S to 450 mPa ⁇ S.
- ⁇ 8> The water purification dispersion according to any one of ⁇ 1> to ⁇ 7>, wherein the median diameter is 150 ⁇ m to 350 ⁇ m.
- a method for producing a water purification dispersion for producing the water purification dispersion according to any one of ⁇ 1> to ⁇ 8> The kneaded burlap powder and the polymer flocculant are mixed and kneaded with water added to knead to obtain a kneaded product, the kneaded product is molded to form a molded product, and the molded product
- the water-purifying dispersion liquid is produced by dispersing a water purification agent powder produced by a production method including a drying step of obtaining a dried product and a pulverizing step of crushing the dried product in water. This is a method for producing a water-purifying dispersion.
- ⁇ 10> The method for producing a water purification dispersion according to ⁇ 9>, wherein the electrical conductivity of water used for dispersion is 30 ⁇ S / cm or more.
- ⁇ 12> The ⁇ 11>, wherein the wastewater is wastewater containing an inorganic unnecessary material having at least one of nickel, fluorine, iron, copper, zinc, chromium, arsenic, cadmium, tin, and lead. This is a wastewater treatment method.
- ⁇ 13> The waste water treatment method according to ⁇ 12>, wherein the water purification dispersion is subjected to drainage after 24 hours or more after production.
- the conventional problems can be solved, the object can be achieved, excellent water purification performance is exhibited, water purification performance is not deteriorated even after long-term storage, and further low cost is satisfied.
- the obtained dispersion for water purification can be provided.
- FIG. 1 is a diagram showing the appraisal number of “Chuju 3” used in the present invention.
- FIG. 2 is a diagram showing the appraisal number of “medium red hemp” used in the present invention.
- the dispersion for water purification of the present invention contains a powder of long burlap and a polymer flocculant.
- the powder of long burlap and the polymer flocculant are dispersed in water.
- the total content of the long burlap powder and the polymer flocculant in the water purification dispersion is 0.01% by mass to 0.5% by mass with respect to water as the dispersion medium.
- the viscosity of the water purification dispersion is 20 mPa ⁇ S to 500 mPa ⁇ S.
- the median diameter of the solid content in the water purification dispersion is 100 ⁇ m to 400 ⁇ m.
- the dispersion for water purification of the present invention satisfying the above requirements is a dispersion for water purification that exhibits excellent water purification performance, does not deteriorate the water purification performance even after long-term storage, and can satisfy low cost.
- the inventors of the present invention have conducted research on purification treatment of waste water using a dispersion, and when the plant powder and the polymer flocculant are dissolved depending on the type of water in the dispersion, the viscosity of the dispersion changes. I understood it. Further, it has been found that the viscosity of the dispersion tends to be lowered when Nagatoro burlap is used as the plant powder. The inventors have found that the difference in viscosity of the dispersion affects the purification performance of the waste water, and that it is necessary to increase the viscosity of the dispersion to some extent in order to obtain good purification performance. Moreover, when the viscosity is low, the solid content in the dispersion liquid tends to settle.
- the dispersion After a few days have passed since the dispersion was prepared, for example, components effective for water purification settle on the bottom of the container, and therefore remain in the container when injected into the drainage tank, resulting in sufficient water purification. The effect cannot be obtained. This phenomenon was particularly remarkable when tap water (containing various ions) or groundwater was used during preparation of the dispersion. When expensive distilled water is used as a dispersion medium, the problem of viscosity can be dealt with to some extent, but there is a problem that costs are increased. In practice, the water purification dispersion used in the drainage tank has a scale of several tens to several hundreds of liters. Therefore, the water purification dispersion is stored in, for example, a drum having a capacity of about 200 L.
- the present inventors specify the content of the powder of the long burlap and the polymer flocculant in the dispersion, the median diameter of the solid content in the dispersion, and the viscosity of the dispersion.
- dispersions whose values are in the desired range can suppress sedimentation of solids even after long-term storage while maintaining a good purifying action on wastewater, and moreover, relatively inexpensive tap water and It has been found that even if groundwater is used, the water purification dispersion does not deteriorate the water purification performance.
- a specific configuration of the water purification dispersion will be described.
- the long burlap burlap powder can be preferably used because it has a high cation exchange function and has pores capable of adsorbing micro flocs in waste water containing the inorganic ions.
- any part of the leaf, stem or root can be used, but the part of the leaf can be preferably used.
- the “middle burlap 4” has the following characteristics. Agricultural products: jute
- a dried plant may be roughly pulverized and then finely pulverized to obtain a plant powder having a desired size (for example, a number average particle size of 400 ⁇ m or less).
- the pulverized powder may be classified using a classifier such as a vibration sieve or an air ratio classifier. Thereby, it can adjust so that the median diameter of the solid content in the said dispersion liquid may become a desired range.
- the polymer flocculant is not particularly limited as long as it exhibits the effect of removing the inorganic unnecessary substances in the waste water, as in the case of the long burlap, for example, polyacrylamide (PAM), poly Examples thereof include a partially hydrolyzed acrylamide salt, sodium alginate, sodium polyacrylate, and CMC sodium salt. Among these, polyacrylamide can be preferably used. Examples of the polyacrylamide include commercially available Flopan AN 995SH, FA 920SH, FO 4490, AN 923, AN 956 (manufactured by SNF Corporation).
- the water purification dispersion may contain other additives such as preservatives, fillers, thickeners, colorants, thixotropic agents, and the like.
- the combined content of the long burlap powder and the polymer flocculant is 0.01% by mass to 0.5% by mass, more preferably 0.05% by mass with respect to water as a dispersion medium. Is 0.3 mass%. Also, the mixing ratio of the powder of the long burlap and the polymer flocculant is preferably 9: 1 to 1: 9 by mass ratio.
- Viscosity of water purification dispersion is 20 mPa ⁇ S to 500 mPa ⁇ S, more preferably 100 mPa ⁇ S to 450 mPa ⁇ S, and particularly preferably 150 mPa ⁇ S to 450 mPa ⁇ S. If the viscosity is lower than 20 mPa ⁇ S, the solid content precipitates in the dispersion. On the other hand, when it is higher than 500 mPa ⁇ S, the mixing condition with the waste water is hindered, and the water purification performance is not sufficiently exhibited.
- the viscosity is a value at the temperature during storage, and is usually about 5 to 30 ° C.
- the viscosity can be measured with a No. 1 rotor at room temperature of 23 ° C. using a TVC-7 type viscometer (B type viscometer) manufactured by Toki Sangyo.
- the median diameter of the solid content in the water purification dispersion is 100 ⁇ m to 400 ⁇ m, more preferably 150 ⁇ m to 350 ⁇ m.
- the water purification function is insufficient.
- it is larger than 400 ⁇ m solids precipitate in the dispersion.
- the solid matter in the dispersion is mainly affected by the insoluble content of the powder of Nagatoro burlap. Therefore, in order to make the median diameter within the desired range, the grinding conditions for the long burlap are adjusted, the powder for the long burlap obtained by pulverization is classified, or the classification conditions are adjusted. Or better.
- the pulverization condition of the granulated product is adjusted or the granulated powder obtained by pulverization is adjusted. It is good to classify or adjust the classification conditions.
- the solid median is obtained by performing both the steps of classifying the powder of the long burlap and the step of classifying the granulated powder composed of the powder of the long burlap and the polymer flocculant. It is preferable to adjust the diameter to be in a desired range.
- the median diameter (also referred to as d50) is the particle diameter plotted on 50% of the total number when the solid content is plotted in terms of the particle diameter (the larger side and the smaller side are equivalent). Particle diameter).
- the median diameter of the solid content in the dispersion can be measured by diluting the dispersion sample 10 times and using a Morphologi G3 measuring instrument of Malvern (Spectris Co., Ltd.).
- the method for producing a dispersion for water purification of the present invention comprises a powder of a long burlap, a polymer flocculant, A dispersion step of dispersing the water in water.
- the water-purifying dispersion liquid can be obtained by separately dispersing the powder of long burlap and the polymer flocculant in water.
- the present invention is not limited to the type of the dispersion medium (water), and the following embodiment is more preferable for obtaining the water purification dispersion of the present invention.
- the water purification instead of separately dispersing the long-orange burlap powder and the polymer flocculant in water, once making a water purifier containing the long-orange burlap powder and the polymer flocculant, the water purification It is more preferable to disperse the agent powder in water to obtain a water purification dispersion.
- the water purification agent is preferably a water purification agent comprising a granulated product obtained by kneading a long flax burlap powder and a polymer flocculant.
- the water purifying agent is a kneading step of mixing the powder of the long burlap and the polymer flocculant and adding water to knead to obtain a kneaded product, and molding the kneaded product to form a molded body It can be obtained by a production method including a molding step, a drying step of drying the molded body to obtain a dried product, and a pulverizing step of pulverizing the dried product. Furthermore, it is preferable to include a classification step of classifying the granulated product with a sieve after the pulverization step.
- the kneaded product is molded by an arbitrary molding method to form a molded body.
- the obtained molded body may be dried at a temperature of 80 ° C. to 150 ° C. for 2 hours to 12 hours using, for example, a multistage hot air dryer.
- the molded body is dried, and may be subjected to a pulverization step when the moisture content of the molded body reaches, for example, about 30%.
- the drying step is preferably applied in the procedure of drying the molded body obtained in the molding step and then pulverizing the dried molded body.
- the drying step is obtained in the molding step.
- the molded body may be pulverized and then subjected to a drying step to obtain a granulated product.
- pulverization may be performed using a pulverizer, for example, an airflow ultrafine pulverizer.
- the pulverized powder is classified using a classifier, such as a vibration sieve or an air ratio classifier, so that the median diameter of the solid content in the water purification dispersion is in a desired range. Adjust it.
- the water purification dispersion obtained by once producing a water purification agent and dispersing the water purification agent powder in water is not particularly limited as a dispersion medium (water).
- water having an electric conductivity of 30 ⁇ S / cm or more can be used. Even when these dispersion media are used, a desired viscosity can be obtained. Thereby, comparatively cheap tap water and groundwater can be used. Even if tap water or groundwater is used for the dispersion, the concentration of inorganic ions in the wastewater can be reduced to a desired concentration or less, and high water purification performance can be exhibited. Moreover, sedimentation of the solid content in the dispersion can be suppressed even after long-term storage.
- the wastewater treatment method of the present invention is to remove inorganic unnecessary substances in the wastewater by using the above-described water purification dispersion of the present invention for wastewater.
- the inorganic unnecessary materials include inorganic unnecessary materials having at least one of nickel, fluorine, iron, copper, zinc, chromium, arsenic, cadmium, and lead.
- the water purification dispersion at a ratio of 0.5 ppm to 15 ppm with respect to the wastewater, the inorganic waste is coagulated and settled, and the sediment separated and settled is removed to purify the wastewater.
- Example 1 As waste water used for experiments, nickel sulfate hexahydrate was dissolved in pure water to produce 800 g of an aqueous solution containing 50 mg / L of nickel ions (virtual waste water). Next, caustic soda was supplied to the waste water so as to have a pH of 10, and stirred to insolubilize the nickel. The nickel ion concentration of the supernatant of the waste water was 2 mg / L.
- PAM polyacrylamide
- Plants are dried by sun drying until the moisture content is 5% by mass or less, then pulverized by an atomizer (Hammer Mill, manufactured by Masuko Sangyo Co., Ltd.), and only those whose particle diameter falls within the range of 100 ⁇ m to 400 ⁇ m are used Thus, those less than 100 ⁇ m and larger than 400 ⁇ m were sieved and removed (cut).
- the granulated product 1 was obtained by the production method shown below, and the granulated product 1 was used as the water purifier 1.
- a kneaded product (plant powder + polymer flocculant + water 30 kg) obtained by adding 5 times the mass of water to the solid content of the plant powder and the polymer flocculant was added to a planetary mixer ( A mixer manufactured by Aikosha Seisakusho Co., Ltd., mixing machine ACM-110, capacity 110 L), and kneading was performed under the conditions of mixing at a rotational speed of 150 rpm for 20 minutes. The obtained kneaded product was molded to produce a molded body. This molded body was dried at 120 ° C. for 3 hours and further at 150 ° C.
- the dried molded body was pulverized using an airflow type ultrafine pulverizer (Selenium mirror manufactured by Masuko Sangyo Co., Ltd.) so that the median diameter was 400 ⁇ m.
- the median diameter was measured with Mastersizer 2000 (Malvern Instruments).
- the pulverized powder was screened using a classifier (vibrating sieve machine manufactured by Tsukasa Industries Co., Ltd.), so that only particles having a particle diameter falling within the range of 150 ⁇ m to 850 ⁇ m were used by sieving them (cut). did).
- the granulated material 1 was obtained and it was set as the water purification agent 1.
- the dispersion liquid 1, 200 L capacity open type drum can was filled with 180 L. After leaving for a predetermined time in a dark place at 23 ° C., the lid of the drum can was removed, and the presence or absence of sedimentation was confirmed visually. Next, the dispersion 1 containing the water purifier 1 was added to the waste water so as to have a solid content of 7 mg / L and stirred.
- the measuring method of "solid content” can be calculated
- the waste water to which the dispersion 1 was added was transferred to a sedimentation tank, and then allowed to stand, and the state was visually confirmed every hour.
- Example 2 In Example 1, the same as in Example 1 except that the appraisal number by Nagase Institute of Agricultural Sciences of Agricultural Sciences of Agricultural Sciences of Nagatoro, No. 190006, “Chuju 3” was used as the plant. Water purification agent 2 was produced. Using the dispersion 2 in which the water purification agent 2 was dispersed in water, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 2 are shown in Table 1-1. In Table 1-1, the plant powder 2 represents “Central Burlap 3”.
- Example 3 In Example 2, Appraisal Number 2013, “Chu Hemp No. 4” by Nagase Agricultural Institute of Agricultural Sciences of Nagatoro Hemp was used as the plant. Other than that was carried out similarly to Example 2, and produced the water purification agent 3.
- FIG. Using the dispersion 3 in which the water purification agent 3 was dispersed in water, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 3 are shown in Table 1-1. In Table 1-1, the plant powder 3 represents “Central Burlap 4”.
- Example 4 In Example 3, as the plant, the appraisal number by Nagasaki Hemp hemp laboratory of Chinese Academy of Agricultural Sciences was used as the plant, and the special product registered letter No. 1900001, “Chinese red hemp” was used. Other than that was carried out similarly to Example 3, and produced the water purification agent 4.
- FIG. Using the dispersion 4 in which the water purification agent 4 was dispersed in water, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 4 are shown in Table 1-1. In Table 1-1, the plant powder 4 represents “medium red hemp”.
- Comparative water purifier 1 was prepared in the same manner as in Example 3, except that the dispersion concentration was 0.005% by mass and the viscosity was adjusted to 15 mPa ⁇ S. Using the comparative dispersion 1 in which the comparative water purification agent 1 was dispersed in water, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Comparative Example 1 are shown in Table 1-2. The sedimentation result “Yes” in the drum can of Comparative Example 1 was a state where the bottom of the drum can not be seen due to the sediment.
- Example 5 In Example 3, a water purifying agent 5 was produced in the same manner as in Example 3 except that the dispersion concentration was 0.02% by mass and the viscosity was adjusted to 20 mPa ⁇ S. Using the dispersion 5 in which the water purification agent 5 was dispersed in water, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 5 are shown in Table 1-2. The result of sedimentation in the drum of Example 5 was “slightly present”, but sediment was observed, but the bottom of the drum was visible.
- Example 6 In Example 3, a water purifying agent 6 was produced in the same manner as in Example 3 except that the dispersion concentration was 0.5 mass% and the viscosity was adjusted to 500 mPa ⁇ S. Using the dispersion 6 in which the water purification agent 6 was dispersed in water, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 6 are shown in Table 1-2.
- Comparative Example 2 Comparative water purifier 2 was produced in the same manner as in Example 3, except that the dispersion concentration was 0.6% by mass and the viscosity was adjusted to 600 mPa ⁇ S in Example 3. Using the comparative dispersion 2 in which the comparative water purification agent 2 was dispersed in water, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Comparative Example 2 are shown in Table 1-2.
- Example 7 water purification agent 7 was produced in the same manner as in Example 3 except that the dispersion concentration was 0.08% by mass and the viscosity was adjusted to 150 mPa ⁇ S. Using the dispersion liquid 7 in which the water purification agent 7 was dispersed in water, the characteristics of the water purification dispersion liquid were evaluated in the same manner as in Example 1. The evaluation results of Example 7 are shown in Table 1-2.
- Example 8 A water purifier 8 was produced in the same manner as in Example 3, except that the dispersion concentration was 0.4 mass% and the viscosity was adjusted to 450 mPa ⁇ S in Example 3. Using the dispersion 8 in which the water purification agent 8 was dispersed in water, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 8 are shown in Table 1-2.
- Example 3 In Example 3, after crushing the dried plant material, the median diameter of the solid content in the dispersion was adjusted to 80 ⁇ m by changing the conditions of sieving at the time of classification.
- the comparative water purification agent 3 was produced in the same manner as described above. Using the comparative dispersion liquid 3 in which the comparative water purification agent 3 was dispersed in water, the characteristics of the water purification dispersion liquid were evaluated in the same manner as in Example 1. The evaluation results of Comparative Example 3 are shown in Table 1-3.
- Example 9 In Example 3, after crushing the dried plant material, the median diameter of the solid content in the dispersion was adjusted to 120 ⁇ m by changing the sieving conditions at the time of classification. Example 3 In the same manner as described above, a water purifying agent 9 was produced. Using the dispersion 9 in which the water purification agent 9 was dispersed in water, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 9 are shown in Table 1-3.
- Comparative Example 4 In Example 3, the comparative water purifier 4 was produced in the same manner as in Example 3 except that the dried plant material was pulverized and then not classified. Using the comparative dispersion 4 in which the comparative water purification agent 4 was dispersed in water, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Comparative Example 4 are shown in Table 1-3.
- Reference Example 1 Using the comparative water purification agent 4 prepared in Comparative Example 4, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. However, in Reference Example 1, the standing time in the drum can was 1 day (24 hours). The evaluation results of Reference Example 1 are shown in Table 1-3.
- Example 10 In Example 3, after crushing the dried plant material, the median diameter of the solid content in the dispersion was adjusted to 150 ⁇ m by changing the sieving conditions at the time of classification.
- the water purification agent 10 was produced in the same manner as described above. Using the dispersion 10 in which the water purification agent 10 was dispersed in water, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 10 are shown in Table 1-3.
- Example 11 In Example 3, after crushing the dried plant material, the median diameter of the solid content in the dispersion was adjusted to 350 ⁇ m by changing the sieving conditions at the time of classification. In the same manner, a water purifying agent 11 was produced. Using the dispersion 11 in which the water purification agent 11 was dispersed in water, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 11 are shown in Table 1-3.
- Example 12 A dispersion 12 was prepared in the same manner as in Example 3 except that the water in the dispersion was changed to water having an electrical conductivity of 198 ⁇ S / cm (tap water in Kanuma City, Tochigi Prefecture). Using the dispersion 12, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 12 are shown in Table 1-4.
- Example 13 In Example 3, the dispersion water was dispersed in the same manner as in Example 3 except that the water was obtained by blending an appropriate amount of tap water and distilled water in Kanuma City, Tochigi Prefecture, and having water conductivity of 30 ⁇ S / cm. Liquid 13 was produced. Using the dispersion 13, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 13 are shown in Table 1-4.
- Example 14 In Example 3, the plant and the polymer flocculant kneaded product were not classified. Other than that was carried out similarly to Example 3, and produced the water purification agent 14.
- FIG. Using the dispersion 14 in which the water purification agent 14 was dispersed in water, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 14 are shown in Table 1-4.
- Example 15 In Example 3, polyamine was used instead of polyacrylamide. Other than that was carried out similarly to Example 3, and produced the water purification agent 15.
- FIG. Using the dispersion 15 in which the water purification agent 15 was dispersed in water, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 15 are shown in Table 1-4.
- Example 16 A dispersion 16 was prepared in the same manner as in Example 3 except that the water in the dispersion was changed to water (distilled water) having an electric conductivity of 1 ⁇ S / cm in Example 3. Using the dispersion 16, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 16 are shown in Table 1-4.
- Example 17 In Example 3, a granulated product was not prepared, and the polymer flocculant and the plant powder were each used alone, and each was dispersed in water. Moreover, distilled water was used as the water of the dispersion. Otherwise, a dispersion 17 was produced in the same manner as in Example 3. Using the dispersion 17, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 17 are shown in Table 1-4.
- Example 18 As waste water used for experiments, potassium fluoride was dissolved in pure water to produce 800 g of an aqueous solution containing 2,500 mg / L of fluorine ions (virtual waste water). Next, 8.6 mg / L of calcium chloride was added to the waste water, and the mixture was stirred while adding sodium hydroxide so that the pH was 7.5 to 9.0, thereby insolubilizing fluorine. By this operation, the aqueous fluorine solution was separated into a supernatant and a precipitate containing micro floc. At this point, the ionic concentration of the supernatant of the wastewater was 10 mg / L.
