WO2018051426A1 - Analysis device - Google Patents
Analysis device Download PDFInfo
- Publication number
- WO2018051426A1 WO2018051426A1 PCT/JP2016/077071 JP2016077071W WO2018051426A1 WO 2018051426 A1 WO2018051426 A1 WO 2018051426A1 JP 2016077071 W JP2016077071 W JP 2016077071W WO 2018051426 A1 WO2018051426 A1 WO 2018051426A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flow cell
- flow
- reagent
- flow path
- tdi
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 claims description 89
- 239000003153 chemical reaction reagent Substances 0.000 claims description 77
- 238000000034 method Methods 0.000 claims description 60
- 238000005259 measurement Methods 0.000 claims description 29
- 230000003287 optical effect Effects 0.000 claims description 8
- 238000001514 detection method Methods 0.000 claims description 4
- 230000010354 integration Effects 0.000 claims description 3
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 230000035699 permeability Effects 0.000 claims 1
- 238000003384 imaging method Methods 0.000 description 54
- 238000010586 diagram Methods 0.000 description 16
- 239000007788 liquid Substances 0.000 description 13
- 239000011295 pitch Substances 0.000 description 13
- 230000008569 process Effects 0.000 description 13
- 230000002829 reductive effect Effects 0.000 description 10
- 239000000758 substrate Substances 0.000 description 10
- 239000002699 waste material Substances 0.000 description 10
- 108020004414 DNA Proteins 0.000 description 8
- 239000006059 cover glass Substances 0.000 description 5
- 239000007850 fluorescent dye Substances 0.000 description 5
- 239000002773 nucleotide Substances 0.000 description 5
- 125000003729 nucleotide group Chemical group 0.000 description 5
- 238000012163 sequencing technique Methods 0.000 description 5
- 125000006850 spacer group Chemical group 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000001459 lithography Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 238000012300 Sequence Analysis Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002073 fluorescence micrograph Methods 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 125000006239 protecting group Chemical group 0.000 description 2
- 210000001747 pupil Anatomy 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000011807 nanoball Substances 0.000 description 1
- 238000007481 next generation sequencing Methods 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000009790 rate-determining step (RDS) Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N21/03—Cuvette constructions
- G01N21/05—Flow-through cuvettes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
Definitions
- the present invention relates to an analyzer. More specifically, the present invention relates to an analyzer that decodes a base sequence of a nucleic acid such as DNA or RNA at high speed.
- Next-generation sequencing technology is a technology that has developed rapidly after the completion of the Human Genome Project and is currently replacing the Sanger method, which has been the mainstream until then.
- the feature is that minute reaction fields are arranged on a substrate at a high density on a two-dimensional plane, and weak fluorescence signals emitted from the minute reaction fields are acquired in a massively parallel manner. More specifically, the chemical reaction in the next generation sequence proceeds on a large number of minute reaction fields fixed on the substrate surface of the flow cell. By measuring the weak fluorescence signals generated by the respective micro reaction fields as a result of the reaction in a massively parallel manner, it is possible to perform DNA base sequence analysis at high speed and at low cost.
- an area imaging method in which a fluorescence image is captured using a two-dimensional camera has been mainly used.
- an XY stage with a fixed flow cell is sequentially driven, and the flow cell tile positioned on the optical axis is imaged.
- the flow cell needs to be stopped during imaging.
- the waiting time for vibration attenuation caused by the acceleration motion accompanying the step-and-repeat of the XY stage has been a problem.
- TDI time-delay integration method
- TAT TurnTAround Time
- the imaging time per cycle required for one flow cell is 7.2 minutes. Therefore, in the sequence, the imaging time is still longer and dominant over the chemistry time.
- chemistry and imaging can be performed alternately. However, even if the chemistry and imaging are processed in parallel to reduce the throughput, the rate-limiting step of the throughput is still the imaging time.
- Patent Document 2 discloses a method of reducing reagent consumption by arranging a circular flow path along the outer periphery of a circular flow cell, providing a reagent injection port directly under the flow cell, and rotating the flow cell successively. It is described in.
- the conventional flow cell has a rectangular shape, and a plurality of linear flow paths are arranged in the flow cell. For this reason, even if a high-speed scan detection method such as TDI is adopted, there is a problem that a single flow path cannot be scanned all at once.
- the linear flow paths that have been conventionally formed on the flow cell are connected to form a spiral flow path on the flow cell.
- rotating and horizontally driving the flow cell with the ⁇ X stage with respect to the objective lens it is possible to increase the flow path length that can be continuously scanned. Thereby, it is possible to reduce the number of interruptions of the scanning operation and the number of autofocus operations for the flow paths accompanying movement to different flow paths.
- the application of the present invention brings about the effect of shortening the imaging time and improving the throughput.
- FIG. 3 is an explanatory diagram of a TDI sequence method using a flow cell having a spiral channel for the first embodiment.
- FIG. 4 is an explanatory diagram of a flow cell having one to two spiral-shaped flow paths in the second embodiment.
- FIG. 6 is an explanatory diagram of a flow cell having a spiral channel having more than two channels in Example 3.
- FIG. 6 is an explanatory diagram of a flow cell having a spiral channel having more than two channels in Example 3.
- FIG. 6 is an explanatory diagram of the configuration of a flow cell having a spiral flow path in the fourth embodiment.
- FIG. 9 is an explanatory diagram of a method for installing a flow cell having a spiral flow path on a heat block in Example 5.
- FIG. 9 is an explanatory diagram of a method for installing a flow cell having a spiral flow path on a heat block in Example 5.
- FIG. 10 is an explanatory diagram of a reagent feeding method for a flow cell having a spiral channel in Example 6;
- FIG. 10 is an explanatory diagram of a reagent feeding method for a flow cell having a spiral channel in Example 6;
- FIG. 10 is an explanatory diagram of a reagent feeding method for a flow cell having a spiral channel in Example 6;
- FIG. 10 is an explanatory diagram regarding the order of TDI scanning in a flow cell having a spiral channel for the seventh embodiment.
- FIG. 10 is an explanatory diagram of a method for driving a flow cell having a spiral flow path by a ⁇ X stage in the eighth embodiment.
- FIG. 10 is an explanatory diagram of a method for driving a flow cell having a spiral flow path by a ⁇ X stage in the eighth embodiment.
- FIG. 10 is an explanatory diagram of a driving method when performing sequencing using a flow cell having a spiral flow path in the ninth embodiment.
- FIG. 10 is an explanatory diagram of a method for applying the patterned array technology to a flow cell having a spiral flow path in the tenth embodiment.
- FIG. 16 is an explanatory diagram of parameters when applying the TDI method to a flow cell having a spiral flow path in the eleventh embodiment.
- FIG. 16 is an explanatory diagram of a drift of a minute reaction field that occurs when a flow cell having a spiral flow path is rotationally driven in Example 12.
- FIG. 14 is an explanatory diagram of a TDI sequence method using two flow cells having a spiral channel in Example 13.
- Laser light having a wavelength of 642 nm emitted from a diode laser 191 that is a light source is reflected by a mirror 105 through a laser line filter 103.
- the laser light having a wavelength of 505 nm emitted from the other diode laser 192 is combined with the laser light having a wavelength of 642 nm via the laser line filter 104 and the dichroic mirror 106. Since the combined laser light is linearly polarized, it passes through the quarter-wave plate 123 in order to make it circularly polarized. Further, the laser light passes through the first beam expander 107, and the diameter of the light beam is enlarged.
- the profile of the laser beam is circular, but in order to perform TDI scanning effectively, it is necessary to make this a rectangular shape.
- the beam intensity distribution in the Z direction is preferably rectangular.
- the laser light is passed through the line generator 108. More specifically, as the line generator 108, (1) a Powell lens which is an aspherical lens, (2) a cylindrical microlens array, or (3) a diffusion plate can be used.
- the second beam expander 109 has a function of reducing the angle of view of the laser light formed into a rectangular shape, and has a function of efficiently irradiating a region within the diameter of the pupil plane of the objective lens 114.
- the laser light is condensed by the objective lens 114 and illuminates a rectangular area.
- a minute reaction field is fixed in the flow path of the flow cell 101.
- the minute reaction field may be randomly arranged on the flow path, or may be regularly arranged by using a semiconductor lithography technique.
- the objective lens 114 can be driven in the direction of the optical axis by the Z motor 115, thereby focusing on the minute reaction field.
- Each micro reaction field fixed on the flow path includes a large number of one small fragment of DNA of a sample to be measured, and this is said to be “monoclonal” in terms of molecular biology. In other words, it can be said that each minute reaction field is an aggregate in which a fragment of DNA derived from a sample is amplified.
- SBS Sequence By Synthesis
- a primer serving as a reaction scaffold is bound to a micro reaction field immobilized on a substrate, and then 4 types of nucleotides (Alexa-488-dATP, Alexa-) labeled with different 4 types of fluorescent dyes are used.
- 555-dTTP, Alexa-647-dCTP, Alexa-680-dGTP is a method of performing sequencing by incorporating only one base into a micro reaction field.
- nucleotides corresponding to the complementary strand of the single-stranded DNA on the side of the microreaction field are sequentially taken up by the polymerase enzyme for one base in the 3 ′ end direction of the primer. After one base corresponding to each minute reaction field is incorporated, the floating fluorescent nucleotide is removed by washing, and then fluorescence measurement is performed. The reason why the extension of the second base does not occur is because a substance that inhibits the extension of the dye of the second base is bound to the fluorescent dye of the first base.
- a reagent for cleaving the elongation inhibiting substance is injected into the flow cell, and after the completion of the cleavage, the SBS reaction of the second base is sequentially performed.
- the incorporated fluorescent dye is irradiated with laser light and emits fluorescence.
- the fluorescence is condensed by the objective lens 114, passes through the dichroic mirror 113, and passes through the 642 nm notch filter 161 and the 505 nm notch filter 162.
- the dichroic mirror 116 reflects only the fluorescence wavelength band of Alexa-488, and transmits the wavelength bands of Alexa-555, Alexa-647, and Alexa-680, which are the other three fluorescent dyes.
- the reflected fluorescence of Alexa-488 passes through the emission filter 119 and is collected by the tube lens 130 to form fluorescence images emitted from a large number of minute reaction fields on the sensor surface of the CMOS camera 134.
- the dichroic mirror 117 reflects only the fluorescence derived from Alexa 555, and the reflected fluorescence of Alexa 555 passes through the emission filter 120 and the tube lens 131 and is collected on the CMOS camera 135 to form an image.
- the dichroic mirror 118 reflects the fluorescence derived from Alexa 647 and transmits the fluorescence derived from Alexa 680, and forms images on the CMOS cameras 136 and 137 through the emission filters 121 and 122 and the tube lenses 132 and 133, respectively.
- four types of fluorescence that is, four types of bases can be identified by one fluorescence measurement.
- the flow cell 101 having a spiral channel is installed in the heat block 102.
- the flow cell 101 can continuously drive the spiral flow path directly under the objective lens 114 by simultaneously driving the ⁇ stage and the X stage.
- TDI measurement can be performed.
- TDI measurement is one of readout methods in a CCD or CMOS camera that shoots while accumulating moving objects.
- the CCD camera performs vertical transfer in units of one line when reading charges. If the timing of this transfer and the timing of movement of the target image incident on the CCD surface are matched, exposure can be repeated by the number of vertical stages of the CCD.
- This method is called TDI, and is a measurement method capable of imaging a moving object at high speed and with high sensitivity.
- the flow cell 101 two spiral channels are formed. This is because imaging and chemistry are alternately performed in one cycle of the SBS reaction. What is characteristic in this embodiment is that two flow paths are prepared for two imaging steps in one cycle. In other words, one imaging process is completed within one flow path.
- the conventional flow cell having a plurality of linear flow paths has the following problems. That is, it is the movement time of the XY stage that accompanies movement between a plurality of flow paths during the imaging process, and the time that accompanies autofocus operation that occurs at the start of measurement in different flow paths. These times were one of the causes of TAT delay. In this embodiment, since one imaging process is completed within one flow path, it is possible to avoid the operation time described above. Therefore, the imaging time can be greatly shortened.
- the heat block controls the temperature of the flow cell 101 to 60 ° C. That is, while the SBS chemistry reaction is performed at 60 ° C., the imaging process is performed at 60 ° C. at the same time. As a result, the time required for heating and cooling the heat block can be omitted, and TAT can be shortened. Moreover, this temperature control temperature is not limited to 60 degreeC, 50 degreeC, 40 degreeC, and 30 degreeC may be sufficient. Furthermore, the room temperature of 25 ° C. is most desirable. It is known that the fluorescence intensity of a fluorescent dye becomes weaker as it is exposed to a higher temperature.
- Reagent for primer hybridization Reagent for primer hybridization, extension reagent containing 4 types of fluorescent nucleotides and polymerase, cleavage reagent for dissociating protecting group of fluorescent nucleotide, unnecessary reaction of reactive group after cleaving protecting group
- a cap reagent, a cleaning reagent, an imaging reagent for fluorescence observation, and the like are arranged and injected in advance in the reagent cartridge 140.
- the reagent cartridge 140 is installed in the reagent rack 141 and cooled to 4 ° C.
- the Peltier element 144 cools the heat block 142 installed in the reagent cartridge 140, and the fan 146 blows air in the reagent rack 141 to the fins 145.
- the cooled air circulates in the reagent rack 141 and indirectly cools the plurality of reagents installed in the reagent cartridge 140 to 4 ° C.
- the opposite surface of the Peltier element 144 is heated.
- a fin 148 and a fan 143 are installed on the Peltier element 144. Thereby, the fan 143 can exhaust heat outside the apparatus and cool the Peltier element 144.
- a sipper tube is inserted into each reagent well held by the reagent cartridge 140. Reagents are aspirated from the tips of these sipper tubes.
- the sipper tube is connected to the switching valve 147.
- the switching valve 147 can be connected to an arbitrary flow path to select an arbitrary reagent.
- the reagent selected by the switching valve 147 is sent through the flow path 150 to the flow cell 101 that holds the minute reaction field.
- a syringe pump 154 serving as a power source for sucking the reagent is disposed downstream of the flow cell 101.
- a two-way valve 152 is disposed upstream of the syringe pump 154 and a two-way valve 155 is disposed downstream.
- the two-way valve 152 When aspirating the reagent, the two-way valve 152 is controlled to connect the flow cell 101 and the syringe pump 154, and the two-way valve 155 is closed to drive the syringe pump 154.
- the two-way valve 152 When discarding the reagent, the two-way valve 152 is closed, the two-way valve 155 is opened, the syringe pump 154 is driven, and the reagent is sent to the waste liquid tank 156.
- a plurality of reagents can be fed with one syringe pump 154.
- the waste liquid tank 156 is not provided, the waste liquid spills into the apparatus cabinet, which may cause problems such as electric shock, rust of the apparatus, and generation of a strange odor.
- a micro photo sensor 158 for monitoring the presence or absence of the waste liquid tank 156 is installed.
- a liquid receiving tray 157 is installed under the waste liquid tank 156 in case the waste liquid leaks.
- a flow cell having a spiral channel shape is a typical flow cell used in next generation sequencers.
- the flow cell 201 has a rectangular shape, and eight linear flow paths 202 are arranged in the flow cell 201.
- the channel 202 has a reagent inlet 203 and an outlet 204. Since the flow cell 201 has a plurality of flow paths, even if a high-speed scan detection method such as TDI is adopted, the scan is temporarily interrupted when moving to a different flow path, and after moving to a new flow path, autofocus in the Z direction is performed again. Had to do.
- FIG. 2 b all the flow paths in FIG. 2 a) are connected to form one spiral-shaped flow path 211.
- the channel 211 has a reagent inlet 212 and a outlet 213. The reason why the spiral channel is used is the following two points.
- FIG. 2c shows a flow cell in which two spiral flow paths 225 and 226 are formed in one flow cell.
- the channel 225 has a reagent inlet 220 and outlet 223, and the channel 226 has a reagent inlet 221 and outlet 224, respectively.
- This flow cell is a flow cell for performing a chemistry process and an imaging process isothermally. While the TDI scanning is performed on the flow path 225, the chemistry process can be performed in the flow path 226. Since the two flow paths 225 and 226 are respectively integrated, the TDI scanning operation can be continuously performed, and the imaging time can be shortened.
- a flow cell having two or more spiral channel shapes will be described below with reference to FIGS. 3A and 3B.
- This embodiment is particularly useful when it is highly necessary to perform measurement in an independent flow path without mixing a plurality of different samples, and it is desired to realize a short TAT. In other words, it is useful when it is desired to perform high-precision measurement at high speed while avoiding contamination between samples as much as possible.
- the flow cell has two flow paths.
- the flow cell has three flow paths.
- the flow cell has four flow paths.
- the flow cell has five flow paths.
- FIG. 3e shows a comparison between a conventional flow cell having a linear flow path and a flow cell having a spiral flow path described in this patent.
- the flow cell shown in FIG. 3A two flow paths having a flow path length of 451 mm are formed. Therefore, the total flow path length per flow cell is 901 mm. Since the channel width is 2.5 mm, the channel area is 2253 mm 2 . The radius of the flow cell is 31.5 mm, and the flow path occupancy exceeds 72%.
- the flow cell is composed of three members: a substrate 401 having a circular shape, a spacer 410, and a cover glass 413.
- the flow cell is manufactured by bonding these members.
- Examples of the material of the substrate 401 include glass, quartz, silicon, titanium, and sapphire.
- a cover glass 413 provided with reagent inlets 404 and 405 and reagent outlets 402 and 403 on the substrate 401 is light-transmitting, and transmits visible light of 400 to 800 nm with high transmittance.
- Examples of the material of the cover glass 413 include glass, quartz, and sapphire.
- the spacer 410 is generally manufactured from a material such as PDMS.
- the thickness of the spacer 410 is 30 to 100 ⁇ m, and more specifically 50 ⁇ m is desirable.
- two flow paths 411 and 412 are formed.
- the channel 411 has an inlet 405 and an outlet 402
- the channel 412 has an inlet 404 and an outlet 403.
- the flow paths 411 and 412 have a spiral shape, and the planar area of the disk-shaped flow cell can be efficiently utilized by adopting a shape in which the two flow paths are intricately arranged. Further, by adopting a spiral channel shape as compared with the conventional linear channel, the channel length per channel can be increased.
- minute reaction fields are arranged in a random shape or a lattice shape on the upper and lower surfaces of the channels 411 and 412.
- the minute reaction field may be formed through a DNA amplification reaction in the flow cell, or may be adjusted outside the flow cell.
- a so-called bridge PCR may be used, or a method of adjusting outside the flow cell like a DNA nanoball may be used.
- the flow cell 507 is vacuum chucked on the surface of the heat block 501 by sucking the suction hole 506 with a vacuum pump while being pressed against the guides 510 and 511 of the heat block 501.
- the stress applied to the flow cell 507 by the vacuum chuck method can be reduced, and as a result, the distortion of the flow cell 507 can be reduced.
- the flatness of the ⁇ X stage is ⁇ 30 ⁇ m. Further, by using the guides 510 and 511, the flow cell 507 can be fixed to the heat block 501 with high positional accuracy.
- the orientation of the flow cell 507 can be specified by providing an orientation flat and its guide on the circumference in order to align the flow cell 507. Thereby, the positions of the reagent inlet and the reagent outlet on the heat block 501 and the flow cell 507 can be accurately aligned.
- the heat block 501 is fixed on the ⁇ X stage, and it is possible to continuously position the measurement visual field of the spiral channel 509 with respect to the optical axis fixed in the vertical direction through the objective lens 508. . More specifically, it is possible to continuously perform scanning by the TDI operation in the flow channel regions from the reagent inlets 503 and 502 to the reagent outlets 504 and 505 in the spiral flow channels 509 and 510, respectively. Become. By simultaneously driving the ⁇ X stage in the ⁇ rotation direction and the X horizontal direction along the inside of the spiral channel, TDI scanning can be continuously performed without interrupting the spiral channel. Focusing during a TDI scan of the flow path is achieved by driving the objective lens 508 with a Z motor 512.
- the reagent is connected to the rotary joint 602 via the tubes 601 and 612.
- the rotary joint 602 is composed of two parts.
- the lower part of the rotary joint 602 is connected to the flow path 612 from the reagent cartridge and does not follow the rotational movement of the ⁇ X stage.
- the upper portion of the rotary joint 602 can freely rotate with respect to the lower portion thereof. More specifically, the upper part of the rotary joint 602 can follow the rotational movement of the ⁇ X stage. Therefore, distortion and twist are not accumulated in the flow path 612 as the ⁇ X stage rotates.
- Tubes 603 and 617 are connected to the ports 604 and 610 in the multi-way valve 618 from the upper part of the rotary joint 602, respectively.
- Multi-way valve 618 can be opened and closed independently for ports 608, 609, 604, and 610.
- a predetermined reagent can be selectively supplied to the two flow paths 615 and 616 of the flow cell 605.
- the multi-way valve 618 is installed on the ⁇ X stage, and rotates with the ⁇ X stage.
- the tube 612 As the ⁇ X stage rotates, the multi-way valve 618 and the flow paths 615 and 616 rotate in the same manner, but the tube 612 is connected to the multi-way valve 618 and the flow paths 615 and 616 via the lower part of the rotary joint 602. Therefore, the tube 612 does not generate distortion such as torsion, and can stably supply the reagent to the flow cell 605.
- a method for feeding the reagent to the spiral channel 615 will be described more specifically with reference to FIG.
- the ports 604 and 608 are opened, the ports 609 and 610 are closed, and a negative pressure is generated by a syringe pump below the flow path to suck the reagent into the flow path 615.
- the reagent reaches the reagent inlet 606 in the flow path via the tube 631. In the direction of the arrow, the reagent advances in the flow path along the spiral flow path.
- the reagent that has reached the reagent outlet 607 is connected to the port 608 through the tube 632.
- the reagent to be discharged is connected to the spiral tube 613 from the port 608 and further discharged to the waste liquid tank through the tube 614.
- the reason why the spiral tube 613 is used here is to absorb and relieve the twist associated with the rotational movement of the ⁇ X stage.
- FIG. 6b describes a method of supplying the reagent to the flow path 616.
- a chemistry reaction is performed on the channel 616 while the reagent is supplied to the channel 616.
- an imaging operation can be performed in parallel on the flow path 615.
- the time required for the chemistry reaction and the time required for the imaging operation are the same as 3 minutes. Therefore, by alternately nesting chemistry and imaging, it becomes possible to always perform imaging during sequencing.
- the TAT of the sequence becomes longer due to the time required for the imaging process compared to the chemistry process.
- TAT can be reduced by using this method.
- the ports 604 and 608 of the multi-way valve 618 are closed and the ports 609 and 610 are opened.
- the reagent reaches the reagent inlet 621 of the flow path 616 through the tube 633.
- the reagent travels inside the spiral channel 616 in the flow cell and reaches the reagent outlet 622. Thereafter, it reaches the port 609 through the tube 634, and further passes through the spiral tube 613 and the tube 614 and is discharged to the waste liquid tank.
- a flow cell having a spiral flow path rotates by a ⁇ X stage.
- both imaging and chemistry are performed at 60 ° C.
- the reagent cooler the reagent is cooled at 4 ° C., and the temperature inside the tube is about 30 ° C. until the reagent reaches the flow cell. If a reagent near 30 ° C. is directly injected into the flow cell, the temperature environment in which imaging and chemistry are already performed at 60 ° C. may be disturbed.
- a cylindrical heating mechanism 651 is installed in the tube 612. As a result, the reagent immediately before being injected into the flow cell is heated to 60 ° C. in advance, so that imaging and chemistry reaction in the flow cell can be stably performed at 60 ° C.
- the flow cell has two flow paths, and the flow path width is 2.5 mm.
- the flow path has two surfaces, an upper surface and a lower surface, and a minute reaction field is fixed to each of the surfaces. Therefore, it is possible to increase the number of minute reaction fields that can be detected by scanning the upper and lower surfaces.
- FIG. 7 shows the scanning order in a flow cell having two spiral channels.
- the spiral channel is simplified to a semicircular channel.
- FIG. 7a) shows the scan order within one of the two channels.
- the solid line part in FIG. 7b) shows the scanning order of another flow path.
- the TDI scan starting from the start point 701 reaches the end point 702 of the first swath. From the start point 701 to the end point 702, it is possible to perform a TDI scan in the forward direction without continuous interruption.
- the ⁇ X stage is driven in the X direction by a step-and-repeat method. Since the movement from the end point 702 to the start point 703 moves in a direction perpendicular to the advancing direction of the TDI line scan, it is not necessary to perform the TDI scan.
- a TDI scan is performed in the direction opposite to the traveling direction of the first swath. This continues until the second swat termination point 704.
- the operation so far is the TDI scan of the minute reaction field fixed on the bottom surface of the flow cell.
- the TDI scan is similarly performed on the minute reaction field fixed on the top surface of the flow cell.
- the Z stage holding the objective lens is driven to move the focus from the bottom end point 704 to the top start point 705.
- the TDI scan is continuously performed in the forward direction from the start point 705 to the end point 706 of the second swath without interruption.
- the flow cell moves from the terminal point 706 on the upper surface of the flow cell to the start point 707, and similarly, the TDI scan is continuously performed in the reverse direction from the start points 707 to 708.
- the time from the start to completion of this imaging time is as follows.
- the length of the swath is 451 mm, and a TDI scan for 4 swaths is performed for one flow path.
- the throughput for one cycle in one channel is estimated as follows.
- the minute reaction fields are fixed every 1 ⁇ m
- the ⁇ X stage is moved horizontally from the end point 708 to the start point 711.
- the ⁇ X stage is moved horizontally from the end point 712 to the start point 713 in a step-and-repeat manner.
- the focus is moved from the end point 714 to the start point 715. Thereby, the lower surface can be scanned from the upper surface in the flow cell channel.
- a TDI scan is performed in the forward direction from the start point 715 to the end point 716.
- the ⁇ X stage is translated in the X direction from the end point 716 to the start point 717, and the TDI scan is again performed in the reverse direction from the start point 717 to the end point 718. From the start point 701 to the end point 711 is a TDI scan operation per cycle.
- FIG. 7c) shows the imaging operation entering the second cycle, and FIG. 7c) is basically the same as FIG. 7a). Further progress of the cycle is achieved by repeating FIG. 7b) ⁇ FIG. 7c) ⁇ FIG. 7b) ⁇ FIG. 7c) up to a predetermined number of cycles.
- the spiral channel can be formed so as to fill the substrate surface, and this shape is useful from the viewpoint of the manufacturing cost of the flow cell.
- the minute reaction field is randomly fixed on the flow cell channel surface.
- the interval between the minute reaction fields is not controlled, which means that the average distance of the reaction fields does not depend on the panels in the flow cell and is constant. For this reason, it is desirable that the TDI scanning speed be constant at any location of the flow cell.
- a control method in which the angular speed ⁇ [radians / s] of the ⁇ X stage is made variable.
- the distance from the center of the circular flow cell and the angular velocity are r 1, r 2 , ⁇ 1 , and ⁇ 2 , respectively.
- the scanning speed at each point that is, the speed in the flow path direction
- control is performed to keep the scan speed at an arbitrary point on the flow path constant.
- the angular velocity is ⁇ 1 ⁇ 2 .
- the angular velocity is increased as the TDI scanning is closer to the center of the spiral flow path, and the ⁇ X stage is controlled so as to decrease the angular velocity when performing TDI scanning in a region away from the center.
- FIGS. 8a) and 8 Specific examples of this control method are shown in FIGS. 8a) and 8).
- this method is an effective measurement method when a minute reaction field is fixed on a substrate randomly, that is, not regularly. This is because when the minute reaction field is fixed at random, the distance between the minute reaction fields is constant in both the inner and outer circumferences and is not regular. Therefore, as the TDI scan is moved to the outer periphery, the average distance of the physical minute reaction field does not change. For the reasons described above, it is necessary to keep the scanning speed constant at the outer periphery. For this reason, as described in the present embodiment, it is necessary to control to gradually reduce the angular velocity ⁇ with the transition from the inner periphery to the outer periphery.
- FIG. 8 illustrates the TDI scan operation corresponding to one cycle of the sequence reaction for the spiral channel
- FIG. 9a illustrates the TDI scan operation for two cycles of the sequence reaction in one spiral channel. It is carried out.
- the two swaths in the flow path are changed when the TDI scan direction is changed from the outer periphery to the inner periphery.
- FIG. 9b) is a graph showing the time change of the position r from the center of the flow cell when imaging and chemistry are alternately repeated for two flow paths in the disc-shaped flow cell. More specifically, the operation corresponding to FIGS. 7 a) and b) in the seventh embodiment is described.
- the value of the position r when the TDI scan is performed in the second spiral flow path is negative.
- the duty ratio which is an index indicating the operation rate of the camera, is 50%.
- the duty ratio can be improved.
- the duty ratio can be improved to nearly 100%.
- the scan speed v is made constant by decreasing the angular velocity ⁇ along with the transition from the inner periphery to the outer periphery.
- a minute reaction field with a size of about 0.5 to 1 micron can be regularly formed at a desired interval (0.5 to 1 micron, or any value from 1 to 5 microns).
- the minute reaction fields are fixed at equal intervals at the same pitch in the scanning direction in any part of the flow cell.
- a method for regularly fixing a minute reaction field to a spiral channel will be described below.
- FIG. 10a a method for performing TDI scanning with a constant rotation speed ⁇ will be described.
- FIG. 10a there are three arc-shaped channels, which actually form one channel as a spiral channel.
- Each channel width is 1.1 mm, and a disk-like minute reaction field having a pitch of 1 micron and a diameter of 0.5 microns is fixed within the width.
- the pitches of the minute reaction fields in the scanning direction are ⁇ d 1 , ⁇ d 2 , and ⁇ d 3 , respectively.
- ⁇ d 1 ⁇ ⁇ 5 mm
- ⁇ d 2 ⁇ ⁇ 10 mm
- ⁇ d 3 ⁇ ⁇ 15 mm.
- TDI scanning can be performed at a constant rotational speed ⁇ in a spiral channel or a circular channel.
- the control method of the ⁇ X stage in TDI scanning is simplified, and the risk of occurrence of measurement errors can be reduced.
- minute reaction fields are regularly arranged on the upper and lower surfaces of the channel surface at equal intervals of 1 micron pitch as described above.
- the pitch of the minute reaction field in the scanning direction is increased according to the distance of the center radius r, but in FIG. 10b), the pitch is made the same.
- the rotation speed ⁇ is variable as described in the eighth and ninth embodiments, and the scanning direction speed v is constant. Since the scan speed v is constant and the fixed pitch of the minute reaction field is constant at any center radius r, the number of minute reaction fields per unit time in the TDI scan can be made constant.
- the TDI sensor 1102 specifically employed here is Hamamatsu Photonics S10202-08-01. This is a back-illuminated CCD image sensor, the number of effective pixels (H) ⁇ (V) is 4160 ⁇ 128 pixels, and the line rate is 50 kHz. The pixel size is 12 ⁇ 12 ⁇ m, and the number of TDI stages is 128.
- FIG. 11 is used for the drift in the direction perpendicular to the TDI scan direction, that is, the radial direction, which occurs when TDI scanning is applied to spiral and circular flow paths. Will be described below.
- the minute reaction field moves linearly by linear drive by the XY stage.
- the rotational drive by the ⁇ X stage is adopted, so that the minute reaction field performs a circular motion or a spiral motion.
- the scan direction of the TDI scan sensor is usually a linear direction
- the scan direction of the TDI scan sensor coincides with the movement direction of the minute reaction field.
- the minute field reaction field is not a linear motion but a circular motion or a spiral motion accompanied by a rotational motion
- a minute reaction field drift occurs in a direction perpendicular to the sensor integration direction. This drift amount will be described below.
- the drift amount will be described below using numerical values based on the TDI sensor employed in the eleventh embodiment.
- FIG. 12a the case where the rotational speed ⁇ is constant will be described.
- the rotation speed ⁇ is constant, the angle ⁇ during a constant exposure time is constant.
- the rotational speed ⁇ is constant, it is desirable to increase the pitch of the minute reaction field with the transition from the inner periphery to the outer periphery of the flow cell as described in FIG. By increasing the pitch of the minute reaction field according to the radius, it becomes possible to cope with the amount of movement necessary for efficiently detecting the minute reaction field.
- the rotational speed ⁇ is variable as described in FIG. B) of Example 11
- the pitch between the minute reaction fields can be made constant without depending on the radius r from the center.
- the resolution in the optical system as this pitch, it is possible to increase the number of minute reaction fields that can be fixed for a flow cell having a certain area and improve the throughput.
- the drift amount of the minute reaction field during the exposure time can be calculated. These are 0.18 ⁇ m, 0.09 ⁇ m, and 0.03 ⁇ m, respectively, which are sufficiently smaller than the size of 0.33 ⁇ m / pixel on the object plane of the TDI scan sensor. Therefore, it is possible to measure fluorescence without problems by rotationally driving a flow cell having a spiral channel.
- the apparatus of the first embodiment has one ⁇ X stage mounted thereon, whereas two ⁇ X stages 102 and 161 are mounted.
- the flow chip described in the first embodiment has two spiral channels, but in the present embodiment, one flow chip has a single spiral channel.
- the sequence reaction can proceed at 25 ° C. for imaging and 60 ° C. for chemistry. That is, independent temperature control is possible for imaging and chemistry. Therefore, the imaging process and the chemistry process are performed independently for each of the two ⁇ X stages.
- a single flow path is formed in one flow cell, and TDI scanning can be continuously continued for this flow path during imaging. Since the movement time to another flow path and the time required for focusing at the time of movement can be skipped, the TAT can be shortened.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Biotechnology (AREA)
- General Physics & Mathematics (AREA)
- Genetics & Genomics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Pathology (AREA)
- Microbiology (AREA)
- General Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Sustainable Development (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Optical Measuring Cells (AREA)
Abstract
The present invention connects linear flow channels formed on a conventional flow cell so as to form an eddy-like flow channel on the flow cell. By rotating and horizontally driving the flow cell on a θX stage with respect to an object lens, it is possible to increase the length of the flow channel that can be scanned continuously. This configuration, thereby, enables reduction in both the number of interruptions of the scanning operation associated with movement to different flow channels and the number of autofocusing operations to be performed on the flow channels.
Description
本発明は分析装置に関わる。より具体的には、DNAあるいはRNAなどの核酸の塩基配列を高速に解読する分析装置に関わる。
The present invention relates to an analyzer. More specifically, the present invention relates to an analyzer that decodes a base sequence of a nucleic acid such as DNA or RNA at high speed.
次世代シーケンシング技術はヒトゲノム計画終了後に急速に発展し、それまでに主流であったサンガー法を現在代替しつつある技術である。その特徴は、基板上に微小な反応場を2次元平面上に高密度に配置し、その微小反応場から発せられる微弱な蛍光信号を超並列(massive parallel)で取得することにある。より具体的には、次世代シーケンスでの化学反応はフローセルの基板表面上に固定した多数の微小反応場上で進行する。その反応の結果としてそれぞれの微小反応場が発する微弱な蛍光信号を超並列(massive parallel)的に計測することにより、高速かつ安価なDNA塩基配列解析が可能となる。
Next-generation sequencing technology is a technology that has developed rapidly after the completion of the Human Genome Project and is currently replacing the Sanger method, which has been the mainstream until then. The feature is that minute reaction fields are arranged on a substrate at a high density on a two-dimensional plane, and weak fluorescence signals emitted from the minute reaction fields are acquired in a massively parallel manner. More specifically, the chemical reaction in the next generation sequence proceeds on a large number of minute reaction fields fixed on the substrate surface of the flow cell. By measuring the weak fluorescence signals generated by the respective micro reaction fields as a result of the reaction in a massively parallel manner, it is possible to perform DNA base sequence analysis at high speed and at low cost.
上記の蛍光信号の検出方法として、従来は2次元カメラを用いて蛍光像を撮像するエリアイメージング方式が主流であった。この方式では、フローセルを固定したXYステージを逐次駆動し、光軸上に位置出ししたフローセルのタイルを撮像するというものである。ここでポイントになるのは、フローセルが撮像時に停止している必要があるという点である。このためXYステージによるタイルの移動後、装置内の振動が収まるまで、通常数百ミリセカンド程度のステージ整定時間をとる必要がある。換言すると、XYステージのステップアンドリピートに伴う加速度運動に起因する振動の減衰の待ち時間が課題であった。
Conventionally, as a method for detecting the fluorescence signal, an area imaging method in which a fluorescence image is captured using a two-dimensional camera has been mainly used. In this method, an XY stage with a fixed flow cell is sequentially driven, and the flow cell tile positioned on the optical axis is imaged. The point here is that the flow cell needs to be stopped during imaging. For this reason, after the tile is moved by the XY stage, it is usually necessary to take a stage settling time of about several hundred milliseconds until the vibration in the apparatus is settled. In other words, the waiting time for vibration attenuation caused by the acceleration motion accompanying the step-and-repeat of the XY stage has been a problem.