- Example 18 Except having used the said waste_water
- the evaluation results of Example 18 are shown in Table 1-5.
- Example 19 As waste water used for the experiment, ferric chloride hexahydrate was dissolved in pure water to prepare 800 g of an aqueous solution containing 200 mg / L of iron ions (virtual waste water). Next, iron was insolubilized by stirring the waste water while adding sodium hydroxide so that the pH was 6.5 to 9.0. At this time, the ion concentration of the supernatant of the wastewater was 2 mg / L. Except having used the said waste_water
- Example 20 As waste water used for experiments, copper sulfate pentahydrate was dissolved in pure water to produce 800 g of an aqueous solution containing 100 mg / L of copper ions (virtual waste water). Next, the waste water was stirred while adding sodium hydroxide so that the pH was 7.0 to 8.0 to insolubilize copper. At this time, the ion concentration of the supernatant of the wastewater was 2 mg / L. Except having used the said waste_water
- Example 21 As waste water used for experiments, zinc nitrate hexahydrate was dissolved in pure water to produce 800 g of an aqueous solution containing 100 mg / L of zinc ions (virtual waste water). Next, the pH of the waste water is. The mixture was stirred while adding sodium hydroxide so as to be 9.0 to 9.5 to insolubilize zinc. At this time, the ionic concentration of the supernatant of the waste water was 5 mg / L. Except having used the said waste_water
- Example 22 As waste water used for experiments, potassium dichromate was dissolved in pure water to produce 800 g of an aqueous solution containing 100 mg / L of chromium ions (virtual waste water). Next, chromium was insolubilized by stirring the waste water while adding sodium hydroxide so that the pH was 6.0 to 7.5. At this time, the ionic concentration of the supernatant of the waste water was 5 mg / L. Except having used the said waste_water
- Example 23 As waste water used for experiments, diarsenic trioxide was dissolved in pure water to prepare 800 g of an aqueous solution containing 10 mg / L arsenic ions (virtual waste water). Next, 65 mg / L of ferric chloride and 354 mg / L of calcium chloride are added to the waste water, and then stirred while adding sodium hydroxide so that the pH is 8.0 to 9.5. Arsenic was insolubilized. At this time, the ionic concentration of the supernatant of the wastewater was 0.05 mg / L.
- Example 23 Except having used the said waste_water
- the evaluation results of Example 23 are shown in Table 1-5. However, in Example 23, the sedimentation time was measured in the same manner as in Example 3, and then the supernatant was collected and concentrated by an evaporator so that the volume became 1/100, and then the ion concentration was measured. Regarding arsenic ions, an ion concentration of 0.01 mg / L or less was judged to be a preferable result, and evaluated as ⁇ .
- the water purification dispersion of the present invention exhibits excellent water purification performance, does not deteriorate water purification performance even after long-term storage, and can satisfy low cost. It was confirmed that this was a dispersion for purification.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
Abstract
A water purification dispersion that contains water and, in addition to the water, a total of 0.01-0.5 mass% of Corchorus olitorius powder and a polymer coagulant. The water purification dispersion is characterized by having a viscosity of 20-500 mPa⋅s. The water purification dispersion is also characterized in that the median diameter of the solids therein is 100-400 μm.
Description
本発明は、工業排水などの水の浄化に使用する、植物由来の水浄化用分散液、及び該水浄化用分散液の製造方法、該水浄化用分散液を用いた排水処理方法に関する。
The present invention relates to a plant-derived water purification dispersion used for purification of water such as industrial wastewater, a method for producing the water purification dispersion, and a wastewater treatment method using the water purification dispersion.
近年、工場に於いて種々の製品を製造する過程において、無機イオンとして金属イオンやフッ素イオン等の環境負荷物質を含む廃液が大量に発生している。
一方、これらの無機イオンの排出に関する規制は徐々に厳しくなっている。この排出規制を遵守するために、無機イオンを含む排水から無機イオンを効果的に除去することができ、しかもできるだけ簡易に、低コストで実施できる無機イオンの除去方法が求められている。
従来、工場排水などから不純物イオンを除去する方法としては、凝集沈殿法、イオン交換法、活性炭などの吸着剤への吸着法、電気的吸着法、および磁気吸着法などが提案されている。 In recent years, in the process of manufacturing various products in factories, a large amount of waste liquid containing environmentally hazardous substances such as metal ions and fluorine ions as inorganic ions has been generated.
On the other hand, regulations concerning the discharge of these inorganic ions are becoming stricter. In order to comply with this discharge regulation, there is a demand for a method for removing inorganic ions that can effectively remove inorganic ions from wastewater containing inorganic ions and that can be carried out as simply as possible at low cost.
Conventionally, as a method for removing impurity ions from factory wastewater or the like, an aggregation precipitation method, an ion exchange method, an adsorption method on an adsorbent such as activated carbon, an electric adsorption method, a magnetic adsorption method, and the like have been proposed.
一方、これらの無機イオンの排出に関する規制は徐々に厳しくなっている。この排出規制を遵守するために、無機イオンを含む排水から無機イオンを効果的に除去することができ、しかもできるだけ簡易に、低コストで実施できる無機イオンの除去方法が求められている。
従来、工場排水などから不純物イオンを除去する方法としては、凝集沈殿法、イオン交換法、活性炭などの吸着剤への吸着法、電気的吸着法、および磁気吸着法などが提案されている。 In recent years, in the process of manufacturing various products in factories, a large amount of waste liquid containing environmentally hazardous substances such as metal ions and fluorine ions as inorganic ions has been generated.
On the other hand, regulations concerning the discharge of these inorganic ions are becoming stricter. In order to comply with this discharge regulation, there is a demand for a method for removing inorganic ions that can effectively remove inorganic ions from wastewater containing inorganic ions and that can be carried out as simply as possible at low cost.
Conventionally, as a method for removing impurity ions from factory wastewater or the like, an aggregation precipitation method, an ion exchange method, an adsorption method on an adsorbent such as activated carbon, an electric adsorption method, a magnetic adsorption method, and the like have been proposed.
例えば、凝集沈殿法として、重金属イオンが溶解した排水に塩基を加え、排水を塩基性にして、重金属イオンの少なくとも一部を不溶化し、懸濁固形物を形成させる工程と、排水に無機凝集剤を加え、懸濁固形物を凝結沈降させる工程と、排水に高分子凝集剤を加え、懸濁固形物を巨大フロック化する工程と、モロヘイヤ、小松菜などの葉菜からなる陽イオン交換体が含有されている吸着層に排水を通水する吸着工程を行う方法が提案されている(例えば、特許文献1参照)。
また、モロヘイヤ、又はこの乾燥物、又はこの抽出物の少なくともいずれかを含有する凝集剤と、高分子凝集剤とを混合或いは併用して懸濁液中の微粒子を凝集分離する凝集方法が提案されている(例えば、特許文献2参照)。
さらに、植物粉末と高分子凝集剤との混合物を含む造粒物からなる水浄化剤、及び該水浄化剤を使用した水浄化方法が提案されている(例えば、特許文献3参照)。 For example, as a coagulation sedimentation method, a step of adding a base to wastewater in which heavy metal ions are dissolved, making the wastewater basic, insolubilizing at least part of the heavy metal ions to form a suspended solid, and an inorganic flocculant Contains a cation exchanger consisting of leafy vegetables such as Morohaya and Komatsuna. There has been proposed a method of performing an adsorption process of passing wastewater through an adsorbed layer (see, for example, Patent Document 1).
In addition, a coagulation method is proposed in which fine particles in a suspension are coagulated and separated by mixing or using a coagulant containing at least one of moroheiya, this dried product, or this extract and a polymer coagulant. (For example, refer to Patent Document 2).
Furthermore, a water purification agent comprising a granulated product containing a mixture of a plant powder and a polymer flocculant, and a water purification method using the water purification agent have been proposed (for example, see Patent Document 3).
また、モロヘイヤ、又はこの乾燥物、又はこの抽出物の少なくともいずれかを含有する凝集剤と、高分子凝集剤とを混合或いは併用して懸濁液中の微粒子を凝集分離する凝集方法が提案されている(例えば、特許文献2参照)。
さらに、植物粉末と高分子凝集剤との混合物を含む造粒物からなる水浄化剤、及び該水浄化剤を使用した水浄化方法が提案されている(例えば、特許文献3参照)。 For example, as a coagulation sedimentation method, a step of adding a base to wastewater in which heavy metal ions are dissolved, making the wastewater basic, insolubilizing at least part of the heavy metal ions to form a suspended solid, and an inorganic flocculant Contains a cation exchanger consisting of leafy vegetables such as Morohaya and Komatsuna. There has been proposed a method of performing an adsorption process of passing wastewater through an adsorbed layer (see, for example, Patent Document 1).
In addition, a coagulation method is proposed in which fine particles in a suspension are coagulated and separated by mixing or using a coagulant containing at least one of moroheiya, this dried product, or this extract and a polymer coagulant. (For example, refer to Patent Document 2).
Furthermore, a water purification agent comprising a granulated product containing a mixture of a plant powder and a polymer flocculant, and a water purification method using the water purification agent have been proposed (for example, see Patent Document 3).
ところで、排水の浄化処理を高速で安定して行う場合、排水の浄化処理を自動で行うことができる自動化浄化装置の導入は必要不可欠である。特に大量の排水処理を行うには、自動化浄化装置は有効な手段となる。従って、自動化浄化装置の使用にあたり、大量の排水を高速で安定して浄化処理でき、かつより優れた浄化性能を示す浄化処理のシステム構築が望まれている。
By the way, when wastewater purification processing is performed stably at high speed, it is indispensable to introduce an automated purification device that can automatically perform wastewater purification treatment. In particular, in order to perform a large amount of wastewater treatment, an automated purification apparatus is an effective means. Therefore, in the use of the automated purification apparatus, it is desired to construct a purification process system that can stably purify a large amount of waste water at a high speed and exhibits superior purification performance.
自動化浄化装置において、上記特許文献1~3で記載されているような植物を含有した水浄化剤を使用して排水を浄化処理する場合、優れた水浄化性能を発揮させるためには、水浄化剤を排水に供する際、水浄化剤をいったん水に溶かして分散液を作製し、係る分散液を排水に供する方法が考えられる。固体状の水浄化剤を直接排水に投入するより、分散液を使用し排液全体に水浄化成分を行き渡らした方が好ましいからである。
また、ライン生産方式に則り、効率的な流れ作業の中で排水を浄化処理しようとすると、分散液を作り置きしておく必要がある。工場等から排出される排水の発生量は日によって変化することが多く、予め分散液を一定量作製して貯蔵しておき、必要時に必要な量使用することが求められるからである。
さらにまた、顧客ニーズを考慮すると、水浄化剤を水に溶かした分散液で取り引きされることが考えられ、分散液としての態様に一定の需要が見込まれる。従って、低コストで、長期保存可能な分散液を提供することが求められている。
しかし、上記特許文献1から3のいずれにも、排水に供する分散液についての詳しい説明はされておらず、上記特許文献1から3の記載からは、排水に供するための、水浄化剤を水に分散させた分散液であって、優れた水浄化性能を示し、長期保存後も水浄化性能を低下させず、さらに低コストも満足し得る分散液を作製することはできなかった。 In an automated purification device, when purifying wastewater using a plant-containing water purification agent as described in Patent Documents 1 to 3 above, in order to exert excellent water purification performance, water purification When the agent is used for drainage, a method may be considered in which a water purification agent is once dissolved in water to prepare a dispersion, and the dispersion is used for drainage. This is because it is preferable to use a dispersion and spread the water purification component throughout the drainage rather than directly injecting the solid water purification agent into the wastewater.
In addition, in order to purify wastewater in an efficient flow operation in accordance with the line production method, it is necessary to prepare a dispersion liquid. This is because the amount of wastewater discharged from factories and the like often changes from day to day, and it is required to prepare and store a predetermined amount of the dispersion in advance and use it as necessary when necessary.
Furthermore, considering customer needs, it can be considered that the water purifier is traded in a dispersion in water, and a certain demand is expected for the mode of the dispersion. Accordingly, there is a need to provide a dispersion that can be stored for a long time at low cost.
However, none of the above Patent Documents 1 to 3 provides a detailed description of the dispersion used for drainage. From the description of Patent Documents 1 to 3, a water purifier for use in drainage is used as water. It was not possible to produce a dispersion liquid that was excellent in water purification performance, did not deteriorate water purification performance even after long-term storage, and could satisfy low cost.
また、ライン生産方式に則り、効率的な流れ作業の中で排水を浄化処理しようとすると、分散液を作り置きしておく必要がある。工場等から排出される排水の発生量は日によって変化することが多く、予め分散液を一定量作製して貯蔵しておき、必要時に必要な量使用することが求められるからである。
さらにまた、顧客ニーズを考慮すると、水浄化剤を水に溶かした分散液で取り引きされることが考えられ、分散液としての態様に一定の需要が見込まれる。従って、低コストで、長期保存可能な分散液を提供することが求められている。
しかし、上記特許文献1から3のいずれにも、排水に供する分散液についての詳しい説明はされておらず、上記特許文献1から3の記載からは、排水に供するための、水浄化剤を水に分散させた分散液であって、優れた水浄化性能を示し、長期保存後も水浄化性能を低下させず、さらに低コストも満足し得る分散液を作製することはできなかった。 In an automated purification device, when purifying wastewater using a plant-containing water purification agent as described in Patent Documents 1 to 3 above, in order to exert excellent water purification performance, water purification When the agent is used for drainage, a method may be considered in which a water purification agent is once dissolved in water to prepare a dispersion, and the dispersion is used for drainage. This is because it is preferable to use a dispersion and spread the water purification component throughout the drainage rather than directly injecting the solid water purification agent into the wastewater.
In addition, in order to purify wastewater in an efficient flow operation in accordance with the line production method, it is necessary to prepare a dispersion liquid. This is because the amount of wastewater discharged from factories and the like often changes from day to day, and it is required to prepare and store a predetermined amount of the dispersion in advance and use it as necessary when necessary.
Furthermore, considering customer needs, it can be considered that the water purifier is traded in a dispersion in water, and a certain demand is expected for the mode of the dispersion. Accordingly, there is a need to provide a dispersion that can be stored for a long time at low cost.
However, none of the above Patent Documents 1 to 3 provides a detailed description of the dispersion used for drainage. From the description of Patent Documents 1 to 3, a water purifier for use in drainage is used as water. It was not possible to produce a dispersion liquid that was excellent in water purification performance, did not deteriorate water purification performance even after long-term storage, and could satisfy low cost.
本発明は、上記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、優れた水浄化性能を示し、長期保存後も水浄化性能を低下させず、さらに低コストも満足し得る、水浄化用分散液を提供することを目的とする。
This invention makes it a subject to solve the said various problems and to achieve the following objectives. That is, an object of the present invention is to provide a dispersion for water purification that exhibits excellent water purification performance, does not deteriorate water purification performance even after long-term storage, and can satisfy low cost.
前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 水を含有し、更に前記水に対して、長朔黄麻の粉末と高分子凝集剤とを合わせて0.01質量%~0.5質量%含有する水浄化用分散液であって、粘度が20mPa・S~500mPa・Sであり、前記水浄化用分散液中の固形分のメジアン径が、100μm~400μmであることを特徴とする水浄化用分散液である。
<2> 前記長朔黄麻が、中国農業科学院麻類研究所による鑑定番号が国鑑麻2013の「中黄麻4号」である、前記<1>に記載の水浄化用分散液である。
<3> 前記長朔黄麻が、中国農業科学院麻類研究所による鑑定番号が皖品鑑登字第1209006の「中黄麻3号」である、前記<1>に記載の水浄化用分散液である。
<4> 前記長朔黄麻が、中国農業科学院麻類研究所による鑑定番号が皖品鑑登字第1209001の「中紅麻」である、前記<1>に記載の水浄化用分散液である。
<5> 前記高分子凝集剤がポリアクリルアミドである、前記<1>から<4>のいずれかに記載の水浄化用分散液である。
<6> 前記長朔黄麻と前記高分子凝集剤の質量組成比が9:1~1:9である、前記<1>から<5>のいずれかに記載の水浄化用分散液である。
<7> 前記粘度が150mPa・S~450mPa・Sである、前記<1>から<6>のいずれかに記載の水浄化用分散液である。
<8> 前記メジアン径が150μm~350μmである、前記<1>から<7>のいずれかに記載の水浄化用分散液である。
<9> 前記<1>から<8>のいずれかに記載の水浄化用分散液を製造する水浄化用分散液の製造方法であって、
前記長朔黄麻の粉末と前記高分子凝集剤とを混合し水分を加えて混練し、混練物を得る混練工程と、前記混練物を成形し、成形体を形成する成形工程と、前記成形体を乾燥させ、乾燥物を得る乾燥工程と、前記乾燥物を粉砕する粉砕工程とを含む製造方法により製造された水浄化剤の粉末を、水に分散して、前記水浄化用分散液を製造する、ことを特徴とする水浄化用分散液の製造方法である。
<10> 分散に使用する水の電気伝導度が、30μS/cm以上である前記<9>に記載の水浄化用分散液の製造方法である。
<11> 前記<1>から<8>のいずれかに記載の水浄化用分散液を、排水に供することにより、排水中の無機系不要物を除去することを特徴とする排水処理方法である。
<12> 前記排水が、ニッケル、フッ素、鉄、銅、亜鉛、クロム、ヒ素、カドミウム、錫、及び鉛の少なくともいずれかを有する無機系不要物を含有する排水である、前記<11>に記載の排水処理方法である。
<13> 前記水浄化用分散液を製造後、24時間以上経過後に排水に供する、前記<12>に記載の排水処理方法である。 Means for solving the problems are as follows. That is,
<1> A water-purifying dispersion liquid containing water, and further containing 0.01% by mass to 0.5% by mass of a combination of powder of a long burlap and a polymer flocculant with respect to the water. The dispersion for water purification is characterized in that the viscosity is 20 mPa · S to 500 mPa · S, and the median diameter of the solid content in the dispersion for water purification is 100 μm to 400 μm.
<2> The water purifying dispersion liquid according to <1>, wherein the Nagatoro Hemp is “Central Hemp No. 4” having an appraisal number by National Institute of Agricultural Sciences of China.
<3> The water purifying dispersion liquid according to <1>, wherein the Nagatoro Hemp is “Chinese Hemp No. 3” having an appraisal number by the Chinese Institute of Agricultural Sciences of Agricultural Sciences No. 1900006. is there.
<4> The water purifying dispersion liquid according to <1>, wherein the Nagatoro Hemp is “Chinese red hemp” having an appraisal number by Chinese Academy of Agricultural Sciences hemp laboratory of 1900001. .
<5> The water purification dispersion according to any one of <1> to <4>, wherein the polymer flocculant is polyacrylamide.
<6> The water purifying dispersion liquid according to any one of <1> to <5>, wherein a mass composition ratio of the long straw burlap and the polymer flocculant is 9: 1 to 1: 9.
<7> The dispersion for water purification according to any one of <1> to <6>, wherein the viscosity is 150 mPa · S to 450 mPa · S.
<8> The water purification dispersion according to any one of <1> to <7>, wherein the median diameter is 150 μm to 350 μm.
<9> A method for producing a water purification dispersion for producing the water purification dispersion according to any one of <1> to <8>,
The kneaded burlap powder and the polymer flocculant are mixed and kneaded with water added to knead to obtain a kneaded product, the kneaded product is molded to form a molded product, and the molded product The water-purifying dispersion liquid is produced by dispersing a water purification agent powder produced by a production method including a drying step of obtaining a dried product and a pulverizing step of crushing the dried product in water. This is a method for producing a water-purifying dispersion.
<10> The method for producing a water purification dispersion according to <9>, wherein the electrical conductivity of water used for dispersion is 30 μS / cm or more.
<11> A wastewater treatment method characterized by removing inorganic unnecessary substances in the wastewater by subjecting the dispersion for water purification according to any one of <1> to <8> to wastewater. .
<12> The <11>, wherein the wastewater is wastewater containing an inorganic unnecessary material having at least one of nickel, fluorine, iron, copper, zinc, chromium, arsenic, cadmium, tin, and lead. This is a wastewater treatment method.
<13> The waste water treatment method according to <12>, wherein the water purification dispersion is subjected to drainage after 24 hours or more after production.