これに対してTime delay integration方式(以下TDIとする)では測定対象物を移動させながら、停止させることなく連続して移動しながら撮像することができる。これは加速度をともなわない等速運動であるため、エリアイメージング方式で必要となるステージの停止に要する整定時間を設ける必要がない。したがって、ステージの整定時間を省略することが可能となり、結果としてTurn Around Time(以下TATとする)を低減し、スループットを向上することができる。次世代シーケンスにおけるTDIについては特許文献1に詳しく記載されている。イルミナ社は2010年にTDIを採用したHiSeq2000を市場に投入し、従来のエリアイメージング方式に対する8.7倍のスループット、すなわち28.6Gb/dayを達成した。
On the other hand, in the time-delay integration method (hereinafter referred to as TDI), it is possible to perform imaging while moving the measurement object continuously without stopping. Since this is a constant speed motion without acceleration, it is not necessary to provide a settling time required for stopping the stage, which is necessary in the area imaging method. Accordingly, it is possible to omit the settling time of the stage, and as a result, TurnTAround Time (hereinafter referred to as TAT) can be reduced and throughput can be improved. The TDI in the next generation sequence is described in detail in Patent Document 1. Illumina introduced HiSeq2000, which adopted TDI in 2010, and achieved 8.7 times the throughput compared to the conventional area imaging method, that is, 28.6 Gb / day.
さらにイルミナ社は2014年に世界で初めてヒトゲノムを1000ドル以下のコストで解析できる最高速システムであるHiSeq Ten Xを発表した。しかしHiSeq Ten Xにおいても、ひとつのフローセルに要する1サイクルあたりのイメージング時間は7.2分を要している。したがってシーケンスにおいては依然としてケミストリ時間に対してイメージング時間の方が長く、支配的である。2フローセル方式を採用することで、ケミストリとイメージングを交互に行うことができる。しかし、ケミストリとイメージングを並行処理することによりスループットの短縮を図るにしても、スループットの律速工程は依然としてイメージング時間であった。
Furthermore, Illumina announced HiSeq Ten X in 2014, the world's first fastest system that can analyze the human genome at a cost of less than $ 1000. However, even in HiSeq Ten X, the imaging time per cycle required for one flow cell is 7.2 minutes. Therefore, in the sequence, the imaging time is still longer and dominant over the chemistry time. By adopting the 2-flow cell system, chemistry and imaging can be performed alternately. However, even if the chemistry and imaging are processed in parallel to reduce the throughput, the rate-limiting step of the throughput is still the imaging time.
また、従来のフローセルは長方形の形状であり、フローセル内には直線状の流路が複数配置される。これに対して円形のフローセルの外周に沿った円状の流路を配置し、フローセル直下に試薬注入口を設け、フローセルを遂次回転させることで試薬の消費量を低減する方法が特許文献2に記載されている。
Further, the conventional flow cell has a rectangular shape, and a plurality of linear flow paths are arranged in the flow cell. On the other hand, Patent Document 2 discloses a method of reducing reagent consumption by arranging a circular flow path along the outer periphery of a circular flow cell, providing a reagent injection port directly under the flow cell, and rotating the flow cell successively. It is described in.
従来のフローセルは長方形の形状であり、フローセル内には直線状の流路が複数配置される。このため、TDIなどの高速スキャン検出方式を採用しても、1つの流路に対して一括かつ連続にスキャンができないという課題があった。
The conventional flow cell has a rectangular shape, and a plurality of linear flow paths are arranged in the flow cell. For this reason, even if a high-speed scan detection method such as TDI is adopted, there is a problem that a single flow path cannot be scanned all at once.
より具体的には、異なる流路への移動時にスキャンをいったん中断し、次の流路に移動した後、あらためてZ方向のオートフォーカスを行う必要があった。流路の移動およびオートフォーカスのためイメージング時間が増大し、TATが増大してしまうという課題があった。
More specifically, it was necessary to interrupt the scan when moving to a different flow path, move to the next flow path, and then perform autofocus in the Z direction again. Due to the movement of the flow path and autofocus, there is a problem that the imaging time increases and TAT increases.
上記問題を解決するために、従来フローセル上に形成されていた直線状の流路を連結し、うずまき状流路をフローセル上に形成する。対物レンズに対してフローセルをθXステージで回転および水平駆動することで、連続してスキャンできる流路長を増大することが可能となる。これにより、異なる流路への移動に伴うスキャン動作の中断回数および流路に対するオートフォーカス動作回数を低減することができる。
In order to solve the above problem, the linear flow paths that have been conventionally formed on the flow cell are connected to form a spiral flow path on the flow cell. By rotating and horizontally driving the flow cell with the θX stage with respect to the objective lens, it is possible to increase the flow path length that can be continuously scanned. Thereby, it is possible to reduce the number of interruptions of the scanning operation and the number of autofocus operations for the flow paths accompanying movement to different flow paths.
本発明の適用により、イメージング時間を短縮し、スループットを向上できるという効果をもたらす。
The application of the present invention brings about the effect of shortening the imaging time and improving the throughput.
本発明の第1の実施例として、うずまき状流路をもつフローセルを用いたシーケンサについて以下図1を用いて説明する。
As a first embodiment of the present invention, a sequencer using a flow cell having a spiral channel will be described below with reference to FIG.
光源であるダイオードレーザー191より発せられた波長642nmのレーザー光はレーザーラインフィルタ103を経てミラー105により反射される。もうひとつのダイオードレーザー192より発せられた波長505nmのレーザー光はレーザーラインフィルタ104を経てダイクロイックミラー106を介して波長642nmのレーザー光と合波させられる。合波したレーザー光は直線偏光した状態であるため、これを円偏光にするために1/4波長板123を通過させる。さらにレーザー光は第一のビームエキスパンダー107を通過し、光束の直径が拡大する。ここまでレーザー光のプロファイルは円状であるが、TDIスキャンを有効に行うためには、これを長方形の形状にする必要がある。また、Z方向におけるビームの強度分布は矩形状であることが望ましい。これらを達成するためにレーザー光をラインジェネレーター108に通過させる。より具体的にラインジェネレーター108としては(1)非球面レンズであるパウエルレンズ、(2)シリンドリカルマイクロレンズアレイ、あるいは(3)拡散板を用いることができる。
Laser light having a wavelength of 642 nm emitted from a diode laser 191 that is a light source is reflected by a mirror 105 through a laser line filter 103. The laser light having a wavelength of 505 nm emitted from the other diode laser 192 is combined with the laser light having a wavelength of 642 nm via the laser line filter 104 and the dichroic mirror 106. Since the combined laser light is linearly polarized, it passes through the quarter-wave plate 123 in order to make it circularly polarized. Further, the laser light passes through the first beam expander 107, and the diameter of the light beam is enlarged. Up to this point, the profile of the laser beam is circular, but in order to perform TDI scanning effectively, it is necessary to make this a rectangular shape. The beam intensity distribution in the Z direction is preferably rectangular. In order to achieve these, the laser light is passed through the line generator 108. More specifically, as the line generator 108, (1) a Powell lens which is an aspherical lens, (2) a cylindrical microlens array, or (3) a diffusion plate can be used.
次にラインジェネレーター108を経たレーザー光は、第二のビームエキスパンダー109を経て、対物レンズ114の瞳面に集光される。第二のビームエキスパンダー109は長方形状に成形されたレーザー光の画角を減少させる働きを持ち、対物レンズ114の瞳面の直径以内の領域を効率よく照射させる働きを持つ。上述した照明光学系の構成により、フローセルの検出面において、従来の円状ではない、例えば2mm×1μmの長方形状の領域を効率よくレーザー光で照明することが可能となる。
Next, the laser light that has passed through the line generator 108 is condensed on the pupil plane of the objective lens 114 through the second beam expander 109. The second beam expander 109 has a function of reducing the angle of view of the laser light formed into a rectangular shape, and has a function of efficiently irradiating a region within the diameter of the pupil plane of the objective lens 114. With the configuration of the illumination optical system described above, it is possible to efficiently illuminate a rectangular area of, for example, 2 mm × 1 μm, which is not a conventional circular shape, with a laser beam on the detection surface of the flow cell.
対物レンズ114によってレーザー光は集光され、長方形状の領域を照明する。フローセル101の流路には微小反応場が固定されている。このとき、微小反応場はランダムに流路上に配置されていてもいいし、あるいは半導体リソグラフィー技術を用いて規則正しく配置されていてもよい。対物レンズ114はZモーター115により光軸方向に駆動可能であり、これにより微小反応場にフォーカスすることができる。流路上に固定されたそれぞれの微小反応場は、計測したいサンプルのDNAのひとつの小断片のみを多数含んだ状態であり、これを分子生物学的に「モノクローナル」であるという。換言すると、ひとつひとつの微小反応場内は、サンプル由来の断片化したDNAの一断片が増幅された集合体ということができる。
The laser light is condensed by the objective lens 114 and illuminates a rectangular area. A minute reaction field is fixed in the flow path of the flow cell 101. At this time, the minute reaction field may be randomly arranged on the flow path, or may be regularly arranged by using a semiconductor lithography technique. The objective lens 114 can be driven in the direction of the optical axis by the Z motor 115, thereby focusing on the minute reaction field. Each micro reaction field fixed on the flow path includes a large number of one small fragment of DNA of a sample to be measured, and this is said to be “monoclonal” in terms of molecular biology. In other words, it can be said that each minute reaction field is an aggregate in which a fragment of DNA derived from a sample is amplified.
次に次世代シーケンスにおける代表的な塩基配列解析法であるSBS(Sequencing By Synthesis)反応について説明する。SBS反応では、基板に固定した微小反応場に対して、反応の足場となるプライマを結合させ、次に異なる4種の蛍光色素で標識された4種類のヌクレオチド(Alexa-488-dATP、Alexa-555-dTTP、Alexa-647-dCTP、Alexa-680-dGTP)を1塩基のみ微小反応場に対して取り込ませることでシーケンスを行う方法である。
Next, the SBS (Sequencing By Synthesis) reaction, which is a representative base sequence analysis method in the next generation sequence, will be described. In the SBS reaction, a primer serving as a reaction scaffold is bound to a micro reaction field immobilized on a substrate, and then 4 types of nucleotides (Alexa-488-dATP, Alexa-) labeled with different 4 types of fluorescent dyes are used. 555-dTTP, Alexa-647-dCTP, Alexa-680-dGTP) is a method of performing sequencing by incorporating only one base into a micro reaction field.
より具体的には、プライマを足場として、プライマの3‘末端方向に、微小反応場側のDNA1本鎖の相補鎖に対応するヌクレオチドがポリメラーゼ酵素により1塩基分逐次的に取り込まれる。おのおのの微小反応場に対応する1塩基が取り込まれた後、浮遊する蛍光ヌクレオチドを洗浄により除去した後、蛍光計測を行う。2塩基目の伸長が発生しないのは、1塩基目の蛍光色素に2塩基目の色素の伸長を阻害する物質が結合しているからである。1塩基目を決定するための蛍光測定が完了した後、伸張阻害物質を切断する試薬をフローセル内に注入し、切断完了後、2塩基目のSBS反応を逐次的に行っていく。
More specifically, using the primer as a scaffold, nucleotides corresponding to the complementary strand of the single-stranded DNA on the side of the microreaction field are sequentially taken up by the polymerase enzyme for one base in the 3 ′ end direction of the primer. After one base corresponding to each minute reaction field is incorporated, the floating fluorescent nucleotide is removed by washing, and then fluorescence measurement is performed. The reason why the extension of the second base does not occur is because a substance that inhibits the extension of the dye of the second base is bound to the fluorescent dye of the first base. After the fluorescence measurement for determining the first base is completed, a reagent for cleaving the elongation inhibiting substance is injected into the flow cell, and after the completion of the cleavage, the SBS reaction of the second base is sequentially performed.
取り込まれた蛍光色素はレーザー光により照射され、蛍光を発する。蛍光は対物レンズ114により集光され、ダイクロイックミラー113を経て、642nm用ノッチフィルター161、505nm用ノッチフィルター162を通過する。ダイクロイックミラー116はAlexa-488の蛍光波長帯のみを反射し、他の3つの蛍光色素であるAlexa-555、Alexa-647、Alexa-680の波長帯は透過する。反射されたAlexa-488の蛍光は、エミッションフィルタ119を透過し、チューブレンズ130で集光させられ、CMOSカメラ134のセンサ表面に多数の微小反応場より発せられた蛍光画像を形成する。同様にダイクロイックミラー117はAlexa555由来の蛍光のみを反射し、反射されたAlexa555の蛍光はエミッションフィルタ120およびチューブレンズ131を経て、CMOSカメラ135に集光し、像を形成する。同様にダイクロイックミラー118はAlexa647由来の蛍光を反射、Alexa680由来の蛍光を透過させ、それぞれエミッションフィルタ121、122、チューブレンズ132、133を経て、CMOSカメラ136および137に結像する。これにより、1回の蛍光計測で4種類の蛍光、つまり4種の塩基の識別が可能となる。
The incorporated fluorescent dye is irradiated with laser light and emits fluorescence. The fluorescence is condensed by the objective lens 114, passes through the dichroic mirror 113, and passes through the 642 nm notch filter 161 and the 505 nm notch filter 162. The dichroic mirror 116 reflects only the fluorescence wavelength band of Alexa-488, and transmits the wavelength bands of Alexa-555, Alexa-647, and Alexa-680, which are the other three fluorescent dyes. The reflected fluorescence of Alexa-488 passes through the emission filter 119 and is collected by the tube lens 130 to form fluorescence images emitted from a large number of minute reaction fields on the sensor surface of the CMOS camera 134. Similarly, the dichroic mirror 117 reflects only the fluorescence derived from Alexa 555, and the reflected fluorescence of Alexa 555 passes through the emission filter 120 and the tube lens 131 and is collected on the CMOS camera 135 to form an image. Similarly, the dichroic mirror 118 reflects the fluorescence derived from Alexa 647 and transmits the fluorescence derived from Alexa 680, and forms images on the CMOS cameras 136 and 137 through the emission filters 121 and 122 and the tube lenses 132 and 133, respectively. As a result, four types of fluorescence, that is, four types of bases can be identified by one fluorescence measurement.
うずまき状の流路を持ったフローセル101はヒートブロック102に設置される。フローセル101は、θステージおよびXステージを同時に駆動させることにより、うずまき状の流路を対物レンズ114直下において連続的に駆動させることができる。より具体的には、TDI計測を行うことが可能となる。TDI計測とは、移動している対象を積算しながら撮影するCCDあるいはCMOSカメラのおける読み出し方式のひとつである。特にCCDカメラは電荷読み出しの時、1ライン単位で垂直転送を行う。この転送のタイミングとCCD面に入射している対象像が移動するタイミングを合わせれば、CCDの垂直段数だけ露光を繰り返すことが可能となる。この方式をTDIといい、移動物体を高速かつ高感度で撮像することが可能な計測方法である。
The flow cell 101 having a spiral channel is installed in the heat block 102. The flow cell 101 can continuously drive the spiral flow path directly under the objective lens 114 by simultaneously driving the θ stage and the X stage. More specifically, TDI measurement can be performed. TDI measurement is one of readout methods in a CCD or CMOS camera that shoots while accumulating moving objects. In particular, the CCD camera performs vertical transfer in units of one line when reading charges. If the timing of this transfer and the timing of movement of the target image incident on the CCD surface are matched, exposure can be repeated by the number of vertical stages of the CCD. This method is called TDI, and is a measurement method capable of imaging a moving object at high speed and with high sensitivity.
フローセル101内にはうずまき状の流路が2つ形成されている。これはSBS反応の1サイクルにおいてイメージングとケミストリを交互に行うためである。本実施例で特徴的であるのは、1サイクルにおける2回のイメージング工程について、それぞれ2つの流路が準備されているという点である。換言すると、1回のイメージング工程が1つの流路内で完結するという特徴を持っている。一方、従来の直線状の流路を複数もつフローセルでは以下の問題があった。すなわちイメージング工程中において複数の流路間の移動に伴うXYステージの移動時間、および異なる流路における計測開始時に発生するオートフォーカス動作にともなう時間である。これらの時間がTATの遅延の要因のひとつであった。本実施例では1回のイメージング工程が1つの流路内で完結するため、上述した動作時間を回避することが可能となる。したがってイメージング時間を大幅に短縮することができる。
In the flow cell 101, two spiral channels are formed. This is because imaging and chemistry are alternately performed in one cycle of the SBS reaction. What is characteristic in this embodiment is that two flow paths are prepared for two imaging steps in one cycle. In other words, one imaging process is completed within one flow path. On the other hand, the conventional flow cell having a plurality of linear flow paths has the following problems. That is, it is the movement time of the XY stage that accompanies movement between a plurality of flow paths during the imaging process, and the time that accompanies autofocus operation that occurs at the start of measurement in different flow paths. These times were one of the causes of TAT delay. In this embodiment, since one imaging process is completed within one flow path, it is possible to avoid the operation time described above. Therefore, the imaging time can be greatly shortened.
また、ヒートブロックはフローセル101を60℃に温調している。つまり、SBSのケミストリ反応を60℃で行いつつ、同時にイメージング処理を60℃で行う。これによりヒートブロックの加熱・冷却に要する時間を省略し、TATの短縮を図ることが可能となる。また、この温調温度は60℃に限定されるものではなく、50℃、40℃、30℃であってもよい。さらには、室温である25℃がもっとも望ましい。蛍光色素は高温にさらされるほど蛍光強度が弱まることが知られている。これは一般的には温度の上昇にともなう量子効率の低下が原因であり、よりSN比の高い画像を取得するためにも蛍光計測は低温で行うことが望ましい。また、25℃であれば装置構成部品の熱膨張にともなう装置の計測の誤差を最小にすることが可能であり、イメージング中の熱膨張に起因するフォーカスずれなどの問題を回避することができるからである。
In addition, the heat block controls the temperature of the flow cell 101 to 60 ° C. That is, while the SBS chemistry reaction is performed at 60 ° C., the imaging process is performed at 60 ° C. at the same time. As a result, the time required for heating and cooling the heat block can be omitted, and TAT can be shortened. Moreover, this temperature control temperature is not limited to 60 degreeC, 50 degreeC, 40 degreeC, and 30 degreeC may be sufficient. Furthermore, the room temperature of 25 ° C. is most desirable. It is known that the fluorescence intensity of a fluorescent dye becomes weaker as it is exposed to a higher temperature. This is generally due to a decrease in quantum efficiency with increasing temperature, and it is desirable to perform fluorescence measurement at a low temperature in order to acquire an image with a higher S / N ratio. In addition, if the temperature is 25 ° C., it is possible to minimize the measurement error of the apparatus due to the thermal expansion of the apparatus components, and it is possible to avoid problems such as defocus due to the thermal expansion during imaging. It is.
また、ケミストリとイメージングの切り替え時については、従来では2つの異なる、独立したフローセル間で計測を行っていた。したがって計測面が物理的に分断しているため、計測面のフォーカスを再度行う必要があった。しかし、本実施例では同一のフローセル内の異なる流路内でイメージングとケミストリの切り替えを行うため、計測面は物理的に連続しており、したがってフォーカスの調整が容易であり、フォーカスに要する時間も短縮できるというメリットがある。
Also, at the time of switching between chemistry and imaging, measurement was conventionally performed between two different and independent flow cells. Therefore, since the measurement surface is physically divided, it is necessary to focus the measurement surface again. However, in this embodiment, since imaging and chemistry are switched in different flow paths in the same flow cell, the measurement surface is physically continuous, so that the focus adjustment is easy and the time required for the focus is also long. There is an advantage that it can be shortened.