<1> 水を含有し、更に前記水に対して、長朔黄麻の粉末と高分子凝集剤とを合わせて0.01質量%~0.5質量%含有する水浄化用分散液であって、粘度が20mPa・S~500mPa・Sであり、前記水浄化用分散液中の固形分のメジアン径が、100μm~400μmであることを特徴とする水浄化用分散液である。
<2> 前記長朔黄麻が、中国農業科学院麻類研究所による鑑定番号が国鑑麻2013の「中黄麻4号」である、前記<1>に記載の水浄化用分散液である。
<3> 前記長朔黄麻が、中国農業科学院麻類研究所による鑑定番号が皖品鑑登字第1209006の「中黄麻3号」である、前記<1>に記載の水浄化用分散液である。
<4> 前記長朔黄麻が、中国農業科学院麻類研究所による鑑定番号が皖品鑑登字第1209001の「中紅麻」である、前記<1>に記載の水浄化用分散液である。
<5> 前記高分子凝集剤がポリアクリルアミドである、前記<1>から<4>のいずれかに記載の水浄化用分散液である。
<6> 前記長朔黄麻と前記高分子凝集剤の質量組成比が9:1~1:9である、前記<1>から<5>のいずれかに記載の水浄化用分散液である。
<7> 前記粘度が150mPa・S~450mPa・Sである、前記<1>から<6>のいずれかに記載の水浄化用分散液である。
<8> 前記メジアン径が150μm~350μmである、前記<1>から<7>のいずれかに記載の水浄化用分散液である。
<9> 前記<1>から<8>のいずれかに記載の水浄化用分散液を製造する水浄化用分散液の製造方法であって、
前記長朔黄麻の粉末と前記高分子凝集剤とを混合し水分を加えて混練し、混練物を得る混練工程と、前記混練物を成形し、成形体を形成する成形工程と、前記成形体を乾燥させ、乾燥物を得る乾燥工程と、前記乾燥物を粉砕する粉砕工程とを含む製造方法により製造された水浄化剤の粉末を、水に分散して、前記水浄化用分散液を製造する、ことを特徴とする水浄化用分散液の製造方法である。
<10> 分散に使用する水の電気伝導度が、30μS/cm以上である前記<9>に記載の水浄化用分散液の製造方法である。
<11> 前記<1>から<8>のいずれかに記載の水浄化用分散液を、排水に供することにより、排水中の無機系不要物を除去することを特徴とする排水処理方法である。
<12> 前記排水が、ニッケル、フッ素、鉄、銅、亜鉛、クロム、ヒ素、カドミウム、錫、及び鉛の少なくともいずれかを有する無機系不要物を含有する排水である、前記<11>に記載の排水処理方法である。
<13> 前記水浄化用分散液を製造後、24時間以上経過後に排水に供する、前記<12>に記載の排水処理方法である。 Means for solving the problems are as follows. That is,
<1> A water-purifying dispersion liquid containing water, and further containing 0.01% by mass to 0.5% by mass of a combination of powder of a long burlap and a polymer flocculant with respect to the water. The dispersion for water purification is characterized in that the viscosity is 20 mPa · S to 500 mPa · S, and the median diameter of the solid content in the dispersion for water purification is 100 μm to 400 μm.
<2> The water purifying dispersion liquid according to <1>, wherein the Nagatoro Hemp is “Central Hemp No. 4” having an appraisal number by National Institute of Agricultural Sciences of China.
<3> The water purifying dispersion liquid according to <1>, wherein the Nagatoro Hemp is “Chinese Hemp No. 3” having an appraisal number by the Chinese Institute of Agricultural Sciences of Agricultural Sciences No. 1900006. is there.
<4> The water purifying dispersion liquid according to <1>, wherein the Nagatoro Hemp is “Chinese red hemp” having an appraisal number by Chinese Academy of Agricultural Sciences hemp laboratory of 1900001. .
<5> The water purification dispersion according to any one of <1> to <4>, wherein the polymer flocculant is polyacrylamide.
<6> The water purifying dispersion liquid according to any one of <1> to <5>, wherein a mass composition ratio of the long straw burlap and the polymer flocculant is 9: 1 to 1: 9.
<7> The dispersion for water purification according to any one of <1> to <6>, wherein the viscosity is 150 mPa · S to 450 mPa · S.
<8> The water purification dispersion according to any one of <1> to <7>, wherein the median diameter is 150 μm to 350 μm.
<9> A method for producing a water purification dispersion for producing the water purification dispersion according to any one of <1> to <8>,
The kneaded burlap powder and the polymer flocculant are mixed and kneaded with water added to knead to obtain a kneaded product, the kneaded product is molded to form a molded product, and the molded product The water-purifying dispersion liquid is produced by dispersing a water purification agent powder produced by a production method including a drying step of obtaining a dried product and a pulverizing step of crushing the dried product in water. This is a method for producing a water-purifying dispersion.
<10> The method for producing a water purification dispersion according to <9>, wherein the electrical conductivity of water used for dispersion is 30 μS / cm or more.
<11> A wastewater treatment method characterized by removing inorganic unnecessary substances in the wastewater by subjecting the dispersion for water purification according to any one of <1> to <8> to wastewater. .
<12> The <11>, wherein the wastewater is wastewater containing an inorganic unnecessary material having at least one of nickel, fluorine, iron, copper, zinc, chromium, arsenic, cadmium, tin, and lead. This is a wastewater treatment method.
<13> The waste water treatment method according to <12>, wherein the water purification dispersion is subjected to drainage after 24 hours or more after production.
本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、優れた水浄化性能を示し、長期保存後も水浄化性能を低下させず、さらに低コストも満足し得る、水浄化用分散液を提供することができる。
According to the present invention, the conventional problems can be solved, the object can be achieved, excellent water purification performance is exhibited, water purification performance is not deteriorated even after long-term storage, and further low cost is satisfied. The obtained dispersion for water purification can be provided.
(水浄化用分散液)
本発明の水浄化用分散液は、長朔黄麻の粉末と高分子凝集剤とを含有する。つまり、水に長朔黄麻の粉末と高分子凝集剤とが分散されている。
前記水浄化用分散液における、長朔黄麻の粉末と高分子凝集剤とを合わせた含有量は、分散媒である水に対し、0.01質量%~0.5質量%である。
前記水浄化用分散液の粘度は、20mPa・S~500mPa・Sである。
また、前記水浄化用分散液中の固形分のメジアン径は、100μm~400μmである。
上記要件を満たす本発明の水浄化用分散液は、優れた水浄化性能を示し、長期保存後も水浄化性能を低下させず、さらに低コストも満足し得る、水浄化用分散液となる。 (Dispersion for water purification)
The dispersion for water purification of the present invention contains a powder of long burlap and a polymer flocculant. In other words, the powder of long burlap and the polymer flocculant are dispersed in water.
The total content of the long burlap powder and the polymer flocculant in the water purification dispersion is 0.01% by mass to 0.5% by mass with respect to water as the dispersion medium.
The viscosity of the water purification dispersion is 20 mPa · S to 500 mPa · S.
The median diameter of the solid content in the water purification dispersion is 100 μm to 400 μm.
The dispersion for water purification of the present invention satisfying the above requirements is a dispersion for water purification that exhibits excellent water purification performance, does not deteriorate the water purification performance even after long-term storage, and can satisfy low cost.
本発明の水浄化用分散液は、長朔黄麻の粉末と高分子凝集剤とを含有する。つまり、水に長朔黄麻の粉末と高分子凝集剤とが分散されている。
前記水浄化用分散液における、長朔黄麻の粉末と高分子凝集剤とを合わせた含有量は、分散媒である水に対し、0.01質量%~0.5質量%である。
前記水浄化用分散液の粘度は、20mPa・S~500mPa・Sである。
また、前記水浄化用分散液中の固形分のメジアン径は、100μm~400μmである。
上記要件を満たす本発明の水浄化用分散液は、優れた水浄化性能を示し、長期保存後も水浄化性能を低下させず、さらに低コストも満足し得る、水浄化用分散液となる。 (Dispersion for water purification)
The dispersion for water purification of the present invention contains a powder of long burlap and a polymer flocculant. In other words, the powder of long burlap and the polymer flocculant are dispersed in water.
The total content of the long burlap powder and the polymer flocculant in the water purification dispersion is 0.01% by mass to 0.5% by mass with respect to water as the dispersion medium.
The viscosity of the water purification dispersion is 20 mPa · S to 500 mPa · S.
The median diameter of the solid content in the water purification dispersion is 100 μm to 400 μm.
The dispersion for water purification of the present invention satisfying the above requirements is a dispersion for water purification that exhibits excellent water purification performance, does not deteriorate the water purification performance even after long-term storage, and can satisfy low cost.
本発明者らは、分散液を使用した排水の浄化処理について研究を重ねたところ、分散液の水の種類によって、植物粉末と高分子凝集剤とを溶かした際、該分散液の粘度が変わることがわかった。また、植物粉末として長朔黄麻を使用した場合に分散液の粘度が低下する傾向があることがわかった。
そして、分散液の粘度の違いが排水の浄化性能に影響すること、良好な浄化性能を得るには、ある程度、分散液の粘度を高くする必要があることを見出した。
また、粘度が低いと、分散液中の固形分が沈降しやすくなる。そのため、分散液を作製後、例えば数日が経過すると、水浄化に有効な成分が容器底に沈殿するため、排水槽に注入する際に容器内に残ってしまい、結果として、十分な水浄化作用が得られない。この現象は分散液の作製時に、(各種イオンを含有する)水道水や地下水を使用した場合に特に顕著であった。分散媒として、高価な蒸留水を使用すると、粘度の問題に対しては、ある程度対処可能であるが、コストがかかるという問題が生じる。
実用上、排水槽に供される水浄化用分散液は、数十~数百Lのスケールである。そのため、水浄化用分散液は、例えば容量200L程度のドラム缶等に保存される。このような場合、水浄化用分散液の粘度が低い場合に生じる上述した固形分沈降の問題は顕著となる。但し、水浄化用分散液を作製後、直ちに(例えば数分以内に)排水槽へ投入する場合には、上述した固形分沈降が問題となることは少ない。しかし、排水の発生量は日によって変化することも多く、予め分散液を一定量作製して貯蔵しておき、必要時に必要な量を使用する方が実用的である。そこで、長期保存しても固形分の沈降が抑えられる水浄化用分散液が求められる。
そこで、本発明者らは、鋭意検討の結果、分散液中の長朔黄麻の粉末と高分子凝集剤との含有量、分散液中の固形分のメジアン径、及び分散液の粘度を規定することにより、それらの値が所望の範囲にある分散液は、排水に対して良好な浄化作用を保ちつつ、長期保存後も固形分の沈降を抑えることができ、さらに比較的安価な水道水や地下水を使用しても水浄化性能が低下しない水浄化分散液となることを見出した。
以下、水浄化用分散液の具体的な構成について説明する。 The inventors of the present invention have conducted research on purification treatment of waste water using a dispersion, and when the plant powder and the polymer flocculant are dissolved depending on the type of water in the dispersion, the viscosity of the dispersion changes. I understood it. Further, it has been found that the viscosity of the dispersion tends to be lowered when Nagatoro burlap is used as the plant powder.
The inventors have found that the difference in viscosity of the dispersion affects the purification performance of the waste water, and that it is necessary to increase the viscosity of the dispersion to some extent in order to obtain good purification performance.
Moreover, when the viscosity is low, the solid content in the dispersion liquid tends to settle. For this reason, after a few days have passed since the dispersion was prepared, for example, components effective for water purification settle on the bottom of the container, and therefore remain in the container when injected into the drainage tank, resulting in sufficient water purification. The effect cannot be obtained. This phenomenon was particularly remarkable when tap water (containing various ions) or groundwater was used during preparation of the dispersion. When expensive distilled water is used as a dispersion medium, the problem of viscosity can be dealt with to some extent, but there is a problem that costs are increased.
In practice, the water purification dispersion used in the drainage tank has a scale of several tens to several hundreds of liters. Therefore, the water purification dispersion is stored in, for example, a drum having a capacity of about 200 L. In such a case, the above-described problem of solid content precipitation that occurs when the viscosity of the water purification dispersion is low becomes significant. However, when the water-purifying dispersion is prepared and immediately put into the drainage tank (for example, within a few minutes), the above-described solid content sedimentation is rarely a problem. However, the amount of wastewater generated often changes from day to day, and it is more practical to prepare and store a certain amount of the dispersion in advance and use the necessary amount when necessary. Therefore, there is a need for a water purification dispersion that can suppress sedimentation of solids even after long-term storage.
Therefore, as a result of intensive studies, the present inventors specify the content of the powder of the long burlap and the polymer flocculant in the dispersion, the median diameter of the solid content in the dispersion, and the viscosity of the dispersion. Thus, dispersions whose values are in the desired range can suppress sedimentation of solids even after long-term storage while maintaining a good purifying action on wastewater, and moreover, relatively inexpensive tap water and It has been found that even if groundwater is used, the water purification dispersion does not deteriorate the water purification performance.
Hereinafter, a specific configuration of the water purification dispersion will be described.
そして、分散液の粘度の違いが排水の浄化性能に影響すること、良好な浄化性能を得るには、ある程度、分散液の粘度を高くする必要があることを見出した。
また、粘度が低いと、分散液中の固形分が沈降しやすくなる。そのため、分散液を作製後、例えば数日が経過すると、水浄化に有効な成分が容器底に沈殿するため、排水槽に注入する際に容器内に残ってしまい、結果として、十分な水浄化作用が得られない。この現象は分散液の作製時に、(各種イオンを含有する)水道水や地下水を使用した場合に特に顕著であった。分散媒として、高価な蒸留水を使用すると、粘度の問題に対しては、ある程度対処可能であるが、コストがかかるという問題が生じる。
実用上、排水槽に供される水浄化用分散液は、数十~数百Lのスケールである。そのため、水浄化用分散液は、例えば容量200L程度のドラム缶等に保存される。このような場合、水浄化用分散液の粘度が低い場合に生じる上述した固形分沈降の問題は顕著となる。但し、水浄化用分散液を作製後、直ちに(例えば数分以内に)排水槽へ投入する場合には、上述した固形分沈降が問題となることは少ない。しかし、排水の発生量は日によって変化することも多く、予め分散液を一定量作製して貯蔵しておき、必要時に必要な量を使用する方が実用的である。そこで、長期保存しても固形分の沈降が抑えられる水浄化用分散液が求められる。
そこで、本発明者らは、鋭意検討の結果、分散液中の長朔黄麻の粉末と高分子凝集剤との含有量、分散液中の固形分のメジアン径、及び分散液の粘度を規定することにより、それらの値が所望の範囲にある分散液は、排水に対して良好な浄化作用を保ちつつ、長期保存後も固形分の沈降を抑えることができ、さらに比較的安価な水道水や地下水を使用しても水浄化性能が低下しない水浄化分散液となることを見出した。
以下、水浄化用分散液の具体的な構成について説明する。 The inventors of the present invention have conducted research on purification treatment of waste water using a dispersion, and when the plant powder and the polymer flocculant are dissolved depending on the type of water in the dispersion, the viscosity of the dispersion changes. I understood it. Further, it has been found that the viscosity of the dispersion tends to be lowered when Nagatoro burlap is used as the plant powder.
The inventors have found that the difference in viscosity of the dispersion affects the purification performance of the waste water, and that it is necessary to increase the viscosity of the dispersion to some extent in order to obtain good purification performance.
Moreover, when the viscosity is low, the solid content in the dispersion liquid tends to settle. For this reason, after a few days have passed since the dispersion was prepared, for example, components effective for water purification settle on the bottom of the container, and therefore remain in the container when injected into the drainage tank, resulting in sufficient water purification. The effect cannot be obtained. This phenomenon was particularly remarkable when tap water (containing various ions) or groundwater was used during preparation of the dispersion. When expensive distilled water is used as a dispersion medium, the problem of viscosity can be dealt with to some extent, but there is a problem that costs are increased.
In practice, the water purification dispersion used in the drainage tank has a scale of several tens to several hundreds of liters. Therefore, the water purification dispersion is stored in, for example, a drum having a capacity of about 200 L. In such a case, the above-described problem of solid content precipitation that occurs when the viscosity of the water purification dispersion is low becomes significant. However, when the water-purifying dispersion is prepared and immediately put into the drainage tank (for example, within a few minutes), the above-described solid content sedimentation is rarely a problem. However, the amount of wastewater generated often changes from day to day, and it is more practical to prepare and store a certain amount of the dispersion in advance and use the necessary amount when necessary. Therefore, there is a need for a water purification dispersion that can suppress sedimentation of solids even after long-term storage.
Therefore, as a result of intensive studies, the present inventors specify the content of the powder of the long burlap and the polymer flocculant in the dispersion, the median diameter of the solid content in the dispersion, and the viscosity of the dispersion. Thus, dispersions whose values are in the desired range can suppress sedimentation of solids even after long-term storage while maintaining a good purifying action on wastewater, and moreover, relatively inexpensive tap water and It has been found that even if groundwater is used, the water purification dispersion does not deteriorate the water purification performance.
Hereinafter, a specific configuration of the water purification dispersion will be described.
<長朔黄麻の粉末>
前記長朔黄麻の粉末は、陽イオン交換機能が高く、また前記無機イオンを含む排水中のミクロフロックを吸着し得る細孔を有するため、好ましく用いることができる。
長朔黄麻の部位としては、葉、茎又は根のいずれの部位であっても使用できるが、葉の部位が好ましく使用できる。 <Nagara Hemp Powder>
The long burlap burlap powder can be preferably used because it has a high cation exchange function and has pores capable of adsorbing micro flocs in waste water containing the inorganic ions.
As the part of the long burlap, any part of the leaf, stem or root can be used, but the part of the leaf can be preferably used.
前記長朔黄麻の粉末は、陽イオン交換機能が高く、また前記無機イオンを含む排水中のミクロフロックを吸着し得る細孔を有するため、好ましく用いることができる。
長朔黄麻の部位としては、葉、茎又は根のいずれの部位であっても使用できるが、葉の部位が好ましく使用できる。 <Nagara Hemp Powder>
The long burlap burlap powder can be preferably used because it has a high cation exchange function and has pores capable of adsorbing micro flocs in waste water containing the inorganic ions.
As the part of the long burlap, any part of the leaf, stem or root can be used, but the part of the leaf can be preferably used.
また、長朔黄麻の中でも、中国の長沙市産の長朔黄麻、又は中国農業科学院麻類研究所による鑑定番号が国鑑麻2013の「中黄麻4号」、鑑定番号が皖品鑑登字第1209006の「中黄麻3号」、鑑定番号がXPD005-2005の「中黄麻1号」、若しくは鑑定番号が皖品鑑登字第1209001の「中紅麻」が好ましく使用できる。さらに、前記「中黄麻4号」、前記「中黄麻3号」、及び前記「中紅麻」がより好ましく、前記「中黄麻4号」が特に好ましい。
尚、前記「中黄麻3号」の鑑定番号を図1に示す。前記「中紅麻」の鑑定番号を図2に示す。 In addition, among Changchun Hemp, Changchun Hemp produced in Changsha City, China, or the Chinese National Agricultural Science Institute's Measles Research Institute has the National Chin 2013 “Chinese Hemp 4”, and the Appraisal Number is Jiyakukan No. 1209006 “Central Hemp 3”, “Chu Hemp 1” with XPD005-2005, or “Chinese Hemp” with appraisal number 1209001 can be preferably used. Furthermore, the above-mentioned “middle burlap 4”, “middle burlap 3”, and “middle burlap” are more preferable, and “middle burlap 4” is particularly preferable.
In addition, the identification number of the above “middle burlap No. 3” is shown in FIG. The appraisal number of the “medium red linen” is shown in FIG.
尚、前記「中黄麻3号」の鑑定番号を図1に示す。前記「中紅麻」の鑑定番号を図2に示す。 In addition, among Changchun Hemp, Changchun Hemp produced in Changsha City, China, or the Chinese National Agricultural Science Institute's Measles Research Institute has the National Chin 2013 “Chinese Hemp 4”, and the Appraisal Number is Jiyakukan No. 1209006 “Central Hemp 3”, “Chu Hemp 1” with XPD005-2005, or “Chinese Hemp” with appraisal number 1209001 can be preferably used. Furthermore, the above-mentioned “middle burlap 4”, “middle burlap 3”, and “middle burlap” are more preferable, and “middle burlap 4” is particularly preferable.
In addition, the identification number of the above “middle burlap No. 3” is shown in FIG. The appraisal number of the “medium red linen” is shown in FIG.
前記「中黄麻4号」は、以下の特性を有する。
農産物種類:黄麻 The “middle burlap 4” has the following characteristics.
Agricultural products: jute
農産物種類:黄麻 The “middle burlap 4” has the following characteristics.
Agricultural products: jute
前記植物の粉末を得るには、例えば、乾燥植物を粗粉砕し、次に微粉砕することにより、所望の大きさ(例えば、数平均粒径400μm以下)の植物粉末を得るとよい。
さらに、本発明では、粉砕した粉末を、分級機、例えば、振動ふるい機、あるいは風比式分級機を用い分級するとよい。これにより、前記分散液中の固形分のメジアン径が所望の範囲になるよう調整することができる。 In order to obtain the plant powder, for example, a dried plant may be roughly pulverized and then finely pulverized to obtain a plant powder having a desired size (for example, a number average particle size of 400 μm or less).
Furthermore, in the present invention, the pulverized powder may be classified using a classifier such as a vibration sieve or an air ratio classifier. Thereby, it can adjust so that the median diameter of the solid content in the said dispersion liquid may become a desired range.
さらに、本発明では、粉砕した粉末を、分級機、例えば、振動ふるい機、あるいは風比式分級機を用い分級するとよい。これにより、前記分散液中の固形分のメジアン径が所望の範囲になるよう調整することができる。 In order to obtain the plant powder, for example, a dried plant may be roughly pulverized and then finely pulverized to obtain a plant powder having a desired size (for example, a number average particle size of 400 μm or less).
Furthermore, in the present invention, the pulverized powder may be classified using a classifier such as a vibration sieve or an air ratio classifier. Thereby, it can adjust so that the median diameter of the solid content in the said dispersion liquid may become a desired range.
<高分子凝集剤>
前記高分子凝集剤としては、上記長朔黄麻と同様と同様、排水中の前記無機系不要物を除去する効果を示すものであれば、特に制限はなく、例えば、ポリアクリルアミド(PAM)、ポリアクリルアミドの部分加水分解塩、アルギン酸ナトリウム、ポリアクリル酸ナトリウム、CMCナトリウム塩などを挙げることができる。これらの中でも、ポリアクリルアミドが好ましく使用できる。該ポリアクリルアミドとしては、例えば、市販されているFlopan AN 995SH、FA 920SH、FO 4490、AN 923、AN 956(株式会社エス・エヌ・エフ製)などを用いることができる。 <Polymer flocculant>
The polymer flocculant is not particularly limited as long as it exhibits the effect of removing the inorganic unnecessary substances in the waste water, as in the case of the long burlap, for example, polyacrylamide (PAM), poly Examples thereof include a partially hydrolyzed acrylamide salt, sodium alginate, sodium polyacrylate, and CMC sodium salt. Among these, polyacrylamide can be preferably used. Examples of the polyacrylamide include commercially available Flopan AN 995SH, FA 920SH, FO 4490, AN 923, AN 956 (manufactured by SNF Corporation).
前記高分子凝集剤としては、上記長朔黄麻と同様と同様、排水中の前記無機系不要物を除去する効果を示すものであれば、特に制限はなく、例えば、ポリアクリルアミド(PAM)、ポリアクリルアミドの部分加水分解塩、アルギン酸ナトリウム、ポリアクリル酸ナトリウム、CMCナトリウム塩などを挙げることができる。これらの中でも、ポリアクリルアミドが好ましく使用できる。該ポリアクリルアミドとしては、例えば、市販されているFlopan AN 995SH、FA 920SH、FO 4490、AN 923、AN 956(株式会社エス・エヌ・エフ製)などを用いることができる。 <Polymer flocculant>
The polymer flocculant is not particularly limited as long as it exhibits the effect of removing the inorganic unnecessary substances in the waste water, as in the case of the long burlap, for example, polyacrylamide (PAM), poly Examples thereof include a partially hydrolyzed acrylamide salt, sodium alginate, sodium polyacrylate, and CMC sodium salt. Among these, polyacrylamide can be preferably used. Examples of the polyacrylamide include commercially available Flopan AN 995SH, FA 920SH, FO 4490, AN 923, AN 956 (manufactured by SNF Corporation).
<その他の添加剤>
前記水浄化用分散液には、その他の添加剤として、例えば、防腐剤、フィラー、増粘剤、着色剤、チキソ性付与剤等の添加物を含有させてもよい。 <Other additives>
The water purification dispersion may contain other additives such as preservatives, fillers, thickeners, colorants, thixotropic agents, and the like.
前記水浄化用分散液には、その他の添加剤として、例えば、防腐剤、フィラー、増粘剤、着色剤、チキソ性付与剤等の添加物を含有させてもよい。 <Other additives>
The water purification dispersion may contain other additives such as preservatives, fillers, thickeners, colorants, thixotropic agents, and the like.
<水浄化用分散液の特性>
<<長朔黄麻の粉末と高分子凝集剤の含有量>>
前記長朔黄麻の粉末と前記高分子凝集剤とを合わせた含有量は、分散媒である水に対し、0.01質量%~0.5質量%であり、より好ましくは0.05質量%~0.3質量%である。
また、前記長朔黄麻の粉末と前記高分子凝集剤の混合比率は、質量比で9:1~1:9であるとよい。 <Characteristics of water purification dispersion>
<< Content of Nagatan Hemp Powder and Polymer Flocculant >>
The combined content of the long burlap powder and the polymer flocculant is 0.01% by mass to 0.5% by mass, more preferably 0.05% by mass with respect to water as a dispersion medium. Is 0.3 mass%.
Also, the mixing ratio of the powder of the long burlap and the polymer flocculant is preferably 9: 1 to 1: 9 by mass ratio.
<<長朔黄麻の粉末と高分子凝集剤の含有量>>
前記長朔黄麻の粉末と前記高分子凝集剤とを合わせた含有量は、分散媒である水に対し、0.01質量%~0.5質量%であり、より好ましくは0.05質量%~0.3質量%である。
また、前記長朔黄麻の粉末と前記高分子凝集剤の混合比率は、質量比で9:1~1:9であるとよい。 <Characteristics of water purification dispersion>
<< Content of Nagatan Hemp Powder and Polymer Flocculant >>
The combined content of the long burlap powder and the polymer flocculant is 0.01% by mass to 0.5% by mass, more preferably 0.05% by mass with respect to water as a dispersion medium. Is 0.3 mass%.
Also, the mixing ratio of the powder of the long burlap and the polymer flocculant is preferably 9: 1 to 1: 9 by mass ratio.
<<水浄化用分散液の粘度>>
前記水浄化用分散液の粘度は、20mPa・S~500mPa・Sであり、より好ましくは、100mPa・S~450mPa・Sであり、特に好ましくは、150mPa・S~450mPa・Sである。
粘度が20mPa・Sより低いと、分散液中で前記固形分が沈殿する。
一方、500mPa・Sより高いと、排水との混ざり具合に支障が生じ、水浄化性能が十分発揮されない。
前記粘度は、保存時の温度における値であり、通常は、5~30℃程度である。より好ましくは、室温程度(23℃前後)である。
前記粘度は、東機産業製TVC-7型粘度計(B型粘度計)を使用し、室温23℃下、1号ローターにて測定することができる。 << Viscosity of water purification dispersion >>
The viscosity of the water purification dispersion is 20 mPa · S to 500 mPa · S, more preferably 100 mPa · S to 450 mPa · S, and particularly preferably 150 mPa · S to 450 mPa · S.
If the viscosity is lower than 20 mPa · S, the solid content precipitates in the dispersion.
On the other hand, when it is higher than 500 mPa · S, the mixing condition with the waste water is hindered, and the water purification performance is not sufficiently exhibited.
The viscosity is a value at the temperature during storage, and is usually about 5 to 30 ° C. More preferably, it is about room temperature (around 23 ° C.).
The viscosity can be measured with a No. 1 rotor at room temperature of 23 ° C. using a TVC-7 type viscometer (B type viscometer) manufactured by Toki Sangyo.
前記水浄化用分散液の粘度は、20mPa・S~500mPa・Sであり、より好ましくは、100mPa・S~450mPa・Sであり、特に好ましくは、150mPa・S~450mPa・Sである。
粘度が20mPa・Sより低いと、分散液中で前記固形分が沈殿する。
一方、500mPa・Sより高いと、排水との混ざり具合に支障が生じ、水浄化性能が十分発揮されない。
前記粘度は、保存時の温度における値であり、通常は、5~30℃程度である。より好ましくは、室温程度(23℃前後)である。
前記粘度は、東機産業製TVC-7型粘度計(B型粘度計)を使用し、室温23℃下、1号ローターにて測定することができる。 << Viscosity of water purification dispersion >>
The viscosity of the water purification dispersion is 20 mPa · S to 500 mPa · S, more preferably 100 mPa · S to 450 mPa · S, and particularly preferably 150 mPa · S to 450 mPa · S.
If the viscosity is lower than 20 mPa · S, the solid content precipitates in the dispersion.
On the other hand, when it is higher than 500 mPa · S, the mixing condition with the waste water is hindered, and the water purification performance is not sufficiently exhibited.
The viscosity is a value at the temperature during storage, and is usually about 5 to 30 ° C. More preferably, it is about room temperature (around 23 ° C.).
The viscosity can be measured with a No. 1 rotor at room temperature of 23 ° C. using a TVC-7 type viscometer (B type viscometer) manufactured by Toki Sangyo.
<<水浄化用分散液中の固形分のメジアン径>>
前記水浄化用分散液中の固形分のメジアン径は、100μm~400μmであり、より好ましくは、150μm~350μmである。
前記固形分のメジアン径が100μmより小さいと、水浄化機能が不十分となる。一方、400μmより大きいと、分散液中で固形分が沈殿する。
分散液中の固形物は、主に長朔黄麻の粉末の不溶分が影響する。そこで、前記メジアン径を前記所望の範囲にするには、長朔黄麻の粉砕条件を調整したり、粉砕して得られた長朔黄麻の粉末に対し分級を行ったり、係る分級条件を調整したりするとよい。あるいは、長朔黄麻の粉末と高分子凝集剤との混合物を含む造粒物を作製する際、係る造粒物の粉砕条件を調整したり、粉砕して得られた造粒物の粉末に対し分級を行ったり、係る分級条件を調整したりするとよい。
本発明では、長朔黄麻の粉末を分級する工程と、長朔黄麻の粉末と高分子凝集剤とからなる造粒物の粉末を分級する工程の両工程を行うことにより、前記固形分のメジアン径が所望の範囲となるよう調整するのが好ましい。
ここで、メジアン径(d50ともいう)とは、前記固形分を粒子径の大きさでプロットしたとき、全体の個数の50%にプロットされた粒子径(粒子径の大きい側と小さい側が等量となっている粒子径)をいう。
前記分散液中の固形分のメジアン径は、分散液試料を10倍に希釈し、マルバーン(スペクトリス株式会社)のモフォロギG3計測機により測定することができる。 << Median diameter of solids in water purification dispersion >>
The median diameter of the solid content in the water purification dispersion is 100 μm to 400 μm, more preferably 150 μm to 350 μm.
When the median diameter of the solid content is smaller than 100 μm, the water purification function is insufficient. On the other hand, if it is larger than 400 μm, solids precipitate in the dispersion.
The solid matter in the dispersion is mainly affected by the insoluble content of the powder of Nagatoro burlap. Therefore, in order to make the median diameter within the desired range, the grinding conditions for the long burlap are adjusted, the powder for the long burlap obtained by pulverization is classified, or the classification conditions are adjusted. Or better. Alternatively, when preparing a granulated product containing a mixture of a long flax burlap powder and a polymer flocculant, the pulverization condition of the granulated product is adjusted or the granulated powder obtained by pulverization is adjusted. It is good to classify or adjust the classification conditions.
In the present invention, the solid median is obtained by performing both the steps of classifying the powder of the long burlap and the step of classifying the granulated powder composed of the powder of the long burlap and the polymer flocculant. It is preferable to adjust the diameter to be in a desired range.
Here, the median diameter (also referred to as d50) is the particle diameter plotted on 50% of the total number when the solid content is plotted in terms of the particle diameter (the larger side and the smaller side are equivalent). Particle diameter).
The median diameter of the solid content in the dispersion can be measured by diluting the dispersion sample 10 times and using a Morphologi G3 measuring instrument of Malvern (Spectris Co., Ltd.).
前記水浄化用分散液中の固形分のメジアン径は、100μm~400μmであり、より好ましくは、150μm~350μmである。
前記固形分のメジアン径が100μmより小さいと、水浄化機能が不十分となる。一方、400μmより大きいと、分散液中で固形分が沈殿する。
分散液中の固形物は、主に長朔黄麻の粉末の不溶分が影響する。そこで、前記メジアン径を前記所望の範囲にするには、長朔黄麻の粉砕条件を調整したり、粉砕して得られた長朔黄麻の粉末に対し分級を行ったり、係る分級条件を調整したりするとよい。あるいは、長朔黄麻の粉末と高分子凝集剤との混合物を含む造粒物を作製する際、係る造粒物の粉砕条件を調整したり、粉砕して得られた造粒物の粉末に対し分級を行ったり、係る分級条件を調整したりするとよい。
本発明では、長朔黄麻の粉末を分級する工程と、長朔黄麻の粉末と高分子凝集剤とからなる造粒物の粉末を分級する工程の両工程を行うことにより、前記固形分のメジアン径が所望の範囲となるよう調整するのが好ましい。
ここで、メジアン径(d50ともいう)とは、前記固形分を粒子径の大きさでプロットしたとき、全体の個数の50%にプロットされた粒子径(粒子径の大きい側と小さい側が等量となっている粒子径)をいう。
前記分散液中の固形分のメジアン径は、分散液試料を10倍に希釈し、マルバーン(スペクトリス株式会社)のモフォロギG3計測機により測定することができる。 << Median diameter of solids in water purification dispersion >>
The median diameter of the solid content in the water purification dispersion is 100 μm to 400 μm, more preferably 150 μm to 350 μm.
When the median diameter of the solid content is smaller than 100 μm, the water purification function is insufficient. On the other hand, if it is larger than 400 μm, solids precipitate in the dispersion.
The solid matter in the dispersion is mainly affected by the insoluble content of the powder of Nagatoro burlap. Therefore, in order to make the median diameter within the desired range, the grinding conditions for the long burlap are adjusted, the powder for the long burlap obtained by pulverization is classified, or the classification conditions are adjusted. Or better. Alternatively, when preparing a granulated product containing a mixture of a long flax burlap powder and a polymer flocculant, the pulverization condition of the granulated product is adjusted or the granulated powder obtained by pulverization is adjusted. It is good to classify or adjust the classification conditions.
In the present invention, the solid median is obtained by performing both the steps of classifying the powder of the long burlap and the step of classifying the granulated powder composed of the powder of the long burlap and the polymer flocculant. It is preferable to adjust the diameter to be in a desired range.
Here, the median diameter (also referred to as d50) is the particle diameter plotted on 50% of the total number when the solid content is plotted in terms of the particle diameter (the larger side and the smaller side are equivalent). Particle diameter).
The median diameter of the solid content in the dispersion can be measured by diluting the dispersion sample 10 times and using a Morphologi G3 measuring instrument of Malvern (Spectris Co., Ltd.).
(水浄化用分散液の製造方法)
本発明の水浄化用分散液の製造方法(以下、本発明の製造方法ともいう)は、上述した本発明の水浄化用分散液が得られるよう、長朔黄麻の粉末と高分子凝集剤とを水に分散させる分散工程を含む。
この場合、得られた水浄化用分散液が、上述した<水浄化用分散液の特性>を満たすものであれば、長朔黄麻の粉末と高分子凝集剤の分散方法に特に制限はなく、例えば、長朔黄麻の粉末と高分子凝集剤とを別々に水に分散させることにより前記水浄化用分散液を得ることができる。しかし、この場合、所望の粘度とするためには、分散媒としては、蒸留水を使用する必要がある場合がある。そこで、分散媒(水)の種類に限定されず、本発明の水浄化用分散液を得るには、以下の態様とすることがより好ましい。
つまり、長朔黄麻の粉末と高分子凝集剤とを別々に水に分散させるのではなく、一旦、長朔黄麻の粉末と高分子凝集剤とを含有する水浄化剤を作製し、係る水浄化剤の粉末を水に分散させて水浄化用分散液を得る方がより好ましい。
前記水浄化剤としては、長朔黄麻の粉末と高分子凝集剤とを混練することにより得られる造粒物からなる水浄化剤であることが好ましい。例えば、係る水浄化剤は、前記長朔黄麻の粉末と前記高分子凝集剤とを混合し水分を加えて混練し、混練物を得る混練工程と、前記混練物を成形し、成形体を形成する成形工程と、前記成形体を乾燥させ、乾燥物を得る乾燥工程と、前記乾燥物を粉砕する粉砕工程とを含む製造方法により得ることができる。
さらに、前記粉砕工程後に、ふるいにより造粒物を分級する分級工程を含んでいることが好ましい。 (Method for producing dispersion for water purification)
The method for producing a dispersion for water purification of the present invention (hereinafter also referred to as the production method of the present invention) comprises a powder of a long burlap, a polymer flocculant, A dispersion step of dispersing the water in water.
In this case, as long as the obtained water purification dispersion satisfies the above-mentioned <characteristics of the water purification dispersion>, there is no particular limitation on the dispersion method of the long flax burlap powder and the polymer flocculant, For example, the water-purifying dispersion liquid can be obtained by separately dispersing the powder of long burlap and the polymer flocculant in water. However, in this case, in order to obtain a desired viscosity, it may be necessary to use distilled water as the dispersion medium. Therefore, the present invention is not limited to the type of the dispersion medium (water), and the following embodiment is more preferable for obtaining the water purification dispersion of the present invention.
In other words, instead of separately dispersing the long-orange burlap powder and the polymer flocculant in water, once making a water purifier containing the long-orange burlap powder and the polymer flocculant, the water purification It is more preferable to disperse the agent powder in water to obtain a water purification dispersion.
The water purification agent is preferably a water purification agent comprising a granulated product obtained by kneading a long flax burlap powder and a polymer flocculant. For example, the water purifying agent is a kneading step of mixing the powder of the long burlap and the polymer flocculant and adding water to knead to obtain a kneaded product, and molding the kneaded product to form a molded body It can be obtained by a production method including a molding step, a drying step of drying the molded body to obtain a dried product, and a pulverizing step of pulverizing the dried product.
Furthermore, it is preferable to include a classification step of classifying the granulated product with a sieve after the pulverization step.
本発明の水浄化用分散液の製造方法(以下、本発明の製造方法ともいう)は、上述した本発明の水浄化用分散液が得られるよう、長朔黄麻の粉末と高分子凝集剤とを水に分散させる分散工程を含む。
この場合、得られた水浄化用分散液が、上述した<水浄化用分散液の特性>を満たすものであれば、長朔黄麻の粉末と高分子凝集剤の分散方法に特に制限はなく、例えば、長朔黄麻の粉末と高分子凝集剤とを別々に水に分散させることにより前記水浄化用分散液を得ることができる。しかし、この場合、所望の粘度とするためには、分散媒としては、蒸留水を使用する必要がある場合がある。そこで、分散媒(水)の種類に限定されず、本発明の水浄化用分散液を得るには、以下の態様とすることがより好ましい。
つまり、長朔黄麻の粉末と高分子凝集剤とを別々に水に分散させるのではなく、一旦、長朔黄麻の粉末と高分子凝集剤とを含有する水浄化剤を作製し、係る水浄化剤の粉末を水に分散させて水浄化用分散液を得る方がより好ましい。
前記水浄化剤としては、長朔黄麻の粉末と高分子凝集剤とを混練することにより得られる造粒物からなる水浄化剤であることが好ましい。例えば、係る水浄化剤は、前記長朔黄麻の粉末と前記高分子凝集剤とを混合し水分を加えて混練し、混練物を得る混練工程と、前記混練物を成形し、成形体を形成する成形工程と、前記成形体を乾燥させ、乾燥物を得る乾燥工程と、前記乾燥物を粉砕する粉砕工程とを含む製造方法により得ることができる。
さらに、前記粉砕工程後に、ふるいにより造粒物を分級する分級工程を含んでいることが好ましい。 (Method for producing dispersion for water purification)
The method for producing a dispersion for water purification of the present invention (hereinafter also referred to as the production method of the present invention) comprises a powder of a long burlap, a polymer flocculant, A dispersion step of dispersing the water in water.
In this case, as long as the obtained water purification dispersion satisfies the above-mentioned <characteristics of the water purification dispersion>, there is no particular limitation on the dispersion method of the long flax burlap powder and the polymer flocculant, For example, the water-purifying dispersion liquid can be obtained by separately dispersing the powder of long burlap and the polymer flocculant in water. However, in this case, in order to obtain a desired viscosity, it may be necessary to use distilled water as the dispersion medium. Therefore, the present invention is not limited to the type of the dispersion medium (water), and the following embodiment is more preferable for obtaining the water purification dispersion of the present invention.
In other words, instead of separately dispersing the long-orange burlap powder and the polymer flocculant in water, once making a water purifier containing the long-orange burlap powder and the polymer flocculant, the water purification It is more preferable to disperse the agent powder in water to obtain a water purification dispersion.
The water purification agent is preferably a water purification agent comprising a granulated product obtained by kneading a long flax burlap powder and a polymer flocculant. For example, the water purifying agent is a kneading step of mixing the powder of the long burlap and the polymer flocculant and adding water to knead to obtain a kneaded product, and molding the kneaded product to form a molded body It can be obtained by a production method including a molding step, a drying step of drying the molded body to obtain a dried product, and a pulverizing step of pulverizing the dried product.
Furthermore, it is preferable to include a classification step of classifying the granulated product with a sieve after the pulverization step.