さらに、従来法では2つのフローセル間を切り替えるためにXYステージのストロークを大きくする必要があった。このため移動距離が大きく、これにともなう時間ロスもあった。さらにストロークが大きいため、装置が大きくならざるを得ず、さらに装置コストも高くなるという問題があった。これに対して、本実施例では必要となるフローセルは1つであるためθXステージのストロークは小さくすることができ、さらに装置を小型化でき、装置コストも低減することが可能である。
Furthermore, in the conventional method, it was necessary to increase the stroke of the XY stage in order to switch between the two flow cells. For this reason, the moving distance is large, and there is a time loss associated therewith. Further, since the stroke is large, the apparatus has to be large, and there is a problem that the apparatus cost increases. On the other hand, since only one flow cell is required in the present embodiment, the stroke of the θX stage can be reduced, the apparatus can be further downsized, and the apparatus cost can be reduced.
次に、本シーケンサの送液系について説明する。プライマのハイブリダイゼーションを行うための試薬、4種類の蛍光ヌクレオチドおよびポリメラーゼを含んだ伸長試薬、蛍光ヌクレオチドの保護基を解離させるための切断試薬、保護基が切断された後の反応基の不要な反応を防止するためのキャップ試薬および洗浄試薬、蛍光観察用のイメージング試薬などが試薬カートリッジ140にあらかじめ配置・注入されている。試薬カートリッジ140は試薬ラック141に設置され、4℃に冷却される。ペルチェ素子144は試薬カートリッジ140内に設置されたヒートブロック142を冷却し、ファン146は試薬ラック141庫内の空気をフィン145に送風する。冷却された空気は試薬ラック141庫内を循環し、間接的に試薬カートリッジ140内に設置された複数の試薬を4℃に冷却する。なお、ペルチェ素子144はヒートブロック142の冷却に伴い、ペルチェ素子144の反対面が加熱する。この熱を放熱するためにフィン148およびファン143がペルチェ素子144に設置される。これによりファン143は装置外に熱を排熱し、ペルチェ素子144を冷却することができる。
Next, the liquid delivery system of this sequencer will be described. Reagent for primer hybridization, extension reagent containing 4 types of fluorescent nucleotides and polymerase, cleavage reagent for dissociating protecting group of fluorescent nucleotide, unnecessary reaction of reactive group after cleaving protecting group A cap reagent, a cleaning reagent, an imaging reagent for fluorescence observation, and the like are arranged and injected in advance in the reagent cartridge 140. The reagent cartridge 140 is installed in the reagent rack 141 and cooled to 4 ° C. The Peltier element 144 cools the heat block 142 installed in the reagent cartridge 140, and the fan 146 blows air in the reagent rack 141 to the fins 145. The cooled air circulates in the reagent rack 141 and indirectly cools the plurality of reagents installed in the reagent cartridge 140 to 4 ° C. Note that, as the heat block 142 is cooled, the opposite surface of the Peltier element 144 is heated. In order to dissipate this heat, a fin 148 and a fan 143 are installed on the Peltier element 144. Thereby, the fan 143 can exhaust heat outside the apparatus and cool the Peltier element 144.
試薬カートリッジ140が保持するそれぞれの試薬ウェルには、シッパーチューブが挿入される。これらのシッパーチューブの先端より試薬が吸引される。シッパーチューブは切り替えバルブ147に接続される。切り替えバルブ147は任意の流路に接続し、任意の試薬を選択することができる。切り替えバルブ147により選択された試薬は流路150を経て、微小反応場を保持するフローセル101に送液される。試薬を吸引する動力源となるシリンジポンプ154はフローセル101下流に配置される。シリンジポンプ154の上流には二方弁152、下流には二方弁155が配置される。試薬の吸引を行うときは二方弁152を制御して、フローセル101流路とシリンジポンプ154間を接続させ、かつ二方弁155を閉状態にしてシリンジポンプ154を駆動させる。また、試薬を廃棄する場合、二方弁152を閉状態、二方弁155を開状態にしてシリンジポンプ154を駆動させ、試薬を廃液タンク156に送液する。この動作により、複数の試薬の送液を1つのシリンジポンプ154で行うことが可能となる。また、廃液タンク156がないと装置庫内に廃液がこぼれ、電気感電、装置の錆び、異臭の発生といった問題が発生する可能性がある。これを回避するためには廃液タンク156を必ず装置内に配置することが必要であり、これを検知するために廃液タンク156の有無を監視するマイクロフォトセンサ158を設置する。さらに安全のため、廃液が漏れた場合のために廃液タンク156の下に液受けトレイ157を設置する。
A sipper tube is inserted into each reagent well held by the reagent cartridge 140. Reagents are aspirated from the tips of these sipper tubes. The sipper tube is connected to the switching valve 147. The switching valve 147 can be connected to an arbitrary flow path to select an arbitrary reagent. The reagent selected by the switching valve 147 is sent through the flow path 150 to the flow cell 101 that holds the minute reaction field. A syringe pump 154 serving as a power source for sucking the reagent is disposed downstream of the flow cell 101. A two-way valve 152 is disposed upstream of the syringe pump 154 and a two-way valve 155 is disposed downstream. When aspirating the reagent, the two-way valve 152 is controlled to connect the flow cell 101 and the syringe pump 154, and the two-way valve 155 is closed to drive the syringe pump 154. When discarding the reagent, the two-way valve 152 is closed, the two-way valve 155 is opened, the syringe pump 154 is driven, and the reagent is sent to the waste liquid tank 156. By this operation, a plurality of reagents can be fed with one syringe pump 154. Further, if the waste liquid tank 156 is not provided, the waste liquid spills into the apparatus cabinet, which may cause problems such as electric shock, rust of the apparatus, and generation of a strange odor. In order to avoid this, it is necessary to always arrange the waste liquid tank 156 in the apparatus, and in order to detect this, a micro photo sensor 158 for monitoring the presence or absence of the waste liquid tank 156 is installed. For further safety, a liquid receiving tray 157 is installed under the waste liquid tank 156 in case the waste liquid leaks.
本発明の第2の実施例として、うずまき状の流路形状を有するフローセルについて図2を用いて以下に説明する。図2a)は次世代シーケンサで使用される典型的なフローセルである。フローセル201は長方形の形状で、フローセル201内には直線状の流路202が8個配置される。流路202は試薬の注入口203および排出口204を持つ。フローセル201は複数の流路をもつため、TDIなどの高速スキャン検出方式を採用しても、異なる流路への移動時にスキャンをいったん中断し、新たな流路に移動後改めてZ方向のオートフォーカスを行う必要があった。このためTDIの特徴である連続スキャンが頻繁に中断されることになり、TDIの長所を有効に活用できず、結果としてイメージング時間が増大し、TATが増大してしまうという課題があった。この問題に対し、図2b)では図2a)における流路をすべて連結し、1つうずまき状の流路211とした。流路211は試薬の注入口212と排出口213を持つ。うずまき状の流路とした理由は以下の2点である。
As a second embodiment of the present invention, a flow cell having a spiral channel shape will be described below with reference to FIG. FIG. 2a) is a typical flow cell used in next generation sequencers. The flow cell 201 has a rectangular shape, and eight linear flow paths 202 are arranged in the flow cell 201. The channel 202 has a reagent inlet 203 and an outlet 204. Since the flow cell 201 has a plurality of flow paths, even if a high-speed scan detection method such as TDI is adopted, the scan is temporarily interrupted when moving to a different flow path, and after moving to a new flow path, autofocus in the Z direction is performed again. Had to do. For this reason, continuous scanning, which is a feature of TDI, is frequently interrupted, and the advantages of TDI cannot be effectively utilized. As a result, there is a problem in that imaging time increases and TAT increases. To solve this problem, in FIG. 2 b), all the flow paths in FIG. 2 a) are connected to form one spiral-shaped flow path 211. The channel 211 has a reagent inlet 212 and a outlet 213. The reason why the spiral channel is used is the following two points.
1)フローセルの操作性
単に直線状の流路を直列に連結すると、流路長が極端に長いという操作性が悪く、かつ非現実的なフローセルとなってしまう。長い流路長を保持しつつ、かつ操作性のよさという2点を実現するためにはうずまき状の流路が最適である。 1) Operability of the flow cell If the straight flow paths are simply connected in series, the flow length is extremely long and the operability is poor and the flow cell becomes unrealistic. Spiral-shaped channels are the most suitable for realizing two points of good operability while maintaining a long channel length.
単に直線状の流路を直列に連結すると、流路長が極端に長いという操作性が悪く、かつ非現実的なフローセルとなってしまう。長い流路長を保持しつつ、かつ操作性のよさという2点を実現するためにはうずまき状の流路が最適である。 1) Operability of the flow cell If the straight flow paths are simply connected in series, the flow length is extremely long and the operability is poor and the flow cell becomes unrealistic. Spiral-shaped channels are the most suitable for realizing two points of good operability while maintaining a long channel length.
2)フローセルにおける流路占有比率
流路をうずまき状ではなく円状にすることも可能であるが、その場合流路の始点と終点が円上で結合してしまうため、流路の長さを2πr(ここでrはフローセルの半径とする)より長くすることができない。また、円形にした場合、フローセルに形成された円形流路の内部をスキャニング範囲として利用できないという問題も発生する。つまり、フローセルにおける流路占有比率が低下するという問題が生じる。これを回避するためにうずまき状流路を採用した。 2) Flow path occupancy ratio in the flow cell It is possible to make the flow path circular instead of spiral, but in this case, the start and end points of the flow path are combined on a circle, so the length of the flow path It cannot be longer than 2πr (where r is the radius of the flow cell). Moreover, when it makes it circular, the problem that the inside of the circular flow path formed in the flow cell cannot be used as a scanning range also arises. That is, there arises a problem that the flow passage occupation ratio in the flow cell decreases. In order to avoid this, a spiral channel was adopted.
流路をうずまき状ではなく円状にすることも可能であるが、その場合流路の始点と終点が円上で結合してしまうため、流路の長さを2πr(ここでrはフローセルの半径とする)より長くすることができない。また、円形にした場合、フローセルに形成された円形流路の内部をスキャニング範囲として利用できないという問題も発生する。つまり、フローセルにおける流路占有比率が低下するという問題が生じる。これを回避するためにうずまき状流路を採用した。 2) Flow path occupancy ratio in the flow cell It is possible to make the flow path circular instead of spiral, but in this case, the start and end points of the flow path are combined on a circle, so the length of the flow path It cannot be longer than 2πr (where r is the radius of the flow cell). Moreover, when it makes it circular, the problem that the inside of the circular flow path formed in the flow cell cannot be used as a scanning range also arises. That is, there arises a problem that the flow passage occupation ratio in the flow cell decreases. In order to avoid this, a spiral channel was adopted.
さらに図2c)では1枚のフローセルにうずまき状の2つの流路225および226を形成したフローセルを示している。流路225は試薬の注入口220および排出口223、流路226は試薬の注入口221および排出口224をそれぞれ持つ。このフローセルはケミストリ工程とイメージング工程を等温で実施するためのフローセルである。流路225に対してTDIスキャニングを行っている間、流路226ではケミストリ工程を進行させることができる。2つの流路225、226がそれぞれ一本化しているため、TDIスキャニング動作を継続して行うことができ、イメージング時間を短縮できる。なお、複数のサンプルを計測する場合も、サンプルごとの前処理工程において、サンプルに固有のバーコード配列をサンプルごとに付加することにより、これら複数のサンプルを混合してひとつのサンプルとして扱うことができる。したがって、本実施例における流路225、226の数が1個あるいは2個と少ないことによる計測への影響は前処理におけるサンプルへのバーコード配列の付加により回避することができる。
Further, FIG. 2c) shows a flow cell in which two spiral flow paths 225 and 226 are formed in one flow cell. The channel 225 has a reagent inlet 220 and outlet 223, and the channel 226 has a reagent inlet 221 and outlet 224, respectively. This flow cell is a flow cell for performing a chemistry process and an imaging process isothermally. While the TDI scanning is performed on the flow path 225, the chemistry process can be performed in the flow path 226. Since the two flow paths 225 and 226 are respectively integrated, the TDI scanning operation can be continuously performed, and the imaging time can be shortened. Even when measuring multiple samples, it is possible to mix and handle these multiple samples as one sample by adding a barcode array specific to each sample in the pre-processing step for each sample. it can. Therefore, the influence on the measurement due to the small number of the flow paths 225 and 226 in the present embodiment being one or two can be avoided by adding a barcode array to the sample in the preprocessing.
本発明の第3の実施例として、2本以上のうずまき状の流路形状を有するフローセルについて図3A・Bを用いて以下に説明する。本実施例では複数の異なるサンプルを混合せずに、独立した流路おいて計測する必要性が高く、かつ短TATを実現したい場合に特に有用である。換言すると、極力サンプル間コンタミを回避しつつ、精度高い計測を高速に大菜いたい場合に有用である。
As a third embodiment of the present invention, a flow cell having two or more spiral channel shapes will be described below with reference to FIGS. 3A and 3B. This embodiment is particularly useful when it is highly necessary to perform measurement in an independent flow path without mixing a plurality of different samples, and it is desired to realize a short TAT. In other words, it is useful when it is desired to perform high-precision measurement at high speed while avoiding contamination between samples as much as possible.
図3a)ではフローセルは2つの流路を有する。図3b)ではフローセルは3つの流路を有する。また、図3c)ではフローセルは4つの流路を有する。さらに図3d)ではフローセルは5つの流路を有する。これらのフローセルは、複数のサンプルを混合したくない場合に有用であり、かつアプリケーションに応じて最適なフローセルを採用し、TDIを適用することによりサンプル処理時間を最短にすることができる。
In FIG. 3a), the flow cell has two flow paths. In FIG. 3b), the flow cell has three flow paths. In FIG. 3c), the flow cell has four flow paths. Furthermore, in FIG. 3d), the flow cell has five flow paths. These flow cells are useful when a plurality of samples are not desired to be mixed, and an optimum flow cell is adopted according to the application, and the sample processing time can be minimized by applying TDI.
また、図3e)に従来の直線状流路を持つフローセルと本特許で説明しているうずまき状流路を持つフローセルについて比較を行う。図2a)で示されるようにイルミナ社の代表的なフローセルには流路長60mmの流路が8本形成されている。したがってフローセル1枚あたりの総流路長は480mmとなる。流路幅は2.5mmなので、流路面積は1200mm2となる。フローセルの大きさは25×75mm2=1875mm2であるため、流路占有率は64%に留まる。
FIG. 3e) shows a comparison between a conventional flow cell having a linear flow path and a flow cell having a spiral flow path described in this patent. As shown in FIG. 2 a), a typical Illumina flow cell has eight channels with a channel length of 60 mm. Therefore, the total flow path length per flow cell is 480 mm. Since the channel width is 2.5 mm, the channel area is 1200 mm 2 . Since the size of the flow cell is 25 × 75mm 2 = 1875mm 2, the channel occupancy stays at 64%.
一方本実施例で説明した図3a)に示されるフローセルにおいては、流路長451mmの流路が2本形成されている。したがってフローセル1枚あたりの総流路長は901mmとなる。流路幅は2.5mmなので、流路面積は2253mm2となる。フローセルの半径は31.5mmであり、流路占有率は72%を超える。
On the other hand, in the flow cell shown in FIG. 3A) described in the present embodiment, two flow paths having a flow path length of 451 mm are formed. Therefore, the total flow path length per flow cell is 901 mm. Since the channel width is 2.5 mm, the channel area is 2253 mm 2 . The radius of the flow cell is 31.5 mm, and the flow path occupancy exceeds 72%.
上述の比較により、本特許のうずまき状流路による計測方法における性能向上効果として以下を挙げることができる。
From the above comparison, the following performance improvement effects can be given in the measurement method using the spiral channel of this patent.
(1)フローセル内のひとつの流路の長さが図2a)では60mmであるのに対して、図3a)では451mmと7倍以上に増大する。したがってTDIスキャンを中断せずに連続的に行うことが可能となり、TATの短縮が可能となる。
(1) While the length of one flow path in the flow cell is 60 mm in FIG. 2 a), it is 451 mm in FIG. Therefore, TDI scanning can be performed continuously without interruption, and TAT can be shortened.
(2)流路数を8本から2本へ減らすことで流路系を簡易化し、試薬のデッドボリュームを低減できる。したがって、シーケンスコストを低減することが可能となる。
(2) By reducing the number of channels from eight to two, the channel system can be simplified and the dead volume of the reagent can be reduced. Therefore, the sequence cost can be reduced.
(3)うずまき流路を形成することでフローセル全面積に対する流路占有率を向上することができる。
(3) By forming the spiral flow path, the flow path occupancy with respect to the entire area of the flow cell can be improved.
本発明の第4の実施例として、フローセルの構造について図4を用いて以下に説明する。
As a fourth embodiment of the present invention, the structure of a flow cell will be described below with reference to FIG.
フローセルは円形の形状をもつ基板401、スペーサ410、カバーガラス413の3つの部材より構成される。フローセルはこれらの部材を貼り合わせて作製する。
The flow cell is composed of three members: a substrate 401 having a circular shape, a spacer 410, and a cover glass 413. The flow cell is manufactured by bonding these members.
基板の401の素材としてはガラス、石英、シリコン、チタン、サファイヤなどを挙げることができる。基板401には試薬の注入口404、405、試薬の排出口402、403が設けられているカバーガラス413は光透過性を持っており、400-800nmの可視光を透過率高く透過する。カバーガラス413の素材としては、ガラス、石英、サファイヤなどを挙げることができる。
Examples of the material of the substrate 401 include glass, quartz, silicon, titanium, and sapphire. A cover glass 413 provided with reagent inlets 404 and 405 and reagent outlets 402 and 403 on the substrate 401 is light-transmitting, and transmits visible light of 400 to 800 nm with high transmittance. Examples of the material of the cover glass 413 include glass, quartz, and sapphire.
通常スペーサ410はPDMSなどの素材より製造されることが一般的である。スペーサ410の厚さは30~100μmであり、より詳細には50μmであることが望ましい。スペーサ410をカバーガラス413および基板401で挟みこむことにより、2つの流路411および412が形成される。ここで流路411は注入口405および排出口402、流路412は注入口404および排出口403を有する。流路411および412はうずまき状の形状を有し、かつ2つの流路を互いに入り組んだ形状を採用することで円板状のフローセルの平面の面積を効率よく利用することができる。また、従来の直線状流路と比較して、うずまき状の流路形状を採用することにより、ひとつの流路あたりの流路長を長くすることができる。したがって、増大した流路長に伴い、連続してTDIスキャニングを継続して行うことが可能となる。これにより、従来の直線状流路におけるTDI法で課題であったTDIスキャン動作の中断および流路間の移動、流路を切り替えた後のオートフォーカス動作に伴うTATの増大を防止することができる。
Generally, the spacer 410 is generally manufactured from a material such as PDMS. The thickness of the spacer 410 is 30 to 100 μm, and more specifically 50 μm is desirable. By sandwiching the spacer 410 between the cover glass 413 and the substrate 401, two flow paths 411 and 412 are formed. Here, the channel 411 has an inlet 405 and an outlet 402, and the channel 412 has an inlet 404 and an outlet 403. The flow paths 411 and 412 have a spiral shape, and the planar area of the disk-shaped flow cell can be efficiently utilized by adopting a shape in which the two flow paths are intricately arranged. Further, by adopting a spiral channel shape as compared with the conventional linear channel, the channel length per channel can be increased. Therefore, it is possible to continuously perform TDI scanning with the increased flow path length. As a result, it is possible to prevent TDI scan operation interruption, movement between channels, and increase in TAT associated with autofocus operation after switching channels, which were problems with the conventional TDI method in a linear channel. .
また、流路411、412の上面および下面には微小反応場がランダム状あるいは格子状に配置される。微小反応場はフローセル内でDNA増幅反応を経て形成してもいいし、あるいはフローセル外で調整してもよい。いわゆるブリッジPCRによるものでもいいし、DNAナノボールのようにフローセル外で調整する方法でもよい。
Also, minute reaction fields are arranged in a random shape or a lattice shape on the upper and lower surfaces of the channels 411 and 412. The minute reaction field may be formed through a DNA amplification reaction in the flow cell, or may be adjusted outside the flow cell. A so-called bridge PCR may be used, or a method of adjusting outside the flow cell like a DNA nanoball may be used.
本発明の第5の実施例として、うずまき状の流路形状を有するフローセルのヒートブロックへの固定法について図5を用いて以下に説明する。
As a fifth embodiment of the present invention, a method of fixing a flow cell having a spiral flow path shape to a heat block will be described below with reference to FIG.
フローセル507はヒートブロック501のガイド510、511に対して押し付けた状態で、バキュームポンプにより吸引穴506を吸引することによりヒートブロック501表面に真空チャックされる。機械的にフローセル507の外周部をクランプする方法と比較して、真空チャック方式のほうがフローセル507について与える応力を小さくでき、結果として、フローセル507の歪みを低減することができる。なお、θXステージの平面度は±30μmである。また、ガイド510、511を用いることにより位置精度よくフローセル507をヒートブロック501に固定することが可能となる。また、図示はしていないが、フローセル507の向きを合わせるために周上にオリエンテーション・フラットおよびそのガイドを設けることにより、フローセル507の固定方向を特定することができる。これにより、ヒートブロック501およびフローセル507上の試薬注入口と試薬排出口の位置を精度よく合わせることが可能となる。
The flow cell 507 is vacuum chucked on the surface of the heat block 501 by sucking the suction hole 506 with a vacuum pump while being pressed against the guides 510 and 511 of the heat block 501. Compared with the method of mechanically clamping the outer periphery of the flow cell 507, the stress applied to the flow cell 507 by the vacuum chuck method can be reduced, and as a result, the distortion of the flow cell 507 can be reduced. The flatness of the θX stage is ± 30 μm. Further, by using the guides 510 and 511, the flow cell 507 can be fixed to the heat block 501 with high positional accuracy. Although not shown, the orientation of the flow cell 507 can be specified by providing an orientation flat and its guide on the circumference in order to align the flow cell 507. Thereby, the positions of the reagent inlet and the reagent outlet on the heat block 501 and the flow cell 507 can be accurately aligned.
ヒートブロック501はθXステージ上に固定されており、対物レンズ508を貫く鉛直方向に固定された光軸に対して、うずまき状流路509の計測視野を連続的に位置出しすることが可能となる。より具体的にはうずまき状流路509、510内のそれぞれの試薬注入口503、502から試薬排出口504、505までの流路領域において、それぞれ連続的にTDI動作によるスキャニングを行うことが可能となる。うずまき状流路内部に沿ってθXステージをθ回転方向およびX水平方向に同時に駆動することにより、うずまき状流路を中断することなく連続してTDIスキャニングを行うことが可能となる。流路のTDIスキャン中のフォーカスは対物レンズ508をZモーター512で駆動することにより達成される。
The heat block 501 is fixed on the θX stage, and it is possible to continuously position the measurement visual field of the spiral channel 509 with respect to the optical axis fixed in the vertical direction through the objective lens 508. . More specifically, it is possible to continuously perform scanning by the TDI operation in the flow channel regions from the reagent inlets 503 and 502 to the reagent outlets 504 and 505 in the spiral flow channels 509 and 510, respectively. Become. By simultaneously driving the θX stage in the θ rotation direction and the X horizontal direction along the inside of the spiral channel, TDI scanning can be continuously performed without interrupting the spiral channel. Focusing during a TDI scan of the flow path is achieved by driving the objective lens 508 with a Z motor 512.
本発明の第6の実施例として、うずまき状の流路形状を有するフローセルにおける試薬送液の機構および方法について図6A・B・Cを用いて以下に説明する。
As a sixth embodiment of the present invention, a mechanism and a method for feeding a reagent in a flow cell having a spiral channel shape will be described below with reference to FIGS.
図6a)では2つの流路615、616を有するフローセル605において、流路615について試薬を供給する方法について説明する。試薬はチューブ601、612を経て回転継手602に接続する。回転継手602は2つのパーツより構成される。回転継手602の下部は試薬カートリッジからの流路612に接続し、θXステージの回転運動に追従しない。一方回転継手602上部はその下部に対して自由に回転することが可能である。より具体的には回転継手602上部はθXステージの回転運動に追従することが可能である。したがってθXステージの回転にともなって流路612についてひずみ・ねじれは蓄積しない。
In FIG. 6 a), a method of supplying a reagent to the flow channel 615 in the flow cell 605 having two flow channels 615 and 616 will be described. The reagent is connected to the rotary joint 602 via the tubes 601 and 612. The rotary joint 602 is composed of two parts. The lower part of the rotary joint 602 is connected to the flow path 612 from the reagent cartridge and does not follow the rotational movement of the θX stage. On the other hand, the upper portion of the rotary joint 602 can freely rotate with respect to the lower portion thereof. More specifically, the upper part of the rotary joint 602 can follow the rotational movement of the θX stage. Therefore, distortion and twist are not accumulated in the flow path 612 as the θX stage rotates.
回転継手602上部からはチューブ603および617が多方弁618内のポート604、610にそれぞれ接続している。多方弁618はポート608、609、604、610についてそれぞれ独立に開閉することができる。多方弁618を操作することにより、フローセル605の2つの流路615、616について所定の試薬を選択的に供給することが可能となる。また、多方弁618はθXステージに設置されており、θXステージとともに回転運動を行う。
Tubes 603 and 617 are connected to the ports 604 and 610 in the multi-way valve 618 from the upper part of the rotary joint 602, respectively. Multi-way valve 618 can be opened and closed independently for ports 608, 609, 604, and 610. By operating the multi-way valve 618, a predetermined reagent can be selectively supplied to the two flow paths 615 and 616 of the flow cell 605. In addition, the multi-way valve 618 is installed on the θX stage, and rotates with the θX stage.
θXステージの回転に伴い、多方弁618、流路615、616は同様に回転するが、チューブ612は回転継手602の下部を介して多方弁618、流路615、616に接続している。したがって、チューブ612はねじれなどの歪みを発生せず、安定して試薬をフローセル605に対して送液できる。
As the θX stage rotates, the multi-way valve 618 and the flow paths 615 and 616 rotate in the same manner, but the tube 612 is connected to the multi-way valve 618 and the flow paths 615 and 616 via the lower part of the rotary joint 602. Therefore, the tube 612 does not generate distortion such as torsion, and can stably supply the reagent to the flow cell 605.
図6a)を用いてより具体的にうずまき状流路615への試薬送液方法について説明する。まず、ポート604、608を開放し、ポート609、610を閉じ、流路下方のシリンジポンプにより陰圧を発生させることで流路615への試薬の吸引を行う。試薬はチューブ631を経て流路内の試薬注入口606に到達する。矢印方向に試薬はうずまき状の流路に沿って流路内を進行する。試薬排出口607に到達した試薬はチューブ632を経てポート608に接続する。排出される試薬はポート608からスパイラルチューブ613に接続され、さらにチューブ614を経て廃液タンクへ排出される。なお、ここでスパイラルチューブ613を使用したのは、θXステージの回転運動に伴うねじれを吸収・緩和するためである。また、試薬量を低減するためには試薬ラック内に配置された試薬からフローセル流路までの配管長を可能な限り短くすることが重要である。したがってフローセル605への試薬供給はなるべく直線状のチューブ601、612を使用し、使用済みの試薬の流路としては、流路長が長くなっても問題のないスパイラルチューブを採用することが肝要である。
A method for feeding the reagent to the spiral channel 615 will be described more specifically with reference to FIG. First, the ports 604 and 608 are opened, the ports 609 and 610 are closed, and a negative pressure is generated by a syringe pump below the flow path to suck the reagent into the flow path 615. The reagent reaches the reagent inlet 606 in the flow path via the tube 631. In the direction of the arrow, the reagent advances in the flow path along the spiral flow path. The reagent that has reached the reagent outlet 607 is connected to the port 608 through the tube 632. The reagent to be discharged is connected to the spiral tube 613 from the port 608 and further discharged to the waste liquid tank through the tube 614. The reason why the spiral tube 613 is used here is to absorb and relieve the twist associated with the rotational movement of the θX stage. In order to reduce the amount of reagent, it is important to shorten the piping length from the reagent arranged in the reagent rack to the flow cell channel as much as possible. Therefore, it is important to use linear tubes 601 and 612 as much as possible to supply the reagent to the flow cell 605, and to use a spiral tube that does not cause any problems even if the flow path length becomes long as the flow path of the used reagent. is there.
同様に図6b)では流路616について試薬を供給する方法について述べる。なお、流路616に試薬を供給している間、流路616上ではケミストリ反応を行うことになる。一方流路615上では並行してイメージング動作を行うことができる。ケミストリ反応に要する時間と、イメージング動作に要する時間は3分と同一である。したがってケミストリとイメージングを交互に入れ子状に行うことにより、シーケンシング中にイメージングを常時行うことが可能となる。従来DNAシーケンスにおいてイメージング工程がケミストリ工程と比較して時間を要することによりシーケンスのTATが長くなっていたが、本手法を用いることによりTATの低減を図ることができる。
Similarly, FIG. 6b) describes a method of supplying the reagent to the flow path 616. Note that a chemistry reaction is performed on the channel 616 while the reagent is supplied to the channel 616. On the other hand, an imaging operation can be performed in parallel on the flow path 615. The time required for the chemistry reaction and the time required for the imaging operation are the same as 3 minutes. Therefore, by alternately nesting chemistry and imaging, it becomes possible to always perform imaging during sequencing. In the conventional DNA sequence, the TAT of the sequence becomes longer due to the time required for the imaging process compared to the chemistry process. However, TAT can be reduced by using this method.
流路616に対して選択的に試薬を送液するためには、多方弁618のポート604、608を閉じ、ポート609、610を開く。試薬はチューブ633を経て流路616の試薬注入口621に到達する。試薬はフローセル内のうずまき状流路616内部を進行し、試薬排出口622に至る。その後チューブ634を経てポート609に到達し、さらにスパイラルチューブ613、チューブ614を通過して廃液タンクへと排出される。
In order to selectively supply the reagent to the flow path 616, the ports 604 and 608 of the multi-way valve 618 are closed and the ports 609 and 610 are opened. The reagent reaches the reagent inlet 621 of the flow path 616 through the tube 633. The reagent travels inside the spiral channel 616 in the flow cell and reaches the reagent outlet 622. Thereafter, it reaches the port 609 through the tube 634, and further passes through the spiral tube 613 and the tube 614 and is discharged to the waste liquid tank.
うずまき状の流路を持つフローセルはθXステージにより回転運動を行うが、上述した回転継手、多方弁およびスパイラルチューブを用いることにより、試薬を円滑にフローセル内の流路に供給することが可能となる。
A flow cell having a spiral flow path rotates by a θX stage. By using the rotary joint, multi-way valve and spiral tube described above, it becomes possible to smoothly supply a reagent to the flow path in the flow cell. .
また、試薬をフローセルに注入する前に加熱する機構について図6c)を用いて説明する。本実施例においてはイメージングおよびケミストリはともに60℃で行う。しかしながら試薬保冷庫では試薬は4℃で冷却され、試薬がフローセルに到達するまではチューブ内で装置内温度である約30℃となる。30℃付近の試薬をフローセルに直接注入すると、すでにイメージングとケミストリを60℃で行っている温度環境を乱す可能性がある。この可能性を回避するために、筒状の加熱機構651をチューブ612に設置する。これにより、フローセルに注入する直前の試薬をあらかじめ60℃に加熱することで、フローセルにおけるイメージングおよびケミストリ反応を60℃で安定して行うことが可能となる。
In addition, a mechanism for heating before injecting the reagent into the flow cell will be described with reference to FIG. In this embodiment, both imaging and chemistry are performed at 60 ° C. However, in the reagent cooler, the reagent is cooled at 4 ° C., and the temperature inside the tube is about 30 ° C. until the reagent reaches the flow cell. If a reagent near 30 ° C. is directly injected into the flow cell, the temperature environment in which imaging and chemistry are already performed at 60 ° C. may be disturbed. In order to avoid this possibility, a cylindrical heating mechanism 651 is installed in the tube 612. As a result, the reagent immediately before being injected into the flow cell is heated to 60 ° C. in advance, so that imaging and chemistry reaction in the flow cell can be stably performed at 60 ° C.
次に本発明の第7の実施例として、うずまき状の流路を有するフローセルにおけるTDIスキャン方法について図7を用いて以下に説明する。
Next, as a seventh embodiment of the present invention, a TDI scanning method in a flow cell having a spiral channel will be described below with reference to FIG.
本実施例でもフローセルは2つの流路を持ち、その流路幅は2.5mmである。1つの流路はswathと呼ぶ縦長の2つのスキャン領域に分割される。つまりswathの横幅は2.5mm/2=1.25mmであり、swathの縦方向の長さは流路のそれと同一である。また、流路には上面と下面の2つの面があるが、その面のいずれにも微小反応場が固定されている。したがって上面・下面をスキャンすることにより検出可能な微小反応場の数を増大させることが可能となる。
Also in this embodiment, the flow cell has two flow paths, and the flow path width is 2.5 mm. One flow path is divided into two vertically long scan areas called swaths. That is, the width of swath is 2.5 mm / 2 = 1.25 mm, and the length of swath in the vertical direction is the same as that of the flow path. The flow path has two surfaces, an upper surface and a lower surface, and a minute reaction field is fixed to each of the surfaces. Therefore, it is possible to increase the number of minute reaction fields that can be detected by scanning the upper and lower surfaces.
図7は2つのうずまき状の流路を持つフローセル内におけるスキャニングの順序を示したものである。なお、図7は説明のため、うずまき状流路を半円状の流路に簡略化している。図7a)は2つの流路のうち1つの流路内のスキャン順序を示している。また、図7b)における実線部はもうひとつの流路のスキャン順序を示している。イメージング工程とケミストリ工程をこれらの2つの流路を用いて交互に繰返すことで、TATを短縮することができる。また、それぞれの流路には2つのswath領域があることは上述したとおりである。以下に具体的なTDIスキャンの順序を述べる。
FIG. 7 shows the scanning order in a flow cell having two spiral channels. In FIG. 7, for the sake of explanation, the spiral channel is simplified to a semicircular channel. FIG. 7a) shows the scan order within one of the two channels. Moreover, the solid line part in FIG. 7b) shows the scanning order of another flow path. By repeating the imaging process and the chemistry process alternately using these two flow paths, the TAT can be shortened. Further, as described above, each flow path has two swath regions. A specific TDI scan order will be described below.
開始点701を起点としたTDIスキャンが第1のswathの終端点702に到達する。開始点701から終端点702までは連続的に中断することなく順方向にTDIスキャンを行うことが可能である。次に終端点702から第2のswathの開始点703に移動するためにθXステージをX方向にステップアンドリピート方式で駆動させる。終端点702から開始点703までの移動はTDIのラインスキャンの進行方向とは90°の直角方向に移動するため、TDIスキャンを行う必要はない。第2のswath開始点703に移動した後、今度は第1のswathの進行方向とは逆方向にTDIスキャンを行う。これを第2のswath終端点704まで継続する。これまでの動作はフローセル底面に固定された微小反応場のTDIスキャンであるが、次にフローセル上面に固定された微小反応場についてTDIスキャンを同様に行う。
The TDI scan starting from the start point 701 reaches the end point 702 of the first swath. From the start point 701 to the end point 702, it is possible to perform a TDI scan in the forward direction without continuous interruption. Next, in order to move from the end point 702 to the start point 703 of the second swath, the θX stage is driven in the X direction by a step-and-repeat method. Since the movement from the end point 702 to the start point 703 moves in a direction perpendicular to the advancing direction of the TDI line scan, it is not necessary to perform the TDI scan. After moving to the second swath start point 703, this time, a TDI scan is performed in the direction opposite to the traveling direction of the first swath. This continues until the second swat termination point 704. The operation so far is the TDI scan of the minute reaction field fixed on the bottom surface of the flow cell. Next, the TDI scan is similarly performed on the minute reaction field fixed on the top surface of the flow cell.
より具体的には対物レンズを保持するZステージを駆動して底面の終端点704から上面の開始点705にフォーカスを移動させる。次に第2のswathの開始点705から終端点706までTDIスキャンを中断することなく順方向に連続して行う。さらにステップアンドリピート駆動でフローセル上面の終端点706から開始点707に移動し、同様に開始点707から708まで連続して逆方向にTDIスキャンを行う。このイメージング時間が開始してから完了するまでの時間は以下のとおりである。swathの長さは451mmであり、ひとつの流路について4swath分のTDIスキャンを行う。また、TDIのスキャン速度は実施例11で説明するように16.6mm/sである。したがってひとつの流路について必要となるイメージング時間は
451mm/swath×4swath÷16.6mm/s=109s
となり、2分弱でひとつの流路をスキャンすることが可能となる。イルミナ社のSBSケミストリでは現在1サイクルあたり2分を要しているため、本方式を採用することでイメージング時間をケミストリ時間よりも短くすることができる。すなわちTATにおけるボトルネックであったイメージング時間をTATの律速とならない時間まで短縮できることを意味する。 More specifically, the Z stage holding the objective lens is driven to move the focus from thebottom end point 704 to the top start point 705. Next, the TDI scan is continuously performed in the forward direction from the start point 705 to the end point 706 of the second swath without interruption. Further, by the step-and-repeat driving, the flow cell moves from the terminal point 706 on the upper surface of the flow cell to the start point 707, and similarly, the TDI scan is continuously performed in the reverse direction from the start points 707 to 708. The time from the start to completion of this imaging time is as follows. The length of the swath is 451 mm, and a TDI scan for 4 swaths is performed for one flow path. The TDI scan speed is 16.6 mm / s as described in the eleventh embodiment. Therefore, the imaging time required for one flow path is 451 mm / swath × 4 swath ÷ 16.6 mm / s = 109 s.