前記成形工程では、例えば、前記混練物が任意の成形方法により成形され、成形体が形成される。
前記乾燥工程では、得られた成形体に対し、例えば、多段階熱風式乾燥機を用い、80℃~150℃の温度で2時間~12時間乾燥させるとよい。
前記成形体を乾燥させ、成形体の水分量が例えば30%くらいになったところで、粉砕工程へ供するとよい。
尚、前記乾燥工程は、成形工程により得られた成形体を乾燥させ、次に該乾燥した成形体を粉砕するという手順で適用されるのが好ましい態様であるが、例えば、成形工程で得られた成形体を粉砕し、その後乾燥工程を施すことにより造粒物を得るという手順で行われてもよい。
前記粉砕工程では、粉砕機、例えば、気流式超微粉砕機を用い粉砕するとよい。
前記分級工程では、粉砕した粉末を、分級機、例えば振動ふるい機、あるいは風比式分級機を用い、前記水浄化用分散液中の固形分のメジアン径が所望の範囲になるよう分級条件を調整するとよい。
上述のようにして、一旦水浄化剤を作製し、係る水浄化剤の粉末を水に分散させて得られた水浄化用分散液は、分散媒(水)として、特に制限はなく、純水(蒸留水)の他、電気伝導度が30μS/cm以上の水を使用することができる。これらの分散媒を使用した場合でも、所望の粘度が得られる。これにより、比較的安価な水道水や地下水を使用することができる。
分散液に水道水や地下水を使用しても、排水中の無機イオン濃度を所望の濃度以下まで減少させることができ、高い水浄化性能を示すことができる。また、長期保存しても分散液中の固形分の沈降を抑えることができる。 In the molding step, for example, the kneaded product is molded by an arbitrary molding method to form a molded body.
In the drying step, the obtained molded body may be dried at a temperature of 80 ° C. to 150 ° C. for 2 hours to 12 hours using, for example, a multistage hot air dryer.
The molded body is dried, and may be subjected to a pulverization step when the moisture content of the molded body reaches, for example, about 30%.
The drying step is preferably applied in the procedure of drying the molded body obtained in the molding step and then pulverizing the dried molded body. For example, the drying step is obtained in the molding step. The molded body may be pulverized and then subjected to a drying step to obtain a granulated product.
In the pulverization step, pulverization may be performed using a pulverizer, for example, an airflow ultrafine pulverizer.
In the classification step, the pulverized powder is classified using a classifier, such as a vibration sieve or an air ratio classifier, so that the median diameter of the solid content in the water purification dispersion is in a desired range. Adjust it.
As described above, the water purification dispersion obtained by once producing a water purification agent and dispersing the water purification agent powder in water is not particularly limited as a dispersion medium (water). In addition to (distilled water), water having an electric conductivity of 30 μS / cm or more can be used. Even when these dispersion media are used, a desired viscosity can be obtained. Thereby, comparatively cheap tap water and groundwater can be used.
Even if tap water or groundwater is used for the dispersion, the concentration of inorganic ions in the wastewater can be reduced to a desired concentration or less, and high water purification performance can be exhibited. Moreover, sedimentation of the solid content in the dispersion can be suppressed even after long-term storage.
前記乾燥工程では、得られた成形体に対し、例えば、多段階熱風式乾燥機を用い、80℃~150℃の温度で2時間~12時間乾燥させるとよい。
前記成形体を乾燥させ、成形体の水分量が例えば30%くらいになったところで、粉砕工程へ供するとよい。
尚、前記乾燥工程は、成形工程により得られた成形体を乾燥させ、次に該乾燥した成形体を粉砕するという手順で適用されるのが好ましい態様であるが、例えば、成形工程で得られた成形体を粉砕し、その後乾燥工程を施すことにより造粒物を得るという手順で行われてもよい。
前記粉砕工程では、粉砕機、例えば、気流式超微粉砕機を用い粉砕するとよい。
前記分級工程では、粉砕した粉末を、分級機、例えば振動ふるい機、あるいは風比式分級機を用い、前記水浄化用分散液中の固形分のメジアン径が所望の範囲になるよう分級条件を調整するとよい。
上述のようにして、一旦水浄化剤を作製し、係る水浄化剤の粉末を水に分散させて得られた水浄化用分散液は、分散媒(水)として、特に制限はなく、純水(蒸留水)の他、電気伝導度が30μS/cm以上の水を使用することができる。これらの分散媒を使用した場合でも、所望の粘度が得られる。これにより、比較的安価な水道水や地下水を使用することができる。
分散液に水道水や地下水を使用しても、排水中の無機イオン濃度を所望の濃度以下まで減少させることができ、高い水浄化性能を示すことができる。また、長期保存しても分散液中の固形分の沈降を抑えることができる。 In the molding step, for example, the kneaded product is molded by an arbitrary molding method to form a molded body.
In the drying step, the obtained molded body may be dried at a temperature of 80 ° C. to 150 ° C. for 2 hours to 12 hours using, for example, a multistage hot air dryer.
The molded body is dried, and may be subjected to a pulverization step when the moisture content of the molded body reaches, for example, about 30%.
The drying step is preferably applied in the procedure of drying the molded body obtained in the molding step and then pulverizing the dried molded body. For example, the drying step is obtained in the molding step. The molded body may be pulverized and then subjected to a drying step to obtain a granulated product.
In the pulverization step, pulverization may be performed using a pulverizer, for example, an airflow ultrafine pulverizer.
In the classification step, the pulverized powder is classified using a classifier, such as a vibration sieve or an air ratio classifier, so that the median diameter of the solid content in the water purification dispersion is in a desired range. Adjust it.
As described above, the water purification dispersion obtained by once producing a water purification agent and dispersing the water purification agent powder in water is not particularly limited as a dispersion medium (water). In addition to (distilled water), water having an electric conductivity of 30 μS / cm or more can be used. Even when these dispersion media are used, a desired viscosity can be obtained. Thereby, comparatively cheap tap water and groundwater can be used.
Even if tap water or groundwater is used for the dispersion, the concentration of inorganic ions in the wastewater can be reduced to a desired concentration or less, and high water purification performance can be exhibited. Moreover, sedimentation of the solid content in the dispersion can be suppressed even after long-term storage.
(排水処理方法)
本発明の排水処理方法は、上述した本発明の水浄化用分散液を排水に供することにより排水中の無機系不要物を除去するものである。
前記無機系不要物としては、例えば、ニッケル、フッ素、鉄、銅、亜鉛、クロム、ヒ素、カドミウム、及び鉛の少なくともいずれかを有する無機系不要物が挙げられる。
本発明の水浄化用分散液を使用することにより、長期保存後も水浄化用分散液中の固形分の沈降が抑えられるため、長期保存後も優れた水浄化性能を示すことができる。従って、水浄化用分散液を製造後、直ちに排水へ供する必要はなく、24時間以上経過後に排水へ供しても、優れた水浄化性能を示すことができる。 (Wastewater treatment method)
The wastewater treatment method of the present invention is to remove inorganic unnecessary substances in the wastewater by using the above-described water purification dispersion of the present invention for wastewater.
Examples of the inorganic unnecessary materials include inorganic unnecessary materials having at least one of nickel, fluorine, iron, copper, zinc, chromium, arsenic, cadmium, and lead.
By using the dispersion for water purification of the present invention, since sedimentation of solids in the dispersion for water purification can be suppressed even after long-term storage, excellent water purification performance can be exhibited even after long-term storage. Therefore, it is not necessary to use the water purification dispersion immediately after the production, and even if it is used after 24 hours, excellent water purification performance can be exhibited.
本発明の排水処理方法は、上述した本発明の水浄化用分散液を排水に供することにより排水中の無機系不要物を除去するものである。
前記無機系不要物としては、例えば、ニッケル、フッ素、鉄、銅、亜鉛、クロム、ヒ素、カドミウム、及び鉛の少なくともいずれかを有する無機系不要物が挙げられる。
本発明の水浄化用分散液を使用することにより、長期保存後も水浄化用分散液中の固形分の沈降が抑えられるため、長期保存後も優れた水浄化性能を示すことができる。従って、水浄化用分散液を製造後、直ちに排水へ供する必要はなく、24時間以上経過後に排水へ供しても、優れた水浄化性能を示すことができる。 (Wastewater treatment method)
The wastewater treatment method of the present invention is to remove inorganic unnecessary substances in the wastewater by using the above-described water purification dispersion of the present invention for wastewater.
Examples of the inorganic unnecessary materials include inorganic unnecessary materials having at least one of nickel, fluorine, iron, copper, zinc, chromium, arsenic, cadmium, and lead.
By using the dispersion for water purification of the present invention, since sedimentation of solids in the dispersion for water purification can be suppressed even after long-term storage, excellent water purification performance can be exhibited even after long-term storage. Therefore, it is not necessary to use the water purification dispersion immediately after the production, and even if it is used after 24 hours, excellent water purification performance can be exhibited.
本発明の排水処理方法について具体的に説明する。
例えば、排水に塩基を加え、排水を塩基性にして、前記重金属イオンの少なくとも一部を不溶化し、懸濁固形物を形成させる不溶化工程の後に本発明の製造方法により得られた水浄化用分散液を添加することができる。
前記水浄化用分散液を排水に対し、0.5ppm~15ppmの割合で供することにより、無機系不要物を凝集沈降させ、沈降分離された沈殿物を取り除くことにより、排水は浄化される。 The waste water treatment method of the present invention will be specifically described.
For example, a dispersion for water purification obtained by the production method of the present invention after an insolubilization step in which a base is added to the wastewater to make the wastewater basic, insolubilize at least part of the heavy metal ions to form a suspended solid. Liquid can be added.
By providing the water purification dispersion at a ratio of 0.5 ppm to 15 ppm with respect to the wastewater, the inorganic waste is coagulated and settled, and the sediment separated and settled is removed to purify the wastewater.
例えば、排水に塩基を加え、排水を塩基性にして、前記重金属イオンの少なくとも一部を不溶化し、懸濁固形物を形成させる不溶化工程の後に本発明の製造方法により得られた水浄化用分散液を添加することができる。
前記水浄化用分散液を排水に対し、0.5ppm~15ppmの割合で供することにより、無機系不要物を凝集沈降させ、沈降分離された沈殿物を取り除くことにより、排水は浄化される。 The waste water treatment method of the present invention will be specifically described.
For example, a dispersion for water purification obtained by the production method of the present invention after an insolubilization step in which a base is added to the wastewater to make the wastewater basic, insolubilize at least part of the heavy metal ions to form a suspended solid. Liquid can be added.
By providing the water purification dispersion at a ratio of 0.5 ppm to 15 ppm with respect to the wastewater, the inorganic waste is coagulated and settled, and the sediment separated and settled is removed to purify the wastewater.
以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。
Examples of the present invention will be described below, but the present invention is not limited to these examples.
(実施例1)
実験用に使用する排水として、硫酸ニッケル六水和物を純水に溶解し、50mg/Lのニッケルイオンを含む水溶液を800g作製した(仮想排水)。
次に、上記排水に苛性ソーダをpHが10になるよう供給し、攪拌してニッケルを不溶化した。該排水の上澄み液のニッケルイオン濃度は2mg/Lであった。
<水浄化剤>
次に、植物として長朔黄麻(中国・広州産)を、高分子凝集剤としてポリアクリルアミド(PAM)を使用した。
植物は、天日乾燥により、水分量5質量%以下になるまで乾燥後、アトマイザー(ハンマーミル、増幸産業株式会社製)により粉砕し、さらに粒子径が100μm~400μmの範囲に入るもののみ使用するよう、100μm未満と400μmより大きいものは、ふるいにかけ取り除いた(カットした)。
下記に示す製造方法により、造粒物1を得、かかる造粒物1を水浄化剤1として使用した。 (Example 1)
As waste water used for experiments, nickel sulfate hexahydrate was dissolved in pure water to produce 800 g of an aqueous solution containing 50 mg / L of nickel ions (virtual waste water).
Next, caustic soda was supplied to the waste water so as to have a pH of 10, and stirred to insolubilize the nickel. The nickel ion concentration of the supernatant of the waste water was 2 mg / L.
<Water purification agent>
Next, Nagaso Huang (Guangzhou, China) was used as a plant, and polyacrylamide (PAM) was used as a polymer flocculant.
Plants are dried by sun drying until the moisture content is 5% by mass or less, then pulverized by an atomizer (Hammer Mill, manufactured by Masuko Sangyo Co., Ltd.), and only those whose particle diameter falls within the range of 100 μm to 400 μm are used Thus, those less than 100 μm and larger than 400 μm were sieved and removed (cut).
The granulated product 1 was obtained by the production method shown below, and the granulated product 1 was used as the water purifier 1.
実験用に使用する排水として、硫酸ニッケル六水和物を純水に溶解し、50mg/Lのニッケルイオンを含む水溶液を800g作製した(仮想排水)。
次に、上記排水に苛性ソーダをpHが10になるよう供給し、攪拌してニッケルを不溶化した。該排水の上澄み液のニッケルイオン濃度は2mg/Lであった。
<水浄化剤>
次に、植物として長朔黄麻(中国・広州産)を、高分子凝集剤としてポリアクリルアミド(PAM)を使用した。
植物は、天日乾燥により、水分量5質量%以下になるまで乾燥後、アトマイザー(ハンマーミル、増幸産業株式会社製)により粉砕し、さらに粒子径が100μm~400μmの範囲に入るもののみ使用するよう、100μm未満と400μmより大きいものは、ふるいにかけ取り除いた(カットした)。
下記に示す製造方法により、造粒物1を得、かかる造粒物1を水浄化剤1として使用した。 (Example 1)
As waste water used for experiments, nickel sulfate hexahydrate was dissolved in pure water to produce 800 g of an aqueous solution containing 50 mg / L of nickel ions (virtual waste water).
Next, caustic soda was supplied to the waste water so as to have a pH of 10, and stirred to insolubilize the nickel. The nickel ion concentration of the supernatant of the waste water was 2 mg / L.
<Water purification agent>
Next, Nagaso Huang (Guangzhou, China) was used as a plant, and polyacrylamide (PAM) was used as a polymer flocculant.
Plants are dried by sun drying until the moisture content is 5% by mass or less, then pulverized by an atomizer (Hammer Mill, manufactured by Masuko Sangyo Co., Ltd.), and only those whose particle diameter falls within the range of 100 μm to 400 μm are used Thus, those less than 100 μm and larger than 400 μm were sieved and removed (cut).
The granulated product 1 was obtained by the production method shown below, and the granulated product 1 was used as the water purifier 1.
<<水浄化剤の製造方法>>
植物粉末と高分子凝集剤とを合わせた固形分の質量に対し5倍の質量の水を加えて得られた混練物(植物粉末+高分子凝集剤+水=30kg)を、プラネタリーミキサー(株式会社愛工舎製作所製、混合機ACM-110、容量110L)に入れ、回転数150rpm、20分混合の条件にてシェアをかけ混練した。
得られた混練物を成形し、成形体を作製した。
この成形体を、多段階熱風式乾燥機(株式会社七洋製作所製、ラック式オーブン装置)を用いて、120℃で3時間、さらに150℃で2時間乾燥させた。
次に乾燥させた成形体を気流式超微粉砕機(増幸産業株式会社製 セレンミラー)を用いてメジアン径が400μmになるよう粉砕した。
尚、メジアン径は、マスターサイザー2000(マルバーン インスツルメント製)により測定した。
粉砕した粉末を分級機(ツカサ工業株式会社製 振動ふるい機)を用い、粒子径が150μm~850μmの範囲に入るもののみ使用するよう、150μm未満と850μmより大きいものは、ふるいにかけ取り除いた(カットした)。
このようにして、造粒物1を得、水浄化剤1とした。 << Method for producing water purification agent >>
A kneaded product (plant powder + polymer flocculant + water = 30 kg) obtained by adding 5 times the mass of water to the solid content of the plant powder and the polymer flocculant was added to a planetary mixer ( A mixer manufactured by Aikosha Seisakusho Co., Ltd., mixing machine ACM-110, capacity 110 L), and kneading was performed under the conditions of mixing at a rotational speed of 150 rpm for 20 minutes.
The obtained kneaded product was molded to produce a molded body.
This molded body was dried at 120 ° C. for 3 hours and further at 150 ° C. for 2 hours using a multistage hot air dryer (manufactured by Nanyo Seisakusho, rack type oven device).
Next, the dried molded body was pulverized using an airflow type ultrafine pulverizer (Selenium mirror manufactured by Masuko Sangyo Co., Ltd.) so that the median diameter was 400 μm.
The median diameter was measured with Mastersizer 2000 (Malvern Instruments).
The pulverized powder was screened using a classifier (vibrating sieve machine manufactured by Tsukasa Industries Co., Ltd.), so that only particles having a particle diameter falling within the range of 150 μm to 850 μm were used by sieving them (cut). did).
Thus, the granulated material 1 was obtained and it was set as the water purification agent 1.
植物粉末と高分子凝集剤とを合わせた固形分の質量に対し5倍の質量の水を加えて得られた混練物(植物粉末+高分子凝集剤+水=30kg)を、プラネタリーミキサー(株式会社愛工舎製作所製、混合機ACM-110、容量110L)に入れ、回転数150rpm、20分混合の条件にてシェアをかけ混練した。
得られた混練物を成形し、成形体を作製した。
この成形体を、多段階熱風式乾燥機(株式会社七洋製作所製、ラック式オーブン装置)を用いて、120℃で3時間、さらに150℃で2時間乾燥させた。
次に乾燥させた成形体を気流式超微粉砕機(増幸産業株式会社製 セレンミラー)を用いてメジアン径が400μmになるよう粉砕した。
尚、メジアン径は、マスターサイザー2000(マルバーン インスツルメント製)により測定した。
粉砕した粉末を分級機(ツカサ工業株式会社製 振動ふるい機)を用い、粒子径が150μm~850μmの範囲に入るもののみ使用するよう、150μm未満と850μmより大きいものは、ふるいにかけ取り除いた(カットした)。
このようにして、造粒物1を得、水浄化剤1とした。 << Method for producing water purification agent >>
A kneaded product (plant powder + polymer flocculant + water = 30 kg) obtained by adding 5 times the mass of water to the solid content of the plant powder and the polymer flocculant was added to a planetary mixer ( A mixer manufactured by Aikosha Seisakusho Co., Ltd., mixing machine ACM-110, capacity 110 L), and kneading was performed under the conditions of mixing at a rotational speed of 150 rpm for 20 minutes.
The obtained kneaded product was molded to produce a molded body.
This molded body was dried at 120 ° C. for 3 hours and further at 150 ° C. for 2 hours using a multistage hot air dryer (manufactured by Nanyo Seisakusho, rack type oven device).
Next, the dried molded body was pulverized using an airflow type ultrafine pulverizer (Selenium mirror manufactured by Masuko Sangyo Co., Ltd.) so that the median diameter was 400 μm.
The median diameter was measured with Mastersizer 2000 (Malvern Instruments).
The pulverized powder was screened using a classifier (vibrating sieve machine manufactured by Tsukasa Industries Co., Ltd.), so that only particles having a particle diameter falling within the range of 150 μm to 850 μm were used by sieving them (cut). did).
Thus, the granulated material 1 was obtained and it was set as the water purification agent 1.
<分散液>
この水浄化剤1に対し、電気伝導度110μS/cm3の水(栃木県鹿沼市水道水)を固形分0.1質量%になるように加えて攪拌し、分散液1を得た。
上述した方法にて、分散液1の粘度、及び分散液中の固形分のメジアン径を測定した。 <Dispersion>
To this water purifying agent 1, water having an electric conductivity of 110 μS / cm 3 (tap water in Kanuma City, Tochigi Prefecture) was added to a solid content of 0.1% by mass and stirred to obtain dispersion 1.
By the method described above, the viscosity of the dispersion 1 and the median diameter of the solid content in the dispersion were measured.
この水浄化剤1に対し、電気伝導度110μS/cm3の水(栃木県鹿沼市水道水)を固形分0.1質量%になるように加えて攪拌し、分散液1を得た。
上述した方法にて、分散液1の粘度、及び分散液中の固形分のメジアン径を測定した。 <Dispersion>
To this water purifying agent 1, water having an electric conductivity of 110 μS / cm 3 (tap water in Kanuma City, Tochigi Prefecture) was added to a solid content of 0.1% by mass and stirred to obtain dispersion 1.
By the method described above, the viscosity of the dispersion 1 and the median diameter of the solid content in the dispersion were measured.
<特性評価>
上記分散液1、容量200Lのオープンタイプのドラム缶に180L充填した。
23℃の暗所に所定の時間放置後、ドラム缶のフタを外し、目視にて沈降の有無を確認した。
次に、上記排水に対して、固形分が7mg/Lになるように水浄化剤1を含む分散液1を添加し、攪拌した。ここで、「固形分」の測定方法は、排水中のスラリー濃度を水分計にて計測し、逆算することにより、求めることができる。
分散液1を添加した排水を沈殿槽に移送し、その後静置して1時間毎に目視で状態を確認した。
明らかに上澄み液と沈殿物の2層に分かれたと確認した時点を沈降時間として測定した。
また、上澄み液を採取し、ラムダ(Λ)9000(共立理化学研究所製)により、イオン濃度を測定した。
その結果、下記の基準により水浄化性能を評価した。
[水浄化性能の評価基準]
◎ :1.0mg/L未満(検出限界以下)
○ :1.0mg/L以上1.4mg/L未満
○△:1.4mg/L以上1.7mg/L未満
△ :1.7mg/L以上2.0mg/L未満
× :2.0mg/L以上
実施例1の評価結果を表1-1に示す。
尚、表1-1において、植物粉末1は、長朔黄麻(中国・広州産)を、PAMはポリアクリルアミドを表す(表1-2~表1-5においても同様)。 <Characteristic evaluation>
The dispersion liquid 1, 200 L capacity open type drum can was filled with 180 L.
After leaving for a predetermined time in a dark place at 23 ° C., the lid of the drum can was removed, and the presence or absence of sedimentation was confirmed visually.
Next, the dispersion 1 containing the water purifier 1 was added to the waste water so as to have a solid content of 7 mg / L and stirred. Here, the measuring method of "solid content" can be calculated | required by measuring the slurry density | concentration in waste_water | drain with a moisture meter, and calculating backward.
The waste water to which the dispersion 1 was added was transferred to a sedimentation tank, and then allowed to stand, and the state was visually confirmed every hour.
The time when it was confirmed that the supernatant liquid and the precipitate were separated into two layers was measured as the sedimentation time.
Further, the supernatant was collected, and the ion concentration was measured with lambda (Λ) 9000 (manufactured by Kyoritsu Riken).
As a result, water purification performance was evaluated according to the following criteria.
[Evaluation criteria for water purification performance]
: Less than 1.0 mg / L (below detection limit)
○: 1.0 mg / L or more and less than 1.4 mg / L ○ Δ: 1.4 mg / L or more and less than 1.7 mg / L Δ: 1.7 mg / L or more and less than 2.0 mg / L ×: 2.0 mg / L The evaluation results of Example 1 are shown in Table 1-1.
In Table 1-1, plant powder 1 represents Nagatoro Hemp (Guangzhou, China), and PAM represents polyacrylamide (the same applies to Tables 1-2 to 1-5).
上記分散液1、容量200Lのオープンタイプのドラム缶に180L充填した。
23℃の暗所に所定の時間放置後、ドラム缶のフタを外し、目視にて沈降の有無を確認した。
次に、上記排水に対して、固形分が7mg/Lになるように水浄化剤1を含む分散液1を添加し、攪拌した。ここで、「固形分」の測定方法は、排水中のスラリー濃度を水分計にて計測し、逆算することにより、求めることができる。
分散液1を添加した排水を沈殿槽に移送し、その後静置して1時間毎に目視で状態を確認した。
明らかに上澄み液と沈殿物の2層に分かれたと確認した時点を沈降時間として測定した。
また、上澄み液を採取し、ラムダ(Λ)9000(共立理化学研究所製)により、イオン濃度を測定した。
その結果、下記の基準により水浄化性能を評価した。
[水浄化性能の評価基準]
◎ :1.0mg/L未満(検出限界以下)
○ :1.0mg/L以上1.4mg/L未満
○△:1.4mg/L以上1.7mg/L未満
△ :1.7mg/L以上2.0mg/L未満
× :2.0mg/L以上
実施例1の評価結果を表1-1に示す。
尚、表1-1において、植物粉末1は、長朔黄麻(中国・広州産)を、PAMはポリアクリルアミドを表す(表1-2~表1-5においても同様)。 <Characteristic evaluation>
The dispersion liquid 1, 200 L capacity open type drum can was filled with 180 L.
After leaving for a predetermined time in a dark place at 23 ° C., the lid of the drum can was removed, and the presence or absence of sedimentation was confirmed visually.
Next, the dispersion 1 containing the water purifier 1 was added to the waste water so as to have a solid content of 7 mg / L and stirred. Here, the measuring method of "solid content" can be calculated | required by measuring the slurry density | concentration in waste_water | drain with a moisture meter, and calculating backward.
The waste water to which the dispersion 1 was added was transferred to a sedimentation tank, and then allowed to stand, and the state was visually confirmed every hour.
The time when it was confirmed that the supernatant liquid and the precipitate were separated into two layers was measured as the sedimentation time.
Further, the supernatant was collected, and the ion concentration was measured with lambda (Λ) 9000 (manufactured by Kyoritsu Riken).
As a result, water purification performance was evaluated according to the following criteria.
[Evaluation criteria for water purification performance]
: Less than 1.0 mg / L (below detection limit)
○: 1.0 mg / L or more and less than 1.4 mg / L ○ Δ: 1.4 mg / L or more and less than 1.7 mg / L Δ: 1.7 mg / L or more and less than 2.0 mg / L ×: 2.0 mg / L The evaluation results of Example 1 are shown in Table 1-1.
In Table 1-1, plant powder 1 represents Nagatoro Hemp (Guangzhou, China), and PAM represents polyacrylamide (the same applies to Tables 1-2 to 1-5).
(実施例2)
実施例1において、植物として、長朔黄麻の中国農業科学院麻類研究所による鑑定番号、皖品鑑登字第1209006、「中黄麻3号」を使用した以外は、実施例1と同様にして、水浄化剤2を作製した。
水浄化剤2を水に分散させた分散液2を使用して、実施例1と同様にして、水浄化用分散液の特性を評価した。実施例2の評価結果を表1-1に示す。尚、表1-1において、植物粉末2は、「中黄麻3号」を表す。 (Example 2)
In Example 1, the same as in Example 1 except that the appraisal number by Nagase Institute of Agricultural Sciences of Agricultural Sciences of Agricultural Sciences of Nagatoro, No. 190006, “Chuju 3” was used as the plant. Water purification agent 2 was produced.
Using the dispersion 2 in which the water purification agent 2 was dispersed in water, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 2 are shown in Table 1-1. In Table 1-1, the plant powder 2 represents “Central Burlap 3”.
実施例1において、植物として、長朔黄麻の中国農業科学院麻類研究所による鑑定番号、皖品鑑登字第1209006、「中黄麻3号」を使用した以外は、実施例1と同様にして、水浄化剤2を作製した。
水浄化剤2を水に分散させた分散液2を使用して、実施例1と同様にして、水浄化用分散液の特性を評価した。実施例2の評価結果を表1-1に示す。尚、表1-1において、植物粉末2は、「中黄麻3号」を表す。 (Example 2)
In Example 1, the same as in Example 1 except that the appraisal number by Nagase Institute of Agricultural Sciences of Agricultural Sciences of Agricultural Sciences of Nagatoro, No. 190006, “Chuju 3” was used as the plant. Water purification agent 2 was produced.
Using the dispersion 2 in which the water purification agent 2 was dispersed in water, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 2 are shown in Table 1-1. In Table 1-1, the plant powder 2 represents “Central Burlap 3”.
(実施例3)
実施例2において、植物として、長朔黄麻の中国農業科学院麻類研究所による鑑定番号2013、「中黄麻4号」を使用した。それ以外は、実施例2と同様にして、水浄化剤3を作製した。
水浄化剤3を水に分散させた分散液3を使用して、実施例1と同様にして、水浄化用分散液の特性を評価した。実施例3の評価結果を表1-1に示す。尚、表1-1において、植物粉末3は、「中黄麻4号」を表す。 (Example 3)
In Example 2, Appraisal Number 2013, “Chu Hemp No. 4” by Nagase Agricultural Institute of Agricultural Sciences of Nagatoro Hemp was used as the plant. Other than that was carried out similarly to Example 2, and produced the water purification agent 3. FIG.
Using the dispersion 3 in which the water purification agent 3 was dispersed in water, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 3 are shown in Table 1-1. In Table 1-1, the plant powder 3 represents “Central Burlap 4”.
実施例2において、植物として、長朔黄麻の中国農業科学院麻類研究所による鑑定番号2013、「中黄麻4号」を使用した。それ以外は、実施例2と同様にして、水浄化剤3を作製した。
水浄化剤3を水に分散させた分散液3を使用して、実施例1と同様にして、水浄化用分散液の特性を評価した。実施例3の評価結果を表1-1に示す。尚、表1-1において、植物粉末3は、「中黄麻4号」を表す。 (Example 3)
In Example 2, Appraisal Number 2013, “Chu Hemp No. 4” by Nagase Agricultural Institute of Agricultural Sciences of Nagatoro Hemp was used as the plant. Other than that was carried out similarly to Example 2, and produced the water purification agent 3. FIG.
Using the dispersion 3 in which the water purification agent 3 was dispersed in water, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 3 are shown in Table 1-1. In Table 1-1, the plant powder 3 represents “Central Burlap 4”.
(実施例4)
実施例3において、植物として、長朔黄麻の中国農業科学院麻類研究所による鑑定番号が皖品鑑登字第1209001、「中紅麻」を使用した。それ以外は、実施例3と同様にして、水浄化剤4を作製した。
水浄化剤4を水に分散させた分散液4を使用して、実施例1と同様にして、水浄化用分散液の特性を評価した。実施例4の評価結果を表1-1に示す。尚、表1-1において、植物粉末4は、「中紅麻」を表す。 Example 4
In Example 3, as the plant, the appraisal number by Nagasaki Hemp hemp laboratory of Chinese Academy of Agricultural Sciences was used as the plant, and the special product registered letter No. 1900001, “Chinese red hemp” was used. Other than that was carried out similarly to Example 3, and produced the water purification agent 4. FIG.
Using the dispersion 4 in which the water purification agent 4 was dispersed in water, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 4 are shown in Table 1-1. In Table 1-1, the plant powder 4 represents “medium red hemp”.
実施例3において、植物として、長朔黄麻の中国農業科学院麻類研究所による鑑定番号が皖品鑑登字第1209001、「中紅麻」を使用した。それ以外は、実施例3と同様にして、水浄化剤4を作製した。
水浄化剤4を水に分散させた分散液4を使用して、実施例1と同様にして、水浄化用分散液の特性を評価した。実施例4の評価結果を表1-1に示す。尚、表1-1において、植物粉末4は、「中紅麻」を表す。 Example 4
In Example 3, as the plant, the appraisal number by Nagasaki Hemp hemp laboratory of Chinese Academy of Agricultural Sciences was used as the plant, and the special product registered letter No. 1900001, “Chinese red hemp” was used. Other than that was carried out similarly to Example 3, and produced the water purification agent 4. FIG.
Using the dispersion 4 in which the water purification agent 4 was dispersed in water, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 4 are shown in Table 1-1. In Table 1-1, the plant powder 4 represents “medium red hemp”.
(比較例1)
実施例3において、分散液濃度を0.005質量%とし、粘度を15mPa・Sに調整した以外は、実施例3と同様にして、比較水浄化剤1を作製した。
比較水浄化剤1を水に分散させた比較分散液1を使用して、実施例1と同様にして、水浄化用分散液の特性を評価した。比較例1の評価結果を表1-2に示す。
比較例1のドラム缶中の沈降結果「有」は、沈殿物でドラム缶の底が見えない状態であった。 (Comparative Example 1)
Comparative water purifier 1 was prepared in the same manner as in Example 3, except that the dispersion concentration was 0.005% by mass and the viscosity was adjusted to 15 mPa · S.
Using the comparative dispersion 1 in which the comparative water purification agent 1 was dispersed in water, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Comparative Example 1 are shown in Table 1-2.
The sedimentation result “Yes” in the drum can of Comparative Example 1 was a state where the bottom of the drum can not be seen due to the sediment.
実施例3において、分散液濃度を0.005質量%とし、粘度を15mPa・Sに調整した以外は、実施例3と同様にして、比較水浄化剤1を作製した。
比較水浄化剤1を水に分散させた比較分散液1を使用して、実施例1と同様にして、水浄化用分散液の特性を評価した。比較例1の評価結果を表1-2に示す。
比較例1のドラム缶中の沈降結果「有」は、沈殿物でドラム缶の底が見えない状態であった。 (Comparative Example 1)
Comparative water purifier 1 was prepared in the same manner as in Example 3, except that the dispersion concentration was 0.005% by mass and the viscosity was adjusted to 15 mPa · S.
Using the comparative dispersion 1 in which the comparative water purification agent 1 was dispersed in water, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Comparative Example 1 are shown in Table 1-2.
The sedimentation result “Yes” in the drum can of Comparative Example 1 was a state where the bottom of the drum can not be seen due to the sediment.
(実施例5)
実施例3において、分散液濃度を0.02質量%とし、粘度を20mPa・Sに調整した以外は、実施例3と同様にして、水浄化剤5を作製した。
水浄化剤5を水に分散させた分散液5を使用して、実施例1と同様にして、水浄化用分散液の特性を評価した。実施例5の評価結果を表1-2に示す。
実施例5のドラム缶中の沈降結果「若干有り」は、沈殿物は認められるが、ドラム缶の底は見える状態であった。 (Example 5)
In Example 3, a water purifying agent 5 was produced in the same manner as in Example 3 except that the dispersion concentration was 0.02% by mass and the viscosity was adjusted to 20 mPa · S.
Using the dispersion 5 in which the water purification agent 5 was dispersed in water, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 5 are shown in Table 1-2.
The result of sedimentation in the drum of Example 5 was “slightly present”, but sediment was observed, but the bottom of the drum was visible.
実施例3において、分散液濃度を0.02質量%とし、粘度を20mPa・Sに調整した以外は、実施例3と同様にして、水浄化剤5を作製した。
水浄化剤5を水に分散させた分散液5を使用して、実施例1と同様にして、水浄化用分散液の特性を評価した。実施例5の評価結果を表1-2に示す。
実施例5のドラム缶中の沈降結果「若干有り」は、沈殿物は認められるが、ドラム缶の底は見える状態であった。 (Example 5)
In Example 3, a water purifying agent 5 was produced in the same manner as in Example 3 except that the dispersion concentration was 0.02% by mass and the viscosity was adjusted to 20 mPa · S.
Using the dispersion 5 in which the water purification agent 5 was dispersed in water, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 5 are shown in Table 1-2.
The result of sedimentation in the drum of Example 5 was “slightly present”, but sediment was observed, but the bottom of the drum was visible.
(実施例6)
実施例3において、分散液濃度を0.5質量%とし、粘度を500mPa・Sに調整した以外は、実施例3と同様にして、水浄化剤6を作製した。
水浄化剤6を水に分散させた分散液6を使用して、実施例1と同様にして、水浄化用分散液の特性を評価した。実施例6の評価結果を表1-2に示す。 (Example 6)
In Example 3, a water purifying agent 6 was produced in the same manner as in Example 3 except that the dispersion concentration was 0.5 mass% and the viscosity was adjusted to 500 mPa · S.
Using the dispersion 6 in which the water purification agent 6 was dispersed in water, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 6 are shown in Table 1-2.
実施例3において、分散液濃度を0.5質量%とし、粘度を500mPa・Sに調整した以外は、実施例3と同様にして、水浄化剤6を作製した。
水浄化剤6を水に分散させた分散液6を使用して、実施例1と同様にして、水浄化用分散液の特性を評価した。実施例6の評価結果を表1-2に示す。 (Example 6)
In Example 3, a water purifying agent 6 was produced in the same manner as in Example 3 except that the dispersion concentration was 0.5 mass% and the viscosity was adjusted to 500 mPa · S.
Using the dispersion 6 in which the water purification agent 6 was dispersed in water, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 6 are shown in Table 1-2.
(比較例2)
実施例3において、分散液濃度を0.6質量%とし、粘度を600mPa・Sに調整した以外は、実施例3と同様にして、比較水浄化剤2を作製した。
比較水浄化剤2を水に分散させた比較分散液2を使用して、実施例1と同様にして、水浄化用分散液の特性を評価した。比較例2の評価結果を表1-2に示す。 (Comparative Example 2)
Comparative water purifier 2 was produced in the same manner as in Example 3, except that the dispersion concentration was 0.6% by mass and the viscosity was adjusted to 600 mPa · S in Example 3.
Using the comparative dispersion 2 in which the comparative water purification agent 2 was dispersed in water, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Comparative Example 2 are shown in Table 1-2.
実施例3において、分散液濃度を0.6質量%とし、粘度を600mPa・Sに調整した以外は、実施例3と同様にして、比較水浄化剤2を作製した。
比較水浄化剤2を水に分散させた比較分散液2を使用して、実施例1と同様にして、水浄化用分散液の特性を評価した。比較例2の評価結果を表1-2に示す。 (Comparative Example 2)
Comparative water purifier 2 was produced in the same manner as in Example 3, except that the dispersion concentration was 0.6% by mass and the viscosity was adjusted to 600 mPa · S in Example 3.
Using the comparative dispersion 2 in which the comparative water purification agent 2 was dispersed in water, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Comparative Example 2 are shown in Table 1-2.
(実施例7)
実施例3において、分散液濃度を0.08質量%とし、粘度を150mPa・Sに調整した以外は、実施例3と同様にして、水浄化剤7を作製した。
水浄化剤7を水に分散させた分散液7を使用して、実施例1と同様にして、水浄化用分散液の特性を評価した。実施例7の評価結果を表1-2に示す。 (Example 7)
In Example 3, water purification agent 7 was produced in the same manner as in Example 3 except that the dispersion concentration was 0.08% by mass and the viscosity was adjusted to 150 mPa · S.
Using the dispersion liquid 7 in which the water purification agent 7 was dispersed in water, the characteristics of the water purification dispersion liquid were evaluated in the same manner as in Example 1. The evaluation results of Example 7 are shown in Table 1-2.
実施例3において、分散液濃度を0.08質量%とし、粘度を150mPa・Sに調整した以外は、実施例3と同様にして、水浄化剤7を作製した。
水浄化剤7を水に分散させた分散液7を使用して、実施例1と同様にして、水浄化用分散液の特性を評価した。実施例7の評価結果を表1-2に示す。 (Example 7)
In Example 3, water purification agent 7 was produced in the same manner as in Example 3 except that the dispersion concentration was 0.08% by mass and the viscosity was adjusted to 150 mPa · S.
Using the dispersion liquid 7 in which the water purification agent 7 was dispersed in water, the characteristics of the water purification dispersion liquid were evaluated in the same manner as in Example 1. The evaluation results of Example 7 are shown in Table 1-2.
(実施例8)
実施例3において、分散液濃度を0.4質量%とし、粘度を450mPa・Sに調整した以外は、実施例3と同様にして、水浄化剤8を作製した。
水浄化剤8を水に分散させた分散液8を使用して、実施例1と同様にして、水浄化用分散液の特性を評価した。実施例8の評価結果を表1-2に示す。 (Example 8)
A water purifier 8 was produced in the same manner as in Example 3, except that the dispersion concentration was 0.4 mass% and the viscosity was adjusted to 450 mPa · S in Example 3.
Using the dispersion 8 in which the water purification agent 8 was dispersed in water, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 8 are shown in Table 1-2.
実施例3において、分散液濃度を0.4質量%とし、粘度を450mPa・Sに調整した以外は、実施例3と同様にして、水浄化剤8を作製した。
水浄化剤8を水に分散させた分散液8を使用して、実施例1と同様にして、水浄化用分散液の特性を評価した。実施例8の評価結果を表1-2に示す。 (Example 8)
A water purifier 8 was produced in the same manner as in Example 3, except that the dispersion concentration was 0.4 mass% and the viscosity was adjusted to 450 mPa · S in Example 3.
Using the dispersion 8 in which the water purification agent 8 was dispersed in water, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 8 are shown in Table 1-2.
(比較例3)
実施例3において、植物の乾燥物を粉砕した後、分級する際のふるいの条件を変更することにより、分散液中の固形分のメジアン径を80μmとなるように調整した以外は、実施例3と同様にして、比較水浄化剤3を作製した。
比較水浄化剤3を水に分散させた比較分散液3を使用して、実施例1と同様にして、水浄化用分散液の特性を評価した。比較例3の評価結果を表1-3に示す。 (Comparative Example 3)
In Example 3, after crushing the dried plant material, the median diameter of the solid content in the dispersion was adjusted to 80 μm by changing the conditions of sieving at the time of classification. The comparative water purification agent 3 was produced in the same manner as described above.
Using the comparative dispersion liquid 3 in which the comparative water purification agent 3 was dispersed in water, the characteristics of the water purification dispersion liquid were evaluated in the same manner as in Example 1. The evaluation results of Comparative Example 3 are shown in Table 1-3.
実施例3において、植物の乾燥物を粉砕した後、分級する際のふるいの条件を変更することにより、分散液中の固形分のメジアン径を80μmとなるように調整した以外は、実施例3と同様にして、比較水浄化剤3を作製した。
比較水浄化剤3を水に分散させた比較分散液3を使用して、実施例1と同様にして、水浄化用分散液の特性を評価した。比較例3の評価結果を表1-3に示す。 (Comparative Example 3)
In Example 3, after crushing the dried plant material, the median diameter of the solid content in the dispersion was adjusted to 80 μm by changing the conditions of sieving at the time of classification. The comparative water purification agent 3 was produced in the same manner as described above.