Thus, it is possible to scan one flow path in less than 2 minutes. Since Illumina's SBS chemistry currently requires 2 minutes per cycle, the imaging time can be made shorter than the chemistry time by employing this method. That is, it means that the imaging time that is a bottleneck in TAT can be shortened to a time that does not become the rate-limiting factor of TAT.
451mm/swath×4swath÷16.6mm/s=109s
となり、2分弱でひとつの流路をスキャンすることが可能となる。イルミナ社のSBSケミストリでは現在1サイクルあたり2分を要しているため、本方式を採用することでイメージング時間をケミストリ時間よりも短くすることができる。すなわちTATにおけるボトルネックであったイメージング時間をTATの律速とならない時間まで短縮できることを意味する。 More specifically, the Z stage holding the objective lens is driven to move the focus from the
Thus, it is possible to scan one flow path in less than 2 minutes. Since Illumina's SBS chemistry currently requires 2 minutes per cycle, the imaging time can be made shorter than the chemistry time by employing this method. That is, it means that the imaging time that is a bottleneck in TAT can be shortened to a time that does not become the rate-limiting factor of TAT.
ひとつの流路における1サイクル分のスループットを以下に見積もる。スキャンエリアの面積は
451mm/swath×4swath×2.5mm=4507mm2/lane
となる。いま、微小反応場を1μmごとに固定したとすると、上記領域における微小反応場の数は
4507mm2÷(1μm)2=4.5G個
となる。これを2分で完了できるので、スループットは以下となる。 The throughput for one cycle in one channel is estimated as follows. The area of the scan area is 451 mm / swath × 4 swath × 2.5 mm = 4507 mm 2 / lane
It becomes. Assuming that the minute reaction fields are fixed every 1 μm, the number of minute reaction fields in the region is 4507 mm 2 ÷ (1 μm) 2 = 4.5G. Since this can be completed in 2 minutes, the throughput is as follows.
451mm/swath×4swath×2.5mm=4507mm2/lane
となる。いま、微小反応場を1μmごとに固定したとすると、上記領域における微小反応場の数は
4507mm2÷(1μm)2=4.5G個
となる。これを2分で完了できるので、スループットは以下となる。 The throughput for one cycle in one channel is estimated as follows. The area of the scan area is 451 mm / swath × 4 swath × 2.5 mm = 4507 mm 2 / lane
It becomes. Assuming that the minute reaction fields are fixed every 1 μm, the number of minute reaction fields in the region is 4507 mm 2 ÷ (1 μm) 2 = 4.5G. Since this can be completed in 2 minutes, the throughput is as follows.
4.5Gb/2分=3.2Tb/日
これは現状のHiSeqを10台連結した、2016年時点で最高のスループットを誇るHiSeqXTENのスループット0.6Tb/日を上回る。 4.5 Gb / 2 minutes = 3.2 Tb / day This is higher than the 0.6 Tb / day throughput of HiSeqXTEN, which boasts the highest throughput in 2016, with 10 current HiSeq units connected.
これは現状のHiSeqを10台連結した、2016年時点で最高のスループットを誇るHiSeqXTENのスループット0.6Tb/日を上回る。 4.5 Gb / 2 minutes = 3.2 Tb / day This is higher than the 0.6 Tb / day throughput of HiSeqXTEN, which boasts the highest throughput in 2016, with 10 current HiSeq units connected.
フローセルにある2つの流路のうちの1つの流路内の開始点701から終端点708までイメージングを行っている間あるいはイメージング完了と同時に、フローセルにあるもうひとつの流路では1サイクルあたりのケミストリが完了している。この流路でイメージングを継続するために図7b)では終端点708から開始点711までθXステージを水平移動させる。次に開始点711から終端点712まで順方向にTDIスキャンを継続的に行った後、終端点712から開始点713にθXステージをステップアンドリピートで水平移動させる。開始点713から終端点714までTDIスキャンを逆方向に連続して行った後、フォーカスを終端点714から開始点715に移動させる。これによりフローセル流路内の上面より下面をスキャンすることができる。同様に開始点715から終端点716まで順方向にTDIスキャンする。終端点716から開始点717へθXステージをX方向に平行移動させ、再びTDIスキャンを開始点717から終端点718まで逆方向にTDIスキャンする。開始点701から終端点711までが1サイクルあたりのTDIスキャン動作である。
While imaging is being performed from the start point 701 to the end point 708 in one of the two channels in the flow cell, or at the same time as the imaging is completed, the other channel in the flow cell has a chemistry per cycle. Has been completed. In order to continue imaging in this flow path, in FIG. 7 b), the θX stage is moved horizontally from the end point 708 to the start point 711. Next, after continuously performing a TDI scan in the forward direction from the start point 711 to the end point 712, the θX stage is moved horizontally from the end point 712 to the start point 713 in a step-and-repeat manner. After the TDI scan is continuously performed in the reverse direction from the start point 713 to the end point 714, the focus is moved from the end point 714 to the start point 715. Thereby, the lower surface can be scanned from the upper surface in the flow cell channel. Similarly, a TDI scan is performed in the forward direction from the start point 715 to the end point 716. The θX stage is translated in the X direction from the end point 716 to the start point 717, and the TDI scan is again performed in the reverse direction from the start point 717 to the end point 718. From the start point 701 to the end point 711 is a TDI scan operation per cycle.
上述した1サイクルあたりの動作を繰返すことにより、シーケンシングを行うことが可能となる。図7c)では第2サイクルに入ったイメージング動作を示すものであり、基本的に図7c)は図7a)と同様である。さらにサイクルを進める場合には図7b)→図7c)→図7b)→図7c)を所定のサイクル数まで繰り返すことにより達成される。
It is possible to perform sequencing by repeating the operations per cycle described above. FIG. 7c) shows the imaging operation entering the second cycle, and FIG. 7c) is basically the same as FIG. 7a). Further progress of the cycle is achieved by repeating FIG. 7b) → FIG. 7c) → FIG. 7b) → FIG. 7c) up to a predetermined number of cycles.
本実施例の適用により、従来多数あった流路を連結し、長い流路を形成することによりTDIスキャンを継続的・連続的に行うことが可能となる。また、うずまき状流路は基板表面を埋め尽くすように形成することが可能であり、フローセルの製造コスト面からみても本形状は有用である。
By applying this embodiment, it is possible to continuously and continuously perform TDI scanning by connecting a number of conventional channels and forming a long channel. Further, the spiral channel can be formed so as to fill the substrate surface, and this shape is useful from the viewpoint of the manufacturing cost of the flow cell.
次に本発明の第8の実施例として、うずまき状の流路を有する円板状フローセルに対するθXステージ制御法について図8を用いて以下に説明する。
Next, as an eighth embodiment of the present invention, a θX stage control method for a disc-shaped flow cell having a spiral flow path will be described below with reference to FIG.
本実施例では微小反応場がフローセル流路面上にランダムに固定されている場合を考える。この場合、微小反応場の間隔は制御されておらず、それは反応場の平均距離がフローセル内のパネルに依存せず、一定であるという状態である。このため、フローセルのどの箇所においてもTDIのスキャン速度が一定であることが望ましい。
In this example, consider the case where the minute reaction field is randomly fixed on the flow cell channel surface. In this case, the interval between the minute reaction fields is not controlled, which means that the average distance of the reaction fields does not depend on the panels in the flow cell and is constant. For this reason, it is desirable that the TDI scanning speed be constant at any location of the flow cell.
本実施例では流路上の任意の点におけるTDIスキャン速度を一定に保つため、θXステージの角速度ω[ラジアン/s]を可変にする制御方法を採用している。より具体的に説明するため、以下にうずまき流路上の異なる任意の2点を用いて説明する。これらうずまき流路上の2点について、円形フローセルの中心からの距離および角速度をそれぞれr1およびr2、ω1、ω2とする。その場合、各点におけるスキャン速度(つまり流路進行方向における速度)v1、2は
v1=ω1×r1
v2=ω2×r2
と書くことができる。なお、本実施例において流路上の任意の点におけるスキャン速度を一定にする制御を行うこととする。その場合はv1=v2=vconstとなり、
ω1×r1=ω2×r2
と書くことができる。r1>r2の場合、角速度がω1<ω2となる。つまりスキャン速度を一定にするためには、うずまき流路の中心に近いTDIスキャンほど角速度を大きくし、中心から離れた領域をTDIスキャンする場合は角速度を小さくなるようにθXステージを制御すればよい。この制御法の具体的な例を示しているのが図8a)、b)である。t=20sにおいてr=5mmと小さいため、角速度ω=72[deg/s]まで大きくする必要がある。一方t=70sにおいてはr=29mmとなるため、角速度ωを12.7[deg/s]まで小さくする必要がある。図8c)にみられるように円板状フローセルの中心位置からの距離rと角速度ωは反比例の関係にある。換言すると中心位置からの距離rと角速度ωをかければ、スキャン速度vは一定であるということである。この関係にしたがって、うずまき状流路をTDIスキャンすることにより、円板状フローセルの中心部も外周部も同様に微小反応場からの蛍光計測を行うことができる。特に本方式は、微小反応場を基板上にランダムに、つまり規則的にではなく固定する場合に有効な計測法である。なぜならばランダムに微小反応場が固定される場合、微小反応場間の距離は内周においても外周においてもばらつきは一定であり規則性がない。したがって外周へTDIスキャンを移動させるにつれ、物理的な微小反応場の平均距離は変わらない。上述した理由により、外周においてもスキャン速度は一定にする必要がある。このため本実施例で説明するように内周から外周への移行に伴って角速度ωを次第に減少させる制御が必要になる。 In this embodiment, in order to keep the TDI scan speed at an arbitrary point on the flow path constant, a control method is adopted in which the angular speed ω [radians / s] of the θX stage is made variable. In order to explain more specifically, the following description will be given using two different points on the spiral channel. For these two points on the spiral flow path, the distance from the center of the circular flow cell and the angular velocity are r 1, r 2 , ω 1 , and ω 2 , respectively. In that case, the scanning speed at each point (that is, the speed in the flow path direction) v 1 , 2 is v 1 = ω 1 × r 1
v 2 = ω 2 × r 2
Can be written. In this embodiment, control is performed to keep the scan speed at an arbitrary point on the flow path constant. In that case, v 1 = v 2 = v const
ω 1 × r 1 = ω 2 × r 2
Can be written. When r 1 > r 2 , the angular velocity is ω 1 <ω 2 . In other words, in order to make the scanning speed constant, the angular velocity is increased as the TDI scanning is closer to the center of the spiral flow path, and the θX stage is controlled so as to decrease the angular velocity when performing TDI scanning in a region away from the center. . Specific examples of this control method are shown in FIGS. 8a) and 8). Since t = 20 s and r = 5 mm are small, it is necessary to increase the angular velocity to ω = 72 [deg / s]. On the other hand, since r = 29 mm at t = 70 s, it is necessary to reduce the angular velocity ω to 12.7 [deg / s]. As seen in FIG. 8c), the distance r from the center position of the disc-shaped flow cell and the angular velocity ω are in an inversely proportional relationship. In other words, if the distance r from the center position and the angular velocity ω are applied, the scanning velocity v is constant. By performing a TDI scan of the spiral flow path in accordance with this relationship, fluorescence measurement from a micro reaction field can be performed in the center part and the outer peripheral part of the disk-like flow cell similarly. In particular, this method is an effective measurement method when a minute reaction field is fixed on a substrate randomly, that is, not regularly. This is because when the minute reaction field is fixed at random, the distance between the minute reaction fields is constant in both the inner and outer circumferences and is not regular. Therefore, as the TDI scan is moved to the outer periphery, the average distance of the physical minute reaction field does not change. For the reasons described above, it is necessary to keep the scanning speed constant at the outer periphery. For this reason, as described in the present embodiment, it is necessary to control to gradually reduce the angular velocity ω with the transition from the inner periphery to the outer periphery.
v1=ω1×r1
v2=ω2×r2
と書くことができる。なお、本実施例において流路上の任意の点におけるスキャン速度を一定にする制御を行うこととする。その場合はv1=v2=vconstとなり、
ω1×r1=ω2×r2
と書くことができる。r1>r2の場合、角速度がω1<ω2となる。つまりスキャン速度を一定にするためには、うずまき流路の中心に近いTDIスキャンほど角速度を大きくし、中心から離れた領域をTDIスキャンする場合は角速度を小さくなるようにθXステージを制御すればよい。この制御法の具体的な例を示しているのが図8a)、b)である。t=20sにおいてr=5mmと小さいため、角速度ω=72[deg/s]まで大きくする必要がある。一方t=70sにおいてはr=29mmとなるため、角速度ωを12.7[deg/s]まで小さくする必要がある。図8c)にみられるように円板状フローセルの中心位置からの距離rと角速度ωは反比例の関係にある。換言すると中心位置からの距離rと角速度ωをかければ、スキャン速度vは一定であるということである。この関係にしたがって、うずまき状流路をTDIスキャンすることにより、円板状フローセルの中心部も外周部も同様に微小反応場からの蛍光計測を行うことができる。特に本方式は、微小反応場を基板上にランダムに、つまり規則的にではなく固定する場合に有効な計測法である。なぜならばランダムに微小反応場が固定される場合、微小反応場間の距離は内周においても外周においてもばらつきは一定であり規則性がない。したがって外周へTDIスキャンを移動させるにつれ、物理的な微小反応場の平均距離は変わらない。上述した理由により、外周においてもスキャン速度は一定にする必要がある。このため本実施例で説明するように内周から外周への移行に伴って角速度ωを次第に減少させる制御が必要になる。 In this embodiment, in order to keep the TDI scan speed at an arbitrary point on the flow path constant, a control method is adopted in which the angular speed ω [radians / s] of the θX stage is made variable. In order to explain more specifically, the following description will be given using two different points on the spiral channel. For these two points on the spiral flow path, the distance from the center of the circular flow cell and the angular velocity are r 1, r 2 , ω 1 , and ω 2 , respectively. In that case, the scanning speed at each point (that is, the speed in the flow path direction) v 1 , 2 is v 1 = ω 1 × r 1
v 2 = ω 2 × r 2
Can be written. In this embodiment, control is performed to keep the scan speed at an arbitrary point on the flow path constant. In that case, v 1 = v 2 = v const
ω 1 × r 1 = ω 2 × r 2
Can be written. When r 1 > r 2 , the angular velocity is ω 1 <ω 2 . In other words, in order to make the scanning speed constant, the angular velocity is increased as the TDI scanning is closer to the center of the spiral flow path, and the θX stage is controlled so as to decrease the angular velocity when performing TDI scanning in a region away from the center. . Specific examples of this control method are shown in FIGS. 8a) and 8). Since t = 20 s and r = 5 mm are small, it is necessary to increase the angular velocity to ω = 72 [deg / s]. On the other hand, since r = 29 mm at t = 70 s, it is necessary to reduce the angular velocity ω to 12.7 [deg / s]. As seen in FIG. 8c), the distance r from the center position of the disc-shaped flow cell and the angular velocity ω are in an inversely proportional relationship. In other words, if the distance r from the center position and the angular velocity ω are applied, the scanning velocity v is constant. By performing a TDI scan of the spiral flow path in accordance with this relationship, fluorescence measurement from a micro reaction field can be performed in the center part and the outer peripheral part of the disk-like flow cell similarly. In particular, this method is an effective measurement method when a minute reaction field is fixed on a substrate randomly, that is, not regularly. This is because when the minute reaction field is fixed at random, the distance between the minute reaction fields is constant in both the inner and outer circumferences and is not regular. Therefore, as the TDI scan is moved to the outer periphery, the average distance of the physical minute reaction field does not change. For the reasons described above, it is necessary to keep the scanning speed constant at the outer periphery. For this reason, as described in the present embodiment, it is necessary to control to gradually reduce the angular velocity ω with the transition from the inner periphery to the outer periphery.
次に本発明の第9の実施例として、複数のケミストリサイクルにおける円板状フローセルに対するθXステージ制御法について図9を用いて以下に説明する。
Next, as a ninth embodiment of the present invention, a θX stage control method for a disc-shaped flow cell in a plurality of chemist recycling will be described below with reference to FIG.
図8がうずまき状流路について、シーケンス反応1サイクル分に相当するTDIスキャン動作を説明しているのに対し、図9a)は1本のうずまき状流路におけるシーケンス反応2サイクル分のTDIスキャン動作を行っている。実施例7で説明したようにt=0sからt=120sまでにフローセル下面において内周→外周→内周についてTDIスキャンを連続で行う。ここで前述したように外周→内周へのTDIスキャン方向の変換時に流路内に2つあるswathの変更を行う。またt=130sからt=240sにおいてフローセル上面にフォーカスを移動した後に、内周→外周→内周についてのTDIスキャンを行う。t=240sからt=480sにおいてはイメージング終了後のケミストリ反応の時間である。t>480s以降より2サイクル目のイメージングを進めることが可能となる。
FIG. 8 illustrates the TDI scan operation corresponding to one cycle of the sequence reaction for the spiral channel, whereas FIG. 9a) illustrates the TDI scan operation for two cycles of the sequence reaction in one spiral channel. It is carried out. As described in the seventh embodiment, TDI scans are continuously performed from the inner periphery to the outer periphery to the inner periphery on the lower surface of the flow cell from t = 0 s to t = 120 s. As described above, the two swaths in the flow path are changed when the TDI scan direction is changed from the outer periphery to the inner periphery. In addition, after the focus is moved from t = 130 s to t = 240 s to the upper surface of the flow cell, a TDI scan is performed for the inner circumference → the outer circumference → the inner circumference. From t = 240 s to t = 480 s, the time of the chemistry reaction after the end of imaging. It becomes possible to proceed with imaging in the second cycle after t> 480 s.
次に図9b)は円板状フローセル内にある2つの流路についてイメージングとケミストリを交互に繰り返す場合における、フローセル中心からの位置rの時間変化を示すグラフである。より具体的には、実施例7における図7a)およびb)に相当する動作について説明している。なお、2つの流路を交互に切り替えていることを明確にするため、2つ目のうずまき状流路でTDIスキャンしている場合の位置rの値を負とした。図9a)と同様に1つの流路について2つのswathを持ち、これらについて流路下面、上面の2面についてTDIスキャンを行う。図9a)と比較すると1つ目の流路のイメージングが完了した後、すぐに2つ目の流路に移行してTDIスキャニングを継続することが顕著な違いである。図9a)ではケミストリ反応時間についてカメラが駆動できないため、カメラの稼働率を示す指標であるデューティー比が50%となってしまうのに対して、図9b)では片方の流路のケミストリ時間においてもう片方の流路のイメージングを継続することが可能となるため、デューティー比を向上することができる。特にケミストリ時間とイメージング時間を同等の時間にできる場合、デューティー比を100%近くまで向上させることが可能となる。
Next, FIG. 9b) is a graph showing the time change of the position r from the center of the flow cell when imaging and chemistry are alternately repeated for two flow paths in the disc-shaped flow cell. More specifically, the operation corresponding to FIGS. 7 a) and b) in the seventh embodiment is described. In order to clarify that the two flow paths are alternately switched, the value of the position r when the TDI scan is performed in the second spiral flow path is negative. Like FIG. 9 a), there are two swaths for one flow path, and TDI scan is performed on these two surfaces, the lower surface and the upper surface. Compared with FIG. 9a), it is a significant difference that the imaging of the first channel is completed and then the second channel is immediately followed to continue the TDI scanning. In FIG. 9a), since the camera cannot be driven with respect to the chemistry reaction time, the duty ratio, which is an index indicating the operation rate of the camera, is 50%. In contrast, in FIG. Since imaging of one channel can be continued, the duty ratio can be improved. In particular, when the chemistry time and the imaging time can be made equal, the duty ratio can be improved to nearly 100%.