Using the comparative dispersion liquid 3 in which the comparative water purification agent 3 was dispersed in water, the characteristics of the water purification dispersion liquid were evaluated in the same manner as in Example 1. The evaluation results of Comparative Example 3 are shown in Table 1-3.
(実施例9)
実施例3において、植物の乾燥物を粉砕した後、分級する際のふるいの条件を変更することにより、分散液中の固形分のメジアン径を120μmとなるように調整した以外は、実施例3と同様にして、水浄化剤9を作製した。
水浄化剤9を水に分散させた分散液9を使用して、実施例1と同様にして、水浄化用分散液の特性を評価した。実施例9の評価結果を表1-3に示す。 Example 9
In Example 3, after crushing the dried plant material, the median diameter of the solid content in the dispersion was adjusted to 120 μm by changing the sieving conditions at the time of classification. Example 3 In the same manner as described above, a water purifying agent 9 was produced.
Using the dispersion 9 in which the water purification agent 9 was dispersed in water, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 9 are shown in Table 1-3.
実施例3において、植物の乾燥物を粉砕した後、分級する際のふるいの条件を変更することにより、分散液中の固形分のメジアン径を120μmとなるように調整した以外は、実施例3と同様にして、水浄化剤9を作製した。
水浄化剤9を水に分散させた分散液9を使用して、実施例1と同様にして、水浄化用分散液の特性を評価した。実施例9の評価結果を表1-3に示す。 Example 9
In Example 3, after crushing the dried plant material, the median diameter of the solid content in the dispersion was adjusted to 120 μm by changing the sieving conditions at the time of classification. Example 3 In the same manner as described above, a water purifying agent 9 was produced.
Using the dispersion 9 in which the water purification agent 9 was dispersed in water, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 9 are shown in Table 1-3.
(比較例4)
実施例3において、植物の乾燥物を粉砕した後、分級を行わなかった以外は、実施例3と同様にして、比較水浄化剤4を作製した。
比較水浄化剤4を水に分散させた比較分散液4を使用して、実施例1と同様にして、水浄化用分散液の特性を評価した。比較例4の評価結果を表1-3に示す。 (Comparative Example 4)
In Example 3, the comparative water purifier 4 was produced in the same manner as in Example 3 except that the dried plant material was pulverized and then not classified.
Using the comparative dispersion 4 in which the comparative water purification agent 4 was dispersed in water, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Comparative Example 4 are shown in Table 1-3.
実施例3において、植物の乾燥物を粉砕した後、分級を行わなかった以外は、実施例3と同様にして、比較水浄化剤4を作製した。
比較水浄化剤4を水に分散させた比較分散液4を使用して、実施例1と同様にして、水浄化用分散液の特性を評価した。比較例4の評価結果を表1-3に示す。 (Comparative Example 4)
In Example 3, the comparative water purifier 4 was produced in the same manner as in Example 3 except that the dried plant material was pulverized and then not classified.
Using the comparative dispersion 4 in which the comparative water purification agent 4 was dispersed in water, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Comparative Example 4 are shown in Table 1-3.
(参考例1)
比較例4で作製した比較水浄化剤4を使用して、実施例1と同様にして、水浄化用分散液の特性を評価した。但し、参考例1では、ドラム缶中の放置時間を1日(24時間)とした。参考例1の評価結果を表1-3に示す。 (Reference Example 1)
Using the comparative water purification agent 4 prepared in Comparative Example 4, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. However, in Reference Example 1, the standing time in the drum can was 1 day (24 hours). The evaluation results of Reference Example 1 are shown in Table 1-3.
比較例4で作製した比較水浄化剤4を使用して、実施例1と同様にして、水浄化用分散液の特性を評価した。但し、参考例1では、ドラム缶中の放置時間を1日(24時間)とした。参考例1の評価結果を表1-3に示す。 (Reference Example 1)
Using the comparative water purification agent 4 prepared in Comparative Example 4, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. However, in Reference Example 1, the standing time in the drum can was 1 day (24 hours). The evaluation results of Reference Example 1 are shown in Table 1-3.
(実施例10)
実施例3において、植物の乾燥物を粉砕した後、分級する際のふるいの条件を変更することにより、分散液中の固形分のメジアン径を150μmとなるように調整した以外は、実施例3と同様にして、水浄化剤10を作製した。
水浄化剤10を水に分散させた分散液10を使用して、実施例1と同様にして、水浄化用分散液の特性を評価した。実施例10の評価結果を表1-3に示す。 (Example 10)
In Example 3, after crushing the dried plant material, the median diameter of the solid content in the dispersion was adjusted to 150 μm by changing the sieving conditions at the time of classification. The water purification agent 10 was produced in the same manner as described above.
Using the dispersion 10 in which the water purification agent 10 was dispersed in water, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 10 are shown in Table 1-3.
実施例3において、植物の乾燥物を粉砕した後、分級する際のふるいの条件を変更することにより、分散液中の固形分のメジアン径を150μmとなるように調整した以外は、実施例3と同様にして、水浄化剤10を作製した。
水浄化剤10を水に分散させた分散液10を使用して、実施例1と同様にして、水浄化用分散液の特性を評価した。実施例10の評価結果を表1-3に示す。 (Example 10)
In Example 3, after crushing the dried plant material, the median diameter of the solid content in the dispersion was adjusted to 150 μm by changing the sieving conditions at the time of classification. The water purification agent 10 was produced in the same manner as described above.
Using the dispersion 10 in which the water purification agent 10 was dispersed in water, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 10 are shown in Table 1-3.
(実施例11)
実施例3において、植物の乾燥物を粉砕した後、分級する際のふるいの条件を変更することにより、分散液中の固形分のメジアン径を350μmとなるように調整した以外は、実施例3と同様にして、水浄化剤11を作製した。
水浄化剤11を水に分散させた分散液11を使用して、実施例1と同様にして、水浄化用分散液の特性を評価した。実施例11の評価結果を表1-3に示す。 (Example 11)
In Example 3, after crushing the dried plant material, the median diameter of the solid content in the dispersion was adjusted to 350 μm by changing the sieving conditions at the time of classification. In the same manner, a water purifying agent 11 was produced.
Using the dispersion 11 in which the water purification agent 11 was dispersed in water, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 11 are shown in Table 1-3.
実施例3において、植物の乾燥物を粉砕した後、分級する際のふるいの条件を変更することにより、分散液中の固形分のメジアン径を350μmとなるように調整した以外は、実施例3と同様にして、水浄化剤11を作製した。
水浄化剤11を水に分散させた分散液11を使用して、実施例1と同様にして、水浄化用分散液の特性を評価した。実施例11の評価結果を表1-3に示す。 (Example 11)
In Example 3, after crushing the dried plant material, the median diameter of the solid content in the dispersion was adjusted to 350 μm by changing the sieving conditions at the time of classification. In the same manner, a water purifying agent 11 was produced.
Using the dispersion 11 in which the water purification agent 11 was dispersed in water, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 11 are shown in Table 1-3.
(実施例12)
実施例3において、分散液の水を電気伝導度198μS/cmの水(栃木県鹿沼市水道水)に変更した以外は、実施例3と同様にして、分散液12を作製した。
分散液12を使用して、実施例1と同様にして、水浄化用分散液の特性を評価した。実施例12の評価結果を表1-4に示す。 (Example 12)
A dispersion 12 was prepared in the same manner as in Example 3 except that the water in the dispersion was changed to water having an electrical conductivity of 198 μS / cm (tap water in Kanuma City, Tochigi Prefecture).
Using the dispersion 12, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 12 are shown in Table 1-4.
実施例3において、分散液の水を電気伝導度198μS/cmの水(栃木県鹿沼市水道水)に変更した以外は、実施例3と同様にして、分散液12を作製した。
分散液12を使用して、実施例1と同様にして、水浄化用分散液の特性を評価した。実施例12の評価結果を表1-4に示す。 (Example 12)
A dispersion 12 was prepared in the same manner as in Example 3 except that the water in the dispersion was changed to water having an electrical conductivity of 198 μS / cm (tap water in Kanuma City, Tochigi Prefecture).
Using the dispersion 12, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 12 are shown in Table 1-4.
(実施例13)
実施例3において、分散液の水を栃木県鹿沼市水道水と蒸留水を適量ブレンドして得た、電気伝導度30μS/cmの水に変更した以外は、実施例3と同様にして、分散液13を作製した。
分散液13を使用して、実施例1と同様にして、水浄化用分散液の特性を評価した。実施例13の評価結果を表1-4に示す。 (Example 13)
In Example 3, the dispersion water was dispersed in the same manner as in Example 3 except that the water was obtained by blending an appropriate amount of tap water and distilled water in Kanuma City, Tochigi Prefecture, and having water conductivity of 30 μS / cm. Liquid 13 was produced.
Using the dispersion 13, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 13 are shown in Table 1-4.
実施例3において、分散液の水を栃木県鹿沼市水道水と蒸留水を適量ブレンドして得た、電気伝導度30μS/cmの水に変更した以外は、実施例3と同様にして、分散液13を作製した。
分散液13を使用して、実施例1と同様にして、水浄化用分散液の特性を評価した。実施例13の評価結果を表1-4に示す。 (Example 13)
In Example 3, the dispersion water was dispersed in the same manner as in Example 3 except that the water was obtained by blending an appropriate amount of tap water and distilled water in Kanuma City, Tochigi Prefecture, and having water conductivity of 30 μS / cm. Liquid 13 was produced.
Using the dispersion 13, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 13 are shown in Table 1-4.
(実施例14)
実施例3において、植物と高分子凝集剤混練物の分級を行わなかった。それ以外は、実施例3と同様にして、水浄化剤14を作製した。
水浄化剤14を水に分散させた分散液14を使用して、実施例1と同様にして、水浄化用分散液の特性を評価した。実施例14の評価結果を表1-4に示す。 (Example 14)
In Example 3, the plant and the polymer flocculant kneaded product were not classified. Other than that was carried out similarly to Example 3, and produced the water purification agent 14. FIG.
Using the dispersion 14 in which the water purification agent 14 was dispersed in water, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 14 are shown in Table 1-4.
実施例3において、植物と高分子凝集剤混練物の分級を行わなかった。それ以外は、実施例3と同様にして、水浄化剤14を作製した。
水浄化剤14を水に分散させた分散液14を使用して、実施例1と同様にして、水浄化用分散液の特性を評価した。実施例14の評価結果を表1-4に示す。 (Example 14)
In Example 3, the plant and the polymer flocculant kneaded product were not classified. Other than that was carried out similarly to Example 3, and produced the water purification agent 14. FIG.
Using the dispersion 14 in which the water purification agent 14 was dispersed in water, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 14 are shown in Table 1-4.
(実施例15)
実施例3において、ポリアクリルアミドに代えてポリアミンを使用した。それ以外は、実施例3と同様にして、水浄化剤15を作製した。
水浄化剤15を水に分散させた分散液15を使用して、実施例1と同様にして、水浄化用分散液の特性を評価した。実施例15の評価結果を表1-4に示す。 (Example 15)
In Example 3, polyamine was used instead of polyacrylamide. Other than that was carried out similarly to Example 3, and produced the water purification agent 15. FIG.
Using the dispersion 15 in which the water purification agent 15 was dispersed in water, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 15 are shown in Table 1-4.
実施例3において、ポリアクリルアミドに代えてポリアミンを使用した。それ以外は、実施例3と同様にして、水浄化剤15を作製した。
水浄化剤15を水に分散させた分散液15を使用して、実施例1と同様にして、水浄化用分散液の特性を評価した。実施例15の評価結果を表1-4に示す。 (Example 15)
In Example 3, polyamine was used instead of polyacrylamide. Other than that was carried out similarly to Example 3, and produced the water purification agent 15. FIG.
Using the dispersion 15 in which the water purification agent 15 was dispersed in water, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 15 are shown in Table 1-4.
(実施例16)
実施例3において、分散液の水を、電気伝導度1μS/cmの水(蒸留水)に変更した以外は、実施例3と同様にして、分散液16を作製した。
分散液16を使用して、実施例1と同様にして、水浄化用分散液の特性を評価した。実施例16の評価結果を表1-4に示す。 (Example 16)
A dispersion 16 was prepared in the same manner as in Example 3 except that the water in the dispersion was changed to water (distilled water) having an electric conductivity of 1 μS / cm in Example 3.
Using the dispersion 16, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 16 are shown in Table 1-4.
実施例3において、分散液の水を、電気伝導度1μS/cmの水(蒸留水)に変更した以外は、実施例3と同様にして、分散液16を作製した。
分散液16を使用して、実施例1と同様にして、水浄化用分散液の特性を評価した。実施例16の評価結果を表1-4に示す。 (Example 16)
A dispersion 16 was prepared in the same manner as in Example 3 except that the water in the dispersion was changed to water (distilled water) having an electric conductivity of 1 μS / cm in Example 3.
Using the dispersion 16, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 16 are shown in Table 1-4.
(実施例17)
実施例3において、造粒物を作製せず、高分子凝集剤と植物粉末を各々単体で使用し、それぞれを水に分散させた。また、分散液の水としては、蒸留水を使用した。それ以外は、実施例3と同様にして、分散液17を作製した。
分散液17を使用して、実施例1と同様にして、水浄化用分散液の特性を評価した。実施例17の評価結果を表1-4に示す。 (Example 17)
In Example 3, a granulated product was not prepared, and the polymer flocculant and the plant powder were each used alone, and each was dispersed in water. Moreover, distilled water was used as the water of the dispersion. Otherwise, a dispersion 17 was produced in the same manner as in Example 3.
Using the dispersion 17, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 17 are shown in Table 1-4.
実施例3において、造粒物を作製せず、高分子凝集剤と植物粉末を各々単体で使用し、それぞれを水に分散させた。また、分散液の水としては、蒸留水を使用した。それ以外は、実施例3と同様にして、分散液17を作製した。
分散液17を使用して、実施例1と同様にして、水浄化用分散液の特性を評価した。実施例17の評価結果を表1-4に示す。 (Example 17)
In Example 3, a granulated product was not prepared, and the polymer flocculant and the plant powder were each used alone, and each was dispersed in water. Moreover, distilled water was used as the water of the dispersion. Otherwise, a dispersion 17 was produced in the same manner as in Example 3.
Using the dispersion 17, the characteristics of the water purification dispersion were evaluated in the same manner as in Example 1. The evaluation results of Example 17 are shown in Table 1-4.
(実施例18)
実験用に使用する排水として、フッ化カリウムを純水に溶解し、2,500mg/Lのフッ素イオンを含む水溶液を800g作製した(仮想排水)。
次に、上記排水に、塩化カルシウムを8.6mg/L添加し、pHが7.5~9.0になるよう水酸化ナトリウムを添加しながら攪拌してフッ素を不溶化した。この操作により、フッ素水溶液は、ミクロフロックを含む上澄み液と沈殿物に分離した。
この時点で、該排水の上澄み液のイオン濃度は10mg/Lであった。
上記排水を使用したこと以外は、実施例3と同様にして、水浄化剤3を水に分散させた分散液3を使用して、水浄化用分散液の特性を評価した。実施例18の評価結果を表1-5に示す。 (Example 18)
As waste water used for experiments, potassium fluoride was dissolved in pure water to produce 800 g of an aqueous solution containing 2,500 mg / L of fluorine ions (virtual waste water).
Next, 8.6 mg / L of calcium chloride was added to the waste water, and the mixture was stirred while adding sodium hydroxide so that the pH was 7.5 to 9.0, thereby insolubilizing fluorine. By this operation, the aqueous fluorine solution was separated into a supernatant and a precipitate containing micro floc.
At this point, the ionic concentration of the supernatant of the wastewater was 10 mg / L.
Except having used the said waste_water | drain, it carried out similarly to Example 3, and evaluated the characteristic of the dispersion liquid for water purification | cleaning using the dispersion liquid 3 which disperse | distributed the water purification agent 3 in water. The evaluation results of Example 18 are shown in Table 1-5.
実験用に使用する排水として、フッ化カリウムを純水に溶解し、2,500mg/Lのフッ素イオンを含む水溶液を800g作製した(仮想排水)。
次に、上記排水に、塩化カルシウムを8.6mg/L添加し、pHが7.5~9.0になるよう水酸化ナトリウムを添加しながら攪拌してフッ素を不溶化した。この操作により、フッ素水溶液は、ミクロフロックを含む上澄み液と沈殿物に分離した。
この時点で、該排水の上澄み液のイオン濃度は10mg/Lであった。
上記排水を使用したこと以外は、実施例3と同様にして、水浄化剤3を水に分散させた分散液3を使用して、水浄化用分散液の特性を評価した。実施例18の評価結果を表1-5に示す。 (Example 18)
As waste water used for experiments, potassium fluoride was dissolved in pure water to produce 800 g of an aqueous solution containing 2,500 mg / L of fluorine ions (virtual waste water).
Next, 8.6 mg / L of calcium chloride was added to the waste water, and the mixture was stirred while adding sodium hydroxide so that the pH was 7.5 to 9.0, thereby insolubilizing fluorine. By this operation, the aqueous fluorine solution was separated into a supernatant and a precipitate containing micro floc.
At this point, the ionic concentration of the supernatant of the wastewater was 10 mg / L.
Except having used the said waste_water | drain, it carried out similarly to Example 3, and evaluated the characteristic of the dispersion liquid for water purification | cleaning using the dispersion liquid 3 which disperse | distributed the water purification agent 3 in water. The evaluation results of Example 18 are shown in Table 1-5.
(実施例19)
実験用に使用する排水として、塩化第二鉄・六水和物を純水に溶解し、200mg/Lの鉄イオンを含む水溶液を800g作製した(仮想排水)。
次に、上記排水に、pHが6.5~9.0になるよう水酸化ナトリウムを添加しながら攪拌して、鉄を不溶化した。
この時点で、該排水の上澄み液のイオン濃度は2mg/Lであった。
上記排水を使用したこと以外は、実施例3と同様にして、水浄化剤3を水に分散させた分散液3を使用して、水浄化用分散液の特性を評価した。実施例19の評価結果を表1-5に示す。 (Example 19)
As waste water used for the experiment, ferric chloride hexahydrate was dissolved in pure water to prepare 800 g of an aqueous solution containing 200 mg / L of iron ions (virtual waste water).
Next, iron was insolubilized by stirring the waste water while adding sodium hydroxide so that the pH was 6.5 to 9.0.
At this time, the ion concentration of the supernatant of the wastewater was 2 mg / L.
Except having used the said waste_water | drain, it carried out similarly to Example 3, and evaluated the characteristic of the dispersion liquid for water purification | cleaning using the dispersion liquid 3 which disperse | distributed the water purification agent 3 in water. The evaluation results of Example 19 are shown in Table 1-5.
実験用に使用する排水として、塩化第二鉄・六水和物を純水に溶解し、200mg/Lの鉄イオンを含む水溶液を800g作製した(仮想排水)。
次に、上記排水に、pHが6.5~9.0になるよう水酸化ナトリウムを添加しながら攪拌して、鉄を不溶化した。
この時点で、該排水の上澄み液のイオン濃度は2mg/Lであった。
上記排水を使用したこと以外は、実施例3と同様にして、水浄化剤3を水に分散させた分散液3を使用して、水浄化用分散液の特性を評価した。実施例19の評価結果を表1-5に示す。 (Example 19)
As waste water used for the experiment, ferric chloride hexahydrate was dissolved in pure water to prepare 800 g of an aqueous solution containing 200 mg / L of iron ions (virtual waste water).
Next, iron was insolubilized by stirring the waste water while adding sodium hydroxide so that the pH was 6.5 to 9.0.
At this time, the ion concentration of the supernatant of the wastewater was 2 mg / L.
Except having used the said waste_water | drain, it carried out similarly to Example 3, and evaluated the characteristic of the dispersion liquid for water purification | cleaning using the dispersion liquid 3 which disperse | distributed the water purification agent 3 in water. The evaluation results of Example 19 are shown in Table 1-5.
(実施例20)
実験用に使用する排水として、硫酸銅・五水和物を純水に溶解し、100mg/Lの銅イオンを含む水溶液を800g作製した(仮想排水)。
次に、上記排水に、pHが7.0~8.0になるよう水酸化ナトリウムを添加しながら攪拌して、銅を不溶化した。
この時点で、該排水の上澄み液のイオン濃度は2mg/Lであった。
上記排水を使用したこと以外は、実施例3と同様にして、水浄化剤3を水に分散させた分散液3を使用して、水浄化用分散液の特性を評価した。実施例20の評価結果を表1-5に示す。 (Example 20)
As waste water used for experiments, copper sulfate pentahydrate was dissolved in pure water to produce 800 g of an aqueous solution containing 100 mg / L of copper ions (virtual waste water).
Next, the waste water was stirred while adding sodium hydroxide so that the pH was 7.0 to 8.0 to insolubilize copper.
At this time, the ion concentration of the supernatant of the wastewater was 2 mg / L.
Except having used the said waste_water | drain, it carried out similarly to Example 3, and evaluated the characteristic of the dispersion liquid for water purification | cleaning using the dispersion liquid 3 which disperse | distributed the water purification agent 3 in water. The evaluation results of Example 20 are shown in Table 1-5.
実験用に使用する排水として、硫酸銅・五水和物を純水に溶解し、100mg/Lの銅イオンを含む水溶液を800g作製した(仮想排水)。
次に、上記排水に、pHが7.0~8.0になるよう水酸化ナトリウムを添加しながら攪拌して、銅を不溶化した。
この時点で、該排水の上澄み液のイオン濃度は2mg/Lであった。
上記排水を使用したこと以外は、実施例3と同様にして、水浄化剤3を水に分散させた分散液3を使用して、水浄化用分散液の特性を評価した。実施例20の評価結果を表1-5に示す。 (Example 20)
As waste water used for experiments, copper sulfate pentahydrate was dissolved in pure water to produce 800 g of an aqueous solution containing 100 mg / L of copper ions (virtual waste water).
Next, the waste water was stirred while adding sodium hydroxide so that the pH was 7.0 to 8.0 to insolubilize copper.
At this time, the ion concentration of the supernatant of the wastewater was 2 mg / L.
Except having used the said waste_water | drain, it carried out similarly to Example 3, and evaluated the characteristic of the dispersion liquid for water purification | cleaning using the dispersion liquid 3 which disperse | distributed the water purification agent 3 in water. The evaluation results of Example 20 are shown in Table 1-5.
(実施例21)
実験用に使用する排水として、硝酸亜鉛・六水和物を純水に溶解し、100mg/Lの亜鉛イオンを含む水溶液を800g作製した(仮想排水)。
次に、上記排水に、pHが.9.0~9.5になるよう水酸化ナトリウムを添加しながら攪拌して、亜鉛を不溶化した。
この時点で、該排水の上澄み液のイオン濃度は5mg/Lであった。
上記排水を使用したこと以外は、実施例3と同様にして、水浄化剤3を水に分散させた分散液3を使用して、水浄化用分散液の特性を評価した。実施例21の評価結果を表1-5に示す。 (Example 21)
As waste water used for experiments, zinc nitrate hexahydrate was dissolved in pure water to produce 800 g of an aqueous solution containing 100 mg / L of zinc ions (virtual waste water).
Next, the pH of the waste water is. The mixture was stirred while adding sodium hydroxide so as to be 9.0 to 9.5 to insolubilize zinc.
At this time, the ionic concentration of the supernatant of the waste water was 5 mg / L.
Except having used the said waste_water | drain, it carried out similarly to Example 3, and evaluated the characteristic of the dispersion liquid for water purification | cleaning using the dispersion liquid 3 which disperse | distributed the water purification agent 3 in water. The evaluation results of Example 21 are shown in Table 1-5.
実験用に使用する排水として、硝酸亜鉛・六水和物を純水に溶解し、100mg/Lの亜鉛イオンを含む水溶液を800g作製した(仮想排水)。
次に、上記排水に、pHが.9.0~9.5になるよう水酸化ナトリウムを添加しながら攪拌して、亜鉛を不溶化した。
この時点で、該排水の上澄み液のイオン濃度は5mg/Lであった。
上記排水を使用したこと以外は、実施例3と同様にして、水浄化剤3を水に分散させた分散液3を使用して、水浄化用分散液の特性を評価した。実施例21の評価結果を表1-5に示す。 (Example 21)
As waste water used for experiments, zinc nitrate hexahydrate was dissolved in pure water to produce 800 g of an aqueous solution containing 100 mg / L of zinc ions (virtual waste water).
Next, the pH of the waste water is. The mixture was stirred while adding sodium hydroxide so as to be 9.0 to 9.5 to insolubilize zinc.
At this time, the ionic concentration of the supernatant of the waste water was 5 mg / L.
Except having used the said waste_water | drain, it carried out similarly to Example 3, and evaluated the characteristic of the dispersion liquid for water purification | cleaning using the dispersion liquid 3 which disperse | distributed the water purification agent 3 in water. The evaluation results of Example 21 are shown in Table 1-5.
(実施例22)
実験用に使用する排水として、二クロム酸カリウムを純水に溶解し、100mg/Lのクロムイオンを含む水溶液を800g作製した(仮想排水)。
次に、上記排水に、pHが6.0~7.5になるよう水酸化ナトリウムを添加しながら攪拌して、クロムを不溶化した。
この時点で、該排水の上澄み液のイオン濃度は5mg/Lであった。
上記排水を使用したこと以外は、実施例3と同様にして、水浄化剤3を水に分散させた分散液3を使用して、水浄化用分散液の特性を評価した。実施例22の評価結果を表1-5に示す。 (Example 22)
As waste water used for experiments, potassium dichromate was dissolved in pure water to produce 800 g of an aqueous solution containing 100 mg / L of chromium ions (virtual waste water).
Next, chromium was insolubilized by stirring the waste water while adding sodium hydroxide so that the pH was 6.0 to 7.5.
At this time, the ionic concentration of the supernatant of the waste water was 5 mg / L.
Except having used the said waste_water | drain, it carried out similarly to Example 3, and evaluated the characteristic of the dispersion liquid for water purification | cleaning using the dispersion liquid 3 which disperse | distributed the water purification agent 3 in water. The evaluation results of Example 22 are shown in Table 1-5.
実験用に使用する排水として、二クロム酸カリウムを純水に溶解し、100mg/Lのクロムイオンを含む水溶液を800g作製した(仮想排水)。
次に、上記排水に、pHが6.0~7.5になるよう水酸化ナトリウムを添加しながら攪拌して、クロムを不溶化した。
この時点で、該排水の上澄み液のイオン濃度は5mg/Lであった。
上記排水を使用したこと以外は、実施例3と同様にして、水浄化剤3を水に分散させた分散液3を使用して、水浄化用分散液の特性を評価した。実施例22の評価結果を表1-5に示す。 (Example 22)
As waste water used for experiments, potassium dichromate was dissolved in pure water to produce 800 g of an aqueous solution containing 100 mg / L of chromium ions (virtual waste water).
Next, chromium was insolubilized by stirring the waste water while adding sodium hydroxide so that the pH was 6.0 to 7.5.
At this time, the ionic concentration of the supernatant of the waste water was 5 mg / L.
Except having used the said waste_water | drain, it carried out similarly to Example 3, and evaluated the characteristic of the dispersion liquid for water purification | cleaning using the dispersion liquid 3 which disperse | distributed the water purification agent 3 in water. The evaluation results of Example 22 are shown in Table 1-5.
(実施例23)
実験用に使用する排水として、三酸化二ヒ素を純水に溶解し、10mg/Lのヒ素イオンを含む水溶液を800g作製した(仮想排水)。
次に、上記排水に、塩化第二鉄を65mg/L、塩化カルシウムを354mg/L添加し、次に、pHが8.0~9.5になるよう水酸化ナトリウムを添加しながら攪拌して、ヒ素を不溶化した。
この時点で、該排水の上澄み液のイオン濃度は0.05mg/Lであった。
上記排水を使用したこと以外は、実施例3と同様にして、水浄化剤3を水に分散させた分散液3を使用して、水浄化用分散液の特性を評価した。実施例23の評価結果を表1-5に示す。
但し、実施例23においては、実施例3と同様にして、沈降時間を測定した後、上澄み液を採取し、エバポレーターにより体積が1/100になるよう濃縮後、イオン濃度を測定した。ヒ素イオンについては、イオン濃度が0.01mg/L以下を好ましい結果であると判断し、◎として評価した。 (Example 23)
As waste water used for experiments, diarsenic trioxide was dissolved in pure water to prepare 800 g of an aqueous solution containing 10 mg / L arsenic ions (virtual waste water).
Next, 65 mg / L of ferric chloride and 354 mg / L of calcium chloride are added to the waste water, and then stirred while adding sodium hydroxide so that the pH is 8.0 to 9.5. Arsenic was insolubilized.
At this time, the ionic concentration of the supernatant of the wastewater was 0.05 mg / L.
Except having used the said waste_water | drain, it carried out similarly to Example 3, and evaluated the characteristic of the dispersion liquid for water purification | cleaning using the dispersion liquid 3 which disperse | distributed the water purification agent 3 in water. The evaluation results of Example 23 are shown in Table 1-5.
However, in Example 23, the sedimentation time was measured in the same manner as in Example 3, and then the supernatant was collected and concentrated by an evaporator so that the volume became 1/100, and then the ion concentration was measured. Regarding arsenic ions, an ion concentration of 0.01 mg / L or less was judged to be a preferable result, and evaluated as ◎.
実験用に使用する排水として、三酸化二ヒ素を純水に溶解し、10mg/Lのヒ素イオンを含む水溶液を800g作製した(仮想排水)。
次に、上記排水に、塩化第二鉄を65mg/L、塩化カルシウムを354mg/L添加し、次に、pHが8.0~9.5になるよう水酸化ナトリウムを添加しながら攪拌して、ヒ素を不溶化した。
この時点で、該排水の上澄み液のイオン濃度は0.05mg/Lであった。
上記排水を使用したこと以外は、実施例3と同様にして、水浄化剤3を水に分散させた分散液3を使用して、水浄化用分散液の特性を評価した。実施例23の評価結果を表1-5に示す。
但し、実施例23においては、実施例3と同様にして、沈降時間を測定した後、上澄み液を採取し、エバポレーターにより体積が1/100になるよう濃縮後、イオン濃度を測定した。ヒ素イオンについては、イオン濃度が0.01mg/L以下を好ましい結果であると判断し、◎として評価した。 (Example 23)
As waste water used for experiments, diarsenic trioxide was dissolved in pure water to prepare 800 g of an aqueous solution containing 10 mg / L arsenic ions (virtual waste water).
Next, 65 mg / L of ferric chloride and 354 mg / L of calcium chloride are added to the waste water, and then stirred while adding sodium hydroxide so that the pH is 8.0 to 9.5. Arsenic was insolubilized.
At this time, the ionic concentration of the supernatant of the wastewater was 0.05 mg / L.
Except having used the said waste_water | drain, it carried out similarly to Example 3, and evaluated the characteristic of the dispersion liquid for water purification | cleaning using the dispersion liquid 3 which disperse | distributed the water purification agent 3 in water. The evaluation results of Example 23 are shown in Table 1-5.
However, in Example 23, the sedimentation time was measured in the same manner as in Example 3, and then the supernatant was collected and concentrated by an evaporator so that the volume became 1/100, and then the ion concentration was measured. Regarding arsenic ions, an ion concentration of 0.01 mg / L or less was judged to be a preferable result, and evaluated as ◎.
以上、実施例1から23の結果から、本発明の水浄化用分散液は、優れた水浄化性能を示し、長期保存後も水浄化性能を低下させず、さらに低コストも満足し得る、水浄化用分散液であることが確認できた。
As described above, from the results of Examples 1 to 23, the water purification dispersion of the present invention exhibits excellent water purification performance, does not deteriorate water purification performance even after long-term storage, and can satisfy low cost. It was confirmed that this was a dispersion for purification.
Claims (11)
- 水を含有し、更に前記水に対して、長朔黄麻の粉末と高分子凝集剤とを合わせて0.01質量%~0.5質量%含有する水浄化用分散液であって、粘度が20mPa・S~500mPa・Sであり、前記水浄化用分散液中の固形分のメジアン径が、100μm~400μmであることを特徴とする水浄化用分散液。 A water-purifying dispersion liquid containing water and further containing 0.01% by mass to 0.5% by mass of a long flax powder and a polymer flocculant with respect to the water. A dispersion for water purification, wherein the dispersion has a median diameter of 20 mPa · S to 500 mPa · S and a solid content in the dispersion for water purification is 100 μm to 400 μm.
- 前記長朔黄麻が、中国農業科学院麻類研究所による鑑定番号が国鑑麻2013の「中黄麻4号」である、請求項1に記載の水浄化用分散液。 2. The dispersion for water purification according to claim 1, wherein said Nagatoro Hemp is “Central Hemp No. 4” with the appraisal number by National Institute of Agricultural Sciences, National Institute of Agricultural Sciences 2013.
- 前記長朔黄麻が、中国農業科学院麻類研究所による鑑定番号が皖品鑑登字第1209006の「中黄麻3号」である、請求項1に記載の水浄化用分散液。 2. The water purification dispersion according to claim 1, wherein said Nagatoro Hemp is “Chinese Hemp 3” with an appraisal number by the Chinese Academy of Agricultural Sciences hemp laboratory of 1980006.
- 前記長朔黄麻が、中国農業科学院麻類研究所による鑑定番号が皖品鑑登字第1209001の「中紅麻」である、請求項1に記載の水浄化用分散液。 2. The water purification dispersion according to claim 1, wherein said Nagatoro Hemp is “Chinese red hemp” having an appraisal number by the Chinese Academy of Agricultural Sciences hemp laboratory of 1950001.
- 前記高分子凝集剤がポリアクリルアミドである、請求項1から4のいずれかに記載の水浄化用分散液。 The water purification dispersion according to any one of claims 1 to 4, wherein the polymer flocculant is polyacrylamide.
- 前記長朔黄麻と前記高分子凝集剤の質量組成比が9:1~1:9である、請求項1から5のいずれかに記載の水浄化用分散液。 The water purification dispersion according to any one of claims 1 to 5, wherein a mass composition ratio of the long-orange burlap and the polymer flocculant is 9: 1 to 1: 9.
- 請求項1から6のいずれかに記載の水浄化用分散液を製造する水浄化用分散液の製造方法であって、
前記長朔黄麻の粉末と前記高分子凝集剤とを混合し水分を加えて混練し、混練物を得る混練工程と、前記混練物を成形し、成形体を形成する成形工程と、前記成形体を乾燥させ、乾燥物を得る乾燥工程と、前記乾燥物を粉砕する粉砕工程とを含む製造方法により製造された水浄化剤の粉末を、水に分散して、前記水浄化用分散液を製造する、ことを特徴とする水浄化用分散液の製造方法。 A method for producing a water purification dispersion for producing the water purification dispersion according to claim 1,
The kneaded burlap powder and the polymer flocculant are mixed and kneaded with water added to knead to obtain a kneaded product, the kneaded product is molded to form a molded product, and the molded product The water-purifying dispersion liquid is produced by dispersing a water purification agent powder produced by a production method including a drying step of obtaining a dried product and a pulverizing step of crushing the dried product in water. A method for producing a water-purifying dispersion. - 分散に使用する水の電気伝導度が、30μS/cm以上である請求項7に記載の水浄化用分散液の製造方法。 The method for producing a water purification dispersion according to claim 7, wherein the electrical conductivity of water used for dispersion is 30 µS / cm or more.
- 請求項1から6のいずれかに記載の水浄化用分散液を、排水に供することにより、排水中の無機系不要物を除去することを特徴とする排水処理方法。 A wastewater treatment method characterized by removing inorganic unnecessary substances in the wastewater by subjecting the water purification dispersion according to any one of claims 1 to 6 to wastewater.
- 前記排水が、ニッケル、フッ素、鉄、銅、亜鉛、クロム、ヒ素、カドミウム、錫、及び鉛の少なくともいずれかを有する無機系不要物を含有する排水である、請求項9に記載の排水処理方法。 The wastewater treatment method according to claim 9, wherein the wastewater is wastewater containing an inorganic unnecessary material having at least one of nickel, fluorine, iron, copper, zinc, chromium, arsenic, cadmium, tin, and lead. .
- 前記水浄化用分散液を製造後、24時間以上経過後に排水に供する、請求項10に記載の排水処理方法。
The wastewater treatment method according to claim 10, wherein the water purification dispersion is used for drainage after 24 hours or longer after production.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780056660.3A CN109715260B (en) | 2016-09-15 | 2017-09-05 | Water purification dispersion, method for producing the same, and method for treating wastewater |
EP17850752.1A EP3513856B1 (en) | 2016-09-15 | 2017-09-05 | Water purification dispersion, production method for water purification dispersion, and waste water treatment method |
KR1020197009999A KR102437576B1 (en) | 2016-09-15 | 2017-09-05 | Dispersion for water purification, method for producing the dispersion for water purification, and method for treating wastewater |
US16/332,878 US11161757B2 (en) | 2016-09-15 | 2017-09-05 | Water purification dispersion, production method for water purification dispersion, and waste water treatment method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016180592 | 2016-09-15 | ||
JP2016-180592 | 2016-09-15 | ||
JP2017-165391 | 2017-08-30 | ||
JP2017165391A JP6826011B2 (en) | 2016-09-15 | 2017-08-30 | Water purification dispersion, manufacturing method of the water purification dispersion, and wastewater treatment method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018051849A1 true WO2018051849A1 (en) | 2018-03-22 |
Family
ID=61619447
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/031967 WO2018051849A1 (en) | 2016-09-15 | 2017-09-05 | Water purification dispersion, production method for water purification dispersion, and waste water treatment method |
Country Status (2)
Country | Link |
---|---|
TW (1) | TWI756264B (en) |
WO (1) | WO2018051849A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020217841A1 (en) * | 2019-04-26 | 2020-10-29 | デクセリアルズ株式会社 | Water-purifying agent and water-purifying method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11114313A (en) | 1997-10-09 | 1999-04-27 | Sony Corp | Flocculant and flocculating method using that |
JP2011194385A (en) | 2010-03-24 | 2011-10-06 | Sony Corp | Cation exchanger and method for removing heavy metal ion in wastewater |
JP2015231600A (en) * | 2014-06-10 | 2015-12-24 | デクセリアルズ株式会社 | Water purification agent and water purification method |
JP2016073898A (en) | 2014-10-03 | 2016-05-12 | デクセリアルズ株式会社 | Water purification agent and water purification method |
JP2016163850A (en) * | 2015-03-06 | 2016-09-08 | ハイモ株式会社 | Sludge dewatering method using water-in-oil type emulsion coagulant |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102583681B (en) * | 2011-01-14 | 2014-07-02 | 索尼公司 | Plant-derived flocculant, flocculant mixture, flocculation method, and method for producing plant-derived flocculant |
-
2017
- 2017-09-05 WO PCT/JP2017/031967 patent/WO2018051849A1/en active Search and Examination
- 2017-09-14 TW TW106131602A patent/TWI756264B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11114313A (en) | 1997-10-09 | 1999-04-27 | Sony Corp | Flocculant and flocculating method using that |
JP2011194385A (en) | 2010-03-24 | 2011-10-06 | Sony Corp | Cation exchanger and method for removing heavy metal ion in wastewater |
JP2015231600A (en) * | 2014-06-10 | 2015-12-24 | デクセリアルズ株式会社 | Water purification agent and water purification method |
JP2016073898A (en) | 2014-10-03 | 2016-05-12 | デクセリアルズ株式会社 | Water purification agent and water purification method |
JP2016163850A (en) * | 2015-03-06 | 2016-09-08 | ハイモ株式会社 | Sludge dewatering method using water-in-oil type emulsion coagulant |
Non-Patent Citations (1)
Title |
---|
See also references of EP3513856A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020217841A1 (en) * | 2019-04-26 | 2020-10-29 | デクセリアルズ株式会社 | Water-purifying agent and water-purifying method |
JP2020179358A (en) * | 2019-04-26 | 2020-11-05 | デクセリアルズ株式会社 | Water purification agent and water purification method |
JP7190959B2 (en) | 2019-04-26 | 2022-12-16 | デクセリアルズ株式会社 | Water purification agent and water purification method |
Also Published As
Publication number | Publication date |
---|---|
TWI756264B (en) | 2022-03-01 |
TW201819516A (en) | 2018-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6885826B2 (en) | Water purification agent manufacturing method and wastewater treatment method | |
JP6826011B2 (en) | Water purification dispersion, manufacturing method of the water purification dispersion, and wastewater treatment method | |
WO2016158433A1 (en) | Water-purifying agent and water purification method | |
WO2016052696A1 (en) | Water purification agent and water purification method | |
WO2016158256A1 (en) | Water cleaning agent and water cleaning method | |
Gomathi et al. | Copper (II) ion removal from aqueous solutions using alginate nanoparticles/carboxymethyl cellulose/polyethylene glycol ternary blend: Characterization, isotherm and kinetic studies | |
CN104353407B (en) | A kind of Fe-Mn system adsorbent and its preparation and application method | |
WO2018051849A1 (en) | Water purification dispersion, production method for water purification dispersion, and waste water treatment method | |
Kitkaew et al. | Fast and efficient removal of hexavalent chromium from water by iron oxide particles | |
TWI746638B (en) | Method for producing water-purifying agent and method for treating wastewater | |
WO2016152365A1 (en) | Filtration aid and filtration treatment method | |
WO2022070745A1 (en) | Organic coagulant and method for producing same, and water-cleaning agent and method for producing same | |
JP7190959B2 (en) | Water purification agent and water purification method | |
JP2023012134A (en) | Water purification agent, method for producing the same, and method for water purification |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17850752 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20197009999 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2017850752 Country of ref document: EP Effective date: 20190415 |