また、図8c)と同様に、図9c)においても円板状フローセルの中心位置からの距離|r|と角速度ωは反比例の関係となる。
Similarly to FIG. 8c), in FIG. 9c), the distance | r | from the center position of the disc-shaped flow cell and the angular velocity ω are in an inversely proportional relationship.
次に本発明の第10の実施例として、うずまき状流路あるいは円形流路内において微小反応場を規則正しく配置し、スループットを向上するパターンド・アレイについて図10a)およびb)を用いて以下に説明する。
Next, as a tenth embodiment of the present invention, a patterned array that regularly arranges minute reaction fields in a spiral channel or a circular channel and improves throughput will be described below with reference to FIGS. 10a) and b). explain.
実施例8および9において説明したように、流路面に微小反応場が不規則に固定されている場合、内周から外周への移行に伴い角速度ωを減少させることでスキャン速度vを一定にする必要がある。しかし、半導体リソグラフィー技術を用いることで0.5~1ミクロン程度の大きさの微小反応場を所望の間隔(0.5から1ミクロン、あるいは1から5ミクロンまでの任意の数値で)で規則的に固定することができる。ここで、一般的に直線流路であれば、フローセル内のいずれの箇所においてもスキャン進行方向に同一のピッチで微小反応場を等間隔に固定することが自然である。一方、うずまき状流路に対して規則的に微小反応場を固定する場合の手法について以下に説明する。
As described in the eighth and ninth embodiments, when the minute reaction field is irregularly fixed on the flow path surface, the scan speed v is made constant by decreasing the angular velocity ω along with the transition from the inner periphery to the outer periphery. There is a need. However, by using a semiconductor lithography technique, a minute reaction field with a size of about 0.5 to 1 micron can be regularly formed at a desired interval (0.5 to 1 micron, or any value from 1 to 5 microns). Can be fixed to. Here, in general, in the case of a straight flow path, it is natural that the minute reaction fields are fixed at equal intervals at the same pitch in the scanning direction in any part of the flow cell. On the other hand, a method for regularly fixing a minute reaction field to a spiral channel will be described below.
まず図10a)において、回転速度ωを一定にしてTDIスキャンを行う方法について説明する。図10a)においては3つの弧状の流路があり、これらはうずまき状の流路として実際には1つの流路を形成している。各流路幅は1.1mmであり、その幅内において1ミクロンピッチかつ直径0.5ミクロンの円板状の微小反応場が固定されている。半導体リソグラフィー技術を用いてマスクを作成し、シリコン面上に、例えばアミノシランなどのDNA吸着サイトを形成することで選択的にDNAを流路面上に固定することが可能となる。ここで、流路がX=5mm、10mm、15mmに3流路存在するが、それぞれにおけるスキャン方向における微小反応場のピッチをそれぞれδd1、δd2、δd3とする。図10a)においてはδd1≠δd2≠δd3であり、より具体的にはδd1=ω×5mm、δd2=ω×10mm、δd3=ω×15mmの関係となっている。今、ここで角速度ωは一定であるから、δd1:δd2:δd3=1:2:3の関係となる。この関係を保って、光リソグラフィーを用いてパターニングを行えば、うずまき状流路あるいは円形流路において、回転速度ω一定でTDIスキャニングを行うことが可能となる。TDIスキャニングにおけるθXステージの制御方式が簡便になり、計測エラーの発生リスクを低減することが可能となる。なお、TDIスキャン方向とXY平面内において垂直方向には微小反応場が前述したように1ミクロンピッチの等間隔で流路表面上下面上に規則的に配置されている。
First, referring to FIG. 10 a), a method for performing TDI scanning with a constant rotation speed ω will be described. In FIG. 10a) there are three arc-shaped channels, which actually form one channel as a spiral channel. Each channel width is 1.1 mm, and a disk-like minute reaction field having a pitch of 1 micron and a diameter of 0.5 microns is fixed within the width. By creating a mask using a semiconductor lithography technique and forming a DNA adsorption site such as aminosilane on the silicon surface, it becomes possible to selectively fix the DNA on the channel surface. Here, although there are three flow paths with X = 5 mm, 10 mm, and 15 mm, the pitches of the minute reaction fields in the scanning direction are δd 1 , δd 2 , and δd 3 , respectively. In FIG. 10a), δd 1 ≠ δd 2 ≠ δd 3 and more specifically, δd 1 = ω × 5 mm, δd 2 = ω × 10 mm, and δd 3 = ω × 15 mm. Here, since the angular velocity ω is constant, the relationship is δd 1 : δd 2 : δd 3 = 1: 2: 3. If patterning is performed using photolithography while maintaining this relationship, TDI scanning can be performed at a constant rotational speed ω in a spiral channel or a circular channel. The control method of the θX stage in TDI scanning is simplified, and the risk of occurrence of measurement errors can be reduced. In addition, in the direction perpendicular to the TDI scan direction and the XY plane, minute reaction fields are regularly arranged on the upper and lower surfaces of the channel surface at equal intervals of 1 micron pitch as described above.
次に、図10b)を用いて回転速度ωを可変にしてTDIスキャンを行う方法について説明する。図10a)では中心半径rの距離に応じてスキャン方向における微小反応場のピッチを大きくしたが、図10b)ではピッチを同一にする。これはすなわち回転速度ωを実施例8および9で説明したように可変にし、スキャン方向速度vを一定にする方式である。いずれの中心半径rにおいてもスキャン速度vが一定であり、かつ微小反応場の固定ピッチが一定であるわけだから、TDIスキャンにおける単位時間あたりの微小反応場数も一定にすることができる。図10a)では外周部への移行に伴い、微小反応場のピッチが大きくなり、結果として単位面積あたりの微小反応場数(=密度)が減少するという問題があったが、図10b)においては微小反応場のピッチが一定で、かつ角速度ωを可変にすることでTDIスキャンにおける単位時間あたりの微小反応場測定数を一定にすることが可能となる。本方式の採用により、うずまき状流路における中断回数の少ないTDIスキャン法のメリットを享受しつつ、回転運動にともなう微小反応場の固定密度を一定にすることにより、結果としてスループットを向上できるという効果をもたらすことが可能となる。
Next, a method of performing a TDI scan with the rotation speed ω being variable will be described with reference to FIG. In FIG. 10a), the pitch of the minute reaction field in the scanning direction is increased according to the distance of the center radius r, but in FIG. 10b), the pitch is made the same. In other words, the rotation speed ω is variable as described in the eighth and ninth embodiments, and the scanning direction speed v is constant. Since the scan speed v is constant and the fixed pitch of the minute reaction field is constant at any center radius r, the number of minute reaction fields per unit time in the TDI scan can be made constant. In FIG. 10a), there is a problem that the pitch of the minute reaction field is increased with the shift to the outer peripheral portion, and as a result, the number of minute reaction fields (= density) per unit area is reduced. By making the reaction field pitch constant and the angular velocity ω variable, the number of micro reaction field measurements per unit time in the TDI scan can be made constant. By adopting this method, while enjoying the benefits of the TDI scan method with less interruptions in the spiral channel, the fixed density of the micro reaction field associated with the rotational motion is made constant, resulting in improved throughput. It becomes possible to bring
次に本発明の第11の実施例として、TDIスキャニングを実行する場合における具体的にTDIスキャンに用いるセンサおよびステージの駆動動作のパラメータについて図11を用いて以下に説明する。
Next, as an eleventh embodiment of the present invention, the parameters of the sensor and stage driving operations specifically used for TDI scanning when TDI scanning is executed will be described with reference to FIG.
ここで具体的に採用するTDIセンサ1102は浜松ホトニクスのS10202-08-01である。これは裏面入射型CCDイメージセンサであり、有効画素数(H)×(V)は4160×128ピクセルであり、ラインレートは50kHzである。また、ピクセルの画素サイズは12×12μmであり、TDI段数は128である。いま、図11にTDIイメージセンサのセンサ面と計測対象面との関係を示す。このセンサ面に対して、フローセル計側面を総合倍率36倍で投影する(対物レンズは20倍を使用し、チューブレンズで1.8倍の拡大を行う)。
フローセル計測面におけるピクセルの大きさは12μm÷36=0.33μmとなり、同様にフローセル計測面に投影されるセンサ面の大きさ1101は1387μm×43μmである。ラインレートは50kHzであるので、フローセル計測面におけるスキャン速度1103は0.33μm×50kHz=16.6mm/sとなる。測定対象物に対する1ラインの通過時間は1/50kHz=20μsとなり、したがって128ラインを積算して計測される露光時間は20μs×128ライン=2.56msとなる。当然のことながら、TDIスキャンにおいて1ピクセルの大きさを持つ輝点がセンサ面を横切る距離は0.33μm/ピクセル×128ピクセル≒43μmとなる。 The TDI sensor 1102 specifically employed here is Hamamatsu Photonics S10202-08-01. This is a back-illuminated CCD image sensor, the number of effective pixels (H) × (V) is 4160 × 128 pixels, and the line rate is 50 kHz. The pixel size is 12 × 12 μm, and the number of TDI stages is 128. FIG. 11 shows the relationship between the sensor surface of the TDI image sensor and the measurement target surface. The side surface of the flow cell meter is projected at a total magnification of 36 times with respect to this sensor surface (the objective lens uses 20 times and the tube lens enlarges 1.8 times).
The pixel size on the flow cell measurement surface is 12 μm ÷ 36 = 0.33 μm. Similarly, the sensor surface size 1101 projected onto the flow cell measurement surface is 1387 μm × 43 μm. Since the line rate is 50 kHz, the scan speed 1103 on the flow cell measurement surface is 0.33 μm × 50 kHz = 16.6 mm / s. The passage time of one line with respect to the measurement object is 1/50 kHz = 20 μs, and therefore the exposure time measured by integrating 128 lines is 20 μs × 128 lines = 2.56 ms. As a matter of course, the distance that the bright spot having the size of 1 pixel crosses the sensor surface in the TDI scan is 0.33 μm / pixel × 128 pixels≈43 μm.
フローセル計測面におけるピクセルの大きさは12μm÷36=0.33μmとなり、同様にフローセル計測面に投影されるセンサ面の大きさ1101は1387μm×43μmである。ラインレートは50kHzであるので、フローセル計測面におけるスキャン速度1103は0.33μm×50kHz=16.6mm/sとなる。測定対象物に対する1ラインの通過時間は1/50kHz=20μsとなり、したがって128ラインを積算して計測される露光時間は20μs×128ライン=2.56msとなる。当然のことながら、TDIスキャンにおいて1ピクセルの大きさを持つ輝点がセンサ面を横切る距離は0.33μm/ピクセル×128ピクセル≒43μmとなる。 The TDI sensor 1102 specifically employed here is Hamamatsu Photonics S10202-08-01. This is a back-illuminated CCD image sensor, the number of effective pixels (H) × (V) is 4160 × 128 pixels, and the line rate is 50 kHz. The pixel size is 12 × 12 μm, and the number of TDI stages is 128. FIG. 11 shows the relationship between the sensor surface of the TDI image sensor and the measurement target surface. The side surface of the flow cell meter is projected at a total magnification of 36 times with respect to this sensor surface (the objective lens uses 20 times and the tube lens enlarges 1.8 times).
The pixel size on the flow cell measurement surface is 12 μm ÷ 36 = 0.33 μm. Similarly, the sensor surface size 1101 projected onto the flow cell measurement surface is 1387 μm × 43 μm. Since the line rate is 50 kHz, the scan speed 1103 on the flow cell measurement surface is 0.33 μm × 50 kHz = 16.6 mm / s. The passage time of one line with respect to the measurement object is 1/50 kHz = 20 μs, and therefore the exposure time measured by integrating 128 lines is 20 μs × 128 lines = 2.56 ms. As a matter of course, the distance that the bright spot having the size of 1 pixel crosses the sensor surface in the TDI scan is 0.33 μm / pixel × 128 pixels≈43 μm.
次に本発明の第12の実施例として、TDIスキャニングをうずまき状および円形流路に適用する際に発生する、TDIスキャン方向と垂直な方向、つまり半径方向へのドリフトについて以下に図11を用いて以下に説明する。
Next, as a twelfth embodiment of the present invention, FIG. 11 is used for the drift in the direction perpendicular to the TDI scan direction, that is, the radial direction, which occurs when TDI scanning is applied to spiral and circular flow paths. Will be described below.
従来のフローセルにおけるTDIスキャンでは、XYステージによる直線駆動により微小反応場は直線運動する。これに対して、本特許ではθXステージによる回転駆動を採用しており、したがって微小反応場は円運動あるいはうずまき状の運動を行う。TDIスキャンセンサのスキャン方向は通常直線方向であるので、微小反応場が直線運動する場合、TDIスキャンセンサのスキャン方向と微小反応場の運動方向は一致する。しかし、微小場反応場が直線運動ではなく、回転動作を伴う円運動あるいはうずまき状の運動である場合、センサの積算方向に対して垂直方向に微小反応場のドリフトが発生する。このドリフト量について以下に説明する。
In the TDI scan in the conventional flow cell, the minute reaction field moves linearly by linear drive by the XY stage. On the other hand, in this patent, the rotational drive by the θX stage is adopted, so that the minute reaction field performs a circular motion or a spiral motion. Since the scan direction of the TDI scan sensor is usually a linear direction, when the minute reaction field moves linearly, the scan direction of the TDI scan sensor coincides with the movement direction of the minute reaction field. However, when the minute field reaction field is not a linear motion but a circular motion or a spiral motion accompanied by a rotational motion, a minute reaction field drift occurs in a direction perpendicular to the sensor integration direction. This drift amount will be described below.
具体的に第11の実施例で採用したTDIセンサに基づいた数値を用いて、下記にドリフト量を説明する。図12a)においては回転速度ωが一定である場合について説明する。露光中に微小反応場が移動する距離はTDIセンサの物理的大きさと光学系の総合倍率により決定され、実施例11では43μmであった。いま、うずまき状の流路をもつフローセルの直径を65mmとし、またフローセルの円中心からの距離r1=5mm、r2=10mm、r3=30mmにおける微小反応場の運動について考える。r3=30mmにおける微小反応場の移動距離が43μmになるに角度θは1.4×10-3ラジアンとなる。いま、回転速度ωが一定であるので、一定露光時間中における角度θは一定である。この条件下で、露光時間中における微小反応場のドリフト量は
δx=r-r×cosθ
により計算することができる。より具体的には、フローセルの円中心からの距離r1=5mm、r2=10mm、r3=30mmにおける微小反応場のドリフト量は、それぞれ0.05μm、0.01μm、0.03μmとなる。これはフローセル表面におけるピクセルサイズ0.33μmに対して1/10以下の量である。したがって、これは回転運動におけるTDIスキャンニングにおける蛍光計測において問題のない量であり、うずまき状の流路を持つフローセルを回転駆動させることで問題なく蛍光計測を行うことが可能である。なお、回転速度ωが一定である場合は、実施例10の図10a)で説明したようにフローセル内周から外周への移行に伴って微小反応場のピッチを大きくすることが望ましい。微小反応場のピッチを半径に応じて大きくすることにより、微小反応場を効率よく検出するために必要となる移動量に対応することが可能となる。 Specifically, the drift amount will be described below using numerical values based on the TDI sensor employed in the eleventh embodiment. In FIG. 12a) the case where the rotational speed ω is constant will be described. The distance traveled by the minute reaction field during exposure was determined by the physical size of the TDI sensor and the overall magnification of the optical system, and was 43 μm in Example 11. Now, let us consider the motion of a micro reaction field when the diameter of a flow cell having a spiral channel is 65 mm, and the distances r 1 = 5 mm, r 2 = 10 mm, and r 3 = 30 mm from the center of the flow cell. The angle θ becomes 1.4 × 10 −3 radians when the moving distance of the minute reaction field at r 3 = 30 mm becomes 43 μm. Now, since the rotation speed ω is constant, the angle θ during a constant exposure time is constant. Under this condition, the drift amount of the minute reaction field during the exposure time is δx = r−r × cos θ.
Can be calculated. More specifically, the drift amounts of the minute reaction field at distances r 1 = 5 mm, r 2 = 10 mm, and r 3 = 30 mm from the circle center of the flow cell are 0.05 μm, 0.01 μm, and 0.03 μm, respectively. . This is an amount of 1/10 or less for a pixel size of 0.33 μm on the surface of the flow cell. Therefore, this is an amount that causes no problem in the fluorescence measurement in the TDI scanning in the rotational motion, and the fluorescence measurement can be performed without any problem by rotationally driving the flow cell having the spiral flow path. When the rotational speed ω is constant, it is desirable to increase the pitch of the minute reaction field with the transition from the inner periphery to the outer periphery of the flow cell as described in FIG. By increasing the pitch of the minute reaction field according to the radius, it becomes possible to cope with the amount of movement necessary for efficiently detecting the minute reaction field.
δx=r-r×cosθ
により計算することができる。より具体的には、フローセルの円中心からの距離r1=5mm、r2=10mm、r3=30mmにおける微小反応場のドリフト量は、それぞれ0.05μm、0.01μm、0.03μmとなる。これはフローセル表面におけるピクセルサイズ0.33μmに対して1/10以下の量である。したがって、これは回転運動におけるTDIスキャンニングにおける蛍光計測において問題のない量であり、うずまき状の流路を持つフローセルを回転駆動させることで問題なく蛍光計測を行うことが可能である。なお、回転速度ωが一定である場合は、実施例10の図10a)で説明したようにフローセル内周から外周への移行に伴って微小反応場のピッチを大きくすることが望ましい。微小反応場のピッチを半径に応じて大きくすることにより、微小反応場を効率よく検出するために必要となる移動量に対応することが可能となる。 Specifically, the drift amount will be described below using numerical values based on the TDI sensor employed in the eleventh embodiment. In FIG. 12a) the case where the rotational speed ω is constant will be described. The distance traveled by the minute reaction field during exposure was determined by the physical size of the TDI sensor and the overall magnification of the optical system, and was 43 μm in Example 11. Now, let us consider the motion of a micro reaction field when the diameter of a flow cell having a spiral channel is 65 mm, and the distances r 1 = 5 mm, r 2 = 10 mm, and r 3 = 30 mm from the center of the flow cell. The angle θ becomes 1.4 × 10 −3 radians when the moving distance of the minute reaction field at r 3 = 30 mm becomes 43 μm. Now, since the rotation speed ω is constant, the angle θ during a constant exposure time is constant. Under this condition, the drift amount of the minute reaction field during the exposure time is δx = r−r × cos θ.
Can be calculated. More specifically, the drift amounts of the minute reaction field at distances r 1 = 5 mm, r 2 = 10 mm, and r 3 = 30 mm from the circle center of the flow cell are 0.05 μm, 0.01 μm, and 0.03 μm, respectively. . This is an amount of 1/10 or less for a pixel size of 0.33 μm on the surface of the flow cell. Therefore, this is an amount that causes no problem in the fluorescence measurement in the TDI scanning in the rotational motion, and the fluorescence measurement can be performed without any problem by rotationally driving the flow cell having the spiral flow path. When the rotational speed ω is constant, it is desirable to increase the pitch of the minute reaction field with the transition from the inner periphery to the outer periphery of the flow cell as described in FIG. By increasing the pitch of the minute reaction field according to the radius, it becomes possible to cope with the amount of movement necessary for efficiently detecting the minute reaction field.
次に図12b)を用いてに回転速度ωが可変である場合について説明する。実施例11の図b)で説明したように回転速度ωが可変である場合、中心からの半径rに依存せずに微小反応場間のピッチを一定にすることができる。このピッチとして光学系における分解能を適用することにより、一定の面積をもつフローセルについて固定できる微小反応場数を増大し、スループットを向上することが可能となる。回転速度wを可変にできるため、フローセルの円中心からの距離r1=5mm、r2=10mm、r3=30mmにおける微小反応場の移動量を43μmに統一することが可能となる。この場合に、r1=5mm、r2=10mm、r3=30mmにおける角度θはそれぞれ8.6×10-3ラジアン、4.3×10-3ラジアン、1.4×10-3ラジアンとなる。図12a)における説明と同様に露光時間中における微小反応場のドリフト量を計算することができる。これらはそれぞれ0.18μm、0.09μm、0.03μmとなり、TDIスキャンセンサの物体面における大きさ0.33μm/ピクセルと比較して十分に小さい。したがってうずまき状の流路を持つフローセルを回転駆動させることで問題なく蛍光計測を行うことが可能である。
Next, the case where the rotational speed ω is variable will be described with reference to FIG. When the rotational speed ω is variable as described in FIG. B) of Example 11, the pitch between the minute reaction fields can be made constant without depending on the radius r from the center. By applying the resolution in the optical system as this pitch, it is possible to increase the number of minute reaction fields that can be fixed for a flow cell having a certain area and improve the throughput. Since the rotational speed w can be made variable, the amount of movement of the micro reaction field at the distances r 1 = 5 mm, r 2 = 10 mm, r 3 = 30 mm from the circle center of the flow cell can be unified to 43 μm. In this case, the angles θ at r 1 = 5 mm, r 2 = 10 mm, and r 3 = 30 mm are 8.6 × 10 −3 radians, 4.3 × 10 −3 radians, and 1.4 × 10 −3 radians, respectively. Become. Similar to the description in FIG. 12a), the drift amount of the minute reaction field during the exposure time can be calculated. These are 0.18 μm, 0.09 μm, and 0.03 μm, respectively, which are sufficiently smaller than the size of 0.33 μm / pixel on the object plane of the TDI scan sensor. Therefore, it is possible to measure fluorescence without problems by rotationally driving a flow cell having a spiral channel.
次に本発明の第13の実施例として、1台の装置についてθXステージを2台搭載した装置について図13を用いて以下に説明する。
Next, as a thirteenth embodiment of the present invention, an apparatus in which two θX stages are mounted on one apparatus will be described below with reference to FIG.
本実施例は実施例1の装置がθXステージを1台搭載していたのに対して、θXステージ102、161を2台搭載する。また、実施例1で説明したフローチップには2つのうずまき状流路があったのに対し、本実施例では1つのフローチップは単一のうずまき状流路を持つ点が特徴である。本実施例ではイメージングを25℃、ケミストリを60℃でシーケンス反応を進めることができる。すなわち、イメージングとケミストリについて独立した温調が可能となる。したがって2つのθXステージごとにイメージング工程とケミストリ工程を独立に行う。1つのフローセル内には単一の流路が形成されており、イメージング時にはこの流路についてTDIスキャンを連続して継続することができる。他の流路への移動時間および移動時におけるフォーカシングに要する時間をスキップすることができるため、TATを短縮するという効果を有する。
In the present embodiment, the apparatus of the first embodiment has one θX stage mounted thereon, whereas two θX stages 102 and 161 are mounted. In addition, the flow chip described in the first embodiment has two spiral channels, but in the present embodiment, one flow chip has a single spiral channel. In this embodiment, the sequence reaction can proceed at 25 ° C. for imaging and 60 ° C. for chemistry. That is, independent temperature control is possible for imaging and chemistry. Therefore, the imaging process and the chemistry process are performed independently for each of the two θX stages. A single flow path is formed in one flow cell, and TDI scanning can be continuously continued for this flow path during imaging. Since the movement time to another flow path and the time required for focusing at the time of movement can be skipped, the TAT can be shortened.
191、192 ダイオードレーザー
103、104 レーザーラインフィルタ
105 ミラー
106、113、116、117、118 ダイクロイックミラー
123 1/4波長板
107 第一のビームエキスパンダー
109 第二のビームエキスパンダー
108 ラインジェネレーター
114、508 対物レンズ
115、512 Zモーター
119、120、121、122 エミッションフィルタ
130、131、132、133 チューブレンズ
134、135、136、137 CMOSカメラ
161 642nm用ノッチフィルター
162 505nm用ノッチフィルター
101、161、507、605 うずまき状の流路を持ったフローセル
201 フローセル
102、142、161、501 ヒートブロック
140 試薬カートリッジ
141 試薬ラック
144 ペルチェ素子
145、148 フィン
143、146 ファン
147 切り替えバルブ
150、202、225、226、411、412、509、510、612、615、616 流路
154 シリンジポンプ
152、155 二方弁
156 廃液タンク
157 液受けトレイ
158 マイクロフォトセンサ
203、212、220、221、404、405、502、503、606、621 注入口
204、213、223、224、402、403、504、505、607、622 排出口
401 基板
410 スペーサ
413 カバーガラス
510、511 ガイド
506 吸引穴
602 回転継手
601、603、612、614、617、631、632、633、634 チューブ
604、608、609、610 ポート
613 スパイラルチューブ
618 多方弁
651 加熱機構
701、703、705、707、711、713、715、717 開始点
702、704、706、708、712、714、716、718 終端点
1101 フローセル計測面に投影されるセンサ面の大きさ
1103 スキャン速度
1102 TDIセンサ 191 and 192 Diode lasers 103 and 104 Laser line filter 105 Mirrors 106, 113, 116, 117, 118 Dichroic mirror 123 1/4 wavelength plate 107 First beam expander 109 Second beam expander 108 Line generators 114 and 508 Objective lens 115, 512 Z motor 119, 120, 121, 122 Emission filter 130, 131, 132, 133 Tube lens 134, 135, 136, 137 CMOS camera 161 Notch filter for 642nm 162 Notch filter for 505nm 101, 161, 507, 605 Uzumaki Flow cell 201 having a flow path 102 Flow cells 102, 142, 161, 501 Heat block 140 Reagent cartridge 141 Medicine rack 144 Peltier element 145, 148 Fin 143, 146 Fan 147 Switching valve 150, 202, 225, 226, 411, 412, 509, 510, 612, 615, 616 Channel 154 Syringe pump 152, 155 Two-way valve 156 Waste liquid Tank 157 Liquid receiving tray 158 Micro photosensor 203, 212, 220, 221, 404, 405, 502, 503, 606, 621 Inlet 204, 213, 223, 224, 402, 403, 504, 505, 607, 622 Exit 401 Substrate 410 Spacer 413 Cover glass 510, 511 Guide 506 Suction hole 602 Rotary joint 601, 603, 612, 614, 617, 631, 632, 633, 634 Tube 604, 608, 609, 610 Port 613 Spiral tube 618 Multi-way valve 651 Heating mechanism 701, 703, 705, 707, 711, 713, 715, 717 Start point 702, 704, 706, 708, 712, 714, 716, 718 End point 1101 Projected on the flow cell measurement surface Sensor surface size 1103 Scan speed 1102 TDI sensor
103、104 レーザーラインフィルタ
105 ミラー
106、113、116、117、118 ダイクロイックミラー
123 1/4波長板
107 第一のビームエキスパンダー
109 第二のビームエキスパンダー
108 ラインジェネレーター
114、508 対物レンズ
115、512 Zモーター
119、120、121、122 エミッションフィルタ
130、131、132、133 チューブレンズ
134、135、136、137 CMOSカメラ
161 642nm用ノッチフィルター
162 505nm用ノッチフィルター
101、161、507、605 うずまき状の流路を持ったフローセル
201 フローセル
102、142、161、501 ヒートブロック
140 試薬カートリッジ
141 試薬ラック
144 ペルチェ素子
145、148 フィン
143、146 ファン
147 切り替えバルブ
150、202、225、226、411、412、509、510、612、615、616 流路
154 シリンジポンプ
152、155 二方弁
156 廃液タンク
157 液受けトレイ
158 マイクロフォトセンサ
203、212、220、221、404、405、502、503、606、621 注入口
204、213、223、224、402、403、504、505、607、622 排出口
401 基板
410 スペーサ
413 カバーガラス
510、511 ガイド
506 吸引穴
602 回転継手
601、603、612、614、617、631、632、633、634 チューブ
604、608、609、610 ポート
613 スパイラルチューブ
618 多方弁
651 加熱機構
701、703、705、707、711、713、715、717 開始点
702、704、706、708、712、714、716、718 終端点
1101 フローセル計測面に投影されるセンサ面の大きさ
1103 スキャン速度
1102 TDIセンサ 191 and 192 Diode lasers 103 and 104 Laser line filter 105 Mirrors 106, 113, 116, 117, 118 Dichroic mirror 123 1/4 wavelength plate 107 First beam expander 109 Second beam expander 108 Line generators 114 and 508 Objective lens 115, 512 Z motor 119, 120, 121, 122 Emission filter 130, 131, 132, 133 Tube lens 134, 135, 136, 137 CMOS camera 161 Notch filter for 642nm 162 Notch filter for 505nm 101, 161, 507, 605 Uzumaki Flow cell 201 having a flow path 102 Flow cells 102, 142, 161, 501 Heat block 140 Reagent cartridge 141 Medicine rack 144 Peltier element 145, 148 Fin 143, 146 Fan 147 Switching valve 150, 202, 225, 226, 411, 412, 509, 510, 612, 615, 616 Channel 154 Syringe pump 152, 155 Two-way valve 156 Waste liquid Tank 157 Liquid receiving tray 158 Micro photosensor 203, 212, 220, 221, 404, 405, 502, 503, 606, 621 Inlet 204, 213, 223, 224, 402, 403, 504, 505, 607, 622 Exit 401 Substrate 410 Spacer 413 Cover glass 510, 511 Guide 506 Suction hole 602 Rotary joint 601, 603, 612, 614, 617, 631, 632, 633, 634 Tube 604, 608, 609, 610 Port 613 Spiral tube 618 Multi-way valve 651 Heating mechanism 701, 703, 705, 707, 711, 713, 715, 717 Start point 702, 704, 706, 708, 712, 714, 716, 718 End point 1101 Projected on the flow cell measurement surface Sensor surface size 1103 Scan speed 1102 TDI sensor
Claims (10)
- 光透過性をもち、内部に曲線状流路を有するフローセルと、
光軸に対してフローセルを保持し、当該フローセルを連続かつ同時に回転・平行移動させる手段と、
前記フローセルに対して特定の波長を選択的に照射する手段と、
前記フローセル内の曲線状流路に固定した微小反応場より発生する信号を連続的に検出する手段と、
前記フローセルに反応試薬を送液する手段と、
前記フローセルを温調する手段と、
を有することを特徴とした分析装置。 A flow cell having light permeability and having a curved channel inside;
Means for holding the flow cell relative to the optical axis and rotating and translating the flow cell continuously and simultaneously;
Means for selectively irradiating the flow cell with a specific wavelength;
Means for continuously detecting a signal generated from a micro reaction field fixed to a curved flow path in the flow cell;
Means for feeding a reaction reagent to the flow cell;
Means for controlling the temperature of the flow cell;
The analyzer characterized by having. - 請求項1において、
前記フローセルを連続かつ同時に回転・平行移動させる手段が
θXステージであることを特徴とした分析装置。 In claim 1,
An analyzer characterized in that the means for continuously rotating and translating the flow cell simultaneously is a θX stage. - 請求項1において、
前記信号を連続的に検出する手段はTime Delay Integration(日本語で)法を用いて検出を行うことを特徴とした分析装置。 In claim 1,
An analyzer characterized in that the means for continuously detecting the signal performs detection using a Time Delay Integration (in Japanese) method. - 請求項2において、
前記θXステージにおいて、前記フローセルの回転中心からの距離に応じて、
回転速度および平行移動速度を任意に制御できることを特徴とした分析装置。 In claim 2,
In the θX stage, according to the distance from the rotation center of the flow cell,
An analyzer characterized by being able to arbitrarily control the rotation speed and translation speed. - 請求項1において、
前記フローセルに反応試薬を送液する手段は、回転継手と切り替えバルブとスパイラルチューブを備えている
ことを特徴とする分析装置。 In claim 1,
The analyzer for feeding a reaction reagent to the flow cell comprises a rotary joint, a switching valve, and a spiral tube. - 請求項1において、
前記フローセル上に固定される微小反応場が規則的に配置される
ことを特徴とした分析装置。 In claim 1,
An analytical apparatus characterized in that minute reaction fields fixed on the flow cell are regularly arranged. - 請求項1において、
前記フローセル内の微小反応場の規則的な配置が、
前記フローセルの回転中心からの距離に依存せず、等間隔に配置されていることを特徴とした分析装置。 In claim 1,
Regular arrangement of micro reaction fields in the flow cell
An analyzer characterized by being arranged at equal intervals without depending on the distance from the rotation center of the flow cell. - 請求項1において、
前記フローセル内の微小反応場の規則的な配置が、
前記フローセルの回転中心からの距離に応じて規則的に変化することを特徴とした分析装置。 In claim 1,
Regular arrangement of micro reaction fields in the flow cell
An analyzer that changes regularly according to a distance from a rotation center of the flow cell. - 請求項1において、
前記フローセルは複数の曲線状流路を有し、
複数の曲線状流路のうちいずれかの流路で光学計測を行い、
それ以外の曲線状流路により化学反応を進行させる
ことを特徴とした分析装置。 In claim 1,
The flow cell has a plurality of curved channels,
Perform optical measurement in any one of a plurality of curved channels,
An analyzer characterized by advancing a chemical reaction through other curved channels. - 請求項1において、
前記フローセルを保持する手段を2つ以上有することを特徴とする分析装置。 In claim 1,
An analyzer having two or more means for holding the flow cell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/077071 WO2018051426A1 (en) | 2016-09-14 | 2016-09-14 | Analysis device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/077071 WO2018051426A1 (en) | 2016-09-14 | 2016-09-14 | Analysis device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018051426A1 true WO2018051426A1 (en) | 2018-03-22 |
Family
ID=61619872
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/077071 WO2018051426A1 (en) | 2016-09-14 | 2016-09-14 | Analysis device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018051426A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009520985A (en) * | 2005-12-21 | 2009-05-28 | ジェ・チャーン・ユ | Bio memory disk, bio memory disk drive device and analysis method using the same |
US20100041562A1 (en) * | 2004-12-10 | 2010-02-18 | Simon Fraser University | Microfluidic microarray assemblies and methods of manufacturing and using |
JP2010172270A (en) * | 2009-01-29 | 2010-08-12 | Soka Univ | Microreaction vessel, and polymerase chain reaction by using the same |
JP2010284101A (en) * | 2009-06-11 | 2010-12-24 | Hitachi High-Technologies Corp | Reaction vessel, parallel processing device, and sequencer |
JP2012172981A (en) * | 2011-02-17 | 2012-09-10 | Jikei Univ | Kit for detection of specific reaction, device for detection of specific reaction, and method for detection of specific reaction |
WO2014034275A1 (en) * | 2012-08-30 | 2014-03-06 | 株式会社 日立ハイテクノロジーズ | Nucleic acid analysis device |
JP2015090458A (en) * | 2013-11-07 | 2015-05-11 | 株式会社日立ハイテクノロジーズ | Analyzer |
-
2016
- 2016-09-14 WO PCT/JP2016/077071 patent/WO2018051426A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100041562A1 (en) * | 2004-12-10 | 2010-02-18 | Simon Fraser University | Microfluidic microarray assemblies and methods of manufacturing and using |
JP2009520985A (en) * | 2005-12-21 | 2009-05-28 | ジェ・チャーン・ユ | Bio memory disk, bio memory disk drive device and analysis method using the same |
JP2010172270A (en) * | 2009-01-29 | 2010-08-12 | Soka Univ | Microreaction vessel, and polymerase chain reaction by using the same |
JP2010284101A (en) * | 2009-06-11 | 2010-12-24 | Hitachi High-Technologies Corp | Reaction vessel, parallel processing device, and sequencer |
JP2012172981A (en) * | 2011-02-17 | 2012-09-10 | Jikei Univ | Kit for detection of specific reaction, device for detection of specific reaction, and method for detection of specific reaction |
WO2014034275A1 (en) * | 2012-08-30 | 2014-03-06 | 株式会社 日立ハイテクノロジーズ | Nucleic acid analysis device |
JP2015090458A (en) * | 2013-11-07 | 2015-05-11 | 株式会社日立ハイテクノロジーズ | Analyzer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102538825B1 (en) | High-performance fluorescence imaging module for genomic testing assays | |
JP5026851B2 (en) | Chemiluminescence detector | |
US9205425B2 (en) | Thermal cycling reaction block and continuous real-time monitoring apparatus using the same | |
US12247921B2 (en) | Systems and methods for multicolor imaging | |
JP2011059095A (en) | Light detection device | |
JP6185151B2 (en) | Analysis equipment | |
US20240418978A1 (en) | Methods for minimizing optical aberrations | |
US20120220498A1 (en) | Fluorescence analyzing method, fluorescence analyzing apparatus and image detecting method | |
WO2018051426A1 (en) | Analysis device | |
JP2010284101A (en) | Reaction vessel, parallel processing device, and sequencer | |
JP2012245014A (en) | Reactor vessel, parallel processing apparatus, and sequencer | |
CN117501103A (en) | Method for improving sequencing resolution, sequencing device and sequencing system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16916211 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16916211 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |